WO2005117273A1 - 空間多重信号検出方法及びそれを用いる時空間反復復号器 - Google Patents

空間多重信号検出方法及びそれを用いる時空間反復復号器 Download PDF

Info

Publication number
WO2005117273A1
WO2005117273A1 PCT/JP2005/009514 JP2005009514W WO2005117273A1 WO 2005117273 A1 WO2005117273 A1 WO 2005117273A1 JP 2005009514 W JP2005009514 W JP 2005009514W WO 2005117273 A1 WO2005117273 A1 WO 2005117273A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft
input
output
conditional
event
Prior art date
Application number
PCT/JP2005/009514
Other languages
English (en)
French (fr)
Inventor
Tsuguo Maru
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006513896A priority Critical patent/JP4803384B2/ja
Priority to KR1020067027144A priority patent/KR100919531B1/ko
Priority to US11/569,674 priority patent/US7734990B2/en
Priority to CN2005800251704A priority patent/CN1989697B/zh
Priority to EP05743597.6A priority patent/EP1768263B1/en
Publication of WO2005117273A1 publication Critical patent/WO2005117273A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/258Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with turbo codes, e.g. Turbo Trellis Coded Modulation [TTCM]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding

Definitions

  • the present invention relates to a spatial multiplexed signal detection method and a space-time iterative decoder using the same, and particularly to a space-time iterative decoder using a spatial multiplexed signal detection method and iterative sequential processing for mobile communication.
  • Multi-USER Diversity which is one of the similar trends. I can say.
  • Non-Patent Documents 1 and 2 it is called BLAST (Bell Labs Layered Space-Time) that efficiently uses a signal subjected to spatial multiplexing processing as a means to utilize an inherent propagation path resource.
  • a spatial transmission process is disclosed.
  • V-BLAST which combines linear filtering and an interference canceller, as an architecture for realizing the spatial demultiplexing of BLAST with low complexity.
  • Linear filtering generally employs a ZF (Zero-Forcing) criterion for suppressing (nulling) an interference component, or a minimum mean square error (MMSE) criterion. is there.
  • ZF Zero-Forcing
  • MMSE minimum mean square error
  • a general inverse matrix of MP (Moore-Penrose) is known as a linear transformation that performs suppression in accordance with the ZF criterion, and the SNR (Signal to Signal) after detection for the purpose of improving the characteristics of the interference canceller is improved.
  • An ordering process is performed to detect the noise ratio in the order of simple estimation.
  • an operation for ordering the symbols it is known to preferentially use a column vector having a minimum norm corresponding to a weight vector of an MP general inverse matrix.
  • P C is an upper triangular matrix and the noise component vector
  • Equation 5 vEC " ⁇ 1 Since the signal is subjected to the binary transformation, no noise enhancement occurs and the signal is converted while maintaining the distance between signal points.
  • the vectors in the matrix can be rearranged so that the SNR can be processed in a high order, and the step processing for detecting in the order (ordering) that maximizes the SNR can be realized.
  • the number n of receiving antennas is essentially equal to or greater than the number n of transmitting antennas.
  • MLD Maximum Likelihood Decoding: maximum likelihood detection
  • MLD is virtually impossible given the exponential increase in complexity and coding.
  • SD Sphere Decoding: Sphere Decoding
  • the basic idea of SD is to calculate likelihood for signal points included in a sphere with an appropriate radius around the received signal point !: and perform MLD within a limited range. The efficiency depends on the choice of r.
  • Non-Patent Literature 1 Layered space-time architecture for wireless communications lina fading environment when using multiple antennas "(1996, Bell Laboratories Technical Journal, Volume 6, Nampa 2, 41-59)
  • Tokubi Reference 2 Capacity of multi-antenna uaussian channels (March / February 1999, Yoichichi Bian 'Transaction' On 'Telecommunications, pp. 585-595)
  • the complexity of the SD which is in-sphere decoding varies depending on the number of signal points falling within the radius r, and is not suitable for implementation in a device. Alternatively, even if the number of target signal points is limited by the likelihood, the complexity must be increased to achieve high performance, and the exchange of the likelihood with the subsequent decoder is also considered. Absent. That is, it is necessary to finally consider optimal reception including coding such as turbo coding and LDPC (Low Density Parity Check).
  • the soft-input soft-output decoder corresponding to the outer code decoder uses the extrinsic information as the extrinsic information without including the extrinsic information due to the difficulty of extracting the extrinsic information. Or is covered by some extrinsic information. For this reason, there is a problem that the characteristic improvement by the number of iterations based on the turbo principle saturates in several times.
  • the log likelihood ratio for the information bit sequence is output, and the log likelihood ratio for the codeword (symbol sequence) may not be output. Many.
  • the soft-input soft-output decoder power extrinsic information to the soft-input soft-output detector corresponds to the codeword. Is needed. As a result, the location where the transition probability propagation on the trellis is calculated inside the soft-input / soft-output decoder is changed, and there is a problem in that a ready-made core block must be changed.
  • an object of the present invention is to provide a spatial multiplexed signal detection method capable of solving the above problems and improving the characteristics of space-time iterative decoding based on the turbo principle, and a space-time iterative decoder using the same. Is to do.
  • the spatial multiplexing signal detection method provides a soft input / soft output detection method in space-time multiplexing signal separation, in which a likelihood obtained for a signal sequence received when a spatially multiplexed transmission sequence is transmitted.
  • the probabilities are divided into a plurality of groups, and the likelihood calculation is performed such that the probabilities are calculated such that the groups including the events that are the conditions of the conditional probabilities in the groups are processed first.
  • a metric calculation method using a semi-ring is used to estimate a transmission sequence based on the likelihood ratio of two disparate events.
  • Another spatial multiplexing signal detection method is a soft input / soft output detection method in space-time multiplexing signal separation, which is a likelihood obtained for a signal sequence received when a spatially multiplexed transmission sequence is transmitted.
  • the transmission sequence indicating the maximum conditional probability in the group including the event that satisfies the conditional probability in the own group is calculated as the conditional probability condition, or
  • the bit likelihood of the transmission sequence which is a soft decision output, is calculated by using a semi-ring (semi-ring) according to claim 6.
  • the target bit and the maximum probability event up to the previous stage or a plurality of conditional conditions that are based on a plurality of events (transmission sequences) that have been simply estimated in advance
  • An event or something! ⁇ is a processing that is a processing power that detects a plurality of conditional probabilities on the basis of a plurality of events (transmission sequences) estimated in advance on a metric basis
  • the log likelihood ratio of the target bit is calculated from the target bit and the maximum probability event up to the previous stage in (1), or a plurality of events (transmission sequence) estimated in advance.
  • There are a plurality of conditional probabilities subject to the condition, an exclusion event for the target bit, and a maximum probability event up to the previous stage! ⁇ is obtained by subtracting, on a metric basis, a plurality of conditional probabilities conditioned on a plurality of events (transmission sequences) preliminarily estimated on the basis of a metric, and a group in which the bits to be subjected to the above (2) to (4) exist.
  • the maximum probability event up to the previous stage is also possible!
  • / ⁇ is a plurality of conditional probabilities conditional on a plurality of events (transmission sequences) that have been estimated in advance, and a disjoint event for the target bit. Is subtracted on a metric basis from the maximum probability event up to the previous stage including the previous stage or a plurality of conditional probabilities based on a plurality of events (transmission sequences) estimated in advance on a metric basis. Processing to detect as a log likelihood ratio which is the soft decision output of
  • Another spatial multiplexed signal detection method is a method for detecting a signal sequence received when a spatially multiplexed transmission sequence is transmitted in the soft input / soft output detection method in space-time multiplexed signal separation.
  • the probability calculation is performed so that the group including the event that is the condition of the conditional probability in the group is processed first.
  • a transmission sequence indicating the maximum conditional probability in the group including an event that is a condition of the conditional probability in the own group is calculated.
  • a space-time iterative decoder has a soft-input soft-output detector and a soft-input soft-output decoder in space-time multiplexed signal separation, and the soft-input soft-output decoder is a codec.
  • a soft-input soft input that outputs a log likelihood ratio (hereinafter, referred to as LLR) for the previous information bit sequence, inputs the log likelihood ratio as input, and outputs the log likelihood ratio for the codeword sequence after encoding.
  • LLR log likelihood ratio
  • Another space-time iterative decoder has a soft-input soft-output detector and a soft-input soft-output decoder for space-time multiplexed signal separation, and the soft-input soft-output decoder performs coding.
  • a soft-input soft output in which the log likelihood ratio (hereinafter, LLR) for the previous information bit sequence is output, the log likelihood ratio is input, and the log likelihood ratio for the codeword sequence after encoding is output.
  • LLR log likelihood ratio
  • a soft replica input of the soft input / soft output detector based on an output of the soft input / soft output encoder.
  • Another space-time iterative decoder has a soft-input soft-output detector and a soft-input soft-output decoder in space-time multiplexed signal separation, and the soft-input soft-output detector is described in claims. 6.
  • the spatial multiplexing signal detection method of the present invention has been made in view of the above-described problem, and has a halftone transmission estimation method for maximizing likelihood with a soft input / soft output detector in spatial multiplexing signal separation.
  • a metric calculation method that uses a ring (semi-ring), high performance close to MLD (Maximum Likelihood Decoding), which is optimal detection, is realized with low complexity.
  • likelihood information to be passed to a soft input / soft output decoder such as a turbo decoder or a low density parity check (LDPC) subsequent to the detector is also log likelihood. It is accurate according to algebra (Log Likelihood Algebra), and it is possible to derive the original decoder performance without causing deterioration in the error rate characteristic of the decoder output, which is the final performance.
  • a semi-ring in a Max-log region is used as a metric calculation method using a semi-ring (semi-ring) used for estimating a transmission sequence that maximizes the likelihood.
  • the soft-decision output of the target bit the precondition maximum probability event between each group of the conditional probabilities divided into a plurality of groups.
  • a soft-input soft-output decoder is used.
  • the characteristic improvement by the number of iterations based on the turbo principle does not saturate in several times.
  • the spatial multiplexing signal detection method of the present invention is a soft input / soft output detection method in space-time multiplexing signal separation, and is applied to a signal sequence received when a spatially multiplexed transmission sequence is transmitted.
  • the likelihood it is possible to order the groups for which the probability calculation is performed such that the group including the event that is the condition of the conditional probability in the group is processed first. It is characterized by using a metric calculation method using a semi-ring to estimate the transmission sequence based on the likelihood ratio of the opposite event.
  • the spatial multiplexing signal detection method of the present invention provides a means (factorization) for decomposing so as to be represented by a product of a plurality of conditional probabilities as described above, and the conditional probabilities that can be decomposed into a plurality of groups.
  • the means for dividing includes simple estimating means (ordering) for simply estimating the conditional probability of a group including an event that is a condition of the conditional probability of each group, and ordering between groups by the simple estimating means. Are divided so that they can be processed in the order in which the conditional probability of the group is high and can be easily estimated.
  • the spatial multiplexed signal detection method of the present invention is characterized in that QR decomposition is used as a means (factorization) for decomposing so as to be represented by the product of a plurality of conditional probabilities described above.
  • the spatial multiplexed signal detection method of the present invention is characterized in that block triangulation decomposition is used as a means (factorization) for decomposing so as to be represented by the product of a plurality of conditional probabilities described above.
  • RU resource unit
  • the spatial multiplexed signal detection method of the present invention is characterized in that a tridiagonalization method is used as a means (factorization) for decomposing so as to be represented by a product of a plurality of conditional probabilities described above.
  • a metric calculation method using a semi-ring used for estimating a transmission sequence based on the ratio of the likelihood of the two mutually exclusive events is a summation method.
  • MAX maximum value operation
  • the product is a normal addition, [Equation 8] a®b max ⁇ a, b ⁇
  • a metric calculation method using a semi-ring used for estimating a transmission sequence based on a ratio of the likelihood of the two mutually exclusive events is a summation method. Is an operation based on the Jacobian logarithm, and the product is a normal addition,
  • max ⁇ a, b ⁇ + f ( ⁇ a-b
  • a signal sequence received when a spatially multiplexed transmission sequence is transmitted is obtained.
  • factors conditional probabilities
  • the likelihood it is possible to order the groups for which the probability calculation is performed such that the group including the event that is the condition of the conditional probability in the group is processed first, and in the calculation of the conditional probability in each group, ,
  • the event (transmission sequence) that indicates the maximum conditional probability in the group including the event that is the condition of the conditional probability in the own group is calculated as the condition of the conditional probability.
  • the bit likelihood of the transmission sequence is calculated by summing the maximum value (MAX) and multiplying the product.
  • the target bit and the maximum probability event up to the previous stage, or a plurality of conditions based on a plurality of events (transmission sequences) estimated in advance simply Means for detecting attached probabilities on a metric basis, as well as a disjoint event for the target bit and the maximum probability event up to the preceding stage, or a plurality of events (transmission sequences) that are simply estimated in advance. For detecting large conditional probability on a metric basis (the group in which the target bit exists)
  • the maximum probability event up to the preceding stage or a plurality of events (transmission sequences) that are preliminarily estimated in advance are used.
  • Means for detecting the conditional probabilities on a metric basis, and the maximum probability event of (1) including the exclusion event for the target bit and the maximum probability event up to the preceding stage detected with it, or simply estimated in advance A means for detecting a plurality of conditional probabilities based on a plurality of events (transmission sequences) based on a metric.
  • the log likelihood ratio of the target bit is the maximum probability event up to the target bit and the previous stage in (1)! ⁇ is a plurality of conditional probabilities that are conditional on a plurality of events (transmission sequences) that have been estimated in advance, and the exclusion event for the target bit and the maximum probability event up to the previous stage are ⁇ ! / !.
  • a signal sequence received when a spatially multiplexed transmission sequence is transmitted is obtained.
  • factorization conditional probabilities
  • the likelihood calculation it is possible to order the groups for which the probability calculation is performed such that the group including the event that is the condition of the conditional probability in the group is processed first.
  • the event (transmission sequence) that indicates the maximum conditional probability in the group including the event that is the condition of the conditional probability in the group is calculated as the condition of the conditional probability, and the ordering between groups is performed. Therefore, it has a means to calculate the conditional probability in each group based on the event (transmission sequence) indicating the maximum conditional probability in the previous stage, and estimates the transmission sequence that maximizes the likelihood. For this purpose, a metric calculation method using a semi-ring is used, and the target bit is calculated as an estimation target for restoration extraction (resampling) after the processing in the final stage is completed.
  • the space-time iterative decoder of the present invention has a soft-input soft-output detector and a soft-input soft-output decoder in space-time multiplexed signal separation, and the soft-input soft-output decoder is A soft-input soft input that outputs the log likelihood ratio (LLR) for the previous information bit sequence, inputs the log likelihood ratio as input, and outputs the log likelihood ratio for the codeword sequence after encoding.
  • LLR log likelihood ratio
  • An output encoder is provided, and an apriori input of a soft-input soft-output detector is generated based on an output of the soft-input soft-output encoder.
  • the space-time detection unit includes a soft-input soft-output detector and a soft-input soft-output detector.
  • the decoding unit includes a soft-input soft-output decoder, wherein a priori input to the soft-input soft-output decoder is subtracted from the output of the soft-input soft-output coder.
  • a priori input to the soft-input soft-output decoder is subtracted from the output of the soft-input soft-output coder.
  • the space-time iterative decoder of the present invention has a soft-input soft-output detector and a soft-input soft-output decoder in space-time multiplexed signal separation, and the soft-input soft-output decoder performs coding.
  • a soft-input soft-output coder that outputs the LLR for the previous information bit sequence, outputs the log likelihood ratio as input, and outputs the log likelihood ratio for the encoded codeword sequence as output.
  • a soft replica input of a soft-input soft-output detector is created based on the output of a soft-output encoder.
  • a space-time iterative decoder is configured such that the soft-input soft-output encoder has the same configuration as that of the encoder on the transmission side corresponding to soft-decision data.
  • the space-time iterative decoder according to the present invention is configured such that the soft-input soft-output coder has the same configuration as that of the encoder on the transmission side corresponding to soft-decision data.
  • the space-time iterative decoder of the present invention is such that the soft-input soft-output coder has the same configuration as that of the encoder on the transmission side corresponding to soft-decision data.
  • Log-likelihood ratio LLR and log-likelihood ratio for two posterior values a and a in place of addition There is a means to compare the absolute value with the power ratio LLR and select the smaller value.
  • the polarity of the selection result is determined by the log likelihood ratio LLR and the log likelihood ratio LLR MS
  • the space-time iterative decoder of the present invention has a soft-input soft-output detector and a soft-input soft-output decoder in space-time multiplexed signal separation, and the soft-input soft-output detector has the above-described Max. — A spatial multiplexing detector using semi-rings in the log domain, which is characterized by weighting the log likelihood ratio corresponding to its soft output and using it as a priori input to the next stage Be composed.
  • the space-time iterative decoder according to the present invention is characterized in that the above weighting is used as 0.75.
  • the space-time iterative decoder of the present invention is characterized in that the above weighting 0.75 is realized by shift addition.
  • the present invention provides a spatio-temporal iterative decoding method and a spatial multiplexing signal detection method, in which a transmission sequence is estimated by maximizing likelihood of soft input / soft output detection for spatial multiplexing signal separation.
  • the use of metric calculation using semi-ring provides a method that can achieve performance close to MLD, which is the optimum detection, with low complexity, and can be implemented by a softer device such as a turbo decoder or LDPC that follows. It is intended to provide a method capable of passing accurate likelihood information without causing characteristic degradation even for an input soft output decoder.
  • the present invention applies a semi-ring in which a sum is calculated to a maximum value and a product is usually added in a metric calculation using a semi-ring (semi-ring). It can be expressed as the sum of the metric-based difference between the maximum conditional probability that includes the target bit in the group and the maximum conditional probability that includes the exclusion event, and the metric-based difference of the same maximum conditional probability after that. Therefore, even if the number of antennas is increased and the number of processing stages is increased to respond to the required system throughput, it is possible to deal with the additional in-group processing using only the minimum and maximum conditional probability events that have been narrowed down. Therefore, it is possible to deal with processing by increasing the number of antennas while suppressing the increase in complexity. It offers an efficient method.
  • the space-time iterative decoder of the present invention enables independent apriori information exchange between the soft-input soft-output detector and the soft-input soft-output decoder. Extrinsic information can be easily extracted by the decoder. None. Therefore, it is possible to provide a spatio-temporal iterative decoder that does not cause deterioration such that the characteristic improvement due to the number of iterations based on the turbo principle is saturated in several times.
  • the space-time iterative decoder of the present invention is capable of externally converting a log likelihood ratio for an information bit sequence output from a ready-made soft-input soft-output decoder to an LLR for a codeword (symbol sequence). Therefore, it is possible to provide a feasible spatio-temporal iterative decoder that does not require internal modification of a ready-made core block.
  • FIG. 1 is a block diagram showing a configuration of a space-time multiplexed signal separation device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a transmission-side device according to a first embodiment of the present invention.
  • FIG. 3 A group division means (factorization) using QR decomposition according to a fifth embodiment of the present invention.
  • FIG. 1 A first figure.
  • FIG. 4 is a diagram showing an example of a group division method (factorization) using tridiagonal matrix decomposition according to a sixth embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of a group dividing means (factorization) using block triangulation decomposition according to a seventh embodiment of the present invention.
  • FIG. 6 is an image diagram of marginalization processing in Bayesian statistics.
  • FIG. 7 is a diagram showing an example of a case where group division is the same as division of a product of conditional probabilities.
  • FIG. 8 is a diagram for explaining signal points on an outer circle, signal points on an inner circle, and the like in 16QAM.
  • FIG. 9 is a diagram showing a process of selecting a maximum conditional probability event in a step process by a greedy method (greedy).
  • FIG. 10 is a diagram showing a process of selecting a maximum conditional probability event when a group is formed by a product of a plurality of conditional probabilities in a step process based on a greedy method (greedy).
  • FIG. 11 is a block diagram showing a configuration of a space-time iterative decoder according to an eighteenth embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration of a space-time iterative decoder according to a nineteenth embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a configuration example of an encoder according to a twentieth embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a configuration example of an encoder according to a twenty-first embodiment of the present invention.
  • FIG. 15 is a diagram showing the contents of a soft-input soft-output element encoder used in FIG.
  • FIG. 16 is a diagram showing an approximation circuit that performs addition modulo 2 by LLR used in a soft-input soft-output element encoder.
  • FIG. 17 is a trellis diagram showing an LLR calculation process for the information sequence (I) before coding in normal turbo decoding.
  • FIG. 18 is a trellis diagram showing an LLR calculation process for a parity sequence (P) after encoding in turbo decoding.
  • FIG. 1 is a block diagram showing a configuration of a space-time multiplexed signal separation device according to a first embodiment of the present invention.
  • the space-time multiplexed signal demultiplexing apparatus according to the first embodiment of the present invention includes a soft-input / soft-output detector 1, a soft-input / soft-output decoder 2, a dinterleaver 3, and an interleaver 4. You.
  • the soft input / soft output detector 1 includes antennas 11-1 to L l-n, a detector (Detector) 12, and converters 13 and 14, and performs spatial multiplexed signal separation. As a processing method of the soft input / soft output detector 1, a spatial multiplexed signal detection method described below is used.
  • the soft input / soft output decoder 2 includes a decoder (Decoder) 21.
  • FIG. 2 is a block diagram showing the configuration of the transmitting device according to the first embodiment of the present invention.
  • the transmitting device according to the first embodiment of the present invention is an encoder (Encoder: code 31), an interlino 32, a spatiotemporal mapper (Constellation mapper) 33, and antennas 341-134-n! /.
  • an information sequence to be transmitted is first input to an encoder 31, where it is converted into a codeword (symbol sequence), and is then agitated by an interleaver 32 to obtain a spatio-temporal mapper. After being mapped to each signal point and each antenna 34-l to 34-n by 33, they are spatially multiplexed as a transmission sequence on a wireless transmission path (not shown).
  • a signal which is a transmission sequence spatially multiplexed as described above, is separated and extracted by soft input / soft output detector 1, and likelihood information of a codeword (symbol sequence) is obtained.
  • the Dinter Liber 3 which is the inverse process of the interleaver 32, the Random Interleaver 32 is input to the soft-input soft-output decoder 2.
  • the soft-input / soft-output decoder 2 has a function of generating, as a soft output, Extrinsic information for a codeword sequence after encoding, and a soft input via an interleaver 4 to match the order of a transmission sequence. It is input to the soft output detector 1 as a priori.
  • the above likelihood information is
  • the turbo principle is a method of dramatically improving detection capability / decoding capability by transmitting multiple times, and therefore it is necessary to accurately extract extrinsic information according to the turbo principle.
  • the spatial multiplexed signal detection method according to the present embodiment is used in the above configuration, and the spatial multiplexed signal detection method will be described below.
  • X be a transmission signal vector when a transmission sequence is transmitted by n transmission antennas.
  • the configuration of each device on the transmitting side and the receiving side is the same as in the above-described first embodiment of the present invention.
  • the second embodiment of the present invention differs from the above-described first embodiment of the present invention in that QR decomposition is used as means for factorizing so as to be expressed by a product of conditional probabilities.
  • QR decomposition is used as means for factorizing so as to be expressed by a product of conditional probabilities.
  • the communication path matrix is
  • REC is an upper triangular matrix and the noise component vector
  • NEC "'' 1 is a noise vector that has been transformed by the tutorial, so noise emphasis does not occur and the distance between signal points Is a conversion while maintaining.
  • SNR Signal to Noise
  • Vectors in the matrix can be rearranged so that processing can be performed in the order of higher (Ratio), and step processing for detection in an order (ordering) that maximizes the SNR can also be realized.
  • a transmission signal vector based on a subset of the transmission sequence is
  • the configuration of each device on the transmitting side and the receiving side is the same as in the above-described first embodiment of the present invention.
  • the third embodiment of the present invention is described above in that the third embodiment of the present invention uses a triangular matrices factorization as means for decomposing so as to be expressed as a product of conditional probabilities.
  • a method for detecting a spatially multiplexed signal in a case where low complexity is achieved by the factorization based on the tridiagonal matrix decomposition will be described, which is different from the first embodiment.
  • a tridiagonal matrix decomposition when expanded and described to the matrix element level,
  • the configuration of each device on the transmitting side and the receiving side is the same as in the above-described first embodiment of the present invention.
  • the fourth embodiment of the present invention is different from the above-described first embodiment of the present invention in that a block triangulation decomposition is used as a factorization for decomposing so as to be expressed by a product of conditional probabilities.
  • a method of detecting a spatially multiplexed signal when low complexity is achieved by the factorization based on the block triangulation will be described.
  • Equation 39 It is represented by
  • the method described above is an embodiment that has the same error rate characteristic as that of the MLD that is the optimal detection, and is realized with reduced complexity.
  • a description will be given of an embodiment in which a greedy method (greedy) is applied to divide assuming a Markov chain to further reduce complexity.
  • conditional probability P (ZIX) for the received signal vector Z described above is decomposed so that it can be expressed by the product of the conditional probabilities corresponding to the elements of the transmission sequence.
  • the conditions corresponding to the conditions N arrow down the assistants within the group.
  • the degree of narrowing down although there is a difference in magnitude, there is a characteristic deterioration due to error propagation between groups, but the complexity is reduced within the allowable range.
  • FIG. 3 is a diagram showing an example of a group dividing means (factorization) using QR decomposition according to the fifth embodiment of the present invention.
  • FIG. 3 shows processing in a case where the above-described QR decomposition is used as a division means (factorization), and processing is performed in three steps in three groups.
  • the part surrounded by a solid line is a part processed in the first step
  • the part surrounded by a broken line is a part processed in the second step
  • the part surrounded by is the part that is processed in the third step.
  • step 1 Subject to all candidates obtained in step 1,
  • FIG. 4 is a diagram showing an example of group division means (factorization) using tridiagonal matrix decomposition according to the sixth embodiment of the present invention.
  • FIG. 4 shows a process in which tridiagonal matrix decomposition is used as factorization, and processing is performed in three steps in three groups.
  • the portion surrounded by the solid line is the portion processed in the first step, rough !
  • the portion surrounded by the broken line is the portion processed in the second step, fine!
  • the part surrounded by the broken line is the part processed in the third step.
  • step 1 Subject to all candidates obtained in step 1,
  • FIG. 5 is a diagram showing an example of a group division method (factorization) using block triangulation decomposition according to the seventh embodiment of the present invention.
  • FIG. 5 shows processing in a case where block triangulation decomposition is used as a decomposition means, and processing is performed in three steps in three groups.
  • the portion surrounded by a solid line is the portion processed in the first step
  • the portion surrounded by a broken line is the portion processed in the second step
  • the part surrounded by is the part that is processed in the third step.
  • the conditional probability for the received signal vector Z is
  • step 1 Subject to all candidates obtained in step 1,
  • the matrix decomposition process used as a means for decomposing so as to be represented by the product of the conditional probabilities described above it is possible to perform division so that the conditional probabilities of each group are high! It is possible, for example, to rearrange the transmission signal vector elements in order of the highest SNR at the receiving end using the orthogonal signals transmitted from each transmitting antenna, and the communication signal in a form corresponding to that. If the matrix decomposition is performed after rearranging the road matrix H, the conditional probability in step 1 described above can be expected to be higher than in the other groups.
  • the norm of each column vector of the channel matrix H is calculated, and the transmission signal vector elements corresponding to the norm height and column vector order are rearranged from the bottom. If you do this, the conditional probability in step 1 above will be higher than in other groups It can be expected that the conditional probabilities are arranged in the order of steps.
  • the addition on the half-ring is defined as a maximum value operation (MAX), and the product on the half-ring is defined as a normal addition. Note that such an arithmetic method is described in Reference 1 described above.
  • t can be associated with an expression.
  • the correction term f (I * I) can be realized by a simple look-up table.
  • peripheral processing can be performed accurately on the metric area.
  • the eighth embodiment of the present invention is an application of the above-described low-complexity method using a half ring (semi-ring) to the above-described method of processing each step applying the greedy method (greedy). is there.
  • the semi-ring used in the following description is a case in which the QR decomposition is used as a factorization factor (factorization) in the embodiment of the Max-Log region so as to be represented by a product of conditional probabilities.
  • the maximum value in the group in Step 1 is used.
  • a plurality of events (transmission sequences) that have been estimated in advance are used as conditions, multiple calculations are performed for each event, but calculations for marginalization processing are simplified as their maximum values. Is done.
  • This processing corresponds to the in-group peripheralization processing in step 1.
  • Figure 6 shows the image.
  • the calculation result of each step is set as ⁇ , ⁇ ′ ⁇ as follows.
  • step 1
  • the event having the largest value among the results obtained for a plurality of events is most likely to be the transmission sequence.
  • Decomposition is performed so that it can be expressed by the product of the above conditional probabilities (factorization), the decomposable conditional probabilities are divided into a plurality of groups, and the processing of each step is performed.
  • the event that indicates the maximum conditional probability of The process of processing the candidate X having the maximum value as the next-stage condition will be described below using an embodiment based on specific metric calculation. Note that, in this embodiment, a case where a single candidate having only the maximum value is used is described as an example for ease of explanation, but a candidate narrowed down to a plurality of events (transmission sequences) by simple estimation is used. It goes without saying that the same measures as described above can be taken even in the case of
  • FIG. 7 shows the state of the two divisions.
  • the metric processing corresponding to step 1 is
  • the final soft-decision output of the target bit is a log likelihood ratio (LLR), and in the metric-based calculation, the difference between the metric for the target bit and the metric for its disjunction event Therefore, the common terms z,
  • the maximum conditional probability of each candidate that is, the maximum value of the metric is used as the maximum probability event and Become.
  • each signal point has a signal point on the outer circle (outer signal point) and a signal point on the inner circle (inner signal point).
  • the processing in step 2 is the maximum probability event of the previous stage, that is, the maximum event with bit condition for each bit,
  • the final soft-decision output of the target bit is LLR, and in the metric-based calculation, it is the difference between the metric for the target bit and the metric for the disjunction event.
  • a semi-ring in the Max-Log region is used in the same manner as described above, so the maximum conditional probability of each candidate, that is, the metric Is the maximum probability event with the maximum value of.
  • each signal point is composed of a group having signal points on the outer circle (outer signal point), a group having signal points on the inner circle (inner signal point), and a signal point.
  • the maximum metric conditioned on that event is selected.
  • Figure 9 shows the selection process. From left to right, Step 1, Step 2, ⁇ ⁇ ⁇ ⁇ are performed. In FIG. 9, for convenience of illustration, condition events are omitted. In this example, the unconditional maximum event at each step is
  • V ⁇ mm This is performed by a metric process called V ⁇ mm.
  • the final soft decision output of the target bit is LLR
  • the maximum conditional probability of each candidate that is, the metric Is the maximum probability event with the maximum value of.
  • the maximum bit conditional event for each bit and the maximum disjunction event thereof have been determined. Therefore, the above metric processing is performed for each event. That is, for example, taking the state of step 3 as an example,
  • Each signal point is, as shown in Fig. 8, a group (outer signal po- s) having signal points on the outer circle. int), a group with signal points on the inner circle (inner signal point), and a group with signal points at tan— (lZS) with respect to the horizontal axis (hi tan—iZS) (mod ⁇ ) signal point ) and can signal points separated in the (group (which tan- 1 (3 in 3)) signal point) Judges Tan- 1 with respect to the horizontal axis.
  • the maximum metric conditioned on that event is selected.
  • FIG. 9 shows the selection process. From the left, Step 1, Step 2, Step 3, ....
  • the above example is the third case.
  • condition events are omitted for convenience of illustration.
  • the unconditional maximum event at each step in this example is
  • the obtained result is an arbitrary step m, in this example, in step 3
  • the LLR of the target bit in spatial multiplexed signal detection is obtained based on the maximum metric with in-group bit condition of each step obtained in this manner. For example, in the case of a configuration that is completed by Step 3,
  • L (x, x, x, xI1, x, x, x) is the first-stage maximum probability event in step 2
  • the maximum metric as a condition, L (x, X, X, XI 1, X, X, X, X, X, X, X), is the preceding maximum probability event in step 3.
  • the target bit, the maximum condition probability conditioned on the maximum probability event up to the previous stage, the rejection event thereof, and the maximum probability event up to the previous stage are defined as conditions. Is subtracted on a metric basis from the maximum conditional probability
  • the maximum conditional probability conditioned on the maximum probability event including the target bit up to the previous stage and the maximum conditional probability conditioned on the maximum probability event including the rejection event in the group after the group in which the bit exists are also defined. Subtraction is performed on a metric basis, and the sum of each is used as the LLR, which is the soft-decision output of the target bit. In this case, since the target bit is included in the processing of step 1, it is not necessary to set the group in which the target bit exists as the condition of the maximum probability event up to the preceding stage.
  • the metric is conditional on: L (x ,, ⁇ ', ⁇ ', x'I1, ⁇ ', ⁇ ', ⁇ ', ⁇ ', ⁇ ', ⁇ ', ⁇ ', ⁇ , ⁇ , ⁇ ,) is the pre-stage in step 3. Stochastic event,
  • a probability event obtained based on the target bit and a plurality of events (transmission sequences) preliminarily estimated in advance is set as a condition.
  • the conditional probability is subtracted on a metric basis from a conditional probability based on a probabilistic event obtained based on a plurality of events (transmission sequences) preliminarily estimated up to the preceding stage and the disjoint event, Even in the group after the group in which the target bit exists, the conditional probability based on the probabilistic events obtained based on a plurality of events (transmission sequences) estimated in advance up to the previous stage, and the exclusion event thereof
  • the conditional probability, which is conditional on the stochastic event including, is subtracted on the metric basis, and the sum of each is! /, As the LLR, which is the soft-decision output of the target bit.
  • the thirteenth embodiment of the present invention shows a case where the target bit is included in the group of step 2. For example, in the case of a configuration that is completed by Step 3,
  • the maximum condition probability conditioned on the target bit and the maximum probability event up to the previous stage, the rejection event thereof, and the maximum probability event up to the previous stage are defined as conditions. Is subtracted on a metric basis from the maximum conditional probability to / The maximum conditional probability conditioned on the maximum probability event including the target bit up to the previous stage and the maximum conditional probability conditioned on the maximum probability event including the disjunction event are subtracted on a metric basis. , And the sum of each is defined as LLR, which is the soft-decision output of the target bit.
  • Equation 165 ⁇ ⁇ -1 ⁇ (W) is a stochastic event obtained based on a plurality of events (transmission sequences) estimated in step 1 in advance. Also, L (x ,, ⁇ ', ⁇ ', ⁇ 'I ⁇ ', ⁇ ', ⁇ ', ⁇ ', ⁇ ', ⁇ ', 1, ⁇ ,) is the first-stage stochastic event in step 3,
  • the conditional probability obtained based on the target bit, a plurality of events (transmission sequences) narrowed down by the simple estimation up to the previous stage, and its exclusion are subtracted on a metric basis.
  • the conditional probability conditioned on the stochastic event including the target bit up to the previous stage and the conditional probability conditioned on the stochastic event including the disjunction event are also subtracted on a metric basis, and the sum of each is calculated.
  • LLR is the soft decision output of the target bit.
  • the fourteenth embodiment of the present invention is an example in which the product of the plurality of conditional probabilities shown in FIG. 10 is used in the first stage.
  • the case where candidates are narrowed to the maximum value for ease of explanation will be described as an example.However, it is needless to say that the same means as described above is also valid when narrowing down to a plurality by simple estimation.
  • the first-stage events are described below according to the notation described above.
  • 16QAM four bits are used for one signal point.
  • two signal points are used as the processing of step 1, so that
  • the selection process in Fig. 10 is the process of step 1, step 2, and step 3 from the left, and the above example is the process of step 2 in the third column.
  • condition events are omitted.
  • the unconditional maximum event at each step in this example is
  • processing for a plurality of antennas is performed simultaneously in the first stage, Diversity gain can be obtained to that extent, and the effect of error propagation to the succeeding stages can be improved.
  • Group in which the target bit exists In the group in which the target bit exists as an estimation target, the target bit conditioned on the maximum probability event up to the previous stage and the target bit is conditional maximum conditional probability Is detected on a metric basis, and the exclusion event for the target bit and the maximum conditional probability with exclusion bit conditional on the maximum probability event up to the preceding stage are detected on a metric basis.
  • Next-stage group In the next-stage group, the unconditional bit maximum conditional probability conditioned on the preceding stage maximum probability event including the target bit is detected on a metric basis, and the disjoint event for the target bit is included. The unconditional bit maximum conditional probability based on the preceding maximum probability event is detected on a metric basis.
  • the maximum probability event up to the preceding stage is used as a condition, and the unconditional bit maximum conditional probability is detected on a metric basis.
  • the maximum probability event of (1) including the bit-exclusion event and the unconditional bit maximum conditional probability conditioned on the maximum probability event up to the preceding stage detected along with it are detected on a metric basis.
  • the LLR of the target bit is calculated as follows: the target bit in (1), the maximum conditional probability up to the previous stage, Is subtracted on the metric basis from the maximum conditional probability conditioned on the maximum probability event up to the maximum probability up to the previous stage, even in the groups following the group in which the target bit of (2) to (4) exists.
  • the maximum conditional probability conditioned on the probabilistic event and the maximum conditional probability conditioned on the maximum probable event up to the previous stage including the exclusion event for the target bit are subtracted on a metric basis. Is detected as LLR, which is the soft decision output of.
  • the spatial multiplexing detection method of the present invention is effective in reducing complexity even when no iterative processing is used, and it goes without saying that such a usage form is appropriately made.
  • the group in which the target bit exists narrowed down by the simple estimation in advance
  • the target bit exists as an estimation target.
  • the target bit conditional probability based on the target bit and the probability event up to the previous stage is metric.
  • the exclusion event for the target bit and the exclusion bit conditional probability conditioned on the probability event up to the preceding stage are detected on a metric basis.
  • Next-stage group Based on a plurality of events (transmission sequences) narrowed down by simple estimation in advance, the unconditional bit conditional probabilities in the next-stage group are conditioned on the previous-stage stochastic event including the target bit. Is detected on a metric basis, and the conditional probabilities conditioned on a preceding stage probability event including an exclusion event for the target bit are detected on a metric basis.
  • Subsequent group means for repeating (3) up to the final group based on a plurality of events (transmission sequences) narrowed down by simple estimation in advance.
  • the LLR of the target bit is changed to the target bit in (1), the conditional probability conditioned on the stochastic event up to the previous stage, the exclusion event for the target bit, and the LLR of the target bit. Is subtracted on a metric basis from the conditional probabilities conditioned on the probability event of (1) and (2) to (4) in the group following the group in which the target bit exists!
  • the metric-based subtraction of the conditional probability conditioned on the probability event of the condition and the conditional probability conditioned on the probabilistic event up to the previous stage including the exclusion event for the target bit is performed, and the sum of each is used to soft-decide the target bit. Detected as LLR, which is the output.
  • LLR which is the output.
  • This restoration extraction aims at reducing the error propagation caused by the step processing by the greedy method (greedy), and includes the bits to be estimated finally and the disjoint event thereof.
  • a set of metric-based conditional probabilities that can be obtained is obtained by re-selecting the maximum conditional metric.
  • the sixteenth embodiment of the present invention employs, similarly to the above, a rejection event, using the selected one, and using the difference between the two metrics in the same manner as described above. It detects LLR, which is the soft decision output of the target bit. For example, in the case shown in Fig. 9, ignoring degeneration eventually,
  • FIG. 11 is a block diagram showing a configuration of a space-time iterative decoder according to the eighteenth embodiment of the present invention.
  • the space-time iterative decoder according to the eighteenth embodiment of the present invention includes a soft-input / soft-output detector 5 and a soft-input / soft-output decoder 6.
  • the soft-input / soft-output detector 5 includes an antenna 51-1 to 51-n, a spatiotemporal detector 52, dinterleavers 53 and 55, subtractors 54 and 58, an adder 56, and a soft-input soft-output.
  • the soft input / soft output decoding unit 6 includes an output encoder 57 and an interleaver 59, and includes a soft input / soft output decoder 61 and a decision unit 62.
  • the soft-input / soft-output decoding unit 6 outputs an LLR for the information bit sequence before encoding.
  • the soft-input / soft-output encoder 57 in the soft-input / soft-output detector 5 receives the LLR as an input and outputs an LLR for the encoded codeword sequence.
  • the soft input / soft output detector 5 generates a priori information for detecting a spatial multiplexed signal based on the LLR for the encoded codeword, and uses the a priori information to generate soft information based on the turbo principle. Iterative decoding is performed between the input soft output detection unit 5 and the soft input soft output decoding unit 6.
  • the soft-input soft-output decoder 6 is configured to include the soft-input soft-output decoder 61, and an apriori input to the soft-input soft-output decoder 61 is a soft-input soft-output encoder 57.
  • the decision output is subtracted by a subtractor 58 to form an a priori input to a spatiotemporal detector 52 in the soft input / soft output detector 5.
  • the intrinsic information also acts so as to be subtracted by the subtractor 58 via the adder 56.
  • an a priori input to the spatio-temporal detector 52 acts by subtracting the soft-decision output of the spatio-temporal detector 52 by the subtractor 54, and the a priori input to the soft-input soft-output decoder 61. Form (a priori) input.
  • the receiving side includes the interleaver 3 and the interleaver 4, which are the inverse processes of the interleaver 32, and the soft-input soft-output detection processing and the soft-input soft-output decoding processing are statistically independent.
  • This is a method using the so-called turbo principle, in which the extrinsic information is turned into a priori (a pri ori) to dramatically improve the detection capability ⁇ the decoding capability.
  • Interleaver 59 plays that role.
  • FIG. 12 is a block diagram showing a configuration of a space-time iterative decoder according to a nineteenth embodiment of the present invention.
  • the space-time iterative decoder according to the nineteenth embodiment of the present invention is a space-time iterative decoder using a soft canceller, and an interference canceller using a soft replica and an interference suppression (nulling) using linear filtering, which cannot be performed by iterative decoding based on the original turbo principle. : nulling).
  • the space-time iterative decoder includes a soft-input soft-output detector 7 and a soft-input soft-output decoder 8.
  • Soft input / soft output detector 7 Is composed of antennas 71-1 to 71-n, a spatial multiplexing signal detector 72, a soft-input soft-output coder 73, and a soft replica generator 74.
  • the spatial multiplexing signal detector 72 includes an interference canceller. 721 and linear filtering 722.
  • the soft-input soft-output decoder 8 includes a soft-input soft-output decoder 81 and a decision unit 82.
  • the present embodiment is not based on the turbo principle of exchanging the original extrinsic information, there is a disadvantage that the characteristic improvement by the repetitive processing is saturated several times. However, this embodiment has an advantage that it can be easily realized.
  • space-time multiplexed signal separation is performed by a soft-input soft-output detector 7 including a space-multiplexed signal detector (soft-input soft-output detector) 72 and a soft-input soft-output including a soft-input soft-output decoder 81. And a power decoding unit 8.
  • the soft-input soft-output decoder 81 outputs an LLR for the information bit sequence before encoding.
  • the soft-input / soft-output detector 7 includes a soft-input / soft-output encoder 73, which receives the LLR as an input and outputs the LLR for the codeword sequence after encoding.
  • Soft replica generator 74 generates a soft replica based on the LLR for the codeword sequence, and sends it to spatial multiplexed signal detector 72.
  • the spatial multiplexing signal detector 72 performs canceling in the interference canceller 721 based on the transmitted soft replica, and performs nulling by the linear filtering 722 to separate the spatial multiplexing signal.
  • Soft replica generator 74 performs LL on the codeword sequence from soft-input soft-output encoder 73.
  • the LLR [L (xi)] force on the codeword sequence can be obtained as a soft replica E [xi].
  • E [xi] E [a4i] ⁇ (2-E [a4i + 2]) + jE [a4i + l] ⁇ (2—E [a4i + 3])
  • the soft-input soft-output encoder is an encoder on the transmission side, for example, the same configuration as that of the encoder 31 shown in Fig. 2 corresponding to soft decision data. That is, al + a 2 (mod q) t, i.e., the calculation performed by LLR.
  • FIG. 13 is a diagram showing a configuration example of the encoder according to the twentieth embodiment of the present invention.
  • FIG. 13 shows an example of an encoder used on the transmission side, and shows a parallel concatenation by recursive systematic convolution used in turbo codes and a method of! /.
  • the signal used is 1 bit, and the adder used is also an addition modulo 2, resulting in a calculation such as al + a2 (mod 2). That is, the encoder according to the present embodiment can be easily realized by exclusive OR.
  • FIG. 14 is a diagram showing a configuration example of the encoder according to the twenty-first embodiment of the present invention.
  • the same configuration as that of the encoder shown in FIG. 13 described above corresponds to soft decision data.
  • FIG. 15 is a diagram showing the contents of the soft-input soft-output element encoder used in FIG.
  • this soft-input soft-output element encoder is the same as the encoder used on the transmission side shown in Fig. 13, but the signal used is multi-bit soft-decision data.
  • the adder to be executed is also executed by the LLR.
  • addition modulo 2 can be performed in the LLR.
  • This operation may be implemented using a table as it is,
  • Figure 16 shows an example of an actual circuit configuration.
  • FIG. 17 is a trellis diagram showing a process of calculating an LLR for an information sequence (I) before encoding in normal turbo decoding.
  • LLR (I) for the information sequence is
  • FIG. 18 is a trellis diagram showing a process of calculating the LLR for the parity sequence (P) after coding.
  • LLR (P) for the knowledge sequence is
  • a priori is omitted in order to prevent complexity of the expression.
  • An operation on a half-ring adds to the metric of the target bit in the form of a product.
  • each metric is described as including a priori.
  • the spatial multiplexing signal detection method and the spatio-temporal iterative decoder aim to obtain the maximum effect with the minimum necessary number of samples in the spatial multiplexing signal detection method. It is.
  • the small number of samples! /, And! / Means that the complexity of the next stage, grouped by conditional probabilities, can be reduced accordingly.
  • LLR Log Likelihood Algebra
  • the present invention uses a metric calculation method using a semi-ring for the transmission sequence estimation that maximizes the likelihood with the soft input / soft output detector in spatial multiplexing signal separation, and It achieves high performance with low complexity, similar to MLD, which is detection.
  • a sum is calculated as a maximum value (MAX), and a product is calculated as a normal value.
  • the soft decision output of the target bit is the maximum conditional probability event in the preceding stage between the groups of the conditional probabilities divided into multiple groups. It can be expressed as the sum of the metric-based difference between the maximum conditional probability that includes the target bit and the maximum conditional probability that includes the exclusion event, and the difference between the subsequent maximum conditional probability and the maximum conditional probability.
  • the metric-based difference between the conditional probability including the target bit and the conditional probability including the rejection event is calculated based on the condition. It can be expressed as the sum of the differences between the following conditional probabilities.
  • a soft-input soft-output detector for detecting a spatial multiplexed signal when connecting a soft-input soft-output detector for detecting a spatial multiplexed signal, a turbo decoder or an LDPC, and a soft-input soft-output decoder, extrinsic information is exchanged.
  • a soft-input / soft-output decoder corresponding to a decoder for an outer code that is being performed it is used as Extrinsic information while containing Intrinsic information because of the difficulty of extracting Extrinsic information, or some Extrinsic information is used. This has been achieved by solving the problem of being covered by information and improving the characteristics by the number of iterations based on the turbo principle.
  • the log likelihood ratio for the information bit sequence is output, and the LLR for the codeword (symbol sequence) is not output. There are many.
  • the soft-input soft-output detector acts to perform MLD detection on the codeword, and therefore, the soft-input soft-output decoder outputs the codeword as Extrinsic information to the soft-input soft-output detector. Things are needed. As a result, the location where the transition probability propagation is calculated on the trellis inside the soft-input / soft-output decoder is changed, and there is a problem in that a ready-made core block must be changed.
  • the conditional probabilities in the soft input / soft output detector for separating spatial multiplexed signals are calculated by multiplying the conditional probabilities by the product of a plurality of conditional probabilities. It is possible to reduce the complexity and improve the performance by reducing the complexity and ordering the groups with high conditional probability in order of the processing probability. (Factorization, ordering). Further, in the present invention, the complexity is reduced by a metric calculation method using a semi-ring (semi-ring) for estimating a transmission sequence, and the maximum event up to the preceding stage is considered as a semi-ring (semi-ring) in the Max-Log region.
  • semi-ring semi-ring

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

 本発明は、ターボ原理に基づく時空間反復復号の特性を向上させることが可能な空間多重信号検出方法を提供することを目的とし、軟入力軟出力検出器1と軟入力軟出力復号器2とのターボ原理に基づく時空間反復復号構成において、受信される信号系列に対して得られる尤度と呼ばれる条件付確率を、複数の条件付確率の積で表せるように分解する際に、該分解可能な条件付確率を複数のグループに分割する。この尤度計算に際してはグループにおける条件付確率の条件となる事象を含むグループを先に処理する如く確率計算するグループ間の順序付けを可能とする。該グループ内の確率計算に際しては、二つの排反する事象の尤度の比によって送信系列を推定するために半環を用いたメトリック演算手法を用いる。  

Description

明 細 書
空間多重信号検出方法及びそれを用いる時空間反復復号器
技術分野
[0001] 本発明は空間多重信号検出方法及びそれを用いる時空間反復復号器に関し、特 に移動通信にぉ 、て空間多重信号検出方法と反復逐次処理を用いた時空間反復 復号器に関する。
背景技術
[0002] 移動通信における電波伝搬路では送信アンテナ力 到来した電波が周囲の地形 等に応じて反射や散乱を受け、一群の素波の集まりとなって受信機に到着する。そ のため、品質の高い移動通信を実現する上で常に障害となっていたのが、これらの 結果から生じるところのフェージング現象である。このフェージングによる劣悪な電波 伝搬環境の克服が長年の移動通信技術者における課題であり、色々な対応策が実 用化されてきている。
[0003] 近年、このフェージング現象を悪者扱いするのではなぐ逆にフェージングを移動 通信における電波伝搬に内在する可能性を秘めた環境資源として見直す動きが活 発化している(例えば、非特許文献 1, 2参照)。
[0004] また、近年、 Multi-USER Diversityと呼ばれるフェージング変動における空間的位 置独立性を利用して電波伝搬路に内在する環境資源を活用する動きもあり、これも 同様の動向の一つとも言える。
[0005] 上記の非特許文献 1, 2には、内在する伝搬路資源を活用する手だてとして空間多 重化処理された信号を効率的に活用する BLAST (Bell Labs Layered Space-Tim e)と呼ばれる空間伝送処理が開示されている。また、この BLASTの空間多重分離を 低複雑度で実現するアーキテクチャとして線形フィルタリングと干渉キャンセラとを組 み合わせた V - BLASTと呼ばれる手法も開示されて ヽる。
[0006] 線形フィルタリングとしては、干渉成分を抑圧(ヌリング: nulling)する ZF (Zero-Forci ng)規範のもの、あるいは最小平均自乗誤差(MMSE : Minimum Mean Square Err or)規範のものが一般的である。 [0007] ZF規範にしたがって抑圧を行う線形変換としては MP (Moore-Penrose)の一般逆 行列が知られており、干渉キャンセラの特性向上を目的に検出後の SNR (Signal to
Noise Ratio)が最も高 、と簡易推定される順に検出する順序付け処理 (オーダリン グ)がなされる。このシンボルの順序付けを行う操作として MP—般逆行列の重みべク トルに相当する最小ノルムを有する列ベクトルを優先して使うことが知られている。
[0008] あるいは、さらに低複雑度化の手法として QR分解による方法がある。すなわち、通 信路行列 Hを QR分解によって、 H = Q'Rとした後、 n次元の送信アンテナ信号べク
τ
トル
[数 1]
xec "rXl
と、 n次元の受信アンテナ信号ベクトル
R
[数 2]
YEC との間に、
Q' -Y=R-X+Q"-v
という関係が成り立つ。
[0009] ここで、
[数 3]
はュ-タリー行列、
P C は上三角行列であり、雑音成分ベクトル
[数 5] vEC "^1 はュ-タリー変換されるので、雑音強調は生ぜず、信号点間距離を維持したまま変 換されること〖こなる。
[0010] この QRによる分解過程で SNRが高 、順序で処理できるように行列内ベクトルの並 び替えが可能で、 SNRが最大化されるような順序 (オーダリング)で検出するステップ 処理が実現できる。このような方法は ZF規範によるヌリング処理にあたるため、本質 的に受信アンテナの本数 nが送信アンテナの本数 nと同数力、それ以上であること
R T
が前提である。
[0011] し力しながら、これらの方法の欠点は、初回のステップでのヌリングによる線形処理 で n—1次のヌル生成を行うため、ダイバシティ利得が、
T
n— n + 1
R T
のオーダしか得られない。したがって、初回のステップにおける検出誤りが起こりやす ぐその影響が後段の検出誤りを引き起こす誤り伝搬が生じる。
[0012] 一方、最適検出を行うには、
[数 6]
Figure imgf000005_0001
という式における MLD (Maximum Likelihood Decoding:最尤検出)になる。
[0013] このため、アンテナの本数と変調信号点のサイズ A、
[数 7]
とに対して指数関数的に複雑度が増大し、符号化を考慮に入れると、 MLDは事実 上不可能である。
[0014] そこで、低複雑度化の手法としてターボ原理に基づく手法等が検討されている。上 記の式は検出器のみについての MLDである力 この複雑度を回避するため、及び 上述の V— BLASTにおける初段力 後段への誤り伝搬による特性劣化、言い換え るとフェージング環境におけるダイバシティ利得を得る目的で、 SD (Sphere Decodin g:球内復号)と呼ばれる復号法の適用が提案されて ヽる。 [0015] SDの基本的な考え方は受信信号点を中心とした適当な半径!:の球に含まれる信号 点について尤度計算を行い、限定された範囲内で MLDを行うといったもので、半径 rの選び方によって効率が決まってくる。あるいは、信号点の数を尤度の大きさによつ て限定することによって複雑度を回避する方法もある。
[0016] 非特干文献 1: Layered space-time architecture for wireless communications ι n a fading environment when using multiple antennas" (1996年、ベル研究所 テクニカル.ジャーナル、ボリューム 6、ナンパ 2、 41〜59頁)
特干文献 2 : Capacity of multi-antenna uaussian channels (1999年11月/1 2月、ョ一口ビアン 'トランザクション 'オン 'テレコミュニケーション、 585〜595頁) 発明の開示
発明が解決しょうとする課題
[0017] 新世代移動通信システムにおけるシステムスループット実現のためには、通信路容 量の拡大策である時空間信号多重における信号分離を高性能で、しかも低複雑度 で実現する必要がある。
[0018] し力しながら、上述した V— BLASTでは、方式自体に内在する誤り伝搬のため、低 複雑度で実現できる代わりに、特性劣化を引き起こす。一方、最適検出である MLD では、高性能化は実現できるものの、高複雑度で実現することになり、採用することが できない。
[0019] また、球内復号である SDは半径 r内に入る信号点数によってその複雑度が変動し 、装置化に適さない。あるいは、対象とする信号点の数を尤度によって限定するとし ても、高性能を実現するためには複雑度の増加が必要で、後段に続く復号器との尤 度のやりとりも考慮されていない。すなわち、最終的にはターボ符号や LDPC (Low Density Parity Check)といった符号ィ匕を含む最適受信を考えることが必要である。
[0020] その復号器出力で性能が決まるのであるから、ターボ復号器や LDPCへ渡す尤度 情報は対数尤度代数 (Log Likelihood Algebra)にしたがった正確なものが必要で、 これと軟入力軟出力復号器の Extrinsic情報による時空間反復復号を行うことによつ て、符号ィ匕を考慮した最尤復号を低複雑度で実現することになる。しかしながら、そ のための正確な尤度情報が得られる構成とはなっていな力つたという問題がある。 [0021] また、所要システムスループットによってはアンテナ本数を増力!]させる必要が生じる 。上述した説明よりアンテナ本数が増えるにしたがってその複雑度が増加するので、 できるだけ増加分を押さえた 、が、従来方法では難 U、と 、う問題がある。
[0022] さらに、空間多重信号分離を行う軟入力軟出力空間多重信号検出器とターボ復号 器や LDPCといった軟入力軟出力復号器との連接をターボ原理に基づく反復復号 によって実現した場合、検出器と復号器との間で Extrinsic情報の受け渡しが行われ る。
[0023] し力しながら、従来行われているやり方は外符号用復号器に相当する軟入力軟出 カ復号器において Extrinsic情報抽出のしにくさから Intrinsic情報を含んだまま Extrins ic情報として使われたり、あるいは一部の Extrinsic情報で賄われたりしている。このた め、ターボ原理に基づく反復回数による特性向上が数回で飽和してしまうという問題 がある。
[0024] さらにまた、既製の軟入力軟出力復号器を用いる場合、情報ビット系列に対する対 数尤度比を出力としており、符号語 (シンボル系列)に対する対数尤度比は出力され ていない場合が多い。
[0025] 一方、軟入力軟出力検出器は、符号語に対して MLD検出となるべく作用するので 、軟入力軟出力復号器力ゝら軟入力軟出力検出器への Extrinsic情報は符号語に対す るものが必要となる。その結果、軟入力軟出力復号器内部のトレリス上遷移確率伝搬 を演算している箇所を変更することになり、既製コアブロックの変更を余儀なくされる という問題がある。
[0026] そこで、本発明の目的は上記の問題点を解消し、ターボ原理に基づく時空間反復 復号の特性を向上させることができる空間多重信号検出方法及びそれを用いる時空 間反復復号器を提供することにある。
課題を解決するための手段
[0027] 本発明による空間多重信号検出方法は、時空間多重信号分離における軟入力軟 出力検出方法において、空間多重された送信系列を送信したとする時に受信される 信号系列に対して得られる尤度と呼ばれる条件付確率を、複数の条件付確率の積 で表せるように分解する処理 (ファクタライゼーシヨン)を有し、該分解可能な条件付 確率を複数のグループに分割し、該尤度計算に際しては前記グループにおける条 件付確率の条件となる事象を含む前記グループを先に処理する如く確率計算する 前記グループ間の順序付けが可能であって、該グループ内の確率計算に際し、二 つの排反する事象の尤度の比によって送信系列を推定するために半環 (セミリング) を用いたメトリック演算手法を用いて 、る。
本発明による他の空間多重信号検出方法は、時空間多重信号分離における軟入 カ軟出力検出方法において、空間多重された送信系列を送信したとする時に受信さ れる信号系列に対して得られる尤度と呼ばれる条件付確率を、複数の条件付確率の 積で表せるように分解する処理 (ファクタライゼーシヨン)を有し、該分解可能な条件 付確率を複数のグループに分割し、該尤度計算に際しては前記グループにおける 条件付確率の条件となる事象を含む前記グループを先に処理する如く確率計算す る前記グループ間の順序付けが可能であって、該各グループ内の条件付確率計算 に際しては、自グループにおける条件付確率の条件となる事象を含む前記グループ 内の最大条件付確率を示す送信系列を条件付確率の条件として計算するか、ある いは予め簡易推定された複数個の事象 (送信系列)を条件として複数個計算し、前 記グループ間の順序付けにしたがって各グループ内の条件付確率の計算を前段の 最大条件付確率を示す送信系列のもとに計算していく処理を有することを特徴とし、 軟判定出力である該送信系列のビット尤度は、請求項 6記載の半環 (セミリング)を 用いて
(1)対象となるビットが推定対象として存在する該グループにおいて対象ビットと前段 までの最大確率事象か、あるいは予め簡易推定された複数個の事象 (送信系列)を 条件とする複数個の条件付確率をメトリックベースで検出する処理並びに該対象ビッ トに対する排反事象と該前段までの最大確率事象か、あるいは予め簡易推定された 複数個の事象 (送信系列)とを条件とする複数個の条件付確率をメトリックベースで検 出する処理、
(2)次段のグループにおいて対象ビットを含む前段最大確率事象力、あるいは予め 簡易推定された複数個の事象 (送信系列)を条件とする複数個の条件付確率をメトリ ックベースで検出する処理並びに対象ビットに対する排反事象を含む前段最大確率 事象か、ある!ヽは予め簡易推定された複数個の事象 (送信系列)を条件とする複数 個の条件付確率をメトリックベースで検出する処理力 なる処理、
(3)同様に対象となるビットが存在するグループ以降の段におけるグループにおいて も該前段までの最大確率事象か、あるいは予め簡易推定された複数個の事象 (送信 系列)を条件として複数個の条件付確率をメトリックベースで検出する処理並びに対 象ビットに対する排反事象を含む(1)の最大確率事象か、あるいは予め簡易推定さ れた複数個の事象 (送信系列)とそれに伴って検出される前段までの最大確率事象 力 ある!/ヽは予め簡易推定された複数個の事象 (送信系列)とを条件とする複数個の 最大条件付確率をメトリックベースで検出する処理、
(4)以降最終段のグループまで(3)を繰り返す処理、
(5) (4)を完了後、対象ビットの対数尤度比を、前記(1)における対象ビットと前段ま での最大確率事象か、あるいは予め簡易推定された複数個の事象 (送信系列)を条 件とする複数個の条件付確率とその対象ビットに対する排反事象と前段までの最大 確率事象か、ある!ヽは予め簡易推定された複数個の事象 (送信系列)を条件とする 複数個の条件付確率とをメトリックベースで引き算し、前記(2)から (4)の対象となる ビットが存在するグループ以降の段のグループにおいても前段までの最大確率事象 力 ある!/ヽは予め簡易推定された複数個の事象 (送信系列)を条件とする複数個の 条件付確率と該対象ビットに対する排反事象を含む前段までの最大確率事象か、あ るいは予め簡易推定された複数個の事象 (送信系列)を条件とする複数個の条件付 確率とをメトリックベースで引き算し、それぞれの総和をもって対象ビットの軟判定出 力であるところの対数尤度比として検出する処理、
を用 、て計算する処理を含んで 、る。
本発明による別の空間多重信号検出方法は、時空間多重信号分離における軟入 カ軟出力検出方法において、空間多重された送信系列を送信したとする時に受信さ れる信号系列に対して得られる尤度と呼ばれる条件付確率を、複数の条件付確率の 積で表せるように分解する処理 (ファクタライゼーシヨン)を有し、該分解可能な条件 付確率を複数のグループに分割し、該尤度計算に際しては前記グループにおける 条件付確率の条件となる事象を含む前記グループを先に処理する如く確率計算す る前記グループ間の順序付けが可能であって、該各グループ内の条件付確率計算 に際しては、自グループにおける条件付確率の条件となる事象を含む前記グループ 内の最大条件付確率を示す送信系列を条件付確率の条件として計算し、前記ダル ープ間の順序付けにしたがって各グループ内の条件付確率の計算を前段の最大条 件付確率を示す送信系列のもとに計算していく処理を有し、前記尤度を最大化する 送信系列を推定するために半環 (セミリング)を用いたメトリック演算手法を用いること が特徴であって、最終段における処理が完了した後の復元抽出(リサンプリング)とし て、対象となるビットが推定対象として計算された前記条件付確率の組合せの集合か らメトリックベースの最大尤度を選択する処理、並びに該対象ビットに対する排反事 象が推定対象として計算された前記条件確率の組合せの集合力もメトリックベースの 最大尤度を選択する処理を有し、両メトリックの差分をとつて対象ビットの軟判定出力 とする処理を含んでいる。
[0030] 本発明による時空間反復復号器は、時空間多重信号分離において、軟入力軟出 力検出器と軟入力軟出力復号器とを有し、該軟入力軟出力復号器は符号ィ匕前の情 報ビット系列に対する対数尤度比(以下、 LLRとする)を出力とし、該対数尤度比を 入力として符号ィ匕後の符号語系列に対する対数尤度比を出力とする軟入力軟出力 符号器を有し、該軟入力軟出力符号器の出力を元に前記軟入力軟出力検出器のァ プリオリ(a priori)入力を作って!/ヽる。
[0031] 本発明による他の時空間反復復号器は、時空間多重信号分離において、軟入力 軟出力検出器と軟入力軟出力復号器とを有し、該軟入力軟出力復号器は符号化前 の情報ビット系列に対する対数尤度比(以下、 LLRとする)を出力とし、該対数尤度 比を入力として符号ィ匕後の符号語系列に対する対数尤度比を出力とする軟入力軟 出力符号器を有し、該軟入力軟出力符号器の出力を元に前記軟入力軟出力検出 器のソフトレプリカ入力を作っている。
[0032] 本発明による別の時空間反復復号器は、時空間多重信号分離において、軟入力 軟出力検出器と軟入力軟出力復号器とを有し、前記軟入力軟出力検出器は請求項 6記載の Max— log領域における半環 (セミリング)を用いた空間多重検出器であって 、その軟出力に当たる対数尤度比に対して重み付けを行い、次段へのアプリオリ (a priori)入力として用いて 、る。
[0033] すなわち、本発明の空間多重信号検出方法は、上記の問題に鑑みなされたもので あり、空間多重信号分離における軟入力軟出力検出器で尤度を最大化する送信系 列推定に半環 (セミリング)を用いたメトリック演算手法を用いることによって、最適検 出である MLD (Maximum Likelihood Decoding :最尤検出)に近い高性能化を低複 雑度で実現するものである。
[0034] また、本発明の空間多重信号検出方法では、検出器に続く後段のターボ復号器や LDPC (Low Density Parity Check)といった軟入カ軟出力復号器へ渡す尤度情 報も対数尤度代数 (Log Likelihood Algebra)にしたがった正確なものであり、最終 的な性能である復号器出力の誤り率特性に対して劣化を生じることなぐ本来の復号 器性能を引き出すことが可能となる。
[0035] さらに、本発明の空間多重信号検出方法では、尤度を最大化する送信系列を推定 するために用いられる半環 (セミリング)を用いたメトリック演算手法として、 Max— log 領域における半環を用いることで、対象ビットの軟判定出力として複数のグループに 分割した条件付確率の各グループ間における前段最大条件付確率事象か、ある 、 は予め簡易推定された複数個の事象 (送信系列)に対する対象ビットを含む最大条 件付確率とその排反事象を含む最大条件付確率とのメトリックベースの差分とそれ以 降の同最大条件付確率の差分との総和として表すことができるので、所要システムス ループットに対応するため、アンテナ本数を増加させる場合でも複雑度を抑えた形で 対応することが可能なようにしたものである。
[0036] 本発明の空間多重信号検出方法では、軟入力軟出力検出器と軟入力軟出力復号 器とのターボ原理に基づく時空間反復復号構成をとつたとしても、軟入力軟出力復 号器における Extrinsic情報抽出を正確に行うことによって、ターボ原理に基づく反復 回数による特性向上が数回で飽和してしまうといったことがないように構成するもので ある。
[0037] また、本発明の空間多重信号検出方法では、既製の符号語 (シンボル系列)に対 する対数尤度比を軟出力として持たない軟入力軟出力復号器を用いる場合でも、前 段の軟入力軟出力検出器へのアプリオリ (a priori)を供給すベぐ符号語に対応し た Extrinsic情報を生成することができるように構成するものである。
[0038] つまり、本発明の空間多重信号検出方法は、時空間多重信号分離における軟入 カ軟出力検出方法であり、空間多重された送信系列を送信したとする時に受信され る信号系列に対して得られる尤度と呼ばれる条件付確率を、複数の条件付確率の積 で表せるように分解する手段を有し (ファクタライゼーシヨン)、該分解可能な条件付 確率を複数のグループに分割し、該尤度計算に際してはグループにおける条件付 確率の条件となる事象を含むグループを先に処理する如く確率計算するグループ間 の順序付けが可能であって、該グループ内の確率計算に際し、二つの排反する事象 の尤度の比によって送信系列を推定するために半環 (セミリング)を用いたメトリック演 算手法を用いることを特徴として 、る。
[0039] また、本発明の空間多重信号検出方法は、上述した複数の条件付確率の積で表 せるように分解する手段 (ファクタライゼーシヨン)及び分解可能な条件付確率を複数 のグループに分割する手段にぉ 、て、各グループの条件付確率の条件となる事象を 含むグループの条件付確率を簡易推定する簡易推定手段を有し (オーダリング)、該 簡易推定手段によって、グループ間の順序付けをグループの条件付確率が高く簡 易推定される順序で処理できるように分割することを特徴として 、る。
[0040] 本発明の空間多重信号検出方法では、上述した複数の条件付確率の積で表せる ように分解する手段 (ファクタライゼーシヨン)として、 QR分解を用いたことを特徴とし ている。
[0041] または、本発明の空間多重信号検出方法では、上述した複数の条件付確率の積 で表せるように分解する手段 (ファクタライゼーシヨン)として、ブロック三角化分解を 用いたことを特徴として 、る。
[0042] あるいは、本発明の空間多重信号検出方法では、上述した複数の条件付確率の 積で表せるように分解する手段 (ファクタライゼーシヨン)として、三重対角化手法を用 いたことを特徴としている。
[0043] 一方、本発明の空間多重信号検出方法では、上記二つの排反する事象の尤度の 比によって送信系列を推定するために用いられる半環 (セミリング)を用いたメトリック 演算手法を、和を最大値演算 (MAX)、積を通常の加算として、 [数 8] a®b max{a,b}
a®b a+b の如く行われることを特徴として 、る。
[0044] また、本発明の空間多重信号検出方法では、上記二つの排反する事象の尤度の 比によって送信系列を推定するために用いられる半環 (セミリング)を用いたメトリック 演算手法を、和をヤコビアン対数に基づく演算、積を通常の加算として、
[数 9] fl®ゎ薩 ln(e" +e
a ®b ma+b ここで、
[数 10] ia®b m hi(ea +eb)~ max{a ,b} + ln(l + e ^ )
\ = max{a,b} + f(\a-b |) の如く行われることを特徴として 、る。
[0045] 本発明の空間多重信号検出方法では、時空間多重信号分離における軟入力軟出 力検出方法において、空間多重された送信系列を送信したとする時に受信される信 号系列に対して得られる尤度と呼ばれる条件付確率を、複数の条件付確率の積で 表せるように分解する手段を有し (ファクタライゼーシヨン)、該分解可能な条件付確 率を複数のグループに分割し、該尤度計算に際してはグループにおける条件付確 率の条件となる事象を含むグループを先に処理する如く確率計算するグループ間の 順序付けが可能であって、該各グループ内の条件付確率計算に際しては、自グル ープにおける条件付確率の条件となる事象を含むグループ内の最大条件付確率を 示す事象 (送信系列)を条件付確率の条件として計算するか、ある!、は予め簡易推 定された複数個の事象 (送信系列)を条件として複数個計算し、グループ間の順序 付けにしたがって各グループ内の条件付確率の計算を行う手段を有することを特徴 とし、軟判定出力である該送信系列のビット尤度は、和を最大値演算(MAX)、積を 通常の加算とする上記の半環 (セミリング)を用いて、
(1)対象となるビットが推定対象として存在する該グループにおいて対象ビットと前段 迄の最大確率事象か、あるいは予め簡易推定された複数個の事象 (送信系列)を条 件とする複数個の条件付確率をメトリックベースで検出する手段、並びに該対象ビッ トに対する排反事象と該前段迄の最大確率事象か、あるいは予め簡易推定された複 数個の事象 (送信系列)を条件とする複数個のを大条件付確率をメトリックベースで 検出する手段 (対象となるビットが存在するグループ)
(2)次段のグループにおいて対象ビットを含む前段最大確率事象力、あるいは予め 簡易推定された複数個の事象 (送信系列)を条件とする複数個の条件付確率をメトリ ックベースで検出する手段、並びに対象ビットに対する排反事象を含む前段最大確 率事象か、ある!ヽは予め簡易推定された複数個の事象 (送信系列)を条件とする複 数個の条件付確率をメトリックベースで検出する手段 (次段のグループ)
(3)同様に、対象となるビットが存在するグループ以降の段におけるグループにおい ても該前段迄の最大確率事象か、あるいは予め簡易推定された複数個の事象 (送信 系列)を条件とする複数個の条件付確率をメトリックベースで検出する手段、並びに 対象ビットに対する排反事象を含む(1)の最大確率事象とそれに伴って検出される 前段迄の最大確率事象か、あるいは予め簡易推定された複数個の事象 (送信系列) を条件とする複数個の条件付確率をメトリックベースで検出する手段
(4)以降最終段のグループ迄、(3)を繰り返す手段 (それ以降の段のグループ)
(5) (4)を完了後、対象ビットの対数尤度比を、(1)における対象ビットと前段迄の最 大確率事象か、ある!ヽは予め簡易推定された複数個の事象 (送信系列)を条件とす る複数個の条件付確率と、その対象ビットに対する排反事象と前段迄の最大確率事 象カゝ、ある!/ヽは予め簡易推定された複数個の事象 (送信系列)を条件とする複数個 の条件付確率とをメトリックベースで引き算し、 (2)から (4)の対象となるビットが存在 するグループ以降の段のグループにおいても前段迄の最大確率事象を条件とする 最大条件付確率と該対象ビットに対する排反事象を含む前段迄の最大確率事象か 、あるいは予め簡易推定された複数個の事象 (送信系列)を条件とする複数個の条 件付確率をメトリックベースで引き算し、それぞれの総和をもって対象ビットの軟判定 出力であるところの対数尤度比として検出する手段
を用いて計算する手段を有することを特徴として ヽる。
[0046] 本発明の空間多重信号検出方法では、時空間多重信号分離における軟入力軟出 力検出方法において、空間多重された送信系列を送信したとするときに受信される 信号系列に対して得られる尤度と呼ばれる条件付確率を、複数の条件付確率の積 で表せるように分解する手段を有し (ファクタライゼーシヨン)、該分解可能な条件付 確率を複数のグループに分割し、該尤度計算に際してグループにおける条件付確 率の条件となる事象を含むグループを先に処理する如く確率計算するグループ間の 順序付けが可能であって、該各グループ内の条件付確率計算に際して、自グルー プにおける条件付確率の条件となる事象を含むグループ内の最大条件付確率を示 す事象 (送信系列)を条件付確率の条件として計算し、グループ間の順序付けにした がって各グループ内の条件付確率の計算を前段の最大条件付確率を示す事象 (送 信系列)を基に計算していく手段を有し、尤度を最大化する送信系列を推定するた めに半環 (セミリング)を用いたメトリック演算手法を用いることが特徴であって、最終 段における処理が完了した後の復元抽出(リサンプリング)として、対象となるビットが 推定対象として計算された条件付確率の組合せの集合からメトリックベースの最大尤 度を選択する手段、並びに該対象ビットに対する排反事象が推定対象として計算さ れた条件確率の組合せの集合からメトリックベースの最大尤度を選択する手段を有し 、両メトリックの差分をとつて対象ビットの軟判定出力とする手段を特徴として構成され る。
[0047] 本発明の時空間反復復号器は、時空間多重信号分離において、軟入力軟出カ検 出器と軟入力軟出力復号器を有し、該軟入力軟出力復号器は符号ィ匕前の情報ビッ ト系列に対する対数尤度比 (LLR: Log Likelihood Ratio)を出力とし、該対数尤度 比を入力として符号ィ匕後の符号語系列に対する対数尤度比を出力とする軟入力軟 出力符号器を有し、該軟入力軟出力符号器の出力を元に軟入力軟出力検出器のァ プリオリ(a priori)入力を作ることを特徴として構成される。
[0048] また、本発明の時空間反復復号器は、時空間検出部と復号部とからなる時空間多 重信号分離装置において、該時空間検出部が軟入力軟出力検出器と軟入力軟出 力符号器とを含み、該復号部が軟入力軟出力復号器を含む構成であって、軟入力 軟出力復号器へのアプリオリ(a priori)入力が軟入軟出符号器の出力に差し引く形 で作用して軟入力軟出力検出器へのアプリオリ入力を形成し、軟入力軟出力検出部 へのアプリオリ (a priori)入力が軟入力軟出力検出器出力に差し引く形で作用して 軟入力軟出力復号器へのアプリオリ(a priori)入力を形成することを特徴として構成 される。
[0049] さらに、本発明の時空間反復復号器は、時空間多重信号分離において、軟入力軟 出力検出器と軟入力軟出力復号器とを有し、該軟入力軟出力復号器が符号化前の 情報ビット系列に対する LLRを出力とし、該対数尤度比を入力として符号ィ匕後の符 号語系列に対する対数尤度比を出力とする軟入力軟出力符号器を有し、該軟入力 軟出力符号器の出力を基に軟入力軟出力検出器のソフトレプリカ入力を作ることを 特徴として構成される。
[0050] 本発明の時空間反復復号器は、上記の軟入力軟出力符号器が送信側の符号器と 同じ構成を軟判定データに対応させたものであって、その構成要素である qを法とす る加算に代わって二つの事後値 aと事後値 aとに対する対数尤度比 LLRと対数尤
1 2 1 度比 LLRとに対して qを法とする加算結果 [ a +a (mod q) ]を事後値に持つ LL
2 1 2
Rを出力することを特徴として構成される。
[0051] 本発明の時空間反復復号器は、上記の軟入力軟出力符号器が送信側の符号器と 同じ構成を軟判定データに対応させたものであって、その構成要素である 2を法とす る加算にかわって二つの事後値 aと事後値 aとに対する対数尤度比 LLRと対数尤
1 2 1 度比 LLRとに対して、
2
[数 11]
LLR - 2 - tanh -1
tanh —— ^-) - tanh ¾
2 2 を出力する手段、あるいはその近似値を出力する手段を特徴として構成される。
[0052] 本発明の時空間反復復号器は、上記の軟入力軟出力符号器が送信側の符号器と 同じ構成を軟判定データに対応させたものであって、その構成要素である 2を法とす る加算に代わって二つの事後値 aと事後値 aとに対する対数尤度比 LLRと対数尤 度比 LLRとに対してその絶対値の比較を行い、値の小さい方を選択する手段を有し
2
、その選択結果に対して極性付けを対数尤度比 LLR及び対数尤度比 LLRの MS
1 2
B (Most Significant Bit)に対する 2を法とする加算結果に基づいて行うことを特徴と して構成される。
[0053] 本発明の時空間反復復号器は、時空間多重信号分離において、軟入力軟出カ検 出器と軟入力軟出力復号器とを有し、軟入力軟出力検出器が上述した Max— log領 域における半環を用いた空間多重検出器であって、その軟出力に当たる対数尤度 比に対して重み付けを行い、次段へのアプリオリ(a priori)入力として用いることを特 徴として構成される。
本発明の時空間反復復号器では、上記の重み付けを 0. 75として用いることを特徴 として構成される。
本発明の時空間反復復号器では、上記の重み付け 0. 75をシフト加算によって実 現したことを特徴として構成される。
[0054] 上記のように、本発明は、時空間反復復号方式並びに空間多重信号検出方法で、 空間多重信号分離のための軟入力軟出力検出の尤度最大化による送信系列推定 に半環 (セミリング)を用いたメトリック演算を用いることによって、最適検出である ML Dに近い性能でし力も低複雑度で実現可能な方法を提供するものであり、後段に続 くターボ復号器や LDPCといった軟入力軟出力復号器に対しても特性劣化を引き起 こすことのな 、ように正確な尤度情報を渡すことが可能な方法を提供するものである
[0055] また、本発明は、半環 (セミリング)を用いたメトリック演算で和を最大値演算、積を 通常加算としたセミリングを適用すると、検出対象ビットの軟判定出力が分割した複 数のグループにおける対象ビットを含む最大条件付確率とその排反事象を含む最大 条件付確率のメトリックベースの差分、かつそれ以降の同最大条件付確率のメトリック ベースの差分の総和として表すことが可能となるので、所要システムスループットに対 応するためにアンテナ本数を増やし、処理段数を増加させた場合でも、絞り込まれた 最低限の最大条件付確率事象のみによる追加グループ内処理で対処することが可 能となるので、増加複雑度を抑えた形でアンテナ数増による処理に対処することが可 能な方法を提供するものである。
[0056] 本発明の時空間反復復号器は、軟入力軟出力検出器と軟入力軟出力復号器との 間で独立にアプリオリ(a priori)情報のやりとりが可能となるので、軟入力軟出力復 号器における Extrinsic情報の抽出を容易とし、 Extrinsic情報抽出のしにくさから来る I ntrinsic情報を含んだままの Extrinsic情報となったり、ある!/、は一部の Extrinsic情報で 賄われたりすることがない。したがって、ターボ原理に基づく反復回数による特性向 上が数回で飽和してしまうといった劣化を生じることのない時空間反復復号器を提供 することが可能となる。
[0057] また、本発明の時空間反復復号器は、既製の軟入力軟出力復号器出力である情 報ビット系列に対する対数尤度比を符号語 (シンボル系列)に対する LLRに外部で 変換可能となるので、既製コアブロックの内部変更をすることなぐ実現可能な時空 間反復復号器を提供することが可能となる。
発明の効果
[0058] 本発明は、以下に述べるような構成及び動作とすることで、ターボ原理に基づく時 空間反復復号の特性を向上させることができるという効果が得られる。
図面の簡単な説明
[0059] [図 1]本発明の第 1の実施例による時空間多重信号分離装置の構成を示すブロック 図である。
[図 2]本発明の第 1の実施例による送信側装置の構成を示すブロック図である。
[図 3]本発明の第 5の実施例による QR分解を用いたグループ分割手段 (factorization
)の一例を示す図である。
[図 4]本発明の第 6の実施例による三重対角マトリクス分解を用いたグループ分割手 段(factorization)の一例を示す図である。
[図 5]本発明の第 7の実施例によるブロック三角化分解を用いたグループ分割手段 (f actorization)の一例を示す図である。
[図 6]ベイズ統計学における周辺化(マージナライゼーシヨン: marginalization)処 理のイメージ図である。
[図 7]グループ分割を条件付確率の積の分割と同じにした場合の一例を示す図であ る。
[図 8]16QAMにおける外円上信号点や内円上信号点等を説明するための図である
[図 9]貪欲法 (greedy)によるステップ処理で最大条件付確率事象の選択過程を示 す図である。
[図 10]貪欲法 (greedy)によるステップ処理で複数の条件付確率の積でグループを 構成した時の最大条件付確率事象選択過程を示す図である。
[図 11]本発明の第 18の実施例による時空間反復復号器の構成を示すブロック図で ある。
[図 12]本発明の第 19の実施例による時空間反復復号器の構成を示すブロック図で ある。
[図 13]本発明の第 20の実施例による符号器の構成例を示す図である。
[図 14]本発明の第 21の実施例による符号器の構成例を示す図である。
[図 15]図 14に使用されている軟入力軟出力要素符号器の内容を示す図である。
[図 16]軟入力軟出力要素符号器で使われる 2を法とする加算を LLRで実行する近 似回路を示す図である。
[図 17]通常のターボ復号における符号ィ匕前の情報系列 (I)に対する LLR算出過程を 示すトレリス線図である。
[図 18]ターボ復号における符号ィ匕後のパリティ系列系列 (P)に対する LLR算出過程 を示すトレリス線図である。
符号の説明
1, 5, 7 軟入力軟出力検出器
2, 6, 8 軟入力軟出力復号器
3, 53, 55 ディンタリーノ
4, 32, 59 インタリーノ
11— 1〜: L I— n,
34— 1〜34— n,
51— 1〜51— n, 71— 1〜71— n アンテナ
12 デテクタ
13 , 14 変
21 デコーダ
31 エンコーダ
33 時空間マツパ
52 時空間検出器
54 , 58 減算器
56 加算器
57 , 73 軟入力軟出力符号器
61 , 81 軟入力軟出力復号器
62 , 82 判定器
72 空間多重信号検出器
74 ソフトレプリカ生成器
721 干渉キャンセラ
722 線形フィルタリング
発明を実施するための最良の形態
[0061] 次に、本発明の実施例について図面を参照して説明する。図 1は本発明の第 1の 実施例による時空間多重信号分離装置の構成を示すブロック図である。図 1におい て、本発明の第 1の実施例による時空間多重信号分離装置は軟入力軟出力検出器 1と、軟入力軟出力復号器 2と、ディンタリーバ 3と、インタリーバ 4とから構成されてい る。
[0062] 軟入カ軟出力検出器 1はアンテナ 11— 1〜: L l—nと、デテクタ(Detector) 12と、 変換器 13, 14とを備え、空間多重信号分離を行う。軟入力軟出力検出器 1の処理 方法としては、以下に述べるような空間多重信号検出方法が使われる。軟入力軟出 力復号器 2はデコーダ (Decoder) 21を備えて 、る。
[0063] 図 2は本発明の第 1の実施例による送信側装置の構成を示すブロック図である。図 2において、本発明の第 1の実施例による送信側装置はエンコーダ (Encoder:符号 器) 31と、インタリーノ 32と、時空間マツパ(Constellation mapper) 33と、アンテナ 3 4 1〜34— nとを備えて!/、る。
[0064] この送信側装置にお!、て、送信対象となる情報系列はまずエンコーダ 31に入力し 、ここで符号語 (シンボル系列)に変換された後、インタリーバ 32によって攪拌され、 時空間マツパ 33によって各信号点及び各アンテナ 34— l〜34—nにマッピングされ た後、送信系列として無線伝送路(図示せず)で空間多重される。
[0065] 図 1に示す受信側では、上記のように空間多重された送信系列であるところの信号 を軟入力軟出力検出器 1で分離'抽出し、符号語 (シンボル系列)の尤度情報として インタリーバ 32の逆過程であるディンタリーバ 3によって元の並びに入れ替えられた 後、軟入力軟出力復号器 2に入力される。
[0066] 軟入力軟出力復号器 2は符号ィ匕後の符号語系列に対する Extrinsic情報を軟出力 として発生する機能を有しており、送信系列の順序に合わせるため、インタリーバ 4を 介して軟入力軟出力検出器 1へアプリオリ(a priori)として入力される。
[0067] この軟入力軟出力検出器 1→デインタリーバ 3→軟入力軟出力復号器 2→インタリ ーバ 4→軟入力軟出力検出器 1で形成されたループ内を、上記の尤度情報を複数 回伝達することによって、飛躍的に検出能力ゃ復号能力を向上させる手法がターボ 原理であり、そのためにターボ原理にしたがった Extrinsic情報を正確に抽出する必 要がある。
[0068] 本実施例による空間多重信号検出方法は、上記のような構成において用いられる もので、以下、この空間多重信号検出方法について説明する。
[0069] 今、送信系列を n本の送信アンテナで送った場合の送信信号ベクトルを Xとし、そ
T
れを n本の受信アンテナで受けた場合の受信信号ベクトルを Yとすると、 MLD (Maxi
R
mum Likelihood Decoding:最尤検出)の場合、
[数 12]
Figure imgf000021_0001
となる。
[0070] したがって、条件付確率 p (Y I X)を計算すること〖こなる。ちなみに、上記の式の右 辺の p (X)はアプリオリ(a priori)に相当する部分である。また、送信信号ベクトル X 及び受信信号ベクトル Yは、
[数 13]
や:…
X ς~?
[数 14]
Υ GC
である。また、上記の条件付確率 p(Y I X)を、
隱 15] γ|χ)
=Λい …, |xj
Π )
Figure imgf000022_0001
として表し、送信信号系列 xi のとりうる信号点の数 Aを、
[数 16]
とすると、条件付確率 P(Y I X)をメトリックベースで表した種類の合計は、
[数 17]
|A \"T xnR 個となる。 [0071] 次に、本発明の第 2の実施例について説明する。本発明の第 2の実施例において 、送信側及び受信側の各装置の構成は、上述した本発明の第 1の実施例と同様であ る。本発明の第 2の実施例は、条件付確率の積で表せるように分解する手段 (factori zation)として QR分解を用いている点が上述した本発明の第 1の実施例と異なる。こ のファクタライゼーシヨンによる低複雑ィ匕を図った場合の空間多重信号検出方法に ついて説明する。
[0072] 通信路行列を、
[数 18]
とすると、 QR分解によって、
H = Q -R
となるので、
[数 19]
Z≡Q" Y = R X + N
となる。
[0073] ここで、
[数 20]
はュ-タリー行列、
[数 21]
REC は上三角行列であり、雑音成分ベクトル
[数 22]
NEC"''1 はュ-タリー変換された雑音ベクトルであるから、雑音強調は生ぜず、信号点間距離 を維持したままの変換である。尚、この QRによる分解過程で SNR (Signal to Noise
Ratio)が高い順序で処理できるように行列内ベクトルの並び替えが可能で、 SNRが 最大化されるような順序 (オーダリング)で検出するステップ処理を実現することもでき る。
[0074] 上記の式を行列の要素レベルまで展開して再記すると、
[数 23]
0
Z
0 0 R-X + N
0 0
Figure imgf000024_0002
で、
[数 24] , ,…^ , · · · はュ-タリー変換後の雑音ベクトル要素で、統計的に独立であるから、ュ-タリー変 換後の受信信号ベクトル Zに対する条件付確率は、
[数 25]
Figure imgf000024_0001
" Ρ )· · ·ΑΖΜ ,… )… ·ρ(Ζ ,… ,…, )' Ρ ,… ,…,ぶ, ) となって、送信系列の要素に対応した条件付確率の積で表せるように分解することが できる。
[0075] その送信系列の部分集合による送信信号ベクトルを、
[数 26]
Figure imgf000025_0001
というように定義すると、上記の条件付確率は、
[数 27] Ζ|Χ)
I X )…
Figure imgf000025_0002
Χητί ) tlj / 、
"fj Zm | Χητνη ) となって送信信号系列 xi のとりうる信号点の数を Aとすると、条件付確率 p (Y I X)を メトリックベースで表した種類の合計が、
[数 28]
Figure imgf000025_0003
となる。ここで、信号点の数 Aは、
[数 29]
で表される。よって、本実施形態では、上述した MLDの場合に比べて、約 lZnに
R
複雑度が減少し、し力も誤り率特性が MLDの場合と変わらな 、と 、つた効果がある。 続いて、本発明の第 3の実施例について説明する。本発明の第 3の実施例におい て、送信側及び受信側の各装置の構成は、上述した本発明の第 1の実施例と同様で ある。本発明の第 3の実施例は、条件付確率の積で表せるように分解する手段 (facto rization)として三直对角マトリクス分解 (Tri diagonal matrices factorization; 用 ヽて いる点が上述した本発明の第 1の実施例と異なる。この三重対角マトリクス分解による ファクタライゼーシヨンにて低複雑ィ匕を図った場合の空間多重信号検出方法につい て説明する。 三重対角マトリクス分解の場合、行列の要素レベルまで展開して記すと、
[数 30]
Figure imgf000026_0001
となる。したがって、 Zに対する条件付確率は、
[数 31] Z|X)
= Ρ (^,… ,…, ζ,,ζ,ι χ)
=Jp(zjx)...Jp(z2|x)-jP(z1|x)
Figure imgf000026_0002
· ρ(Ζ21ぶ 3,ぶ 2, ) · |JC2, ) となる。
送信信号系列 xi のとりうる信号点の数を Aとすると、条件付確率 p (Z I X)をメトリツ クベースで表した種類の合計が、
[数 32]
|A |2個 + |A |3個 +〜 + |A |3個 + |A |2個 - |A f - nT となる。ここで、信号点の数 Aは、
[数 33]
A = |A| で表される [0079] よって、本実施形態では、上述した MLDの場合に比べて、約 A、
0
[数 34]
Figure imgf000027_0001
に複雑度が減少し、し力も誤り率特性が MLDの場合と変わらな 、と 、つた効果があ る。
[0080] さらに、本発明の第 4の実施例について説明する。本発明の第 4の実施例において 、送信側及び受信側の各装置の構成は、上述した本発明の第 1の実施例と同様であ る。本発明の第 4の実施例は、条件付確率の積で表せるように分解する手段 (factori zation)としてブロック三角化分解を用いている点が上述した本発明の第 1の実施例と 異なる。このブロック三角化分解によるファクタライゼーシヨンにて低複雑ィ匕を図った 場合の空間多重信号検出方法について説明する。
[0081] ブロック三角化分解の場合、行列の要素レベルまで展開して記すと、
[数 35]
Figure imgf000027_0002
となる。したがって、 Zに対する条件付確率は、 3次のブロックを使ったとすると、
[数 36]
Figure imgf000027_0003
- JJp I ,…
- Pi?nr
Figure imgf000027_0004
Γ—い r一 J
Τ , , -s)
, -" ,…, ' ) となって、上記の条件付確率は、
[数 37] 丄 !^ ^ "^ぶ„r,…,ぶ 3.n,ぶ ,ぶ
Figure imgf000028_0001
となる。
[0082] 送信信号系列 xi のとりうる信号点の数を Aとすると、条件付確率 p (Z I X)をメトリツ クベースで表した種類の合計が、
[数 38]
|A|"T +3—
|A|3 x3 + |A|6 x3十… + |A广 x3 J I . 1 1 x3 - |A广 x3 となる。ここで、信号点の数 Aは、
[数 39] |A| で表される。よって、本実施形態では、上述した MLDの場合に比べて、約 3Znに 複雑度が減少し、し力も誤り率特性が MLDの場合と変わらな 、と 、つた効果がある。
[0083] 以上説明した方法は、最適検出である MLDの場合と同じ誤り率特性を示し、複雑 度を軽減して実現した実施形態である。次に、貪欲法 (greedy)の適用によってマル コフ連鎖とみなして分割し、さらに低複雑度化を図った実施例について説明する。
[0084] 本発明の第 5の実施例では、まず、上述した受信信号ベクトル Zに対する条件付確 率 P (Z I X)を送信系列の要素に対応した条件付確率の積で表せるように分解し、複 数のグループに分けた後(ファクタライゼーシヨン)、ステップ毎に条件に相当する候 補をグループ内で絞り込む。この絞り込み具合によって、大小の差はあるものの、原 理的にグループ間の誤り伝搬による特性劣化を伴うが、許容範囲内に収めて複雑度 を軽減する。
[0085] 図 3は本発明の第 5の実施例による QR分解を用いたグループ分割手段 (factorizat ion)の一例を示す図である。図 3においては、分割の手段 (ファクタライゼーシヨン)と して上述の QR分解を用いた場合で、三つのグループに分けて 3ステップで処理を行 つた場合の処理を示して 、る。
[0086] 図 3にお 、て、実線で囲まれた部分が第一のステップで処理される部分、荒 、破線 で囲まれた部分が第二のステップで処理される部分、細か!、破線で囲まれた部分が 第三のステップで処理される部分である。
[0087] 図 3に示す式において、上記と同様に、
[数 40]
はュ-タリー変換後の雑音ベクトル要素で統計的に独立であるから、ュ-タリー変換 後の受信信号ベクトル ζに対する条件付確率は、
[数 41]
Figure imgf000029_0001
^ ρ{ζητ \ )-ρ{ζ2\ )· ρ{ζ \ )
- ρ(Ζητ ]Χητ
Figure imgf000029_0002
,· · ' ,…, 2, ) となる。
[0088] これを図 3に示すグループ毎に独立に各ステップの処理を行う。各ステップの処理 で行う条件付確率の計算は以下の通りである。
<ステップ 1 >
[数 42] p(z„T |x„r J
Figure imgf000029_0003
, · - ,χη ) <ステップ 2>
ステップ 1で得られた全ての候補を条件として、
[数 43]
P(ZmlM|X Xm- J= - ,… ,… " ) と ヽぅ条件付確率の計算を行う。
<ステップ 3 >
ステップ 1, 2で得られた絞り込み候補を条件として、
[数 44] z„.u|x„r X„— )
Figure imgf000030_0001
という条件付確率を計算する。
[0089] 図 4は本発明の第 6の実施例による三重対角マトリクス分解を用いたグループ分割 手段(factorization)の一例を示す図である。図 4においては、分解手段(factorization )として三重対角マトリクス分解を用いた場合で、三つのグループに分けて 3ステップ で処理を行った場合の処理を示して ヽる。
[0090] 図 4にお 、て、実線で囲まれた部分が第一のステップで処理される部分、荒!、破線 で囲まれた部分が第二のステップで処理される部分、細か!、破線で囲まれた部分が 第三のステップで処理される部分である。受信信号ベクトル Zに対する条件付確率は
[数 45] z|x)
= Ρ(ΖΠΓ ,- ,Ζ„,·· · ,Ζ2 )Ζ1| X)
- ^ JX)… )
Figure imgf000030_0002
となる。
[0091] これを図 4に示すグループ毎に独立に各ステップの処理を行う。各ステップの処理 で行う条件付確率の計算は以下の通りである。
<ステップ 1 >
[数 46]
Figure imgf000031_0001
<ステップ 2 >
ステップ 1で得られた全ての候補を条件として、
[数 47] ,xn.l)
Figure imgf000031_0002
と ヽぅ条件付確率の計算を行う。
<ステップ 3 >
ステップ 1, 2で得られた絞り込み候補を条件として、
[数 48] ,xx )
Figure imgf000031_0003
という条件付確率を計算する。
[0092] 図 5は本発明の第 7の実施例によるブロック三角化分解を用 ヽたグループ分割手 段(factorization)の一例を示す図である。図 5においては、分解手段(factorization) としてブロック三角化分解を用いた場合で、三つのグループに分けて 3ステップで処 理を行った場合の処理を示して 、る。
[0093] 図 5にお 、て、実線で囲まれた部分が第一のステップで処理される部分、荒 、破線 で囲まれた部分が第二のステップで処理される部分、細か!、破線で囲まれた部分が 第三のステップで処理される部分である。受信信号ベクトル Zに対する条件付確率は
、 3次のブロックを使ったとすると、
[数 49] p(z|x)
^P{z,T,-,zm,-,zl,z X)
= p(z„r|x)-p(Z2|X Jp(zi|x)
- ¾p , '·
= , , - ' wJ
'^l) となって、上記の条件付確率は、
[数 50]
Figure imgf000032_0001
となる。
これを図 5に示すグループ毎に独立に各ステップの処理を行う。各ステップの処理 で行う条件付確率の計算は以下の通りである。
[数 51]
Figure imgf000032_0002
<ステップ 2>
ステップ 1で得られた全ての候補を条件として、
[数 52] p(Z 3 」X 2,X 3
Figure imgf000033_0001
• ρ[Ζ 」Λ: ," · ,Χ , ,Χ ,Χ , )
,… - Ό
と ヽぅ条件付確率の計算を行う。
<ステップ処理 3 >
ステップ 1, 2で得られた絞り込み候補を条件として、
[数 53]
Figure imgf000033_0002
という条件付確率を計算する。
[0095] 尚、上述した条件付確率の積で表せるように分解する手段として使ったマトリクス分 解過程で各グループの条件付確率が高!、順序でステップ処理ができるように分割す ることが可能で、例えば、各送信アンテナ力も送られてくる互いに直交したノィロット 信号を用いて受信端で一番 SNRの高 、順に下力 送信信号ベクトル要素の並べ替 えを行い、それに対応した形で通信路行列 Hの並び替えを行った後、マトリクス分解 を行えば、上述したステップ 1の条件付確率が他のグループより高くなることが期待で きる。
[0096] あるいは、通信路行列 Hの各列ベクトルのノルムを計算して、ノルムの高 、列べタト ル順に対応する送信信号ベクトル要素を下から並び替え、それに応じて通信路列 H の並び替えを行えば、上述したステップ 1の条件付確率が他のグループより高くなる ことが期待できるし、ステップ順に条件付確率が並ぶように期待できる。
[0097] 以上のようにして得られた絞り込み候補からは、符号語 (シンボル系列)のシンボル xi に対する確率 p (xi I Z)を計算する必要がある。これはベイズ統計学における周 辺化(マージナライゼーシヨン: marginalization)処理であり、
[数 54]
Z 2, ,Z
Figure imgf000034_0001
というようにして求めることができる。これらの実際の演算はメトリック領域で行われる。 したがって、乗算は全て加算に置き換わり、指数演算も必要ない。具体例な実施形 態については後述する。
[0098] メトリック領域で行われる演算としては、有力な低複雑ィ匕手法に半環 (セミリング: Se mi-ring)がある。上記の式に半環 (セミリング)を適用すると、
[数 55]
Figure imgf000034_0002
t 、うようになる。ここで、 f ( は確率 p ( · )に対応したメトリックである。
[0099] 半環 (セミリング)を用いた低複雑ィ匕手法を説明するに当たり、まず半環 (セミリング Semi-ring)の概念について説明する。尚、上記のような記載が、「1996年 7月、アイ' ィ一.ィ一.ィ一.トランザクション.オン.インフォメーション.セオリ、第 42卷、第 4号、 ]
072〜1092頁(IEEE Transactions on information theory,Vol.42,No.4,pp. l072- 1092)」(参考文献 1)に開示されている。
[0100] 半環(semiring)は 2種類の演算、
[数 56]
(semiRing ,®,®) が定義された集合 semiringで構成され、任意の 3つの元、
[数 57]
(a,o,cG semiRing ) の間で、
(閉包則)
[数 58]
a ©bSsemiRing
a®b semiRing
(結合則)
[数 59]
[a®b)®c~a®ip®c)
ia®b)®c = a®(b®c)
(単位元)
[数 60] a ®m -m®a - a G (Va E semiRing)
a Θ1 = l®a = (Va E semiRing )
(ゼロ元)
[数 61] a ®m = m®a - m i a semiRing) という関係を満たす。尚、半環 (semiring)は環 (ring)と異なり、逆元を有しない。
[0101] 以上の性質を持つ半環(semiring)の代表的な二つの例(Max-Log領域及び Log領 域)、つまり(A) Max- Log領域(Max- Log Domain)での半環(セミリング)と、(B) Log 領域 (Max-Log Domain)での半環(セミリング)とを以下に示す。
[0102] (A)において、 Max-Log領域における半環(セミリング)は、
[数 62]
Figure imgf000036_0001
t 、う式で対応付けることができる。
[0103] すなわち、半環上の加算は最大値演算(MAX)、半環上の積は通常の加算として 定義される。尚、このような演算方法については、上記の参考文献 1に記載されてい る。
[0104] これによつて、上述した mは—∞に相当し、「1の下線付き」は通常のゼロに相当す ること〖こなる。この場合、上記の式の、
[数 63]
Figure imgf000036_0002
はメトリックの最大値検出によって簡単に実行することができる。上記の方法は簡易な ものであるが、その計算結果は近似値である。
[0105] (Β)において、 Log領域における半環 (セミリング)は、
[数 64]
Figure imgf000036_0003
t 、う式で対応付けることができる。
[0106] ここで、最初の演算はヤコビアンロガリズム(Jacobian Logarithm)によって、
[数 65]
■\ -b\
a ® b≡ \n\ea + eb ) = max {A ,b} + In II + e
= max というようにして行うことができる。この場合、補正項 f ( I * I )は簡単なルックアップ テーブル (look-up table)で実現することができる。
[0107] この補正が理想的に行われると、 [数 66]
Figure imgf000037_0001
= © ©··· © ® ··· © f(x1,x2,-'-,xi_1,xi =α,χί+1,···χ Ζ)
¾£Α χ χ,.,βΑ x のメトリック演算によって、
[数 67] |Ζ)
Figure imgf000037_0002
t 、う周辺化処理を、メトリック領域上で正確に行うことができる。
[0108] 本発明の第 8の実施例は、以上の半環 (セミリング)による低複雑ィ匕手法を、上述し た貪欲法 (greedy)を適用したステップ毎に処理する方法に適用したものである。以 下の説明で用いる半環 (セミリング)は、 Max-Log領域の実施形態で、条件付確率の 積で表せるように分解する手段 (factorization)として QR分解を用いた場合である。
[0109] ュニタリー変換後の受信信号ベクトル Zに対する条件付確率は、上述した QR分解 を用いた場合の式から、
[数 68]
Figure imgf000037_0003
となる。これにベイズ統計学における周辺化(マージナライゼーシヨン: marginalization )処理を行うと、
[数 69]
Figure imgf000038_0001
I x J という式を得る。この式に半環 (セミリング)を適用すると、
[数 70]
Figure imgf000038_0002
というようになる。
これに対しては、図 3に示すグループ毎に独立な各ステップの処理を行う。各ステツ プの処理で行う条件付確率の計算は以下の通りである。
<ステップ 1 >
[数 71]
/ " ) - ®… U
Max-Log領域の実施形態の場合、ステップ 1のグループ内最大値になる。ここで、予 め簡易推定された複数個の事象 (送信系列)を条件として用いた場合、それぞれに 対して複数個計算することになるが、周辺化処理に対する計算はそれぞれの最大値 として簡略化される。この処理はステップ 1のグループ内周辺化処理に相当する。図 6にそのイメージを示す。
<ステップ 2 >
ステップ 1で得られた最大値を持つ候補を条件として用いる力 あるいは予め簡易推 定された複数個の事象 (送信系列)を条件として用い、
[数 72] ,. -Χ ( Ιχ— )
t ヽぅメトリック演算を行う。予め簡易推定された複数個の事象 (送信系列)を条件とし て用いると、複数個計算することになるが、 Max-Log領域の実施形態の場合、ステツ プ 2のグループ内最大値になって簡略化される。この処理はステップ 2のグループ内 周辺化処理に相当する。図 6にそのイメージを示す。
<ステップ 3 >
ステップ 1, 2で得られた最大値を持つ候補を条件として用いる力、あるいは予め簡易 推定された複数個の事象 (送信系列)を条件として用い、
[数 73]
= fl|z B>,zml,zn— J
Figure imgf000039_0001
t ヽぅメトリック演算を行う。予め簡易推定された複数個の事象 (送信系列)を条件とし て用いると、複数個計算することになるが、 Max-Log領域の実施形態の場合、ステツ プ 3のグループ内最大値になって簡略化される。この処理はステップ 3のグループ内 周辺化処理に相当する。図 6にそのイメージを示す。
尚、上記の各ステップを通じて自グループ内に対象となる要素、すなわち xi =aが ない場合、そのステップでは条件のない最大値となる。したがって、半環 (セミリング) を適用した周辺化処理の式は、
[数 74] =© … ©'·· 餐, ( 一)
Figure imgf000040_0001
というようになる。
[0112] ここで、各ステップの演算結果を以下のように α, β' γと置く。
ステップ 1:
[数 75] ,. μ®…^舎 :— ステップ 2:
[数 76] , ζ ζ )= Θ - χ®養/ ( ステップ 3:
[数 77] ,■
Figure imgf000040_0002
したがって、
[数 78]
となる。
[0113] あるいは予め簡易推定された複数個の事象 (送信系列)を条件として用いた場合、 "'"をその複数個中の任意の送信系列に対応した演算結果や事象として用いると、 各ステップの演算結果は複数個となり、 α', β γ 'を任意として、 ステップ 1:
[数 79] バ " |ζ μ e /(z 。 "' ステップ 2:
[数 80] バ, z zm— J . "jj/(z :一") ステップ 3:
[数 81] バ, z Z Z„_J= ..jj/(z 。)皿 したがって、
[数 82]
となる。この場合、複数個の事象に対して得られた結果の中で最大値をとる事象が最 も確から 、送信系列となる。
[0114] Max-Log領域の実施形態の場合、前段の拘束条件の下で計算した各ステップのグ ループ内最大メトリック α, β, γの和が求める f(xi = a | Z)になる。尚、最大値のみ の単一候補を用いた場合、ステップ内に対象となる要素、すなわち xi =aがない場 合、そのステップでは条件のない最大値となるので、他との共有ィ匕が可能で、さらに 低複雑度で実現することができる。
[0115] 以上の条件付確率の積で表せるように分解し (factorization)、分解可能な条件付 確率を複数のグループに分割して各ステップの処理を行 ヽ、各ステップの処理にお ける前段の最大条件付確率を示す事象、すなわちこの実施形態の場合、メトリックの 最大値となる候補 Xを次段の条件とすべく処理する過程を具体的なメトリック計算によ る実施形態で以下説明する。尚、本実施例では説明のし易さから最大値のみの単一 候補を用いた場合を例にとって説明しているが、簡易推定によって複数個の事象 (送 信系列)に絞り込んだ候補を使った場合でも、上記と同様の手段を講じることが可能 なことはいうまでもない。
[0116] 以下の実施形態では、送信信号系列の要素 xi のとりうる信号点の数 Aを「16」とし た 16QAM (Quadrature Amplitude Modulation)の場合において、説明のし易さ力 らグループ分割を条件確率の積の分割と同じ場合について説明する。ここで、信号 点の数 Aは、
[数 83]
A = |A| と表される。
[0117] 二の分割の様子を図 7に示す。図 7において、ステップ 1に相当するメトリック処理は
[数 84] J、" I
-ド" r I - I ηΓ | + ηΓπΓ
という式によって行われる。
[0118] ここで、最終的な対象ビットの軟判定出力は対数尤度比(LLR: Log Likelihood R atio)であり、メトリックベースの演算では対象ビットに対するメトリックとその排反事象 に対するメトリックとの差となるので、共通項である z、
[数 85] は予め削除されている。
[0119] 本発明の第 9の実施例では、 Max- Log領域における半環 (セミリング)の実施形態を とっているので、各候補の最大条件付確率、すなわちメトリックの最大値をもって最大 確率事象となる。
[0120] 16QAMでは一つの信号点に対して四ビット割り付けられる。そこで、
[数 86]
と表すことにする。また、各信号点は、図 8に示すように、外円上に信号点のあるダル ~~プ (outer signal point)と、内円上に i i ^ のめ グノレ ~~プ (inner signal point) と、信号点が水平軸に対して士 tan— lZS)にあるグループ(士 tan— lZS) (mod π ) signal point)と、信号点が水平軸に対して士 tan— 1 (3)にあるグループ(士 tan 1 (3) signal point)とに分けることができる。
[0121] それぞれのグループにおけるメトリック計算は、 outer signal point (32+32= 18) a=±l, b=±l,
[数 87]
- ' 18 + z„ r„rr ' -3-(a - jb) + z„T'■ „τ · 3 ·
Figure imgf000043_0001
(。 + jb)
- U -18 + 6-C-a+6-£>-fc
=>{±C±D-3E)-3 inner signal point(l2+ 12=2)
[数 88] · (fl + β)
Figure imgf000043_0002
±tan 1 (1/ 3) (mod π ) signal point (32+l2= 10)
[数 89] ·10 + ζ„Γ ·τητη; -(3-a-jb) + Zn; -r^ (3 a + jb)
--|r„rBr|2 10 + 6-C-a + 2-£»-&
(±3C±D-5E) 士 tan— 1 (3) signal point (l2 + 32= 10)
[数 90] -10 + z,r - r„rnr ' .(a-j3-b) + z„T ' - ' (a + ;3 - b)
Figure imgf000044_0001
となる。
[0122] このメトリック計算によって得られた全ての組合せ力 Max-Log領域における半環( セミリング)の実施形態をとつているので、各候補の最大条件付確率、すなわちメトリツ クの最大値と最大確率事象、つまりその時の送信系列、
[数 91]
Χητ :、αητητητητ
を選び出す。尚、上記の例では各ビットに対して単一候補に絞り込んだ場合を例にと つて説明しているが、簡易推定によって複数個に絞り込んだ場合でも、上記と同様の 手段を講じることが可能なことは 、うまでもな 、。
[0123] [数 92]
最大事象 (=下記の最大);
'ビット条件付最大事象: χητ ^(Ι,χ,χ,χ)
最大メトリック; LnT l(ije.±C±D - Ε)
Iビット条件付最大抹反享象: ={0,x,x,x)
^ 最大メトリック; .(ie.±C±D-E)
「ビット条件付最大事象: χητ -(χ χ,χ)
\ 最大メトリック; LnT 2(ie.±C±D-E)
]ビット条件付最大排反事象: x„r = (χ,Ο,χ,χ)
、 最大メトリック; „r,5(i : tC±£>—
'ビット条件付最大事象: χητ
Figure imgf000045_0001
\ 最大メトリック; L ,( .±3 ±£>-5£)
Iビット条件付最大排反事象;ズ„ = ( , 0, )
、 最大メトリック; LnTfie.±C±2>D-5E)
'ビット条件付最大事象; -{Χ,Χ,Χ )
最大メトリック: 4( £.3(:tC±D-3E))
ビット条件付最大排反事象; 7 -{Χ,Χ,Χ,Ο)
, 最大メトリック: ^; Ϊ ( .士 C± -E) 以上の結果、得られた上記の結果がステップ 1における
[数 93]
Figure imgf000045_0002
となる。但し、この実施例の場合、グループ分割と条件確率の積の分割とが同じなの で、
[数 94]
Figure imgf000045_0003
となっている。この処理で特徴的なのは、全ての組合せを得るために加減算のみしか 使ってレ、な!、点であり、低複雑ィ匕がなされて!/、る。
ステップ 2の処理は、前段の最大確率事象、すなわち各ビットに対するビット条件付 最大事象、
[数 95] =( , A} とその最大排反事象とに対して、それぞれ、
[数 96]
Figure imgf000046_0001
\^πΓ-1 τ-1 - l»nr - 1 ηΓ - 1 というメトリック処理によって行われる。もちろん、簡易推定によって複数個の事象に 絞りこんだ候補を使った場合でも、上記と同様の手段を講じることが可能である。
[0125] ここで、最終的な対象ビットの軟判定出力は LLRであり、メトリックベースの演算で は対象ビットに対するメトリックとその排反事象に対するメトリックとの差となるので、共 通項である ζ0、
[数 97]
Figure imgf000046_0002
は予め削除されている。
[0126] 本発明の第 10の実施例では、上述したのと同様に、 Max-Log領域における半環( セミリング)の実施形態をとつているので、各候補の最大条件付確率、すなわちメトリツ クの最大値をもって最大確率事象となる。
[0127] 同様に、 16QAMで一つの信号点に対して四ビット、
[数 98] τ-1 -Ι -Ι ' ^nr-l )
と表すことにするが、この例の場合、最大値のみの単一候補に絞り込んだ場合を例 にとつているので、前段の最大確率事象に基づく信号点であることを明確にするため [数 99]
( " Γ—1ト "τ· ) = ( πΓ -1, β τ -1, Υ τ—1, Γ -1 |^nr /
と表記することにする。
[0128] 前段では、各ビットに対するビット条件付最大事象とその最大排反事象とが決定さ れているので、それぞれの事象に対して上記のメトリック処理を行っている。すなわち
[数 100]
Figure imgf000047_0001
の全てに対して計算を行う。尚、この条件事象の中には、無条件最大事象が必ず存 在する。
[0129] 各信号点は、図 8に示すように、外円上に信号点のあるグループ(outer signal poi nt)と、内円上に信号点のあるグループ(inner signal point)と、信号点が水平軸に 対して士 tan— (lZS)にあるグループ(士 tan— i ZS) (mod π ) signal point)と、 信号点が水平軸に対して士 tan— 1 (3)にあるグループ(士 tan— 1 (3) signal point)とに 分ける。
[0130] それぞれのグループにおけるメトリック計算は
[数 101]
Figure imgf000048_0001
- -| — r -,f · 18 + 6 · C ·。 + 6 · D ,わ =:» (士 C £> - 3 )· 3
inner signal point 1- + 12 - 2)
' 2 + (? " (Λ -7^)+(ϊ ' (β +
--\rnT.^l\2-2+2-C-a+2-D-b^(±C±D-E)
mod n) signal point (32 + 12 » 10)
= -| _ΐΛτ_ι| · 10 + (z„r , - τ·'Γ _ T S„T) - r„r ■{^•a-jb) + (ζ„τ .] - r„r _ i · s„r ) '· r„r _lJlr ' (3 '。 + わ)
- U 2 10 + 6'C -。 + 2 D-b {±3C±D-5E)
± tan -'(3) (mod π) signal point (l2 + 32 - 101
=> -| ― -i|2'10 + - - ' ' — i' ·(。 -ゾ3'&)+ - ! - — i '(。 +ゾ '3·わ)
Figure imgf000048_0002
±3D-5E) となる。
[0131] このメトリック計算によって得られた全ての組合せ力 Max-Log領域における半環( セミリング)の実施形態をとつているので、各候補の最大条件付確率、すなわちメトリツ クの最大値と最大確率事象、つまりその時の送信系列
[数 102] -1ト /ι7 j (""Γ -1, βητ -1, ϊητ -1, Γ -1ト を選び出す。尚、上記の例では各ビットに対して単一候補に絞り込んだ場合を例にと つて説明しているが、簡易推定によって複数個に絞り込んだ場合でも、上記と同様の 手段を講じることが可能なことは 、うまでもな 、。
[0132] ここで、前段の無条件最大事象が、
[数 103]
Figure imgf000048_0003
であったとすると (複数個に絞り込まれた候補を使った場合、その候補それぞれが前 段の条件事象となる)、
[数 104]
Figure imgf000049_0001
また、前段に対象ビットが存在している事象に対しては、その事象を条件とする最 大メトリックを選び出し、
[数 105]
Figure imgf000049_0002
(x,x,x,x^ ,xil,x), χ,χ,χ,χ^χ,χ,Ο,χ)
Figure imgf000049_0003
というようにする。
選択の過程を図 9に示す。左からステップ 1、ステップ 2、 · · ·の処理となる。図 9では 図示の都合上、条件事象を省略して記載している。この例では、各ステップにおける 無条件最大事象が、
[数 106]
\χ^ί,χ,χ)
\x,x,0,x)
(χ,Ο,χ,χ)
(ΐ,χ,χ,χ) の順となっている。尚、上記の例では説明のし易さから最大値のみの単一候補に絞り 込んだ場合を例にとって説明しているが、簡易推定によって複数個に絞り込んだ場 合でも、上記と同様の手段を講じることが可能なことはいうまでもない。
[0134] 以上、得られた結果がステップ 2における、
[数 107] z ,z )- ®… § (zx— )
となる。但し、この実施例の場合、グループ分割と条件確率の積の分割とが同じなの で、
[数 108]
Figure imgf000050_0001
となっている。この処理で特徴的なのは、全ての組合せを得るために加減算のみしか 使っていない点であり、低複雑化がなされている。
[0135] 次に、任意のステップ mの処理は、前段の最大確率事象、すなわち各ビットに対す るビット条件付最大事象 X = ( α , β , y , δ )と、その最大排反事象とに対して、 m m m m m
それぞれ、
[数 109]
Mm
一 I 一 , ^w^ +l 一 ··· "* -1 " -1 ~
- - { (^m - 'm^i+l * ^m+l - m }· { (^m一 一…— ·
m,m | * [^m |
+ Zm ^m^n+l Jmtl I · | m | + (^m一 *
V^m m というメトリック処理によって行われる。もちろん、簡易推定によって複数個の事象に 絞りこんだ候補を使った場合でも、上記と同様の手段を講じることが可能である。
[0136] ここで、最終的な対象ビットの軟判定出力は LLRであり、メトリックベースの演算で は対象ビットに対するメトリックとその排反事象に対するメトリックとの差となるので、共 通項である、
[数 110]
Figure imgf000051_0001
は予め削除されている。
[0137] 本発明の第 11の実施例では、上述したのと同様に、 Max-Log領域における半環( セミリング)の実施形態をとつているので、各候補の最大条件付確率、すなわちメトリツ クの最大値をもって最大確率事象となる。
[0138] また、上記と同様に、 16QAMで一つの信号点に対して四ビット xm= ( o; , β , γ
m m
, δ )と表すことにするが、この例の場合、最大値のみの単一候補に絞り込んだ場 m m
合を例にとっているので、前段の最大確率事象に基づく信号点であることを明確に するため、
[数 111] |χ η ) -
Figure imgf000051_0002
と表記することにする。
[0139] 前段までの間には、各ビットに対するビット条件付最大事象とその最大排反事象と が決定されて 、るので、それぞれの事象に対して上記のメトリック処理を行って 、る。 すなわち、例えばステップ 3の状態を例にすると、
[数 112] ητ-2 ηΊ-τ ,7ητ.2 χ,χ,χ,χ)
{αητ-2
( -2, -2, -2 χ,χ,χ,χ) (αΠΓ-2 Λ
Figure imgf000051_0003
τ-2 » „r -2 χ,χ,χ,χ) の全てに対して計算を行う。尚、この条件事象の中には、無条件最大事象が必ず存 在する。
[0140] 各信号点は、図 8に示すように、外円上に信号点の有るグループ(outer signal po int)と、内円上に信号点のあるグループ(inner signal point)と、信号点が水平軸に 対して士 tan— (lZS)にあるグループ(士 tan— i ZS) (mod π) signal point)と、 信号点が水平軸に対して士 tan— 1 (3)にあるグループ(士 tan— 1 (3) signal point)とに 分けることができる。
[0141] それぞれのグループにおけるメトリック計算は、
[数 113] outer signal point (32 + 32 - 1δ) a -±l,i. -±l, {z„ -rmimtl-sm+l ^ -s^-r^ -C + jD, |r„^|2 - E
=* -|^ ' 18 + - rm^i · rm/,T -Snr )· r · 3 · (a - jb) + (zm - r„ +1 · smtl 3 jb)
Figure imgf000052_0001
=» -|^ ' 2 + - · rmflr -s^)-rm/n' {a- jb)+{zm- r„^ -smtl r„ · (a + jb)
· r · s,r ) ·· ■ (3 · a +ゾ 6 )
Figure imgf000052_0002
=*十 |2 · 10 + - rm^ · smtl rm^ -s^)- r„^' -{a - β-b) + {za - rm/n+l · smtl ) ·· r„ (。 + ' b)
- U ·10 + 2'C ·。 + 6·Ζ) -fc = (± C ± 3。 -5£) となる。
[0142] このメトリック計算によって得られた全ての組合せ力 Max-Log領域における半環( セミリング)の実施形態をとつているので、各候補の最大条件付確率、すなわちメトリツ クの最大値と最大確率事象、つまりその時の送信系列
[数 114]
Figure imgf000052_0003
を選び出す。尚、上記の例では各ビットに対して単一候補に絞り込んだ場合を例にと つて説明しているが、簡易推定によって複数個に絞り込んだ場合でも、上記と同様の 手段を講じることが可能なことは 、うまでもな 、。
[0143] ここで、説明の都合上、ステップ 3の状態として説明すると、前段までの無条件最大 事象が、
[数 115] χητ - (xXx9x)
(χ,χ,Ο,χ) であったとして (複数個に絞り込まれた候補を使った場合、その候補それぞれが前段 の条件事象となる)、
[数 116]
Figure imgf000053_0001
また、前段に対象ビットが存在している事象に対しては、その事象を条件とする最 大メトリックを選び出し、
[数 117]
Figure imgf000053_0002
(x,x,x}x^c x7xy xyxyxyx {x7x7x7x^cfl,x,x7 xyx,x7x)
Figure imgf000053_0003
χ,χ,χ ), x,x,x,x x,xfx9x9 χ,χ,χβ) というようにする。
[0144] 選択の過程を図 9に示す。左からステップ 1、ステップ 2、ステップ 3、 · · ·の処理で、 上記の例は三番目の場合である。図 9では、図示の都合上、条件事象を省略して記 載している。この例の各ステップにおける無条件最大事象は、
[数 118]
Figure imgf000054_0001
(χ,χ,Ο,χ)
(χ,Ο,χ,χ)
ΙΙ,χ,χ,χ) である。尚、上記の例では説明のし易さから最大値のみの単一候補を用いた場合を 例にとって説明しているが、簡易推定によって複数個の事象 (送信系列)に絞り込ん だ候補を使った場合でも、上記と同様の手段を講じることが可能なことは 、うまでもな い。
[0145] 以上、得られた結果が任意のステップ m、この例ではステップ 3における
[数 119] ="|z z一 zn— Θ ... J善/ ( |x— ,·_。) となる。但し、この例の場合、グループ分割と条件確率の積の分割とが同じなので、
[数 120]
Figure imgf000054_0002
となっている。この処理で特徴的なのは、全ての組合せを得るために加減算のみしか 使っていない点であり、低複雑化がなされている。
[0146] 本発明の第 12の実施例では、このようにして得られた各ステップのグループ内ビッ ト条件付最大メトリックを基に、空間多重信号検出における対象ビットの LLRを求める 。例えば、ステップ 3までで完了する構成の場合において、
[数 121] xn = ί,χ,χ,χ) に対する軟判定出力であるところの LLRを求める場合、
[数 122]
の関係から、
[数 123]
Figure imgf000055_0001
=Ln , ®L(x,x,x,x I Ι,χ,χ,χ) ®L(x,x,x,x I Ι,χ,χ,χ, χ,χ,χ,χ) となる。
[0147] ここで、 L(x, x, x, x I 1, x, x, x)はステップ 2における前段最大確率事象、 [数 124] χ„τ一 ΐ,χ,χ,χ) を条件とする最大メ卜リック、 L(x, X, X, X I 1, X, X, X, X, X, X, X)はステップ 3にお ける前前段最大確率事象、
[数 125] xn = (ί,χ,χ,χ) と、それを条件とするステップ 3での最大確率事象、
[数 126]
とを条件とする最大メトリックである。
[0148] Max-Log領域の実施形態の場合、前段の拘束条件の下で計算した各ステップのグ ループ内最大メトリックひ, β, Ύの和が求める f(xi =a | Z)になるから、
[数 127]
Figure imgf000055_0002
=Ln 1 + L(x,x,x,x I Ι,χ,χ,χ) + L(x,x,x,x \ Ι,χ,χ,χ, χ,χ,χ,χ) として計算することができる。次に、この排反事象である
[数 128] χη = (θ,χ,χ,χ) に対しては、
[数 129] f(xnr =(0,XJ JC)|Z)
= L T ®L\x,x,x,x 10,x,x,x)®L(x,x,x,x | Ο,χ,χ,χ, χ,χ,χ,χ) となる。したがって、
[数 130]
Figure imgf000056_0001
= L T +L(x,x,x,x 10,x,x,x)+L(x,x,x,x \ Ο,χ,χ,χ, χ,χ,χ,χ) となる。
[0149] これによつて、
[数 131] χΠτ = (Ι,Λ, , ;) に対する軟判定出力であるところの LLRは、
[数 132] f ητ
Figure imgf000056_0002
= [L. + L(x,x,x,x I Ι,χ,χ,χ) + L x,x,x,x \ Ι,χ,χ,χ, χ,χ,χ,χ))
- (∑ t + L(x,x,x,x I Ο,χ,χ,χ) + L(x,x,x,x | Ο,χ,χ,χ, χ,χ,χ,χ))
= \LnT! -L^ T )+ (L( , :, ,A: I Ι,χ,χ,χ) - L(x,x,x,x \ Ο,χ,χ,χ))
+ (L(X,X,X,X I Ι,χ,χ,χ, x,x,x,x)-L(x,x,x,x \ Ο,χ,χ,χ, χ,χ,χ,χ)) となる。
[0150] すなわち、対象ビットが存在するグループにおけるステップ処理で、対象ビットと、 前段までの最大確率事象を条件とする最大条件確率と、その排反事象と、前段まで の最大確率事象を条件とする最大条件付確率とをメトリックベースで引き算し、対象 ビットが存在するグループ以降のグループにおいても前段までの対象ビットを含む最 大確率事象を条件とする最大条件付確率と、その排反事象を含む最大確率事象を 条件とする最大条件付確率とをメトリックベースで引き算し、それぞれの総和をもって 対象ビットの軟判定出力であるところの LLRとしているのである。尚、この例の場合、 対象ビットがステップ 1の処理に含まれて ヽるので、対象ビットが存在するグループに ぉ 、て前段までの最大確率事象を条件とする必要はな 、。
[0151] あるいは、予め簡易推定によって絞り込まれた複数個の事象 (送信系列)を条件と した場合には、上記と同様に、ステップ 3までで完了する構成の場合において、 [数 133] xn - ΐ,χ,χ,χ) に対する軟判定出力であるところの LLRを求める場合、
[数 134]
Figure imgf000057_0001
の関係から、
[数 135]
Figure imgf000057_0002
= Ln _i,3 ®L(x,x,x,x I χ ,χ,χ, χ,χ ,χ) となる。
[0152] ここで、 "'"は予め簡易推定された複数個の事象 (送信系列)を基に得られた結果 を示しており、 L(x', χ', χ', x' I 1, χ', χ', χ')はステップ 2における前段確率事 象、
[数 136]
Figure imgf000057_0003
を条件とするメトリック、: L(x,, χ', χ', x' I 1, χ', χ', χ', χ', χ', χ', χ,)はステツ プ 3における前段確率事象、
[数 137] と、それを条件とするステップ 3における前段確率事象、
[数 138]
Figure imgf000058_0001
とを条件とするメトリックである。
[0153] Max-Log領域の実施形態の場合、前段の拘束条件の下で計算した各ステップのグ ループ内最大メトリック α, β , γの和が求める f(xi = a | Z)になるから、
[数 139]
Figure imgf000058_0002
として計算することができる。
[0154] 次に、この排反事象である
[数 140] χ'. = (θ,χ',χ',χ') に対しては、
[数 141]
/(ズ (( W)|Z)
-L -®L(x' ,χ' ,χ' ,χ'\ ,χ' ,χ' ,xf)® L(x x x' ,χ) Ο,χ',χ',χ', χ',χ',χ',χ') となる。したがって、
[数 142]
/ (0 ) |Ζ)
Ο,χ' ,χ' ,χ') + L(x' ,χ' ,χ' ,x'\ Ο,χ',χ',χ', χ',χ',χ',χ')
Figure imgf000058_0003
となる。
[0155] これによつて
[数 143]
Figure imgf000059_0001
に対する軟判定出力であるところの LLRは、
[数 144] 1) )
Figure imgf000059_0002
,Χ ',Χ ')) となる。
[0156] すなわち、対象ビットが存在するグループにおけるステップ処理で、対象ビットと、 前段までの予め簡易推定された複数個の事象 (送信系列)とを基に得られた確率事 象を条件とする条件確率と、その排反事象と、前段までの予め簡易推定された複数 個の事象 (送信系列)とを基に得られた確率事象を条件とする条件付確率とをメトリツ クベースで引き算し、対象ビットが存在するグループ以降のグループにおいても、前 段までの予め簡易推定された複数個の事象 (送信系列)を基に得られた確率事象を 条件とする条件付確率と、その排反事象を含む確率事象を条件とする条件付確率と をメトリックベースで引き算し、それぞれの総和をもって対象ビットの軟判定出力であ るところの LLRとして!/、るのである。
[0157] 本発明の第 13の実施例は、対象ビットがステップ 2のグループに含まれている場合 を示している。例えば、ステップ 3までで完了する構成の場合において、
[数 145]
Figure imgf000059_0003
に対する軟判定出力であるところの LLRを求める場合、
[数 146]
Figure imgf000059_0004
の関係から、 [数 147]
Figure imgf000060_0001
となる。
[0158] ここで、
[数 148]
Figure imgf000060_0002
におけるひは排反事象と共通なので、予め削除されている。また、
[数 149] "广 U はステップ 2におけるビット条件付最大事象、
[数 150]
Figure imgf000060_0003
における最大メトリックで、前段の条件
[数 151]
はステップ 1における無条件最大確率事象である。また、 L (x, X, X, X I X, 1, X, X, x, X, 1 , X)はステップ 3における前前段無条件最大確率事象、
[数 152]
と、それを条件とするステップ 2でのビット条件付最大確率事象、
[数 153]
Figure imgf000060_0004
とを条件とする無条件最大メトリックである。
[0159] Max-Log領域の実施形態の場合、前段の拘束条件の下で計算した各ステップのグ ループ内最大メトリック a, β , γの和(この場合、 αは共通項なので削除され、 j8と γとの和となる)が求める f(xi=a I Z)になるので、
[数 154] f(x„T-i = (χ,χ χ ^z " L„T_lt3 + L[x,x,x,x^c x,x, χ,χ χι として計算することができる。
[0160] 次に、この排反事象である
[数 155]
XnT-\ = ,ぶ, 0 ) に対しては、
[数 156] f T-i " ^'^Ό'^^)31 ^ 」 Ϊ ®· ^(ぶ,ズ, , Iュ, , , χ,χ, ,χ となる。したがって、
[数 157] f{xnT-i χ,χ,Ο,χ)
Figure imgf000061_0001
となる。
[0161] これによつて、
[数 158]
に対する軟判定出力であるところの LLRは、
[数 159]
Figure imgf000061_0002
となる, [0162] すなわち、対象ビットが存在するグループにおけるステップ処理で、対象ビットと前 段までの最大確率事象を条件とする最大条件確率と、その排反事象と、前段までの 最大確率事象を条件とする最大条件付確率とをメトリックベースで引き算し、対象ビッ トが存在するグループ以降のグループにお!/、ても、前段までの対象ビットを含む最大 確率事象を条件とする最大条件付確率と、その排反事象を含む最大確率事象を条 件とする最大条件付確率とをメトリックベースで引き算し、それぞれの総和をもって対 象ビットの軟判定出力であるところの LLRとしているのである。
[0163] あるいは、予め簡易推定によって絞り込まれた複数個の事象 (送信系列)を条件と した場合で、 "' "を予め簡易推定された複数個の事象を基に得られた結果として、上 記と同様に、ステップ 3までで完了する構成の場合において、
[数 160]
Figure imgf000062_0001
に対する軟判定出力であるところの LLRを求める場合、
[数 161]
Figure imgf000062_0002
の関係から、
[数 162]
Figure imgf000062_0003
となる。
[0164]
[数 163]
はステップ 2におけるビット条件付き事象、
[数 164] (x'nj-l )= ( ',ぶ'ュ I 'ュ ) におけるメトリックで、前段の条件
[数 165] ητ - 1 β (W ) はステップ 1における予め簡易推定された複数個の事象 (送信系列)を基に得られた 確率事象である。また、: L(x,, χ', χ', χ' I χ', χ', χ', χ', χ', χ', 1, χ,)はステツ プ 3における前段確率事象、
[数 166]
Χ'ητ "(Χ',Χ',Χ',Χ') と、それを条件とするステップ 2でのビット条件付確率事象、
[数 167]
• ー 1 ¾
Figure imgf000063_0001
とを条件とするメトリックである。
[0165] Max-Log領域の実施形態の場合、前段の拘束条件の下で計算した各ステップのグ ループ内最大メトリック α, β , γの和が求める f(xi =a | Z)になるので、
[数 168]
Figure imgf000063_0002
として計算することができる。
[0166] 次に、この排反事象である
[数 169]
に対しては、
[数 170] /(ぶ^ - 1=( ', '0 ) |z)
― L(x,,x x x)®L'nT_l^®L{x x',x',x,x x x',x', χ',χ',Ο,χ') となる。したがって、
[数 m]
/( '"Γ-ι = ぶ',0 J|z)
Figure imgf000064_0001
となる。
[0167] これによつて、
[数 172]
に対する軟判定出力であるところの LLRは、
[数 173]
Figure imgf000064_0002
となる。
[0168] ここで、上式第一項の
[数 174]
(L(x',x',x',x')-L(x',x',x',xy) は、
[数 175] ハズ'"广1 'ュ, ) を求めるに当たっての [数 176]
L(X ,χ',χ' ,χ') と、
[数 177]
Figure imgf000065_0001
を求めるに当たっての
[数 178]
L x' ,χ' ,χ' ,χ') でその差分である。
[0169] すなわち、対象ビットが存在するグループにおけるステップ処理で、対象ビットと、 前段までの予め簡易推定によって絞り込まれた複数個の事象 (送信系列)を基に得 られた条件確率と、その排反事象と、同じくその前段までの予め簡易推定によって絞 り込まれた複数個の事象 (送信系列)を基に得られた条件付確率とをメトリックベース で引き算し、対象ビットが存在するグループ以降のグループにおいても、前段までの 対象ビットを含む確率事象を条件とする条件付確率と、その排反事象を含む確率事 象を条件とする条件付確率とをメトリックベースで引き算し、それぞれの総和をもって 対象ビットの軟判定出力であるところの LLRとしているのである。
[0170] 尚、以上の実施形態は、説明のし易さから、グループ分割を条件確率の積の分割 と同じにしている力 複数の条件確率の積でグループィ匕しても、上記と同様に実施す ることがで
きる。
[0171] 本発明の第 14の実施例は、図 10に示す複数の条件確率の積を初段に用いた場 合の例である。この例の場合も説明のし易さから最大値に候補を絞った場合を例にと つて説明するが、簡易推定によって複数個に絞り込んだ場合も、上記と同様の手段 が成り立つことはいうまでもない。初段の事象を上述した表記法に合わせて記すと、 以下のようになる。 16QAMで一つの信号点に対して四ビット、図 10に示す例ではステップ 1の処理と して二つの信号点を用いて 、るので、
[数 179]
{Χητ 'Χητ-1 と表すことにする。したがって、次段の中に対象ビットが含まれている場合の選択対 象は、
[数 180]
09x9x9x
:, JC)
Figure imgf000066_0001
となり、この全てに対して計算を行う。この条件事象の中には、無条件最大事象が必 ず存在する。この処理は上述したグループ分割を条件確率の積の分割と同じとした 場合のステップ 3の処理と同じものである。
[0173] 図 10の選択の過程は、左からステップ 1、ステップ 2、ステップ 3の処理で上記の例 は三列目のステップ 2の処理である。図 10では、図示の都合上、条件事象を省略し て記載している。この例の各ステップにおける無条件最大事象は、
[数 181]
\χ,χ,09χ ι
(1, ,ぶ, JU である。尚、通常、縮退があるので、サンプル数は図中以下の数となる。
[0174] 本発明の第 15の実施例の場合、初段に複数アンテナ分の処理を同時に行うので、 その分ダイバーシティ利得が得られ、次段以降への誤り伝搬の影響を改善することが できる。
以上の処理を纏めると、以下のようになる。
(1)対象となるビットが存在するグループ:対象となるビットが推定対象として存在する 該グループにお ヽて、対象ビットと前段までの最大確率事象を条件とする対象ビット 条件付最大条件付確率をメトリックベースで検出するとともに、その対象ビットに対す る排反事象と該前段までの最大確率事象を条件とする排反ビット条件付最大条件付 確率とをメトリックベースで検出する。
(2)次段のグループ:次段のグループにおいて、対象ビットを含む前段最大確率事 象を条件とする無条件ビット最大条件付確率をメトリックベースで検出するとともに、 対象ビットに対する排反事象を含む前段最大確率事象を条件とする無条件ビット最 大条件付確率をメトリックベースで検出する。
(3)同様に、対象となるビットが存在するグループ以降の段におけるグループにおい ても、該前段までの最大確率事象を条件とし、無条件ビット最大条件付確率をメトリツ クベースで検出するとともに、対象ビットに対する排反事象を含む(1)の最大確率事 象と、それに伴って検出される前段までの最大確率事象を条件とする無条件ビット最 大条件付確率とをメトリックベースで検出する。
(4)それ以降の段のグループ:以降、最終段のグループまで(3)を繰り返す手段。(5 ) (4)を完了後、対象ビットの LLRを、 (1)における対象ビットと、前段までの最大確率 事象を条件とする最大条件付確率と、その対象ビットに対する排反事象と、前段まで の最大確率事象を条件とする最大条件付確率とをメトリックベースで引き算し、(2)か ら (4)の対象となるビットが存在するグループ以降の段のグループにおいても、前段 までの最大確率事象を条件とする最大条件付確率と、該対象ビットに対する排反事 象を含む前段までの最大確率事象を条件とする最大条件付確率とをメトリックベース で引き算し、それぞれの総和をもって対象ビットの軟判定出力であるところの LLRとし て検出する。
また、対象ビットが存在するグループの前後のグループで、上記の例ではすべてメト リックの計算対象としているが、適当な範囲で打ち切ることによって、低複雑化が可能 であり、そのような使用形態も可能である。
尚、本発明の空間多重検出方法は、反復処理を用いない場合でも、低複雑度化に 有効となり、そのような使用形態も適宜なされるのはいうまでもない。あるいは、予め 簡易推定された複数個の事象 (送信系列)を条件とした場合にっ ヽて上記の処理を 纏めると、(1)対象となるビットが存在するグループ:予め簡易推定によって絞り込ま れた複数個の事象 (送信系列)を基に、対象となるビットが推定対象として存在する 該グループにお!/ヽて、対象ビットと前段までの確率事象を条件とする対象ビット条件 付確率をメトリックベースで検出するとともに、その対象ビットに対する排反事象と該 前段までの確率事象を条件とする排反ビット条件付確率とをメトリックベースで検出す る。
(2)次段のグループ:予め簡易推定によって絞り込まれた複数個の事象 (送信系列) を基に、次段のグループにおいて、対象ビットを含む前段確率事象を条件とする無 条件ビット条件付確率をメトリックベースで検出するとともに、対象ビットに対する排反 事象を含む前段確率事象を条件とする条件付確率をメトリックベースで検出する。
(3)同様に、予め簡易推定によって絞り込まれた複数個の事象 (送信系列)を基に、 対象となるビットが存在するグループ以降の段におけるグループにお 、ても、該前段 までの確率事象を条件とし、条件付確率をメトリックベースで検出するとともに、対象 ビットに対する排反事象を含む(1)の確率事象と、それに伴って検出される前段まで の確率事象を条件とする条件付確率とをメトリックベースで検出する。
(4)それ以降の段のグループ:予め簡易推定によって絞り込まれた複数個の事象 ( 送信系列)を基に、以降、最終段のグループまで (3)を繰り返す手段。 (5) (4)を完 了後、対象ビットの LLRを、(1)における対象ビットと、前段までの確率事象を条件と する条件付確率と、その対象ビットに対する排反事象と、前段までの確率事象を条件 とする条件付確率とをメトリックベースで引き算し、(2)から (4)の対象となるビットが存 在するグループ以降の段のグループにお!/、ても、前段までの確率事象を条件とする 条件付確率と、該対象ビットに対する排反事象を含む前段までの確率事象を条件と する条件付確率とをメトリックベースで引き算し、それぞれの総和をもって対象ビット の軟判定出力であるところの LLRとして検出する。また、対象ビットが存在するグルー プの前後のグループで、上記の例ではすべてメトリックの計算対象としている力 適 当な範囲で打ち切ることによって、低複雑ィ匕が可能であり、そのような使用形態も可 能である。
[0177] 以上、メトリック領域で行われる半環 (セミリング: Semト ring)を用いた低複雑ィ匕方法 について説明したが、最大値単一候補に絞り込んだ場合で、さらに特性向上のため に復元抽出(リサンプリング)がある。
[0178] この復元抽出(リサンプリング)は貪欲法 (greedy)によるステップ処理のために生じ る誤り伝搬の軽減を狙ったもので、最終的に推定対象となるビットとその排反事象を 含む上述したメトリックベースの条件付確率の集合とが得られる力 その中力 ビット 条件付の最大メトリックを再選択することによって実現するものである。
[0179] 本発明の第 16の実施例は、排反事象に対しても、上記と同様に、選択されたもの を採用し、両メトリックの差分を用いて、上述した方法と同様な方法によって対象ビット の軟判定出力であるところの LLRを検出するものである。例えば、図 9に示す場合、 最終的に縮退を無視すると、
[数 182]
nT - 2 - log2|A卜 /I- + 1 個のサンプル数を得ることができる。同例の場合、
[数 183]
Figure imgf000069_0001
を代入すると、
[数 184]
4 - 2 - log216 - 4 + l = 29 個のサンプルとなり、この集合力 上述の条件にある最大メトリックを復元抽出(リサン プリング)する。
[0180] 本発明の第 17の実施例は、上記と同様に、初段に複数アンテナ分の処理を同時 に行い、ダイバーシティ利得を得た段以降への誤り伝搬の影響を改善している。図 1 0において、最終的に縮退を無視すると、 [数 185]
nT - 2 -log2|A \ -ητ + 2 個のサンプル数を得ることができる。上記と同様に、
[数 186]
Figure imgf000070_0001
を代入すると、
[数 187]
4 - 2 - log216 - 4 + 2 - 30 個のサンプルとなり、この集合力 上述した条件にある最大メトリックを復元抽出(リサ ンプリング)する。
[0181] 以上、本発明の空間多重信号検出方法を用いた軟入力軟出力検出方法について 説明したが、次に、時空間多重信号分離における軟入力軟出力検出器と軟入力軟 出力復号器とを用いた時空間反復復号器について説明する。
[0182] 図 11は本発明の第 18の実施例による時空間反復復号器の構成を示すブロック図 である。図 11において、本発明の第 18の実施例による時空間反復復号器は軟入力 軟出力検出部 5と、軟入力軟出力復号部 6とから構成されている。
[0183] 軟入力軟出力検出部 5はアンテナ 51— 1〜51— nと、時空間検出器 52と、ディン タリーバ 53, 55と、減算器 54, 58と、加算器 56と、軟入力軟出力符号器 57と、イン タリーバ 59とから構成され、軟入力軟出力復号部 6は軟入力軟出力復号器 61と、判 定器 62とを備えている。
[0184] 軟入力軟出力復号部 6は符号ィ匕前の情報ビット系列に対する LLRを出力としてい る。軟入力軟出力検出部 5内にある軟入力軟出力符号器 57はその LLRを入力とし、 符号化後の符号語系列に対する LLRを出力する。軟入力軟出力検出部 5はこの符 号化後の符号語に対する LLRを基に、空間多重信号検出用のアプリオリ(a priori) 情報を生成し、このアプリオリ情報を基にターボ原理に基づいて軟入力軟出力検出 部 5と軟入力軟出力復号部 6との間で反復復号を実行している。 [0185] 軟入力軟出力復号部 6は軟入力軟出力復号器 61を含む構成であって、軟入力軟 出力復号器 61へのアプリオリ(a priori)入力は軟入力軟出力符号器 57の軟判定出 力に減算器 58によって差し引く形で作用し、軟入力軟出力検出部 5内にある時空間 検出器 52へのアプリオリ(a priori)入力を形成している。この時、 Intrinsic情報も加算 器 56を介して減算器 58によって差し引くように作用している。
[0186] また、時空間検出器 52へのアプリオリ(a priori)入力は時空間検出器 52の軟判定 出力に減算器 54によって差し引く形で作用し、軟入力軟出力復号器 61へのアプリ オリ(a priori)入力を形成して ヽる。
[0187] 尚、図 2に示すように、送信側である符号器エンコーダ 31と時空間マツパ 33との間 にはインタリーバ 32があり、これがターボ原理に基づく反復復号に重要な役割を果た している。すなわち、図 1に示すように、受信側でこのインタリーバ 32の逆過程である ディンタリーバ 3及びインタリーバ 4を入れることになり、軟入力軟出力検出処理と軟 入力軟出力復号処理とを統計的に独立させ、 Extrinsic情報、転じてアプリオリ(a pri ori)とすることによって検出能力ゃ復号能力を飛躍的に向上させる、所謂、ターボ原 理を用いた手法であり、図 11に示すディンタリーバ 53, 55及びインタリーバ 59がそ の役割を担っている。
[0188] 図 11に示す例の場合、軟入力軟出力検出部 5から軟入力軟出力復号部 6への Intr insic情報とアプリオリ(a priori)情報とを別々に受け渡して 、るので、ディンタリーバ 5 3, 55が二つとなっている。反復処理によって最終的に得られた LLR結果は、軟入 カ軟出力復号部 6の中にある判定器 62によって硬判定され、データとして出力され る。
[0189] 図 12は本発明の第 19の実施例による時空間反復復号器の構成を示すブロック図 である。本発明の第 19の実施例による時空間反復復号器はソフトキャンセラによる時 空間反復復号器であり、本来のターボ原理に基づく反復復号ではなぐソフトレプリカ による干渉キャンセラと線形フィルタリングとによる干渉抑圧 (ヌリング: nulling)を基に 構成されている。
[0190] 図 12において、本発明の第 19の実施例による時空間反復復号器は軟入力軟出 力検出部 7と、軟入力軟出力復号部 8とから構成されている。軟入力軟出力検出部 7 はアンテナ 71— 1〜71— nと、空間多重信号検出器 72と、軟入力軟出力符号器 73 と、ソフトレプリカ生成器 74とから構成され、空間多重信号検出器 72内には干渉キヤ ンセラ 721と線形フィルタリング 722とを備えている。また、軟入力軟出力復号部 8は 軟入力軟出力復号器 81と、判定器 82とを備えている。
[0191] 本実施例は、本来の Extrinsic情報をやり取りするターボ原理に基づいたものではな いので、反復処理による特性向上が数回で飽和してしまう欠点がある。し力しながら、 本実施例は、簡易に実現することができるという利点がある。
[0192] 図 12における時空間多重信号分離は空間多重信号検出器 (軟入力軟出力検出 器) 72を含む軟入力軟出力検出部 7と、軟入力軟出力復号器 81を含む軟入力軟出 力復号部 8とから構成されて ヽる。
[0193] 軟入力軟出力復号器 81は符号ィ匕前の情報ビット系列に対する LLRを出力として いる。軟入力軟出力検出部 7の中には軟入力軟出力符号器 73があって、その LLR を入力とし、符号ィ匕後の符号語系列に対する LLRを出力する。
[0194] ソフトレプリカ生成器 74はその符号語系列に対する LLRを基にソフトレプリカを生 成し、空間多重信号検出器 72へ送る。空間多重信号検出器 72は送られてきたソフト レプリカを基に干渉キャンセラ 721にてキャンセリングを行い、線形フィルタリング 722 によるヌリングを行って空間多重信号を分離する。
[0195] ソフトレプリカ生成器 74は軟入力軟出力符号器 73からの符号語系列に対する LL
Rをソフトレプリカに変換するもので、 BPSK (Binary Phase Shift Keying)の場合、 E[xi]=(+l)-p(xi =+l|y)+(-l)p(xi =— l|y)
t 、う関係力 実現することができる。
[0196] ここで、符号語系列に対する LLRを L (xi)と置くと、
[数 188] ^
Figure imgf000072_0001
ϊ¾ ¾ となる。同様に、
[数 189] ϊ
Figure imgf000073_0001
となる。したがって、
[数 190]
Figure imgf000073_0002
となる。
[0197] さらに、
[数 191]
Figure imgf000073_0004
Figure imgf000073_0003
として符号語系列に対する LLR[L (xi) ]力もソフトレプリカ E[xi ]を求めることができ る。
[0198] 以上の処理は BPSKの場合についてである力 QPSK (Quadrature Phase Shift Keying)の場合には 2ビット構成で、 E[a2i] , E[a2i+1]とすると、シンボルレプリカは、 E[xi ]=E[a2i]+jE[a2i+l] となる。
[0199] あるいは、 16QAMの場合には 4ビット構成で、 E[a4i] , E[a4i+1] , E[a4i+2] , E[a
4i+3]とすると、例えば、
E[xi ]=E[a4i] · (2-E[a4i+2])+jE[a4i+l] · (2— E[a4i+3])
と 、つたマッピングで、シンボルレプリカ E [xi]を構成することができる。
[0200] 以上の反復キャンセリング処理によって、最終的に得られた LLRの結果は、軟入力 軟出力復号部 8の中にある判定器 82によって硬判定され、データとして出力される。
[0201] 次に、上述した処理で使われてきた軟入力軟出力符号器の構成例について説明 する。
[0202] 軟入力軟出力符号器は送信側の符号器、例えば図 2に示すエンコーダ 31と同じ構 成を軟判定データに対応させたもので、その構成要素である qを法とする加算、すな わち、 al + a2 (mod q) t 、つた計算を LLRで実行したものである。
[0203] 図 13は本発明の第 20の実施例による符号器の構成例を示す図である。図 13にお いては、送信側で使用される符号器の一例を示しており、ターボ符号で用いられる再 帰的組織的畳み込みによる並列連接と!/、う手法を示して!/、る。
[0204] 図 13において、使用されている信号は 1ビットであり、使用されている加算器も 2を 法とした加算で、 al +a2 (mod 2)といった計算になる。すなわち、本実施例によ る符号器は、排他的論理和で簡単に実現することができる。
[0205] 図 14は本発明の第 21の実施例による符号器の構成例を示す図である。図 14にお いては、上記の図 13に示す符号器と同じ構成を、軟判定データに対応させたもので ある。
[0206] 図 15は図 14に使用されている軟入力軟出力要素符号器の内容を示す図である。
この軟入力軟出力要素符号器の構成は図 13に示す送信側で使用されている符号 器と同じものであるが、使用されている信号は複数ビットの軟判定データであり、 2を 法とする加算器も LLRで実行したものである。
[0207] 以下、 2を法とする加算を LLRで実行する場合の計算方法について説明する。この 場合、 LLRは、
[数 192] Lid) = log[ P( +1)l lo (""0")
d = +1 means logically "0"
where
d - -1 means logically "1" という式で定義する。したがって、
[数 193] r 、 , rP(d - +1), . rl-P(d
L(d) = log[- - ~~ = log[
P(d = -1)J P ( - 1)
Pid =一 1)
e " +1 となる。よって、
[数 194]
"め
= +l) = l- (J = -!)=!- となる,
この関係から、
[数 195]
Figure imgf000075_0001
e " ) .eKd2) +
" Φ<ί2) log[ -]
Figure imgf000075_0002
となるので、分母分子を、 [数 196]
Figure imgf000076_0001
で割ると、
[数 197]
Figure imgf000076_0002
となる。
ここで、
[数 198]
tanh ( )+lJ
Figure imgf000076_0003
であるから、
[数 199]
L(d
1 + tanh ■ tanhl 2r
2
Z ®i/2]一 log [-
-tanhl ' . tanh ( となり、さらに、
[数 200]
Figure imgf000076_0004
= 1 + tanh^ ).tanhi であるから、整理すると、 [数 201]
Figure imgf000077_0001
e
β一1—'——" +1
[ 2】 L[d,®d2]
e 2 -e
I[di®(i2] L『 θ<ί2]
2 +e 2
[ ]、
2 となる。
すなわち、
[数 202] [ ㊉ ]
Figure imgf000077_0002
であるから、書き直して、
[数 203]
LLR = 2 · tanh -1 tanh
Figure imgf000077_0003
となって、 2を法とする加算を LLRで実行することができる。
この演算をそのままテーブルを用いて実装しても良 、が、
[数 204]
= log[ ]一 sign[ L(d,) Vsign[ L(d2) ] · min[ | L(^) |, | L(d2) | ] e" ) + e"d2) という近似を使って計算することができる。あるいは、書き直して、
[数 205]
LLR » sign[ LLR ] · sign[ LLR, ] · min[ | LL^ |, | LLR2 1 ] となる。
[0212] つまり、二つの対数尤度比 LLR , LLRに対して、その絶対値の比較を行い、値の
1 2
小さい方を選択し、その選択結果に対して極性付けを二つの対数尤度比 LLR , LL
1
Rの MSB (Most Significant Bit)に対する 2を法とする加算結果に基づいて行えば
2
よいことになる。実際に回路を構成した例を図 16に示す。
[0213] 以上、具体的な例として図 13に示す送信側で使用される符号器の一例としてター ボ符号で用いられる再帰的組織的畳み込みによる並列連接と 、う手法で構成した場 合の受信側での本発明の第 21の実施例である軟入力軟出力要素符号器について 説明した力 このターボ符号に限らず、 LDPC (Low Density Parity Check)等でも 同様に本発明を用いることができることはいうまでもない。
[0214] 本発明の軟入力軟出力符号器の意義を明確にするため、通常行われる符号語系 列に対する LLR算出方法について説明する。図 17は通常のターボ復号における符 号化前の情報系列 (I)にたいする LLRの算出過程を示したトレリス線図である。図 17 において、情報系列に対する LLR(I)は、
[数 206]
Figure imgf000078_0001
というようにして計算される。
上記の式における条件式、
[数 207]
Figure imgf000078_0002
に相当する箇所を図 17の実線で、条件式、
[数 208] に相当する箇所を図 17の点線で示す。
[0216] 図 18は符号ィ匕後のパリティ系列(P)に対する LLRの計算過程を示したトレリス線図 である。図 18において、ノ リティ系列に対する LLR(P)は、
[数 209]
LLR(P) tij )® ifnj ,k ) } ,mノ. )® (mス. ,k) '·
Figure imgf000079_0001
というようにして計算される。
[0217] 上記の式における条件式、
[数 210]
(m(. ,w )G ( = 0) に相当する箇所を図 18の実線で、条件式、
[数 211]
(m,. ,m;)e( = l) に相当する箇所を図 18の点線で示す。
[0218] 半環 (セミリング)による上記の演算を Log領域の半環で行うと、 LLRは理論値通り の値となる。また、 Max-Log領域の半環で行うと、近似ではあるが、計算量が少なくて すむ。このようにして得られた LLR(I)と LLR(P)とが符号ィ匕後の符号語系列の LLR となる。
[0219] し力しながら、これらのトレリス線図に基づく計算は軟入力軟出力復号器内部のトレ リス上遷移確率伝搬を演算しているコアブロック内部で行われている。従って、機能 追加を行うには既製のコアブロックの変更を余儀なくされる。
[0220] また、 Max-Log領域の半環を使った場合、 Log領域より LLRの値が高くなる性質が ある。そこで、特に図中に記載していないが、 Extrinsic情報に重み付けを行い、元に 戻して次段へのアプリオリ(a priori)入力としている。この時、実装のしゃすさからシ フト加算で重み付けを行って 、る。 [0221] 本発明の場合、 1/2+ 1/4 = 0. 75の重み付けを行っている。 1Z2は 1ビットシフ トで、 1Z4は 2ビットシフトで実現することができるので、乗算器を使わずに実現する ことができる。
[0222] また、上記の説明では、式の煩雑さを防ぐため、アプリオリ (a priori)を省略して説 明している。半環上の演算では、積の形で対象ビットのメトリックに加わる。特に、但し 書きがな 、場合には、各メトリックにアプリオリが含まれて 、るとして記載して 、る。
[0223] このように、本発明では、上述した空間多重信号検出方法と時空間反復復号器と によって、空間多重信号検出方法では必要最小限のサンプル数で最大の効果を得 ようと 、うものである。サンプル数が少な!/、と!/、うことは条件付確率によってグループ 分けされた次段の複雑度をそれだけ軽減することができるということである。
[0224] この場合には、上記のようにサンプル数を絞っても、対象ビットに対する最大条件付 確率とその排反事象に対する最大条件確率とをメトリックベースで演算しているので 、対数尤度代数 (Log Likelihood Algebra)にしたがった LLRを軟判定出力として提 供することができる。すなわち、空間多重信号分離を行う軟入力軟出力検出器とター ボ復号器や LDPCと 、つた軟入力軟出力復号器の連接に際し、 Extrinsic情報の受 け渡しが行われる力 その元となる正しい LLRを提供することによって、ターボ原理 に基づく時空間反復復号の特性を向上させるものである。
[0225] つまり、本発明は、空間多重信号分離における軟入力軟出力検出器で尤度を最大 化する送信系列推定に半環 (セミリング)を用いたメトリック演算手法を用いることによ つて、最適検出である MLDに近 、高性能を低複雑度で実現するものである。
[0226] また、本発明では、尤度を最大化する送信系列を推定するために用いられる半環( セミリング)を用いたメトリック演算手法として、和を最大値演算(MAX)、積を通常の 加算の
[数 212] a ®b≡ maxia,^}
a ®b s a +b のごとく行うと (Max-log領域における半環)、対象ビットの軟判定出力として複数のグ ループに分割した条件付確率の各グループ間における前段最大条件付確率事象に 対する対象ビットを含む最大条件付確率とその排反事象を含む最大条件付確率との メトリックベースの差分と、それ以降の同最大条件付確率の差分との総和として表す ことができるので、所要システムスループットに対応するため、アンテナ本数を増加さ せる場合でも、複雑度を抑えた形で対応することができる。あるいは、予め簡易推定 された複数個の事象 (送信系列)を条件とした場合でも、その条件を基に対象ビットを 含む条件付確率とその排反事象を含む条件確率のメトリックベースの差分とそれ以 降の条件付き確率の差分の総和として表すことができる。
[0227] また、本発明では、空間多重信号検出の軟入力軟出力検出器とターボ復号器や L DPCと 、つた軟入力軟出力復号器の連接に際し、 Extrinsic情報の受け渡しが行わ れるが、従来行われている外符号用復号器に相当する軟入力軟出力復号器におい て Extrinsic情報抽出のしにくさから Intrinsic情報を含んだまま Extrinsic情報として使 われて 、たり、或 、は一部の Extrinsic情報で賄われたりして 、た問題を解消しターボ 原理に基づく反復回数による特性向上効果的に実現したものである。
[0228] さらに、本発明では、既製の軟入力軟出力復号器を用いる場合、情報ビット系列に 対する対数尤度比を出力としており、符号語 (シンボル系列)に対する LLRが出力さ れていない場合が多い。
[0229] 一方、軟入力軟出力検出器は、符号語に対して MLD検出となるべく作用するので 、軟入力軟出力復号器力ゝら軟入力軟出力検出器への Extrinsic情報として符号語に 対するものが必要となる。その結果、軟入力軟出力復号器内部のトレリス上の遷移確 率伝搬を演算している箇所を変更することになり、既製コアブロックの変更を余儀なく されるといった問題がある。これに対し、本発明では、軟入力軟出力符号器を用いた 時空間反復復号器を用いることで、既製コアブロックの変更をすることなぐターボ原 理に基づく時空間反復復号を実現することができる。
[0230] 以上、纏めると、本発明では、低複雑化と特性向上との要因として空間多重信号分 離のための軟入力軟出力検出器における条件付確率を、複数の条件付確率の積の 形でグループ分けし、各グループ間の処理順序付が可能であるので、複雑度の軽減 並びにグループ間の順序付けを条件付確率の高 、順にすることによって、低複雑化 と特性向上とを図ることができる(ファクタライゼーシヨン、オーダリング)。 さらに、本発明では、送信系列を推定するための半環 (セミリング)を用いたメトリック 演算手法による低複雑度化と、 Max-Log領域における半環 (セミリング)として、前段 までの最大事象を考慮した対象ビットが存在するグループ内最大条件付確率の検出 と、後段への最大条件付確率、並びにその排反事象を含む最大条件確率をメトリック ベースの差分として各段の差分の総和をとることによって、 LLR演算をメトリックベー スで計算することができるようになるので、対数尤度代数 (Log Llikelihood Algebra) にしたがった LLRを軟判定出力として提供することができる。

Claims

請求の範囲
[1] 時空間多重信号分離における軟入力軟出力検出方法において、空間多重された 送信系列を送信したとする時に受信される信号系列に対して得られる尤度と呼ばれ る条件付確率を、複数の条件付確率の積で表せるように分解する処理 (ファクタライ ゼーシヨン)を有し、該分解可能な条件付確率を複数のグループに分割し、該尤度 計算に際しては前記グループにおける条件付確率の条件となる事象を含む前記グ ループを先に処理する如く確率計算する前記グループ間の順序付けが可能であつ て、該グループ内の確率計算に際し、二つの排反する事象の尤度の比によって送信 系列を推定するために半環 (セミリング)を用いたメトリック演算手法を用いることを特 徴とする空間多重信号検出方法。
[2] 前記複数の条件付確率の積で表せるように分解する処理 (ファクタライゼーシヨン) 及び前記分解可能な条件付確率を複数のグループに分割する処理にお!ヽて、各グ ループの条件付確率の条件となる事象を含むグループの条件付確率を簡易推定す る処理 (オーダリング)を含み、該簡易推定する処理によって、前記グループ間の順 序付けを前記グループの条件付確率が高く簡易推定される順序で処理可能なように 分割することを特徴とする請求項 1記載の空間多重信号検出方法。
[3] 前記複数の条件付確率の積で表せるように分解する処理 (ファクタライゼーシヨン) として QR分解を用いたことを特徴とする請求項 1または請求項 2記載の空間多重信 号検出方法。
[4] 前記複数の条件付確率の積で表せるように分解する処理 (ファクタライゼーシヨン) としてブロック三角化分解を用いたことを特徴とする請求項 1または請求項 2記載の 空間多重信号検出方法。
[5] 前記複数の条件付確率の積で表せるように分解する処理 (ファクタライゼーシヨン) として三重対角化手法を用いたことを特徴とする請求項 1または請求項 2項記載の空 間多重信号検出方法。
[6] 前記二つの排反する事象の尤度の比によって送信系列を推定するために半環 (セ ミリング)を用いたメトリック演算手法は、前記半環 (セミリング)として MAX-log領域 における半環を用い、和を最大値演算(MAX)、積を通常の加算として、 [数 1] a ®b■ max {a,わ)
a ®b a + b の如く行われることを特徴とする請求項 1から請求項 5のいずれか記載の空間多重信 号検出方法。
[7] 前記二つの排反する事象の尤度の比によって送信系列を推定するために半環 (セ ミリング)を用いたメトリック演算手法は、前記半環 (セミリング)として Log領域における 半環を用い、和をヤコビアン対数に基づく演算、積を通常の加算として、
[数 2]
Figure imgf000084_0001
ここで、
[数 3]
Ja①& 醫 ln(e。 + eb ) = max{a ,b] + ln(l + e 1 )
1 = max{a ,fe} + /(| a -b |) の如く行われることを特徴とする請求項 1から請求項 5のいずれか記載の空間多重信 号検出方法。
[8] 時空間多重信号分離における軟入力軟出力検出方法において、空間多重された 送信系列を送信したとする時に受信される信号系列に対して得られる尤度と呼ばれ る条件付確率を、複数の条件付確率の積で表せるように分解する処理 (ファクタライ ゼーシヨン)を有し、該分解可能な条件付確率を複数のグループに分割し、該尤度 計算に際しては前記グループにおける条件付確率の条件となる事象を含む前記グ ループを先に処理する如く確率計算する前記グループ間の順序付けが可能であつ て、該各グループ内の条件付確率計算に際しては、自グループにおける条件付確 率の条件となる事象を含む前記グループ内の最大条件付確率を示す送信系列を条 件付確率の条件として計算するか、あるいは予め簡易推定された複数個の事象 (送 信系列)を条件として複数個計算し、前記グループ間の順序付けにしたがって各グ ループ内の条件付確率の計算を前段の最大条件付確率を示す送信系列のもとに計 算して!/、く処理を有することを特徴とし、
軟判定出力である該送信系列のビット尤度は、請求項 6記載の半環 (セミリング)を 用いて
(1)対象となるビットが推定対象として存在する該グループにおいて対象ビットと前段 までの最大確率事象か、あるいは予め簡易推定された複数個の事象 (送信系列)を 条件とする複数個の条件付確率をメトリックベースで検出する処理並びに該対象ビッ トに対する排反事象と該前段までの最大確率事象か、あるいは予め簡易推定された 複数個の事象 (送信系列)とを条件とする複数個の条件付確率をメトリックベースで検 出する処理、
(2)次段のグループにおいて対象ビットを含む前段最大確率事象力、あるいは予め 簡易推定された複数個の事象 (送信系列)を条件とする複数個の条件付確率をメトリ ックベースで検出する処理並びに対象ビットに対する排反事象を含む前段最大確率 事象か、ある!ヽは予め簡易推定された複数個の事象 (送信系列)を条件とする複数 個の条件付確率をメトリックベースで検出する処理力 なる処理、
(3)同様に対象となるビットが存在するグループ以降の段におけるグループにおいて も該前段までの最大確率事象か、あるいは予め簡易推定された複数個の事象 (送信 系列)を条件として複数個の条件付確率をメトリックベースで検出する処理並びに対 象ビットに対する排反事象を含む(1)の最大確率事象か、あるいは予め簡易推定さ れた複数個の事象 (送信系列)とそれに伴って検出される前段までの最大確率事象 力 ある!/ヽは予め簡易推定された複数個の事象 (送信系列)とを条件とする複数個の 条件付確率をメトリックベースで検出する処理、
(4)以降最終段のグループまで(3)を繰り返す処理、
(5) (4)を完了後、対象ビットの対数尤度比を、前記(1)における対象ビットと前段ま での最大確率事象か、あるいは予め簡易推定された複数個の事象 (送信系列)を条 件とする複数個の条件付確率とその対象ビットに対する排反事象と前段までの最大 確率事象か、ある!ヽは予め簡易推定された複数個の事象 (送信系列)を条件とする 複数個の条件付確率とをメトリックベースで引き算し、前記(2)から (4)の対象となる ビットが存在するグループ以降の段のグループにおいても前段までの最大確率事象 力 ある!/ヽは予め簡易推定された複数個の事象 (送信系列)を条件とする複数個の 条件付確率と該対象ビットに対する排反事象を含む前段までの最大確率事象か、あ るいは予め簡易推定された複数個の事象 (送信系列)を条件とする複数個の条件付 確率とをメトリックベースで引き算し、それぞれの総和をもって対象ビットの軟判定出 力であるところの対数尤度比として検出する処理、
を用いて計算する処理を含むことを特徴とする空間多重信号検出方法。
[9] 時空間多重信号分離における軟入力軟出力検出方法において、空間多重された 送信系列を送信したとする時に受信される信号系列に対して得られる尤度と呼ばれ る条件付確率を、複数の条件付確率の積で表せるように分解する処理 (ファクタライ ゼーシヨン)を有し、該分解可能な条件付確率を複数のグループに分割し、該尤度 計算に際しては前記グループにおける条件付確率の条件となる事象を含む前記グ ループを先に処理する如く確率計算する前記グループ間の順序付けが可能であつ て、該各グループ内の条件付確率計算に際しては、自グループにおける条件付確 率の条件となる事象を含む前記グループ内の最大条件付確率を示す送信系列を条 件付確率の条件として計算し、前記グループ間の順序付けにしたがって各グループ 内の条件付確率の計算を前段の最大条件付確率を示す送信系列のもとに計算して V、く処理を有し、前記尤度を最大化する送信系列を推定するために半環 (セミリング) を用いたメトリック演算手法を用いることが特徴であって、最終段における処理が完了 した後の復元抽出(リサンプリング)として、対象となるビットが推定対象として計算さ れた前記条件付確率の組合せの集合からメトリックベースの最大尤度を選択する処 理、並びに該対象ビットに対する排反事象が推定対象として計算された前記条件確 率の組合せの集合からメトリックベースの最大尤度を選択する処理を有し、両メトリツ クの差分をとつて対象ビットの軟判定出力とする処理を含むことを特徴とする空間多 重信号検出方法。
[10] 時空間多重信号分離において、軟入力軟出力検出器と軟入力軟出力復号器とを 有し、該軟入力軟出力復号器は符号ィ匕前の情報ビット系列に対する対数尤度比 (以 下、 LLRとする)を出力とし、該対数尤度比を入力として符号ィ匕後の符号語系列に対 する対数尤度比を出力とする軟入力軟出力符号器を有し、該軟入力軟出力符号器 の出力を元に前記軟入力軟出力検出器のアプリオリ(a priori)入力を作ることを特 徴とする時空間反復復号器。
[11] 時空間検出部と復号部よりなる時空間多重信号分離装置において、該時空間検出 部は前記軟入力軟出力検出器と前記軟入力軟出力符号器とを含み、該復号部は前 記軟入力軟出力復号器を含む形の構成であって、前記軟入力軟出力復号器へのァ プリオリ(a priori)入力は前記軟入軟出符号器出力に差し引く形で作用して前記軟 入力軟出力検出器へのアプリオリ(a priori)入力を形成し、前記軟入力軟出力検出 部へのアプリオリ (a priori)入力は前記軟入力軟出力検出器出力に差し引く形で作 用して前記軟入力軟出力復号器へのアプリオリ(a priori)入力を形成することを特徴 とする請求項 10記載の時空間反復復号器。
[12] 時空間多重信号分離において、軟入力軟出力検出器と軟入力軟出力復号器とを 有し、該軟入力軟出力復号器は符号ィ匕前の情報ビット系列に対する対数尤度比 (以 下、 LLRとする)を出力とし、該対数尤度比を入力として符号ィ匕後の符号語系列に対 する対数尤度比を出力とする軟入力軟出力符号器を有し、該軟入力軟出力符号器 の出力を元に前記軟入力軟出力検出器のソフトレプリカ入力を作ることを特徴とする 時空間反復復号器。
[13] 前記軟入力軟出力符号器は送信側の符号器と同じ構成を軟判定データに対応さ せたものであって、その構成要素である qを法とする加算に代わって二つの事後値 a と事後値 aとに対する対数尤度比 LLR1 と対数尤度比 LLRとに対して前記 qを法と
2 2
する加算結果 a +a (mod q)を事後値に持つ対数尤度比 LLRを出力することを特
1 2
徴とする請求項 10から請求項 12のいずれか記載の時空間反復復号器。
[14] 前記軟入力軟出力符号器は送信側の符号器と同じ構成を軟判定データに対応さ せたものであって、その構成要素である 2を法とする加算に代わって二つの事後値 a
1 と事後値 aとに対する対数尤度比 LLRと対数尤度比 LLRとに対して、
2 1 2
[数 4]
LLR = 2 · tanh tanh 3- . tanh
2 を出力する手段、あるいはその近似値を出力する手段を含むことを特徴とする請求 項 13記載の時空間反復復号器。
[15] 前記軟入力軟出力符号器は送信側の符号器と同じ構成を軟判定データに対応さ せたものであって、その構成要素である 2を法とする加算に代わって二つの事後値 a
1 と事後値 aとに対する対数尤度比 LLRと対数尤度比 LLRとに対してその絶対値の
2 1 2
比較を行い、値の小さい方を選択する手段を含み、その選択結果に対しての極性付 けを前記対数尤度比 LLR1 及び対数尤度比 LLR2 の MSB (Most Significant Bit )に対する前記 2を法とする加算結果に基づ ヽて行うことを特徴とする請求項 14記載 の時空間反復復号器。
[16] 時空間多重信号分離において、軟入力軟出力検出器と軟入力軟出力復号器とを 有し、前記軟入力軟出力検出器は請求項 6記載の Max— log領域における半環 (セ ミリング)を用いた空間多重検出器であって、その軟出力に当たる対数尤度比に対し て重み付けを行い、次段へのアプリオリ(a priori)入力として用いることを特徴とする 時空間反復復号器。
[17] 前記重み付けを 0. 75として用いることを特徴とする請求項 16記載の時空間反復 復号器。
[18] 前記重み付け 0. 75をシフト加算によって実現したことを特徴とする請求項 17記載 の時空間反復復号器。
PCT/JP2005/009514 2004-05-26 2005-05-25 空間多重信号検出方法及びそれを用いる時空間反復復号器 WO2005117273A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006513896A JP4803384B2 (ja) 2004-05-26 2005-05-25 空間多重信号検出方法及びそれを用いる時空間反復復号器
KR1020067027144A KR100919531B1 (ko) 2004-05-26 2005-05-25 공간 다중 신호 검출 방법 및 그것을 이용하는 시공간 반복복호기
US11/569,674 US7734990B2 (en) 2004-05-26 2005-05-25 Spatial-multiplexed signal detection method and spatial and temporal iterative decoder that uses this method
CN2005800251704A CN1989697B (zh) 2004-05-26 2005-05-25 空间复用信号检测方法以及空间与时间迭代解码器
EP05743597.6A EP1768263B1 (en) 2004-05-26 2005-05-25 Spatially-multiplexed signal detecting method and time space iterative decoder using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004155538 2004-05-26
JP2004-155538 2004-05-26

Publications (1)

Publication Number Publication Date
WO2005117273A1 true WO2005117273A1 (ja) 2005-12-08

Family

ID=35451214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009514 WO2005117273A1 (ja) 2004-05-26 2005-05-25 空間多重信号検出方法及びそれを用いる時空間反復復号器

Country Status (6)

Country Link
US (1) US7734990B2 (ja)
EP (1) EP1768263B1 (ja)
JP (1) JP4803384B2 (ja)
KR (1) KR100919531B1 (ja)
CN (1) CN1989697B (ja)
WO (1) WO2005117273A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282040A (ja) * 2006-04-10 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法、無線受信装置およびプログラム並びに記録媒体
JP2008300962A (ja) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp 受信機
JP2009055216A (ja) * 2007-08-24 2009-03-12 Nippon Telegr & Teleph Corp <Ntt> 信号検出装置及び信号検出方法並びにそのプログラムと記録媒体
JP2009055217A (ja) * 2007-08-24 2009-03-12 Nippon Telegr & Teleph Corp <Ntt> 信号検出装置及び信号検出方法並びにそのプログラムと記録媒体
WO2009107712A1 (ja) * 2008-02-29 2009-09-03 日本電気株式会社 高性能伝送システム、伝送方法、受信機、及び送信機
JP2015019321A (ja) * 2013-07-12 2015-01-29 日本放送協会 Mimo受信装置
JP2015041939A (ja) * 2013-08-23 2015-03-02 日本放送協会 Mimo受信装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8032098B2 (en) * 2006-05-05 2011-10-04 Samsung Electronics Co., Ltd. MIMO receiver with pooled adaptive digital filtering
US20120114054A1 (en) * 2007-04-17 2012-05-10 Texas Instruments Incorporated Systems and Methods for Low-Complexity Max-Log MIMO Detection
US8059764B2 (en) * 2007-04-17 2011-11-15 Texas Instruments Incorporated Systems and methods for low-complexity max-log MIMO detection
US8000416B2 (en) * 2008-02-27 2011-08-16 Mitsubishi Electric Research Laboratories, Inc. System and method for generating soft output in hybrid MIMO systems
KR101527114B1 (ko) * 2008-04-02 2015-06-08 삼성전자주식회사 다중 입출력 무선통신 시스템에서 스트림별 서로 다른부호화 방식을 지원하는 격자 감소 기반의 신호 검출 장치및 방법
US8385439B2 (en) * 2008-05-27 2013-02-26 Nec Laboratories America, Inc. Polarization mode dispersion compensation in multilevel coded-modulation schemes using blast algorithm and iterative polarization cancellation
US8238488B1 (en) * 2008-09-02 2012-08-07 Marvell International Ltd. Multi-stream maximum-likelihood demodulation based on bitwise constellation partitioning
US20100203876A1 (en) * 2009-02-11 2010-08-12 Qualcomm Incorporated Inferring user profile properties based upon mobile device usage
US8464123B2 (en) * 2009-05-07 2013-06-11 Ramot At Tel Aviv University Ltd. Matrix structure for block encoding
CN101931417B (zh) * 2009-11-12 2013-01-23 北京交通大学 一种抗多径干扰ldpc解码器
US8621319B2 (en) * 2009-12-14 2013-12-31 Electronics And Telecommunications Research Institute Method and apparatus for iterative determination of MIMO iterative receiver
CN102006250B (zh) * 2010-11-23 2013-06-05 山东大学 一种MIMO-SCFDE无线通信接收机的Turbo增强方法
CN102006251B (zh) * 2010-11-23 2013-06-05 山东大学 一种MIMO无线通信接收机的Turbo增强方法
CN102082628B (zh) * 2010-11-23 2013-04-24 山东大学 一种MIMO无线通信接收机的带排序Turbo增强方法
RU2010152794A (ru) * 2010-12-24 2012-06-27 ЭлЭсАй Корпорейшн (US) Способ и устройство (варианты) для вычисления операции логарифма якоби
JP5721486B2 (ja) * 2011-03-18 2015-05-20 株式会社日立国際電気 通信機
US8767888B2 (en) * 2011-03-30 2014-07-01 Nec Laboratories America, Inc. Efficient square-root free 2 symbol max-log receiver
US8522119B2 (en) * 2011-12-07 2013-08-27 Xilinx, Inc. Reduction in decoder loop iterations
CN102664707B (zh) * 2012-04-10 2015-06-17 华为技术有限公司 确定对数似然比的方法、Turbo译码方法及其装置
US9722730B1 (en) 2015-02-12 2017-08-01 Marvell International Ltd. Multi-stream demodulation schemes with progressive optimization
US9565581B2 (en) * 2015-02-22 2017-02-07 The Regents Of The University Of Michigan Iterative detection-decoding system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161209A (en) * 1997-03-28 2000-12-12 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Through The Communications Research Centre Joint detector for multiple coded digital signals
BR9908389A (pt) 1998-03-03 2000-10-31 At & T Corp Decodificação de sinais codificados de espaço-tempo para comunicação sem fio
FR2795835B1 (fr) * 1999-07-01 2001-10-05 Bull Cp8 Procede de verification de transformateurs de codes pour un systeme embarque, notamment sur une carte a puce
US6891897B1 (en) * 1999-07-23 2005-05-10 Nortel Networks Limited Space-time coding and channel estimation scheme, arrangement and method
DE60137559D1 (de) * 2000-03-27 2009-03-19 Ntt Docomo Inc Räumliche und Zeitliche Entzerrer und Entzerrungsverfahren
JP3613134B2 (ja) * 2000-05-12 2005-01-26 日本電気株式会社 高速ターボデコーダ
US7107511B2 (en) * 2002-08-15 2006-09-12 Broadcom Corporation Low density parity check (LDPC) code decoder using min*, min**, max* or max** and their respective inverses
KR100743361B1 (ko) * 2001-01-12 2007-07-26 주식회사 케이티 이동통신시스템에서 공간-시간 확산 방식을 이용한 다중전송주파수 다이버시티 송수신 방법
JP2002247011A (ja) 2001-02-15 2002-08-30 Nippon Telegr & Teleph Corp <Ntt> 空間分割多重通信用受信装置
FR2821217B1 (fr) * 2001-02-21 2003-04-25 France Telecom Procede et systeme de codage-decodage iteratif de flux de donnees numeriques codees par combinaisons spatio-temporelles, en emission et reception multiple
KR20030028111A (ko) * 2001-09-27 2003-04-08 한국전자통신연구원 코드 분할 다중 시스템에서의 공간-시간 배열 수신 시스템및 수신 방법
US7154936B2 (en) * 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
JP2003241103A (ja) 2001-12-14 2003-08-27 Nikon Corp 落射照明装置
JP3763793B2 (ja) 2002-03-12 2006-04-05 株式会社東芝 受信装置及び送受信装置
JP4185314B2 (ja) * 2002-06-07 2008-11-26 富士通株式会社 情報記録再生装置、光ディスク装置及び、データ再生方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ITO T ET AL: "OFCM MIMO Taju ni Okeru Symbol Replica Koho Sakugengata QR Bunkai -MLD no Throughput Oyobi Enzan Shoriryo no Hikaku Hyoka.", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS., March 2004 (2004-03-01), pages 61 - 66, XP002997464 *
MARU T ET AL: "A Turbo Decoder for High Speed Downlink Packet Access.", VEHICULAR TECHNOLOGY CONFERENCE., vol. 1, 6 October 2003 (2003-10-06), pages 332 - 336, XP010700902 *
See also references of EP1768263A4 *
SEKI H. ET AL: "OFCDM MIMO Taju ni Okeru Symbol Replica Koho Sakugengata QR Bunkai -MLD ni Tekishita Nanhantei Turbo Fukugo no Yudo Joho Seiseiho.", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS., March 2004 (2004-03-01), pages 67 - 72, XP008081736 *
SHAW R.E. ET AL: "A Parallel QR Factorization Algorithm for Solving Toeplitz Tridiagonal Systems.", PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM. PROCEEDINGS 18TH INTERNATINAL, 26 April 2004 (2004-04-26), XP008081740 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282040A (ja) * 2006-04-10 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> 無線信号分離方法、無線受信装置およびプログラム並びに記録媒体
JP2008300962A (ja) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp 受信機
JP2009055216A (ja) * 2007-08-24 2009-03-12 Nippon Telegr & Teleph Corp <Ntt> 信号検出装置及び信号検出方法並びにそのプログラムと記録媒体
JP2009055217A (ja) * 2007-08-24 2009-03-12 Nippon Telegr & Teleph Corp <Ntt> 信号検出装置及び信号検出方法並びにそのプログラムと記録媒体
WO2009107712A1 (ja) * 2008-02-29 2009-09-03 日本電気株式会社 高性能伝送システム、伝送方法、受信機、及び送信機
JP5287846B2 (ja) * 2008-02-29 2013-09-11 日本電気株式会社 高性能伝送システム、伝送方法、受信機、及び送信機
JP2015019321A (ja) * 2013-07-12 2015-01-29 日本放送協会 Mimo受信装置
JP2015041939A (ja) * 2013-08-23 2015-03-02 日本放送協会 Mimo受信装置

Also Published As

Publication number Publication date
CN1989697B (zh) 2010-06-16
EP1768263A4 (en) 2012-05-09
JPWO2005117273A1 (ja) 2008-04-03
KR100919531B1 (ko) 2009-10-01
EP1768263B1 (en) 2015-01-21
US20070229329A1 (en) 2007-10-04
US7734990B2 (en) 2010-06-08
CN1989697A (zh) 2007-06-27
JP4803384B2 (ja) 2011-10-26
EP1768263A1 (en) 2007-03-28
KR20070022791A (ko) 2007-02-27

Similar Documents

Publication Publication Date Title
WO2005117273A1 (ja) 空間多重信号検出方法及びそれを用いる時空間反復復号器
US8266493B1 (en) Low-density parity check decoding using combined check node and variable node
CN101517953A (zh) 利用harq和/或重复编码的mimo系统的级联辅助符号级组合
US8045604B2 (en) Estimation of log-likelihood using constrained markov-chain monte carlo simulation
JP2004343702A (ja) Mimo電気通信システム及びこのシステムにおける送信シンボルの復号方法並びに送信シンボルの復号装置
JP2009527182A (ja) データ信号を処理する方法、データ処理部、及びコンピュータプログラム製品
WO2008016024A1 (fr) Dispositif récepteur à plusieurs antennes
Skoglund Soft decoding for vector quantization over noisy channels with memory
EP1069722A2 (en) Wireless communication system and method having a space-time architecture, and receiver for multi-user detection
US9780920B2 (en) Distributed turbo encoder and method
JP5121753B2 (ja) 空間多重受信装置、及び空間多重受信方法
US8611480B1 (en) Optimal decoding of transmit diversity code with varying channel characteristics
EP1609265B1 (en) Signal processing apparatus and method
KR101244303B1 (ko) 다중 안테나 시스템에서 수신장치 및 방법
RU2523190C1 (ru) Способ итеративного детектирования и декодирования сигнала в системах связи с mimo каналом
KR100855019B1 (ko) 연판정 정보 생성 시스템 및 방법
JP2008154223A (ja) Mimo受信装置
Jing et al. Graph-merged detection and decoding of polar-coded MIMO systems
Othman et al. Soft-bit assisted iterative AMR-WB source-decoding and turbo-detection of channel-coded differential space-time spreading using sphere packing modulation
US8081577B2 (en) Method of calculating soft value and method of detecting transmission signal
CN101496331A (zh) 多天线接收装置
JP4912232B2 (ja) マルチアンテナ受信装置
KR100973194B1 (ko) 다중안테나 시스템에서 복소 격자축소를 사용하는 복호방법 및 장치
Morshed Space-time coding with imperfect channel estimates.
Al-Sammarrie Joint source channel coding using trellis coded quantization

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513896

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11569674

Country of ref document: US

Ref document number: 2007229329

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005743597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067027144

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580025170.4

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067027144

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005743597

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11569674

Country of ref document: US