WO2005090260A1 - 積層型セラミックコンデンサ - Google Patents

積層型セラミックコンデンサ Download PDF

Info

Publication number
WO2005090260A1
WO2005090260A1 PCT/JP2005/002885 JP2005002885W WO2005090260A1 WO 2005090260 A1 WO2005090260 A1 WO 2005090260A1 JP 2005002885 W JP2005002885 W JP 2005002885W WO 2005090260 A1 WO2005090260 A1 WO 2005090260A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcomponent
oxide
mol
dielectric
ceramic capacitor
Prior art date
Application number
PCT/JP2005/002885
Other languages
English (en)
French (fr)
Inventor
Kazushige Ito
Haruya Hara
Toshihiro Iguchi
Shigeki Sato
Akira Sato
Takashi Kojima
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/593,342 priority Critical patent/US7898793B2/en
Priority to JP2006511140A priority patent/JPWO2005090260A1/ja
Priority to EP05710578.5A priority patent/EP1736456B1/en
Publication of WO2005090260A1 publication Critical patent/WO2005090260A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles

Definitions

  • the present invention relates to a multilayer ceramic capacitor, and more particularly, to a multilayer ceramic capacitor that has excellent capacitance with time and satisfies X8R characteristics.
  • Multilayer ceramic capacitors as electronic components are widely used as small, large-capacity, high-reliability electronic components.
  • demands for further miniaturization, higher capacity, lower cost, and higher reliability of multilayer ceramic capacitors have become more and more severe.
  • a multilayer ceramic capacitor is generally formed by laminating a paste for an internal electrode layer and a paste for a dielectric layer by a sheet method, a printing method, or the like, and forming a laminate between the internal electrode layer and the dielectric layer in the laminate. It is manufactured by firing simultaneously.
  • multilayer ceramic capacitors using a non-reducing dielectric material have a problem that IR (insulation resistance) is significantly degraded (that is, IR life is short) due to application of an electric field and reliability is low. There is.
  • a capacitor may be used with a DC voltage superimposed on it.
  • DC bias characteristics Characteristics (referred to as DC bias characteristics)
  • Tc bias characteristic the capacitance-temperature characteristic at the time of applying a voltage is reduced.
  • the dielectric layer is made thinner in order to reduce the size and increase the capacitance of the chip capacitor in response to recent demands, the electric field applied to the dielectric layer when a DC voltage is applied becomes stronger. The problem that the change with time, that is, the change with time of the capacitance becomes remarkably large, and the DC bias characteristics and the Tc bias characteristics are reduced are prominent.
  • a capacitor is required to have good temperature characteristics, and in particular, it is required that the temperature characteristics be flat under severe conditions depending on the application.
  • multilayer ceramic capacitors have been used for various electronic devices such as engine electronic control units (ECUs), crank angle sensors, and antilock brake system (ABS) modules installed in the engine room of automobiles. Is coming. Since these electronic devices are used to stably perform engine control, drive control, and brake control, good temperature stability of the circuit is required.
  • ECUs engine electronic control units
  • ABS antilock brake system
  • the low (typically less than 100) makes it virtually impossible to make large capacitors.
  • BaTiO is used as a dielectric ceramic composition having a high capacitance and a flat capacitance-temperature characteristic.
  • the present applicant has already proposed the following dielectric porcelain composition for the purpose of satisfying the X8R characteristic having a high relative dielectric constant and enabling firing in a reducing atmosphere. (For example, see Patent Documents 1 and 2).
  • Patent Document 1 discloses that a main component containing barium titanate, a first subcomponent containing at least one selected from MgO, CaO, Ba ⁇ , Sr ⁇ and CrO, and silicon oxide As an ingredient
  • a third subcomponent containing R3 oxide (where R1 is at least one selected from Sc, Er, Tm, Yb and Lu); and a fourth subcomponent containing CaZrO or CaO + ZrO. 5
  • the ratio of each component with respect to 100 moles of the main component is 0.1 to 3 moles for the first subcomponent, 2 to 10 moles for the second subcomponent, and 0.01 to 0.5 for the third subcomponent.
  • Monole, 4th subcomponent 0.57 monole (however, the number of moles of 4th subcomponent is the ratio of R1 alone), 5th subcomponent: 0 ⁇ 5th subcomponent ⁇ 5 mol
  • a porcelain composition is disclosed.
  • Patent Document 2 discloses that a main component containing barium titanate, a first subcomponent containing an oxide of AE (here, AE is at least one selected from Mg, Ca, Ba and Sr), A second subcomponent containing an oxide of R (where R is at least one selected from Y, Dy, Ho and Er), and the ratio of each subcomponent to 100 moles of the main component is Disclosed is a dielectric porcelain composition in which 0 mol, 1 mol of the first sub-component and 0.1 mol, and 2 mol of the second sub-component are less than 7 mol.
  • Patent Document 1 Patent No. 3348081
  • Patent Document 2 Patent No. 3341003
  • the thickness and thickness of the dielectric layer are further reduced.
  • the present invention has been made to solve the above-described problems, and has an object to reduce the thickness and the multilayer of the dielectric layer for the purpose of miniaturization and large capacity, and to reduce the rated voltage. Even if improved, it is an object of the present invention to provide a multilayer ceramic capacitor whose capacitance-temperature characteristic satisfies the EIA standard X8R characteristic and whose capacitance changes with time.
  • a multilayer ceramic capacitor according to the present invention includes a main component containing barium titanate, magnesium oxide (MgO), calcium oxide (CaO), and barium oxide (Ba ⁇ ). And at least one selected from strontium oxide (SrO), a second subcomponent containing silicon oxide as a main component, and vanadium oxide (VO).
  • a third subcomponent consisting of an oxide of R1 (where R1 is at least one selected from Sc, Er, Tm, Yb and Lu); and a fourth subcomponent consisting of CaZrO or CaO + ZrO.
  • the barium titanate having at least a subcomponent and a sixth subcomponent consisting of an R2 oxide (where R2 is at least one selected from Y, Dy, Ho, Tb, Gd and Eu);
  • R2 is at least one selected from Y, Dy, Ho, Tb, Gd and Eu
  • the ratio of each subcomponent to the moles is as follows: the first subcomponent: 0.1 to 3 mol, the second subcomponent: 210 mol, the third subcomponent: 0.01 to 0.5 monolayer, the fourth subcomponent.
  • Component 0.5 to 7 moles (however, the number of moles of the fourth subcomponent is the ratio of R1 alone), the fifth subcomponent: more than 0 and 5 mol or less, and the sixth subcomponent: more than 0
  • a laminated ceramic capacitor having a laminated body in which a dielectric layer made of a sintered body composed of crystal grains of a dielectric ceramic composition of not more than 9 moles and internal electrode layers are alternately laminated.
  • the average grain size of the crystal grains constituting the dielectric layer is 0.5 to 0.55 zm.
  • the multilayer ceramic capacitor of the present invention is the multilayer ceramic capacitor of the present invention, further comprising a seventh subcomponent made of manganese oxide (MnO) or chromium oxide (CrO). It is preferable that the ratio of the seventh subcomponent with respect to 100 moles of the barium titanate is 0.01 to 0.5 mole.
  • the average grain size of crystal grains constituting the dielectric layer is 0.2111 to 0.35 ⁇ m. More preferred.
  • the Tc bias characteristics are excellent.
  • the multilayer ceramic capacitor of the present invention is the multilayer ceramic capacitor of the present invention described above, wherein the maximum grain size (D 100) and the average grain size (D5) of the crystal grains constituting the dielectric layer are different.
  • D100-D50 value (hereinafter sometimes referred to as D100-D50 value) is less than or equal to 0.
  • the Tc bias characteristics are excellent.
  • the dielectric ceramic composed of such crystal grains is used.
  • the bias characteristics are excellent. Therefore, when the dielectric layer is further thinned for the purpose of miniaturization and large capacity, or when the rated voltage is increased, its usefulness becomes remarkable. It is effective for use.
  • the multilayer ceramic capacitor of the present invention can be fired in a reducing atmosphere since the dielectric ceramic composition used does not contain Pb, Bi, Zn, etc., and can be used under a DC electric field. There is also an effect that the change of the capacitance with time is small.
  • FIG. 1 is a partially cutaway perspective view schematically showing one example of a multilayer ceramic capacitor of the present invention.
  • FIG. 2 is a sectional view schematically showing a basic structure of a multilayer ceramic capacitor of the present invention. It is.
  • FIG. 3 is a graph showing a relationship between an average particle diameter of dielectric particles (dielectric particles after sintering) constituting a dielectric layer and a capacitance-temperature characteristic (rate of change in capacitance).
  • FIG. 4 is a graph showing a relationship between an average particle diameter of dielectric particles (dielectric particles after sintering) constituting a dielectric layer and a time-dependent change characteristic of capacitance (change rate of capacitance). is there.
  • FIG. 5 is a graph showing a relationship between an average particle diameter of dielectric particles (dielectric particles after sintering) constituting a dielectric layer and Tc bias characteristics (rate of change in capacitance). .
  • FIG. 6 is a graph showing a relationship between D100-D50 values of dielectric particles (dielectric particles after sintering) constituting a dielectric layer and Tc bias characteristics (rate of change in capacitance). .
  • FIG. 7 is a graph showing a relationship between an average particle diameter of dielectric particles (dielectric particles after sintering) constituting a dielectric layer and an average life (average life time).
  • FIG. 1 is a partially cutaway perspective view schematically showing an example of the multilayer ceramic capacitor of the present invention.
  • FIG. 2 is a sectional view schematically showing a basic structure of the multilayer ceramic capacitor of the present invention.
  • the multilayer ceramic capacitor of the present invention has a multilayer body in which dielectric layers 2 and internal electrode layers 3 are alternately stacked (hereinafter referred to as multilayer dielectric element body 10). Or the element body 10). At both ends of the laminated dielectric element body 10, the element body
  • a pair of external electrodes 4 that are electrically connected to the internal electrode layers 3 alternately arranged inside 10 are formed. It is made.
  • the shape of the multilayer dielectric element body 10 is usually a rectangular parallelepiped, but is not particularly limited. In addition, the dimensions are not particularly limited, but usually, the long side is about 0.6 to 5.6 mm, the short side is about 0.3 to 5. Omm, and the height is about 0.3 to 1.9 mm. .
  • the dielectric layer 2 includes a main component containing barium titanate and at least one selected from magnesium oxide (Mg ⁇ ), calcium oxide (Ca ⁇ ), barium oxide (BaO), and strontium oxide (SrO). , A second sub-component containing silicon oxide as a main component, vanadium oxide (VO), molybdenum oxide (MoO) and tungsten oxide (WO
  • R1 is at least one selected from Sc, Er, Tm, Yb and Lu.
  • R1 is at least one selected from Sc, Er, Tm, Yb and Lu.
  • a sintered body composed of crystal grains of a dielectric ceramic composition having at least a sixth subcomponent of at least one selected from Ho, Tb, Gd and Eu).
  • the first subcomponent 0.1-3 mol
  • the second subcomponent 2-10 mol
  • the third subcomponent 0.01-0.5 mol
  • the fourth subcomponent 0.5-7 mol
  • 5th subcomponent 0 ⁇ 5th subcomponent ⁇ 5 mol
  • 1st subcomponent 0.5-2.5 mol
  • 2nd subcomponent 2.0-5.0 monolith
  • Third subcomponent 0.1 to 0.4 monole
  • 4th ij component 0.5 to 5.0 monole
  • 5th ij component 0.5 to 3 monole
  • 6th ij component 6th ij component:
  • the above ratio of the fourth subcomponent is a molar ratio of R1 alone, not a molar ratio of R1 oxide. That is, for example, when an oxide of Yb is used as the fourth subcomponent, the fact that the ratio of the fourth subcomponent is 1 mol means that the ratio of YbO is not 1 mol, and that the ratio of YbO is 1 mol.
  • barium titanate and each oxide constituting each subcomponent are represented by a stoichiometric composition, but the oxidation state of each oxide deviates from the stoichiometric composition. You may. However, the above ratio of each subcomponent is determined by converting the amount of metal contained in the oxide constituting each subcomponent to the above stoichiometric oxide.
  • the first subcomponent is magnesium oxide (Mg ⁇ ), calcium oxide (CaO), barium oxide (B a ⁇ ) and strontium oxide (Sr ⁇ ) power At least one selected from the group consisting of: If the content of the first subcomponent is less than 0.1 mol, the rate of change in capacity with temperature will increase. On the other hand, when the content of the first subcomponent exceeds 1 mol, the sinterability deteriorates.
  • the composition ratio of each oxide in the first subcomponent is arbitrary.
  • the second subcomponent contains silicon oxide as a main component.
  • the content of the second subcomponent is less than 2 mol, the capacity-temperature characteristics are deteriorated and the IR (insulation resistance) is reduced.
  • the IR life becomes insufficient and the dielectric constant sharply decreases.
  • These second subcomponents are mainly composed of silicon oxide (Si ⁇ ).
  • MO where M is at least one element selected from Ba, Ca, Sr and Mg
  • Li O lithium oxide
  • B O boron oxide
  • barium oxide (BaO) and calcium oxide (Ca) in [(Ba, Ca) SiO] are used.
  • the complex oxide (Ba, Ca) SiO has a low melting point
  • X in (Ba, Ca) SiO as a more preferred embodiment of the second subcomponent is preferably 0.7-7-1.2, more preferably
  • the ratio between Ba and Ca is arbitrary, and may contain only one of them.
  • the third sub-component is vanadium oxide (VO), molybdenum oxide (Mo ⁇ ), and tantalum oxide.
  • This third subcomponent is
  • the fourth subcomponent is composed of an oxide of R1 (however, R1 is at least one selected from Sc, Er, Tm, Yb and Lu forces).
  • the fourth subcomponent has an effect of shifting the Curie temperature to a higher temperature side and an effect of flattening the capacitance-temperature characteristic.
  • Yb oxide is preferred because of its high property improving effect and low price.
  • the fifth subcomponent is composed of CaZrO or Ca ⁇ + Zr ⁇ . This fifth subcomponent is
  • the addition form of the fifth subcomponent, CaZrO is not particularly limited.
  • the ratio of Ca to Zr is not particularly limited, and may be determined so as not to form a solid solution with barium titanate.
  • the molar ratio of Ca to Zr (Ca / Zr) is preferably 0.5-5. , More preferably 0.8-1.5, even more preferably 0.9-1.1.
  • Adjustment can flatten the capacity-temperature characteristics (X8R characteristics) and improve the high-temperature accelerated life.
  • the precipitation of the hetero-phase is suppressed, and the uniformity of the structure can be achieved.
  • the sixth subcomponent is an oxide of R2 (where R2 is at least one selected from Y, Dy, Ho, Tb, Gd and Eu).
  • the sixth subcomponent has an effect of improving IR and IR life, and has little adverse effect on capacitance-temperature characteristics.
  • the content of R2 per 100 mol of titanium titanate is preferably 9 mol or less, more preferably 0.5-9 mol.
  • Y oxide is preferred because it has a high property improving effect and is inexpensive.
  • the total content of the fourth subcomponent and the sixth subcomponent is based on 100 mol of barium titanate. It is preferably 13 mol or less, more preferably 10 mol or less (however, the number of moles of the fourth subcomponent and the sixth subcomponent is a ratio of R1 and R2 alone), and the sinterability is preferably maintained. Can be.
  • the dielectric ceramic composition may contain manganese oxide (Mn () or chromium oxide (Cr ⁇ ) as a seventh subcomponent.
  • the seventh subcomponent has an effect of promoting sintering, an effect of increasing IR, and an effect of improving IR life.
  • the ratio of the seventh subcomponent to 100 mol of barium titanate is preferably 0.01 mol or more.
  • the content of the seventh subcomponent is too large, the capacity-temperature characteristics are adversely affected, so the content is preferably 0.5 mol or less.
  • the number of moles of the seventh subcomponent is the ratio of Mn or Cr alone.
  • Al O does not significantly affect the capacity-temperature characteristics
  • the content of Al 2 O 3 is preferably set to 100 mol of barium titanate because the IR is lowered.
  • the Curie temperature (phase transition temperature from ferroelectric to paraelectric) of the above-mentioned dielectric ceramic composition can be changed by selecting the composition of the dielectric ceramic composition.
  • the temperature is preferably set to 120 ° C. or higher, more preferably 123 ° C. or higher.
  • the lily temperature can be measured by DSC (differential scanning calorimetry) or the like.
  • at least one kind of Sr, Zr, and Sn At least one kind of Sr, Zr, and Sn. Temperature characteristics deteriorate. Therefore, it is preferable not to use a barium titanate-based composite oxide containing these elements [eg, (Ba, Sr) TiO] as a main component.
  • dielectric particles the crystal particles constituting the dielectric layer 2 (hereinafter referred to as “dielectric particles”) will be described.
  • the average particle diameter of the dielectric particles is less than 0.2 ⁇ m, when the dielectric layer 2 is thinned (for example, when the thickness between layers is smaller than 3.5 zm), or when the dielectric layer 2 is laminated.
  • the dielectric element body 10 is multi-layered (for example, when the number of the dielectric layers 2 is 100 or more), the X8R characteristics may not be satisfied. If the average particle diameter of the dielectric particles exceeds 0.55 am, the capacitance may change with time, and the capacitor may not be used as a stable capacitor.
  • the dielectric particles preferably have an average particle diameter of 0.3 or more and 0.35 ⁇ m or less.
  • the manufactured multilayer ceramic capacitor has the above-mentioned characteristics that the capacitance-temperature characteristics satisfy the X8R characteristics of the EIA standard and the capacitance changes with time are small. In addition to this, it has the effect of having excellent Tc bias characteristics.
  • the average particle diameter of the dielectric particles is 0.35 ⁇ or less, a multilayer ceramic capacitor having excellent Tc bias characteristics can be obtained.
  • the difference (D100 ⁇ D50 value) between the maximum particle size (D100) and the average particle size (D50) of the dielectric particles is preferably 0.4 / im or less. Since the dielectric particles have a D100_D50 value of 0.4 ⁇ or less, the manufactured multilayer ceramic capacitor has the capacitance-temperature characteristics that meet the X standard X8R characteristics and the capacitance changes over time are small. In addition to the above characteristics, it has the effect of being excellent in Tc bias characteristics.
  • the average particle size of the dielectric particles is determined by a code method.
  • the D100-D50 value represents the difference between the maximum particle size (D100) and the average particle size (D50) of the dielectric particles.
  • the particle size distribution of the dielectric particles constituting the particle size is calculated in advance, and is calculated using the maximum particle size and the average particle size obtained from the particle size distribution.
  • a small D100-D50 value means that the dispersion of the size of the dielectric particles constituting the dielectric layer 2 is small.
  • JIS standard B characteristic Capacity change rate within ⁇ 25% at _25 85 ° C (standard temperature 20 ° C)
  • the term "excellent change in capacitance with time” means that, for example, when a manufactured multilayer ceramic capacitor is applied at a temperature of 85 ° C and a DC voltage of 7 V / zm is applied, for example, after 1 000 hours. It means that the rate of change of capacity at is within 10%.
  • the term "excellent in Tc bias characteristics" means that a manufactured multilayer ceramic capacitor usually has a capacitance of 0.02 VZ xm or more, particularly 0.2 V / zm or more, further 0.5 V / zm or more, and generally 5 V / zm or more. Even when an AC electric field of about am or less and a DC electric field of 5 VZ ⁇ m or less are superimposed on the AC electric field, the temperature characteristics of the capacitance are stable, and the capacitance change rate at Tc bias is 40%, for example. Means within.
  • the thickness of the dielectric layer 2 is usually 30 / m or less. From the viewpoint of miniaturization and large capacity, the thickness of the dielectric layer 2 is preferably set to 10 ⁇ or less.
  • the multilayer ceramic capacitor having the dielectric layer 2 thinned in this way can realize the miniaturization and large capacity, and the average particle diameter of the dielectric particles constituting the dielectric layer 2 is specified. This is effective for improving the capacity-temperature characteristics.
  • the lower limit of the thickness of the dielectric layer 2 is not particularly limited, but it is about 0.5 ⁇ at best.
  • the number of stacked dielectric layers 2 is usually about 50 to 1000.
  • the internal electrode layers 3 are provided alternately with the dielectric layers 2 described above, and are laminated so that each end face is alternately exposed on the surface of two opposing ends of the laminated dielectric element body 10. There. Further, a pair of external electrodes 4 are formed at both ends of the multilayer dielectric element body 10 and connected to the exposed end faces of the nickel internal electrode layers 3 arranged alternately to constitute a multilayer ceramic capacitor. .
  • the internal electrode layer 3 is composed of a base metal conductive material that substantially acts as an electrode.
  • Ingredient Physically, Ni or a Ni alloy is preferable.
  • the Ni alloy it is preferable that an alloy of Ni and one or more of Mn, Cr, Co, Al, W, etc. and Ni has a Ni content of 95% by weight or more.
  • various trace components such as P, C, Nb, Fe, CI, B, Li, Na, K, F, and S may be contained in the Ni or Ni alloy in an amount of 0.1% by weight or less.
  • Various conditions such as the number of layers and the thickness of the internal electrode layer 3 may be appropriately determined according to the purpose and application, but the thickness is generally preferably about 0.3 force S, and more preferably 0.2. .
  • the external electrodes 4 are electrodes which are electrically connected to the internal electrode layers 3 alternately arranged inside the multilayer dielectric element main body 10, and are formed as a pair at both ends of the multilayer dielectric element main body 10.
  • the outer B electrode 4 at least one kind of Ni, Pd, Ag, Au, Cu, Pt, Rh, Ru, Ir, or the like, or an alloy thereof can be used. Usually, Cu, Cu alloy, Ni or Ni alloy, Ag, Ag_Pd alloy, In-Ga alloy and the like are used.
  • the thickness of the external electrode 4 may be appropriately determined according to the application and the like, but is usually preferably about 10 to 200 x m.
  • a green chip is manufactured by a normal printing method or sheet method using a paste, and after firing, a green chip is printed or transferred to an external electrode. It is manufactured by firing.
  • the manufacturing method will be specifically described.
  • the dielectric layer paste may be an organic paint obtained by kneading a dielectric material and an organic vehicle, or may be an aqueous paint.
  • the dielectric material As the dielectric material, the above-mentioned oxides, their mixtures, and composite oxides can be used.
  • various compounds that become the above-mentioned oxides and composite oxides by firing such as carbonates, It can be appropriately selected from oxalates, nitrates, hydroxides, organometallic compounds, and the like, and used as a mixture.
  • the content of each compound in the dielectric material may be determined so that the composition of the dielectric ceramic composition described above after firing is obtained.
  • powder having an average particle size of about 0.1 to 3 zm is usually used. The desired average particle size can be obtained by appropriately adjusting the mixing time of the raw materials.
  • the organic vehicle is obtained by dissolving a binder in an organic solvent.
  • the binder is not particularly limited, and may be appropriately selected from ordinary various binders such as ethyl cellulose and polyvinyl butyral.
  • the organic solvent to be used is not particularly limited, and may be appropriately selected from various organic solvents such as terbineol, butyl carbitol, acetone, and toluene, depending on the method to be used, such as a printing method or a sheet method.
  • the dielectric layer paste is an aqueous paint
  • an aqueous vehicle in which a water-soluble binder / dispersant or the like is dissolved in water may be kneaded with a dielectric material.
  • the water-soluble binder used for the aqueous vehicle is not particularly limited, and for example, polyvinyl alcohol, cellulose, water-soluble acrylic resin, etc. may be used.
  • the internal electrode layer paste is made of a conductive material made of the above-mentioned various dielectric metals or alloys, or various oxides, organometallic compounds, resinates, etc. which become the above-mentioned conductive material after firing, and the above-mentioned organic vehicle. And kneaded.
  • the external electrode paste may be prepared in the same manner as the internal electrode layer paste described above.
  • each of the above-mentioned pastes is not particularly limited, and may be a usual content, for example, about 115% by weight of a binder and about 10-50% by weight of a solvent.
  • each paste may contain additives selected from various dispersants, plasticizers, dielectrics, insulators, and the like, if necessary.
  • the total content of these is preferably not more than 10% by weight.
  • the paste for the dielectric layer and the paste for the internal electrode layer are laminated and printed on a substrate such as PET, cut into a predetermined shape, and then separated from the substrate to form a green chip.
  • a green sheet is formed using a dielectric layer paste, and an internal electrode layer paste is printed thereon, and then laminated to form a green chip.
  • the green chip Before firing, the green chip is subjected to a binder removal treatment.
  • the binder removal treatment may be performed under ordinary conditions.However, when a base metal such as Ni or a Ni alloy is used as the conductive material of the internal electrode layer, the heating rate is preferably set to 5300 ° CZ hours in an air atmosphere. , More preferably 10 to 100 ° C / hour, the holding temperature is preferably 180 to 400 ° C, more preferably 200 to 300 ° C, and the temperature holding time is preferably 0.5 to 24 hours, more preferably 5 to 24 hours. — 20 hours.
  • the atmosphere during firing of the green chip depends on the type of conductive material in the internal electrode layer paste. Flip and may be suitably determined, but when using a base metal such as Ni or Ni alloy as the conducting material, the oxygen partial pressure in the firing atmosphere is 10_ 8 - is preferably a 10_ 12 atmospheres. When the oxygen partial pressure is less than the above range, the conductive material of the internal electrode layer may abnormally sinter and break. When the oxygen partial pressure exceeds the above range, the internal electrode layer tends to be oxidized.
  • the holding temperature during firing is preferably 1100 to 1400. C, more preferably 1200-1360 ° C, even more preferably 1200-1340 ° C. If the holding temperature is lower than the above range, the densification becomes insufficient. If the holding temperature is higher than the above range, the electrode is interrupted due to abnormal sintering of the internal electrode layer, the capacity temperature characteristics deteriorate due to the diffusion of the internal electrode layer constituent material, and the dielectric Reduction of the body porcelain composition is likely to occur.
  • the heating rate is preferably 50 to 500 ° CZ time, more preferably 200 to 300 ° CZ time, and the temperature holding time is preferably 0.58 hours, more preferably 11 to 10 hours.
  • the cooling rate is preferably 50-500 ° C / hour, more preferably 200-300 ° C / hour.
  • the atmosphere gas in which the firing atmosphere is preferably a reducing atmosphere, for example, a mixed gas of N and H is preferably used after being humidified.
  • Annealing is a process for re-oxidizing the dielectric layer, which can significantly increase the IR lifetime, thereby improving reliability.
  • An oxygen partial pressure in Aniru atmosphere, 10 1Q pressure or more, particularly 10 7 - is preferably a 10- 6 atm. If the oxygen partial pressure is less than the above range, it is difficult to reoxidize the dielectric layer, and if it exceeds the above range, the internal electrode layer tends to be oxidized.
  • the holding temperature at the time of annealing is 1100 ° C or less, particularly 500 1100 ° C. If the holding temperature is lower than the above range, the oxidation of the dielectric layer becomes insufficient, so that the IR is low and the IR life is likely to be short. On the other hand, if the holding temperature exceeds the above range, not only the internal electrode layer is oxidized and the capacity is reduced, but also the internal electrode layer reacts with the dielectric substrate, deterioration of the capacity-temperature characteristic, and deterioration of IR. And IR life is likely to decrease. Note that the anneal may be composed of only a temperature raising process and a temperature lowering process. That is, the temperature holding time may be set to zero.
  • the holding temperature is synonymous with the maximum temperature.
  • Other annealing conditions include a temperature holding time of preferably 0 to 20 hours, more preferably 6 to 10 hours, and a cooling rate of preferably 50 to 500 ° C / hour, more preferably 100 to 100 hours. 300 ° C / hour.
  • the ambient gas for anneal for example, humidified N
  • N gas, mixed gas, and the like are calorie-treated.
  • a wetter or the like may be used for wetting.
  • the water temperature is preferably about 575 ° C.
  • the binder removal treatment, firing and annealing may be performed continuously or independently.
  • the atmosphere is changed without cooling, the temperature is raised to the holding temperature at the time of firing, firing is performed, and then cooling is performed, and the temperature reaches the holding temperature of anneal. It is preferable to sometimes change the atmosphere and perform annealing.
  • the firing must be performed until the holding temperature at the time of binder removal is reached.
  • the atmosphere After raising the temperature to the holding temperature under N gas atmosphere, the atmosphere may be changed
  • the whole process of anneal can be converted into a humidified N gas atmosphere.
  • the multilayer dielectric element body obtained as described above is subjected to edge polishing by, for example, barrel polishing or sandblasting, and the external electrode paste is printed or transferred and baked to form the external electrode 4. .
  • the firing conditions for the external electrode paste are, for example,
  • the temperature is preferable to set the temperature to about 600 to 800 ° C for 10 minutes to about 11 hours in a 22 mixed gas. Then, if necessary, a coating layer is formed on the surface of the external electrode 4 by plating or the like.
  • the multilayer ceramic capacitor of the present invention thus manufactured is mounted on a printed circuit board or the like by soldering or the like, and is used for various electronic devices and the like.
  • the present invention is not limited to such embodiments and does not depart from the gist of the present invention and falls within the scope. Of course, it can be implemented in various modes.
  • a main component material BaTiO 3
  • first to seventh subcomponent materials each having an average particle size of 0.1 1 lzm were prepared.
  • the average particle size of the raw material powder is about 0.1-0.33 ⁇
  • the specific surface area measured by the two-contact method is in the range of 3 to 8.5, specifically, the specific surface area force synthesized by the solid-phase method 7, 3.5, 3. 8, 4.1. , 4.4, 4.8, 5.0, 5.4, 6.0, 7.0, 7.
  • i ⁇ can be obtained not only by the solid phase method but also by a general liquid phase synthesis.
  • the raw material of MgO and MnO is carbonate (first subcomponent: MgCO, seventh subcomponent: MnC ⁇ ).
  • the other raw materials are oxides (second subcomponent: (Ba Ca) SiO, third subcomponent: V O,
  • (Ba Ca) SiO which is a sub-component, is obtained by adding BaCO, CaCO and Si
  • the fifth subcomponent, CaZrO is
  • VO as the 3rd ij component is 0.006 monole
  • YbO as the 4th IJ component is 2.00 monole
  • a green sheet having a thickness of 4 was formed on the PET film using the above-mentioned dielectric layer paste, and the internal electrode layer paste was printed thereon. did.
  • these green sheets and a protective green sheet were laminated and pressed to obtain a green chip.
  • the number of stacked sheets having internal electrodes was four.
  • the green chip was cut into a predetermined size, subjected to binder removal treatment, fired, and annealed to obtain a fired multilayer ceramic body.
  • the binder removal treatment was performed under the conditions of a heating time of 15 ° C / hour, a holding temperature of 280 ° C, a holding time of 8 hours, and an air atmosphere.
  • the firing was performed at a heating rate of 200 ° C / hour, a holding temperature of 1270 to 1320 ° C, a holding time of 2 hours, a cooling rate of 300 ° C / hour, a humidified N + H mixed gas atmosphere (oxygen partial pressure was 10 11 bar)
  • the annealing was performed under the conditions of a holding temperature of 900 ° C, a temperature holding time of 9 hours, a cooling rate of 300 ° C / hour, and a humidified N gas atmosphere (oxygen partial pressure is 10 to 7 atm). In addition, at the time of firing
  • a wetter with a water temperature of 20 ° C was used to humidify the atmosphere gas, and a wetter with a water temperature of 30 ° C was used to humidify the atmosphere gas during annealing.
  • the external electrode paste was transferred to the end face, and the paste was baked at 800 ° C. for 10 minutes in a humidified N + H atmosphere.
  • An external electrode was formed by sintering to obtain a sample of the multilayer ceramic capacitor.
  • Microscope Take a photograph, process the image, calculate the equivalent circle diameter of 300 crystal grains, and calculate the maximum particle diameter (D100) and average particle diameter obtained from the cumulative frequency distribution of these equivalent circle diameters. (D50).
  • D100 maximum particle diameter
  • D50 average particle diameter obtained from the cumulative frequency distribution of these equivalent circle diameters.
  • the average particle size and the D100-D50 value of the dielectric particles were obtained from the particle size data of 300 crystal particles.
  • the number of particle size data required was always 300. Other numbers may be used if necessary.
  • each sample obtained was 3.2 mm X l. 6 mm X O. 6 mm, the number of dielectric layers sandwiched between the internal electrode layers was 4, and the thickness of each dielectric layer was 4 The thickness was 3. The thickness of each internal electrode layer was 1. O xm.
  • the obtained multilayer ceramic capacitor sample was not reduced even when fired in a reducing atmosphere, and nickel used as an internal electrode was not oxidized to the extent that IR failure occurred.
  • the capacitance temperature characteristics, the capacitance change characteristics over time, the Tc bias characteristics, and the average life were evaluated.
  • the change with time of the capacitance is as follows: The static capacitance of the obtained capacitor sample before and after 1000 hours when a DC voltage of 7. OVZ xm was applied under a temperature environment of 85 ° C. Evaluation was made by measuring the rate of change (%) of the capacitance. Use LCR meter for capacitance measurement The samples around 1000 hours were measured under the conditions of frequency 1kHz and input signal level lVrms, and the results are shown in Table 1 and Fig. 4. The measurement results were evaluated based on whether the rate of change in capacitance around 1000 hours was within 10%.
  • the Tc bias characteristic is the change in capacitance when a DC voltage of 7.0 V / zm is applied to the obtained capacitor sample at a temperature of 55 + 150 ° C. It was evaluated by measuring the rate (%). The capacitance was measured using an LCR meter at a frequency of 1 kHz and an input signal level of lVrms. The measurement results were evaluated based on whether the rate of change in capacitance was within 40%.
  • Fig. 6 shows the results of a study on the relationship between the Tc bias characteristics and the D100-D50 values. As is clear from the results in FIG. 6, it was confirmed that when the D100-D50 value was 0.4 / m or less, the capacity change rate was within 40%.
  • the average particle size of the dielectric particles constituting the dielectric layer As a result of evaluating the characteristics of samples having different diameters, the X8R characteristics were satisfied while the average particle size of the dielectric particles (dielectric particles after sintering) was in the range of 0.20 / 111 to 0.55 / im. The change with time of the capacity was within 10%. In addition, the dielectric particles (dielectric particles after sintering) satisfy the X8R characteristic when the average particle size is in the range of 0.20 to 0.35 zm, and the capacitance changes with time within 10%. The rate of capacitance change at the time of bias was within 40%. In addition, the D100-D50 value of the dielectric particles (dielectric particles after sintering) constituting the dielectric layer was 0.4 am or less, and the capacitance change rate at Tc bias was within 40%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

明 細 書
積層型セラミックコンデンサ
技術分野
[0001] 本発明は、積層型セラミックコンデンサに関し、さらに詳しくは、容量の経時変化に 優れ、 X8R特性を満たす積層型セラミックコンデンサに関するものである。
背景技術
[0002] 電子部品としての積層型セラミックコンデンサは、小型、大容量、高信頼性の電子 部品として広く利用されている。近年、機器の小型 ·高性能化に伴い、積層型セラミツ クコンデンサに対する更なる小型化、大容量化、低価格化、高信頼性化への要求は ますます厳しくなつている。
[0003] 積層型セラミックコンデンサは、通常、内部電極層用のペーストと誘電体層用のぺ 一ストとをシート法や印刷法等により積層し、積層体中の内部電極層と誘電体層とを 同時に焼成して製造される。
[0004] 内部電極層の導電材としては、一般に Pdや Pd合金が用いられている力 S、 Pdは高 価であるため、比較的安価な Niや Ni合金等の卑金属が使用されるようになってきて いる。内部電極層の導電材として卑金属を用いる場合、大気中で焼成を行なうと内 部電極層が酸化してしまうため、誘電体層と内部電極層との同時焼成を、還元性雰 囲気中で行なう必要がある。しかし、還元性雰囲気中で焼成すると、誘電体層が還元 され、比抵抗が低くなつてしまう。このため、非還元性の誘電体材料が開発されてい る。
[0005] しかし、非還元性の誘電体材料を用いた積層型セラミックコンデンサは、電界の印 加による IR (絶縁抵抗)の劣化が著しく(すなわち IR寿命が短く)、信頼性が低いとい う問題がある。
[0006] また、誘電体を直流電界にさらすと、比誘電率 ε が経時的に低下するという問題が 生じる。また、コンデンサには、直流電圧を重畳して使用する場合があり、一般に強 誘電体を主成分とする誘電体を有するコンデンサに直流電圧を印加すると、誘電率 が印加された直流電圧に依存して変化する特性 (DCバイアス特性という。)や、直流 電圧印加時の容量温度特性 (Tcバイアス特性という。 )が低下するという問題もある。 特に近年の要請に伴ってチップコンデンサを小型化及び大容量化するために誘電 体層を薄くすると、直流電圧を印加したときの誘電体層に力かる電界が強くなるため 、比誘電率 ε の経時変化、すなわち容量の経時変化が著しく大きくなつてしまったり 、 DCバイアス特性や Tcバイアス特性が低下するという問題が顕著になってくる。
[0007] さらに、コンデンサには、温度特性が良好であることも要求され、特に、用途によつ ては、厳しい条件下で温度特性が平坦であることが求められる。近年、 自動車のェン ジンルーム内に搭載するエンジン電子制御ユニット(ECU)、クランク角センサ、アン チロックブレーキシステム (ABS)モジュール等の各種電子装置に積層型セラミックコ ンデンサが使用されるようになってきている。これらの電子装置は、エンジン制御、駆 動制御及びブレーキ制御を安定して行うためのものなので、回路の温度安定性が良 好であることが要求される。
[0008] これらの電子装置が使用される環境は、寒冷地の冬季には一 20°C程度以下まで温 度が下がり、また、エンジン始動後には、夏季では + 130°C程度以上まで温度が上 力 ¾ことが予想される。最近では電子装置とその制御対象機器とをつなぐワイヤハー ネスを削減する傾向にあり、電子装置が車外に設置されることもあるので、電子装置 にとつての環境はますます厳しくなつている。したがって、これらの電子装置に用いら れるコンデンサは、広い温度範囲において温度特性が平坦である必要がある。
[0009] 温度特性に優れた温度補償用コンデンサ材料としては、(Sr, Ca) (Ti, Zr) 0 系、
3
Ca (Ti, Zr)〇 系等が一般に知られているが、これらの組成物は比誘電率が非常に
3
低い(一般には 100以下)ので、容量の大きいコンデンサを作製することが実質的に 不可能である。
[0010] 誘電率が高ぐ平坦な容量温度特性を有する誘電体磁器組成物として、 BaTiOを
3 主成分とし、 Nb〇 -Co〇 、 Mg〇一 Y、希土類元素(Dy, Ho等)、 Bi〇一 Ti〇等
2 5 3 4 2 3 2 を添加した組成が知られている。しかしながら、 BaTiO系の高誘電率材料は、 EIA
3
規格の X7R特性 (_55 125。C、 Δ C/C= ± 15%以内)を満足することしかできず 、上記した厳しい環境で使用される自動車の電子装置には対応できない。上記電子 装置には、 EIA規格の X8R特性 (—55 150。C、 Δ C/C= ± 15%以内)を満足す る誘電体磁器組成物が必要とされる。
[0011] 本出願人は、比誘電率が高ぐ X8R特性を満足し、還元性雰囲気中での焼成を可 能にすることを目的として、既に以下に示す誘電体磁器組成物を提案している(例え ば、特許文献 1、 2を参照)。
[0012] 特許文献 1には、チタン酸バリウムを含む主成分と、 MgO, Ca〇, Ba〇, Sr〇及び Cr Oから選択される少なくとも 1種を含む第 1副成分と、酸化シリコンを主成分として
2 3
含有する第 2副成分と、 V〇, MoO及び W〇から選択される少なくとも 1種を含む
2 5 3 3
第 3副成分と、 R1の酸化物(但し、 R1は Sc, Er, Tm, Yb及び Luから選択される少 なくとも 1種)を含む第 4副成分と、 CaZrO又は CaO + ZrOを含む第 5副成分とを少
3 2
なくとも有し、主成分 100モルに対する各成分の比率が、第 1副成分: 0. 1— 3モル、 第 2副成分: 2— 10モル、第 3副成分: 0. 01-0. 5モノレ、第 4副成分: 0. 5 7モノレ( 但し、第 4副成分のモル数は、 R1単独での比率)、第 5副成分: 0<第 5副成分≤5モ ルである誘電体磁器組成物が開示されている。
[0013] 特許文献 2には、チタン酸バリウムを含む主成分と、 AEの酸化物(但し、 AEは Mg 、 Ca、 Ba及び Srから選択される少なくとも 1種)を含む第 1副成分と、 Rの酸化物(但 し、 Rは Y、 Dy、 Ho及び Erから選択される少なくとも 1種)を含む第 2副成分とを有し 、主成分 100モルに対する各副成分の比率が、第 1副成分: 0モルく第 1副成分く 0 . 1モル、第 2副成分: 1モル <第 2副成分 < 7モルである誘電体磁器組成物が開示 されている。
特許文献 1 :特許第 3348081号
特許文献 2:特許第 3341003号
発明の開示
発明が解決しょうとする課題
[0014] 上記特許文献 1、 2に記載の誘電体磁器組成物によれば、比誘電率が高ぐ容量 温度特性が EIA規格の X8R特性 (一 55— 150°C、 Δ C/C = ± 15%以内)を満足し 、また、 Pb, Bi, Zn等を含有していないために還元性雰囲気中での焼成が可能であ る。し力しながら、同文献 1、 2に記載の誘電体磁器組成物では、積層型セラミックコ ンデンサをより一層小型化して大容量化するために誘電体層をさらに薄層化及び多 層化した場合や、定格電圧を向上させた場合に、 Tcバイアス特性と容量の経時劣化 とが著しく悪化するという問題が生じることがあった。
[0015] 本発明は、上記課題を解決するためになされたものであって、その目的は、小型化 大容量化を目的として誘電体層をさらに薄層化及び多層化した場合や定格電圧を 向上させた場合にぉレ、ても、容量温度特性が EIA規格の X8R特性を満足し且つ容 量の経時変化の小さい積層型セラミックコンデンサを提供することにある。
課題を解決するための手段
[0016] 上記目的を達成するために、本発明の積層型セラミックコンデンサは、チタン酸バリ ゥムを含む主成分と、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化バリウ ム(Ba〇)及び酸化ストロンチウム(SrO)から選択される少なくとも 1種からなる第 1副 成分と、酸化シリコンを主成分として含有する第 2副成分と、酸化バナジウム (V O )
2 5
、酸化モリブデン (MoO )及び酸化タングステン (WO )から選択される少なくとも 1種
3 3
力 なる第 3副成分と、 R1の酸化物(但し、 R1は Sc、 Er、 Tm、 Yb及び Luから選択 される少なくとも 1種)からなる第 4副成分と、 CaZrO又は CaO + ZrOからなる第 5
3 2
副成分と、 R2酸化物(但し、 R2は Y、 Dy、 Ho、 Tb、 Gd及び Euから選択される少な くとも 1種)からなる第 6副成分とを少なくとも有し、前記チタン酸バリウム 100モルに対 する前記各副成分の比率が、第 1副成分: 0. 1— 3モル、第 2副成分: 2 10モル、 第 3副成分: 0. 01 -0. 5モノレ、第 4副成分: 0. 5— 7モル(但し、第 4副成分のモル 数は、 R1単独での比率である)、第 5副成分: 0を超え 5モル以下、第 6副成分: 0を超 え 9モル以下である誘電体磁器組成物の結晶粒子で構成された焼結体からなる誘 電体層と、内部電極層とが交互に積層された積層体を有する積層型セラミックコンデ ンサであって、前記誘電体層を構成する前記結晶粒子の平均粒径が 0. 以上 0. 55 z m以下であることを特徴とする。
[0017] 誘電体層がこの平均粒径範囲の結晶粒子で構成された積層型セラミックコンデン サによれば、容量温度特性が EIA規格の X8R特性 (一 55— 150°C、 A C/C= ± 15 %以内)を満足し、且つ容量の経時変化が小さくなる。
[0018] 本発明の積層型セラミックコンデンサは、上記本発明の積層型セラミックコンデンサ において、酸化マンガン(MnO)又は酸化クロム(Cr O )からなる第 7副成分をさらに 含有し、前記チタン酸バリウム 100モルに対する第 7副成分の比率が 0· 01 -0. 5モ ルであることが好ましい。
[0019] 本発明の積層型セラミックコンデンサは、上記本発明の積層型セラミックコンデンサ において、前記誘電体層を構成する結晶粒子の平均粒径が 0. 2 111以上0. 35 μ 以下であることがより好ましい。
[0020] 誘電体層がこの平均粒径範囲の結晶粒子で構成された積層型セラミックコンデン サによれば、上記の特性に加え、 Tcバイアス特性に優れている。
[0021] 本発明の積層型セラミックコンデンサは、上記本発明の積層型セラミックコンデンサ において、前記誘電体層を構成する結晶粒子の最大粒径 (D 100)と平均粒径 (D5
0)との差(以下、 D 100—D50値ということがある。)が 0. 以下であることを特徴 とする。
[0022] 誘電体層が 0. 4 μ m以下の D 100—D50値で構成された積層型セラミックコンデン サによれば、 Tcバイアス特性に優れている。
発明の効果
[0023] 以上説明したように、本発明の積層型セラミックコンデンサによれば、誘電体層を構 成する結晶粒子の平均粒径等の範囲で特定したので、そうした結晶粒子で構成され た誘電体層を有する積層型セラミックコンデンサは、容量温度特性力 ¾IA規格の X8 R特性 (-55 150。C、 A C/C = ± 15%以内)を満足すると共に、容量の経時変化 力 、さくなり、 Tcバイアス特性に優れたものとなる。そのため、小型化'大容量化を目 的として誘電体層をさらに薄層化した場合や、定格電圧を向上させた場合において 、その有用性は顕著となり、特に厳しい使用環境下で使用される自動車用途におい ては有効である。また、本発明の積層型セラミックコンデンサは、使用する誘電体磁 器組成物が Pb, Bi, Zn等を含有していないので、還元性雰囲気中での焼成が可能 であり、直流電界下での容量の経時変化が小さいという効果もある。
図面の簡単な説明
[0024] [図 1]図 1は本発明の積層型セラミックコンデンサの一例を概略的に示す部分切り欠 き斜視図である。
[図 2]図 2は本発明の積層型セラミックコンデンサの基本構造を概略的に示す断面図 である。
[図 3]図 3は誘電体層を構成する誘電体粒子 (焼結後の誘電体粒子)の平均粒径と 容量温度特性 (静電容量の変化率)との関係を示すグラフである。
[図 4]図 4は誘電体層を構成する誘電体粒子 (焼結後の誘電体粒子)の平均粒径と 容量の経時変化特性 (静電容量の変化率)との関係を示すグラフである。
[図 5]図 5は誘電体層を構成する誘電体粒子 (焼結後の誘電体粒子)の平均粒径と T cバイアス特性 (静電容量の変化率)との関係を示すグラフである。
[図 6]図 6は誘電体層を構成する誘電体粒子 (焼結後の誘電体粒子)の D100 - D50 値と Tcバイアス特性 (静電容量の変化率)との関係を示すグラフである。
[図 7]図 7は誘電体層を構成する誘電体粒子 (焼結後の誘電体粒子)の平均粒径と 平均寿命(平均寿命時間)との関係を示すグラフである。
符号の説明
[0025] 1…積層型セラミックコンデンサ
2…誘電体層
3…内部電極層
4…外部電極
10· · ·積層誘電体素子本体
発明を実施するための最良の形態
[0026] 以下、本発明の積層型セラミックコンデンサについて、図面を参照しつつ説明する
。なお、以下に説明する実施形態により本発明の範囲は制限されない。
[0027] (積層型セラミックコンデンサ)
図 1は、本発明の積層型セラミックコンデンサの一例を概略的に示す部分切り欠き 斜視図である。また、図 2は、本発明の積層型セラミックコンデンサの基本構造を概略 的に示す断面図である。
[0028] 本発明の積層型セラミックコンデンサは、図 1及び図 2に示されるように、誘電体層 2 と内部電極層 3とが交互に積層された積層体 (以下、積層誘電体素子本体 10又は素 子本体 10という。)を有している。積層誘電体素子本体 10の両端部には、素子本体
10の内部で交互に配置された内部電極層 3と各々導通する一対の外部電極 4が形 成されている。積層誘電体素子本体 10の形状は、通常、直方体状であるが特に制 限されない。また、その寸法も特に制限はないが、通常、長辺: 0. 6— 5. 6mm程度 X短辺: 0. 3— 5. Omm程度 X高さ: 0. 3— 1. 9mm程度である。
[0029] 誘電体層 2は、チタン酸バリウムを含む主成分と、酸化マグネシウム(Mg〇)、酸化 カルシウム(Ca〇)、酸化バリウム(BaO)及び酸化ストロンチウム(SrO)から選択され る少なくとも 1種からなる第 1副成分と、酸化シリコンを主成分として含有する第 2副成 分と、酸化バナジウム(V O )、酸化モリブデン(MoO )及び酸化タングステン (WO
2 5 3 3
)から選択される少なくとも 1種からなる第 3副成分と、 R1の酸化物(但し、 R1は Sc、 E r、 Tm、 Yb及び Luから選択される少なくとも 1種)からなる第 4副成分と、 CaZrO又
3 は Ca〇 + Zr〇力 なる第 5副成分と、 R2酸化物(伹し、 R2は Y、 Dy
2 、 Ho、 Tb、 Gd 及び Euから選択される少なくとも 1種)からなる第 6副成分とを少なくとも有する誘電 体磁器組成物の結晶粒子で構成された焼結体からなる。
[0030] チタン酸バリウム(BaTiO )に対する上記各副成分の比率は、 BaTiO 100モルに
3 3
対し、第 1副成分: 0. 1— 3モル、第 2副成分: 2— 10モル、第 3副成分: 0. 01-0. 5 モル、第 4副成分: 0. 5— 7モル、第 5副成分: 0<第 5副成分≤5モルであり、好まし くは、第 1副成分: 0. 5— 2. 5モル、第 2副成分: 2. 0— 5. 0モノレ、第 3副成分: 0. 1 一 0. 4モノレ、第 4畐 ij成分: 0. 5— 5. 0モノレ、第 5畐 ij成分: 0. 5— 3モノレ、第 6畐 ij成分:
0を超え 9モル以下である。
[0031] なお、第 4副成分の上記比率は、 R1酸化物のモル比ではなぐ R1単独のモル比で ある。すなわち、例えば第 4副成分として Ybの酸化物を用いた場合、第 4副成分の比 率が 1モルであることは、 Yb Oの比率が 1モルなのではなぐ Ybの比率が 1モルで
2 3
あることを意味する。
[0032] 本明細書では、チタン酸バリウム及び各副成分を構成する各酸化物を化学量論組 成で表しているが、各酸化物の酸化状態は、化学量論組成から外れるものであって もよい。但し、各副成分の上記比率は、各副成分を構成する酸化物に含有される金 属量から上記化学量論組成の酸化物に換算して求める。
[0033] 上記各副成分の含有量の限定理由は以下のとおりである。
[0034] 第 1副成分は、酸化マグネシウム(Mg〇)、酸化カルシウム(CaO)、酸化バリウム(B a〇)及び酸化ストロンチウム(Sr〇)力 選択される少なくとも 1種からなるものである。 この第 1副成分の含有量が 0. 1モル未満では、容量温度変化率が大きくなつてしまう 。一方、第 1副成分の含有量力 ¾モルを超えると、焼結性が悪化する。なお、第 1副成 分中における各酸化物の構成比率は任意である。
[0035] 第 2副成分は、酸化シリコンを主成分として含有するものである。この第 2副成分の 含有量が 2モル未満では、容量温度特性が悪くなり、また、 IR (絶縁抵抗)が低下す る。一方、第 2副成分の含有量が 10モルを超えると、 IR寿命が不十分となるほか、誘 電率の急激な低下が生じてしまう。こうした第 2副成分は、酸化シリコン (Si〇)を主成
2 分とし、 MO (但し、 Mは、 Ba、 Ca、 Sr及び Mgから選ばれる少なくとも 1種の元素)、 酸化リチウム (Li O)及び酸化ホウ素(B O )から選ばれる少なくとも 1種を含むもの
2 2 3
であることが好ましい。第 2副成分は、主として焼結助剤として作用するが、薄層化し た際の初期絶縁抵抗の不良率を改善する効果を有する。より好ましくは、第 2副成分 力 (Ba, Ca) SiO (但し、 x = 0. 7— 1 · 2)で表される。第 2副成分のより好ましい
2 + χ
態様としての [ (Ba, Ca) SiO ]中の酸化バリウム(BaO)及び酸化カルシウム(Ca
2 + x
O)は第 1副成分にも含まれるが、複合酸化物である(Ba, Ca) SiO は融点が低い
2
ためチタン酸バリウムに対する反応性が良好なので、本発明では BaO及び/又は C a〇を上記複合酸化物としても添加することが好ましい。第 2副成分のより好ましい態 様としての(Ba, Ca) SiO における xは、好ましくは 0· 7- 1. 2であり、より好ましく
2
は 0· 8— 1 · 1である。 X力 Μ、さすぎると、すなわち SiOが多すぎると、主成分の BaTi
2
Oと反応して誘体特性を悪化させてしまう。一方、 Xが大きすぎると、融点が高くなつ
3
て焼結性を化させるため、好ましくない。なお、 Baと Caとの比率は任意であり、一方 だけを含有するものであってもよい。
[0036] 第 3副成分は、酸化バナジウム (V O )、酸化モリブデン (Mo〇 )及び酸化タンダス
2 5 3
テン (WO )から選択される少なくとも 1種からなるものである。この第 3副成分は、キュ
3
リー温度以上での容量温度特性を平坦化する効果と、 IR寿命を向上させる効果とを 有する。第 3副成分の含有量が 0. 01モル未満では、このような効果が不十分となる 。一方、第 3副成分の含有量が 0. 5モルを超えると、 IRが著しく低下する。なお、第 3 副成分中における各酸化物の構成比率は任意である。 [0037] 第 4副成分は、 R1の酸化物(但し、 R1は Sc、 Er、 Tm、 Yb及び Lu力ら選択される 少なくとも 1種)からなるものである。この第 4副成分は、キュリー温度を高温側へシフト させる効果と、容量温度特性を平坦化する効果とを有する。第 4副成分の含有量が 0 . 5モル未満では、このような効果が不十分となり、容量温度特性が悪くなつてしまう。 一方、第 4副成分の含有量が 7モルを超えると、焼結性が悪化する傾向にある。第 4 副成分のうちでは、特性改善効果が高ぐし力 安価であることから、 Yb酸化物が好 ましい。
[0038] 第 5副成分は、 CaZrO又は Ca〇 + Zr〇からなるものである。この第 5副成分は、
3 2
キュリー温度を高温側へシフトさせる効果と、容量温度特性を平坦化する効果とを有 する。また、 CR積、直流絶縁破壊強度を改善する効果がある。第 5副成分の含有量 力 モルを超えると、 IR加速寿命が悪化したり、容量温度特性 (X8R特性)が悪くなる こと力 Sある。第 5副成分である CaZrOの添加形態は特に限定されず、 Ca〇等の Ca
3
から構成される酸化物、 CaCO等の炭酸塩、有機化合物、 CaZrO等を挙げること
3 3
ができる。 Caと Zrとの比率は特に限定されず、チタン酸バリウムに固溶させない程度 に決定すればよいが、 Zrに対する Caのモル比(Ca/Zr)については、好ましくは 0· 5— 1. 5、より好ましくは 0. 8— 1. 5、さらに好ましくは 0. 9— 1. 1である。
[0039] 第 4副成分 (R1酸化物)及び第 5副成分(CaZrO又は、 CaO + ZrO )の含有量を
3 2
調整することで、容量温度特性 (X8R特性)を平坦化し、高温加速寿命等を改善する こと力 Sできる。特に、上述した数値範囲内では、異相の析出が抑制され、組織の均一 ィ匕を図ることができる。
[0040] 第 6副成分は、 R2酸化物(但し、 R2は Y、 Dy、 Ho、 Tb、 Gd及び Euから選択され る少なくとも 1種)カゝらなるものである。この第 6副成分は、 IR及び IR寿命を改善する 効果を示し、容量温度特性への悪影響も少ない。但し、 R2の含有量がチタン酸バリ ゥム 100モルに対して 9モルを超えると、焼結性が悪化する傾向にある。チタン酸バリ ゥム 100モルに対する R2の含有量は 9モル以下であることが好ましぐ 0. 5— 9モル であることがより好ましい。第 6副成分のうちでは、特性改善効果が高ぐしかも安価 であることから、 Y酸化物が好ましい。
[0041] 第 4副成分及び第 6副成分の合計の含有量は、チタン酸バリウム 100モルに対し、 好ましくは 13モル以下、さらに好ましくは 10モル以下(但し、第 4副成分及び第 6副 成分のモル数は、 R1及び R2単独での比率である)であり、焼結性を良好に保つこと ができる。
[0042] また、誘電体磁器組成物には、第 7副成分として酸化マンガン (Mn〇)又は酸化ク ロム(Cr〇)が含有されていてもよい。この第 7副成分は、焼結を促進する効果と、 IR を高くする効果と、 IR寿命を向上させる効果とを有する。このような効果を十分に得る ためには、チタン酸バリウム 100モルに対する第 7副成分の比率が 0. 01モル以上で あることが好ましい。但し、第 7副成分の含有量が多すぎると容量温度特性に悪影響 を与えるので、好ましくは 0. 5モル以下とする。なお、第 7副成分のモル数は、 Mn又 は Cr単独の比率である。
[0043] また、誘電体磁器組成物中には、上記各酸化物のほか、酸化アルミニウム (Al O )
2 3 が含まれていてもよい。 Al Oは容量温度特性にあまり影響を与えず、焼結性、 IR及
2 3
び IR寿命を改善する効果を示す。但し、 A1〇の含有量が多すぎると焼結性が悪化
2 3
して IRが低くなるため、 Al Oの含有量は、好ましくは、チタン酸バリウム 100モルに
2 3
対して 1モル以下、さらに好ましくは、誘電体磁器組成物全体の 1モル以下である。
[0044] 上記誘電体磁器組成物のキュリー温度(強誘電体から常誘電体への相転移温度) は、誘電体磁器組成物の組成を選択することにより変更することができるが、 X8R特 性を満足するためには、好ましくは 120°C以上、より好ましくは 123°C以上とする。キ ユリ一温度は、 DSC (示差走査熱量測定)等によって測定することができる。なお、 Sr , Zr及び Snの少なくとも 1種力 ぺロブスカイト構造を構成するチタン酸バリウム中の Ba又は Tiを置換している場合、キュリー温度が低温側にシフトするため、 125°C以上 での容量温度特性が悪くなる。このため、これらの元素を含むチタン酸バリウム系複 合酸化物 [例えば(Ba, Sr) TiO ]を主成分として用いないことが好ましい。但し、 Sr
3
, Zr及び Snの少なくとも 1種が不純物として含有されるレベル (例えば誘電体磁器組 成物全体の 0. 1モル%程度以下)であれば、特に問題はない。
[0045] 次に、誘電体層 2を構成する結晶粒子 (以下、「誘電体粒子」という。)について説明 する。
[0046] 誘電体粒子は、上述した誘電体層 2を構成するものであり、本発明においては、そ の誘電体粒子の平均粒径が 0· 2 μ ΐη以上、 0. 55 /i m以下であることに特徴がある 。誘電体粒子の平均粒径がこの範囲内にあることにより、製造された積層型セラミック コンデンサは、その容量温度特性が EIA規格の X8R特性(一 55— 150°C、 A C/C = ± 15%以内)を満足し、且つ容量の経時変化が小さいという効果を奏する。
[0047] 誘電体粒子の平均粒径が 0. 2 μ m未満では、誘電体層 2を薄層化したとき(例え ば層間での厚さを 3. 5 z mより小さくしたとき)や、積層誘電体素子本体 10を多層化 したとき(例えば誘電体層 2の層数を 100以上にしたとき)に、 X8R特性を満たさなく なることがある。また、誘電体粒子の平均粒径が 0. 55 a mを超えると、容量の経時 変化が大きくなつて安定したコンデンサとして使用することができなくなることがある。
[0048] また、本発明においては、その誘電体粒子の平均粒径が 0. 以上、 0. 35 μ m以下であることが好ましい。誘電体粒子の平均粒径がこの範囲内にあることにより、 製造された積層型セラミックコンデンサは、その容量温度特性が EIA規格の X8R特 性を満足すると共に容量の経時変化が小さいという上記の特性に加え、 Tcバイアス 特性に優れるという効果を奏する。特に、この態様においては、誘電体粒子の平均 粒径が 0. 35 μ ΐη以下であることにより、 Tcバイアス特性の優れた積層型セラミックコ ンデンサを得ることができる。
[0049] また、本発明においては、その誘電体粒子の最大粒径 (D100)と平均粒径 (D50) との差(D100—D50値)が 0. 4 /i m以下であることが好ましい。誘電体粒子が D100 _D50値で 0. 4 μ ΐη以下であることにより、製造された積層型セラミックコンデンサは 、その容量温度特性が ΕΙΑ規格の X8R特性を満足すると共に容量の経時変化が小 さいという上記の特性にカ卩え、 Tcバイアス特性に優れるという効果を奏する。
[0050] なお、本発明において、誘電体粒子の平均粒径は、コード法により決定される。ま た、 D100—D50値は、誘電体粒子の最大粒径(D100)と平均粒径(D50)との差を 表しているが、その最大粒径と平均粒径とは、誘電体層 2を構成する誘電体粒子の 粒度分布を予め求め、その粒度分布から得られた最大粒径と平均粒径とを用いて算 出される。 D100-D50値が小さいということは、誘電体層 2を構成する誘電体粒子の 大きさのバラツキが少なレ、ことを意味してレ、る。
[0051] また、容量温度特性力 ¾IA規格の X8R特性を満足するとは、製造された積層型セ ラミックコンデンサが、 80°C以上、特に 125— 150°Cの環境下で使用される機器用電 子部品として好ましく用いることができることを示すものである。そして、このような温度 範囲において、容量の温度特性が EIAJ規格の R特性を満足し、さらに X8R特性 (一 5 5— 150°C、 A CZC= ± 15%以内)も満足することを意味している。また、 JIS規格 の B特性 [_25 85°Cで容量変化率 ± 10%以内(基準温度 20°C) ]、 EIA規格の X 7R特性 (_55 125。C、 Δ C= ± 15%以内)も同時に満足することが可能である。
[0052] また、容量の経時変化に優れるとは、製造された積層型セラミックコンデンサを例え ば 85°Cの温度環境下で例えば 7V/ z mの直流電圧を印加した場合等において、 1 000時間後における容量の変化率が 10%以内であることを意味している。
[0053] また、 Tcバイアス特性に優れるとは、製造された積層型セラミックコンデンサに、通 常 0. 02VZ x m以上、特に 0. 2V/ z m以上、さらには 0. 5V/ z m以上、一般に 5V/ a m程度以下の交流電界と、これに重畳して 5VZ β m以下の直流電界とが加 えられた場合においても、容量の温度特性が安定であり、 Tcバイアス時の容量変化 率が例えば 40%以内であることを意味している。
[0054] 誘電体層 2の積層数や厚さ等の諸条件は、 目的や用途に応じ適宜決定すればよ いが、誘電体層 2の厚さとしては、通常 30 / m以下であり、小型大容量化の観点から は、誘電体層 2の厚さを 10 μ ΐη以下とすることが好ましい。このように薄層化した誘電 体層 2を有する積層型セラミックコンデンサは、小型化大容量化を実現できると共に、 その誘電体層 2を構成する誘電体粒子の平均粒径等が特定されることにより、容量 温度特性等の改善に有効である。なお、誘電体層 2の厚さの下限は特に制限されな レ、が、強いて挙げれば 0. 5 μ ΐη程度である。また、誘電体層 2の積層数は、通常、 50 一 1000程度である。
[0055] 内部電極層 3は、以上説明した誘電体層 2と交互に設けられ、各端面が積層誘電 体素子本体 10の対向する 2つの端部の表面に交互に露出するように積層されている 。また、一対の外部電極 4は、積層誘電体素子本体 10の両端部に形成され、交互に 配置されたニッケル内部電極層 3の露出端面に接続されて、積層型セラミックコンデ ンサを構成している。
[0056] 内部電極層 3は、実質的に電極として作用する卑金属の導電材から構成される。具 体的には、 Ni又は Ni合金が好ましい。 Ni合金としては、 Mn, Cr, Co, Al, W等の 1 種又は 2種以上と、 Niとの合金が好ましぐ合金中の Ni含有量が 95重量%以上であ ることが好ましい。また、 Ni又は Ni合金中には、 P, C, Nb, Fe, CI, B, Li, Na, K, F, S等の各種微量成分が 0. 1重量%以下含有されていてもよい。内部電極層 3の 積層数や厚さ等の諸条件は、 目的や用途に応じ適宜決定すればよいが、厚さとして は、通常 0. 3. 程度力 S好ましく、 0. 2. がより好ましい。
[0057] 外部電極 4は、積層誘電体素子本体 10の内部で交互に配置された内部電極層 3 と各々導通する電極であり、積層誘電体素子本体 10の両端部に一対形成されてい る。外咅 B電極 4としては、通常、 Ni, Pd, Ag, Au, Cu, Pt, Rh, Ru, Ir等の少なくと も 1種又はそれらの合金を用いることができる。通常は、 Cu、 Cu合金、 Ni又は Ni合 金等や、 Ag、 Ag_Pd合金、 In - Ga合金等が使用される。外部電極 4の厚さは用途 等に応じて適宜決定されればよいが、通常、 10— 200 x m程度であることが好ましい
[0058] (積層型セラミックコンデンサの製造方法)
本発明の積層型セラミックコンデンサは、従来の積層型セラミックコンデンサと同様 に、ペーストを用いた通常の印刷法やシート法によりグリーンチップを作製し、これを 焼成した後、外部電極を印刷又は転写して焼成することにより製造される。以下、製 造方法について具体的に説明する。
[0059] 誘電体層用ペーストは、誘電体原料と有機ビヒクルとを混練した有機系の塗料であ つてもよく、水系の塗料であってもよい。
[0060] 誘電体原料には、上記した酸化物やその混合物、複合酸化物を用いることができ るが、その他、焼成により上記した酸化物や複合酸化物となる各種化合物、例えば炭 酸塩、シユウ酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択し、混合し て用いることができる。誘電体原料中の各化合物の含有量は、焼成後に上記した誘 電体磁器組成物の組成となるように決定すればよい。この誘電体原料は、通常、平 均粒径 0. 1— 3 z m程度の粉末が用いられる。所望の平均粒径は、原料の混合時 間を適宜調整することにより得ることができる。
[0061] 有機ビヒクノレとは、バインダを有機溶剤中に溶解したものである。有機ビヒクルに用 レ、るバインダは特に限定されず、ェチルセルロース、ポリビエルブチラール等の通常 の各種バインダから適宜選択すればよい。また、用いる有機溶剤も特に限定されず、 印刷法やシート法等、利用する方法に応じて、テルビネオール、プチルカルビトール 、アセトン、トルエン等の各種有機溶剤から適宜選択すればよい。
[0062] また、誘電体層用ペーストを水系の塗料とする場合には、水溶性のバインダゃ分散 剤等を水に溶解させた水系ビヒクルと、誘電体原料とを混練すればよい。水系ビヒク ノレに用いる水溶性バインダは特に限定されず、例えばポリビュルアルコール、セル口 ース、水溶性アクリル樹脂等を用いればよい。
[0063] 内部電極層用ペーストは、上記した各種誘電性金属や合金からなる導電材、ある いは焼成後に上記した導電材となる各種酸化物、有機金属化合物、レジネート等と、 上記した有機ビヒクルとを混練して調製する。外部電極用ペーストは、上記した内部 電極層用ペーストと同様にして調製すればよい。
[0064] 上記した各ペースト中の有機ビヒクルの含有量に特に制限はなぐ通常の含有量、 例えば、バインダは 1一 5重量%程度、溶剤は 10— 50重量%程度とすればよい。ま た、各ペースト中には、必要に応じて各種分散剤、可塑剤、誘電体、絶縁体等から選 択される添加物が含有されていてもよい。これらの総含有量は、 10重量%以下とする ことが好ましい。
[0065] 印刷法を用いる場合、誘電体層用ペースト及び内部電極層用ペーストを、 PET等 の基板上に積層印刷し、所定形状に切断した後、基板から剥離してグリーンチップと する。また、シート法を用いる場合、誘電体層用ペーストを用いてグリーンシートを形 成し、この上に内部電極層用ペーストを印刷した後、これらを積層してグリーンチップ とする。
[0066] 焼成前に、グリーンチップに脱バインダ処理を施す。脱バインダ処理は、通常の条 件で行えばよいが、内部電極層の導電材に Niや Ni合金等の卑金属を用いる場合に は、空気雰囲気において、昇温速度を好ましくは 5 300°CZ時間、より好ましくは 1 0— 100°C/時間、保持温度を好ましくは 180— 400°C、より好ましくは 200— 300 °C、温度保持時間を好ましくは 0. 5— 24時間、より好ましくは 5— 20時間とする。
[0067] グリーンチップ焼成時の雰囲気は、内部電極層用ペースト中の導電材の種類に応 じて適宜決定されればよいが、導電材として Niや Ni合金等の卑金属を用いる場合、 焼成雰囲気中の酸素分圧は、 10_8— 10_12気圧とすることが好ましい。酸素分圧が 前記範囲未満であると、内部電極層の導電材が異常焼結を起こし、途切れてしまうこ と力ある。また、酸素分圧が前記範囲を超えると、内部電極層が酸化する傾向にある
[0068] また、焼成時の保持温度は、好ましくは 1100 1400。C、より好ましくは 1200— 13 60°C、さらに好ましくは 1200 1340°Cである。保持温度が前記範囲未満であると 緻密化が不十分となり、前記範囲を超えると、内部電極層の異常焼結による電極の 途切れや、内部電極層構成材料の拡散による容量温度特性の悪化、誘電体磁器組 成物の還元が生じやすくなる。
[0069] これ以外の焼成条件としては、昇温速度を好ましくは 50 500°CZ時間、より好ま しくは 200 300°CZ時間、温度保持時間を好ましくは 0. 5 8時間、より好ましくは 1一 3時間、冷却速度を好ましくは 50— 500°C/時間、より好ましくは 200— 300°C /時間とする。また、焼成雰囲気は還元性雰囲気とすることが好ましぐ雰囲気ガスと しては、例えば Nと Hとの混合ガスを加湿して用いることが好ましい。
2 2
[0070] 還元性雰囲気中で焼成した場合、積層誘電体素子本体にはァニールを施すことが 好ましレ、。ァニールは、誘電体層を再酸化するための処理であり、これにより IR寿命 を著しく長くすることができるので、信頼性が向上する。
[0071] ァニール雰囲気中の酸素分圧は、 10— 1Q気圧以上、特に 10— 7— 10— 6気圧とすること が好ましい。酸素分圧が前記範囲未満であると誘電体層の再酸化が困難であり、前 記範囲を超えると内部電極層が酸化する傾向にある。
[0072] ァニールの際の保持温度は、 1100°C以下、特に 500 1100°Cとすること力 S好まし レ、。保持温度が前記範囲未満であると誘電体層の酸化が不十分となるので、 IRが低 ぐまた、 IR寿命が短くなりやすい。一方、保持温度が前記範囲を超えると、内部電 極層が酸化して容量が低下するだけでなぐ内部電極層が誘電体素地と反応してし まレ、、容量温度特性の悪化、 IRの低下、 IR寿命の低下が生じやすくなる。なお、ァニ 一ルは昇温過程及び降温過程だけから構成してもよい。すなわち、温度保持時間を 零としてもよい。この場合、保持温度は最高温度と同義である。 [0073] これ以外のァニール条件としては、温度保持時間を好ましくは 0— 20時間、より好 ましくは 6— 10時間、冷却速度を好ましくは 50— 500°C/時間、より好ましくは 100 一 300°C/時間とする。また、ァニールの雰囲気ガスとしては、例えば、加湿した N
2 ガス等を用いることが好ましい。
[0074] 上記した脱バインダ処理、焼成及びァニールにおいて、 Nガスや混合ガス等をカロ
2
湿するには、例えばウェッター等を使用すればよい。この場合、水温は 5 75°C程度 が好ましい。
[0075] 脱バインダ処理、焼成及びァニールは、連続して行なっても、独立に行なってもよ レ、。これらを連続して行なう場合、脱バインダ処理後、冷却せずに雰囲気を変更し、 続いて焼成の際の保持温度まで昇温して焼成を行ない、次いで冷却し、ァニールの 保持温度に達したときに雰囲気を変更してァニールを行なうことが好ましい。一方、こ れらを独立して行なう場合、焼成に際しては、脱バインダ処理時の保持温度まで N
2 ガスあるいは加湿した Nガス雰囲気下で昇温した後、雰囲気を変更してさらに昇温
2
を続けることが好ましぐァニール時の保持温度まで冷却した後は、再び Nガスある
2 いは加湿した Nガス雰囲気に変更して冷却を続けることが好ましい。また、ァニール
2
に際しては、 Nガス雰囲気下で保持温度まで昇温した後、雰囲気を変更してもよぐ
2
ァニールの全過程を加湿した Nガス雰囲気としてもよレ、。
2
[0076] 上記のようにして得られた積層誘電体素子本体に、例えばバレル研磨やサンドブラ スト等により端面研磨を施し、外部電極用ペーストを印刷又は転写して焼成し、外部 電極 4を形成する。外部電極用ペーストの焼成条件は、例えば、加湿した Nと Hとの
2 2 混合ガス中で 600— 800°Cにて 10分間一 1時間程度とすることが好ましい。そして、 必要に応じ、外部電極 4表面に、めっき等により被覆層を形成する。このようにして製 造された本発明の積層型セラミックコンデンサは、ハンダ付等によりプリント基板上等 に実装され、各種電子機器等に使用される。
[0077] 以上本発明の積層型セラミックコンデンサ及びその製造方法について説明してきた が、本発明はこうした実施形態に何等限定されるものではなぐ本発明の要旨を逸脱 しなレ、範囲内におレ、て種々なる態様で実施し得ることは勿論である。
実施例 [0078] 以下の実験例により本発明を詳細に説明する。但し、本発明は、以下の記載内容 に限定されるものではない。
[0079] (実験 1)
先ず、誘電体材料を作製するための出発原料として、それぞれの平均粒径が 0. 1 一 l z mに含まれる主成分原料 (BaTiO )及び第 1一第 7副成分原料を用意した。特
3
に BaTiOについては、原料粉末の平均粒径が約 0. 1 -0. 33 μ πιであり且つ N吸
3 2 着法を用いて測定された比表面積が 3— 8. 5の範囲のもの、具体的には固相法で合 成した比表面積力 7, 3. 5, 3. 8, 4. 1 , 4. 4, 4. 8, 5. 0, 5. 4, 6. 0, 7. 0, 7.
7, 8. 5の 12種類の BaTiO粉末を使用した。なお、比表面積が前記範囲となる BaT
3
i〇は、固相法に限らず、一般的な液相合成によっても得ることができる。
3
[0080] MgO及び MnOの原料には炭酸塩(第 1副成分: MgCO、第 7副成分: MnC〇 )
3 3 を用レ、、他の原料には酸化物(第 2副成分:(Ba Ca ) SiO、第 3副成分: V O 、
0. 6 0. 4 3 2 5 第 4副成分: Yb〇、第 5副成分: CaZrO、第 6副成分: Y〇)を用いた。なお、第 2
2 3 3 2 3 副成分である(Ba Ca ) SiOは、 BaCO , CaCO及び Si〇をボーノレミルにより 1
0. 6 0. 4 3 3 3 2
6時間湿式混合し、乾燥後、 1150°Cで空気中で焼成し、さらに、ボールミルにより 10 0時間湿式粉砕することにより製造した。また、第 5副成分である CaZrOは、 CaCO
3 3 及び Zr〇をボールミルにより 16時間湿式混合し、乾燥後、 1150°Cで空気中で焼成
2
し、さらに、ボールミルにより 24時間湿式粉碎することにより製造した。
[0081] これらの原料を、焼成後の組成が、主成分である BaTiO 100モノレに対して、第 1副
3
成分としての MgCOを 1. 1モノレ、第 2副成分としての(Ba Ca ) SiOを 2· 5モル
3 0. 6 0. 4 3
、第 3畐 ij成分としての V Oを 0· 06モノレ、第 4畐 IJ成分としての Yb Oを 2. 00モノレ、第
2 5 2 3
5畐 IJ成分としての CaZrOを 2. 00モノレ、第 6畐 lj成分としての Y Oを 3. 00モノレ、第 7
3 2 3
副成分としての MnCOを 0. 3モル配合して、ボールミルにより 16時間湿式混合し、
3
乾燥させて誘電体材料とした。
[0082] このようにして得られた乾燥後の誘電体原料 100重量部と、アクリル樹脂 4. 8重量 部と、塩化メチレン 40重量部と、酢酸ェチル 20重量部と、ミネラルスピリット 6重量部 と、アセトン 4重量部とをボールミルで混合してペーストイ匕し、誘電体層用ペーストを 得た。 [0083] 次いで、平均粒径 0. 4 μ mの Ni粒子 100重量部と、有機ビヒクル(ェチルセルロー ス 8重量部をブチルカルビトール 92重量部に溶解したもの) 40重量部と、ブチルカル ビトール 10重量部とを 3本ロールにより混練してペースト化し、内部電極層用ペースト を得た。
[0084] 次いで、平均粒径 0. 5 μ mの Cu粒子 100重量部と、有機ビヒクル(ェチルセルロー ス樹脂 8重量部をブチルカルビトール 92重量部に溶解したもの) 35重量部及びプチ ルカルビトール 7重量部とを混練してペースト化し、外部電極用ペーストを得た。
[0085] 次いで、上記誘電体層用ペーストを用いて PETフィルム上に、厚さ 4. のグリ ーンシートを形成し、この上に内部電極層用ペーストを印刷したのち、 PETフィルム 力 グリーンシートを剥離した。次いで、これらのグリーンシートと保護用グリーンシー ト(内部電極層用ペーストを印刷しなレ、もの)とを積層、圧着して、グリーンチップを得 た。内部電極を有するシートの積層数は 4層とした。
[0086] 次いで、グリーンチップを所定サイズに切断し、脱バインダ処理、焼成及びァニー ルを行って、積層セラミック焼成体を得た。脱バインダ処理は、昇温時間 15°C/時間 、保持温度 280°C、保持時間 8時間、空気雰囲気の条件で行った。また、焼成は、昇 温速度 200°C/時間、保持温度 1270— 1320°C、保持時間 2時間、冷却速度 300 °C /時間、加湿した N + H混合ガス雰囲気(酸素分圧は 10— 11気圧)の条件で行つ
2 2
た。ァニールは、保持温度 900°C、温度保持時間 9時間、冷却速度 300°C/時間、 加湿した Nガス雰囲気(酸素分圧は 10— 7気圧)の条件で行った。なお、焼成の際の
2
雰囲気ガスの加湿には、水温を 20°Cとしたウェッターを用い、ァニールの際の雰囲 気ガスの加湿には、水温を 30°Cとしたウェッターを用いた。
[0087] 次いで、積層セラミック焼成体の端面をサンドブラストにて研磨したのち、外部電極 用ペーストを端面に転写し、加湿した N + H雰囲気中において、 800°Cにて 10分
2 2
間焼成して外部電極を形成して積層型セラミックコンデンサのサンプルを得た。
[0088] このようにして、誘電体層を構成する誘電体粒子の平均粒径が表 1に記載のものと なった積層型セラミックコンデンサのサンプノレを作製した。このときの誘電体粒子の平 均粒径は、本願においてはコード法により求めたコード長を 1. 5倍したものを粒径と 定義し、測定された相当数 (例えば 300個)の粒径データの平均値で表した。また、 誘電体粒子の D100-D50値は、積層セラミック焼成体を研磨して厚さ方向の断面を とり、この断面を化学エッチングもしくは熱エッチングして結晶粒子が観察できるよう にしてから SEM (走査型電子顕微鏡)写真を撮り、この写真を画像処理して 300個の 結晶粒子についての円相当径を算出し、これらの円相当径の累積度数分布から求 めた最大粒径(D100)と平均粒径(D50)との差で表した。なお、この実験例におい ては、 300個の結晶粒子についての粒径データから平均粒径や誘電体粒子の D10 0—D50値を求めている力 求める粒径データの数は必ずしも 300個である必要はな ぐそれ以外の数であっても構わない。
[0089] 得られた各サンプルのサイズは、 3. 2mm X l . 6mm X O. 6mmであり、内部電極 層に挟まれた誘電体層の数は 4、誘電体層の 1層当たりの厚さは 3. であり、内 部電極層の 1層当たりの厚さは 1. O x mであった。また、得られた積層型セラミックコ ンデンサのサンプルは、還元雰囲気での焼成においても還元されることがなぐまた 内部電極として使用したニッケルも IR不良が生じる程度の酸化はみられなかった。
[0090] (各特性の評価方法と結果)
作製された積層型セラミックコンデンサのサンプルについて、容量温度特性、容量 の経時変化特性、 Tcバイアス特性、及び平均寿命を評価した。
[0091] (i)容量温度特性は、得られたコンデンサのサンプノレに対し、 -55— 150°Cの温度 範囲で最も容量温度特性が悪くなる 150°Cの温度環境下での静電容量の変化率( %)を測定することにより評価した。静電容量の測定には LCRメータを用レ、、周波数 1 kHz '入力信号レベル lVrmsの条件下で測定した。測定結果に対しては、 X8R特 性 (-55— 150°C、 A C= ± 15%以内)を満足するか否かで評価し、満足するものを 〇、満足しないものを Xとした。その結果を表 1と図 3に示した。
[0092] 表 1及び図 3の結果から明らかなように、誘電体粒子(焼結後の誘電体粒子)の平 均粒径が 0. 20 x m-0. 582 z mの範囲内で静電容量の変化率が 15%以内にな つており、 X8R特性を満たしているのが確認された。
[0093] (ii)容量の経時変化特性は、得られたコンデンサのサンプルに対し、 85°Cの温度環 境下で 7. OVZ x mの直流電圧を印加した際の、 1000時間経過前後の静電容量 の変化率(%)を測定することにより評価した。静電容量の測定には LCRメータを用 レ、、 1000時間前後のサンプルを周波数 1kHz '入力信号レベル lVrmsの条件下で 測定し、その結果を表 1及び図 4に示した。測定結果に対しては、 1000時間前後の 静電容量の変化率が 10%以内となるか否かで評価した。
[0094] 表 1及び図 4の結果から明らかなように、誘電体粒子(焼結後の誘電体粒子)の平 均粒径が 0. 18 x m 0. 55 z mの範囲内で容量変化率(1000時間前後)が 10% 以内になっているのが確認された。
[0095] (iii)Tcバイアス特性は、得られたコンデンサのサンプルに対し、一 55 + 150°Cの 温度条件下で、 7. 0V/ z mの直流電圧を印加した際の静電容量の変化率(%)を 測定することにより評価した。静電容量の測定には LCRメータを用レ、、周波数 1kHz •入力信号レベル lVrmsの条件下で測定した。測定結果に対しては、静電容量の変 化率が 40%以内となるか否かで評価した。
[0096] 表 1及び図 5の結果から明らかなように、誘電体粒子(焼結後の誘電体粒子)の平 均粒径が 0. 18 μ ΐη—0. 38 /i mの範囲内で容量変化率が 40%以内になっている のが確認された。また、この Tcバイアス特性について、 D100-D50値との関係につ いて調べた結果を図 6に示した。図 6の結果から明らかなように、 D100-D50値が 0 . 4 / m以下の場合に、容量変化率が 40%以内になっているのが確認された。
[0097] なお、こうした結果は、誘電体粒子が小さくそのバラツキが小さいほど Tcバイアス特 性に優れることを示している力 その理由については、粒子径の揃った小さい誘電体 粒子で誘電体層が構成されることにより強誘電性が低減することに依存したものであ ると考えられる。
[0098] (iv)平均寿命は、得られたコンデンサのサンプル計 12個に対し、 200°Cの温度条件 下で、 15. 0V/ z mの直流電圧を印加した際に、抵抗力 S1桁変化するまでの時間で 評価する加速試験を行い、その平均値 (平均寿命時間)を基に評価した。抵抗値は、 コンデンサの漏れ電流から計算して求めた。なお、この加速試験の結果は、得られた 平均寿命時間が 1. 5時間以上であれば、積層型セラミックコンデンサとして十分な信 頼性を有するものとして評価される。
[0099] 表 1及び図 7の結果から明らかなように、この実験で得られたサンプルはいずれも 1 . 5時間以上の平均寿命を示しており、積層型セラミックコンデンサとして十分な信頼 性を有している c
[0100] [表 【έ 1]
Figure imgf000023_0001
[0101] (ν)以上の結果から明らかなように、誘電体層を構成する誘電体粒子の平均粒子 径が異なるサンプルで各特性を評価した結果、誘電体粒子 (焼結後の誘電体粒子) の平均粒径が 0. 20 /1 111以上0. 55 /i m以下の範囲で X8R特性を満たすと共に、容 量の経時変化が 10%以内となった。また、誘電体粒子 (焼結後の誘電体粒子)の平 均粒径が 0. 20 x m以上 0. 35 z m以下の範囲で X8R特性を満たすと共に、容量の 経時変化が 10%以内で、 Tcバイアス時の容量変化率が 40%以内となった。また、 誘電体層を構成する誘電体粒子 (焼結後の誘電体粒子)の D100 - D50値が 0. 4 a m以下で、 Tcバイアス時の容量変化率が 40%以内となった。
産業上の利用可能性
本発明の積層型セラミックコンデンサは、容量温度特性が EIA規格の X8R特性 (一 55— 150°C、 A C/C= ± 15%以内)を満足すると共に、容量の経時変化が小さく なり、 Tcバイアス特性に優れたものとなるので、一般的な電子機器の他、特に厳しい 使用環境下で使用される自動車搭載用の各種電子装置において、好ましく用いられ る。

Claims

請求の範囲
[1] チタン酸バリウムを含む主成分と、酸化マグネシウム(MgO)、酸化カルシウム(Ca O)、酸化バリウム(Ba〇)及び酸化ストロンチウム(SrO)力 選択される少なくとも 1種 からなる第 1副成分と、酸化シリコンを主成分として含有する第 2副成分と、酸化バナ ジゥム (V O )、酸化モリブデン(MoO )及び酸化タングステン (W〇)から選択され
2 5 3 3 る少なくとも 1種からなる第 3副成分と、 R1の酸化物(但し、 R1は Sc、 Er、 Tm、 Yb及 び Luから選択される少なくとも 1種)からなる第 4副成分と、 CaZrO又は CaO + ZrO
3 2 力 なる第 5副成分と、 R2酸化物(但し、 R2は Y、 Dy、 Ho、 Tb、 Gd及び Euから選択 される少なくとも 1種)からなる第 6副成分とを少なくとも有し、前記チタン酸ノくリウム 10 0モルに対する前記各副成分の比率が、第 1副成分: 0. 1— 3モル、第 2副成分: 2— 10モノレ、第 3副成分: 0. 01 ^0. 5モノレ、第 4副成分: 0. 5— 7モル(但し、第 4副成 分のモル数は、 R1単独での比率である)、第 5副成分: 0を超え 5モル以下、第 6副成 分: 0を超え 9モル以下である誘電体磁器組成物の結晶粒子で構成された焼結体か らなる誘電体層と、内部電極層とが交互に積層された積層体を有する積層型セラミツ クコンデンサであって、前記誘電体層を構成する前記結晶粒子の平均粒径が 0. 2 μ m以上 0. 55 μ m以下であることを特徴とする積層型セラミックコンデンサ。
[2] 酸化マンガン (Mn〇)又は酸化クロム(Cr O )からなる第 7副成分をさらに含有し、
2 3
前記チタン酸バリウム 100モルに対する第 7副成分の比率が 0. 01 -0. 5モルである ことを特徴とする請求項 1に記載の積層型セラミックコンデンサ。
[3] 前記誘電体層を構成する前記結晶粒子の平均粒径が 0. 2 111以上0. 以 下であることを特徴とする請求項 1又は 2に記載の積層型セラミックコンデンサ。
[4] 前記誘電体層を構成する前記結晶粒子の最大粒径 (D 100)と平均粒径 (D50)と の差(D100—D50)が 0. 4 z m以下であることを特徴とする請求項 1一 3のいずれか に記載の積層型セラミックコンデンサ。
PCT/JP2005/002885 2004-03-19 2005-02-23 積層型セラミックコンデンサ WO2005090260A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/593,342 US7898793B2 (en) 2004-03-19 2005-02-23 Laminated ceramic capacitor
JP2006511140A JPWO2005090260A1 (ja) 2004-03-19 2005-02-23 積層型セラミックコンデンサ
EP05710578.5A EP1736456B1 (en) 2004-03-19 2005-02-23 Laminated ceramic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-079696 2004-03-19
JP2004079696 2004-03-19

Publications (1)

Publication Number Publication Date
WO2005090260A1 true WO2005090260A1 (ja) 2005-09-29

Family

ID=34993599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002885 WO2005090260A1 (ja) 2004-03-19 2005-02-23 積層型セラミックコンデンサ

Country Status (7)

Country Link
US (1) US7898793B2 (ja)
EP (1) EP1736456B1 (ja)
JP (1) JPWO2005090260A1 (ja)
KR (1) KR100807774B1 (ja)
CN (1) CN1930102A (ja)
TW (1) TWI263629B (ja)
WO (1) WO2005090260A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282483A (ja) * 2005-04-04 2006-10-19 Tdk Corp 電子部品、誘電体磁器組成物およびその製造方法
JP2018526301A (ja) * 2015-05-27 2018-09-13 エプコス アクチエンゲゼルシャフトEpcos Ag ビスマスナトリウムストロンチウムチタン酸塩系誘電体組成物、誘電体素子、電子部品および積層電子部品
US20210383973A1 (en) * 2020-06-05 2021-12-09 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and dielectric material

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200844072A (en) * 2006-11-29 2008-11-16 Kyocera Corp Dielectric ceramic and capacitor
JP5046700B2 (ja) * 2007-03-27 2012-10-10 京セラ株式会社 誘電体磁器および積層セラミックコンデンサ
JP4925958B2 (ja) * 2007-07-27 2012-05-09 京セラ株式会社 積層セラミックコンデンサ
US8139343B2 (en) * 2010-03-08 2012-03-20 Wisys Technology Foundation Electrical energy storage device containing an electroactive separator
TW201331150A (zh) * 2012-01-20 2013-08-01 Yageo Corp 用於製作被動元件的陶瓷材料組成
KR101605284B1 (ko) * 2012-01-23 2016-03-21 엔지케이 인슐레이터 엘티디 Pet 필름의 표면에 형성된 도포막의 건조 방법 및 도포막 건조로
US10155697B2 (en) * 2012-03-22 2018-12-18 Holy Stone Enterprise Co., Ltd. Composite dielectric ceramic material having anti-reduction and high temperature stability characteristics and method for preparing same
TWI592961B (zh) * 2012-03-22 2017-07-21 禾伸堂企業股份有限公司 積層陶瓷電容器
KR101659143B1 (ko) 2014-04-16 2016-09-22 삼성전기주식회사 유전체 자기 조성물 및 이를 포함하는 적층 세라믹 커패시터
KR101548864B1 (ko) 2014-04-18 2015-08-31 삼성전기주식회사 유전체 자기 조성물 및 이를 포함하는 적층 세라믹 커패시터
KR101792368B1 (ko) * 2015-12-24 2017-11-20 삼성전기주식회사 유전체 자기 조성물, 유전체 재료 및 이를 포함하는 적층 세라믹 커패시터
JP7171171B2 (ja) * 2017-07-25 2022-11-15 太陽誘電株式会社 セラミック電子部品及びセラミック電子部品の製造方法
JP7037945B2 (ja) 2018-01-26 2022-03-17 太陽誘電株式会社 セラミックコンデンサおよびその製造方法
KR102712631B1 (ko) * 2019-12-12 2024-10-02 삼성전기주식회사 적층 세라믹 전자부품 및 이의 제조 방법
CN114956808B (zh) * 2022-06-15 2023-05-23 无锡市高宇晟新材料科技有限公司 Mlcc陶瓷介质材料及其制备方法、高温稳定型的mlcc陶瓷及其制备方法、应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251173A (ja) * 1998-03-03 1999-09-17 Murata Mfg Co Ltd 積層セラミック電子部品
JP3348081B2 (ja) * 1999-10-19 2002-11-20 ティーディーケイ株式会社 誘電体磁器組成物および電子部品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258338A (en) * 1990-01-11 1993-11-02 Mra Laboratories Fine grained BaTiO3 powder mixture and method for making
US6403513B1 (en) * 1999-07-27 2002-06-11 Tdk Corporation Dielectric ceramic composition and electronic device
JP2001316176A (ja) * 2000-04-28 2001-11-13 Murata Mfg Co Ltd 誘電体セラミック、積層セラミックコンデンサ、および誘電体セラミックの製造方法
JP3361091B2 (ja) 2000-06-20 2003-01-07 ティーディーケイ株式会社 誘電体磁器および電子部品
TW200531955A (en) * 2004-03-16 2005-10-01 Tdk Corp Dielectric ceramic composition, multilayer ceramic capacitor, and method for manufacturing the same
JP4203452B2 (ja) * 2004-06-28 2009-01-07 Tdk株式会社 積層型セラミックコンデンサの製造方法
JP4095586B2 (ja) * 2004-06-29 2008-06-04 Tdk株式会社 積層型セラミックコンデンサおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251173A (ja) * 1998-03-03 1999-09-17 Murata Mfg Co Ltd 積層セラミック電子部品
JP3348081B2 (ja) * 1999-10-19 2002-11-20 ティーディーケイ株式会社 誘電体磁器組成物および電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1736456A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282483A (ja) * 2005-04-04 2006-10-19 Tdk Corp 電子部品、誘電体磁器組成物およびその製造方法
JP2018526301A (ja) * 2015-05-27 2018-09-13 エプコス アクチエンゲゼルシャフトEpcos Ag ビスマスナトリウムストロンチウムチタン酸塩系誘電体組成物、誘電体素子、電子部品および積層電子部品
US10388456B2 (en) 2015-05-27 2019-08-20 Tdk Electronics Ag Dielectric composition, dielectric element, electronic component and laminated electronic component
US20210383973A1 (en) * 2020-06-05 2021-12-09 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and dielectric material
US11776752B2 (en) * 2020-06-05 2023-10-03 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and dielectric material

Also Published As

Publication number Publication date
TWI263629B (en) 2006-10-11
TW200536806A (en) 2005-11-16
EP1736456B1 (en) 2013-10-23
EP1736456A4 (en) 2010-09-22
JPWO2005090260A1 (ja) 2008-01-31
CN1930102A (zh) 2007-03-14
EP1736456A1 (en) 2006-12-27
US7898793B2 (en) 2011-03-01
KR100807774B1 (ko) 2008-02-28
US20080253060A1 (en) 2008-10-16
KR20070026399A (ko) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2005090260A1 (ja) 積層型セラミックコンデンサ
JP4203452B2 (ja) 積層型セラミックコンデンサの製造方法
KR100352245B1 (ko) 유전체 자기(磁器) 조성물 및 전자 부품
US7307828B2 (en) Electronic device, dielectric ceramic composition, and method of production of the same
JP5246185B2 (ja) 誘電体セラミック、及び積層セラミックコンデンサ
JP4821357B2 (ja) 電子部品、誘電体磁器組成物およびその製造方法
EP1662522A1 (en) Dielectric ceramic composition with Core-Shell particles and electronic device
JP5017792B2 (ja) 電子部品、誘電体磁器組成物およびその製造方法
JP3340722B2 (ja) 誘電体磁器組成物の製造方法
JP2000154057A (ja) 誘電体磁器組成物および電子部品
KR20060043615A (ko) 유전체 자기 조성물, 적층형 세라믹 콘덴서 및 그 제조방법
JP2001031467A (ja) 誘電体磁器組成物および電子部品
JP3341003B2 (ja) 誘電体磁器組成物および電子部品
KR100484515B1 (ko) 유전체 자기 조성물 및 전자부품
JP3340723B2 (ja) 誘電体磁器組成物の製造方法
JP4275036B2 (ja) 誘電体磁器組成物及び電子部品
JP5167579B2 (ja) 誘電体磁器組成物及び電子部品
JP5017770B2 (ja) 誘電体磁器組成物および電子部品
JP4387990B2 (ja) 誘電体磁器組成物及び電子部品
JP2005263508A (ja) 誘電体磁器組成物、積層型セラミックコンデンサ及びその製造方法
JP2005272262A (ja) 誘電体磁器組成物、積層型セラミックコンデンサ及びその製造方法
JP4556607B2 (ja) 誘電体磁器組成物及び電子部品
JP2005294290A (ja) 積層型セラミックコンデンサ
JP2005272263A (ja) 誘電体磁器組成物、積層型セラミックコンデンサ及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067017658

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006511140

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580008135.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005710578

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005710578

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067017658

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10593342

Country of ref document: US