WO2005113142A1 - 光触媒活性薄膜 - Google Patents

光触媒活性薄膜 Download PDF

Info

Publication number
WO2005113142A1
WO2005113142A1 PCT/JP2005/009248 JP2005009248W WO2005113142A1 WO 2005113142 A1 WO2005113142 A1 WO 2005113142A1 JP 2005009248 W JP2005009248 W JP 2005009248W WO 2005113142 A1 WO2005113142 A1 WO 2005113142A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
photocatalytically active
active thin
metal
total
Prior art date
Application number
PCT/JP2005/009248
Other languages
English (en)
French (fr)
Inventor
Nobuo Kimura
Hiromoto Shibata
Original Assignee
Nippon Soda Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co., Ltd. filed Critical Nippon Soda Co., Ltd.
Priority to JP2006513741A priority Critical patent/JP5001003B2/ja
Publication of WO2005113142A1 publication Critical patent/WO2005113142A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis

Definitions

  • the present invention relates to a photocatalytically active thin film formed on a substrate, which exhibits photocatalytic activity when irradiated with light having a wavelength of 150 to 350 nm.
  • TiO 2 titanium oxide
  • the photocatalyst absorbs sunlight and the like, activates it, and exhibits the above-mentioned excellent action by oxidizing action.
  • a photocatalyst is used by being supported on a substrate.
  • a method of supporting a photocatalyst on a substrate a method of forming a thin film containing a photocatalyst (photocatalytically active thin film) on the substrate has attracted attention because of its high practicality.
  • a method for forming a photocatalytically active thin film on a substrate a method is generally used in which a photocatalyst precursor composition is applied on a substrate and fired at around 500 ° C.
  • Patent Documents 1 and 2 a method of forming using a solution of a photocatalyst precursor composition containing a metal alkoxide or a metal chelate compound
  • Patent Document 3 a method of forming a metal alkoxide or a metal chelate compound on a photocatalyst made of a metal oxide
  • Patent Document 1 JP-A-2000-144052
  • Patent Document 2 JP 2001-254072 A
  • Patent Document 3 JP 2003-253157 A
  • Patent Documents 1 to 3 it is necessary to apply a solution of the photocatalyst precursor composition to a substrate to form a thin film and then to bake at a high temperature.
  • the photocatalyst described in the above document exhibits photocatalytic activity by light having a wavelength longer than 350 nm, and the substrate may be deteriorated by irradiation with light such as sunlight.
  • a photocatalytic thin film is directly formed on the substrate surface without using a binder. It was difficult to form.
  • Patent Document 4 discloses a photocatalyst body including a substrate and a photocatalyst film formed on the substrate and containing Ti, 0, and C as main components and having a C / O specific force or less. I have. This document also states that the photocatalyst film obtained is made of an amorphous metal compound and can be obtained by heating or firing in a relatively low temperature range (100 to 500 ° C.).
  • Patent Document 4 JP 2002-172333 A
  • the formation temperature of the photocatalytic film is not sufficiently low enough to prevent the deterioration of the power base, which is a relatively low temperature.
  • the photocatalyst film described in this document contains Ti, 0, and C as main components and is considered to be an amorphous metal compound having photocatalytic activity. The structure of the metal compound is not specified.
  • the present invention has been made in view of the circumstances of the related art, and is a photocatalytically active thin film formed on a substrate, which can be easily formed, and which is irradiated with light having a wavelength of 150 to 350 nm. Demonstrates photocatalytic activity, and when formed on a plastic substrate, the substrate is hardly degraded even when irradiated with light with a long wavelength of 350 nm or more! ⁇ To provide a photocatalytically active thin film Make it an issue.
  • a photocatalytically active thin film formed by using at least one selected from the group consisting of a metal chelate compound, a metal organic acid salt, and a hydrolysis product thereof having two or more as a raw material has a low wavelength of 150 to 350 nm.
  • photocatalytic activity is exhibited by irradiation, that this photocatalytically active thin film can be formed by processing at a temperature of less than 100 ° C when formed on a substrate, and that it can be formed directly on a substrate that also has plasticity.
  • this photocatalytically active thin film can be formed by processing at a temperature of less than 100 ° C when formed on a substrate, and that it can be formed directly on a substrate that also has plasticity.
  • the present invention provides the following photocatalytically active thin films (1) to (18).
  • At least one force selected from the group consisting of a chelate compound, a metal organic acid salt, and a partial hydrolysis product thereof is also formed, and exhibits photocatalytic activity when irradiated with light having a wavelength of 150 to 350 nm.
  • Photocatalytically active thin film is also formed, and exhibits photocatalytic activity when irradiated with light having a wavelength of 150 to 350 nm.
  • a metal compound having a total of two or more hydrolyzable groups and Z or hydroxyl groups on a substrate, a metal chelate compound having a total of two or more hydrolyzable groups and Z or hydroxyl groups, or a metal organic acid A solution for forming a photocatalytically active thin film containing at least one selected from the group consisting of salts and these hydrolysis products is applied, and the resulting coating film of the solution is heated at a temperature of less than 100 ° C.
  • the substrate is a plastic substrate having at least one force selected from the group consisting of polyimide resin, polyester resin, epoxy resin and polyether resin.
  • the solution for forming a photocatalytically active thin film is coated on a plastic substrate, and the obtained coating film of the solution is heated at a temperature lower than the softening point of the substrate and lower than 100 ° C.
  • the partial hydrolysis product is a metal compound having a total of 2 or more of the hydrolyzable group and Z or a hydroxyl group, a metal chelate compound having a total of 2 or more of a hydrolyzable group and Z or a hydroxyl group, Or a metal organic acid salt, a metal compound having a total of 2 or more of the above hydrolyzable group and Z or hydroxyl group, a metal chelate compound having a total of 2 or more of the hydrolyzable group and Z or hydroxyl group, or a metal organic acid salt 1 (1) to (5) V, wherein the photocatalytically active thin film is a product obtained by hydrolysis using not more than 2 moles of water with respect to moles.
  • the metal chelate compound having two or more hydrolyzable groups and Z or hydroxyl groups in total is a chelate compound of the hydrolyzate of a metal compound having two or more hydrolyzable groups and Z or hydroxyl groups in total.
  • a metal compound having a total of 2 or more hydrolyzable groups and Z or hydroxyl groups a metal chelate compound having a total of 2 or more hydrolyzable groups and Z or hydroxyl groups, and a metal of a metal organic acid salt (1) to (8) characterized in that silicon, germanium, tin, lead, titanium, zirconium, aluminum, indium, tantalum, tungsten and zinc are also selected from the group consisting of: , A photocatalytically active thin film.
  • the average particle size of the dispersing medium in the solution for forming a photocatalytic thin film comprising at least one selected from the group consisting of at least one selected from the group consisting of at least one selected from the group consisting of: (2) to (9) Thin film.
  • the partial force of light irradiation changes from water repellency to hydrophilicity with a contact angle of water of 20 ° or less (1) )-(11) Any of the photocatalytically active thin films.
  • a photocatalytically active thin film that exhibits photocatalytic activity when irradiated with light having a wavelength of 250 to 310 nm.
  • the photocatalytically active thin film of the present invention has an unprecedented property of exhibiting excellent photocatalytic activity when irradiated with light having a low wavelength of 250 to 350 nm. Therefore, the photocatalytically active thin film of the present invention does not need to be exposed to light having a wavelength higher than 350 nm (such as visible light). The adhesion between the film and the photocatalytically active thin film does not decrease.
  • the photocatalytically active thin film of the present invention can be formed by a low-temperature heat treatment at a temperature lower than 100 ° C., it is not necessary to limit the substrate used to prevent damage to the substrate by the heat treatment to a heat-resistant substrate. Therefore, a lightweight and easy-to-process plastic substrate can be suitably used as the substrate.
  • the photocatalytically active thin film of the present invention has good adhesiveness, it can be easily formed directly on a substrate such as plastic, and does not deteriorate for a long time.
  • FIG. 1 is a view showing an element distribution in a depth direction of ESCA of a photocatalytically active thin film (C-1) in Example 1.
  • FIG. 2 is a chart of a photocatalytically active thin film (C1) in Example 1 measured with an X-ray diffractometer.
  • the photocatalytically active thin film of the present invention is a photocatalytically active thin film formed on a substrate, comprising a metal compound having a total of two or more hydrolyzable groups and Z or hydroxyl groups, a hydrolyzable group and Z or hydroxyl groups in total.
  • a metal chelate compound, a metal organic acid salt, and a hydrolyzate thereof having at least one selected from the group consisting of at least one selected from the group consisting of a metal chelate compound, a metal organic acid salt, and a photocatalytic activity when irradiated with light having a wavelength of 250 to 350 nm.
  • the substrate used in the present invention is not particularly limited as long as it can support the photocatalytically active thin film of the present invention, and it may be transparent, translucent, or opaque. It may be.
  • the material constituting the base is not particularly limited, and includes, for example, at least one material selected from the group consisting of metal, ceramic, glass, and plastic. Among them, a glass substrate made of glass such as soda-lime glass, borosilicate glass, and lead silicate glass; a plastic substrate made of plastic is preferable, and a plastic substrate is more preferable.
  • the resin constituting the plastic substrate examples include polyimide resins such as polyamide imide, polyether imide, polyimide and polyamino bismaleimide; and polyester resins such as polyethylene terephthalate and polyethylene 2,6 naphthalate.
  • Epoxy resins such as phenolic epoxy resin, alcoholic epoxy resin, glycidyl ether type epoxy resin, glycidylamine type epoxy resin; polyether ether ketone, polyether ketone, polyether-tolyl, polyether sulfone Polyether resins such as phenolic cellulose acetate, phenolic diacetate, nitrosenololose, etc .; Polystyrene resins such as polystyrene and syndiotactic polystyrene; ethylene, propylene Polyolefin resins such as homopolymers or copolymers of olefins such as len and butene; cycloolefin resins such as norbornene resins; polyamide resins such as nylon 6, nylon 12, and copolymerized nylon; ethylene Polybutyl alcohol-based resin such as polybutyl alcohol copolymer; ethylene tetrafluoride ethylene copolymer, polytetrafluo
  • a resin composition comprising an acrylic compound having a radically reactive unsaturated compound; a resin composition comprising the acrylic compound and a mercapto compound having a thiol group
  • a resin composition dissolved in water; a mixture thereof; and the like can be used as a base material.
  • one or more of these resins laminated by means such as lamination and coating can be used as a substrate.
  • a plastic substrate having at least one kind of force selected from a group consisting of a polyimide resin, a polyester resin, an epoxy resin and a polyether resin is particularly preferable.
  • These substrates may be provided with a waterproof layer containing a polychlorinated bilidene-based polymer for the purpose of improving so-called dimensional stability, or a thin film of an organic or Z or inorganic compound for the purpose of a gas barrier.
  • a waterproof layer containing a polychlorinated bilidene-based polymer for the purpose of improving so-called dimensional stability, or a thin film of an organic or Z or inorganic compound for the purpose of a gas barrier.
  • the organic compound include polyvinyl alcohol and a polyethylene butyl alcohol copolymer.
  • the inorganic compound include silicic acid, alumina, talc, vermiculite, kaolinite, mica, synthetic mica, and the like.
  • the substrate used in the present invention includes various organic additives for other functions. Z or an inorganic additive may be added.
  • the size and shape of the substrate are not particularly limited, and any of a flat plate, a three-dimensional object, a film, and the like can be used, but a film-like substrate is preferable. Painted articles can also be used as substrates.
  • the plastic substrate is preferably in the form of a film.
  • the film-shaped substrate may be an unstretched film or a stretched film.
  • the film-shaped plastic substrate can be manufactured by a conventionally known method.
  • a resin that is a material and is melted by an extruder, extruded by an annular die or a T die, and quenched can be manufactured to produce a substantially amorphous, unoriented, unstretched substrate.
  • the unstretched substrate may be drawn in a flow direction (vertical axis) of the substrate by a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, or tubular simultaneous biaxial stretching.
  • a stretched substrate is manufactured by stretching in a direction (horizontal axis) perpendicular to the flow direction of the substrate.
  • the stretching ratio is preferably 2 to 10 times in the longitudinal axis direction and the lateral axis direction, which can be appropriately selected according to the resin used as the base material.
  • the thickness of the film-shaped plastic substrate is not particularly limited, but is usually 1 to
  • It is 1000 ⁇ m, preferably 3 to 500 ⁇ m.
  • the photocatalytically active thin film of the present invention is formed on the above-mentioned substrate, and comprises (i) a metal compound having a total of two or more hydrolyzable groups and Z or hydroxyl groups; A metal chelate compound having a total of at least two of a functional group and Z or a hydroxyl group, (iii) a metal organic acid salt, and (iv) at least one selected from the group consisting of the hydrolysis products of the above (i) to (iii). Be formed.
  • the metal compound having two or more hydrolyzable groups and Z or hydroxyl groups in total used in the present invention is particularly limited as long as it is a metal compound having two or more hydrolyzable groups and Z or hydroxyl groups in total.
  • the hydrolyzable group refers to a functional group capable of hydrolyzing upon contact with water or a functional group capable of forming a bond with a metal atom via an oxygen atom in the presence of water. Examples include a halogen atom, an amino group, an alkoxy group, an ester group, a carboxy group, a phosphoryl group, an isocyanate group, a cyano group, and an epoxy group.
  • a compound represented by formula (II) can be preferably exemplified.
  • M represents a metal atom, preferably a metal atom belonging to Groups 13 to 15 of the periodic table. More specifically, silicon, germanium, tin, lead, titanium, zirconium, aluminum, indium, tantalum, tungsten, and zinc are selected. At least one kind can be exemplified. Among them, at least one selected from the group consisting of titanium and tantalum is more preferable.
  • R represents a hydrogen atom or an organic group having a hydrolyzable group capable of forming a bond with a metal atom via an oxygen atom.
  • organic group examples include an alkyl group, an alkyl group, and an aromatic group.
  • the carbon number of R is not particularly limited, but is usually 1 to 20, preferably 1 to 12.
  • R examples include alkyl groups such as a methyl group, an ethyl group, and a propyl group; a chloromethyl group, a chloroethyl group, a chloropropyl group, a bromopropyl group, a bromooctyl group, and a trifluoropropyl group.
  • Alkyl halide groups such as glycidoxypropyl group and epoxycyclohexylethyl group; aminoalkyl groups such as aminopropyl group and aminobutyl group; alkenyl groups such as butyl group and aryl group; acrylic (Meth) acryloxyalkyl groups such as oxypropyl group and methacryloxypropyl group; aralkyl groups such as benzyl group; aromatic groups such as phenyl group and naphthyl group.
  • X represents a hydrolyzable group or a hydroxyl group bonded to M.
  • alkoxy groups having 1 to 12 carbon atoms such as methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, etc .
  • the compound represented by the above formula (I) is a compound having a total of two or more hydrolyzable groups and Z or hydroxyl groups in the molecule. Specifically, in the formula (I), a compound in which b is 2 or more; a compound in which b is 1 and R having a hydrolyzable group is 1 or more; b is 0; And R having 2 or more having a functional group.
  • Specific examples of the compound represented by the above formula (I) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, and propynoletriethoxysilane.
  • titanium alkoxides such as tetrapropoxytitanium and tetrabutoxytitanium
  • Zirconium alkoxides such as tetrapropoxy zirconium and tetrabutoxy zirconium;
  • Tantalum alkoxides such as pentamethoxy tantalum, pentaethoxy tantalum, pentabutoxy tantalum;
  • Germanium alkoxides such as tetramethoxygermanium and tetraethoxygermanium;
  • Aluminum alkoxides such as triethoxyaluminum, tripropoxyaluminum and tributoxyaluminum;
  • Aminosilanes such as tetrakis (getylamino) silane
  • silane compounds such as butylmethylbis (methylethylketoximine) silane; [0043] 3,3,3-trifluoropropyldimethoxyhydroxysilane, 3,3,3-trifluoropropinolemethoxydihydroxysilane, Hydroxysilane such as noreethoxydihydroxysilane; and the like.
  • metal alkoxides such as silane alkoxide, germanium alkoxide, titanium alkoxide, zirconium alkoxide and tantalum alkoxide are preferable.
  • titanium alkoxide and tantalum alkoxide are more preferred, and tetrapropoxytitanium and pentaethoxytantalum are more preferred.
  • the metal compound having two or more hydrolyzable groups and Z or hydroxyl groups used in the present invention need not be a monomolecular compound represented by the compound represented by the formula (I).
  • the compound represented by formula (I) or the like may be a hydrolyzed polycondensate (completely hydrolyzed polycondensate or partially hydrolyzed polycondensate) obtained by the same method or the like.
  • the hydrolyzed condensate refers to the hydrolyzed condensate in a state before the metal oxide state.
  • Metal chelate compound having a total of two or more hydrolyzable groups and Z or hydroxyl groups is preferably a hydrolyzable group. It is not particularly limited as long as it has two or more functional groups and Z or a hydroxyl group in total, and is bonded to the metal chelate conjugate. Among them, a chelate conjugate of a hydrolysis product of a metal compound having a total of two or more hydrolyzable groups and Z or hydroxyl groups (completely hydrolyzed product or partially hydrolyzed product) is preferable.
  • Examples of the chelate compound used include j8-ketoesters such as methyl acetoacetate, ethyl acetoacetate, n-propyl acetoacetate, isopropyl acetoacetate, n-butyl acetoacetate, sec-butyl acetoacetate and t-butyl acetoacetate; acetyl; J8-diketo such as acetone, hexane 2,4 dione, heptane 2,4 dione, heptane 3,5 dione, octane 2,4 dione, nonane-1,2,4 dione, 5-methyl-hexane-1,2,4 dione And the like.
  • j8-ketoesters such as methyl acetoacetate, ethyl acetoacetate, n-propyl acetoacetate, isopropyl acetoacetate, n-butyl acetoacetate, sec-butyl ace
  • the metal chelate compound having a total of two or more hydrolyzable groups and Z or hydroxyl groups is, for example, a metal compound having a total of two or more hydrolyzable groups and Z or hydroxyl groups, and a predetermined amount of the chelate conjugate. Can be obtained by adding and stirring. The resulting metal cleave product can be isolated, but it is better to be directly subjected to the next hydrolysis and polycondensation reaction.
  • the metal organic acid salt used in the present invention is a salt obtained from a metal ion and an organic acid.
  • Metals include titanium, zirconium, aluminum, silicon, germanium, and aluminum. , Tin, tantalum, zinc, tungsten, lead and other group powers.
  • organic acid examples include carboxylic acids such as acetic acid, oxalic acid, tartaric acid, and benzoic acid; sulfur-containing organic acids such as sulfonic acid, sulfinic acid, and thiophenol; phenolic conjugates; Organic compounds exhibiting acidity such as compounds; aromatic sulfonamides;
  • the hydrolysis product used in the present invention is not more than 2 moles with respect to 1 mole of at least one selected from the group force that also has the ⁇ to (m) force (hereinafter, these are collectively referred to as “metal compounds or the like”). Is a product hydrolyzed using water.
  • the hydrolysis product may be a complete hydrolysis product or a partial hydrolysis product.
  • the photocatalytically active thin film of the present invention is prepared by adding 2 mol or less of water to 1 mol of the metal compound or the like and subjecting it to hydrolysis and polycondensation to form a solution containing a metal oxide precursor (hereinafter, referred to as a solution). , which is also referred to as a “composition for forming a photocatalytically active thin film”), is applied on a substrate, and the obtained coating film is heated at a temperature of less than 100 ° C. .
  • Examples of the water used for preparing the composition for forming a photocatalytically active thin film include general tap water, distilled water, and ion-exchanged water. Of these, the use of distilled water or ion-exchanged water is preferred, and the use of ion-exchanged water having an electric conductivity of 2 sZcm or less is particularly preferred.
  • the amount of water to be added is less than 2 in a molar ratio with respect to the total number of moles of the hydrolyzable groups in the metal compound or the like, and it is preferable to add water of 1Z2 or more and less than 2 in a divided manner. . If it is less than 1Z2, hydrolysis and polycondensation do not proceed uniformly, and the metal compound and the like remain unreacted, so that a homogeneous and dense film cannot be formed. If the number is 2 or more, in the course of hydrolysis and polycondensation, gelation or agglomeration of particles cannot form a uniform and dense film.
  • the organic solvent used for diluting water is one that has no reactivity with the metal compound and has a freezing point below the temperature at which the metal compound does not react with water and hydrolyze, that is, solidification. Those having a point of 0 ° C or less, particularly -10 ° C or less, are preferred.
  • Examples of the organic solvent used include methanol, ethanol, propanol, butanol, and pen. Tanole, hexanol, heptanol, octanol, nonanol, benzyl alcohol, methylcyclohexanol, ethanediol, propanediol, butanediol, pentanediol, hexylene glycol, octylene glycol, hexanetriol, 3, 5, Alcohols such as 5-trimethyl-11-hexanol; butyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, benzyl acetate, 3-methoxybutyl acetate, 2-acetate Esters such as butyl butyl acetate, 2-ethylhexy
  • alcohols such as butanol, pentanol, hexanol and trimethylhexanol; and ethyl acetate, propyl acetate and butyl acetate.
  • Esters such as pentane, hexane, xylene and the like;
  • the mixing ratio of water and the organic solvent is such that the amount of water is preferably 1 to 50 parts by weight, more preferably 1 to 30 parts by weight, and still more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the organic solvent. In the amount is there. If the proportion of water used exceeds 50 parts by weight, the resulting particles may be agglomerated.
  • 1,2-bis- ( 2-ethylethyl xyloxycarbol) 1 Use a surfactant such as sodium ethanesulfonate or polyoxyethylene (6) phenol ether, or stir uniformly or use ultrasonic treatment. Preferably, they are dispersed.
  • a solvent used for the solution of the metal compound or the like a solvent which does not coagulate at a low temperature and has a high solubility in water is preferable. Specifically, it is preferable to use a lower alcohol-based solvent, an ether-based solvent, or the like, in which the same organic solvents as those listed for diluting the water to be added can be used.
  • the organic solvent can be used alone or as a mixture of two or more.
  • the amount of the organic solvent used is preferably 10 to 5,000 parts by weight, more preferably 100 to 3,000 parts by weight, based on 100 parts by weight of the metal compound and the like.
  • the fine particles grow in a bonded state, making it difficult to control the particle size.
  • the content exceeds 5,000,000 parts by weight, the solution may be too dilute to produce fine particles.
  • the content of the metal compound in the solution containing the metal compound used in the present invention is not particularly limited, but is preferably in the range of 0.1 to 30% by weight in order to produce a dense thin film. Better.
  • the temperature at which the metal compound or the like is hydrolyzed and polycondensed is usually 100 ° C to + 200 ° C, preferably -80 ° C to + 150 ° C.
  • the temperature at which the metal compound or the like undergoes hydrolysis and polycondensation can be changed stepwise. For example, the temperature of a solution of a metal compound or the like is cooled to 80 ° C to -20 ° C, and water (or a mixture of water and an organic solvent) at 10 ° C to + 20 ° C is slowly added dropwise with stirring.
  • a method may be adopted in which the temperature of the reaction solution is gradually increased to the boiling point of the solvent in a stepwise manner to complete the hydrolysis-condensation reaction. it can. Further, the dropping of water (or a mixture of water and an organic solvent) can be divided into a plurality of times, and the dropping temperature of water (or a mixture of water and an organic solvent) can be set to different temperatures. Further, after hydrolyzing the metal compound and the like, the reaction solution is treated with a suitable base. May be used for neutralization.
  • the time for hydrolyzing and polycondensing a metal compound or the like is usually from several minutes to several tens of hours.
  • the composition for forming a photocatalytically active thin film obtained as described above is transparent, is a particulate matter having an average particle size in the range of 1 to 10 nm, and a monodisperse dispersoid is aggregated in an organic solvent. It can be dissolved or evenly dispersed. That is, the metal compound or the like is a dispersoid having a metal oxygen bond, which is stably dispersed in the organic solvent without aggregation.
  • Examples of the acid to be added include mineral acids such as hydrochloric acid, nitric acid, boric acid, and hydrofluoric acid, acetic acid, formic acid, oxalic acid, carbonic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid and the like.
  • Examples of the base include triethanolamine, triethylamine, 1,8 diazabicyclo [5.4.0] -7-decene, ammonia, dimethylformamide, phosphine and the like.
  • the dispersion stabilizer is an agent having an effect of stably dispersing a dispersoid in a dispersion medium, such as an anticoagulant such as a deflocculant, a protective colloid, or a surfactant.
  • polycarboxylic acids such as glycolic acid, gluconic acid, lactic acid, tartaric acid, citric acid, malic acid, and succinic acid; hydroxycarboxylic acids; phosphoric acids such as pyrophosphoric acid and tripolyphosphoric acid; acetylacetone, methyl acetoacetate; Ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, sec-butyl acetate, t-butyl acetate, 2,4 hexanedione, 2,4 heptanedione, 3,5 heptanedione, 2,4 octane Polydentate conjugates having strong chelating ability for metal atoms such as dione, 2,4-nonanedione, 5-methyl-hexanedione; Sulpers 3000, 9000, 17000, 20000, 240 00 ), Disperbyk— 161, one
  • Patent Document 5 JP-A-9-208438
  • Patent Document 6 JP-A-2000-53421
  • the solution obtained above can be used as it is as a composition for forming a photocatalytically active thin film, or it can be diluted with an appropriate solvent, or after distilling off the solvent, dissolving another solvent.
  • the photocatalytically active thin film can be formed by applying or spraying the obtained composition for forming a photocatalytically active thin film on a substrate, followed by drying.
  • the method for applying or spraying the composition for forming a photocatalytically active thin film on a substrate is not particularly limited as long as it can be applied smoothly.
  • a dipping method, a spin-coating method, a Meyaba method, a brushing method, etc. may be mentioned.
  • the dating method is preferred.
  • the temperature at which the coating film of the obtained composition for forming a photocatalytically active thin film is heated and dried is usually 300 ° C or less, preferably less than 100 ° C.
  • the temperature is preferably lower than the softening point of the plastic substrate used and lower than 100 ° C.
  • the heating time depends on the heating temperature, the type of the composition and the like, but is usually from several minutes to several tens of hours.
  • the photocatalytically active thin film of the present invention can be formed at a low temperature of less than 100 ° C, a plastic substrate can be suitably used as a substrate which is not restricted by the heat resistant temperature of the substrate to be used. Further, thermal deterioration of the substrate and the photocatalytically active thin film itself can be prevented.
  • a conventionally known photocatalyst layer having an anatase-type titanium oxide has poor adhesiveness to a plastic substrate and may deteriorate the substrate. Therefore, an adhesive is provided between the plastic substrate and the photocatalyst layer. Although it was necessary to provide an underlayer such as a layer, the photocatalytically active thin film of the present invention has good adhesion to a plastic substrate and is less likely to degrade the substrate. Therefore, a photocatalytically active thin film can be formed directly on the surface of a plastic substrate.
  • the thickness of the obtained photocatalytically active thin film is preferably 50 nm or less, more preferably 40 nm or less, and particularly preferably l to 20 nm.
  • the formed photocatalytically active thin film preferably contains an organic substance.
  • the organic substance is, for example, an alkoxide group when a metal alkoxide is used as the metal compound or the like.
  • the content ratio of carbon atoms in the formed photocatalytically active thin film is preferably 2 to 40% by weight.
  • Such a photocatalytically active thin film can exhibit photocatalytic activity with a small amount of irradiation light.
  • the content ratio of carbon atoms, titanium atoms, oxygen atoms, and the like contained in the photocatalytically active thin film can be determined by, for example, measuring with an X-ray photoelectron analyzer (ESCA).
  • ESA X-ray photoelectron analyzer
  • the photocatalytically active thin film of the present invention obtained as described above exhibits excellent photocatalytic activity when irradiated with light having a wavelength of 150 to 350 nm, preferably 250 to 310 nm.
  • the irradiation light source used is not particularly limited as long as it can emit light having a wavelength of 150 to 350 nm.
  • incandescent lamps such as halogen lamps; fluorescent lamps, germicidal lamps, black lights, chemical lamps and the like Low-pressure discharge lamps; high-pressure discharge lamps such as mercury lamps, metal halide lamps, and high-pressure sodium lamps; and the like.
  • the photocatalytically active thin film of the present invention exhibits photocatalytic activity by irradiation with light having a wavelength of 150 to 350 nm, and decomposes and Z or removes organic substances in contact with the thin film.
  • the partial force of the light irradiation changes from water repellency to hydrophilicity with a water contact angle of 20 ° or less.
  • the irradiation light amount required for the photocatalytically active thin film of the present invention to change to water repellency and hydrophilicity is 40 jZcm 2 or less, preferably 5 jZcm 2 or less, more preferably 0.1 to 5 jZcm 2 .
  • the photocatalytically active thin film of the present invention exhibits good photocatalytic activity with low wavelength light and with a small amount of irradiation light.
  • the photocatalytically active thin film of the present invention can suitably use a plastic substrate that is lightweight and easy to process, and can exhibit good photocatalytic activity with low wavelength light and with a small amount of irradiation light.
  • a photosensitive substrate When a thin film composed of an organometallic compound or the like is formed on the photocatalytically active thin film of the present invention, a photosensitive substrate can be obtained. By irradiating a predetermined portion of the photosensitive substrate with light and decomposing and Z- or removing the organometallic compound in the light-irradiated portion, it can be formed simply and in a short time by a conventional photolithography technique. Fine patterning similar to the performed pattern is possible.
  • the photocatalytically active thin film of the present invention is formed on a plastic substrate such as polyester.
  • A-1 Tetraisopropoxytitanium (manufactured by Nippon Soda Co., Ltd., solid content based on oxides: 28.2% by weight) was diluted with ethanol, and ethyl acetate acetate (manufactured by Wako Pure Chemical Industries, special grade) was added dropwise. After dripping deionized water diluted with ethanol, it was hydrolyzed as titanium oxide solids 1 wt 0/0 solution (A- 1) was prepared. The molar ratio of tetraisopropoxytitanium: acetoethyl acetate: ion-exchanged water in this solution was 1: 2: 1.
  • A—2 Tetraisopropoxytitanium (manufactured by Nippon Soda Co., Ltd., solid content of 28.2% by weight based on acid), diluted with ethanol, and acetyl acetone (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. After reacting at 80 ° C for 1 hour, the mixture was cooled to room temperature, ion-exchanged water diluted with ethanol was added dropwise and hydrolyzed to prepare a solution (A-2) having a solid content of 1% by weight in terms of titanium oxide. The molar ratio of tetraisopropoxytitanium: acetylacetone: ion-exchanged water in the solution was 1: 2: 4.
  • Ethyl acetate Z ethanol 50Z50 (Weight ratio) 1.72 g of pentaethoxytantalum (manufactured by Kojundo Chemical Laboratory Co., Ltd.) is dissolved in 47.7 g of a mixed solvent, and acetyl acetate (Wako Pure Chemical Industries, Ltd.) is dissolved at room temperature. 0.84 g was dropped. After reacting at room temperature for 1 hour, 9.74 g of ion-exchanged water diluted with 40 g of the above-mentioned ethyl acetate Z ethanol was added dropwise, hydrolyzed, and reacted at room temperature for 24 hours. 3) was prepared. Of this solution The molar ratio of pentaethoxy tantalum: acetylacetylacetone: ion-exchanged water is 1: 2.5: 128.
  • AH-1 (Comparative Example): A solution of titanium tetraisopropoxy titanium ⁇ manufactured by Nippon Soda Co., Ltd., solid content in terms of oxide: 28, 2% by weight> diluted with ethanol to obtain a 1% by weight solid content in terms of titanium oxide. (H-1) was prepared.
  • Polyester sheet made by Toray clay, trade name: Lumilar
  • each substrate was washed with ethanol and dried.
  • each of the photocatalytically active thin film forming solutions (A-1), (A-2), (A-3) and (AH-1) prepared above was applied to Mayer Par. And dried at 60 ° C for 10 minutes to obtain photocatalytically active thin films (C-1 to C-9, CH-1).
  • the particle size in the solution was measured with HPPS manufactured by Malvern Instruments Ltd.
  • the appearance of the thin film was observed by measuring the haze ratio and visually observing it.
  • Transparency was evaluated as “ ⁇ ” when the change in haze ratio was less than 0.5% and no film spots, and “X” when the change in haze rate was 0.5% or more and there was film spots.
  • the distribution of the elements in the thin film in the depth direction was measured using an XPS apparatus (Quntum2000, manufactured by Alpac Fine Earth).
  • the film was shaved at 0.25 minute intervals by lkV by argon sputtering, and the contents of carbon, oxygen and titanium atoms in the film were measured by an X-ray photoelectron analyzer (ESCA).
  • the content ratio (%) of carbon atoms was determined by the formula: concentration of carbon element Z (concentration of carbon element + concentration of oxygen element + concentration of titanium element) x 100.
  • the oxygen atom content ratio (%) was determined by the formula: concentration of oxygen element Z (concentration of carbon element + concentration of oxygen element + concentration of titanium element) x 100.
  • the content ratio (%) of titanium atoms was determined by the formula: concentration of titanium element Z (concentration of carbon element + concentration of oxygen element + concentration of titanium element) x 100.
  • UV1 germicidal lamp (GL-15, manufactured by Toshiba Corporation; ultraviolet light with a wavelength of 254 nm), irradiation amount 4 mWZc
  • UV2 Black light (Toshiba Corporation, FL15BLB; ultraviolet light with a wavelength of 365 nm), irradiation light amount 2 mW, cm
  • the photocatalytically active thin films (C1) to (C8) were each irradiated with ultraviolet rays using the lamps described above, and the change in surface wettability was evaluated by measuring the contact angle of water. Ultraviolet irradiation energy was calculated until the contact angle of water became 10 ° or less.
  • UV Table 1 summarizes the contact angle before irradiation, the UV irradiation lamp (UV light), and the amount of irradiation necessary for hydrophilization.
  • the obtained photocatalytically active thin film had good film appearance and adhesion, and the irradiation light amount required for hydrophilization was 1.27 j / cm 2 .
  • the contact angle before UV irradiation of 62.5 ° is 8.8 at irradiation time of 3 minutes.
  • the metal compounds in the solutions A-1 and A-2 were polymerized by hydrolytic condensation to form nanoparticles of 2.3 and 3.8 nm. Both solutions for forming the photocatalytically active thin film were transparent and contained agglomerated particles.
  • FIG. 1 shows the results of elemental analysis in the depth direction by XPS of the film obtained by irradiating the film of Example 2 with ultraviolet rays and hydrophilizing the film to a water contact angle of 10 ° or less.
  • the horizontal axis indicates the depth of surface force (nm)
  • the vertical axis indicates the atomic content ratio (%).
  • Cls indicates the content of carbon atoms
  • O Is indicates the content of oxygen atoms
  • Ti2p indicates the content of titanium atoms.
  • the belly contained about 10 to 40% of carbon, and the carbon element was inclined in the depth direction.
  • the carbon in the film remained unchanged even after it was irradiated with ultraviolet rays and became hydrophilic.
  • the extraordinarily large amount of carbon near the surface is considered to be due to organic contaminants attached before the start of measurement.
  • the power to be done was different. Only the surface layer appears to exhibit photocatalytic activity.
  • the photocatalytically active thin film of Example 1 was measured with an X-ray diffractometer.
  • Figure 2 shows the measured chart.
  • FIG. 2 shows that the photocatalytically active thin film of Example 1 was amorphous.
  • the photocatalytically active thin film of the present invention has the property of exhibiting excellent photocatalytic activity when irradiated with light having a low wavelength of 250 to 350 nm. Therefore, the photocatalytically active thin film of the present invention does not need to be exposed to light having a wavelength higher than 350 nm (visible light, etc.). There is no decrease in the adhesiveness between the film and the photocatalytically active thin film.
  • the photocatalytically active thin film of the present invention can be formed by a low-temperature heat treatment at a temperature lower than 100 ° C., it is not necessary to limit the substrate used to prevent damage to the substrate by the heat treatment to a heat-resistant substrate. Therefore, a lightweight and easy-to-process plastic substrate can be suitably used as the substrate. Further, since the photocatalytically active thin film of the present invention has good adhesiveness, it can be easily formed directly on a substrate such as plastic, and does not deteriorate for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、基体上に形成された光触媒活性薄膜であって、加水分解性基及び/又は水酸基を合計で2以上有する金属化合物、加水分解性基及び/又は水酸基を合計で2以上有する金属キレート化合物、金属有機酸塩、及びこれらの加水分解生成物からなる群から選ばれる少なくとも1種から形成されてなり、150~350nmの波長の光照射により光触媒活性を発揮することを特徴とする光触媒活性薄膜を提供する。

Description

明 細 書
光触媒活性薄膜
技術分野
[0001] 本発明は、基体上に形成された光触媒活性薄膜であって、 150〜350nmの波長 の光照射により光触媒活性を発揮することを特徴とする光触媒活性薄膜に関する。 本願は、 2004年 5月 21日に出願された特願 2004— 151639号に基づいて優先 権を主張し、その内容をここに援用する。
背景技術
[0002] 従来から、抗菌、防黴、防汚、防臭作用を発揮する、酸ィ匕チタン (TiO )に代表され
2 る光触媒が知られている。光触媒は、太陽光等を吸収して活性ィ匕し、酸化作用によ つて上記のような優れた作用を示す。
[0003] 通常、光触媒は基体に担持して用いられる。光触媒を基体に担持する方法として は、実用性が高いことから、光触媒を含有してなる薄膜 (光触媒活性薄膜)を基体上 に形成する方法が注目されて ヽる。光触媒活性薄膜を基体上に形成する方法として は、基体上に光触媒前駆体組成物を塗工し、 500°C前後で焼成する方法が一般的 である。例えば、金属アルコキシド又は金属キレート化合物を含有する光触媒前駆体 組成物の溶液を用いて形成する方法 (特許文献 1、 2)や、金属酸化物からなる光触 媒に金属アルコキシド又は金属キレートイ匕合物を無機ノ インダ一としてカ卩えたものを 用いて形成する方法 (特許文献 3)等が知られて ヽる。
特許文献 1:特開 2000— 144052号公報
特許文献 2:特開 2001— 254072号公報
特許文献 3 :特開 2003— 253157号公報
[0004] しかし、特許文献 1〜3の方法では、薄膜の形成のため基体に光触媒前駆体組成 物の溶液を塗工した後高温で焼成等する必要があり、使用できる基体等に制限があ る等の問題があった。また、上記文献に記載されている光触媒は、 350nmより長波 長側の光により光触媒活性を発揮するものであり、太陽光等の光照射により基体が 劣化するおそれがある。また、バインダーを介さずに直接基体表面に光触媒薄膜を 形成することは困難であった。
[0005] 一方、特許文献 4には、基体と、基体上に形成された Ti、 0、 Cを主成分とし、 C/ O比力 以下である光触媒膜とを具備する光触媒体が開示されている。また、この文 献には、得られる光触媒膜はアモルファス金属化合物からなり、比較的低温領域(1 00〜500°C)の加熱又は焼成で得られる旨が記載されて 、る。
特許文献 4 :特開 2002— 172333号公報
[0006] し力しながら、特許文献 4に記載される方法は、光触媒膜の形成温度は比較的低 温ではある力 基体の劣化を防止できるほどに十分に低温とはいえないものである。 また、この文献に記載されている光触媒膜は、 Ti、 0、 Cを主成分とし、光触媒活性を 示すアモルファス金属化合物力 なるとして 、るのみで、該金属化合物の構造等は 特定されていない。
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、かかる従来技術の実情に鑑みてなされたものであり、基体上に形成され た光触媒活性薄膜であって、容易に形成でき、 150〜350nmの波長の光照射によ り光触媒活性を発揮し、しカゝもプラスチック基体上に形成した場合に、 350nm以上の 長波長の光を照射した場合であっても、基体が劣化し難!ヽ光触媒活性薄膜を提供 することを課題とする。
課題を解決するための手段
[0008] 本発明者らは、上記課題を解決すべく鋭意検討した結果、加水分解性基及び Z又 は水酸基を合計で 2以上有する金属化合物、加水分解性基及び Z又は水酸基を合 計で 2以上有する金属キレート化合物、金属有機酸塩、及びこれらの加水分解生成 物からなる群カゝら選ばれる少なくとも一種を原料として形成されてなる光触媒活性薄 膜は、 150〜350nmの低波長の光照射により光触媒活性を発揮すること、この光触 媒活性薄膜は、基体上に形成する際、 100°C未満の温度で処理することにより形成 できること、プラスチック力もなる基体上にも直接形成できることを見出し、本発明を完 成するに至った。
[0009] すなわち、本発明は、以下の(1)〜(18)の光触媒活性薄膜を提供するものである (l)基体上に形成された光触媒活性薄膜であって、加水分解性基及び Z又は水 酸基を合計で 2以上有する金属化合物、加水分解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物、金属有機酸塩、並びにこれらの部分加水分解生 成物からなる群力も選ばれる少なくとも 1種力も形成されてなり、 150〜350nmの波 長の光照射により光触媒活性を発揮することを特徴とする光触媒活性薄膜。
[0010] (2)基体上に、加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合 物、加水分解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物、金 属有機酸塩、並びにこれらの加水分解生成物からなる群から選ばれる少なくとも 1種 を含有する光触媒活性薄膜形成用溶液を塗工し、得られた該溶液の塗膜を 100°C 未満の温度で加熱して形成されたものであることを特徴とする(1)の光触媒活性薄膜
[0011] (3)前記基体が、金属、セラミックス、ガラス及びプラスチック力 なる群力 選ばれ る少なくとも 1つの材質力もなることを特徴とする(1)又は (2)の光触媒活性薄膜。
[0012] (4)前記基体が、ポリイミド系榭脂、ポリエステル系榭脂、エポキシ系榭脂及びポリ エーテル系榭脂からなる群力 選ばれる少なくとも一種力もなるプラスチック基体であ ることを特徴とする(1)〜 (3) V、ずれかの光触媒活性薄膜。
[0013] (5)プラスチック基体上に、前記光触媒活性薄膜形成用溶液を塗工し、得られた該 溶液の塗膜を前記基体の軟化点未満、かつ 100°C未満の温度で加熱して形成され たものであることを特徴とする (4)の光触媒活性薄膜。
[0014] (6)前記部分加水分解生成物が、前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物、加水分解性基及び Z又は水酸基を合計で 2以上有する 金属キレート化合物、又は金属有機酸塩を、前記加水分解性基及び Z又は水酸基 を合計で 2以上有する金属化合物、加水分解性基及び Z又は水酸基を合計で 2以 上有する金属キレート化合物、又は金属有機酸塩 1モルに対して、 2モル以下の水を 用いて加水分解した生成物であることを特徴とする(1)〜(5) V、ずれかの光触媒活 性薄膜。
(7)前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物が、 金属アルコキシドであることを特徴とする(1)〜(6) V、ずれかの光触媒活性薄膜。
(8)前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属キレートイ匕合 物が、前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物の加 水分解生成物のキレートイ匕合物であることを特徴とする(1)〜(7) V、ずれかの光触媒 活性薄膜。
[0015] (9)前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物、加 水分解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物、並びに 金属有機酸塩の金属が、ケィ素、ゲルマニウム、スズ、鉛、チタン、ジルコニウム、ァ ルミ-ゥム、インジウム、タンタル、タングステン及び亜鉛力もなる群力 選ばれる一種 以上であることを特徴とする( 1)〜 (8) 、ずれかの光触媒活性薄膜。
(10)前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物、加 水分解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物、金属有 機酸塩、並びにこれらの加水分解生成物力 なる群力 選ばれる少なくとも一種から なる光触媒活性薄膜形成用溶液中の分散媒の平均粒径が、 lOnm以下であることを 特徴とする (2)〜 (9) ヽずれかの光触媒活性薄膜。
(11) 150〜350nmの波長の光が照射されると、該薄膜に接触した有機物質が分 解及び Z又は除去されることを特徴とする(1)〜(10) 、ずれかの光触媒活性薄膜。
[0016] (12) 150〜350nmの波長の光が照射されると、光照射された部分力 撥水性から 、水の接触角が 20° 以下の親水性に変化することを特徴とする(1)〜(11)いずれ かの光触媒活性薄膜。
(13) 250〜310nmの波長の光照射により光触媒活性を発揮することを特徴とする ( 1)〜( 1 ヽずれかの光触媒活性薄膜。
(14)照射光量力 OjZcm2以下の光照射により光触媒活性を発揮することを特徴 とする( 12)又は( 13)の光触媒活性薄膜。
[0017] (15)照射光量が 5jZcm2以下の光照射により光触媒活性を発揮することを特徴と する(12)〜(14) ヽずれかの光触媒活性薄膜。
(16)有機物を含有する薄膜であることを特徴とする(1)〜(15) ヽずれかの光触媒 活性薄膜。 (17)炭素元素を 2〜40重量%含有する薄膜であることを特徴とする(16)の光触 媒活性薄膜。
(18)膜厚が 50nm以下の薄膜であることを特徴とする(1)〜(17)いずれかの光触 媒活性薄膜。
発明の効果
[0018] 本発明の光触媒活性薄膜は、 250〜350nmの低波長の光照射で優れた光触媒 活性を示すという従来にない特性を有する。従って、本発明の光触媒活性薄膜は、 3 50nmより高波長の光(可視光等)に曝す必要がなぐまた、曝された場合であっても 、基体 (特にプラスチック基体)が劣化したり、基体と光触媒活性薄膜との接着性が低 下することがない。
本発明の光触媒活性薄膜は、 100°C未満の低温加熱処理により形成することがで きるので、加熱処理により基体を傷めることがなぐ用いる基体を、耐熱性のものに限 定する必要がない。従って、基体として、軽量で加工が容易なプラスチック基体を好 適に用いることができる。
また、本発明の光触媒活性薄膜は良好な接着性を有するため、プラスチック等の 基体上に容易に直接形成することができ、かつ長期間劣化することがない。
図面の簡単な説明
[0019] [図 1]実施例 1における光触媒活性薄膜 (C—1)の ESCAの深さ方向の元素分布を 示す図である。
[図 2]実施例 1における光触媒活性薄膜 (C 1)を X線回折装置で測定したチャート 図である。
発明を実施するための最良の形態
[0020] 以下、本発明の光触媒活性薄膜を詳細に説明する。
本発明の光触媒活性薄膜は、基体上に形成された光触媒活性薄膜であって、加 水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物、加水分解性基及 び Z又は水酸基を合計で 2以上有する金属キレート化合物、金属有機酸塩、並びに これらの加水分解生成物力 なる群力 選ばれる少なくとも一種力 形成されてなり、 250〜350nmの波長の光照射により光触媒活性を発揮することを特徴とする。 [0021] 本発明に用いる基体としては、本発明の光触媒活性薄膜を担持できるものであれ ば、特に制限されず、透明なものであっても、半透明なものであっても、不透明なもの であってもよい。基体を構成する材料としては、特に制限されず、例えば、金属、セラ ミックス、ガラス及びプラスチック力 なる群力 選ばれる少なくとも 1つの材質力 なる ものが挙げられる。なかでも、ソーダ一ライムガラス、ホウケィ酸ガラス、鉛ケィ酸ガラ ス等のガラス力 なるガラス基体;プラスチック力 なるプラスチック基体が好ましく、プ ラスチック基体がより好まし 、。
[0022] プラスチック基体を構成する榭脂としては、例えば、ポリアミドイミド、ポリエーテルィ ミド、ポリイミド、ポリアミノビスマレインイミド等のポリイミド系榭脂;ポリエチレンテレフタ レート、ポリエチレン 2, 6 ナフタレート等のポリエステル系榭脂;フエノール系ェポキ シ榭脂、アルコール系エポキシ榭脂、グリシジルエーテル型エポキシ榭脂、グリシジ ルァミン型エポキシ榭脂等のエポキシ系榭脂;ポリエーテルエーテルケトン、ポリエー テルケトン、ポリエーテル-トリル、ポリエーテルスルホン等のポリエーテル系榭脂;セ ノレローストリアセテート、セノレロースジアセテート、ニトロセノレロース等のセノレロース系 榭脂;ポリスチレン、シンジオタクチックポリスチレン等のポリスチレン系榭脂;エチレン 、プロピレン、ブテン等のォレフィンの単独重合体又は共重合体等のポリオレフイン系 榭脂;ノルボルネン系榭脂等のシクロォレフイン系榭脂;ナイロン 6、ナイロン 12、共重 合ナイロン等のポリアミド系榭脂;エチレン ポリビュルアルコール共重合体等のポリ ビュルアルコール系榭脂;エチレン 四フッ化工チレン共重合体、ポリ三フッ化塩化 エチレン、四フッ化工チレン パーフルォロアルキルビュルエーテル共重合体、ポリ フッ化ビュル、パーフルォロエチレン一パーフルォロプロピレン一パーフルォロビニ ルエーテル共重合体等のフッ素系榭脂;ポリカーボネート、ポリビニルプチラート榭脂 、ポリアリレート榭脂等が挙げられる。これらの榭脂は一種単独で、あるいは二種以上 を組み合わせて用いることができる。
[0023] また、上記に挙げた榭脂以外にも、ラジカル反応性不飽和化合物を有するアクリル 系化合物よりなる榭脂組成物;上記アクリル系化合物とチオール基を有するメルカプ ト化合物よりなる榭脂組成物;エポキシアタリレート、ウレタンアタリレート、ポリエステ ルアタリレート、ポリエーテルアタリレート等のオリゴマーを多官能アタリレートモノマー に溶解せしめた榭脂組成物;及びこれらの混合物;等を基体材料として用いることが できる。
[0024] さらに、これらの榭脂の 1又は 2種以上をラミネート、コーティング等の手段によって 積層させたものを基体として用いることができる。
これらの中でも、本発明においては、ポリイミド系榭脂、ポリエステル系榭脂、ェポキ シ系榭脂及びポリエーテル系榭脂からなる群力も選ばれる少なくとも一種力もなるプ ラスチック基体が特に好まし 、。
[0025] これらの基体には、いわゆる寸度安定性を向上する目的で、ポリ塩ィ匕ビユリデン系 ポリマーを含む防水層や、ガスバリアーの目的で、有機及び Z又は無機化合物の薄 膜等を設けることができる。有機化合物の例としては、ポリビニルアルコール、ポリエ チレン ビュルアルコール共重合体等が挙げられる。無機化合物の例としては、シリ 力、アルミナ、タルク、バーミキユライト、カオリナイト、雲母、合成雲母等が挙げられる また、本発明に用いる基体中には、その他諸機能のため各種有機添加物及び Z 又は無機添加物が加えられて 、てもよ 、。
[0026] 基体の大きさや形には特に制限されず、平板、立体物、フィルム等いずれも使用す ることができるが、フィルム状のものが好ましい。また、塗装した物品も基体として用い ることがでさる。
[0027] 前記基体としてプラスチック基体を用いる場合、プラスチック基体は、フィルム状で あるのが好ましい。また、フィルム状の基体としては、未延伸フィルム力 なるものであ つても、延伸フィルムからなるものであってもよい。
[0028] フィルム状のプラスチック基体は、従来公知の方法により製造することができる。例 えば、材料となる榭脂を押し出し機により溶融し、環状ダイや Tダイにより押し出して 急冷することにより、実質的に無定形で配向していない未延伸の基体を製造すること ができる。
[0029] また、未延伸の基体を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸 延伸、チューブラー式同時二軸延伸等の公知の方法により、基体の流れ (縦軸)方 向、又は基体の流れ方向と直角(横軸)方向に延伸することにより延伸基体を製造す ることができる。この場合の延伸倍率は、基体の原料となる樹脂に合わせて適宜選択 することできる力 縦軸方向及び横軸方向にそれぞれ 2〜10倍が好ましい。
[0030] フィルム状のプラスチック基体の厚みは、特に制限されるものではないが、通常 1〜
1000 μ m、好ましくは 3〜500 μ mである。
[0031] 本発明の光触媒活性薄膜は、前述した基体上に形成されてなるものであって、 (i) 加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物、(ii)加水分解 性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物、 (iii)金属有機酸 塩、並びに (iv)前記 (i)〜 (iii)の加水分解生成物からなる群から選ばれる少なくとも 一種から形成されてなる。
本発明においては、これらを一種単独で、あるいは二種以上を組み合わせて用い ることがでさる。
[0032] (i)加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物
本発明に用いる加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合 物は、加水分解性基及び Z又は水酸基を合計で 2以上有して 、る金属化合物であ れば、特に制限されない。ここで、加水分解性基とは、水と接触して加水分解する官 能基、又は水存在下で金属原子と酸素原子を介して結合形成し得る官能基のことで 、具体的には、ハロゲン原子、アミノ基、アルコキシ基、エステル基、カルボキシ基、ホ スホリル基、イソシアナ一ト基、シァノ基、エポキシ基等である。
加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物としては、式 (I I)で表される化合物を好ましく例示することができる。
[0033] [化 1]
Figure imgf000009_0001
[0034] 上記式 (I)中、 Mは金属原子を表し、好ましくは周期律表第 13族〜第 15族の金属 原子である。より具体的には、ケィ素、ゲルマニウム、スズ、鉛、チタン、ジルコニウム、 アルミニウム、インジウム、タンタル、タングステン及び亜鉛力 なる群力 選ばれる少 なくとも一種を例示することができる。これらの中でも、チタン、タンタル力もなる群から 選ばれる少なくとも一種がより好ましい。
[0035] 前記 Rは、水素原子、又は金属原子と酸素原子を介して結合を形成し得る加水分 解性基を有して!/ヽてもよ!ヽ有機基を表す。
有機基としては、アルキル基、ァルケ-ル基、芳香族基等が挙げられる。 前記 Rの炭素数は特に制限されないが、通常 1〜20、好ましくは 1〜12である。
[0036] 前記 Rの具体例としては、メチル基、ェチル基、プロピル基等のアルキル基;クロロメ チル基、クロ口ェチル基、クロ口プロピル基、ブロモプロピル基、ブロモォクチル基、ト リフルォロプロピル基等のハロゲン化アルキル基;グリシドキシプロピル基、エポキシ シクロへキシルェチル基等のエポキシアルキル基;ァミノプロピル基、アミノブチル基 等のアミノアルキル基;ビュル基、ァリル基等のァルケ-ル基;アクリルォキシプロピル 基、メタクリルォキシプロピル基等の (メタ)アクリルォキシアルキル基;ベンジル基等 のァラルキル基;フエニル基、ナフチル基等の芳香族基;等が挙げられる。
[0037] Xは、 Mに結合した加水分解性基又は水酸基を表す。具体的には、メトキシ基、ェ トキシ基、プロポキシ基、ブトキシ基、ペンチルォキシ基等の炭素数 1〜12のアルコ キシ基;ヒドロキシィミノ基、ヒドロキシァミノ基、エノキシ基、アミノ基、力ルバモイル基 等の窒素原子を含有する基;塩素原子、臭素原子等のハロゲン原子;水酸基;等を ί列示することができる。
[0038] a及び bは、それぞれ独立して、 0から m (mは金属原子の原子価を表す。 )の整数を 表す。ただし、 a+b=mである。
[0039] 前記式 (I)で表される化合物は、分子内に加水分解性基及び Z又は水酸基を合計 で 2以上有する化合物である。具体的には、前記式 (I)において、 bが 2以上の化合 物; bが 1であって、加水分解性基を有する Rが 1以上である化合物; bが 0であって、 加水分解性基を有する Rが 2以上である化合物;を例示することができる。
[0040] 前記式 (I)で表される化合物の具体例としては、メチルトリメトキシシラン、メチルトリ エトキシシラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、プロピルトリメトキ シシラン、プロピノレトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ プロポキシシラン、 j8 —(3, 4—エポキシシクロへキシノレ)ェチノレトリメトキシシラン、(3 シラン、ベンジルトリエトキシシラン、ァリルトリエトキシシラン、ビニルメチルジァセトキ シシラン、 3—メタクリロキシプロピルトリメトキシシラン、 3—メタクリロキシプロピルトリメ トキシシラン、 3—アタリロキシプロピルトリメトキシシラン、 2—クロ口ェチルトリエトキシ シラン、 4—アミノブチルトリエトキシシラン、 3—ァミノプロピルトリエトキシシラン、 3— ァミノプロピルトリメトキシシラン等のシランアルコキシド;
[0041] テトラプロポキシチタン、テトラブトキシチタン等のチタンアルコキシド;
テトラプロポキシジルコニウム、テトラブトキシジルコニウム等のジルコニウムアルコキ シド;
ペンタメトキシタンタル、ペンタエトキシタンタル、ペンタブトキシタンタル等のタンタ ルアルコキシド;
テトラメトキシゲルマニウム、テトラエトキシゲルマニウム等のゲルマニウムアルコキシ ド、;
トリエトキシアルミニウム、トリプロポキシアルミニウム、トリブトキシアルミニウム等のァ ルミ-ゥムアルコキシド;
[0042] テトラクロロシラン、テトラブロモシラン、ジメチルジクロロシラン、ベンジルトリクロロシ ラン、 t—ブチルフエニルジクロロシラン、 3—クロ口プロピルトリクロロシラン、 8—ブロ モォクチルトリクロロシラン、 3—ブロモプロピルトリクロロシラン、(3, 3, 3—トリフルォ 口プロピル)ジクロロシラン、 (3, 3, 3—トリフルォロプロピル)トリクロロシラン、クロロメ チルトリクロロシラン、ァリルトリクロロシラン、 3—アタリロキシプロピルトリクロロシラン等 のハロゲノシラン;
テトラキス(ジェチルァミノ)シラン等のアミノシラン;
ビュルメチルビス (メチルェチルケトキシミン)シラン等の他のシラン化合物; [0043] 3, 3, 3—トリフルォロプロピルジメトキシヒドロキシシラン、 3, 3, 3—トリフルォロプロ ピノレメトキシジヒドロキシシラン、才クチノレエトキシジヒドロキシシラン等のヒドロキシシラ ン;等が挙げられる。
[0044] これらの中でも、シランアルコキシド、ゲルマニウムアルコキシド、チタンアルコキシド 、ジルコニウムアルコキシド及びタンタルアルコキシド等の金属アルコキシドが好ましく 、チタンアルコキシド、タンタルアルコキシドがより好ましぐテトラプロポキシチタン、ぺ ンタエトキシタンタルがさらに好ましい。
[0045] 本発明に用いる加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合 物は、前記式 (I)で表される化合物に代表される単分子化合物である必要はなぐ例 えば、式 (I)等で表される化合物を同様の方法等を用いて得られた加水分解縮重合 物(完全加水分解縮重合物あるいは部分加水分解縮重合物)であっても構わな ヽ。 この場合、加水分解縮重合物とは、金属酸化物状態になる前の状態の加水分解縮 合物をいう。
[0046] (ii)加水分解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物 本発明に用いる加水分解性基及び Z又は水酸基を合計で 2以上有する金属キレ ート化合物は、加水分解性基及び Z又は水酸基を合計で 2以上有し、かつ、金属キ レートイ匕合物が結合してなるものであれば特に制限されない。なかでも、加水分解性 基及び Z又は水酸基を合計で 2以上有する金属化合物の加水分解生成物 (完全加 水分解生成物あるいは部分加水分解生成物)のキレートイ匕合物が好まし 、。
[0047] 用いるキレート化合物としては、ァセト酢酸メチル、ァセト酢酸ェチル、ァセト酢酸 n プロピル、ァセト酢酸イソプロピル、ァセト酢酸 n—ブチル、ァセト酢酸 sec ブチル 、ァセト酢酸 t ブチル等の j8—ケトエステル類;ァセチルアセトン、へキサン 2, 4 ージオン、ヘプタン 2, 4 ジオン、ヘプタン 3, 5 ジオン、オクタン 2, 4 ジ オン、ノナン一 2, 4 ジオン、 5—メチルーへキサン一 2, 4 ジオン等の j8—ジケト ン類;等が挙げられる。
[0048] 加水分解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物は、例 えば、加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物に、所定 量のキレートイ匕合物を添加し攪拌することにより得ることができる。得られる金属キレ 一トイ匕合物は単離することもできるが、そのまま次の加水分解及び縮重合反応に供 することちでさる。
[0049] (iii)金属有機酸塩
本発明に用いる金属有機酸塩は、金属イオンと有機酸カゝら得られる塩である。 金属としては、チタン、ジルコニウム、アルミニウム、ケィ素、ゲルマニウム、インジゥ ム、スズ、タンタル、亜鉛、タングステン、鉛力もなる群力も選ばれる一種以上が挙げ られる。
[0050] 有機酸としては、酢酸、シユウ酸、酒石酸、安息香酸等のカルボン酸類;スルフォン 酸、スルフィン酸、チォフエノール等の含硫黄有機酸;フエノールイ匕合物;エノールイ匕 合物;ォキシム化合物;イミド化合物;芳香族スルフォンアミド;等の酸性を呈する有機 化合物が挙げられる。
[0051] (iv)前記 (i)〜(m)の加水分解生成物
本発明に用いる加水分解生成物は、前記 ω〜 (m)力もなる群力 選ばれる少なく とも一種 (以下、これらをまとめて「金属化合物等」という。)の 1モルに対して、 2モル 以下の水を用いて加水分解した生成物である。この場合、加水分解生成物は完全加 水分解生成物であっても、部分加水分解生成物であってもよ 、。
[0052] 本発明の光触媒活性薄膜は、前記金属化合物等 1モルに対して、 2モル以下の水 を添加して加水分解及び縮重合することにより、金属酸化物前駆体を含む溶液 (以 下、「光触媒活性薄膜形成用組成物」ともいう。)を調製し、このものを基体上に塗工 し、得られた塗膜を 100°C未満の温度で加熱することにより形成することができる。
[0053] 前記光触媒活性薄膜形成用組成物の調製に用いる水としては、一般水道水、蒸 溜水、イオン交換水等が挙げられる。これらのうち、蒸溜水又はイオン交換水の使用 が好ましぐ電気伝導度が 2 sZcm以下のイオン交換水の使用が特に好ましい。
[0054] 水の添加量は、前記金属化合物等中の加水分解性基の総モル数に対して、モル 比で 2未満であり、 1Z2以上 2未満の水を分割して添加するのが好ましい。 1Z2未 満では、加水分解及び縮重合が均一に進行せず、金属化合物等が未反応のまま残 り、均質で稠密な膜を形成できない。また、 2以上では、加水分解及び縮重合過程に おいて、ゲル化又は粒子が凝集して、均質で稠密な膜を形成することができない。
[0055] また、水は有機溶媒により希釈したものを添加するのが好ましい。水の希釈に用い る有機溶媒としては、金属化合物との反応性を有しないものであって、かつ、金属化 合物が水と反応して加水分解しない温度以下の凝固点を有するもの、すなわち凝固 点が 0°C以下、特に— 10°C以下のものが好ましい。
[0056] 用いる有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ペン タノ一ノレ、へキサノール、ヘプタノール、ォクタノール、ノナノール、ベンジルアルコー ル、メチルシクロへキサノール、エタンジオール、プロパンジオール、ブタンジオール 、ペンタンジオール、へキシレングリコール、オタチレングリコール、へキサントリオ一 ル、 3, 5, 5—トリメチルー 1一へキサノール等のアルコール類;ギ酸ブチル、ギ酸ぺ ンチル、酢酸メチル、酢酸ェチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸 へキシル、酢酸ベンジル、 3—メトキシブチルアセテート、 2—ェチルブチルァセテ一 ト、 2—ェチルへキシルアセテート、プロピオン酸メチル、プロピオン酸ェチル、プロピ オン酸ブチル、プロピオン酸ペンチル等のエステル類;ジメチルケトン、メチルェチル ケトン、ペンタノン、へキサノン、メチルイソブチルケトン、ヘプタノン、ジイソプチルケト ン等のケトン類;ァセトニトリル等の-トリル類;ジェチルエーテル、ジプロピルエーテ ル、ジイソプロピルエーテル、ジブチルエーテル、ジへキシルエーテル、ァニソール、 テトラヒドロフラン、テトラヒドロピラン、ジメトキシェタン、ジエトキシェタン、ジブトキシェ タン、ジエチレングリコーノレジメチノレエ一テル、ジエチレングリコールジェチノレエーテ ル、ジエチレングリコールジブチルエーテル等のエーテル類;メチラール等のァセタ ール類;ペンタン、へキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン等の脂肪 族炭化水素類;トルエン、キシレン、ェチルベンゼン、タメン、ミシチレン、テトラリン、 ブチルベンゼン、シメン、ジェチルベンゼン、ペンチルベンゼン、ジペンチルベンゼ ン等の芳香族炭化水素類;シクロペンタン、シクロへキサン、メチルシクロへキサン、 ェチルシクロへキサン、デカリン等の脂環式炭化水素類;ジクロロメタン、クロ口ホルム 、四塩化炭素、ジクロロエタン、トリクロロェタン、クロ口ベンゼン、ジクロロベンゼン、ブ ロモベンゼン等のハロゲンィ匕炭化水素類;等が挙げられる。これらの有機溶媒は一種 単独で、あるいは二種以上組み合わせて使用することができる。
[0057] これらのうち、アルコール類、エステル類及び炭化水素類が好ましぐ特に、ブタノ ール、ペンタノール、へキサノール、トリメチルへキサノール等のアルコール類;酢酸 ェチル、酢酸プロピル、酢酸ブチル等のエステル類;ペンタン、へキサン、キシレン等 の炭化水素類;が好ましい。
[0058] 水と有機溶媒の混合割合は、有機溶媒 100重量部に対し、水の量が、好ましくは 1 〜50重量部、より好ましくは 1〜30重量部、さらに好ましくは 1〜15重量部となる量で ある。水の使用割合が 50重量部を超えると、生成する粒子の凝集が激しくなることが ある。
[0059] なお、水と有機溶媒とが均一に溶解混合する場合には、そのまま使用することがで きるが、水と有機溶媒とが均一に混合しない場合には、 1, 2—ビス—(2—ェチルへ キシルォキシカルボ-ル) 1 エタンスルホン酸ナトリウム、ポリオキシエチレン(6) ノ -ルフヱ-ルエーテル等の界面活性剤を使用したり、撹拌処理、超音波処理等の 方法で均一に分散させるのが好ましい。
[0060] 前記金属化合物等の溶液に用いる溶媒としては、水の溶解度が大きぐ低温で凝 固しないものが好ましい。具体的には、前記添加する水を希釈するのに使用できるも のとして列記したものと同様の有機溶媒が使用できる、低級アルコール系溶媒、エー テル系溶媒等の使用が好ましい。また、有機溶媒は一種単独で、あるいは二種以上 を混合して用いることができる。
[0061] 有機溶媒の使用量は、前記金属化合物等 100重量部に対し、好ましくは 10〜5, 0 00重量部、さらに好ましくは 100〜3, 000重量部であり、 10重量部未満では生成す る微粒子が結合した状態で成長し、粒径制御が困難になる場合があり、一方、 5, 00 0重量部を超えると溶液が希薄すぎて、微粒子の生成が困難な場合がある。
[0062] 本発明に用いる金属化合物等を含有する溶液中の金属化合物の含有量は、特に 制限はないが、緻密な薄膜を製造するためには、 0. 1〜30重量%の範囲が好まし い。
[0063] 金属化合物等を加水分解及び縮重合する温度は、通常 100°C〜 + 200°C、好 ましくは— 80°C〜 + 150°Cである。この場合、金属化合物等を加水分解及び縮重合 する温度を段階的に変化させることもできる。例えば、金属化合物等の溶液温度を 80°C〜― 20°Cに冷却しておき、攪拌下、 10°C〜 + 20°Cの水(又は水と有機溶媒 の混合物)をゆっくりと滴下し、水 (又は水と有機溶媒の混合物)の滴下終了後、段階 的に反応液の温度を溶媒の沸点まで徐々に昇温させて、加水分解 '縮合反応を完 結させる方法を採用することができる。また、水 (又は水と有機溶媒の混合物)の滴下 を複数回に分割し、水 (又は水と有機溶媒の混合物)の滴下温度を異なる温度に設 定することもできる。さらに、金属化合物等を加水分解した後、反応液を適当な塩基 で中和してもよい。
金属化合物等を加水分解及び縮重合する時間は、通常、数分間から数十時間で ある。
[0064] 以上のようにして得られる光触媒活性薄膜形成用組成物は透明であり、平均粒径 1 〜10nmの範囲の粒子状物であって、単分散の分散質が有機溶媒中において凝集 することなぐ溶解若しくは均一に分散したものである。すなわち、金属化合物等は、 有機溶媒中、凝集することなく安定に分散してなる、金属 酸素結合を有する分散 質となっている。
[0065] なお、有機溶媒中に分散させる際には、酸、塩基及び Z又は分散安定化剤を添カロ することちでさる。
[0066] 添加する酸としては、例えば、塩酸、硝酸、ホウ酸、ホウフッ化水素酸等の鉱酸、酢 酸、ギ酸、シユウ酸、炭酸、トリフルォロ酢酸、 p—トルエンスルホン酸、メタンスルホン 酸等の有機酸等;ジフエ-ルョードニゥムへキサフルォロホスフェート、トリフエ-ルホ スホ -ゥムへキサフルォロホスフェート等の光照射によって酸を発生する光酸発生剤 ;が挙げられる。
塩基としては、例えば、トリエタノールァミン、トリェチルァミン、 1, 8 ジァザビシクロ [5. 4. 0]— 7 ゥンデセン、アンモニア、ジメチルホルムアミド、ホスフィン等が挙げ られる。
[0067] 分散安定化剤は、分散質を分散媒中に安定に分散させる効力を有する、解膠剤、 保護コロイド、界面活性剤等の凝結防止剤等の剤をいう。例えば、グリコール酸、グ ルコン酸、乳酸、酒石酸、クェン酸、リンゴ酸、コハク酸等の多価カルボン酸;ヒドロキ シカルボン酸;ピロ燐酸、トリポリ燐酸等の燐酸;ァセチルアセトン、ァセト酢酸メチル、 ァセト酢酸ェチル、ァセト酢酸 n—プロピル、ァセト酢酸イソプロピル、ァセト酢酸 n— ブチル、ァセト酢酸 sec ブチル、ァセト酢酸 tーブチル、 2, 4 へキサンージオン、 2, 4 ヘプタンージオン、 3, 5 ヘプタンージオン、 2, 4 オクタンージオン、 2, 4 ーノナンージオン、 5—メチルーへキサンジオン等の金属原子に対して強いキレート 能力を有する多座配位子ィ匕合物;スルパース 3000、 9000、 17000、 20000、 240 00 (以上、ゼネカ社製)、 Disperbyk— 161、 一 162、 一 163、 一 164 (以上、ビックケ ミー社製)等の脂肪族ァミン系、ハイドロステアリン酸系又はポリエステルァミン;ジメチ ルポリシロキサン'メチル(ポリシロキシアルキレン)シロキサン共重合体、トリメチルシ ロキシケィ酸、カルボキシ変性シリコーンオイル、ァミン変性シリコーン等 (特許文献 5
、特許文献 6等)のシリコーン化合物;等が挙げられる。
特許文献 5:特開平 9 - 208438号公報
特許文献 6:特開平 2000— 53421号公報
[0068] 本発明にお ヽては、上記で得られた溶液をそのまま光触媒活性薄膜形成用組成 物として用いることもできるし、適当な溶媒で希釈し、あるいは溶媒を留去した後別の 溶媒に再溶解させたものを光触媒活性薄膜形成用組成物として用いることもできる。
[0069] 光触媒活性薄膜は、得られた光触媒活性薄膜形成用組成物を基体上に塗布又は 吹き付け、乾燥すること〖こより形成することができる。
[0070] 光触媒活性薄膜形成用組成物を基体上に塗布又は吹き付ける方法としては、平滑 に塗布できる方法であれば特に制限はされない。例えば、デイツビング法、スピンコ ート法、メイャバ一法、はけ塗り法等が挙げられ、なかでも、デイツビング法が好ましい
[0071] 得られた光触媒活性薄膜形成用組成物の塗膜を加熱 ·乾燥する温度は、通常 300 °C以下、好ましくは 100°C未満である。基体としてプラスチック基体を用いる場合には 、用いるプラスチック基体の軟ィ匕点未満、かつ 100°C未満の温度が好ましい。
加熱する時間は、加熱温度、組成物の種類等にもよるが、通常数分から数十時間 である。
[0072] 本発明の光触媒活性薄膜は 100°C未満の低温で形成することができるものである ため、用いる基体の耐熱温度による制約がなぐ基体としてプラスチック基体を好適 に用いることができる。また、基体及び光触媒活性薄膜自体の熱劣化を防止すること ができる。
[0073] 従来公知のアナターゼ型酸ィ匕チタン力 なる光触媒の層は、プラスチック基体との 接着性が乏しぐまた基体を劣化させることがあるため、プラスチック基体と光触媒の 層との間に接着剤層等の下地層を設ける必要があつたが、本発明の光触媒活性薄 膜は、プラスチックからなる基体と良好な接着性を有し、基体を劣化させることが少な いので、プラスチック基体の表面に直接に光触媒活性薄膜を形成することができる。
[0074] 得られる光触媒活性薄膜の厚みは、好ましくは 50nm以下、より好ましくは 40nm以 下、特に好ましくは l〜20nmである。
[0075] 形成される光触媒活性薄膜は、有機物を含有するものであるのが好ま Uヽ。有機物 としては、例えば、前記金属化合物等として金属アルコキシドを使用する場合であれ ば、アルコキシド基である。
[0076] また、形成される光触媒活性薄膜の炭素原子の含有比率は、 2〜40重量%である のが好ましい。このような光触媒活性薄膜は、少ない照射光量で、光触媒活性を発 揮することができる。
光触媒活性薄膜に含まれる炭素原子、チタン原子、酸素原子等の含有比率は、例 えば、 X線光電子分析装置 (ESCA)により測定し、求めることができる。
[0077] 以上のようにして得られる本発明の光触媒活性薄膜は、 150〜350nmの波長の光 、好ましくは 250〜310nmの波長の光の照射により、優れた光触媒活性を発揮する
[0078] 用いる照射光源としては、 150〜350nmの波長の光を照射できるものであれば特 に制約はなぐ例えば、ハロゲン電球等の白熱電球;蛍光ランプ、殺菌灯、ブラックラ イト、ケミカルランプ等の低圧放電ランプ;水銀ランプ、メタルハライドランプ、高圧ナト リウムランプ等の高圧放電ランプ;等が挙げられる。
[0079] 本発明の光触媒活性薄膜は、 150〜350nmの波長の光照射により光触媒活性を 発揮し、該薄膜に接触した有機物質を分解及び Z又は除去する。
[0080] また、 150〜350nmの波長の光が照射されると、光照射された部分力 撥水性か ら、水の接触角が 20° 以下の親水性に変化する。
本発明の光触媒活性薄膜が撥水性力 親水性に変化するために必要な照射光量 は、 40jZcm2以下、好ましくは 5jZcm2以下、より好ましくは 0. l〜5jZcm2である。 本発明の光触媒活性薄膜は、低波長の光で、かつ少ない照射光量で良好な光触 媒活性を発揮する。
[0081] 本発明の光触媒活性薄膜は、軽量で加工が容易なプラスチック基体を好適に用い ることができ、低波長の光で、かつ少ない照射光量で良好な光触媒活性を発揮でき る。
本発明の光触媒活性薄膜上に有機金属化合物等からなる薄膜を形成すると光感 応性基体を得ることができる。この光感応性基体の所定部分を光照射し、光照射され た部分の有機金属化合物を分解及び Z又は除去することにより、簡便に、かつ短時 間で、従来のフォトリソグラフィ一の技術により形成されたパターンと同様の微細なパ ターニングが可能である。
また、本発明の光触媒活性薄膜をポリエステル等のプラスチック基体上に形成して
、不純物が少な!/、緻密な単分子の化学吸着膜を得ることできる。
実施例
[0082] 次に、実施例を用いて本発明をさらに詳細に説明するが、本発明は、下記の実施 例に何ら限定されるものではな 、。
[0083] (1)光触媒活性薄膜形成用溶液の調製
A—1 :テトライソプロポキシチタン〈日本曹達社製、酸化物拠算固形分量 28. 2重量 %〉をエタノールで希釈し、ァセト酢酸ェチル (和光純薬社製、試薬特級)を滴下、反 応後、エタノールで希釈したイオン交換水を滴下、加水分解し、酸化チタン換算固形 分 1重量0 /0の溶液 (A— 1)を調製した。この溶液のテトライソプロポキシチタン:ァセト 酢酸ェチル:イオン交換水のモル比は 1: 2 : 1であった。
[0084] A— 2 :テトライソプロポキシチタン(日本曹達社製、酸ィ匕物拠算固形分量 28. 2重量 %)をエタノールで希釈し、ァセチルアセトン (和光純薬社製、試薬特級)を滴下した 。 80°Cで 1時間反応後、室温に冷却し、エタノールで希釈したイオン交換水を滴下、 加水分解し、酸ィ匕チタン換算固形分 1重量%の溶液 (A— 2)を調製した.この溶液の テトライソプロポキシチタン:ァセチルアセトン:イオン交換水のモル比は 1: 2 :4であつ た。
[0085] A— 3 :酢酸ェチル Zエタノール =50Z50 (重量比)混合溶媒 47. 7gにペンタエトキ シタンタル (高純度化学研究所社製、試薬) 1. 72gを溶解し、室温でァセチルァセト ン (和光純薬社製、試薬特級) 0. 84gを滴下した。室温で 1時間反応後、前記酢酸ェ チル Zエタノール 40gで希釈したイオン交換水 9. 74gを滴下、加水分解し、室温で 2 4時間反応後、 TaO 換算固形分 1重量%の溶液 (A— 3)を調製した。この溶液の ペンタエトキシタンタル:ァセチルアセトン:イオン交換水のモル比は 1: 2. 5: 128で めつに。
[0086] AH— 1 (比較例):テトライソプロポキシチタン〈日本曹達社製、酸化物換算固形分量 28, 2重量%〉をエタノールで希釈し、酸ィ匕チタン換算固形分 1重量%の溶液 (H—1 )を調製した。
[0087] (2)基板
光触媒活性薄膜を形成する基板としては次のものを用いた。
B—1 :ソーダライムガラス板
B- 2 :ポリエステルシート (東レネ土製、商品名:ルミラー)
B— 3 :ポリイミドシート (デュポン社製,商品名:カプトン)
B— 4 :アクリル板
[0088] (実施例 1〜9、比較例 1, 2)
上記各基板の表面をエタノールで洗浄'乾燥した。得られた基板上に、上記で調製 した光触媒活性薄膜形成用溶液 (A—l)、(A— 2)、(A— 3)、(AH— 1)のそれぞ れをメイヤーパー No. 3で塗工し、得られた塗膜を 60°Cで 10分間乾燥して、光触媒 活性薄膜をそれぞれ得た (C— 1〜C— 9、 CH— 1)。
[0089] (薄膜物性評価試験)
次!ヽで、上記で得た光触媒活性薄膜形成用溶液及び光触媒活性薄膜の物性を以 下のように評価した。
(a)溶液中の金属化合物の粒径
溶液中の粒径は、 Malvern Instruments Ltd製 HPPSで測定した。
(b)膜外観
ヘイズ率測定及び目視により、薄膜の外観を観察した。
透明で、ヘイズ率の変化が 0. 5%未満であり、膜斑がない場合を〇、ヘイズ率の変 化が 0. 5%以上で、膜斑がある場合を Xとして評価した。
[0090] (c)水滴接触角の測定
各薄膜の表面層にマイクロシリンジ力も水滴 5 1を滴下した後、 30秒後に、接触 角測定器 (エルマ社製、 360S型〉を用いて試料表面の接触角を測定した。 膜の結晶性
(d)密着性〈テープ剥離試験〉
各薄膜表面に粘着テープを貼り付け、複数回指の腹で擦りつけその後、テープを 引き一剥がした際、基板上の膜が剥離しているかを XPSで元素分析し、剥離しない 場合を〇、剥離した場合を Xで評価した。
[0091] (e)膜中の元素の分布
薄膜中の元素の深さ方向の分布の測定は、 XPS装置(Quntum2000、アルパック ファイネ土製)を用いて行った。
アルゴンスパッタリングにより、 lkVで 0. 25分間隔で膜を削り、膜中の炭素原子、 酸素原子及びチタン原子の含有率を X線光電子分析装置 (ESCA)により測定した。 炭素原子の含有比率 (%)は、式:炭素元素の濃度 Z (炭素元素の濃度 +酸素元 素の濃度 +チタン元素の濃度) X 100で求めた。
酸素原子の含有比率 (%)は、式:酸素元素の濃度 Z (炭素元素の濃度 +酸素元 素の濃度 +チタン元素の濃度) X 100で求めた。
チタン原子の含有比率 (%)は、式:チタン元素の濃度 Z (炭素元素の濃度 +酸素 元素の濃度 +チタン元素の濃度) X 100で求めた。
で求めた。
[0092] (f)光触媒活性評価試験
紫外線照射用ランプとして次の 2種を用いた。
UV1 :殺菌灯 (東芝社製、 GL—15 ;波長 254nmの紫外線)、照射光量 4mWZc
2
m
UV2 :ブラックライト (東芝社製、 FL15BLB ;波長 365nmの紫外線)、照射光量 2 mW, cm
前記 (C 1)〜 (C 8)の光触媒活性薄膜に上記ランプを使用して紫外線をそれ ぞれ照射し、表面濡れ性の変化を水の接触角を測定することにより評価した。水の接 触角が 10° 以下の親水化するまでの紫外線照射エネルギーを算出した。
[0093] 実施例 1〜8、比較例 1, 2の光触媒活性薄膜のそれぞれについて、用いた光触媒 活性薄膜形成用溶液及び基板の種類、粒子径、膜外観、密着性、紫外線照射 (UV 照射)前の接触角、紫外線照射用ランプ (UV光)、及び親水化に必要な照射光量を 第 1表にまとめた。
[0094] [表 1]
Figure imgf000022_0001
[0095] 実施例 9の光触媒活性薄膜につ!、て、実施例 1と同様にして、光触媒活性薄膜形 成用溶液 (A— 3)を用いて基板 (B— 2)に塗付乾燥して得られた光触媒活性薄膜に紫 外線照射用ランプ (UV光) UV1を照射した。
得られた光触媒活性薄膜は、膜外観、密着性共に良好で親水化に必要な照射光 量は 1. 27j/cm2であった。 UV照射前の接触角 62. 5° は、照射時間 3分で 8. 8
° の接触角を示し、親水化した。
[0096] 第 1表に示すように、溶液 A— 1及び A— 2中の金属化合物は、加水分解縮合によ り、ポリマー化し、 2. 3及び 3. 8nmのナノ粒子になっていた。光触媒活性薄膜形成 用溶液は共に透明であり、凝集粒子は含まれてレ、な力つた。
[0097] 得られた薄膜は、全て膜厚 20〜30nmのアモルファスの膜であった.膜外観、密着 性は共に良好であった。紫外線照射前の膜の水の接触角は、 40— 60° を示し、こ の膜に 254nmの紫外線を照射すると、速やかに親水化し、 10° 以下の接触角を示 した。しかし、 365nmの紫外線照射では、親水化することがな力つた (比較例 2)。通 常のアナターゼ型 TiO光触媒の場合、 365nmの光で親水化するのとは異なってい
2
た。
[0098] 実施例 2の膜に紫外線を照射し、水の接触角 10° 以下に親水化した後の膜の XP Sによる深さ方向の元素分析結果を図 1に示す。図 1中、横軸は表面力 の深さ (nm )、縦軸は原子の含有比率 (%)をそれぞれ示す。また、 Clsは炭素原子の含有比率 を、 O Isは酸素原子の含有比率を、 Ti2pはチタン原子の含有比率をそれぞれ示す
[0099] 図 1より、腹中には炭素が 10— 40%程度含有しており、炭素元素は深さ方向に傾 斜していた。また、膜中の炭素は、紫外線を照射し、親水化した後でも減少すること なく変化しな力つた。表面近傍の異常に多い炭素は、測定開始までに付着した有機 物汚れによるものと考えられる。
通常のアナターゼ型 TiO光触媒の場合、膜中の有機物は紫外線照射により分解
2
される力 これとは異なっていた。表面層だけが光触媒活性を示していると思われる。
[0100] (g)光触媒活性薄膜の結晶性
実施例 1の光触媒活性薄膜を X線回折装置で測定した。測定したチャートを図 2に 示す。図 2から、実施例 1の光触媒活性薄膜はアモルファスであることがわかる。 産業上の利用の可能性
[0101] 本発明の光触媒活性薄膜は、 250〜350nmの低波長の光照射で優れた光触媒 活性を示すという特性を有する。従って、本発明の光触媒活性薄膜は、 350nmより 高波長の光 (可視光等)に曝す必要がなぐまた、曝された場合であっても、基体 (特 にプラスチック基体)が劣化したり、基体と光触媒活性薄膜との接着性が低下すること がない。
本発明の光触媒活性薄膜は、 100°C未満の低温加熱処理により形成することがで きるので、加熱処理により基体を傷めることがなぐ用いる基体を、耐熱性のものに限 定する必要がない。従って、基体として、軽量で加工が容易なプラスチック基体を好 適に用いることができる。 また、本発明の光触媒活性薄膜は良好な接着性を有するため、プラスチック等の 基体上に容易に直接形成することができ、かつ長期間劣化することがない。

Claims

請求の範囲
[1] 基体上に形成された光触媒活性薄膜であって、加水分解性基及び Z又は水酸基 を合計で 2以上有する金属化合物、加水分解性基及び Z又は水酸基を合計で 2以 上有する金属キレート化合物、金属有機酸塩、及びこれらの加水分解生成物からな る群力も選ばれる少なくとも 1種力も形成されてなり、 150〜350nmの波長の光照射 により光触媒活性を発揮することを特徴とする光触媒活性薄膜。
[2] 基体上に、加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物、 加水分解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物、金属 有機酸塩、及びこれらの加水分解生成物からなる群から選ばれる少なくとも 1種を含 有する光触媒活性薄膜形成用溶液を塗工し、得られた該溶液の塗膜を 100°C未満 の温度で加熱して形成されたものであることを特徴とする請求項 1に記載の光触媒活 性薄膜。
[3] 前記基体が、金属、セラミックス、ガラス及びプラスチック力 なる群力も選ばれる少 なくとも 1つの材質力 なることを特徴とする請求項 1又は 2に記載の光触媒活性薄膜
[4] 前記基体が、ポリイミド系榭脂、ポリエステル系榭脂、エポキシ系榭脂及びポリエー テル系榭脂からなる群力も選ばれる少なくとも一種力もなるプラスチック基体であるこ とを特徴とする請求項 1〜3のいずれかに記載の光触媒活性薄膜。
[5] プラスチック基体上に、前記光触媒活性薄膜形成用溶液を塗工し、得られた該溶 液の塗膜を前記基体の軟化点未満、かつ 100°C未満の温度で加熱して形成された ものであることを特徴とする請求項 4に記載の光触媒活性薄膜。
[6] 前記加水分解生成物が、前記加水分解性基及び Z又は水酸基を合計で 2以上有 する金属化合物、加水分解性基及び Z又は水酸基を合計で 2以上有する金属キレ ート化合物、又は金属有機酸塩を、前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物、加水分解性基及び Z又は水酸基を合計で 2以上有する 金属キレート化合物、又は金属有機酸塩 1モルに対して、 2モル以下の水を用いて 加水分解した生成物であることを特徴とする請求項 1〜5のいずれかに記載の光触 媒活性薄膜。
[7] 前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物が、金属 アルコキシドであることを特徴とする請求項 1〜6のいずれかに記載の光触媒活性薄 膜。
[8] 前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物 力 前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物の加水 分解生成物のキレートイ匕合物であることを特徴とする請求項 1〜7のいずれかに記載 の光触媒活性薄膜。
[9] 前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物、加水分 解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物、及び金属有 機酸塩の金属が、ケィ素、ゲルマニウム、スズ、鉛、チタン、ジルコニウム、アルミ-ゥ ム、インジウム、タンタル、タングステン及び亜鉛力もなる群力 選ばれる一種以上で あることを特徴とする請求項 1〜8のいずれかに記載の光触媒活性薄膜。
[10] 前記加水分解性基及び Z又は水酸基を合計で 2以上有する金属化合物、加水分 解性基及び Z又は水酸基を合計で 2以上有する金属キレート化合物、金属有機酸 塩、及びこれらの加水分解生成物からなる群力 選ばれる少なくとも一種力 なる光 触媒活性薄膜形成用溶液中の分散媒の平均粒径が、 lOnm以下であることを特徴と する請求項 2〜9の 、ずれかに記載の光触媒活性薄膜。
[11] 150〜350nmの波長の光が照射されると、該薄膜に接触した有機物質が分解及 び Zまたは除去されることを特徴とする請求項 1〜10のいずれかに記載の光触媒活 性薄膜。
[12] 150〜350nmの波長の光が照射されると、光照射された部分が、撥水性から、水 の接触角が 20° 以下の親水性に変化することを特徴とする請求項 1〜11の 、ずれ かに記載の光触媒活性薄膜。
[13] 250〜310nmの波長の光照射により光触媒活性を発揮することを特徴とする請求 項 1〜12のいずれかに記載の光触媒活性薄膜。
[14] 照射光量力 0jZcm2以下の光照射により光触媒活性を発揮することを特徴とする 請求項 12または 13に記載の光触媒活性薄膜。
[15] 照射光量が 5jZcm2以下の光照射により光触媒活性を発揮することを特徴とする 請求項 12〜14のいずれかに記載の光触媒活性薄膜。
[16] 有機物を含有する薄膜であることを特徴とする請求項 1〜15のいずれかに記載の 光触媒活性薄膜。
[17] 炭素元素を 2〜40重量%含有する薄膜であることを特徴とする請求項 16に記載の 光触媒活性薄膜。
[18] 膜厚が 50nm以下の薄膜であることを特徴とする請求項 1〜17のいずれかに記載 の光触媒活性薄膜。
PCT/JP2005/009248 2004-05-21 2005-05-20 光触媒活性薄膜 WO2005113142A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513741A JP5001003B2 (ja) 2004-05-21 2005-05-20 光触媒活性薄膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-151639 2004-05-21
JP2004151639 2004-05-21

Publications (1)

Publication Number Publication Date
WO2005113142A1 true WO2005113142A1 (ja) 2005-12-01

Family

ID=35428285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009248 WO2005113142A1 (ja) 2004-05-21 2005-05-20 光触媒活性薄膜

Country Status (2)

Country Link
JP (1) JP5001003B2 (ja)
WO (1) WO2005113142A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088079A1 (ja) * 2005-02-18 2006-08-24 Nippon Soda Co., Ltd. 有機無機複合体
JP2007237065A (ja) * 2006-03-08 2007-09-20 Miyoshi Oil & Fat Co Ltd 光触媒活性を有する抗菌剤及び抗菌処理方法
US8637613B2 (en) 2006-08-09 2014-01-28 Wacker Chemie Ag Self-dispersible silicone copolymers and method for the production and use thereof
WO2019188835A1 (ja) * 2018-03-29 2019-10-03 東レ株式会社 ポリメタロキサン、組成物、硬化膜、部材、電子部品、繊維、セラミックス成型用結着剤、硬化膜の製造方法、および繊維の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253157A (ja) * 2002-02-28 2003-09-10 Furukawa Co Ltd 貯蔵安定性に優れたチタニア及びチタニア系複合酸化物塗布溶液

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253157A (ja) * 2002-02-28 2003-09-10 Furukawa Co Ltd 貯蔵安定性に優れたチタニア及びチタニア系複合酸化物塗布溶液

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088079A1 (ja) * 2005-02-18 2006-08-24 Nippon Soda Co., Ltd. 有機無機複合体
JPWO2006088079A1 (ja) * 2005-02-18 2008-07-03 日本曹達株式会社 有機無機複合体
KR100922093B1 (ko) 2005-02-18 2009-10-16 닛뽕소다 가부시키가이샤 유기 무기 복합체
US7709552B2 (en) 2005-02-18 2010-05-04 Nippon Soda Co., Ltd. Organic/inorganic composite
JP2007237065A (ja) * 2006-03-08 2007-09-20 Miyoshi Oil & Fat Co Ltd 光触媒活性を有する抗菌剤及び抗菌処理方法
US8637613B2 (en) 2006-08-09 2014-01-28 Wacker Chemie Ag Self-dispersible silicone copolymers and method for the production and use thereof
WO2019188835A1 (ja) * 2018-03-29 2019-10-03 東レ株式会社 ポリメタロキサン、組成物、硬化膜、部材、電子部品、繊維、セラミックス成型用結着剤、硬化膜の製造方法、および繊維の製造方法
CN111886280A (zh) * 2018-03-29 2020-11-03 东丽株式会社 聚金属氧烷、组合物、固化膜、构件、电子部件、纤维、陶瓷成型用粘合剂、固化膜的制造方法和纤维的制造方法
JPWO2019188835A1 (ja) * 2018-03-29 2021-03-11 東レ株式会社 ポリメタロキサン、組成物、硬化膜、部材、電子部品、繊維、セラミックス成型用結着剤、硬化膜の製造方法、および繊維の製造方法
CN111886280B (zh) * 2018-03-29 2022-04-26 东丽株式会社 聚金属氧烷、组合物、固化膜、构件、电子部件、纤维、陶瓷成型用粘合剂、固化膜的制造方法和纤维的制造方法
JP7334619B2 (ja) 2018-03-29 2023-08-29 東レ株式会社 ポリメタロキサン、組成物、硬化膜、部材、電子部品、繊維、セラミックス成型用結着剤、硬化膜の製造方法、および繊維の製造方法

Also Published As

Publication number Publication date
JP5001003B2 (ja) 2012-08-15
JPWO2005113142A1 (ja) 2008-03-27

Similar Documents

Publication Publication Date Title
JP5950399B2 (ja) 有機−無機透明ハイブリッド皮膜とその製造方法
JP4974459B2 (ja) 光触媒性TiO2層を含む支持体
JP3897938B2 (ja) 有機−無機複合傾斜材料、その製造方法及びその用途
US9823392B2 (en) Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
JP4602971B2 (ja) 光感応性基体及びパターニング方法
JP4746032B2 (ja) チタン酸化物粒子の分散液、チタン酸化物薄膜、有機機能膜形成用溶液、有機機能膜形成基体及びその製造方法
JP5511159B2 (ja) 光触媒膜、光触媒膜の製造方法、物品および親水化方法
WO2014136275A1 (ja) 有機-無機透明ハイブリッド皮膜とその製造方法
CN1831193A (zh) 镀敷方法
JPWO2010007956A1 (ja) 撥水性基体およびその製造方法
KR20140114405A (ko) 박막 적층체
JP5377820B2 (ja) 機能性物質含有有機無機複合体
JP5001003B2 (ja) 光触媒活性薄膜
JP2017001327A (ja) 撥水部材
JP2000280397A (ja) 過酸化チタン含有酸化チタン膜を有する多層体
JP2002346393A (ja) 光触媒体およびその製造方法
JP2020515060A (ja) ナノインプリントリソグラフィプロセスと、それから得られるパターン化基板
WO2011043018A1 (ja) 高屈折率材料の製造方法および当該材料と高分子材料との複合体
JP2013133264A (ja) 撥水性基体及びその製造方法、並びに輸送機器
JP4869578B2 (ja) 滑雪用塗膜形成コーティング組成物、滑雪用塗膜および滑雪用部材
JP2015116772A (ja) 撥水性フィルムの製造方法および撥水性フィルム
JP4225133B2 (ja) 樹脂表面改質用光触媒シート、積層体および樹脂表面改質方法
JP5351378B2 (ja) 有機無機複合体及びその製造方法
JP2010116504A (ja) 高透明性光触媒膜およびそれを有する物品
JP2003054951A (ja) 酸化チタン薄膜の製造方法および有機−無機複合傾斜材料の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513741

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase