WO2005103337A1 - 水素発生用電極およびその製造方法並びにこれを用いた電解方法 - Google Patents

水素発生用電極およびその製造方法並びにこれを用いた電解方法 Download PDF

Info

Publication number
WO2005103337A1
WO2005103337A1 PCT/JP2004/015797 JP2004015797W WO2005103337A1 WO 2005103337 A1 WO2005103337 A1 WO 2005103337A1 JP 2004015797 W JP2004015797 W JP 2004015797W WO 2005103337 A1 WO2005103337 A1 WO 2005103337A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
electrode
hydrogen generation
metal
hydrogen
Prior art date
Application number
PCT/JP2004/015797
Other languages
English (en)
French (fr)
Inventor
Yoshinori Shirakura
Akinori Shimono
Original Assignee
Tosoh Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corporation filed Critical Tosoh Corporation
Priority to CN2004800427868A priority Critical patent/CN1938453B/zh
Priority to US11/578,717 priority patent/US8343329B2/en
Priority to EP04821906.7A priority patent/EP1739208B1/en
Publication of WO2005103337A1 publication Critical patent/WO2005103337A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrode for hydrogen generation, a method for producing the same, and an electrolytic method using the same.
  • the present invention relates to a hydrogen generation electrode used for electrolysis of water or an aqueous solution of an alkali metal chloride such as salt, a method for producing the same, and an electrolysis method using the same.
  • the water or alkali metal chloride aqueous solution electrolysis industry is a power consuming industry, and various technologies have been developed for energy saving.
  • the means of energy saving is to substantially reduce the electrolysis voltage composed of the theoretical decomposition voltage, liquid resistance, diaphragm resistance, anode overvoltage, cathode overvoltage, and the like.
  • means for lowering the hydrogen overvoltage include improving the activity of the supported catalyst and increasing the surface area of the reaction ratio.
  • the loading of a highly active catalyst, which is a substance or a mixture thereof, and an increase in specific surface area are improved by the loading method.
  • the main loading methods are the electroplating method in which the catalyst component is dissolved in a bath solution in which the active component and the metal salt are dissolved, and the catalyst component is electrophoresed from a bath in which the active substance is dispersed in a metal salt solution.
  • a thermal decomposition method in which a solution of a metal salt is applied and baked.
  • a transition metal such as iron, cobalt, and nickel, tungsten, and molybdenum are formed on a conductive substrate surface by an electroplating method.
  • a method for supporting an alloy layer is disclosed (Patent Document 1).
  • Patent Document 2 a method in which a substance containing an organic compound such as an amino acid, a carboxylic acid, or an amine in addition to a combination of nickel and iron, conoreto, and indium is supported on the surface of a conductive substrate by an electroplating method.
  • Patent Document 3 an alloy layer formed of nickel and molybdenum is supported by an arc ion plating method.However, although the initial hydrogen overvoltage is sufficiently low, the hydrogen overvoltage increases during long-term electrolysis operation. There was a problem in loose durability.
  • the alloy force of the three-component force aluminum, zinc, magnesium, and silicon force The elution and removal of the selected components and the use of a Raney-type nickel and Z or a Raney-type conoreto catalyst as an electrode for hydrogen generation are essential.
  • a trace amount of a noble metal component in a molar ratio of less than 0.4 By adding a trace amount of a noble metal component in a molar ratio of less than 0.4, the deterioration of the electrode activity due to the transformation of nickel and Z or konoleto into hydroxide hydroxide or cobalt hydroxide is suppressed. This is to improve durability by blocking.
  • This electrode reduces the hydrogen overvoltage by increasing the specific surface area of nickel and Z or cobalt.Therefore, a step to remove the catalytic component is required, and the load is tens to hundreds of meters. However, there was a problem that the production cost was extremely high. Note that Patent Document 4 describes that even if the noble metal component is used in a molar ratio of 0.4 or more, there is no effect of reducing the hydrogen overvoltage. [0006] Also, an electrode for hydrogen generation, which is a mixture of Ni or a Ni alloy and a platinum group metal, has been proposed in the past.
  • Patent Literature 5 discloses that a platinum group metal and at least one cathode active material of Z or a platinum group metal oxide dispersed in Ni or a Ni alloy, that is, Ni or a Ni alloy and a platinum group metal Electrodes for hydrogen generation have been proposed which are coated with a mixture of a metal and at least one cathode active material of a Z or platinum group metal oxide.
  • the active nickel coating mainly composed of Ni or an alloy thereof includes porous nickel obtained by eluting the sacrificial metal after coating the Ni and the sacrificial metal, as well as alloys of Ni and other metals and Z or a compound. Timely selection from active substances such as Z or mixtures.
  • active substances such as Z or mixtures.
  • other metals coated with Ni many substances such as Fe, Mo, Co, W, Al, Zn, Sn, Mg, Ti, platinum group metals and their oxides are available. It has been proposed.
  • Patent Literature 5 discloses, as an especially durable one having a low hydrogen overvoltage, an activated Ni-Ni nickel powder obtained by dispersing and mixing platinum group metal fine particles such as platinum black, ruthenium black and ruthenium oxide or platinum group oxide fine particles with Ni. An example of a flat coating is shown.
  • a hydrogen generation electrode composed of M containing ruthenium oxide fine particles has a current density of 0.20 A / cm 2 ( 2 kAZm Even at a low value of 2 ), the hydrogen generation potential is -0.98 V vs. NHE, which, when converted to a hydrogen overvoltage, is about 120 mV, which is insufficient for hydrogen overvoltage performance. That is, any of the hydrogen generating electrodes coated with various metals such as platinum group metals or their oxides together with Ni or Ni alloy proposed in Patent Document 5 cannot satisfy overvoltage performance. Power
  • Patent Document 6 discloses a condition sufficient for coating and drying a mixed solution of a platinum group metal compound and a metal compound such as Ni and then oxidizing the metal compound, that is, in an oxidizing air stream such as air or oxygen.
  • a method of producing an electrode comprising a mixed oxide or a composite oxide of a platinum group metal oxide and a Ni oxide by heat treatment at a high temperature.
  • Example 3 of Patent Document 6 a platinum solution produced by applying a mixed solution of chloroplatinic acid, nickel chloride and ruthenium chloride on a nickel substrate, drying the solution, and then pyrolyzing at 470 to 480 ° C. And an electrode for hydrogen generation coated with an oxide of nickel and ruthenium.
  • the potential measured at 0.31 A / cm 2 (3.lkAZm 2 ) is described in Ex. 3 of Table I, and is calculated from the actual absolute reproducible voltage by thermodynamic calculation described in Patent Document 6.
  • the overvoltage in the first week was 42 mV, which was satisfactory, but the overvoltage increased with the progress of electrolysis.
  • the overvoltage of hydrogen generation in the 6th week was 87 mV, and in the 11th week onward, it was 97 mV. Therefore, when used at a current density of 5 kAZm 2 or more, the overvoltage was expected to be 100 mV or more at least, and there was a problem to be improved.
  • Patent Document 7 discloses one kind of noble metal, a mixture of two or more kinds of noble metals or a noble metal deposit having an alloying power, and the noble metal deposit containing one or two or more kinds of base metals such as Ni. Electrodes for hydrogen generation have been proposed in which a deposit is deposited on a conductive substrate such as Ni.
  • the powerful invention has also made it possible to use an electrode for hydrogen generation which is sensitive to poisoning to iron ions in the electrolysis industry of alkali metal chloride aqueous solutions.
  • Patent Document 9 it is necessary to use a material such as high-M stainless steel or Ni at least in the portion where the catholyte is in contact with the catholyte and to be polarized, or to apply a corrosion prevention current during shutdown. There was a need to improve the economic viewpoint.
  • Patent Document 10 there has been proposed a method for removing iron deposited on the cathode surface, comprising a step of contacting the surface of the cathode with a liquid medium that reacts with and dissolves the iron deposited on the surface.
  • an electrode for hydrogen generation has been proposed in which a catalyst containing at least one of platinum and ruthenium and gold or silver, or a catalyst containing organic polymer particles is supported on a conductive substrate (Patent Document 11). ).
  • the hydrogen generation electrode Even if iron ions are present in the catholyte, the hydrogen generation electrode has a very small increase in overvoltage, and is certainly excellent in that it can reduce the amount of energy used for electrolysis of the aqueous alkali metal chloride solution. This is a hydrogen generation electrode having excellent characteristics.
  • Patent Document 12 an electrode for hydrogen generation using a catalyst having platinum and cerium oxide has been proposed (Patent Document 12).
  • the hydrogen generating electrode which also has the catalytic power of platinum and cerium oxide, has a low overvoltage and the effect of iron ions is suppressed, and exhibits excellent performance as a hydrogen generating electrode for electrolysis of an aqueous alkali metal chloride solution. .
  • Patent Document 12 An intermediate layer made of nickel oxide between a catalyst having platinum and cerium oxide properties and a substrate.
  • Patent Document 1 Japanese Patent Publication No. 40-9130
  • Patent Document 2 Japanese Patent No. 3319370 (Example)
  • Patent Document 3 Japanese Patent No. 3358465 (Example)
  • Patent Document 4 JP-A-59-25985 (Claims, page 2, upper right column, line 13; same page, lower right column, line 16, examples)
  • Patent Document 5 Japanese Patent Application Laid-Open No. 54-119084 (Page 3, upper left column, 10 lines, 16 lines, lower left column, 17 lines, 1 line, last line)
  • Patent Document 6 Japanese Patent Application Laid-Open No. 59-232232 (Claim 3, page 6, lower left column, line 10, lower right column, line 5, page 7, lower right column, line 4, page 10, lower right column, line 19, implemented Example)
  • Patent Document 7 Japanese Patent Application Laid-Open No. 57-23083 (Claims, page 4, lower left column, line 17 and right lower column, line 9)
  • Patent Document 8 Japanese Patent Application Laid-Open No. 64-8288 (Claims, 15th line, last line, lower left column on page 2)
  • Patent Document 9 Japanese Patent Application Laid-Open No. 60-56082 (Claims, page 2, upper left column, line 19, lower left column, line 16, page 3, upper left column, line 18, lower left column, line 4)
  • Patent Document 10 JP-A-60-59090 (Claims)
  • Patent Document 11 JP-A-63-72897 (Claims)
  • Patent Document 12 Japanese Patent Application Laid-Open No. 2000-239882 (Claims, paragraph 0004, paragraph 000 6)
  • a hydrogen generating electrode having excellent durability without a rise in hydrogen overvoltage or falling off of a carried substance, a method for manufacturing the hydrogen generating electrode, and an electrolysis method using the hydrogen generating electrode as a cathode.
  • the purpose of the present invention is to reduce the power consumption of water or alkali metal chloride aqueous solution electrolysis industry.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, when the method of supporting the catalyst on a conductive substrate is different, the state of the element in the catalyst (mixture, alloy, or multiple Was found to be different. Furthermore, it has been found that even if the type of element used for the catalyst is the same, the characteristics of the hydrogen generating electrode are greatly different if the element is in a different composition state.
  • a hydrogen generation electrode in which a platinum alloy of platinum and a transition metal element is supported on a conductive base material.
  • a platinum alloy composed of platinum and a metal selected from the group consisting of nickel, conoreto, copper, silver, and iron (hereinafter referred to as an additive metal) is supported on the electrode, particularly, a conductive base material. It has been found that a hydrogen generation electrode having a platinum content of 0.40 to 0.99 in molar ratio exhibits excellent low hydrogen overvoltage performance and durability.
  • a platinum compound solution that forms an ammine complex with the added metal compound solution is applied on the conductive base material, dried at a temperature of 200 ° C or less, and then heated to a temperature exceeding 200 ° C and 700 ° C. It has been found that the above-mentioned hydrogen generating electrode can be obtained by subjecting it to pyrolysis at the following temperature and then performing a reduction treatment.
  • the hydrogen generating electrode was made of water or an alkali metal salt.
  • the overvoltage rise is extremely small even if iron ion is present in the electrolyte where the hydrogen overvoltage is extremely low.
  • the inventors have found that the catalyst has remarkable performance so that the catalyst does not fall off even during the regular operation, and finally completed the present invention.
  • a hydrogen generating electrode having low hydrogen overvoltage performance and excellent durability can be easily obtained.
  • the hydrogen generating electrode of the present invention prevents the hydrogen overvoltage from increasing due to the poisoning of iron ions in the electrolytic solution, which has been regarded as a drawback of the conventional platinum-based catalyst.
  • the catalyst does not peel off or fall off.
  • the low hydrogen overvoltage characteristic inherent in platinum can be maintained stably for a long period of time, and in particular, electrolysis of water or an aqueous alkali metal solution, which must be stopped and restarted several times a year and iron is mixed into the catholyte, is necessary. It can greatly reduce the energy required for businesses.
  • FIG. 1 shows an X-ray diffraction diagram of the hydrogen-producing electrode obtained in Examples 1, 3, 6, 8, 10, and 11 after the reduction treatment.
  • the horizontal axis is the diffraction angle (2 °, the unit is “°”), and ⁇ (vertical axis) is count (the unit is arbitrary).
  • FIG. 2 shows X-ray diffraction diagrams of the hydrogen generation electrode before reduction treatment obtained in Examples 1, 7, 10, 11, and 12, in which the X-axis (horizontal axis) indicates the time The angle is (2 ⁇ , unit is “°”), and the Y-axis (vertical axis) is count (unit is arbitrary).
  • FIG. 3 shows X-ray diffraction diagrams of the hydrogen generation electrodes obtained in Comparative Examples 1 and 7, in which the X axis (horizontal axis) is the diffraction angle (2 °, unit is “°”). ), And the Y axis (vertical axis) is count (arbitrary unit).
  • FIG. 4 shows an X-ray diffraction diagram of the hydrogen generation electrode obtained in Comparative Example 8, in which the X axis (horizontal axis) is the diffraction angle (2 °, unit is “°”). Yes, Y axis (vertical axis) is count (arbitrary unit)
  • FIG. 5 shows an X-ray diffraction diagram of the hydrogen generation electrode obtained in Comparative Example 9, in which the X axis (horizontal axis) is the diffraction angle (2 °, unit is “°”). Yes, Y axis (vertical axis) is count (arbitrary unit) Explanation of reference numerals
  • the electrode for hydrogen generation of the present invention in which a platinum alloy composed of an additive metal and platinum is supported on a conductive substrate is, for example, a platinum compound that forms an ammine complex with an additive metal compound solution on a conductive substrate. It is obtained by applying a solution, drying it at a temperature of 200 ° C or less, then thermally decomposing it at a temperature of more than 200 ° C and 700 ° C or less, and then performing a reduction treatment.
  • the supported material is a platinum alloy in which the added metal and platinum form a solid solution rather than being present as a mixture of the added metal and platinum metal, a mixed oxide of the added metal oxide and platinum, or a compound oxide. It is.
  • the supported material is an excellent catalyst as a hydrogen generating electrode.
  • the reduction treatment is more preferably an electrochemical reduction when electrolyzing water or an aqueous alkali metal chloride solution, which is preferably an electrochemical reduction.
  • the platinum alloy which also has a platinum force with the additive metal naturally includes a platinum alloy of platinum with the additive metal containing unavoidable impurities mixed from raw materials and the like. Further, in the platinum alloy of the present invention, it is essential that the platinum content in the platinum alloy be in the range of 0.40 to 0.99 in molar ratio.
  • the platinum content in the platinum alloy is less than 0.4 in terms of molar ratio, the effect of the present invention cannot be obtained because the hydrogen overvoltage increases and the durability is poor. Conversely, when the platinum content in the platinum alloy exceeds 0.99 in molar ratio, the initial hydrogen overvoltage is the same, but the durability is inferior, for example, the overvoltage increases due to iron ions in the electrolyte. The effect of the invention cannot be obtained.
  • the platinum content in the platinum alloy ranges from 0.45 to 0.96, more preferably from 0.49 to 0.96, by mole ratio.
  • the platinum content in the platinum alloy in the present invention is obtained by dividing the number of moles of platinum in the platinum alloy by the total number of moles of all elements (excluding unavoidable impurities) constituting the platinum alloy.
  • the platinum content of a platinum alloy composed of a ternary system of platinum, component X, and component Y excluding unavoidable impurities is (mol of platinum) / (mol of platinum + mol of component X + mol of component Y). Indicates the value calculated by
  • platinum forms an alloy phase such as a solid solution or an intermetallic compound with many metal elements, and the alloy phase changes variously depending on its composition ratio and temperature.
  • alloy phase diagrams such as a solid solution type, a precipitation type, a peritectic reaction type, a eutectic reaction type, and a monotectic reaction type.
  • the alloy phase diagram belongs to a precipitation type, and platinum and cobalt form a solid solution alloy at any composition ratio.
  • platinum and many elements such as nickel, copper, silver, iron, molybdenum, and manganese form a solid solution alloy at any composition ratio (edited by Seizo Nagasaki and Shin Hirabayashi) Binary Alloy Phase Diagrams ", Agne Gijutsu Center, 2nd edition, pages 13, 112, 136, 152, 230, 212, 205).
  • the "platinum alloy which also has a platinum force and a kind of metal selected from the group consisting of nickel, cobalt, copper, silver and iron” of the present invention refers to a kind of metal selected from the group consisting of nickel, cobalt, copper, silver and iron. It is a solid solution of metal and platinum and is alloyed. For example, it can be identified from the (111) plane spacing, which is the main X-ray diffraction peak of Cu metal with platinum.
  • the crystal structure of metallic platinum is a face-centered cubic lattice as shown in V, which is disclosed in ASTM card, No. 40802, and the main diffraction peak by CuKa line (111) spacing is 2 265 angstroms.
  • the metal platinum and a metal having an atomic radius different from each other form a solid solution and are alloyed, the lattice of the metal platinum expands and contracts, and the plane spacing changes. Therefore, the presence or absence of alloying can be confirmed by the presence or absence of a shift in the diffraction peak in the X-ray main diffraction measurement by the Cu Ka line, that is, the presence or absence of a change in the (111) plane spacing of the metallic platinum.
  • the atomic radius is half of the minimum interatomic distance, but the order of the atomic radii between the platinum metal and the added metal can be determined, for example, by referring to the Chemical Handbook Basic Revised Second Edition (author incorporated association Nippon Iide Gakkai) It can be estimated from Table 11. 169 (general value of atomic spacing) on pages 1401 to 1403 of Maruzen Co., Ltd., second printing on May 20, 1977.
  • the atomic spacing of Pt-Pt (metal) is 2.775 angstroms
  • the atomic spacing of Ni-Ni (metal) is 2.492 angstroms
  • the atomic spacing of Co-Co (metal) is 2.506 angstroms
  • the atomic spacing of Cu—Cu (metal) is 2.556 angstroms
  • that of Fe—Fe (metal) is 2.482 angstroms, which is smaller than the atomic spacing of metallic platinum.
  • the atomic spacing of Ag—Ag (metal) is 2.889 angstroms, which is larger than the atomic spacing of metallic platinum.
  • the (11) plane spacing is 2.120—2.264 angstroms for nickel, 2.130—2.264 angstroms for cobalt, and 2.150—for copper. 2. 264 angstroms, 2.270-2.320 angstroms for silver and 2.170-2.264 angstroms for iron.
  • the conductive substrate used in the present invention includes, for example, nickel, iron, copper, titanium, and stainless steel alloys.
  • nickel having excellent corrosion resistance to alkaline solutions is preferable.
  • the shape of the conductive base material is not particularly limited, and generally a flat plate, a curved plate, or the like can be used in accordance with the shape of the electrode of the electrolytic cell.
  • the conductive substrate used in the present invention is preferably a perforated plate, for example, expanded metal Metal, punched metal, mesh, etc. can be used.
  • the method for producing the electrode for hydrogen generation of the present invention may be any production method as long as a platinum alloy comprising an additive metal and platinum can be supported on a conductive substrate.
  • electroplating, dispersion plating, thermal spraying, pyrolysis, arc ion plating, etc. can be used.
  • pyrolysis method refers to a series of operations in which an additive metal compound solution and a platinum compound solution are applied on a substrate, dried, and thermally decomposed.
  • a method for producing a hydrogen generating electrode by supporting a catalyst on a conductive substrate by a thermal decomposition method but the effect of the present invention cannot be obtained by simply applying the method.
  • the added metal provided by the present invention can be combined with the added metal provided by the present invention.
  • An electrode for hydrogen generation carrying a platinum alloy made of platinum cannot be obtained, and the effects of the present invention cannot be obtained.
  • the platinum compound solution used in the present invention is a platinum compound solution that forms an ammine complex.
  • the platinum compound forming an ammine complex dinitrodiammineplatinum, tetraammineplatinum, and hexamminehydroxide are known, and one or more kinds are selected from these.
  • the solvent may be water, an organic solution such as alcohol, or a mixture thereof.
  • a solution of a platinum compound that does not form an ammine complex, such as platinum chloride or chloroplatinic acid is used, the effects of the present invention cannot be obtained.
  • a platinum compound solution such as chloroplatinic acid, which does not form an ammine complex
  • a platinum compound solution that does not form an ammine complex with the added metal compound solution is generally used.
  • other requirements are the same as those of the present invention, and a platinum alloy can be obtained even if reduction treatment is performed after thermal decomposition. I can't.
  • the additive metal and platinum are unevenly distributed, and the platinum-rich portion and the additive metal-rich
  • the electrode for hydrogen generation of a mixture of platinum and an additive metal, a mixture of acid oxides, or a composite oxide can not be obtained. It can be estimated that there is.
  • the platinum compound solution provided by the present invention is a solution that forms an ammine complex of platinum, an ammine complex is formed not only with platinum but also with an added metal, and the added metal and platinum are uniformly distributed. It is carried on a substrate. Therefore, it can be estimated that a hydrogen generating electrode having an alloying power of the added metal and platinum can be obtained by the subsequent reduction treatment.
  • the additive metal provided by the present invention is not a kind of metal selected from the group of nickel, cobalt, copper, silver, and iron, other metals may be used. Even if the requirements are the same as those of the present invention, no platinum alloy can be obtained, or even if a platinum alloy is obtained, the characteristics as an electrode for hydrogen generation are inferior and the effects of the present invention cannot be obtained.
  • the supported material is a mixture of platinum and cerium oxide, and the effect of the present invention is obtained. Cannot be obtained.
  • drying at a temperature of 200 ° C. or less is essential.
  • the solvent When the drying temperature exceeds 200 ° C, the solvent is rapidly vaporized or boiled from the additive metal compound solution and the Z or platinum compound solution forming the ammine complex, and a part or all of the additive metal and Z or platinum.
  • the substrate is in a floating state, so the reduction is continued Since it is dropped off during the treatment or dropped when used as an electrode for hydrogen generation, the effect of the present invention cannot be obtained.
  • thermal decomposition is performed at a temperature of more than 200 ° C and 700 ° C or less in an air atmosphere or the like using an electric furnace or the like.
  • the pyrolysis temperature is 200 ° C or lower, the adhesion between the base material and some or all of the added metal and Z or platinum will be reduced, and the material will fall off in the subsequent pyrolysis operation or be used as an electrode for hydrogen generation. , It falls off at the time of use, so that the effects of the present invention cannot be obtained.
  • the thermal decomposition temperature exceeds 700 ° C, the effect of the present invention is significantly reduced due to the fact that platinum oversinters and an alloy of the added metal and platinum cannot be obtained, resulting in extremely poor hydrogen overvoltage performance. I can't get it.
  • the surface of the conductive substrate is roughened in advance. This is because the surface area can be increased by roughening, and the adhesion between the substrate and the carrier can be improved.
  • the means for roughening is not particularly limited, and may be a known method, for example, sandblasting, etching with an oxalic acid, hydrochloric acid solution, or the like, washing with water, and drying.
  • the platinum compound forming an ammine complex used in the method for producing an electrode for hydrogen generation of the present invention is preferably selected from among the ammine complexes capable of forming a complex with an added metal.
  • Platinum compounds forming an ammine complex when using dinitrodiammine platinum, It is preferable to reduce the crystallite diameter of the platinum alloy after the reduction treatment to, for example, 200 ⁇ or less to increase the reaction specific surface area. This is because the dinitrodiamine platinum has a high thermal decomposition temperature of about 550 ° C., which suppresses the aggregation of platinum during thermal decomposition, and provides a coating film in which the added metal and platinum are uniformly mixed after the thermal decomposition. It is presumed that fine crystallite alloy is obtained by the reduction treatment.
  • the additive metal compound used in the production method of the present invention is not particularly limited, and nitrates, sulfates, chlorides, carbonates, acetates, sulfamates and the like can be used.
  • a solvent for dissolving the platinum compound and the added metal compound in order to increase the surface area of the carrier, those in which these raw materials can be completely dissolved are preferable, and water or nitric acid, hydrochloric acid, sulfuric acid, or the like is preferable.
  • An inorganic acid such as an acetic acid solution, an organic solvent such as methanol, ethanol, propanol, and butanol, or a mixture thereof can also be used.
  • the pH of the coating solution may be adjusted and used for the purpose of suppressing the dissolution of the base metal in the coating solution, and a complex salt such as lysine, cunic acid or the like may be added to increase the surface area of the loaded material.
  • the metal may be complexed.
  • the additive metal compound solution and the platinum compound solution forming an ammine complex are separately applied to the conductive substrate using a brush or the like.
  • a mixed solution of the added metal compound and the platinum compound may be prepared and applied to the conductive substrate using a brush or the like.
  • the drying temperature after the application is preferably 5 to 60 minutes at a temperature of 200 ° C or less, and a drying temperature of 150 ° C or less is preferable.
  • the drying temperature is too high, the effects of the present invention cannot be obtained as described above, but the lower limit of the drying temperature may be appropriately selected depending on the solvent used as long as the temperature is set to a temperature at which the solution can be dried. .
  • the thermal decomposition temperature after drying may be in a range of more than 200 ° C and 700 ° C or less for 5 to 60 minutes. Force Preferably, when the thermal decomposition temperature is lower than the thermal decomposition temperature of the platinum ammine complex, platinum sintering may occur. It is possible to obtain a hydrogen generation electrode that is suppressed and has a much lower hydrogen overvoltage.
  • the thermal decomposition temperature of dinitrodiamine platinum is 550 ° C
  • the preferred thermal decomposition temperature range is more than 200 ° C and 550 ° C or less, more preferably 350 ° C or more and 500 ° C or more. ° C or less.
  • the carrier is likely to peel off during the subsequent reduction treatment and when Z or hydrogen is generated, as described above.
  • the effect of the present invention cannot be obtained due to sintering of platinum or the like.
  • the thermal decomposition temperature may be appropriately determined from the range of over 200 ° C to 700 ° C as in the case of the dinitrodiamine platinum solution.
  • the above-described series of operations of coating, drying, and thermal decomposition are repeated once or several times.
  • the number of times the thermal decomposition operation is repeated is not particularly limited. However, in order to obtain a low hydrogen overvoltage, it is preferable to repeat the thermal decomposition operation until the supported amount of the alloy after the reduction treatment becomes 0.5 g / m 2 or more. It is more preferable to repeat the thermal decomposition operation until the lgZm 2 or more.
  • a reduction treatment is performed for the purpose of reducing and alloying the loaded material to a metal state.
  • the method for the reduction treatment is not particularly limited, and a chemical reduction method by contact with a substance having a strong reducing power such as hydrazine, formic acid, and oxalic acid, and an electrochemical reduction method for giving a reduction potential to platinum and an added metal can be used.
  • the electrochemical reduction method is a method of giving a potential necessary for reducing an added metal and platinum.
  • the standard electrode potentials of platinum and added metals in aqueous solutions have already been disclosed (Electrochemical Handbook, 5th edition, Maruzen Publishing, pp. 92-95), and the potential required for reduction can be estimated from the standard electrode potential. It is possible.
  • the electrochemical reduction method is one of the preferred embodiments of the present invention before the thermal decomposition is performed and the reduction treatment is performed.
  • the electrode described above is also a preferred form of the electrode for hydrogen generation of the present invention.
  • an amorphous substance of a transition metal element and platinum is supported on a conductive base material, and hydrogen on which a platinum alloy of platinum and the transition metal element is supported by reduction treatment is provided. Further, from the above description of the X-ray diffraction pattern, the X-ray diffraction pattern of the amorphous substance was found to be different from that of the platinum alloy of platinum with the transition metal element, the transition metal element and platinum. This is a different electrode for hydrogen generation.
  • the reduction treatment is preferably an electrochemical reduction, and more preferably an electrochemical reduction when electrolyzing water or an aqueous solution of an alkali metal chloride.
  • the transition metal is a kind of metal element selected from the group consisting of nickel, cobalt, copper, silver and iron.
  • a platinum compound solution that forms an ammine complex with a metal compound solution selected from the group consisting of nickel, cobalt, copper, silver, and iron is applied on a conductive base material, Drying at a temperature of 200 ° C or less, and then pyrolyzing at a temperature of more than 200 ° C and 700 ° C or less is acceptable.
  • this electrode is suitably used as an electrode for hydrogen generation.
  • the loaded material undergoes electrochemical reduction in the initial stage of use, and is reduced to a metal state and alloyed. Therefore, the effect of the present invention is sufficiently exhibited.
  • the electrolysis conditions at the start of use are not limited at all. Can be applied as it is.
  • the electrolyte temperature should be 70-90 ° C
  • the electrolyte concentration (sodium hydroxide) in the cathode chamber should be 20-40% by weight
  • the current density should be 0.1-lOkAZm 2 .
  • a platinum alloy can be obtained within about 10 minutes for the supported material before the reduction treatment is performed.
  • the electrolyte temperature is 70-80 ° C
  • the electrolyte concentration in the cathode chamber is 30-33% by weight
  • the current density is 0.3 kA / m 2.
  • the current is mainly used for the electrochemical reduction of the carrier for 1 to 12 minutes from the start of energization, and almost no hydrogen generation reaction occurs.
  • the current is used for a hydrogen generation reaction, and thereafter, becomes an excellent hydrogen generation electrode capable of maintaining a low hydrogen overvoltage for an extremely long time.
  • Whether to carry out the reduction treatment before installing the electrolytic cell may be determined in a timely manner in consideration of the reduction treatment cost before installing the electrolytic cell and the production loss cost due to the absence of hydrogen generation at the beginning of use of the electrolytic cell.
  • the chemical reduction method is a method of reducing with a substance having a strong reducing power such as hydrazine, formic acid, and oxalic acid. Specifically, it is good to soak in a hydrazine aqueous solution prepared to a concentration of about several weight% for a period of time until the carometal and platinum are reduced.
  • the electrode for hydrogen generation of the present invention When the electrode for hydrogen generation of the present invention thus obtained is used as an electrode for hydrogen generation for electrolysis of an aqueous solution of an alkali metal chloride such as water or salt, a low hydrogen overvoltage is obtained.
  • the low overvoltage characteristic is maintained stably for a long period of time without special measures to prevent iron ions from being mixed in the catholyte solution, and the catalyst does not peel off or fall off during stop and restart operations. It is an electrode for hydrogen generation that is extremely excellent in hydrogen overvoltage performance and durability.
  • the surface of the electrode was subjected to an acceleration voltage of 40 kV, an acceleration current of 30 mA, and a step interval using an X-ray diffractometer (Model MXP3 manufactured by Mac Science) using CuKa radiation.
  • the diffraction pattern power was also calculated as the main diffraction peak (111) plane spacing from Bragg's equation.
  • the electrode to which cobalt, copper, and iron were added was dissolved in aqua regia and the ICP emission spectrometer (PerkinElmer, model optima3000) was used.
  • the amount of platinum and the added metal element was quantified using a model EMAX-5770W manufactured by HORIBA, Ltd. to determine the amount of platinum supported, and the platinum content in the supported material was calculated by the following equation.
  • Platinum content platinum Z (platinum + added metal) molar ratio
  • the reduced electrode was cut into 4 cm X 7.5 cm and subjected to a salt electrolysis test using an ion exchange membrane method in a small test tank.
  • DSE (registered trademark) manufactured by Permelec Electrode Co., Ltd. was used as the anode of the same size as the cathode.
  • N-962 manufactured by DuPont was used as a fluorine-based cation exchange membrane, and the effective electrolysis area of the membrane was the same as that of the cathode.
  • the anode and the fluorine-based cation exchange membrane were adhered closely, and the distance between the fluorine-based cation exchange membrane and the cathode was 2 mm.
  • Pure water or an aqueous solution of iron standard solution (manufactured by Kanto Chemical Co., Ltd., Fe: 100mgZD diluted 20 times with pure water (hereinafter abbreviated as iron-containing water)) is supplied to the cathode chamber.
  • the supply amount of pure water or the supply amount of iron-containing water was adjusted so that the concentration of the aqueous lye solution became 32% by weight.
  • the anode chamber and the cathode chamber were adjusted to 90 ° C. by an internal heater, and the electrolysis current density was kept constant at 5 kAZm 2 to perform the salt electrolysis test.
  • the catholyte A measure was taken so that the only iron that could be mixed in the iron-containing water was iron.
  • the iron ion concentration in the catholyte was measured by ICP.
  • the hydrogen overvoltage after salt electrolysis was determined by measuring the cathode overvoltage during the above salt electrolysis test by a current interlacer method.
  • Nickel expanded mesh (10 ⁇ 10 cm) was used as a conductive substrate, and as a roughening treatment, etching was performed at a temperature of 50 ° C. for 15 minutes using a 10 wt% hydrochloric acid solution, followed by washing with water and drying.
  • a dinitrodiammine platinum nitrate solution manufactured by Tanaka Kikinzoku, platinum concentration: 4.5% by weight, Solvent: 8 wt% nitric acid solution
  • nickel nitrate hexahydrate and water with a platinum content of 0.5 in molar ratio and a total concentration of platinum and nickel in the mixture of 5 wt% in terms of metal was prepared.
  • this coating solution was applied to the entire surface of the nickel expanded mesh using a brush, dried in a hot air drier at 80 ° C. for 15 minutes, and then dried in a box-type Matsufuru furnace (Advantech Toyo model KM-600, internal volume 27 L). ) was pyrolyzed at 500 ° C for 15 minutes under flowing air. This series of operations was repeated five times.
  • the hydrogen generating cathode provided by the present invention is preferable without taking any special measures for preventing iron ion contamination, for example in the IM salt electrolysis industry where iron ions are mixed in the catholyte. You can use it.
  • Example 2 The operation was performed in the same manner as in Example 1, except that cobalt nitrate hexahydrate was used as the added metal compound and the content of platinum and cobalt in the coating solution was changed.
  • Example 7 before the reduction treatment, a peak of nickel of the base material (4) and a broad peak of the amorphous substance composed of the added metals cobalt and platinum (5) were recognized. was done.
  • Thermal decomposition was carried out in the same manner as in Example 1 except that copper nitrate trihydrate was used as the added metal compound and the content of platinum and copper in the coating solution was changed, and 100 ml of a 5% by weight hydrazine aqueous solution was used. After reducing the mixture at room temperature overnight, it was washed with water and dried to produce an electrode for hydrogen generation.
  • Example 10 An X-ray diffraction diagram after the thermal decomposition treatment and before the reduction treatment is shown in FIG.
  • An electrode for hydrogen generation was prepared in the same manner as in Example 1, except that silver nitrate and iron nitrate hexahydrate were used as the added metal compounds, and the temperature during the thermal decomposition was 300 ° C.
  • Example 12 before the reduction treatment, a peak of nickel of the base material (4) and a broad peak of the amorphous substance composed of the additional metals iron and platinum (5) were observed.
  • a peak of nickel of the base material (4) and a broad peak of the amorphous substance composed of the additional metals iron and platinum (5) were observed.
  • An electrode for hydrogen generation was produced by performing the same operation as in Example 1 except that no transition metal element was added.
  • the results evaluated by the above method are shown in Table 3-4, and the X-ray diffraction pattern after the reduction treatment is shown in FIG.
  • the salt electrolysis test was performed for one month while supplying pure water to the cathode chamber. During this period, the cathode overvoltage varied between 78 and 80 mV, and the performance was almost the same as the hydrogen generation cathode provided by the present invention. Indicated. During this period, the concentration of iron ions in the caustic was below the detection limit (0.035 ppm).
  • Example 2 Same as Example 1 except that manganese nitrate hexahydrate, ammonium molybdate, and ammonium vanadate were used as the added metal compounds, and the content of platinum and the added metal in the coating solution were changed. An electrode for hydrogen generation was prepared by the operation, but all the added metal was eluted after the reduction treatment.
  • An electrode for hydrogen generation was prepared in the same manner as in Example 1 except that the thermal decomposition temperature was changed to 750 ° C.
  • Example 2 The same operation as in Example 1 was performed, except that a platinum compound solution adjusted to a Pt concentration of 4.5% by weight by diluting an aqueous chloroplatinic acid solution (manufactured by Tanaka Kikinzoku, Pt concentration 15% by weight) with pure water was used. An electrode for hydrogen generation was produced.
  • the carrying amount after the reduction treatment in Examples and Comparative Examples of the present invention was in the range of 5 g / n ⁇ ⁇ 15 gZm 2 .
  • the X-ray diffraction diagram of Example 1-12 shows that the metal or acid state of platinum and the added metal was not detected, and the (111) plane spacing, which is the main diffraction peak of metal platinum, changed. It was confirmed that a platinum alloy in which metal and metal platinum were dissolved was obtained.
  • the electrode for hydrogen generation was left immersed in the electrolytic solution for one week to test whether or not the catalyst was peeled off during the electrolysis operation or stop 'start operation'. Later, the water electrolysis test was restarted again.
  • Example 11 The electrodes had the same hydrogen overvoltage before and after the water electrolysis test was stopped, and the amount of supported platinum did not change.
  • the hydrogen generating electrode provided by the present invention has a low hydrogen overvoltage, and the increase in the hydrogen overvoltage is small even when iron ions are present in the electrolytic solution. It is evident that it has very excellent properties without catalyst dropout and hydrogen overvoltage rise due to the above.
  • Comparative Example 1 show that the hydrogen generating cathode consisting essentially of platinum without nickel, cobalt, copper, silver and iron was used under the condition that iron ions in the catholyte were not present.
  • the hydrogen overvoltage is not inferior to the hydrogen generating cathode provided by the present invention, it is clear that the effect of the present invention cannot be obtained because the hydrogen overvoltage is extremely high when iron ions are present in the electrolyte. It is.
  • Comparative Examples 8-9 show that the effect of the present invention cannot be obtained when a combination of platinum and a metal selected from the group consisting of nickel, cobalt, copper, silver and iron is not a platinum alloy. Is evident. It is also clear that the effect of the present invention cannot be obtained when a platinum compound solution that does not form an ammine complex is used in the platinum compound solution.
  • This hydrogen generating electrode is usable in the water or alkali metal chloride aqueous solution electrolysis industry, etc., has a sufficiently low hydrogen overvoltage and is free from the influence of poisoning by iron ions. Excellent durability, with no increase in hydrogen overvoltage or falling off of the load during startup and shutdown. For this reason, it can be applied to the electrolytic industry and the like using water or an aqueous solution of an alkali metal chloride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 水素過電圧が十分に低く、且つ、鉄イオンによる被毒の影響がなく、さらに、運転中や起動・停止中にも水素過電圧の上昇や担持物の脱落がなく耐久性に優れた水素発生用電極、前記水素発生電極の製造方法、並びに、前記水素発生用電極を陰極に用いた電解方法を提供する。導電性基材上に、ニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種の金属と白金からなる白金合金、あるいは遷移金属元素と白金との非晶質物質が担持されてなる水素発生用電極を用いる。この電極は、ニッケル、コバルト、銅、銀及び鉄の群からばれる一種の金属化合物溶液とアンミン錯体を形成する白金化合物溶液を塗布し、乾燥後、200~700°Cで熱分解し、またさらに還元処理することによって得られる。  

Description

水素発生用電極およびその製造方法並びにこれを用いた電解方法 技術分野
[0001] 本発明は、水の電気分解又は食塩などのアルカリ金属塩化物水溶液の電気分解 に使用する水素発生用電極およびその製造方法並びにこれを用いた電気分解方法 に関する。
背景技術
[0002] 水又はアルカリ金属塩化物水溶液電解工業は電力多消費型産業であり、省エネル ギー化のために様々な技術開発が行われて 、る。その省エネルギー化の手段とは、 理論分解電圧、液抵抗、隔膜抵抗、陽極過電圧、陰極過電圧などで構成される電解 電圧を実質的に低減することである。
特に、過電圧の低減に関しては、その過電圧値が電極の触媒材料や電極表面の モルフォロジ一に左右されることから、その改良についてこれまで多くの研究開発が 行われてきた。イオン交換膜法食塩電解においては、陽極過電圧の低減に盛んな 研究開発が行われてきた結果、陽極過電圧が低ぐ耐久性に優れた寸法安定性電 極 [例えば、ペルメレック電極社製の DSE電極 (登録商標)]が完成し、既に食塩電 解工業を初め広 、分野で利用されて 、る。
[0003] 一方、陰極過電圧を低減するための水素発生用電極、いわゆる活性陰極に関して もこれまで多くの提案がなされている(例えば、特許文献 1)。
一般的に水素過電圧を低下させる手段としては、担持触媒の活性向上と反応比表 面積の増加であり、活性向上には、導電性基材上に特定組成の金属混合物、金属 合金、酸ィ匕物あるいはこれらの混合物力 なる高活性触媒の担持、比表面積増加は その担持方法により向上させている。主な担持方法としては、活性成分や金属塩を 溶解させた浴カゝら触媒成分を電析させる電気めつき法、金属塩溶液に活性物質を分 散させた浴から触媒成分を電気泳動電着させる分散めつき法、溶融状態の触媒物 質を基材に直接溶射する溶射法、金属塩の溶液などを塗布、焼成する熱分解法が 挙げられる。 [0004] 従来、鉄陰極の約 400mVという水素過電圧を 150— 200mVまで低下可能な電極 として、例えば、電気めつき法で導電性基材表面に鉄、コバルト、ニッケルの遷移金 属とタングステン、モリブデンの合金層を担持する方法が開示されている(特許文献 1
) o
更に、電気めつき法で導電性基材表面に、ニッケルと鉄、コノ レト、インジウムとの 組み合わせに加えてアミノ酸、カルボン酸、ァミンなどの有機化合物を含んだ物質を 担持したものが開示されている (特許文献 2)。
しかし、これらは担持物を非常に厚くすることが必要なため、めっき応力による電極 の変形や担持物の剥離が起こりやす 、ことや、これらの卑金属は活性が低 、ため、 卑金属の合金化による活性向上だけでは水素過電圧を低下させる効果としては不 十分なものであった。
また、ニッケルとモリブデン力 なる合金層をアークイオンプレーティング法で担持し たものが開示されている (特許文献 3)が、初期水素過電圧は十分低いものの長期電 解運転における水素過電圧上昇、 、わゆる耐久性に課題があった。
[0005] 一方、ニッケル及び/又はコバルトと、アルミニウム、亜鉛、マグネシウム、シリコンか ら選ばれる成分、及び、白金等の貴金属から選ばれる 3成分合金からなる水素発生 用電極が開示されて!ヽる (特許文献 4)。
この電極では、前記 3成分力 なる合金力 アルミニウム、亜鉛、マグネシウム、シリ コン力 選ばれる成分を溶出 ·除去しラネー型ニッケル及び Z又はラネー型コノ レト 触媒を水素発生用電極に使用することを骨子としたもので、貴金属成分をモル比で 0 . 4未満と微量添加することによって、ニッケル及び Z又はコノ レトが水酸ィ匕ニッケル あるいは水酸ィ匕コバルトに変質することによる電極活性の劣化を阻止することで耐久 性向上を図ったものである。
し力し、この電極はニッケル及び Z又はコバルトの比表面積の増加によって水素過 電圧を低減しているため、触媒力 成分を除去する工程が必要なことや、担持物を 数十一数百 mまで厚くする必要があり、製作コストが非常に高いなどの問題があつ た。なお、特許文献 4には、貴金属成分をモル比で 0. 4以上にしても、水素発生過 電圧の低減効果は無!ヽと記載されて ヽる。 [0006] 又、 Ni又は Ni合金と白金族金属等との混合物力 なる水素発生用電極が従来か ら提案されてきた。例えば、特許文献 5には、 Ni又は Ni合金中に分散された白金族 金属および Z又は白金族金属酸ィ匕物の少なくとも一種の陰極活性物質とからなる、 すなわち、 Ni又は Ni合金と白金族金属および Z又は白金族金属酸化物の少なくと も一種の陰極活性物質の混合物を被覆した水素発生用電極が提案されている。
Ni又はその合金を主体とした活性ニッケル被覆は、 Niと犠牲金属を被覆した後、 犠牲金属を溶出して得られる多孔性ニッケルの他、 Niと他の金属および Z又は化合 物との合金及び Z又は混合物等の活性物質の中から適時選択される。一方、 Niと共 に被覆される他の金属としては、 Fe、 Mo、 Co、 W、 Al、 Zn、 Sn、 Mg、 Ti、白金族金 属及びそれらの酸ィ匕物等の多くの物質が提案されて 、る。
特許文献 5には、特に水素過電圧が低ぐ耐久性が優れたものとして、 Niに白金黒 、ルテニウム黒、酸化ルテニウム等の白金族金属微粒子や白金族酸化物微粒子を 分散混合した活性ィ匕ニッケルカゝらなる被膜を例示している。
しかし、特許文献 5の実施例に記載された通り、前記の最も優れた例の 1つである 酸化ルテニウム微粒子を含む Mからなる水素発生用電極は、電流密度が 0. 20A/ cm2 (2kAZm2)と低い場合にも、水素発生電位は—0. 98V vs. NHEであり、こ れを水素過電圧に換算すると、 120mV程度と水素過電圧性能は不十分である。す なわち、特許文献 5が提案した Ni又は Ni合金と共に白金族金属等の各種金属又は その酸ィ匕物と共に被覆されてなる水素発生用電極は、何れも過電圧性能面で満足し 得るものではな力つた。
[0007] この他にも、白金族金属酸化物と Ni等の酸化物との混合物や複合酸化物を使用 することが従来力 提案されてきた。例えば、特許文献 6には、白金族金属化合物と Ni等の金属化合物の混合溶液を塗布乾燥してから前記金属化合物を酸化するに十 分な条件、すなわち、空気や酸素等の酸化性気流中且つ高温で加熱処理し白金族 金属酸化物と Ni酸化物等との混合酸化物や複合酸化物からなる電極を製造する方 法が提案されている。
特許文献 6の実施例 3には、塩化白金酸と塩化ニッケルと塩化ルテニウムの混合溶 液をニッケル基材状に塗布し乾燥した後、 470— 480°Cで熱分解して製作した白金 とニッケルとルテニウムの酸ィ匕物が被覆された水素発生用電極が開示されている。 0 . 31 A/cm2 (3. lkAZm2)で測定された電位は、表 Iの Ex. 3に記載されており、 特許文献 6に記載された熱力学計算による実際の絶対再現性電圧から過電圧に換 算すると、 1週目の過電圧は 42mVと十分満足できるものの、電解経過と共に過電圧 が上昇しており、 6週目の水素発生過電圧は 87mV、 11週目以降は 97mVである。 従って、 5kAZm2以上の電流密度で使用した場合、過電圧は低くとも lOOmV以上 と予想され、改善すべき課題があった。
[0008] 一方、上記の他にも、貴金属族元素と卑金属元素を複数組み合わせた水素発生 用電極が従来カゝら提案されている。例えば、特許文献 7には、 1種類の貴金属又は 2 種類若しくは 3種類以上の貴金属の混合物若しくは合金力 なる貴金属沈着物や、 前記貴金属沈着物に Ni等の 1種類又は 2種類以上の卑金属を含んだ沈着物を Ni等 の導電性基材上に沈着させた水素発生用電極が提案されている。
しかし、これらの水素発生用電極は、電解液中の鉄等の不純物による被毒を受け 易 、と 、う課題を持つことが知られて 、る(特許文献 8及び特許文献 9)。
[0009] この様に、従来から、白金を担持して成る水素過電圧が低い水素発生用電極が提 案されて!、る。しかし白金を担持して成る水素発生用電極は電解液中に存在する微 量の鉄イオンに対して敏感に被毒の影響を受け易ぐ鉄イオン濃度が lppm以下の 微量濃度でも水素過電圧は上昇する。このため、電解液中に鉄イオンが混入しやす V、アルカリ金属塩化物水溶液の電気分解工業等での使用に更なる改善が検討され ている(特許文献 8)。
そのため、電解液中の鉄イオンによる被毒防止を目的に幅広く検討が成され、様々 な提案が成されている。
[0010] 出願人は以前、低水素過電圧を有する水素発生陰極をアルカリ金属塩化物水溶 液の電気分解に用 、た場合の、前記陰極上への鉄の析出と陰極液中の鉄イオンと の関係を鋭意検討し、陰極液中の鉄イオン濃度が 0. 5ppm以下の場合には鉄の析 出が防止可能であることを見出した。そして、低水素過電圧陰極を用い、且つ、陰極 液中の鉄イオン濃度を 0. 5ppm以下に維持しながら電解するアルカリ金属塩ィ匕物水 溶液の電気分解方法を提案した (特許文献 9)。 力かる発明により、鉄イオンに対して敏感に被毒の影響を受ける水素発生用電極も 、アルカリ金属塩化物水溶液の電気分解工業等での使用が可能になった。しかし、 特許文献 9の提案を実施するためには、陰極液に接する部分の少なくとも陽分極さ れる箇所に高 M系ステンレス或いは Ni等の材料を用いたり、停止時に防食電流を流 したりする等が必要であり、経済的観点力 改善すべき課題があった。
[0011] また、鉄イオンにより過電圧が上昇した水素発生用電極力 鉄を除去する方法が検 討され、鉄の析出で水素過電圧が悪ィ匕した水素発生用電極力 鉄を除去し再利用 する提案が成されてきた。
例えば、陰極の表面を、その表面上に析出された鉄と反応しかつそれを可溶ィ匕す る液体媒体と接触させる工程を有する、陰極表面に析出された鉄を除去する方法が 提案された (特許文献 10)。
この方法を用いることにより鉄イオンにより過電圧が上昇した水素発生用電極の再 利用が可能となったが、この提案を実施するためには、電気分解を頻繁に停止する 必要があり長期間連続で安定に操業することが出来ない。従って、この場合も経済的 観点から改善すべき課題があった。
[0012] さらに、水素発生用電極自体に鉄イオンが付着しがたい、或いは、付着しても性能 が劣化しない特性を付与するための試みが従来力 広く行われてきた。
例えば、白金及びルテニウムと、金又は銀の少なくとも一方を含む触媒、或いは、さ らに有機ポリマーの粒子を含む触媒を導電性基材に担持した水素発生用電極が提 案された (特許文献 11)。
前記水素発生用電極は陰極液中に鉄イオンが存在しても過電圧の上昇は極僅か であり、アルカリ金属塩ィ匕物水溶液の電気分解のエネルギー使用量を削減しうる点 においては確かに優れた特性を有する水素発生用電極である。
しかし、白金、ルテニウム、金及び銀は何れも高価な材料であり、これにポリテトラフ ルォロエチレンを含ませる場合は、なお一層、高価となる。従って、この場合もなお、 経済的観点から改善すべき課題があった。
[0013] 一方、白金とセリウム酸ィ匕物力 なる触媒を用いた水素発生用電極が提案されてい る (特許文献 12)。 この白金とセリウム酸ィ匕物の触媒力もなる水素発生用電極は、過電圧が低く且つ鉄 イオンによる影響は抑制され、アルカリ金属塩化物水溶液の電気分解用の水素発生 用電極として優れた性能を示す。
また、白金とセリウム酸ィ匕物力もなる触媒と基材の間にニッケル酸ィ匕物からなる中間 層を設ける提案が成されており(特許文献 12)、さらにコスト面などを改善すべく検討 されている。
以上述べてきた通り、水又はアルカリ金属塩化物水溶液電解工業の電力消費量を 削減する目的で、従来から様々な水素発生用電極及び水素発生用電極の使用方法 が提案されてきた。しかし、従来の水素発生用電極は水素過電圧特性と、陰極液中 の鉄イオンに対する耐被毒性能や起動,停止を余儀なくされる工業的な使用にお!、 て十分な耐久性を兼ね備え、工業的に満足し得る特性を持つ水素発生用電極は、 依然、得られていな力つた。
特許文献 1:特公昭 40— 9130号公報
特許文献 2:特許第 3319370号公報 (実施例)
特許文献 3:特許第 3358465号公報 (実施例)
特許文献 4:特開昭 59— 25985号公報 (特許請求の範囲、第 2頁右上欄 13行一同 頁右下欄 16行、実施例)
特許文献 5 :特開昭 54— 119084号公報 (第 3頁左上欄 10行一 16行、同頁左下欄 1 7行一最終行)
特許文献 6 :特開昭 59— 232284号公報 (請求項 3、第 6頁左下欄 10行一右下欄 5行 、第 7頁右下欄 4行一第 10頁右下欄 19行、実施例)
特許文献 7 :特開昭 57-23083号公報 (特許請求の範囲、第 4頁左下欄 17行一右 下欄 9行目)
特許文献 8 :特開昭 64 - 8288号公報 (特許請求の範囲、第 2頁左下欄 15行一最終 行)
特許文献 9 :特開昭 60-56082号公報 (特許請求の範囲、第 2頁左上欄 19行一左 下欄 16行目、第 3頁、左上欄 18行一左下欄、 4行)
特許文献 10:特開昭 60— 59090号公報 (特許請求の範囲) 特許文献 11:特開昭 63-72897号公報 (特許請求の範囲)
特許文献 12 :特開 2000— 239882号公報 (特許請求の範囲、段落 0004、段落 000 6)
発明の開示
発明が解決しょうとする課題
[0015] 本発明の目的は、水又はアルカリ金属塩化物水溶液電解工業等で使用可能な、 水素過電圧が十分に低ぐ且つ、鉄イオンによる被毒の影響がなぐさらに、運転中 や起動 ·停止中にも水素過電圧の上昇や担持物の脱落がなく耐久性に優れた水素 発生用電極、前記水素発生電極の製造方法、並びに、前記水素発生用電極を陰極 に用いた電解方法を提供し、水又はアルカリ金属塩化物水溶液電解工業等の電力 消費量を削減することにある。
課題を解決するための手段
[0016] 本発明者らは、上記問題点を解決するため鋭意検討した結果、前記触媒を導電性 基材に担持する方法が異なると触媒中の元素の存在状態 (混合物、合金、又は、複 合酸ィ匕物)が異なることを見出した。さらに、触媒に用いる元素の種類が同じであって も元素の糸且成ゃ状態が異なると水素発生用電極の特性が大きく異なることを見出し た。
[0017] これらの知見を元に、水素発生用電極につ!、て更なる鋭意検討を重ね、導電性基 材上に、白金と遷移金属元素との白金合金が担持されてなる水素発生用電極、特に 、導電性基材上に、ニッケル、コノ レト、銅、銀及び鉄の群から選ばれる一種の金属 (以下、添加金属と記す)と白金からなる白金合金が担持され、白金合金中の白金含 有量がモル比で 0. 40-0. 99の範囲である水素発生用電極が優れた低水素過電 圧性能と耐久性を示すことを見出した。
[0018] さらに、導電性基材上に、添加金属化合物溶液とアンミン錯体を形成する白金化 合物溶液を塗布し、 200°C以下の温度で乾燥し、その後 200°Cを超え 700°C以下の 温度で熱分解した後、還元処理することにより上記水素発生電極が得られることを見 出した。
[0019] その後、さらに鋭意検討を重ね、上記水素発生電極は、水又はアルカリ金属塩ィ匕 物水溶液中で陰極として用いた場合、水素過電圧が極めて低ぐ電解液中に鉄ィォ ンが存在しても過電圧上昇は極めて小さぐカ卩えて、電解中は無論、停止や再起動 の非定常作業中も触媒が脱落することのない、特筆すべき性能を有することを見出し 、ついに本発明を完成するに至った。
発明の効果
[0020] 本発明によって、低 、水素過電圧性能を有し、且つ、耐久性に優れた水素発生用 電極が容易に得られる。
本発明の水素発生用電極は、従来の白金系触媒の欠点とされていた電解液中の 鉄イオンの被毒によって、水素過電圧が上昇することがなぐさらに、電解運転中や 停止 ·起動操作中に触媒が剥離'脱落することもない。そのため、白金が本来有する 低水素過電圧特性を長期間に渡り安定に維持でき、特に年間数回の停止、再起動 や陰極液中への鉄混入が余儀なくされる水又はアルカリ金属水溶液の電気分解ェ 業等の所要エネルギーを大幅に削減可能である。
図面の簡単な説明
[0021] [図 1]図 1は、実施例 1、 3、 6、 8、 10、 11で得られた還元処理後の水素発生用電極 の X線回折図を示し、図中、 X軸 (横軸)は回折角(2 Θ、単位は「° 」)であり、 Υ ( 縦軸)は count (単位は任意)である。
[図 2]図 2は、実施例 1、 7、 10、 11、 12で得られた還元処理前の水素発生用電極の X線回折図を示し、図中、 X軸 (横軸)は回折角(2 Θ、単位は「° 」)であり、 Y軸 (縦 軸)は count (単位は任意)である。
[図 3]図 3は、比較例 1、 7で得られた水素発生用電極の X線回折図を示し、図中、 X 軸 (横軸)は回折角(2 Θ、単位は「° 」)であり、 Y軸 (縦軸)は count (単位は任意)で ある。
[図 4]図 4は、比較例 8で得られた水素発生用電極の X線回折図を示し、図中、 X軸( 横軸)は回折角(2 Θ、単位は「° 」)であり、 Y軸 (縦軸)は count (単位は任意)である
[図 5]図 5は、比較例 9で得られた水素発生用電極の X線回折図を示し、図中、 X軸( 横軸)は回折角(2 Θ、単位は「° 」)であり、 Y軸 (縦軸)は count (単位は任意)である 符号の説明
[0022] 1 白金のピーク
2 添加金属と白金力 なる白金合金のピーク
3 酸化ニッケノレのピーク
4 ニッケル (導電性基材)のピーク
5 添加金属と白金力もなる非晶質被膜のピーク
発明を実施するための最良の形態
[0023] 以下、本発明を詳細に説明する。
導電性基材上に、添加金属と白金からなる白金合金が担持された本発明の水素発 生用電極は、例えば、導電性基材上に、添加金属化合物溶液とアンミン錯体を形成 する白金化合物溶液を塗布し、 200°C以下の温度で乾燥し、その後 200°Cを超え 7 00°C以下の温度で熱分解した後、還元処理することにより得られる。その担持物は、 添加金属と白金金属との混合物や添加金属酸化物と白金との混合酸化物或いは複 合酸ィ匕物等で存在するのではなぐ添加金属と白金とが固溶した白金合金である。 前記担持物は水素発生用電極として優れた触媒となる。
さらに還元処理については、電気化学的還元であることが好ましぐ水又はアルカリ 金属塩ィ匕物水溶液の電気分解するときの電気化学的還元であることがより好ましい。
[0024] 本発明においては、添加金属と白金力もなる白金合金は、原料等から混入する不 可避不純物を含む添加金属と白金の白金合金を当然包含されるものである。また、 本発明の白金合金は、白金合金中の白金含有量はモル比で 0. 40-0. 99の範囲 であることが必須である。
白金合金中の白金含有量がモル比で 0. 4未満の場合は水素過電圧が高くなつた り、耐久性が劣るため、本発明の効果が得られない。逆に、白金合金中の白金含有 量がモル比で 0. 99を越えると、初期の水素過電圧は同等であるが、電解液中の鉄 イオンにより過電圧が上昇するなど、耐久性が劣り、本発明の効果が得られない。 好ましくは、白金合金中の白金含有量はモル比で 0. 45-0. 96、さらに好ましくは 0. 49—0. 96の範囲である。 [0025] なお、本発明で言う白金合金中の白金含有量とは、白金合金中の白金のモル数を 、白金合金を構成する全元素 (不可避不純物を除く)の合計モル数で除したものを意 味する。すなわち、例えば、不可避不純物を除き添加金属と白金の 2成分からなる白 金合金の白金含有量は、 (白金モル数) / (白金モル数 +添加金属モル数)で計算 される値を意味する。
また、例えば、不可避不純物を除き白金と成分 Xと成分 Yとの 3元系からなる白金合 金の白金含有量は、 (白金モル数) / (白金モル数 +成分 Xモル数 +成分 Yモル数) で計算される値を示す。
[0026] 白金合金に関して、白金は多くの金属元素と固溶体や金属間化合物といった合金 相を形成し、その組成比と温度によって合金相は多様に変化する。これらは全率固 溶体型、析出型、包晶反応型、共晶反応型、偏晶反応型といった合金状態図で開 示されている。
例えば、白金とコノ レトを組み合わせた合金の場合、その合金状態図は析出型に 属し、白金とコバルトは、いかなる組成比においても固溶した合金を形成する。また、 白金とコバルト以外にも、ニッケル、銅、銀、鉄、モルブデン及びマンガン等の多くの 元素と白金は、いかなる組成比においても固溶した合金を形成する(長崎誠三、平 林眞 編著 「二元合金状態図集」、ァグネ技術センター出版、第 2版、第 13、 112、 136、 152、 230、 212、 205頁)。
[0027] 本発明の「ニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種の金属と白金 力もなる白金合金」とは、ニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種の 金属と白金が固溶し、合金化したものであり、例えば金属白金の CuK o;線による X線 主回折ピークである(111)面間隔から同定可能である。
具体的には、金属白金の結晶構造は ASTMカード、 No. 4 0802に開示されて V、るように面心立方格子であり、 CuK a線による主回折ピークである(111)面間隔 は 2. 265オングストロームである。この金属白金と原子半径の異なる金属が固溶、合 金化することにより、金属白金の格子は膨張、収縮し面間隔は変化する。従って、 Cu K a線による X線主回折測定における回折ピークのシフトの有無、即ち、金属白金の (111)面間隔の変化の有無によって、合金化の有無を確認することができる。 [0028] なお、原子半径は最小原子間距離の半分であるが、金属白金と添加金属との原子 半径の序列は、例えば、化学便覧基礎偏 改定第 2版 (著作者 社団法人 日本ィ匕 学会、丸善株式会社 発行、昭和 52年 5月 20日第 2刷発行)の 1401頁一 1403頁 の表 11. 169 (原子間隔の一般値)から見積もることが出来る。
すなわち、 Pt— Pt (金属)の原子間隔は 2. 775オングストロームに対して、 Ni— Ni ( 金属)の原子間隔は 2. 492オングストローム、 Co— Co (金属)の原子間隔は 2. 506 オングストローム、 Cu— Cu (金属)の原子間隔は 2. 556オングストローム、 Fe— Fe (金 属)の原子間隔は 2. 482オングストロームであり金属白金の原子間隔に比較して小 さい。このため、ニッケル、コノ レト、銅、及び、鉄の群の中から選ばれた 1種の金属 が白金と固溶、合金化すると、金属白金の格子が収縮し面間隔は狭まる。
一方、 Ag— Ag (金属)の原子間隔は 2. 889オングストロームであり金属白金の原子 間隔に比較して大きいため、銀が白金と固溶、合金化すると、金属白金の格子が膨 張し面間隔が広がる。
[0029] 従って、添加元素の種類と白金含有量で異なる値を示すが、それは、記述の通り、 CuK o;線による X線主回折測定における回折ピークのシフトの有無、即ち、金属白 金の(111)面の面間隔の変化で同定が可能である。本発明の白金合金の場合、 (1 11)面間隔は、ニッケルの場合は 2. 120— 2. 264オングストローム、コバルトの場合 は 2. 130— 2. 264オングストローム、銅の場合は 2. 150— 2. 264オングストローム 、銀の場合は 2. 270—2. 320オングストローム、鉄の場合は 2. 170—2. 264オン グストロームである。
しかしながら、(111)面間隔が上記の範囲であっても、白金合金中の白金含有量 がモル比で 0. 4-0. 99を逸脱した場合には、本発明の効果は発揮されないことも ある。
[0030] 本発明で用いる導電性基材は、例えばニッケル、鉄、銅、チタンやステンレス合金 鋼が挙げられ、特にアルカリ性溶液に対して耐食性の優れたニッケルが好ましい。導 電性基材の形状は、特に限定されるものではなぐ一般に電解槽の電極に合せた形 状でよぐ例えば平板、曲板等が使用可能である。
また、本発明で用いる導電性基材は、多孔板が好ましぐ例えば、エキスパンドメタ ル、パンチメタル、網等が使用できる。
[0031] 本発明の水素発生用電極を製造する方法は、導電性基材上に、添加金属と白金 からなる白金合金を担持することが出来ればどの様な製造方法でもよい。例えば、電 気めつき法、分散めつき法、溶射法、熱分解法、アークイオンプレーティング法などを 用!/、ることができる。
しかし、これらの既知の製造方法を用いる場合、導電性基材上に添加金属と白金 からなる白金合金を担持するためには、製造条件や原料を鋭意検討し設定する必要 力 Sある。単に既知の製造方法を適用しただけでは、本発明が提供する、導電性基材 上に、添加金属と白金からなる白金合金を担持した水素発生用電極を製造すること は出来ない。
[0032] 以下、本発明が提供する、導電性基材上に、添加金属と白金カゝらなる白金合金を 担持した水素発生用電極を製造する具体的方法を、熱分解法を例に詳細に説明す る。
本発明で言う熱分解法とは、基材上に添加金属化合物溶液と白金化合物溶液を 塗布し、乾燥し、熱分解を行う一連の操作を言う。熱分解法で導電性基材上に触媒 を担持し水素発生用電極を製造する方法は、従来力 多くの提案が有るが、それを 単に適用しただけでは本発明の効果は得られない。
すなわち、前記熱分解法を実施するに際して、白金化合物溶液、乾燥温度、熱分 解温度の何れか 1つでも、本発明の提供する条件から逸脱した場合には、本発明の 提供する添加金属と白金からなる白金合金を担持した水素発生用電極を得る事は 出来ず、本発明の効果を得る事は出来ない。
[0033] まず、本発明での必須要件について以下に詳細に説明する。
本発明で用いる白金化合物溶液は、アンミン錯体を形成する白金化合物溶液であ ることが必須である。アンミン錯体を形成する白金化合物は、ジニトロジアンミン白金、 テトラアンミン白金、へキサアンミン水酸塩が知られており、これらの中から 1種又は 2 種以上を選択する。
溶媒は水でも良いし、アルコール等の有機溶液でも、これらを混合して使用してもよ い。 [0034] しかし、アンミン錯体を形成しな ヽ白金化合物、例えば、塩化白金、塩化白金酸等 の溶液を用いた場合は、本発明の効果を得る事はできな 、。
従来の熱分解方法による水素発生用電極の製造に際しては、アンミン錯体を形成 しない塩ィ匕白金酸等の白金化合物溶液が一般に使用されていた。しかし、添加金属 化合物溶液とアンミン錯体を形成しない白金化合物溶液を使用した場合は、他の要 件が例え本発明と同じであって、且つ、熱分解後に還元処理を行っても白金合金は 得られない。
これは、添加金属化合物溶液と塩化白金酸等の白金化合物溶液を塗布し熱分解 して得られる担持物では、添加金属と白金とが不均一に分布し、白金リッチな部分と 添加金属リッチな部分とに分かれてしまい、例え還元処理を実施しても白金と添加金 属の混合物或いは酸ィ匕物の混合物や複合酸ィ匕物の水素発生用電極し力得ることが 出来な 、ためであると推定可能である。
[0035] 白金化合物溶液を本発明が提供する白金のアンミン錯体を形成する溶液を使用す ると、白金のみならず、添加金属ともアンミン錯体を形成し、添加金属と白金とが均一 に分布し基材に担持される。このため、引き続く還元処理により添加金属と白金との 合金力 なる水素発生電極が得られると推定可能である。
[0036] また、アンミン錯体を形成する白金化合物を用いても、本発明の提供する添加金属 、すなわち、ニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種の金属でない 場合は、その他の要件が本発明と同一であっても、白金合金が得られないか、白金 合金が得られても水素発生用電極としての特性は劣り、本発明の効果を得る事はで きない。
例えば、添加金属にセリウムを用いて、他の要件は本発明と同一で水素発生用電 極を製造した場合には、担持物は白金とセリウム酸ィ匕物の混合物となり、本発明の効 果は得られない。
[0037] 本発明では、 200°C以下の温度で乾燥する事が必須である。
乾燥温度が 200°Cを超えると、前記添加金属化合物溶液及び Z又は前記アンミン 錯体を形成する白金化合物溶液から溶媒が急激に気化又は沸騰し、添加金属及び Z又は白金の一部、或いは、全部が基材力 浮いた状態となるため、引き続く還元 処理時に脱落したり、或いは、水素発生用電極としての使用時に脱落するため、本 発明の効果が得られない。
[0038] 本発明では、電気炉などを用い空気雰囲気中等で 200°Cを超え 700°C以下の温 度で熱分解を行う。
熱分解温度が 200°C以下では、基材と添加金属及び Z又は白金の一部、或いは、 全部との密着性が低下し、引き続く熱分解操作で脱落したり、或いは、水素発生用 電極としての使用時に脱落するため、本発明の効果が得られない。一方、熱分解温 度が 700°Cを超えると、白金がシンタリングしたり、添加金属と白金との合金が得られ ない等の理由で、水素過電圧性能が著しく劣るため、本発明の効果が得られない。
[0039] 前記熱分解操作後に基材に担持された添加金属と白金の存在状態は、必ずしも 明確ではないが、熱分解後の被膜の CuKひ線による X線回折パターンは、遷移金 属元素などの添加金属の回折パターン、白金金属の回折パターン、及び、添加金属 と白金合金との回折パターンのいずれとも異なり、非晶質状態を示す回折パターンを 示し(図 2)、熱分解後の被膜中の添加金属と白金は何れも金属状態ではなぐ価数 の高 、状態で存在して 、ると推察される。
そのため、本発明では、前記熱分解操作後に、添加金属と白金を金属状態まで還 元し且つ前記添加金属と白金を合金化するために、還元処理を行う事が必須である
[0040] 次に、本発明に必須ではないが、本発明の効果をより一層高めるために好ましい要 件について、以下に詳細に説明する。
導電性基材は、予め基材表面を粗面化することが好ましい。これは、粗面化によつ て接触表面積を大きくでき基材と担持物の密着性が向上するためである。
粗面化の手段としては、特に限定されず公知の方法、例えばサンドブラスト処理、 蓚酸、塩酸溶液などによるエッチング処理し、水洗、乾燥し用いることができる。
[0041] 本発明の水素発生用電極の製造方法に用いるアンミン錯体を形成する白金化合 物は、アンミン錯体が添加金属とも錯体を形成可能な中から選択することが好ましい アンミン錯体を形成する白金化合物の中でも、ジニトロジアンミン白金を用いると、 還元処理後の白金合金の結晶子径を例えば 200オングストローム以下まで微細化し 、反応比表面積が増大するため好ましい。これは、前記ジニトロジァミン白金は熱分 解温度が約 550°Cと高いために、熱分解中の白金の凝集を抑制し、熱分解後に添 加金属と白金が均一に混合した被膜が得られ、還元処理により微細な結晶子系の合 金が得られるためと推定可能である。
[0042] 一方、本発明の製造方法に用いる添加金属化合物としては特に限定されず、硝酸 塩、硫酸塩、塩化物、炭酸塩、酢酸塩、スルファミン酸塩などを用いることができる。 さらに、白金化合物、添加金属化合物を溶解させる場合の溶媒としては、担持物の 表面積を高めるためには、これらの原料が完全に溶解できるものが好ましぐ水ある いは硝酸、塩酸、硫酸、酢酸溶液などの無機酸、さらにメタノール、エタノール、プロ パノール、ブタノールなどの有機溶媒、あるいはこれらを混合物して用いることもでき る。
また、塗布液中へ基材金属の溶解を抑制する目的で塗布液の pHを調製して用い てもよく、担持物の表面積を高めるためにリシン、クェン酸、などの錯塩を添加し添カロ 金属を錯体化させても良い。
[0043] 前記化合物溶液を導電性基材に塗布する方法は、前記添加金属化合物溶液と前 記アンミン錯体を形成する白金化合物溶液とを別々に刷毛などを用いて導電性基材 に塗布してもよ!/、し、添加金属化合物と白金化合物との混合溶液を調製し刷毛など を用いて導電性基材に塗布してもよ 、。
また、前記の刷毛塗り以外にスプレー法、ディップコート法など、全ての既知の方法 を好適に用いることができる。
[0044] 塗布後の乾燥温度は 200°C以下の温度で 5— 60分間行えばよぐ 150°C以下の 乾燥温度が好ましい。
乾燥温度が高すぎる場合は、既述の通り本発明の効果は得られないが、乾燥する 温度の下限は、溶液が乾燥可能な温度に設定すればよぐ用いる溶媒により適宜選 択すれば良い。
[0045] 乾燥後の熱分解温度は 200°Cを超え 700°C以下の範囲で 5— 60分間行えば良い 力 好ましくは白金のアンミン錯体の熱分解温度以下で行うと、白金のシンタリングが 抑制され、水素過電圧がより一層低い水素発生用電極を得る事ができる。
例えば、ジニトロジァミン白金の熱分解温度は 550°Cであり、ジニトロジァミン白金 溶液を用いた場合、好ましい熱分解温度範囲は 200°Cを超え 550°C以下、さらに好 ましくは、 350°C以上 500°C以下である。
熱分解温度が低すぎると、既述の通り、引き続く還元処理中及び Z又は水素発生 時に担持物が剥がれやすい。一方、既述の通り、高すぎると白金のシンタリング等に より本発明の効果が得られない。
その他のアンミン錯体を形成する白金化合物を用いる場合も、 200°Cを超え 700°C 以下の範囲の中から、ジニトロジァミン白金溶液と同様に、適宜、熱分解温度を定め れば良い。
なお、ジニトロジァミン白金溶液を用いた場合、空気中で 700°Cを超える温度で熱 分解を行うことは、添加金属化合物と白金化合物を酸化するに十分な条件の 1つで あるが、この方法で得られる水発生用電極は過電圧性能に劣るなどのため、本発明 の効果は得られない。
[0046] 上記の塗布、乾燥、及び、熱分解の一連の操作を 1回又は数回繰り返す。熱分解 操作を繰り返す回数は特に限定されな ヽが、低 ヽ水素過電圧を得るためには還元 処理後の合金の担持量で 0. 5g/m2以上となるまで熱分解操作を繰り返すことが好 ましぐ lgZm2以上となるまで熱分解操作を繰り返すことがさらに好ましい。
[0047] 熱分解した後、担持物を金属状態に還元、合金化させることを目的とした還元処理 を行う。還元処理方法は特に限定されないが、ヒドラジン、ギ酸、蓚酸などの還元力 の強い物質との接触による化学還元法、白金と添加金属に対し、還元電位を与える 電気化学還元法を用いることができる。
[0048] 例えば、電気化学還元法は、添加金属と白金の還元に必要な電位を与える方法で ある。水溶液中の白金及び添加金属の標準電極電位はすでに開示されており(「電 気化学便覧」 第 5版 丸善出版 第 92— 95頁)、還元に必要な電位は標準電極電 位から見積もることが可能である。
熱分解後の担持物を金属状態に還元、合金化させるにあたり、電気化学的還元法 が本発明の好ましい実施形態の一つである事は、熱分解を実施し還元処理を行う前 の電極も本発明の好ましい水素発生用電極の形態であることを意味する。
[0049] 本発明においては、導電性基材上に、遷移金属元素と白金との非晶質物質が担 持されてなり、還元処理により白金と遷移金属元素との白金合金が担持される水素 発生用電極としたものでよぐさらに、上記した X線回折パターンの説明から、非晶質 物質の X線回折パターンが、白金と遷移金属元素との白金合金、遷移金属元素及び 白金の 、ずれとも異なる水素発生用電極としたものでょ 、。
この際、還元処理が、電気化学的還元であることが好ましぐさらに、水又はアル力 リ金属塩化物水溶液の電気分解するときの電気化学的還元であることが好ましい。 また、前記遷移金属はニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種の 金属元素であることが好まし 、。
[0050] この電極の製造方法としては、導電性基材上に、ニッケル、コバルト、銅、銀及び鉄 の群から選ばれる一種の金属化合物溶液とアンミン錯体を形成する白金化合物溶液 を塗布し、 200°C以下の温度で乾燥し、その後 200°Cを超え 700°C以下の温度で熱 分解する方法であればょ ヽ。
[0051] また、水又はアルカリ金属塩化物水溶液の電気分解方法において、この電極が水 素発生用電極として好適に用いられることは言うまでもない。
すなわち、熱分解を実施し還元処理を行う事なく水素発生用電極として使用を開 始した場合も、使用開始の初期段階において、担持物が電気化学的還元を受け、金 属状態に還元、合金化するため、本発明の効果が十分に発揮される。
従って、熱分解を実施し還元処理を行って担持物を白金合金としてから電解槽に 装着し水素発生用電極に供しても良いし、熱分解を実施し還元処理を行う事なく電 解槽に装着し水素発生用電極に供してもよい。何れの場合も、水素発生用電極とし ての使用開始段階において、既に白金合金となっている力 或いは、白金合金とな るかが相違するのみであり、その後の性能は同等である。
[0052] 熱分解実施後の担持物を、還元処理を行う事なく電解槽に装着し、水素発生用電 極として使用する場合、使用開始時の電解条件は何ら制限はなぐ従来の電解開始 条件がそのまま適用可能である。
例えば、イオン交換膜法食塩電解の水素発生用電極に供する場合、使用開始時 の電解液温度は 70— 90°C、陰極室の電解液濃度 (水酸ィ匕ナトリウム)は 20— 40重 量%、電流密度は 0. 1— lOkAZm2で有れば良い。
[0053] 還元処理を実施する前の担持物は、前記条件であれば、概ね 10分間以内で白金 合金が得られる。
例えば、イオン交換膜法食塩電解の水素発生用電極として使用するに当り、電解 液温度が 70— 80°C、陰極室の電解液濃度が 30— 33重量%、電流密度 0. 3kA/ m2で使用を開始した場合は、通電開始から 1一 2分間、電流が主に担持物の電気化 学的還元に使用され、水素発生反応はほとんど生じない。
しかし、担持物が還元され白金合金となった後は、電流は水素発生反応に使用さ れ、以後、極めて長期間に亘り低水素過電圧を維持しうる優れた水素発生用電極と なる。
[0054] なお、予め還元処理を行 、電解槽に装着した場合は、前記条件で使用開始した場 合、通電直後から低水素過電圧で水素発生反応が生じ、以後は、同等である。
電解槽装着前に還元処理を行うか否かは、電解槽装着前の還元処理コストと、電 解使用開始初期に水素発生がない事による生産ロスコストとを勘案し、適時、決めれ ば良い。
[0055] また、化学還元法はヒドラジン、ギ酸、蓚酸などの還元力の強 、物質で還元する方 法である。具体的には、数重量%程度の濃度に調製したヒドラジン水溶液中に添カロ 金属と白金が還元するまでの時間浸けて 、れば良!、。
[0056] この様にして得られる本発明の水素発生用電極は、水又は食塩などのアルカリ金 属塩化物水溶液の電気分解用途にぉ ヽて水素発生用電極として用いると、低水素 過電圧が得られると共に、陰極液中に鉄イオンを混入させない特別な工夫をすること なく低過電圧特性を長期間安定に維持し、且つ、停止や再起動操作時に触媒が剥 離や脱落を生じることもなぐすなわち水素過電圧性能と耐久性に極めて優れた水 素発生用電極である。
従って、水又は食塩などのアルカリ金属塩化物水溶液の電気分解工業分野にぉ 、 て、水素発生用電極を本発明が提供する水素発生用電極に変更するのみで、この 電気分解工業の所要エネルギーを容易に低減可能となる。 実施例
[0057] 以下、本発明の実施例を示すが、本発明はこれらの実施例により何等限定されるも のではない。
尚、各評価は下記に示す方法で実施した。
(結晶構造)
熱分解実施後の還元処理されて ヽな 、電極表面にっ 、て、 CuK a線による X線 回折装置 (型式 MXP3 マックサイエンス社製)を用いて、加速電圧 40kV、加速電 流 30mA、ステップ間隔 0. 04deg、サンプリング時間 3sec、測定範囲 2 Θ = 20— 60 ° の範囲を測定した。
また、還元処理された電極表面について、 CuK α線による X線回折装置 (型式 MX P3 マックサイエンス社製)を用いて、加速電圧 40kV、加速電流 30mA、ステップ間 隔 0. 04deg、サンプリング時間 3sec、測定範囲 2 Θ = 20— 60° の範囲を測定した 。回折図形カもブラッグの式より主回折ピークである(111)面間隔を計算した。
[0058] (担持量および白金含有量)
コバルト、銅、鉄を添加した電極は、担持部を王水溶解した後に ICP発光分析装置 (パーキンエルマ一社製、型式 optima3000)を用い、ニッケル、銀を添加した電極 について、還元処理後に EPMA (堀場製作所製、型式 EMAX— 5770W)を用いて 白金、添加金属元素の含有量を定量し担持量を求め、担持物中の白金含有量は以 下の式によって計算した。
白金含有量 =白金 Z (白金 +添加金属) モル比
[0059] (水電解試験)
32wt%水酸ィ匕ナトリウム水溶液の電解液 (容量約 0. 5L)を用いて、対極に Ni、室 温、電流密度 5kAZm2の条件下で 1週間水電解させた。水電解後の水素過電圧は 以下に示す方法で測定した。
[0060] (食塩電解試験)
還元処理された電極を 4cm X 7. 5cmに切り出し、小型試験槽でイオン交換膜法 食塩電解試験を実施した。
前記陰極と同一サイズの陽極としてペルメレック電極社製の DSE (登録商標)を用 い、フッ素系陽イオン交換膜として DuPont社製の N-962を使用し前記膜の有効電 解面積は前記陰極と同一とした。
陽極とフッ素系陽イオン交換膜を密着させ、フッ素系陽イオン交換膜と陰極間の距 離は 2mmとした。
[0061] 陽極室には、 310gZリットルの精製食塩水を供給し 200gZリットルで排出されるよ うに流量を調整した。
陰極室へは、純水又は鉄標準液(関東化学株式会社製、 Fe: lOOOmgZDを純水 で 20倍に希釈した水溶液 (以下、鉄含有水と略記する)を供給し、出口の水酸化ナト リゥム水溶液濃度が 32重量%となるように純水供給量或!、は鉄含有水供給量を調 整した。
陽極室及び陰極室は、内部ヒーターで 90°Cに調整し、電解電流密度は 5kAZm2 の一定で食塩電解試験を実施した。
なお、前記小型試験槽、電解液供給配管、ポンプ等の接液部分の全てを、アクリル やテフロン (登録商標)製の榭脂材料、チタン、ニッケル等の非鉄材料を用いることに より、陰極液に混入しうる鉄は鉄含有水中の鉄のみとなる対策を講じた。
[0062] 食塩電解中の水素過電圧は、下記に示す方法で測定した。
陰極液 (水酸ィ匕ナトリウム水溶液)中の鉄イオン濃度は ICPで測定した。
(水素過電圧)
水電解試験中の水素過電圧は、 32wt%水酸ィ匕ナトリウム水溶液の電解液 (容量 約 1L)を用いて、対極に Ni、温度 90°C、電流密度 5kAZm2条件で水電解をさせ力 レントインタラブター法により測定した。
食塩電解後の水素過電圧は、上記食塩電解試験時の陰極過電圧をカレントインタ ラブター法で測定した。
[0063] 実施例 1
導電性基材として、ニッケルエキスパンドメッシュ(10 X 10cm)を用い、粗面化処理 として、 10wt%の塩酸溶液を用いて温度 50°Cで 15分間エッチングした後、水洗、 乾燥した。
次いで、ジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度: 4. 5重量%、 溶媒: 8重量%硝酸溶液)と硝酸ニッケル 6水和物と水を用いて白金含有量がモル比 で 0. 5、混合液中の白金とニッケルの合計濃度が金属換算で 5wt%の塗布液を調 製した。
[0064] 次いで、この塗布液を前記ニッケルエキスパンドメッシュに刷毛を用い全面に塗布 し、熱風式乾燥機内で 80°C15分間乾燥後、箱型マツフル炉 (アドバンテック東洋製 型式 KM-600、内容積 27L)を用いて空気流通下のもと 500°Cで 15分熱分解した 。この一連の操作を 5回繰り返した。
次いで、還元処理を、 88°C、 32wt%水酸化ナトリウム水液中にて、—1. 0V (vs 1 N— NaOH、 Hg/HgO)の電位で 5分間行 、白金とニッケルが合金化した水素発生 用電極を作製し、上記の方法で評価し、その結果を表 1一 2に、還元処理後の X線回 折図を図 1に、熱分解処理後の還元処理前の X線回折図を図 2に示した。
[0065] 図 2より、還元処理前には基材のニッケルのピーク(4)と、添加金属であるニッケル と白金とからなる非晶質物質のブロードなピーク(5)が認められた。また図 1より、還 元処理後には基材のニッケルのピーク (4)と、添加金属であるニッケルと白金との白 金合金のピーク(2)が認められた。
非晶質物質のブロードなピーク(5)と白金合金のピーク(2)とは、ピークパターン及 びピーク位置(回折角)が明らかに異なっていることが分かる。
[0066] さらに、陰極室に純水を供給しながら食塩電解試験を 1ヶ月間実施したが、この間 の陰極過電圧は 70— 75mVで安定に推移した。また、この間の苛性中の鉄イオン濃 度は検出限界(lppm)以下であった。
電解試験終了後に前記陰極を取り出し、評価したところ、水素発生用電極の担持 物の剥離、あるいは使用した陽極とイオン交換膜に変色等の異常は何ら見られなか つた o
[0067] さらに、陰極室に鉄含有水を供給しながら食塩電解試験を 10日間実施したが、こ の間の陰極過電圧は 75— 80mVで安定に推移した。また、この間の苛性中の鉄濃 度は 6ppmであった。
この結果より、本発明の提供する水素発生用陰極は鉄イオンが陰極液中に混入す る IM食塩電解工業等にぉ 、て、特別な鉄イオン混入防止対策を行う事無く好ましく 使用できることが分力る。
[0068] 実施例 2— 8
添加金属化合物に硝酸コバルト 6水和物を用いて、塗布液の白金とコバルト含有量 を変更して用いた以外は実施例 1と同様の操作で実施した。
上記の方法で評価した結果を表 1一 2に、実施例 3、 6、 8について還元処理後の X 線回折図を図 1に示した。また、実施例 7については、熱分解処理後の還元処理前 の X線回折図を図 2に示した。
図 2より、実施例 7については、還元処理前には基材のニッケルのピーク (4)と、添 加金属であるコバルトと白金とからなる非晶質物質のブロードなピーク(5)が認められ た。
[0069] 実施例 9一 10
添加金属化合物に硝酸銅 3水和物を用い、塗布液の白金と銅含有量を変更して用 いた以外は実施例 1と同様の操作で熱分解し、濃度 5重量%のヒドラジン水溶液 100 ml中に入れ、室温で一晩還元処理した後、水洗、乾燥し水素発生用電極を作製し た。
上記の方法で評価し、その結果を表 1一 2に、実施例 10について還元処理後の X 線回折図を図 1に示した。また、実施例 10については、熱分解処理後の還元処理前 の X線回折図を図 2に示した。
[0070] 図 2より、実施例 10については、還元処理前には基材のニッケルのピーク(4)と、添 加金属である銅と白金とからなる非晶質物質のブロードなピーク (5)が認められた。 また図 1より、還元処理後には基材のニッケルのピーク (4)と、添加金属である銅と白 金との白金合金のピーク(2)が認められた。
非晶質物質のブロードなピーク(5)と白金合金のピーク(2)とは、ピークパターン及 びピーク位置(回折角)が明らかに異なっていることが分かる。
[0071] 実施例 11一 12
添加金属化合物に硝酸銀、硝酸鉄 6水和物を用い、熱分解時の温度を 300°Cで 行った以外は実施例 1と同様の操作で実施し水素発生用電極を作製した。
上記の方法で評価した結果を表 1一 2に示し、実施例 11につ 、て還元処理後の X 線回折図を図 1に示した。また、実施例 11、 12については、熱分解処理後の還元処 理前の X線回折図を図 2に示した。
[0072] 図 2より、実施例 11については、還元処理前には基材のニッケルのピーク (4)と、添 加金属である銀と白金とからなる非晶質物質のブロードなピーク(5)が認められた。 また図 1より、還元処理後には基材のニッケルのピーク (4)と、添加金属である銀と白 金との白金合金のピーク(2)が認められた。非晶質物質のブロードなピーク(5)と白 金合金のピーク(2)とは、ピークパターン及びピーク位置(回折角)が明らかに異なつ ていることが分かる。
同様に、実施例 12については、還元処理前には基材のニッケルのピーク (4)と、添 加金属である鉄と白金とからなる非晶質物質のブロードなピーク(5)が認められた。
[0073] [表 1]
Figure imgf000025_0001
[0074] [表 2] 水素過電圧 ( m V )
添加 水電解試験後 食塩電解試験中 施
金属 兀 ϋΒ兀 鉄イオン濃度 鉄イオン濃度 鉄イオン濃 S 例 処理前 処理後 0 . 0 3 5 0 . 0 3 5 6 p p m
p p m以下 p p m以下
1 N i 3 4 5 8 0 9 4 7 0 ~ 7 5 7 5 ~ 8 0
2 C o 3 3 5 7 8 9 0
3 C ο 3 2 5 7 6 9 1
4 C o 3 3 1 8 5 9 7
5 C o 3 4 8 7 5 8 1
6 C o 3 5 2 7 7 8 6
7 C o 3 4 5 7 0 8 2 7 2 ~ 7 6 7 8〜 8 0
8 C o 3 3 8 7 7 9 3 8 3 ~ 8 7 1 0 2 ~ 1 0 7
9 C u 3 4 1 8 8 9 2 7 7 ~ 8 6 8 6 ~ 9 3
1 0 C u 3 2 9 8 6 9 4
1 1 A g 3 1 5 6 7 9 0 8 0〜 8 8 9 3 ~ 9 8
1 2 F e 3 4 6 8 8 9 0 7 5 - 8 2 1 0 0 - 1 0 5
[0075] 比較例 1
遷移金属元素を添加しな力 た以外は実施例 1と同様の操作で行い水素発生用 電極を作製した。上記の方法で評価した結果を表 3— 4に、還元処理後の X線回折 図を図 3に示した。
図 3より、比較例 1については、基材のニッケルのピーク (4)と、白金のピーク(1)が 認められた。
さらに、陰極室に純水を供給しながら食塩電解試験を 1ヶ月間実施したが、この間 の陰極過電圧は 78— 80mVで推移し、本発明の提供する水素発生用陰極とほぼ同 等の性能を示した。この間の苛性中の鉄イオン濃度は検出限界 (0. 035ppm)以下 であった。
[0076] しかし、陰極室に鉄含有水を供給しながら食塩電解試験を 10日間実施したが、こ の間の陰極過電圧は 120— 125mVと本発明の提供する水素発生用陰極に比べ極 めて高い過電圧で推移した。また、この間の苛性中の鉄濃度は 6ppmであった。 従って、比較例 1の水素発生用陰極を陰極液に鉄が混入しうる IM食塩電解工業等 で使用する場合は、少なくとも陰極液への鉄混入防止対策を実施しない限り、十分 な低過電圧が得られな!/、ことが明らかである。 [0077] 比較例 2— 4
添加金属化合物に硝酸ニッケル 6水和物、硝酸コバルト 6水和物、硝酸銀を用い、 塗布液の白金と添加金属含有量を変更して用いた以外は実施例 1と同様の操作で 実施し水素発生用電極を作製した。上記の方法で評価した結果を表 3— 4に示した。
[0078] 比較例 5— 7
添加金属化合物に硝酸マンガン 6水和物、モリブデン酸アンモ-ゥム、バナジン酸 アンモ-ゥムを用い、塗布液の白金と添加金属含有量を変更して用いた以外は実施 例 1と同様の操作で実施し水素発生用電極を作製したが、還元処理後に添加金属 は全て溶出した。
上記の方法で評価した結果を表 3— 4に、比較例 7の還元処理後の X線回折図を 図 3に示した。図 3より、比較例 7については、基材のニッケルのピーク(4)と、白金の ピーク(1)が認められた。
[0079] 比較例 8
熱分解温度を 750°Cとした以外は実施例 1と同様の操作で行い水素発生用電極を 作製した。
上記の方法で評価した結果を表 3— 4に、還元処理後の X線回折図を図 4に示す 1S 金属白金と酸ィ匕ニッケルの混合物であった。すなわち、図 4より、比較例 8につい ては、基材のニッケルのピーク(4)と、酸化ニッケルのピーク(3)、白金のピーク(1)が 認められた。
[0080] 比較例 9
塩化白金酸水溶液(田中貴金属製、 Pt濃度 15wt%)を純水で希釈し Pt濃度 4. 5 重量%に調整した白金化合物溶液を用いた以外は、実施例 1と同様の操作で行!、 水素発生用電極を作製した。
上記の方法で評価した結果を表 3— 4に、還元処理後の X線回折図を図 5に示す 1S 金属白金と酸ィ匕ニッケルの混合物であった。すなわち、図 5より、比較例 9につい ては、基材のニッケルのピーク(4)と、酸化ニッケルのピーク(3)、白金のピーク(1)が 認められた。
[0081] [表 3] 白金含有量
比 P t (111)
添カロ モル比
較 面間隔 結晶構造
金属
例 塗布液 担持物 A
1 なし 1 . 0 0 1 . 0 0 2. 2 6 6 展曰
2 N i 0. 2 5 0. 2 6 2. 1 2 8 合金
3 C o 0. 3 0 0. 3 1 2. 1 8 1 合金
4 A g 0. 2 5 0. 2 5 2. 3 4 0 合金
5 M n 0. 5 0 1 . 0 0 2. 2 6 5 践日
6 M o 0. 5 0 1 . 0 0 2. 2 6 6 白
7 V 0. 5 0 1 . 0 0 2. 2 6 5 ^展白 ife
J良
8 N i 0. 5 0 0. 4 9 2. 2 6 7
+酸化ニッケル
¾:腐白金
9 N i 0. 5 0 0. 4 9 2. 2 6 6
+酸化ニッケル [表 4]
Figure imgf000028_0001
尚、本発明の実施例および比較例における還元処理後の担持量は、 5g/n ^— 15 gZm2の範囲であった。また、実施例 1一 12の X線回折図は、白金と添加金属の金 属又は酸ィヒ物状態が検出されず、金属白金の主回折ピークである(111)面間隔が 変化し、添加金属と金属白金が固溶した白金合金が得られたことが確認された。 また、電解運転中や停止'起動操作中における触媒の剥離'脱落の有無を試験す る目的で、水電解試験を停止した後に、水素発生用電極を電解液に浸漬した状態 で 1週間放置した後に、再度水電解試験を再開した。実施例 1一 12の水素発生用電 極は水電解試験停止前後の水素過電圧は同じであり、白金担持量は変化しなかつ た。
実施例 1一 12の結果より、本発明が提供する水素発生用電極は水素過電圧が低く 、電解液中に鉄イオンが存在しても水素過電圧の上昇は小さぐ電解運転中や停止 •起動操作による触媒脱落や水素過電圧上昇のない、非常に優れた特性を有するこ とが明らかである。
[0084] 一方、比較例 1の結果より、ニッケル、コバルト、銅、銀及び鉄がない実質的に白金 のみからなる水素発生用陰極は、陰極液中の鉄イオンが存在しない条件で使用する 場合の水素過電圧では、本発明が提供する水素発生用陰極と遜色がないものの、 電解液中に鉄イオンが存在すると水素過電圧が極めて高ぐ本発明の効果を得るこ とが出来な 、ことが明らかである。
比較例 2— 4の結果より、ニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種 の金属と白金力 なる白金合金であっても、本発明の白金含有量を下回ると極めて 短期間に水素過電圧が上昇したり、鉄イオンによる過電圧上昇が極めて大きくなるな ど、本発明の効果を得ることが出来ないことが明らかである。
比較例 5— 7の結果より、白金とニッケル、コバルト、銅、銀及び鉄の群から選ばれる 一種の金属以外の組み合せでは、本発明の効果を得ることが出来ないことが明らか である。
比較例 8— 9の結果より、ニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種 の金属と白金を組み合せても白金合金でない場合は、本発明の効果を得ることが出 来ないことが明らかである。また、白金化合物溶液にアンミン錯体を形成しない白金 化合物溶液を使用した場合、本発明の効果が得られないことが明らかである。
産業上の利用可能性
[0085] この水素発生用電極は、水又はアルカリ金属塩化物水溶液電解工業等で使用可 能な、水素過電圧が十分に低ぐ且つ、鉄イオンによる被毒の影響がなぐさらに、運 転中や起動 ·停止中にも水素過電圧の上昇や担持物の脱落がなく耐久性に優れる 。このため、水又はアルカリ金属塩ィ匕物水溶液が用いられた電解工業等に適用でき る。

Claims

請求の範囲
[I] 導電性基材と、前記導電性基材上に担持された白金合金と、を具備し、前記白金 合金は、白金と遷移金属元素を含有する水素発生用電極。
[2] 遷移金属元素が、ニッケル、コノ レト、銅、銀及び鉄の群から選ばれる一種の金属 であり、白金合金中の白金含有量力 モル比で 0. 40-0. 99の範囲である請求項 1 記載の水素発生用電極。
[3] 導電性基材上に、ニッケル、コノ レト、銅、銀及び鉄の群から選ばれる一種の金属 化合物溶液とアンミン錯体を形成する白金化合物溶液を塗布し、 200°C以下の温度 で乾燥し、その後 200°Cを超え 700°C以下の温度で熱分解した後、還元処理するこ とを特徴とする請求項 1記載の水素発生用電極の製造方法。
[4] 還元処理が、電気化学的還元であることを特徴とする請求項 3記載の水素発生用 電極の製造方法。
[5] 還元処理が、水又はアルカリ金属塩化物水溶液の電気分解するときの電気化学的 還元であることを特徴とする請求項 3記載の水素発生用電極の製造方法。
[6] 導電性基材と、前記導電性基材上に担持された非晶質物質および前記非晶質物 質を還元処理することにより形成された白金合金の少なくとも一方と、を具備し、前記 非晶質物質と前記白金合金は、遷移金属元素と白金を含有する水素発生用電極。
[7] 非晶質物質の X線回折パターンが、白金と遷移金属元素との白金合金、遷移金属 元素及び白金のいずれとも異なる請求項 6記載の水素発生用電極。
[8] 前記遷移金属はニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種の金属元 素である請求項 6記載の水素発生用電極。
[9] 還元処理が、電気化学的還元である請求項 6記載の水素発生用電極。
[10] 還元処理が、水又はアルカリ金属塩化物水溶液の電気分解するときの電気化学的 還元である請求項 6記載の水素発生用電極。
[II] 導電性基材上に、ニッケル、コノ レト、銅、銀及び鉄の群から選ばれる一種の金属 化合物溶液とアンミン錯体を形成する白金化合物溶液を塗布し、 200°C以下の温度 で乾燥し、その後 200°Cを超え 700°C以下の温度で熱分解することを特徴とする請 求項 6記載の水素発生用電極の製造方法。 水又はアルカリ金属塩化物水溶液の電気分解方法にお!、て、請求項 1又は請求 6記載の水素発生用電極を用いることを特徴とする電気分解方法。
PCT/JP2004/015797 2004-04-23 2004-10-25 水素発生用電極およびその製造方法並びにこれを用いた電解方法 WO2005103337A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2004800427868A CN1938453B (zh) 2004-04-23 2004-10-25 用于产生氢的电极及其制造方法和使用该电极的电解方法
US11/578,717 US8343329B2 (en) 2004-04-23 2004-10-25 Electrode for hydrogen generation, method for manufacturing the same and electrolysis method using the same
EP04821906.7A EP1739208B1 (en) 2004-04-23 2004-10-25 Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004128129 2004-04-23
JP2004-128129 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005103337A1 true WO2005103337A1 (ja) 2005-11-03

Family

ID=35197014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015797 WO2005103337A1 (ja) 2004-04-23 2004-10-25 水素発生用電極およびその製造方法並びにこれを用いた電解方法

Country Status (4)

Country Link
US (1) US8343329B2 (ja)
EP (1) EP1739208B1 (ja)
CN (1) CN1938453B (ja)
WO (1) WO2005103337A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123391A (ja) * 2017-02-02 2018-08-09 田中貴金属工業株式会社 水素発生用電極およびその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116924A1 (ja) * 2006-03-29 2007-10-18 Cataler Corporation 燃料電池用導電性カーボン担体、燃料電池用電極触媒、及びこれを備えた固体高分子型燃料電池
DE102008007605A1 (de) 2008-02-04 2009-08-06 Uhde Gmbh Modifiziertes Nickel
DE102009006403A1 (de) * 2009-01-28 2010-08-05 Süd-Chemie AG Vanadiumfreier Diesel-Oxidationskatalysator und Verfahren zu dessen Herstellung
JP2011032507A (ja) * 2009-07-30 2011-02-17 Sanyo Electric Co Ltd 電解用電極材料、電解用電極及びその製造方法
JP5693215B2 (ja) 2010-12-28 2015-04-01 東ソー株式会社 イオン交換膜法電解槽
EP2862960B1 (en) 2012-06-18 2020-03-04 Asahi Kasei Kabushiki Kaisha Bipolar alkaline water electrolysis unit
WO2015080518A1 (ko) 2013-11-28 2015-06-04 주식회사 엘지화학 중공 금속 입자, 이를 포함하는 전극촉매, 상기 전극촉매를 포함하는 전기화학 전지 및 중공 금속 입자의 제조방법
CN104047018A (zh) * 2014-06-20 2014-09-17 深圳市好美水科技开发有限公司 一种富氢电解的方法
CN104233366B (zh) * 2014-09-16 2017-01-25 武汉轻工大学 一种铱铜氧化物合金阴极催化剂的制备方法
WO2018151228A1 (ja) * 2017-02-15 2018-08-23 旭化成株式会社 陰極、その製造方法、およびそれを用いた電解槽、水素製造方法
US11142836B2 (en) 2018-11-29 2021-10-12 Industrial Technology Research Institute Catalyst material and method for manufacturing the same
US10914011B2 (en) 2018-11-30 2021-02-09 Industrial Technology Research Institute Membrane electrode assembly and method for hydrogen evolution by electrolysis
US10914012B2 (en) 2018-11-30 2021-02-09 Industrial Technology Research Institute Membrane electrode assembly and method for hydrogen evolution by electrolysis
US10900133B2 (en) 2018-11-30 2021-01-26 Industrial Technology Research Institute Nitride catalyst and method for manufacturing the same
US20220344140A1 (en) * 2019-09-18 2022-10-27 Shimadzu Corporation Ion analyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723083A (en) * 1980-04-22 1982-02-06 Johnson Matthey Co Ltd Cathode for electrochemical reaction in solution , production thereof and electrolytic tank using same
JPS6017085A (ja) * 1983-07-11 1985-01-28 Hodogaya Chem Co Ltd 耐腐食性活性陰極
JPH09206597A (ja) * 1996-01-30 1997-08-12 Aqueous Res:Kk 白金−鉄合金電極触媒及び燃料電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013074B2 (ja) 1978-02-20 1985-04-04 クロリンエンジニアズ株式会社 電解用陰極及びその製造法
JPS5948872B2 (ja) * 1978-02-20 1984-11-29 クロリンエンジニアズ株式会社 電解用陰極及びその製造法
JPS5925985A (ja) 1982-08-03 1984-02-10 Asahi Glass Co Ltd 水電解用高耐久性低過電圧陰極及びその製造法
US4584085A (en) 1983-05-31 1986-04-22 The Dow Chemical Company Preparation and use of electrodes
CA1246008A (en) 1983-05-31 1988-12-06 R. Neal Beaver Electrode with nickel substrate and coating of nickel and platinum group metal compounds
US4760041A (en) 1983-05-31 1988-07-26 The Dow Chemical Company Preparation and use of electrodes
US4572770A (en) 1983-05-31 1986-02-25 The Dow Chemical Company Preparation and use of electrodes in the electrolysis of alkali halides
DE3482124D1 (de) 1983-08-22 1990-06-07 Ici Plc Behandlung von kathoden fuer deren verwendung in elektrolytischen zellen.
JPS6056082A (ja) 1983-09-07 1985-04-01 Toyo Soda Mfg Co Ltd 塩化アルカリ水溶液の電解方法
JPS62163746A (ja) 1986-01-13 1987-07-20 Nippon Engeruharudo Kk 白金合金電極触媒およびそれを使用した酸電解質燃料電池用電極
GB8617325D0 (en) 1986-07-16 1986-08-20 Johnson Matthey Plc Poison-resistant cathodes
JPH0633492B2 (ja) 1987-06-29 1994-05-02 ペルメレック電極株式会社 電解用陰極及びその製造方法
EP0769576B1 (en) 1995-10-18 2000-09-20 Tosoh Corporation Low hydrogen overvoltage cathode and process for production thereof
JP3358465B2 (ja) 1995-10-18 2002-12-16 東ソー株式会社 低水素過電圧陰極およびその製造方法
EP1626108A1 (en) 1996-12-17 2006-02-15 Tosoh Corporation Low hydrogen overvoltage cathode and process for production thereof
JP3319370B2 (ja) 1996-12-17 2002-08-26 東ソー株式会社 低水素過電圧陰極とその製造方法
EP0952241B1 (en) * 1998-04-23 2001-09-05 N.E. Chemcat Corporation Supported Pt-Ru electrocatalyst, and electrodes, membrane-electrode assembly and solid polymer electrolyte fuel cells, using said electrocatalyst
JP4142191B2 (ja) 1999-02-24 2008-08-27 ペルメレック電極株式会社 活性化陰極の製造方法
TW200304503A (en) * 2002-03-20 2003-10-01 Asahi Chemical Ind Electrode for generation of hydrogen
AU2003289357A1 (en) * 2002-12-17 2004-07-09 Asahi Kasei Chemicals Corporation Electrode catalyst for oxygen reduction and gas diffusion electrode
US7485390B2 (en) * 2003-02-12 2009-02-03 Symyx Technologies, Inc. Combinatorial methods for preparing electrocatalysts
US7311946B2 (en) * 2003-05-02 2007-12-25 Air Products And Chemicals, Inc. Methods for depositing metal films on diffusion barrier layers by CVD or ALD processes
JP4676958B2 (ja) * 2003-08-18 2011-04-27 サイミックス ソリューションズ, インコーポレイテッド 白金−銅燃料電池触媒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723083A (en) * 1980-04-22 1982-02-06 Johnson Matthey Co Ltd Cathode for electrochemical reaction in solution , production thereof and electrolytic tank using same
JPS6017085A (ja) * 1983-07-11 1985-01-28 Hodogaya Chem Co Ltd 耐腐食性活性陰極
JPH09206597A (ja) * 1996-01-30 1997-08-12 Aqueous Res:Kk 白金−鉄合金電極触媒及び燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123391A (ja) * 2017-02-02 2018-08-09 田中貴金属工業株式会社 水素発生用電極およびその製造方法

Also Published As

Publication number Publication date
CN1938453A (zh) 2007-03-28
EP1739208A1 (en) 2007-01-03
EP1739208B1 (en) 2018-08-15
US20080029396A1 (en) 2008-02-07
CN1938453B (zh) 2010-10-20
US8343329B2 (en) 2013-01-01
EP1739208A4 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
CN101525755B (zh) 生成氢气用的阴极
WO2015098058A1 (ja) 水素発生用電極およびその製造方法並びにこれを用いた電気分解方法
JP5189781B2 (ja) 水素発生用電極
WO2005103337A1 (ja) 水素発生用電極およびその製造方法並びにこれを用いた電解方法
JP4882218B2 (ja) 水素発生用電極およびその製造方法並びにこれを用いた電解方法
JP5307270B2 (ja) 食塩電解に使用する水素発生用陰極
JP5768848B2 (ja) コアシェル触媒及びコアシェル触媒の製造方法
JP7324310B2 (ja) 電気分解用電極
JP2006104502A (ja) 電解用陰極
FI75872B (fi) Elektrod foer anvaendning i en elektrokemisk cell och dess framstaellning.
JP2018031034A (ja) 金属含有ナノ粒子担持電極および二酸化炭素還元装置
JP6515509B2 (ja) 水素発生用電極およびその製造方法並びにこれを用いた電気分解方法
JP2012035178A (ja) 触媒の製造方法及び触媒
EP3929331A1 (en) Electrode for electrolysis
JP6609913B2 (ja) 水素発生用電極およびその製造方法並びにこれを用いた電気分解方法
JP2006118022A (ja) 水素発生用電極、水素発生用電極前駆体およびこれらの製造方法並びにこれを用いた電解方法
JP4115575B2 (ja) 活性化陰極
JP3676554B2 (ja) 活性化陰極
JP6753195B2 (ja) 水素発生用電極の製造方法及び水素発生用電極を用いた電気分解方法
JP6878917B2 (ja) 水素発生用電極及びその製造方法並びにこれを用いた電気分解方法
JP6926782B2 (ja) 水素発生用電極及びその製造方法並びに水素発生用電極を用いた電気分解方法
JP3941898B2 (ja) 活性化陰極及びその製造方法
KR20200142463A (ko) 전기분해용 전극
Protsenko et al. ELECTROLYTIC PRODUCTION OF HYDROGEN USING ELECTRODEPOSITED ELECTROCATALYSTS: BASIC PRINCIPLES AND SOME RECENT CASE STUDIES

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480042786.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11578717

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004821906

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004821906

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11578717

Country of ref document: US