WO2005094121A1 - 圧電音響素子、音響装置及び携帯端末装置 - Google Patents

圧電音響素子、音響装置及び携帯端末装置 Download PDF

Info

Publication number
WO2005094121A1
WO2005094121A1 PCT/JP2004/019010 JP2004019010W WO2005094121A1 WO 2005094121 A1 WO2005094121 A1 WO 2005094121A1 JP 2004019010 W JP2004019010 W JP 2004019010W WO 2005094121 A1 WO2005094121 A1 WO 2005094121A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
acoustic device
piezoelectric acoustic
vibration
piezoelectric element
Prior art date
Application number
PCT/JP2004/019010
Other languages
English (en)
French (fr)
Inventor
Yasuharu Onishi
Yasuhiro Sasaki
Nozomu Toki
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US10/598,446 priority Critical patent/US7860259B2/en
Priority to CN2004800425557A priority patent/CN1926917B/zh
Priority to JP2006511389A priority patent/JP4662072B2/ja
Publication of WO2005094121A1 publication Critical patent/WO2005094121A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • Piezoelectric acoustic element Piezoelectric acoustic element, acoustic device, and portable terminal device
  • the present invention relates to a piezoelectric acoustic device using a piezoelectric element as a vibration source, an acoustic device including a piezoelectric acoustic device using a piezoelectric element as a vibration source, and a portable terminal device.
  • a piezoelectric acoustic element using a piezoelectric element as a vibration source has various advantages such as small size, light weight, low power consumption, and no leakage magnetic flux, and is therefore expected as an acoustic component of a portable terminal device.
  • the mounting volume can be significantly reduced as compared with a conventional electromagnetic acoustic element, it is considered to be one of the important technologies for further miniaturizing a mobile phone.
  • the sound source of the piezoelectric acoustic element is a diaphragm that bends as the piezoelectric element deforms. Therefore, in order to secure a general sound pressure level required for music reproduction, the diaphragm must be bent to a certain degree or more, and a large diaphragm is required.
  • a conventional piezoelectric acoustic element requires a diaphragm with a diameter of 20 mm to obtain a sound pressure of 90 dB when a voltage of 1 V is applied to the piezoelectric element.
  • the advantages of the piezoelectric acoustic device such as small size and light weight, were lost.
  • Piezoelectric acoustic devices have the following problems.
  • Japanese Patent Application Laid-Open No. 2-127448 discloses a technique for improving the frequency characteristics by using a carbon plate (expanded graphite plate) for the diaphragm. It is also known that the frequency characteristics can be improved to some extent by making the diaphragm elliptical.
  • the frequency sound pressure characteristics of the conventional piezoelectric acoustic device will be described. As described above, the conventional piezoelectric acoustic device uses the piezoelectric device as a vibration source.
  • Japanese Utility Model Application Laid-Open No. 63-81495 discloses a technique for flattening frequency sound pressure characteristics by embedding a piezoelectric vibrator in a soft foam.
  • Japanese Patent Application Laid-Open No. 60-208399 discloses a technique for flattening the frequency sound pressure characteristics by supporting the outer edge of a thin acoustic element with a foam having an adhesive layer formed on the surface. I have.
  • Patent Document 1 JP-A-2-127448
  • Patent Document 2 Japanese Utility Model Application Laid-Open No. 63-81495
  • Patent Document 3 JP-A-60-208399
  • the above-mentioned problems (1) and (2) can be improved by using the technology disclosed in Japanese Patent Application Laid-Open No. 2-127448 or an elliptical diaphragm. Is greatly deteriorated. Further, by using the techniques disclosed in Japanese Utility Model Application Laid-Open No. 63-81495 and Japanese Patent Application Laid-Open No. 60-208399, the frequency and sound pressure characteristics of the piezoelectric acoustic element can be reduced to some extent. However, the frequency and sound pressure characteristics cannot be improved to an extent sufficient to faithfully reproduce the original sound. In addition, the overall sound pressure characteristic is deteriorated. As described above, it has been difficult to realize a piezoelectric acoustic device having good frequency characteristics and frequency sound pressure characteristics, while having low power consumption in the j-type.
  • An object of the present invention is to realize a piezoelectric acoustic element that is small and lightweight, has low power consumption, and has excellent acoustic characteristics.
  • the piezoelectric acoustic element of the present invention that achieves the above object has at least one opening. It has a hollow housing, a piezoelectric element provided inside the housing, which bends when a voltage is applied, and a vibrating film provided at an opening of the housing, wherein the piezoelectric element and the vibrating film are elastic. When the piezoelectric element is bent, the vibration film vibrates to generate a sound.
  • One or both ends in the longitudinal direction of the piezoelectric element can be fixed to the inner surface of the housing directly or via a support member.
  • the support member may have elasticity or may not have elasticity.
  • Two or more vibration films and vibration transmission members are provided, respectively, and at least one of the thickness, material, and dimensions of the two or more vibration films and Z or the vibration transmission members can be different from each other.
  • the two vibrating films can be arranged to face each other with the piezoelectric element interposed therebetween, and the two vibrating films can be joined to the piezoelectric element via separate vibration transmitting members.
  • An elastic plate may be joined to the piezoelectric element, and the elastic plate joined to the piezoelectric element may be joined to the vibration film via a vibration transmitting member.
  • a piezoelectric element having a laminated structure in which conductor layers and piezoelectric material layers are alternately stacked can be used as a vibration source of the piezoelectric acoustic element of the present invention. Further, a panel can be used as the vibration transmitting member. Any one of polyethylene terephthalate film, polyetherenosulfone film, polyester film and polypropylene film can be used for the diaphragm.
  • the acoustic device or the portable terminal device of the present invention is equipped with the piezoelectric acoustic element of the present invention.
  • the piezoelectric acoustic device of the present invention since the piezoelectric element, which is the vibration source, and the vibration film are joined via the elastic vibration transmitting member, the bending action of the piezoelectric element and the elasticity restoration of the vibration transmitting member are achieved.
  • the vibrating membrane vibrates greatly in synergy with the action. Therefore, a sufficient sound pressure can be obtained by vibrating the vibrating membrane largely even if the bending of the piezoelectric element itself is small. Also, a sufficient sound pressure can be obtained by using a vibrating membrane having a small area. As a result, a piezoelectric acoustic device that is excellent in sound pressure characteristics and frequency characteristics while being thin and small, low power consumption, and low cost is realized.
  • FIG. 1A is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Embodiment 1.
  • FIG. 1B is a longitudinal sectional view showing a vibration displacement state of the vibration film.
  • FIG. 1C is a longitudinal sectional view showing a vibration displacement state of the vibration film.
  • FIG. 2 is a longitudinal sectional view showing a structure of a piezoelectric acoustic device of Embodiment 2.
  • FIG. 3 is a longitudinal sectional view showing a structure of a piezoelectric acoustic device of Embodiment 3.
  • FIG. 4 is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Embodiment 4.
  • FIG. 5 is a longitudinal sectional view showing a structure of a piezoelectric acoustic device of Embodiment 5.
  • FIG. 6 is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Embodiment 6.
  • FIG. 7 is an exploded perspective view showing a structure of a piezoelectric element included in the piezoelectric acoustic element of Embodiment 7.
  • FIG. 8 is a longitudinal sectional view showing the structure of a piezoelectric acoustic device of Embodiment 8.
  • FIG. 9A is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Example 1.
  • FIG. 9B is a transverse sectional view showing the structure of the piezoelectric acoustic device of Example 1.
  • FIG. 10 is an exploded perspective view showing the structure of the piezoelectric element shown in FIG. 9.
  • FIG. 11 is a side view of the vibration transmitting member shown in FIG. 9.
  • FIG. 12A is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Example 2.
  • FIG. 12B is a transverse sectional view showing the structure of the piezoelectric acoustic device of Example 2.
  • FIG. 13A is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Example 3.
  • FIG. 13B is a transverse sectional view showing the structure of the piezoelectric acoustic device of Example 3.
  • FIG. 14 is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Example 4.
  • FIG. 15 is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Example 5.
  • FIG. 16 is an exploded perspective view showing the structure of the piezoelectric element shown in FIG.
  • FIG. 17 is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Example 6.
  • FIG. 18 is an enlarged perspective view of the piezoelectric element and the elastic plate shown in FIG.
  • FIG. 19 is a longitudinal sectional view showing the structure of the piezoelectric acoustic device of Example 7.
  • FIG. 20 is an enlarged perspective view of the piezoelectric element and the elastic plate shown in FIG. 19.
  • FIG. 21 is a longitudinal sectional view showing the structure of a piezoelectric acoustic device of Example 8.
  • FIG. 22 is an enlarged perspective view of the panel shown in FIG. 21.
  • FIG. 23 is a longitudinal sectional view showing the structure of the acoustic element of Comparative Example 1.
  • FIG. 24 is a longitudinal sectional view showing the structure of an acoustic element of Comparative Example 2.
  • FIG. 25 is a longitudinal sectional view showing the structure of an acoustic element of Comparative Example 3.
  • FIG. 26 is a longitudinal sectional view showing the structure of an acoustic element of Comparative Example 4.
  • FIG. 1A to 1C are longitudinal sectional views showing a schematic structure of the piezoelectric acoustic device of the present example.
  • the piezoelectric acoustic device 1 of the present example has a hollow housing 5 having an opening 3 formed on a bottom surface 2 and one end (fixed end) of the housing 5 via a support member 6. It has a piezoelectric element 7 fixed to the inner surface and a vibrating membrane 8 stretched over the opening 3 of the housing 5. The other end (free end) of the piezoelectric element 7 is joined to the vibration film 8 via the vibration transmission member 9.
  • the support member 6 and the vibration transmitting member 9 are both formed of an elastic material.
  • a space 12 having a height (h) is provided between the upper surface 10 of the piezoelectric element 7 and the ceiling surface 11 of the housing 5.
  • the piezoelectric element 7 to which the voltage is applied repeats the expansion and contraction movement, and the expansion and contraction movement of the piezoelectric element 7 is transmitted to the vibration film 8 via the vibration transmission member 9, and the vibration film 8 vibrates up and down. More specifically, as shown in FIG. 1B, the piezoelectric element 7 to which the forward or reverse voltage is applied bends upward with the fixed end as a fulcrum, and deflects the vibrating membrane 8 in the same direction. At this time, space 12 The piezoelectric element 7 serves as a clearance for displacing the piezoelectric element 7 upward. On the other hand, as shown in FIG.
  • the piezoelectric element 7 to which the reverse or forward voltage is applied bends downward with the fixed end as a fulcrum, and deflects the vibrating membrane 8 in the same direction.
  • the vibrating membrane 8 continuously radiates (vibrates) up and down, and a sound is generated.
  • the piezoelectric acoustic element 1 of the present example the piezoelectric element 7 and the vibration film 8 are joined via the elastic vibration transmitting member 9. Therefore, the vibration transmitting member 9 is elastically deformed in accordance with the expansion and contraction of the piezoelectric element 7, and a repulsive action is generated.
  • the expansion and contraction movement of the piezoelectric element 7 is promoted, the amount of vibration displacement of the vibration film 8 is increased, and the sound pressure is improved. Further, since the weight of the piezoelectric element 7 to which the vibration transmitting member 9 is joined is increased, greater inertia acts when the piezoelectric element 7 expands and contracts, and the basic resonance frequency of the generated sound is reduced.
  • the solid end of the piezoelectric element 7 is fixed to the housing 5 via the elastic supporting member 6 and the free end is joined to the vibration film 8 via the elastic vibration transmitting member 9, Even if the housing 8 receives an impact due to a drop or the like, most of the impact is absorbed by the support member 6 and / or the vibration transmitting member 9, and the piezoelectric element 7 is prevented from being damaged.
  • the piezoelectric element 7 shown in FIG. 1 has a layer structure in which a lower insulating layer, a lower electrode layer (conductor layer), a piezoelectric material layer, an upper electrode layer (conductor layer), and an upper insulating layer are sequentially stacked.
  • a lower insulating layer a lower electrode layer (conductor layer), a piezoelectric material layer, an upper electrode layer (conductor layer), and an upper insulating layer are sequentially stacked.
  • zirconate / lead zirconate titanate is used as the material of the piezoelectric material layer, warpage after ceramic sintering can be reduced, and the reliability as a piezoelectric element improves. Further, a flattening step such as polishing after ceramic sintering can be omitted, which contributes to a reduction in manufacturing cost.
  • the sintering strain during the integral sintering of the electrode layer and the piezoelectric material layer is reduced, so that the piezoelectric element is manufactured by integral sintering. It is easier to do.
  • existing materials other than the above materials can be appropriately selected and used as the material of the piezoelectric material layer and the electrode layer.
  • a conventional piezoelectric acoustic element generates an emphasized sound at a specific frequency. This is because Q is high when a piezoelectric acoustic element is considered equivalent to an electric circuit element. Therefore, if the vibration film 8 shown in FIG. 1 is formed of a material having a low Q, the Q of the piezoelectric acoustic element can be suppressed, and the frequency can be made equal. Further, if the vibrating film 8 is formed of a material having high durability against displacement operation, a high sound pressure can be obtained. In addition, materials that are easy to process If the vibrating film 8 is formed by this, the variation in the film thickness is reduced and the quality is stabilized. Considering the above items comprehensively, polyethylene terephthalate film (PET film)
  • a polypropylene film (PP film) is suitable as the material of the diaphragm 8.
  • FIG. 2 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device of the present example.
  • the basic structure of the piezoelectric acoustic device 1 of the present example is the same as that of the piezoelectric acoustic device of the first embodiment. There are two differences. One is that the fixed end of the piezoelectric element 7 is fixed to the inner surface of the housing 5 via a support member 6 having no elasticity. Another is that the free end of the voltage element 7 is joined to the diaphragm 8. In the piezoelectric acoustic device 1 shown in FIG.
  • the piezoelectric acoustic element 1 of the present example has an advantage that a sufficient sound pressure can be ensured even when the area of the diaphragm 8 is small.
  • the piezoelectric element 7 is made longer, the amount of fluctuation of the free end is further increased, and the vibration film 8 can be vibrated more. Further, it can be understood that by making the length of the piezoelectric element 7 and the area of the vibrating membrane 8 a suitable combination, it is possible to reduce the size of the piezoelectric acoustic element while ensuring the required sound pressure.
  • FIG. 3 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device of this example.
  • the basic structure of the piezoelectric acoustic device 1 of the present example is the same as that of the piezoelectric acoustic device 1 of the first embodiment. The difference is that both ends in the longitudinal direction of the piezoelectric element 7 are fixed to the inner surface of the housing 5 via the support members 6a and 6b.
  • the piezoelectric acoustic device 1 of the present example has the same basic structure as the piezoelectric acoustic device of the first embodiment, and has the same operational effects.
  • the piezoelectric acoustic element of the present example is characterized in that both ends in the longitudinal direction of the piezoelectric element 7 are fixed to the inner surface of the housing 5. This has the advantage that the bonding strength between the child 7 and the housing 5 is further improved.
  • the longitudinal center of the piezoelectric device 7 is joined to the vibrating membrane 8 by adopting a configuration in which both ends of the piezoelectric device 7 in the longitudinal direction are fixed to the housing 5. ing.
  • the joining position between the piezoelectric element 7 and the vibrating membrane 8 is not limited to the illustrated position.
  • FIG. 4 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device of this example.
  • the basic structure of the piezoelectric acoustic device 1 of the present example is the same as that of the piezoelectric acoustic device of the first embodiment.
  • One is that two independent openings 3a and 3b are formed in the bottom surface 2 of the housing 5, and the vibrating membranes 8a and 8b are stretched in the openings 3a and 3b, respectively.
  • the other is that a single piezoelectric element 7 is bonded to two vibration films 8a and 8b via two independent vibration transmission members 9a and 9b, respectively.
  • the piezoelectric acoustic element 1 of the present example has the same basic structure as the piezoelectric acoustic element 1 of Embodiment 1, and has the same operational effects. Further, the piezoelectric element 7 of the present example is characterized in that the piezoelectric element 7 is joined to the two vibrating films 8a and 8b via two independent vibration transmitting members 9a and 9b, respectively. Since sound is generated from the plates 8a and 8b, there is an advantage that a higher sound pressure can be obtained. Further, the sound generated differs depending on the thickness, height, material, etc., of the two vibration transmitting members 9a, 9b, or the thickness, material, etc., of the two vibrating membranes 8a, 8b.
  • FIG. 5 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device of this example.
  • the piezoelectric acoustic device 1 of the present embodiment differs from the piezoelectric acoustic device of the fourth embodiment in that vibrating films 8a and 8b are stretched over two openings 3a and 3b formed in a housing 5. And common. The difference is that the two openings 3 a and 3 b are formed on two different surfaces of the housing 5.
  • the single piezoelectric element 7 is bonded to the two vibration films 8a and 8b via two independent vibration transmission members 9a and 9b, which is common to the piezoelectric acoustic element of the fourth embodiment. . Therefore, the operation and effect obtained by this structure are common to the piezoelectric acoustic device of the fourth embodiment.
  • the vibrating membranes 8a and 8b are arranged above and below (both sides) the piezoelectric element 7, so that the piezoelectric element 7 must be shorter than the piezoelectric acoustic element of the fourth embodiment. Is possible.
  • the vibration films 8a and 8b have the same area, the space required for disposing the two vibration films 8a and 8b is smaller than that of the piezoelectric acoustic device of the fourth embodiment.
  • the area of the vibrating membranes 8a and 8b included in the piezoelectric acoustic device 1 shown in FIGS. 4 and 5 is larger than that of the piezoelectric acoustic device 1 (the piezoelectric acoustic device 1 having one vibrating film 8) shown in FIG. Small.
  • the obtained sound pressure is at the same level as the piezoelectric acoustic device 1 shown in FIG.
  • FIG. 6 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device of this example.
  • the basic structure of the piezoelectric acoustic device 1 of the present example is the same as that of the piezoelectric acoustic device 1 of the first embodiment.
  • the difference is that an elastic plate 15 is attached to the lower surface of the piezoelectric element 7.
  • the piezoelectric acoustic device 1 of this example has the same basic structure as the piezoelectric acoustic device 1 of the first embodiment, and has the same operational effects.
  • the piezoelectric element 7 having the elastic plate 15 integrated therewith is lower than that of the same type of piezoelectric element having no elastic plate 15, the amount of displacement accompanying bending increases. .
  • the piezoelectric element 7 shown in FIG. 6 can make the vibrating film 8 vibrate more greatly than a piezoelectric element of the same type that does not include the elastic plate 15. From this perspective, piezoelectric It is desirable that the thickness of the elastic body 15 occupies 1/8 or more of the total thickness of the element 7 and the thickness of the elastic plate 15.
  • the piezoelectric element 7 with the elastic plate 15 integrated therein is heavier than a piezoelectric element of the same type without the elastic plate 15, larger inertia acts when the piezoelectric element 7 is bent, which is generated. The fundamental frequency of the sound is further reduced.
  • the elastic plate 15 is formed of a material having a large mass such as a metal, a larger inertia acts when the piezoelectric element 7 is bent, and the fundamental frequency is further reduced.
  • a material having a large mass such as a metal
  • a larger inertia acts when the piezoelectric element 7 is bent, and the fundamental frequency is further reduced.
  • the apparent elasticity of the piezoelectric element 7 increases, and the displacement of the piezoelectric element 7 when a voltage is applied increases.
  • the apparent elasticity of the piezoelectric element 7 is further increased, and the bonding area between the panel panel and the piezoelectric element 7 is reduced, thereby facilitating the manufacturing.
  • FIG. 7 schematically shows the structure of a piezoelectric element included in the piezoelectric acoustic element of this example.
  • the piezoelectric element 7 has a multilayer structure (laminated structure) in which a conductor layer 18 and a piezoelectric material layer 19 are alternately stacked between a lower insulating layer 16 and an upper insulating layer 17.
  • the piezoelectric element 7 having a multilayer structure as shown in FIG. 7 consumes less power and has a larger vibration displacement amount than the piezoelectric element 7 of the first embodiment. Therefore, the piezoelectric acoustic element of this example has an advantage that a sufficient sound pressure can be obtained with less power. Further, the piezoelectric element 7 having the structure shown in FIG. 7 prevents warpage and deformation during sintering due to the effect of promoting sintering of the conductive layer material during manufacturing. For this reason, high flatness can be obtained without performing a separate flattening process, and the elastic plate 15 and the like shown in FIG. 6 can be joined without gaps.
  • FIG. 8 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device of the present example.
  • the basic configuration of the piezoelectric acoustic device 1 of this example is the same as that of the piezoelectric acoustic device 1 of the first embodiment.
  • the vibration transmitting member 9 is a substantially conical coil panel.
  • the piezoelectric acoustic element 1 of the present example has the same basic structure as the piezoelectric acoustic element 1 of the first embodiment, and has the same operational effects.
  • the piezoelectric acoustic device 1 of this example has an advantage that the vibration displacement of the vibrating membrane 8 is large and the sound pressure is high.
  • the impact caused by the drop of the casing 5 or the like is absorbed by the coil panel 9, and the breakage of the piezoelectric element 7 is prevented.
  • the coil panel 9 can be replaced with a plate panel or a spiral panel. In any case, by selecting a panel having an appropriate panel coefficient, the vibration of the diaphragm 8 can be maximized and a high sound pressure can be obtained.
  • FIG. 9A is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device 1 of the present example
  • FIG. 9B is a transverse sectional view.
  • a piezoelectric device 7 having a structure shown in FIG. 10 is mounted as a vibration source inside a housing 5 made of 0.3 [mm] thick polypropylene resin.
  • the lower insulating layer 16 and the upper insulating layer 17 of the piezoelectric element 7 are 15 [mm] in length, 4 [mm] in width, and 50 [/ im] in thickness.
  • the piezoelectric material layer 19 has a length of 15 [mm], a width of 4 [mm], and a thickness of 300 [/ im].
  • the thickness of the upper and lower electrode layers (conductor layers) 18 is 3 m].
  • the outer dimensions of the piezoelectric element 7 are 15 [mm] in length, 4 [mm] in width, and about 0.4 [mm] in thickness.
  • the lower insulating layer 16, the upper insulating layer 17, and the piezoelectric material layer 19 are made of a lead dinoleconate titanate-based ceramic, and the electrode layer 18 is made of a silver / palladium alloy (weight ratio 7: 3). ing.
  • the piezoelectric element 7 is manufactured by the Darline sheet method, and is fired at 1100 ° C. in the air for 2 hours. Further, a silver electrode having a thickness of 8 [ ⁇ m] is formed as an external electrode for electrically connecting the electrode layer 18.
  • the piezoelectric material layer 19 is polarized in the thickness direction by the polarization process.
  • the electrode pad 20 formed on the surface of the upper insulating layer 17 is electrically connected to an 8 [zm] copper foil. Connected. Further, from the electrically connected electrode pads 20, two electrode terminal lead wires having a diameter of 0.2 [mm] are formed through solder portions having a diameter of l [mm] and a height of 0.5 [mm]. Has been withdrawn.
  • a conical coil panel shown in FIG. 11 is used as the vibration transmitting member 9 for joining the piezoelectric device 7 to the vibration film 8.
  • the conical coil panel has a height (h) of 0.4 [mm], a minimum coil radius (R1) of 2 [mm], and a maximum coil radius (R2) of S4 [mm], and is formed by stainless steel wire. ing.
  • the minimum coil radius surface of the coil panel is bonded to the lower surface 13 of the piezoelectric element 7 and the maximum coil radius surface is bonded to the vibration film 8 by an epoxy-based adhesive.
  • the diaphragm 8 shown in FIGS. 9A and 9B is a circular polyethylene terephthalate film having a diameter of 15 [mm] and a thickness of 0.1 [mm].
  • the piezoelectric acoustic element 1 of the present example having the above structure has a substantially elliptical planar shape as a whole, and has an overall length (L) of 23 [mm] and an overall width (W). 16 [mm].
  • the total height (H) is 1.5 [mm] (thickness of diaphragm 8 (0.1 mm) + height of conical coil spring 9 (0.4 mm) + thickness of piezoelectric element 7 (0.4 mm) + The height of the space 12 (0.3 mm) + the thickness of the housing 5 (0.3 mm)).
  • FIG. 12A is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device 1 of the present example
  • FIG. 12B is a schematic transverse sectional view.
  • the same piezoelectric device 7 as the piezoelectric device of the first embodiment is joined to the vibrating membranes 8a and 8b stretched over two openings 3a and 3b formed on the upper and lower sides of the housing 5. ing.
  • the vibrating membrane 8a stretched over the opening 3a is a polyethylene terephthalate film having a thickness of 0.1 l [mm], and is provided with a piezoelectric element via a conical coil spring (height: 0.4 mm) as the vibration transmitting member 9a. 7 is joined to the upper surface 10.
  • the vibrating membrane 8b stretched over the opening 3b is a polyethylene terephthalate film having a thickness of 0.05 [mm]. 7 is joined to the lower surface 13.
  • the diameter (10 [mm]) of the two vibrating membranes 8a and 8b is common.
  • the piezoelectric acoustic device 1 of the present example has substantially the same shape as the piezoelectric acoustic device of the first embodiment.
  • the diaphragms 8a and 8b of the piezoelectric acoustic element 1 of this example Since the diameter is smaller than the vibrating membrane provided in the piezoelectric acoustic device of Example 1 (the area of the vibrating membrane is small), the overall length (L) of the piezoelectric acoustic device 1 of this example is 20 [mm] and the overall width (W ) Is ll [mm].
  • the piezoelectric acoustic device 1 of the present example is smaller than the piezoelectric acoustic device of the first embodiment.
  • the total height (H) is 1.15 [mm] (thickness of diaphragm 8b (0.05 mm) + height of conical coil spring 9b (0.2 mm) + thickness of piezoelectric element 7 (0.4 mm) + cone Height of coil spring 9a (0.4 mm) + thickness of diaphragm 8a (0.1 mm)).
  • the housing 8 and the piezoelectric element 7 included in the piezoelectric acoustic element 1 of the present embodiment are the same as those included in the piezoelectric acoustic element of the first embodiment.
  • the conical coil spring included in the piezoelectric acoustic element 1 of this example is the same as the conical coil panel included in the piezoelectric acoustic element of Example 1 except for the size.
  • FIG. 13A is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device 1 of the present example
  • FIG. 13B is a transverse sectional view.
  • both ends in the longitudinal direction of the piezoelectric device 7 are joined to the foam rubber 21, the foam rubber 21 is joined to the support member 6, and the support member 6 is joined to the inner surface of the housing 5. ing. That is, both ends in the longitudinal direction of the piezoelectric element 7 are fixed to the housing 5 via the foamed rubber 21 and the support member 6, respectively.
  • the lower surface 13 substantially at the center in the longitudinal direction of the piezoelectric element 7 is joined to the vibration film 8 via a conical coil panel as the vibration transmission member 9.
  • a space 12 having a height of 0.3 [mm] is formed between the upper surface 10 of the piezoelectric element 7 and the ceiling surface 11 of the housing 5.
  • the piezoelectric element 7 is manufactured by the same material and the same manufacturing method as the piezoelectric element of the first embodiment.
  • the external dimensions of the piezoelectric element 7 are 20 [mm] in length, 4 [mm] in width, and 0.4 [mm] in thickness.
  • the same conical coil spring 9 as the conical coil panel of the first embodiment is used.
  • the diaphragm 8 is a circular polyethylene terephthalate film having a thickness of 0.1 [mm] and a diameter of 18 [mm].
  • the thickness of the housing 5 is 0.3 [mm].
  • the piezoelectric acoustic device 1 of this example has a substantially circular planar shape, and has a diameter
  • FIG. 1 is a longitudinal sectional view showing a schematic structure of a piezoelectric acoustic device 1 of an example.
  • a piezoelectric device 7 of the same type as the piezoelectric device of the first embodiment is joined to the vibrating membranes 8a and 8b extending over the openings 3a and 3b formed on the upper and lower sides of the housing 5. I have.
  • the vibrating membranes 8a and 8b stretched over the two openings 3a and 3b are a perfect circular polyethylene terephthalate film having a diameter of 10 [mm] and a thickness of 0.05 [mm].
  • the vibration transmitting member 9a interposed between the upper surface 10 of the piezoelectric element 7 and the vibration film 8a is a conical coil panel having a height of 0.2 [mm].
  • the vibration transmitting member 9b interposed between the lower surface 13 of the piezoelectric element 7 and the vibration film 8b is a conical coil spring having a height of 0.4 [mm].
  • the piezoelectric element 7 of this example is manufactured by the same material and the same manufacturing method as the piezoelectric element of Example 1.
  • the external dimensions of the piezoelectric element 7 are 12 [mm] in length, 4 [mm] in width, and 0.4 [mm] in thickness.
  • the conical coil springs as the vibration transmitting members 9a and 9b are the same as the conical coil springs of the second embodiment. Both ends of the piezoelectric element 7 are fixed to the inner surface of the housing 5 via the foamed rubber 21 and the support member 6 as in the third embodiment.
  • the piezoelectric acoustic device 1 of this example has a substantially circular planar shape as a whole, as in the piezoelectric acoustic device of Example 3, but has a diameter (L) of 14 [mm] and an overall height (H) of 1.1 l. [mm], which is smaller and thinner than the piezoelectric acoustic device of Example 3.
  • FIG. 15 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device 1 of the present example.
  • the piezoelectric acoustic device 1 of this example is characterized in that the piezoelectric device 7 having the structure shown in FIG. 16 is used.
  • the piezoelectric element 7 shown in FIG. 16 has a multilayer structure (laminated structure) in which conductive layers 18 and piezoelectric material layers 19 are alternately stacked between a lower insulating layer 16 and an upper insulating layer 17.
  • the upper and lower insulating layers 16 and 17 and the piezoelectric material layer 19 have a length of 16 [mm], a width of 4 [mm], and a thickness of 40 [xm].
  • the conductor layer 18 has a length of 16 [mm], a width of 4 [mm], and a thickness of 3 [zm].
  • the piezoelectric material layer 19 has eight layers and the conductor layer 18 has nine layers (for convenience, some layers are omitted in FIG. 16). Therefore, the external dimensions of the piezoelectric element 7 are 16 [mm] in length, 4 [mm] in width, and about 0.4 [mm] in thickness.
  • the lower insulating layer 16, the upper insulating layer 17, and the piezoelectric material layer 19 are made of lead dinoleconate titanate ceramic, and the conductor layer 18 is made of silver / palladium alloy (weight ratio 7: 3). . Further, the piezoelectric element 7 is manufactured by a green sheet method, and is fired at 1100 ° C. in the air for 2 hours. Calorie, each After a silver electrode for electrically connecting the conductor layer 18 was formed, the piezoelectric material layer 19 was polarized, and the electrode pads 20 formed on the surface of the upper insulating layer 17 were electrically connected to each other by a copper foil.
  • the outer shape and dimensions of the piezoelectric acoustic device 1 of the present embodiment are the same as those of the piezoelectric acoustic device of the first embodiment. That is, it has a substantially elliptical planar shape as a whole, its total length is 23 [mm], its overall height (H) is 1.5 [mm], and its overall width is 16 [mm].
  • FIG. 17 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device 1 of the present example.
  • a metal elastic plate 15 is joined to the lower surface 13 of the piezoelectric device 7 with an epoxy-based adhesive, and one end of the elastic plate 15 supports the support member 6 on the inner surface of the housing 5.
  • the lower surface of the other end of the elastic plate 15 is joined to the vibration film 8 via a conical coil panel as the vibration transmission member 9.
  • the piezoelectric element 7 has the same laminated structure as the piezoelectric element of the fifth embodiment.
  • the length (1) is 12 [mm]
  • the width (w) is 4 [mm]
  • the thickness (t) is 0.4 ⁇ mm].
  • the elastic plate 15 is 12 [mm]
  • the length (1) is 15 [mm]
  • the width (w) is 4 [mm]
  • the thickness (t) is 0.2 mm.
  • the quality is SUS304.
  • the piezoelectric acoustic device 1 of the present example has a substantially elliptical planar shape as a whole similarly to the piezoelectric acoustic device of the first embodiment.
  • the total length (L) is 23 [mm]
  • the total height (H) is 1.7 [mm]
  • the total width is 16 [mm]. It is to be noted that the total height (H) is increased by 0.2 [mm] as compared with the piezoelectric acoustic element of Example 1 due to the thickness of the elastic plate 15.
  • FIG. 19 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device 1 of the present example.
  • the piezoelectric acoustic device 1 of the present embodiment is characterized in that the piezoelectric device 7 is shorter than the piezoelectric acoustic device of the sixth embodiment.
  • a piezoelectric element having a length (1) of 8 [mm], a width (w) of 4 [mm], and a thickness (t) of 0.4 [mm] is used.
  • the structure other than the piezoelectric element 7 is the same as that of the piezoelectric element of the sixth embodiment. Same as the acoustic element.
  • FIG. 21 is a longitudinal sectional view showing a schematic structure of the piezoelectric acoustic device 1 of the present example.
  • the piezoelectric acoustic device 1 of this example is characterized in that a panel is used as a vibration transmitting member for joining the piezoelectric device 7 and the vibrating film 8.
  • this spring has a thin plate-shaped leg member 25 that connects the periphery of a disc-shaped upper member 22 having a diameter of 2 [mm] and the periphery of a ring-shaped lower member 23 having a diameter of 4 [mm].
  • the structure other than the vibration transmitting member 9 is the same as that of the piezoelectric acoustic device of Example 1, and the overall length (L) is 23 [mm], the overall height (H) is 1.5 [mm], and the overall width is 16 [mm]. is there.
  • FIG. 23 shows a schematic structure of the acoustic element 30 of Comparative Example 1.
  • the acoustic element 30 is a piezoelectric acoustic element.
  • a piezoelectric element 32 identical to the piezoelectric element of the first embodiment is mounted in a casing 31 of the same dimensions and made of the same material as the casing of the first embodiment. ing.
  • One end of the piezoelectric element 32 is fixed to the inner surface of the housing 31 via the same support member 33 as the support member of the first embodiment, and the other end is a free end.
  • a hole 35 is formed in the bottom 34 of the housing 31, and when a voltage is applied to the piezoelectric element 32, sound is emitted from the hole 35.
  • FIG. 24 shows a schematic structure of the acoustic element 30 of Comparative Example 2.
  • This acoustic element 30 is also a piezoelectric acoustic element and has basically the same structure as the acoustic element of Comparative Example 1. The difference is that both ends of the piezoelectric element 32 are fixed to the inner surface of the housing 31 and that a hole 35 is formed in the center of the bottom 34 of the housing 31.
  • FIG. 25 shows a schematic structure of the acoustic element 30 of Comparative Example 3.
  • This acoustic element 30 is also a piezoelectric acoustic element. And has basically the same structure as the acoustic element of Comparative Example 1. The difference is that a metal diaphragm 37 is attached to the free end of the piezoelectric element 32 via a connecting member 36.
  • FIG. 26 shows a schematic structure of the acoustic element 30 of Comparative Example 4.
  • the acoustic element 30 is an electromagnetic acoustic element having a permanent magnet 38, a voice coil 39, and a diaphragm 40.
  • a current is input to the voice coil 39 via the electric terminal 41, a magnetic force is generated, and the diaphragm 40 is vibrated by the generated magnetic force to generate a sound.
  • the piezoelectric acoustic device of the present invention has a wide frequency band.
  • the piezoelectric acoustic elements of Example 2 and Example 4 have two fundamental resonance frequencies, and the frequency band is expanded.
  • Example 18 A voltage of 1 [V] was applied to the piezoelectric acoustic element of Example 8 and the acoustic element of Comparative Example 1 to 4. The following results were obtained when the sound pressure level was measured.
  • the piezoelectric acoustic device of the present invention can reproduce a sufficiently high sound pressure.
  • the sound pressure level was 91 [dB]. That is, despite the applied voltage of 1/2, a sound pressure of almost the same level as that of the piezoelectric acoustic elements of Examples 13 to 13 was obtained.
  • Comparative Example 4 More than 25% and up to 40%
  • the piezoelectric acoustic device of the present invention has flat sound pressure frequency characteristics.
  • Example 18 The piezoelectric element of Example 18 and the acoustic element of Comparative Example 14 were naturally placed 50 cm directly above. The sound pressure level was measured before and after dropping, and the rate of change was calculated. The following results were obtained.
  • Example 3 More than 3% and 10% or less
  • Example 8 More than 3% and 10% or less
  • the piezoelectric acoustic device of the present invention has excellent impact resistance.
  • the piezoelectric acoustic device of Example 18 and the acoustic device of Comparative Example 14 were driven continuously for 100 hours, the sound pressure level was measured before and after that, and the rate of change was calculated. Obtained.
  • Example 1, 2 More than 3% and 10% or less
  • Example 3-8 Within 3%
  • the piezoelectric acoustic device of the present invention has sufficient durability and high reliability.
  • Example 18 Each of the piezoelectric acoustic device of Example 18 and the acoustic device of Comparative Example 14 were manufactured, and the sound pressure level when a voltage of 1 [V] was applied to each was measured, and the maximum value and the minimum value were measured. The following results were obtained when the deviation rate was calculated.
  • Example 3 Greater than 5% and within 15%
  • Example 4-1 7 Within 5%
  • Example 8 Greater than 5% and within 15%
  • the piezoelectric acoustic element of the present invention has little variation between products. Help.
  • Table 1 showing the above measurement results 116 is shown.
  • measurement result 1 “ ⁇ ”indicates that the basic resonance frequency is 300 [Hz] or less, and“ ⁇ ”indicates that the fundamental resonance frequency is greater than 300 [Hz] and 500 [Hz] or less than“ ⁇ ”and 700 [Hz].
  • the case where the frequency is larger than 1000 [Hz] is indicated by " ⁇ ”
  • X the case where it is higher than 1000 [Hz]
  • the piezoelectric acoustic element of the present invention has various advantages such as thinness, small size, low voltage drive, high sound pressure reproduction, wide frequency characteristics, low cost, and high reliability. It can be seen that Further, it can be seen that the piezoelectric acoustic device of the present invention can be applied to a wide range of fields including acoustic devices and portable terminal devices. For example, when mounted on an audio device, a small, high-quality audio device is realized.
  • the piezoelectric acoustic element of the present invention instead of the electromagnetic acoustic element mounted on a conventional mobile phone or PDA (Personal Digital Assistance), the size of the mobile phone or PDA can be reduced and the operating time can be extended. It is possible to achieve higher sound quality while planning.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

本発明の圧電音響素子1は、開口部3を有する中空の筐体5と、筐体5の内部に設けられ、電圧が印加されると屈曲する圧電素子7と、筐体5の開口部3に設けられた振動膜8とを有し、圧電素子7と振動膜8とが弾性を有する振動伝達部材9を介して接合されている。

Description

明 細 書
圧電音響素子、音響装置及び携帯端末装置
技術分野
[0001] 本発明は、圧電素子を振動源とする圧電音響素子と、圧電素子を振動源とする圧 電音響素子を備えた音響装置及び携帯端末装置とに関するものである。
背景技術
[0002] 圧電素子を振動源とする圧電音響素子は、小型軽量で消費電力が少なぐ漏洩磁 束も無いといった様々な利点を有することから携帯端末機器の音響部品として期待さ れている。特に、従来の電磁式音響素子に比べて実装容積を大幅に削減できるので 、携帯電話をさらに小型化するための重要な技術の一つと考えられている。
[0003] しかし、圧電音響素子の音源は、圧電素子の変形に伴って屈曲する振動板である 。従って、音楽再生に必要とされる一般的な音圧レベルを確保するためには、振動 板をある程度以上に屈曲させる必要があり、大型の振動板が必要となる。例えば、従 来の圧電音響素子では、圧電素子に 1[V]の電圧を印加した際に 90[dB]の音圧を得 るために、直径 20[mm]の振動板が必要であり、小型軽量といった圧電音響素子の 利点が損なわれる結果となっていた。
[0004] 次に、従来の圧電音響素子の周波数特性について述べる。圧電音響素子は、次 のような問題を有する。
(1)可聴域に基本共振周波数が現れる。
(2)共振周波数近傍において突出した音圧を発生させる周波数特性を有する。
(3)圧電素子の圧電材料として用いられているセラミックは剛性が高いので、基本共 振周波数が高くなり、低周波数域で十分な音圧が得られない。
[0005] 原音を忠実に再生するためには、基本共振周波数を 500[Hz]以下に調整する必 要がある。そこで、特開平 2— 127448号公報には、振動板に炭素板 (膨張黒鉛板) を使用することによって、上記周波数特性を改善する技術が開示されている。また、 振動板を楕円形にすることによって周波数特性がある程度改善されることも知られて いる。 [0006] 次に、従来の圧電音響素子の周波数音圧特性について述べる。従来の圧電音響 素子が圧電素子を振動源として利用していることは前述の通りである。圧電素子の圧 電材料には、弾性振動における機械的エネルギーの損失が小さいセラミック材料等 が一般的に用いられている。このため、共振点近傍では非常に高い音圧が得られる が、共振点以外の周波数域では振幅変化の大きな凸凹した周波数音圧特性となつ てしまう。周波数音圧特性の振幅変化の大きいと、特定周波数の音のみが強調され てしまい音質が悪化する。そこで、実開昭 63— 81495号公報には、軟質発泡体内に 圧電振動子を埋設することによって、周波数音圧特性を平坦化させる技術が開示さ れている。また、特開昭 60-208399号公報には、表面に接着剤層が形成された発 泡体によって薄型音響素子の外縁を支持することによって、周波数音圧特性を平坦 化させる技術が開示されている。
特許文献 1 :特開平 2 - 127448号公報
特許文献 2 :実開昭 63— 81495号公報
特許文献 3:特開昭 60 - 208399号公報
発明の開示
発明が解決しょうとする課題
[0007] 特開平 2— 127448号公報に開示されている技術や楕円形の振動板を用レ、ること によって、上記(1) (2)の問題を改善することはできるが、音圧特性が大きく劣化して しまう。また、実開昭 63-81495号公報や特開昭 60-208399号公報に開示されて レ、る技術を用いることによって、圧電音響素子の周波数音圧特性をある程度平坦ィ匕 することはできる。しかし、原音を忠実に再生するために十分な程度にまで周波数音 圧特性を改善することはできない。また、全体的な音圧特性の劣化を招いてしまう。 以上のように j、型で低消費電力でありながら良好な周波数特性及び周波数音圧特 性を有する圧電音響素子の実現は困難であった。
課題を解決するための手段
[0008] 本発明の目的は、小型軽量、かつ、低消費電力で、優れた音響特性を有する圧電 音響素子を実現することにある。
[0009] 上記目的を達成する本発明の圧電音響素子は、少なくとも 1つの開口部を有する 中空の筐体と、筐体の内部に設けられ、電圧が印加されると屈曲する圧電素子と、筐 体の開口部に設けられた振動膜とを有し、圧電素子と振動膜とが弾性を有する振動 伝達部材を介して接合され、圧電素子が屈曲すると振動膜が振動して音が発生する 。圧電素子の長手方向一端又は両端は、直接又は支持部材を介して筐体の内面に 固定することができる。支持部材は、弾性を有するものであっても、弾性を有さないも のであってもよい。
[0010] 振動膜及び振動伝達部材をそれぞれ 2以上設け、 2以上の振動膜同士及び Z又 は振動伝達部材同士の厚み、素材、寸法の少なくとも 1つを互いに異ならせることが できる。圧電素子を挟んで 2枚の振動膜を対向するように配置し、それら 2つの振動 膜を別々の振動伝達部材を介して圧電素子に接合させることができる。圧電素子に 弾性板を接合し、圧電素子に接合された弾性板を振動伝達部材を介して振動膜に 接合させることもできる。
[0011] 導体層と圧電材料層とが交互に重ねられた積層構造を有する圧電素子を本発明 の圧電音響素子の振動源として用いることができる。また、振動伝達部材にはパネを 用いることができる。振動膜には、ポリエチレンテレフタレートフィルム、ポリエーテノレ サルフォンフィルム、ポリエステルフィルム、ポリプロピレンフィルムのいずれかを用い ること力 Sできる。
[0012] 本発明の音響装置又は携帯端末装置には、上記本発明の圧電音響素子が搭載さ れる。
[0013] 本発明の圧電音響素子は、振動源である圧電素子と振動膜とが弾性を有する振動 伝達部材を介して接合されているので、圧電素子の屈曲作用と振動伝達部材の弾 性復元作用とが相乗して振動膜が大きく振動する。従って、圧電素子の屈曲自体が 小さくても振動膜を大きく振動させて十分な音圧を得ることができる。また、面積の小 さな振動膜を用いても十分な音圧が得られる。この結果、薄型小型、低消費電力、低 コストでありながら、音圧特性や周波数特性に優れた圧電音響素子が実現される。ま た、かかる効果を有する圧電音響素子を音響装置や携帯端末装置の音響部品とし て採用すれば、これら装置の小型薄型化、低消費電力化、高音質化等が実現される [0014] 上記及びそれ以外の本発明の目的、特徴及び利点は、下記の記載及び本発明の 一例を示す添付図面の参照によって明らかになる。
図面の簡単な説明
[0015] [図 1A]実施形態 1の圧電音響素子の構造を示す縦断面図である。
[図 1B]振動膜の振動変位状態を示す縦断面図である。
[図 1C]振動膜の振動変位状態を示す縦断面図である。
[図 2]実施形態 2の圧電音響素子の構造を示す縦断面図である。
[図 3]実施形態 3の圧電音響素子の構造を示す縦断面図である。
[図 4]実施形態 4の圧電音響素子の構造を示す縦断面図である。
[図 5]実施形態 5の圧電音響素子の構造を示す縦断面図である。
[図 6]実施形態 6の圧電音響素子の構造を示す縦断面図である。
[図 7]実施形態 7の圧電音響素子が備える圧電素子の構造を示す分解斜視図である
[図 8]実施形態 8の圧電音響素子の構造を示す縦断面図である。
[図 9A]実施例 1の圧電音響素子の構造を示す縦断面図である。
[図 9B]実施例 1の圧電音響素子の構造を示す横断面図である。
[図 10]図 9に示されている圧電素子の構造を示す分解斜視図である。
[図 11]図 9に示されている振動伝達部材の側面図である。
[図 12A]実施例 2の圧電音響素子の構造を示す縦断面図である。
[図 12B]実施例 2の圧電音響素子の構造を示す横断面図である。
[図 13A]実施例 3の圧電音響素子の構造を示す縦断面図である。
[図 13B]実施例 3の圧電音響素子の構造を示す横断面図である。
[図 14]実施例 4の圧電音響素子の構造を示す縦断面図である。
[図 15]実施例 5の圧電音響素子の構造を示す縦断面図である。
[図 16]図 15に示されている圧電素子の構造を示す分解斜視図である。
[図 17]実施例 6の圧電音響素子の構造を示す縦断面図である。
[図 18]図 17に示されている圧電素子及び弾性板の拡大斜視図である。
[図 19]実施例 7の圧電音響素子の構造を示す縦断面図である。 園 20]図 19に示されている圧電素子及び弾性板の拡大斜視図である。
[図 21]実施例 8の圧電音響素子の構造を示す縦断面図である。
[図 22]図 21に示されているパネの拡大斜視図である。
[図 23]比較例 1の音響素子の構造を示す縦断面図である。
[図 24]比較例 2の音響素子の構造を示す縦断面図である。
[図 25]比較例 3の音響素子の構造を示す縦断面図である。
[図 26]比較例 4の音響素子の構造を示す縦断面図である。
符号の説明
1 圧電音響素子
2 底面
3 開口部
5 筐体
6 支持部材
7 圧電素子
8 振動膜
9 振動伝達部材
10 上面
11 天井面
12 空間
13 下面
15 弾性板
16 下部絶縁層
17 上部絶縁層
18 導体層
19 圧電材料層
20 電極パッド
21 発泡ゴム
22 上部材 23 下部材
25 脚部材
30 音響素子
31 筐体
32 圧電素子
33 支持部材
34 底
35 孔
36 連結部材
37 振動板
38 永久磁石
39 ボイスコィ
40 振動板
41 電極端子
発明を実施するための最良の形態
[0017] (実施形態 1)
以下、本発明の圧電音響素子の実施形態の一例について説明する。図 1A—図 1 Cは、本例の圧電音響素子の概略構造を示す縦断面図である。図 1 Aに示すように、 本例の圧電音響素子 1は、底面 2に開口部 3が形成された中空の筐体 5と、支持部材 6を介して一端(固定端)が筐体 5の内面に固定された圧電素子 7と、筐体 5の開口部 3に張られた振動膜 8とを有する。圧電素子 7の他端(自由端)側は、振動伝達部材 9 を介して振動膜 8に接合されている。支持部材 6及び振動伝達部材 9は、共に弾性 材料によって形成されている。また、圧電素子 7の上面 10と筐体 5の天井面 11との間 には、高さ(h)の空間 12が設けられている。
[0018] 電圧が印加された圧電素子 7は伸縮運動を繰り返し、圧電素子 7の伸縮運動は振 動伝達部材 9を介して振動膜 8に伝搬され、振動膜 8は上下に振動する。より具体的 には、図 1Bに示すように、順方向又は逆方向の電圧が印加された圧電素子 7は固 定端を支点として上方に屈曲し、振動膜 8を同方向に撓ませる。このとき、空間 12は 、圧電素子 7が上方へ変位するためのクリアランスとしての役割を果たす。一方、図 1 Cに示すように、逆方向又は順方向の電圧が印加された圧電素子 7は固定端を支点 として下方に屈曲し、振動膜 8を同方向に撓ませる。このように、圧電素子 7に交流電 圧が印加されると、振動膜 8が上下に連続して橈んで(振動して)、音が発生する。こ こで、本例の圧電音響素子 1では、圧電素子 7と振動膜 8とが弾性を有する振動伝達 部材 9を介して接合されている。従って、圧電素子 7の伸縮運動に伴って振動伝達部 材 9が弾性変形し、反発作用が発生する。この結果、圧電素子 7の伸縮運動が助長 され、振動膜 8の振動変位量が増大し、音圧が向上する。さらに、振動伝達部材 9が 接合された圧電素子 7は、重量が増加しているので、圧電素子 7が伸縮運動する際 により大きな慣性が働き、発生する音の基本共振周波数が低減される。カロえて、圧電 素子 7の固体端が弾性を有する支持部材 6を介して筐体 5に固定され、 自由端が弾 性を有する振動伝達部材 9を介して振動膜 8に接合されているので、落下等によって 筐体 8が衝撃を受けても、その衝撃の多くは支持部材 6及び/又は振動伝達部材 9 によって吸収され、圧電素子 7の破損が回避される。
[0019] 図 1に示す圧電素子 7は、下部絶縁層、下部電極層(導体層)、圧電材料層、上部 電極層(導体層)、上部絶縁層が順次積層された層構造を有する。圧電材料層の材 料に、ジルコン酸ゃジルコン酸チタン酸鉛を使用した場合、セラミック焼結後の反りを 低減することができ、圧電素子としての信頼性が向上する。また、セラミック焼結後の 研磨等の平坦化工程を省略することもでき、製造コストの低減に寄与する。また、電 極層の材料に、銀や銀/パラジウム合金を使用した場合、電極層と圧電材料層との 一体焼結時の焼結歪みが低減されるので、一体焼結によって圧電素子を製造し易く なる。もっとも、圧電材料層や電極層の材料には、上記材料以外の既存の材料を適 宜選択して使用することができる。
[0020] 従来の圧電音響素子は、特定周波数において強調された音を発生する。これは、 圧電音響素子を電気回路素子と等価と見た際の Qが高いためである。そこで図 1に 示す振動膜 8を Qの低い材料によって形成すれば、圧電音響素子の Qを抑制し、周 波数の等音化を図ることができる。また、変位動作に対する耐久性が高い材料によつ て振動膜 8を形成すれば、高い音圧を得ることができる。さらに、加工が容易な材料 によって振動膜 8を形成すれば、膜厚のバラツキが少なくなり、品質が安定する。以 上の事項を総合的に勘案すると、ポリエチレンテレフタレートフィルム(PETフィルム)
)、又はポリプロピレンフィルム(PPフィルム)が振動膜 8の材料として適してレ、る。
[0021] (実施形態 2)
次に、本発明の圧電音響素子の実施形態の他例について説明する。図 2は、本例 の圧電音響素子の概略構造を示す縦断面図である。図 2に示すように、本例の圧電 音響素子 1の基本構造は、実施形態 1の圧電音響素子と同一である。異なるのは、 次の 2点である。一つは、圧電素子 7の固定端が弾性を有さない支持部材 6を介して 筐体 5の内面に固定されている点である。他の一つは、電圧素子 7の自由端が振動 膜 8に接合されている点である。尚、図 1に示す圧電音響素子 1では、圧電素子 7の 長手方向略中央と自由端との間における任意の位置が振動膜 8に接合されている。 固定端が筐体 5に固定された圧電素子 7においては、 自由端の変位量が最も大きい 。従って、自由端を振動膜 8に接合することによって振動膜 8をより効果的に振動させ ること力 Sできる。すなわち、本例の圧電音響素子 1は、振動膜 8の面積が小さくても十 分な音圧を確保できるといった利点を有する。
[0022] 以上の説明より、圧電素子 7を長尺化すれば、自由端の変動量がさらに増大し、振 動膜 8をより大きく振動させることが可能であることが理解できる。また、圧電素子 7の 長さと、振動膜 8の面積とを好適な組み合わせとすることによって、必要な音圧を確 保しながら圧電音響素子を小型化することが可能であることも理解できる。
[0023] (実施形態 3)
次に、本発明の圧電音響素子の実施形態のさらに他例について説明する。図 3は 、本例の圧電音響素子の概略構造を示す縦断面図である。図 3に示すように、本例 の圧電音響素子 1の基本構造は、実施形態 1の圧電音響素子 1と同一である。異な るのは、圧電素子 7の長手方向両端が支持部材 6a、 6bを介して筐体 5の内面に固定 されている点である。本例の圧電音響素子 1は、実施形態 1の圧電音響素子と同一 の基本構造を有し、同一の作用効果を有する。さらに、圧電素子 7の長手方向両端 が筐体 5の内面に固定されていることを特徴とする本例の圧電音響素子は、圧電素 子 7と筐体 5との接合強度がより向上するといつた利点を有する。
[0024] また、 2つの支持部材 6a、 6bの弾性率、厚み、面積等を互いに異ならせることによ つて、発生する音の基本共振周波数を調整することができるといった利点も有する。 尚、本例の圧電音響素子 1では、圧電素子 7の長手方向両端を筐体 5に固定する構 成を採用したことに伴って、圧電素子 7の長手方向略中央が振動膜 8に接合されて いる。しかし、圧電素子 7と振動膜 8との接合位置は図示された位置に限定されない
[0025] (実施形態 4)
次に、本発明の圧電音響素子の実施形態のさらに他例について説明する。図 4は 、本例の圧電音響素子の概略構造を示す縦断面図である。図 4に示すように、本例 の圧電音響素子 1の基本構造は、実施形態 1の圧電音響素子と同一である。異なる のは次の 2点である。一つは、筐体 5の底面 2に独立した 2つの開口部 3a、 3bが形成 され、それら開口部 3a、 3bに振動膜 8a、 8bがそれぞれ張られている点である。他の 一つは、単一の圧電素子 7が独立した 2つの振動伝達部材 9a、 9bを介して 2つの振 動膜 8a、 8bにそれぞれ接合されている点である。
[0026] 本例の圧電音響素子 1は、実施形態 1の圧電音響素子 1と同一の基本構造を有し 、同一の作用効果を有する。さらに、圧電素子 7が独立した 2つの振動伝達部材 9a、 9bを介して 2つの振動膜 8a、 8bにそれぞれ接合されていることを特徴とする本例の 圧電音響素子 1は、 2枚の振動板 8a、 8bから音が発生するので、より高い音圧が得ら れるといった利点を有する。また、 2つの振動伝達部材 9a、 9bの厚み、高さ、材質等 を互いに異ならせたり、 2つの振動膜 8a、 8bの厚みや材質等を互いに異ならせたり することによって、発生する音に異なる共振周波数を与えることができるといった利点 も有する。これら利点は、再生可能な音の周波数帯域を拡大可能であることを意味 する。また、筐体 5が落下等によって衝撃を受けた場合、その衝撃の多くが振動伝達 部材ゃ支持部材によって吸収され、圧電素子に伝わらないという利点は、これまで説 明した圧電音響素子と共通である。しかし、独立した 2つの振動伝達部材 9a、 9bを有 する本例の圧電音響素子 1では、衝撃が 2つの振動伝達部材 9a、 9bに分散されて 吸収されるので、安全性がより高まる。 [0027] (実施形態 5)
次に、本発明の圧電音響素子の実施形態のさらに他例について説明する。図 5は 、本例の圧電音響素子の概略構造を示す縦断面図である。図 5に示すように、本例 の圧電音響素子 1は、筐体 5に形成された 2つの開口部 3a、 3bに振動膜 8a、 8bが張 られている点において実施形態 4の圧電音響素子と共通する。異なるのは、 2つの開 口部 3a、 3bが筐体 5の異なる 2つの面に形成されている点である。尚、単一の圧電 素子 7が独立した 2つの振動伝達部材 9a、 9bを介して 2つの振動膜 8a、 8bに接合さ れている点については、実施形態 4の圧電音響素子と共通である。よって、この構造 によって得られる作用効果も実施形態 4の圧電音響素子と共通である。但し、本例の 圧電音響素子 1では、圧電素子 7の上下(両側)に振動膜 8a、 8bが配置されている ので、実施形態 4の圧電音響素子に比べて圧電素子 7を短尺化することが可能であ る。また、各振動膜 8a、 8bが同一面積である場合、 2枚の振動膜 8a、 8bを配置する ために必要なスペースが実施形態 4の圧電音響素子に比べて少なくて済む。
[0028] 図 4及び図 5に示す圧電音響素子 1が備える振動膜 8a、 8bの面積は、図 1等に示 す圧電音響素子 1 (振動膜 8が 1枚の圧電音響素子 1)に比べて小さい。しかし、図 4 及び図 5に示す圧電音響素子 1では、 2枚の振動膜 8a、 8bが同時に振動するので、 得られる音圧は図 1等に示す圧電音響素子 1と同レベルである。
[0029] (実施形態 6)
次に、本発明の圧電音響素子の実施形態のさらに他例について説明する。図 6は 、本例の圧電音響素子の概略構造を示す縦断面図である。図 6に示すように、本例 の圧電音響素子 1の基本構造は、実施形態 1の圧電音響素子 1と同一である。異な るのは、圧電素子 7の下面に弾性板 15が貼られている点である。本例の圧電音響素 子 1は、実施形態 1の圧電音響素子 1と同一の基本構造を有し、同一の作用効果を 有する。
[0030] 但し、弾性板 15が一体化された圧電素子 7は、弾性板 15を具備していない同種の 圧電素子に比べて見かけ上の剛性が低下するので、屈曲に伴う変位量が増大する。 換言すれば、図 6に示す圧電素子 7は、弾性板 15を具備していない同種の圧電素 子に比べて、振動膜 8をより大きく振動させることができる。かかる観点からは、圧電 素子 7の厚みと弾性板 15の厚みの合計の 1/8以上を弾性体 15の厚みが占めること が望ましい。また、弾性板 15が一体化された圧電素子 7は、弾性板 15を具備しない 同種の圧電素子に比べて重量が増加するので、圧電素子 7が屈曲した際により大き な慣性が働き、発生する音の基本周波数がより低減する。
[0031] また、弾性板 15を金属等の質量の大きな材料によって形成すれば、圧電素子 7が 屈曲した際により一層大きな慣性が働き、基本周波数がより一層低減する。このこと は、圧電素子 7に安価な弾性板 15を付加することによって、高価な圧電セラミックの 寸法や形状を変更することなぐ圧電素子 7の変位量や発生する音の共振周波数を 調整可能であることを意味する。カロえて、弾性板 15が一体化された圧電素子 7は、耐 久性が向上し、割れ等が発生し難くなる。金属製の弾性板 15の材料としては、例え ば、真ちゆうが適している。
[0032] 弾性板 15に弾性係数が高い板パネを使用すれば、圧電素子 7の見かけ上の弾性 が高くなり、電圧印加時の圧電素子 7の変位量が増加する。また、板パネにスリットを 設ければ、圧電素子 7の見かけ上の弾性がさらに高くなると共に、板パネと圧電素子 7との接合面積が減少するので、製造が容易になる。
[0033] (実施形態 7)
次に、本発明の圧電音響素子の実施形態のさらに他例について説明する。本例の 圧電音響素子の基本構造は、実施形態 1の圧電音響素子と同一である。異なるは、 振動源としての圧電素子 7の構造である。図 7に、本例の圧電音響素子が備える圧 電素子の構造を模式的に示す。圧電素子 7は、下部絶縁層 16と上部絶縁層 17との 間に、導体層 18と圧電材料層 19とが交互に積層された多層構造 (積層構造)を有す る。図 7に示すような多層構造の圧電素子 7は、実施形態 1の圧電素子 7に比べて消 費電力が少なぐ振動変位量が大きいことが知られている。従って、本例の圧電音響 素子は、より少ない電力で十分な音圧を得ることができるといった利点を有する。また 、図 7に示す構造の圧電素子 7は、製造時における導電層材料の焼結促進効果によ つて、焼結時の反りや変形が防止される。このため、別途平坦化処理を施さなくても 高い平坦度を有し、図 6に示す弾性板 15等を隙間なく接合させることが可能となる。
[0034] (実施形態 8) 次に、本例の圧電音響素子の実施形態のさらに他例について説明する。図 8は、 本例の圧電音響素子の概略構造を示す縦断面図である。図 8に示すように、本例の 圧電音響素子 1の基本構成は、実施形態 1の圧電音響素子 1と同一である。異なる は、振動伝達部材 9が略円錐形のコイルパネである点である。本例の圧電音響素子 1は、実施形態 1の圧電音響素子 1と同一の基本構造を有し、同一の作用効果を有 する。さらに、コイルパネ 9が、圧電素子 7の伸縮運動に伴ってエネルギーの蓄積と開 放を繰り返すことによって、圧電素子 7の伸縮運動が助長される。この結果、本例の 圧電音響素子 1は、振動膜 8の振動変位量が大きぐ音圧が高いといった利点を有 する。また、筐体の 5落下等に起因する衝撃がコイルパネ 9によって吸収され、圧電 素子 7の破損が防止される。コイルパネ 9は、板パネや渦巻きパネに替えることもでき る。いずれにしても、適当なパネ係数を有するパネを選択することによって、振動膜 8 の振動を最大限に大きくして高い音圧を得ることができる。
[0035] (実施例 1)
本発明の圧電音響素子について、実施例を挙げてさらに詳細に説明する。図 9A は、本例の圧電音響素子 1の概略構造を示す縦断面図であり、図 9Bは横断面図で ある。
[0036] 本例の圧電音響素子 1では、厚み 0. 3[mm]のポリプロピレン樹脂からなる筐体 5の 内部に、図 10に示す構造を有する圧電素子 7が振動源として実装されている。圧電 素子 7の下部絶縁層 16及び上部絶縁層 17は、長さ 15[mm]、幅 4[mm]、厚み 50[ /i m]である。圧電材料層 19は、長さ 15[mm]、幅 4[mm]、厚み 300[ /i m]である。上下の 電極層(導体層) 18の厚みは、 3 m]である。従って、圧電素子 7の外形寸法は、長 さ 15[mm]、幅 4[mm]、厚み約 0. 4[mm]である。また、下部絶縁層 16、上部絶縁層 17 及び圧電材料層 19には、ジノレコン酸チタン酸鉛系セラミックが使用され、電極層 18 には、銀/パラジウム合金 (重量比 7 : 3)が使用されている。さらに、圧電素子 7はダリ ーンシート法によって製造されており、大気中 1 100°Cで 2時間焼成されている。さら に、電極層 18を電気的に接続するための外部電極として厚み 8[ μ m]の銀電極が形 成されている。また、圧電材料層 19は、分極処理によって膜厚方向に分極されてい る。上部絶縁層 17の表面に形成された電極パッド 20は、 8[ z m]の銅箔によって電気 的に接続されている。さらに、電気的に接続された電極パッド 20から、直径 l [mm]、 高さ 0. 5[mm]の半田部を介して、直径 0. 2[mm]の 2本の電極端子リード線が引き出 されている。
[0037] 本例の圧電音響素子では、圧電素子 7を振動膜 8に接合させる振動伝達部材 9とし て、図 11に示す円錐コイルパネが使用されている。円錐コイルパネは、高さ(h)が 0. 4[mm]、最小コイル半径(R1)が 2[mm]、最大コイル半径(R2)力 S4[mm]であり、ステン レス鋼線によって形成されている。また、図 9Aに示すように、コイルパネの最小コイル 半径面が圧電素子 7の下面 13に、最大コイル半径面が振動膜 8にそれぞれエポキシ 系接着剤によって接合されている。さらに、図 9A、図 9Bに示す振動膜 8は、直径 15 [mm],厚み 0. l [mm]の円形のポリエチレンテレフタレートフィルムである。
[0038] 以上の構造を有する本例の圧電音響素子 1は、図 9Bに示すように、全体として略 楕円形の平面形状を呈し、全長(L)が 23[mm]、全幅 (W)が 16[mm]である。また、全 高(H)は、 1. 5[mm] (振動膜 8の厚み(0· 1mm) +円錐コイルバネ 9の高さ(0· 4mm) +圧電素子 7の厚み(0· 4mm) +空間 12の高さ(0· 3mm) +筐体 5の厚み(0· 3mm ) )である。
[0039] (実施例 2)
以下、本発明の圧電音響素子の他の実施例について説明する。図 12Aは、本例 の圧電音響素子 1の概略構造を示す縦断面図であり、図 12Bは模式的横断面図で ある。本例の圧電音響素子 1では、実施例 1の圧電素子と同一の圧電素子 7が筐体 5 の上下に形成された 2つの開口部 3a、 3bに張られた振動膜 8a、 8bに接合されてい る。開口部 3aに張られている振動膜 8aは、厚さ 0. l [mm]のポリエチレンテレフタレー トフイルムであり、振動伝達部材 9aとしての円錐コイルバネ(高さ 0. 4mm)を介して圧 電素子 7の上面 10に接合されている。一方、開口部 3bに張られた振動膜 8bは、厚さ 0. 05[mm]のポリエチレンテレフタレートフィルムであり、振動伝達部材 9bとしての円 錐コイルバネ(高さ 0. 2mm)を介して圧電素子 7の下面 13に接合されている。但し、 2 枚の振動膜 8a、 8bの直径(10[mm])は、共通である。
[0040] 図 12Bに示すように、本例の圧電音響素子 1は、実施例 1の圧電音響素子と実質 的に同一の形状を有する。但し、本例の圧電音響素子 1が備える振動膜 8a、 8bの直 径は、実施例 1の圧電音響素子が備える振動膜に比べて小さい (振動膜の面積が小 さい)従って、本例の圧電音響素子 1の全長(L)は 20[mm]、全幅 (W)は l l [mm]であ る。すなわち、本例の圧電音響素子 1は、実施例 1の圧電音響素子よりも小型である 。また、全高(H)は、 1. 15[mm] (振動膜 8bの厚み(0. 05mm) +円錐コイルバネ 9b の高さ(0. 2mm) +圧電素子 7の厚み(0. 4mm) +円錐コイルバネ 9aの高さ(0. 4 mm) +振動膜 8aの厚み(0. 1mm) )である。
[0041] 尚、本例の圧電音響素子 1が備える筐体 8及び圧電素子 7は、実施例 1の圧電音 響素子が備えるそれらと同一である。また、本例の圧電音響素子 1が備える円錐コィ ルバネは、寸法の点を除いて実施例 1の圧電音響素子が備える円錐コイルパネと同 一である。
[0042] (実施例 3)
以下、本発明の圧電音響素子のさらに他の実施例について説明する。図 13Aは、 本例の圧電音響素子 1の概略構造を示す縦断面図であり、図 13Bは横断面図であ る。本例の圧電音響素子 1では、圧電素子 7の長手方向両端が発泡ゴム 21に接合さ れ、その発泡ゴム 21が支持部材 6に接合され、支持部材 6が筐体 5の内面に接合さ れている。すなわち、圧電素子 7の長手方向両端が発泡ゴム 21及び支持部材 6を介 してそれぞれ筐体 5に固定されている。また、圧電素子 7の長手方向略中央の下面 1 3が振動伝達部材 9としての円錐コイルパネを介して振動膜 8に接合されている。圧 電素子 7の上面 10と筐体 5の天井面 11との間には、高さ 0. 3[mm]の空間 12が形成 されている。圧電素子 7は、実施例 1の圧電素子と同一の材料及び製法で製造され ている。また、圧電素子 7の外形寸法は、長さ 20[mm]、幅 4[mm]、厚み 0. 4[mm]であ る。円錐コイルバネ 9には、実施例 1の円錐コイルパネと同一のものが使用されている 。さらに、振動膜 8には、厚み 0. l [mm]、直径 18[mm]の円形のポリエチレンテレフタ レートフィルムが使用されている。また、筐体 5の厚みは 0. 3[mm]である。
[0043] 図 13Bから分るように、本例の圧電音響素子 1は、略円形の平面形状を有し、直径
(L)は 22[mm]である。また、全高(H)は 1. 5[mm]である。
[0044] (実施例 4)
以下、本発明の圧電音響素子のさらに他の実施例について説明する。図 14は、本 例の圧電音響素子 1の概略構造を示す縦断面図である。本例の圧電音響素子 1で は、実施例 1の圧電素子と同種の圧電素子 7が筐体 5の上下に形成された開口部 3a 、 3bに張られた振動膜 8a、 8bに接合されている。 2つの開口部 3a、 3bに張られてい る振動膜 8a、 8bは、直径 10[mm]、厚み 0. 05[mm]の真円形状のポリエチレンテレフ タレートフィルムである。また、圧電素子 7の上面 10と振動膜 8aとの間に介在している 振動伝達部材 9aは、高さ 0. 2[mm]の円錐コイルパネである。圧電素子 7の下面 13と 振動膜 8bとの間に介在している振動伝達部材 9bは、高さ 0. 4[mm]の円錐コイルバ ネである。本例の圧電素子 7は、実施例 1の圧電素子と同一の材料及び製法で製造 されたものである。また、圧電素子 7の外形寸法は、長さ 12[mm]、幅 4[mm]、厚み 0. 4[mm]である。振動伝達部材 9a、 9bとしての円錐コイルバネは、実施例 2の円錐コィ ルバネと同一である。圧電素子 7の両端は、実施例 3と同様に、発泡ゴム 21及び支 持部材 6を介して筐体 5の内面に固定されている。本例の圧電音響素子 1は、実施例 3の圧電音響素子と同様に、全体として略円形の平面形状を有するが、直径 (L)は 1 4[mm]、全高(H)は 1. l [mm]であり、実施例 3の圧電音響素子よりも小型で薄型であ る。
(実施例 5)
以下、本発明の圧電音響素子のさらに他の実施例について説明する。図 15は、本 例の圧電音響素子 1の概略構造を示す縦断面図である。本例の圧電音響素子 1は、 図 16に示す構造の圧電素子 7を使用したことを特徴とする。図 16に示す圧電素子 7 は、下部絶縁層 16と上部絶縁層 17との間に、導電層 18と圧電材料層 19とが交互に 積層された多層構造 (積層構造)を有する。上下の絶縁層 16、 17及び圧電材料層 1 9は、長さ 16[mm]、幅 4[mm]、厚み 40[ x m]である。導体層 18は、長さ 16[mm]、幅 4 [mm],厚み 3[ z m]である。また、圧電材料層 19は 8層、導体層 18は 9層である(便宜 上、図 16では一部の層が省略されている)。従って、圧電素子 7の外形寸法は、長さ 16 [mm],幅 4[mm]、厚み約 0. 4[mm]である。下部絶縁層 16、上部絶縁層 17及び圧 電材料層 19には、ジノレコン酸チタン酸鉛系セラミックが使用され、導体層 18には銀 /パラジウム合金 (重量比 7 : 3)が使用されている。さらに、圧電素子 7はグリーンシ ート法によって製造されており、大気中 1100°Cで 2時間焼成されている。カロえて、各 導体層 18を電気的に接続する銀電極を形成した後、圧電材料層 19に分極処理を 施し、上部絶縁層 17の表面に形成した電極パッド 20同士を銅箔によって電気的に 接続した。
[0046] 本例の圧電音響素子 1の外形及び寸法は、実施例 1の圧電音響素子と同一である 。すなわち、全体として略楕円形の平面形状を有し、全長 )は 23[mm]、全高(H) は 1. 5[mm]、全幅は 16[mm]である。
[0047] (実施例 6)
以下、本発明の圧電音響素子のさらに他の実施例について説明する。図 17は、本 例の圧電音響素子 1の概略構造を示す縦断面図である。本例の圧電音響素子 1で は、圧電素子 7の下面 13に金属製の弾性板 15がエポキシ系接着剤によって接合さ れ、その弾性板 15の一端が筐体 5の内面に支持部材 6を介して固定されている。ま た、弾性板 15の他端下面が振動伝達部材 9としての円錐コイルパネを介して振動膜 8に接合されている。図 18に、本例の圧電音響素子 1が備える圧電素子 7及び弾性 板 15の拡大図を示す。圧電素子 7は、実施例 5の圧電素子と同一の積層構造を有し 、長さ(1 )は 12[mm]、幅(w )は 4[mm]、厚み(t )は 0· 4[mm]である。また、弾性板 15
1 1 1
の長さ(1 )は 15[mm]、幅(w )は 4[mm]、厚み(t )は 0· 2[mm]である。弾性板 15の材
2 2 2
質は SUS304である。
[0048] 本例の圧電音響素子 1は、実施例 1の圧電音響素子と同様に全体として略楕円形 の平面形状を有する。また、全長(L)は 23[mm]、全高(H)は 1 · 7 [mm],全幅は 16 [mm]である。尚、実施例 1の圧電音響素子に比べて全高(H)が 0. 2[mm]増加してい るのは、弾性板 15の厚みによるものである。
[0049] (実施例 7)
以下、本発明の圧電音響素子のさらに他の実施例について説明する。図 19は、本 例の圧電音響素子 1の概略構造を示す縦断面図である。本例の圧電音響素子 1は、 実施例 6の圧電音響素子に比べて圧電素子 7が短いことを特徴とする。具体的には 、図 20に示すように、長さ(1 ) 8[mm]、幅(w ) 4[mm]、厚み(t ) 0. 4[mm]の圧電素子
1 1 1
7に、長さ(1 ) 16 [mm],幅(w ) 4[mm]、厚み(t ) 0. 2[mm]の金属製弾性板 15がェポ
2 2 2
キシ系接着剤によって接合されている。圧電素子 7以外の構造は、実施例 6の圧電 音響素子と同一である。
[0050] (実施例 8)
以下、本発明の圧電音響素子のさらに他の実施例について説明する。図 21は、本 例の圧電音響素子 1の概略構造を示す縦断面図である。本例の圧電音響素子 1は、 圧電素子 7と振動膜 8とを接合させる振動伝達部材としてパネを使用したことを特徴と する。このバネは、図 22に示すように、直径 2[mm]の円盤状の上部材 22の周縁と、 直径 4[mm]のリング状の下部材 23の周縁とが薄板状の脚部材 25によって連結され、 主に矢印方向の弾性を有する。尚、パネの高さは 0. 4[mm]である。振動伝達部材 9 以外の構造については実施例 1の圧電音響素子と同一であり、全長(L)は 23[mm]、 全高(H)は 1. 5[mm]、全幅は 16[mm]である。
[0051] (特性評価)
これまでに説明した実施例 1一 8の圧電音響素子の特性と、比較例 1一 4の音響素 子の特性とを測定した結果について説明する。まず、比較例 1一 4の構造を図面に基 づいて概説し、その後に測定結果について説明する。
[0052] (比較例 1)
比較例 1の音響素子 30の概略構造を図 23に示す。この音響素子 30は、圧電音響 素子であって、実施例 1の筐体と同一材料によって形成された同一寸法の筐体 31内 に、実施例 1の圧電素子と同一の圧電素子 32が実装されている。圧電素子 32の一 端は、実施例 1の支持部材と同一の支持部材 33を介して筐体 31の内面に固定され 、他端は自由端とされている。また、筐体 31の底 34には孔 35が形成され、圧電素子 32に電圧が印加されると、孔 35から音が放射される。
[0053] (比較例 2)
比較例 2の音響素子 30の概略構造を図 24に示す。この音響素子 30も圧電音響素 子であって、基本的に比較例 1の音響素子と同一の構造を有する。異なるのは、圧 電素子 32の両端が筐体 31の内面に固定されている点と、孔 35が筐体 31の底 34の 中央に形成されてレ、る点である。
[0054] (比較例 3)
比較例 3の音響素子 30の概略構造を図 25に示す。この音響素子 30も圧電音響素 子であって、基本的に比較例 1の音響素子と同一の構造を有する。異なるのは、圧 電素子 32の自由端に連結部材 36を介して金属製の振動板 37が装着されている点 である。
[0055] (比較例 4)
比較例 4の音響素子 30の概略構造を図 26に示す。この音響素子 30は、永久磁石 38、ボイスコイル 39、振動板 40を有する電磁式音響素子である。電気端子 41を介し てボイスコイル 39に電流が入力されると、磁力が発生し、発生した磁力によって振動 板 40が振動させられて音が発生する。
[0056] (測定結果 1)
実施例 1一 8の圧電音響素子及び比較例 1一 4の音響素子の基本共振周波数を測 定したところ次のような結果が得られた。
[0057] 実施例 l:443[Hz]
実施例 2:452[Hz]及び 316[Hz]
実施例 3 :496 [Hz]
実施例 4 :491 [Hz]及び 320[Hz]
実施例 5 :396 [Hz]
実施例 6:276[Hz]
実施例 7:263[Hz]
実施例 8:370[Hz]
比較例 l:1087[Hz]以上
比較例 2:1067[Hz]
比較例 3:1027[Hz]
比較例 4:730[Hz]
以上の測定結果より、本発明の圧電音響素子が広い周波数帯域を有することがわ かる。特に、実施例 2及び実施例 4の圧電音響素子は、基本共振周波数を 2つ有し ており、周波数帯域が拡大されていることがわかる。
[0058] (測定結果 2)
実施例 1一 8の圧電音響素子及び比較例 1一 4の音響素子に、 1 [V]の電圧を印加 した際の音圧レベルを測定したところ次のような結果が得られた。
実施例 1: :96[dB]
実施例 2: :92[dB]
実施例 3: :91[dB]
実施例 4: :99[dB]
実施例 5: :107[dB]
実施例 6: :106[dB]
実施例 7: :118[dB]
実施例 8: :97[dB]
比較例 1: :38[dB]
比較例 2: :57[dB]
比較例 3: : 74[dB]
比較例 4: :72[dB]
以上の測定結果より、本発明の圧電音響素子が十分に高い音圧を再生可能であ ること力 Sわ力る。特に、実施例 5の圧電音響素子に 0.5[V]の電圧を印加した際の音 圧レベルは 91[dB]であった。すなわち、印加電圧が 1/2にも関わらず、実施例 1一 3の圧電音響素子とほぼ同レベルの音圧が得られた。
[0060] (測定結果 3)
周波数 500[Hz]— 2000[Hz]における実施例 1一 8及び比較例 1一 4の音響素子 の音圧を測定し、最大音圧と最小音圧の乖離率を算出したところ次のような結果が得 られた。
[0061] 実施例 1一 8 :25%以内
比較例 1一 3 :40%よりも大きい
比較例 4 :25%よりも大きく 40%以下
以上の測定結果より、本発明の圧電音響素子が平坦な音圧周波数特性を有するこ とがわかる。
[0062] (測定結果 4)
実施例 1一 8の圧電音響素子及び比較例 1一 4の音響素子を直上 50cmから自然 落下させた前後で音圧レベルを測定し、変化率を算出したところ次のような結果が得 られた。
[0063] 実施例 1、 2 : 3%以内
実施例 3 : 3%よりも大きく 10%以下
実施例 4一 7 : 3%以内
実施例 8 : 3%よりも大きく 10%以下
比較例 1一 4 : 10%よりも大きい
以上の測定結果より、本発明の圧電音響素子が耐衝撃性に優れていることがわか る。
[0064] (測定結果 5)
実施例 1一 8の圧電音響素子及び比較例 1一 4の音響素子を 100時間連続して駆 動し、その前後で音圧レベルを測定し、変化率を算出したところ次のような結果が得 られた。
[0065] 実施例 1、 2 : 3%よりも大きく 10%以下
実施例 3— 8 : 3%以内
比較例 1一 4 : 10%以上
以上の測定結果より、本発明の圧電音響素子が十分な耐久性を有し、信頼性が高 レヽこと力 Sわ力 る。
[0066] (測定結果 6)
実施例 1一 8の圧電音響素子及び比較例 1一 4の音響素子をそれぞれ 50個製造し 、それぞれに 1 [V]の電圧を印加したときの音圧レベルを測定し、最大値と最小値の 乖離率を算出したところ次のような結果が得られた。
[0067] 実施例 1、 2 : 5%以内
実施例 3 : 5%よりも大きく 15%以内
実施例 4一 7 : 5%以内
実施例 8 : 5%よりも大きく 15%以内
比較例 1一 4 : 15%よりも大きい
以上の測定結果より、本発明の圧電音響素子は製品間のバラツキが少ないことが わ力る。
[0068] 上記測定結果 1一 6をまとめた表 1を示す。尚、測定結果 1に関しては、基本共振周 波数が 300[Hz]以下の場合を「◎」、 300[Hz]よりも大きく 500[Hz]以下の場合を「 〇」、 700[Hz]よりも大きく 1000[Hz]以下の場合を「△」、 1000[Hz]よりも大きい場 合を「X」と表した。
[0069] 測定結果 2に関しては、音圧レベルが 90[dB]よりも大きい場合を「◎」、 90[dB]以 下の場合を「X」と表した。
[0070] 測定結果 3及び 6に関しては、乖離率が 25%以内の場合を「〇」、 25%よりも大き レ、が 40%以下である場合を「△」、 40%よりも大きい場合を「 X」と表した。
[0071] 測定結果 4及び 5に関しては、音圧変化が 3%以内の場合を「〇」、 3%よりも大きく
10 Q/o以内の場合を「△」、 10%よりも大きレ、場合を「 X」と表した。
[0072] 測定結果 6に関しては、乖離率が 5%以内の場合を「〇」、 5%よりも大きく 15%以 下である場合を「△」、 15%よりも大きく場合を「 X」と表した。
[0073] [表 1]
Figure imgf000023_0001
これまでの説明及び測定結果 1一 6を総合すると、本発明の圧電音響素子が、薄型 小型、低電圧駆動可能、高音圧再生可能、広周波数特性、低コスト、高信頼性とい つた様々な利点を有することがわかる。 [0074] また、本発明の圧電音響素子が音響装置や携帯端末装置を始めとする幅広い分 野に応用可能であることがわかる。例えば、音響装置に搭載すれば、小型で高音質 の音響装置が実現される。また、従来の携帯電話や PDA (Personal Digital Assistance)に搭載されている電磁式音響素子に代えて、本発明の圧電音響素子を 搭載すれば、携帯電話や PDAの小型化や動作時間の延長を図りつつ、より高音質 を実現すること力 Sできる。
[0075] 本発明の選択された実施形態は特定の用語を用いて記載されているが、この記載 は例示のみを目的とするものであり、下記の請求の範囲の要旨及び範囲から逸脱す ることなく変更及び変形が可能なことが理解される。

Claims

請求の範囲
[I] 圧電素子を振動源とする圧電音響素子であって、
少なくとも 1つの開口部を有する中空の筐体と、
前記筐体の内部に設けられ、電圧が印加されると屈曲する圧電素子と、 前記筐体の開口部に設けられた振動膜と、を有し、
前記圧電素子と前記振動膜とが弾性を有する振動伝達部材を介して接合されてい る圧電音響素子。
[2] 前記圧電素子の長手方向一端又は両端が支持部材を介して前記筐体の内面に 固定されている請求項 1記載の圧電音響素子。
[3] 前記支持部材が弾性を有する請求項 2記載の圧電音響素子。
[4] 厚み、素材、寸法の少なくとも 1つが互いに異なる 2以上の振動膜及び/又は振動 伝達部材を有する請求項 1記載の圧電音響素子。
[5] 前記圧電素子を挟んで対向する 2つの振動膜を有し、それら 2つの振動膜が別々 の振動伝達部材を介して前記圧電素子に接合されている請求項 1記載の圧電音響 素子。
[6] 前記圧電素子に接合された弾性板を有し、前記弾性板が前記振動伝達部材を介 して前記振動膜に接合されている請求項 1記載の圧電音響素子。
[7] 前記圧電素子が導体層と圧電材料層とが交互に重ねられた積層構造を有する請 求項 1記載の圧電音響素子。
[8] 前記振動伝達部材がパネである請求項 1記載の圧電音響素子。
[9] 前記振動膜がポリエチレンテレフタレートフィルム、ポリエーテルサルフォンフィルム 、ポリエステルフィルム、ポリプロピレンフィルムのいずれかである請求項 1記載の圧 電音響素子。
[10] 請求項 1記載の圧電音響素子が搭載された音響装置。
[II] 請求項 1記載の圧電音響素子が搭載された携帯端末装置。
PCT/JP2004/019010 2004-03-25 2004-12-20 圧電音響素子、音響装置及び携帯端末装置 WO2005094121A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/598,446 US7860259B2 (en) 2004-03-25 2004-12-20 Piezoelectric acoustic element, acoustic device, and portable terminal device
CN2004800425557A CN1926917B (zh) 2004-03-25 2004-12-20 压电声学元件,声学设备以及便携式终端设备
JP2006511389A JP4662072B2 (ja) 2004-03-25 2004-12-20 圧電音響素子、音響装置及び携帯端末装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004089005 2004-03-25
JP2004-089005 2004-03-25

Publications (1)

Publication Number Publication Date
WO2005094121A1 true WO2005094121A1 (ja) 2005-10-06

Family

ID=35056579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019010 WO2005094121A1 (ja) 2004-03-25 2004-12-20 圧電音響素子、音響装置及び携帯端末装置

Country Status (4)

Country Link
US (1) US7860259B2 (ja)
JP (1) JP4662072B2 (ja)
CN (1) CN1926917B (ja)
WO (1) WO2005094121A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015761A (ja) * 2010-06-30 2012-01-19 Nec Corp 発振装置
JP2012015765A (ja) * 2010-06-30 2012-01-19 Nec Corp 発振装置
JP2012100042A (ja) * 2010-11-01 2012-05-24 Nec Corp 発振装置および電子機器
CN101536546B (zh) * 2006-11-09 2012-10-03 日本电气株式会社 压电扬声器以及具有压电扬声器的电子设备
WO2012132261A1 (ja) 2011-03-31 2012-10-04 Necカシオモバイルコミュニケーションズ株式会社 発振装置、および電子機器
JP2015088902A (ja) * 2013-10-30 2015-05-07 京セラ株式会社 音発生器
RU2552125C2 (ru) * 2010-03-23 2015-06-10 Бейкер Хьюз Инкорпорейтед Устройство и способ для генерирования акустической энергии в широком диапазоне частот
WO2017168793A1 (ja) * 2016-03-28 2017-10-05 住友理工株式会社 振動提示装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7817810B2 (en) 2005-08-03 2010-10-19 The Boeing Company Flat panel loudspeaker system
KR101047654B1 (ko) * 2008-05-15 2011-07-07 현대자동차주식회사 차량 타이어용 전원발생장치
CA2781553C (en) * 2009-11-24 2016-03-22 Med-El Elektromedizinische Geraete Gmbh Implantable microphone for hearing systems
US9794702B2 (en) 2009-11-24 2017-10-17 Med-El Elektromedizinische Geraete Gmbh Implantable microphone for hearing systems
KR20120068613A (ko) * 2010-12-17 2012-06-27 삼성전기주식회사 압전 액추에이터
EP2693772B1 (en) * 2011-03-31 2016-09-14 NEC Corporation Oscillator
JP2013182904A (ja) * 2012-02-29 2013-09-12 Tamron Co Ltd 積層型圧電アクチュエーター
WO2013163115A1 (en) 2012-04-26 2013-10-31 Med-El Elektromedizinische Geraete Gmbh Non-pressure sensitive implantable microphone
CN205810862U (zh) * 2013-03-11 2016-12-14 苹果公司 便携式电子设备及用于便携式电子设备的振动器组件
US10164688B2 (en) 2014-04-30 2018-12-25 Apple Inc. Actuator assisted alignment of connectible devices
DE102016116760B4 (de) * 2016-09-07 2018-10-18 Epcos Ag Vorrichtung zur Erzeugung einer haptischen Rückmeldung und elektronisches Gerät
US11432084B2 (en) * 2016-10-28 2022-08-30 Cochlear Limited Passive integrity management of an implantable device
CN110090022A (zh) * 2019-05-07 2019-08-06 传世未来(北京)信息科技有限公司 生物振动信号监测装置及方法
US11334164B2 (en) 2019-07-22 2022-05-17 Apple Inc. Portable electronic device having a haptic device with a moving battery element
US11800293B2 (en) * 2020-06-15 2023-10-24 Lg Display Co., Ltd. Sound apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381495U (ja) * 1986-11-12 1988-05-28
JP2002102799A (ja) * 2000-09-29 2002-04-09 Namiki Precision Jewel Co Ltd 振動伝導体付振動発生装置及びその取付構造
JP2004274593A (ja) * 2003-03-11 2004-09-30 Temuko Japan:Kk 骨伝導スピーカ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE20213E (en) * 1927-05-06 1936-12-22 Piezoelectric device
GB573687A (en) * 1939-03-20 1945-12-03 Brush Crystal Company Improvements in or relating to piezo-electric acoustic devices
US2367726A (en) * 1942-01-10 1945-01-23 E A Myers & Sons Sound transmitter
US3181016A (en) * 1962-07-30 1965-04-27 Aerospace Corp Piezoelectric transducer arrangement
JPS588000A (ja) 1981-07-06 1983-01-17 Murata Mfg Co Ltd 圧電型スピ−カ
JPS5939200A (ja) * 1982-08-27 1984-03-03 Murata Mfg Co Ltd 鋼管浸漬焼入装置における鋼管保持装置
JPS6381495A (ja) 1986-09-26 1988-04-12 Bando Chem Ind Ltd 電子写真装置におけるトナ−ボトル内のトナ−量の検出装置
US5062139A (en) * 1989-06-05 1991-10-29 Christensen Eugene J Coaxial loud speaker system
JPH0368450U (ja) * 1989-11-06 1991-07-05
JPH0422300A (ja) 1990-05-17 1992-01-27 Sumitomo Metal Ind Ltd 圧電発音体
US5901231A (en) * 1995-09-25 1999-05-04 Noise Cancellation Technologies, Inc. Piezo speaker for improved passenger cabin audio systems
JP2894276B2 (ja) 1996-05-02 1999-05-24 日本電気株式会社 圧電音響変換器
JPH1094093A (ja) 1996-09-17 1998-04-10 Nec Corp 圧電発音体
JP3134844B2 (ja) * 1998-06-11 2001-02-13 株式会社村田製作所 圧電音響部品
JP2001036993A (ja) * 1999-07-22 2001-02-09 Murata Mfg Co Ltd 圧電型電気音響変換器
JP3068450U (ja) * 1999-10-22 2000-05-12 勲 伊藤 圧電セラミックスピ―カ
JP3700559B2 (ja) * 1999-12-16 2005-09-28 株式会社村田製作所 圧電音響部品およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381495U (ja) * 1986-11-12 1988-05-28
JP2002102799A (ja) * 2000-09-29 2002-04-09 Namiki Precision Jewel Co Ltd 振動伝導体付振動発生装置及びその取付構造
JP2004274593A (ja) * 2003-03-11 2004-09-30 Temuko Japan:Kk 骨伝導スピーカ

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536546B (zh) * 2006-11-09 2012-10-03 日本电气株式会社 压电扬声器以及具有压电扬声器的电子设备
RU2552125C2 (ru) * 2010-03-23 2015-06-10 Бейкер Хьюз Инкорпорейтед Устройство и способ для генерирования акустической энергии в широком диапазоне частот
JP2012015761A (ja) * 2010-06-30 2012-01-19 Nec Corp 発振装置
JP2012015765A (ja) * 2010-06-30 2012-01-19 Nec Corp 発振装置
JP2012100042A (ja) * 2010-11-01 2012-05-24 Nec Corp 発振装置および電子機器
WO2012132261A1 (ja) 2011-03-31 2012-10-04 Necカシオモバイルコミュニケーションズ株式会社 発振装置、および電子機器
EP2908554A1 (en) 2011-03-31 2015-08-19 NEC Corporation Oscillator and electronic device
US9252711B2 (en) 2011-03-31 2016-02-02 Nec Corporation Oscillator and electronic device
JP2015088902A (ja) * 2013-10-30 2015-05-07 京セラ株式会社 音発生器
WO2017168793A1 (ja) * 2016-03-28 2017-10-05 住友理工株式会社 振動提示装置
JPWO2017168793A1 (ja) * 2016-03-28 2019-02-07 住友理工株式会社 振動提示装置

Also Published As

Publication number Publication date
US20070177747A1 (en) 2007-08-02
JP4662072B2 (ja) 2011-03-30
JPWO2005094121A1 (ja) 2008-02-14
CN1926917B (zh) 2011-08-03
CN1926917A (zh) 2007-03-07
US7860259B2 (en) 2010-12-28

Similar Documents

Publication Publication Date Title
WO2005094121A1 (ja) 圧電音響素子、音響装置及び携帯端末装置
JP5327317B2 (ja) 圧電アクチュエータおよび音響部品
US9137608B2 (en) Actuator, piezoelectric actuator, electronic device, and method for attenuating vibration and converting vibration direction
JP5428861B2 (ja) 圧電音響素子及び電子機器
US7701119B2 (en) Piezoelectric actuator
JP5304252B2 (ja) 圧電アクチュエータおよび電子機器
JP4761459B2 (ja) 圧電振動ユニット及び圧電式スピーカ
WO2007083497A1 (ja) 圧電アクチュエータおよび電子機器
WO2010106736A1 (ja) 圧電音響素子、電子機器及び圧電音響素子の製造方法
EP2597892A1 (en) Vibration device
CN102986249A (zh) 振荡器和电子设备
JP5677639B2 (ja) 音響発生器、音響発生装置および電子機器
JP6053827B2 (ja) 音響発生器およびそれを用いた電子機器
JP5652813B2 (ja) 電気音響変換器及びそれを用いた電子機器
JP5359818B2 (ja) 圧電アクチュエータ及び電子機器
JPWO2016103826A1 (ja) 音響発生器、音響発生装置及び電子機器
JP2007221532A (ja) 音響振動発生素子
JP4688687B2 (ja) 圧電振動ユニット及びパネルスピーカ
JP6020465B2 (ja) 発振装置
JP2014127748A (ja) 音響発生器、音響発生装置および電子機器
JP2012217013A (ja) 発振装置及び電子機器
JP2017118424A (ja) 音響発生器、音響発生装置および電子機器
JP2014086941A (ja) 電気音響変換器及び電子機器
JP2014183388A (ja) 圧電型電気音響変換器及び電子機器
JP2014179753A (ja) 圧電型電気音響変換器及び電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480042555.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511389

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10598446

Country of ref document: US

Ref document number: 2007177747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10598446

Country of ref document: US