WO2005085523A1 - 吸放湿紙およびその製造法 - Google Patents

吸放湿紙およびその製造法 Download PDF

Info

Publication number
WO2005085523A1
WO2005085523A1 PCT/JP2004/017700 JP2004017700W WO2005085523A1 WO 2005085523 A1 WO2005085523 A1 WO 2005085523A1 JP 2004017700 W JP2004017700 W JP 2004017700W WO 2005085523 A1 WO2005085523 A1 WO 2005085523A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
acidic group
paper
moisture
absorbing
Prior art date
Application number
PCT/JP2004/017700
Other languages
English (en)
French (fr)
Inventor
Ryosuke Nishida
Hideo Naka
Original Assignee
Japan Exlan Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Company Limited filed Critical Japan Exlan Company Limited
Priority to EP20040821715 priority Critical patent/EP1722035B1/en
Priority to KR1020067020418A priority patent/KR101060028B1/ko
Priority to JP2006510612A priority patent/JP4375397B2/ja
Priority to US10/587,147 priority patent/US7998312B2/en
Publication of WO2005085523A1 publication Critical patent/WO2005085523A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/22Agents rendering paper porous, absorbent or bulky
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/38Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing crosslinkable groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/18Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylonitriles
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/38Inorganic fibres or flakes siliceous
    • D21H13/40Inorganic fibres or flakes siliceous vitreous, e.g. mineral wool, glass fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Definitions

  • the present invention relates to a moisture-absorbing and desorbing paper having both high ⁇ moisture absorbing and releasing property and high ⁇ dimensional stability, and a method for producing the same.
  • Moisture-absorbing and desorbing paper that is, paper having moisture-absorbing and desorbing properties
  • paper containing a substance having a moisture-absorbing and desorbing property is well known.
  • the substance having moisture absorption / release properties fibers having moisture absorption / release properties and fine particles having moisture absorption / release properties are often used.
  • organic and inorganic substances that have such moisture absorption / release properties. The former has high moisture absorption / release properties but swells, while the latter does not swell but has low moisture absorption. There are features. For this reason, it is not easy to obtain moisture-absorbing paper with both high moisture-absorbing properties and high dimensional stability!
  • Moisture absorbing / releasing paper using fibers having moisture absorbing / releasing properties include moisture absorbing / releasing fibers obtained by introducing a cross-linking bond and a carboxyl group into an acrylic fiber and adding sodium ions, polyester binder fibers, and softwood.
  • a moisture absorbing / releasing paper made of pulp is known (see Patent Document 1).
  • the above-mentioned moisture-absorbing and desorbing fibers are excellent in moisture-absorbing and desorbing properties because they can contain a large amount of carboxyl groups, and can suppress swelling of the fibers more than ordinary moisture-absorbing and desorbing fibers by cross-linking. Therefore, if a small amount is used, the dimensional stability of the absorbent paper can be maintained.
  • the amount used when the amount used is increased in order to obtain a moisture absorbing / releasing paper having a high moisture absorption rate, its swelling suppressing effect cannot be said to be sufficient, and a decrease in dimensional stability cannot be avoided.
  • the dimensional stability is improved by using a large amount of binder fibers or further performing hot pressing after forming the paper.
  • the moisture-absorbing / desorbing fiber will be covered and bound by the fused binder fiber. It cannot be demonstrated, and it is difficult to enhance the moisture absorption / release properties as moisture absorption / release paper.
  • Examples of the use of moisture absorbing and releasing fine particles include inorganic particles such as silica gel and zeolite, and moisture absorbing and releasing paper made of wood pulp and heat-fusible fiber. 2).
  • the moisture absorbing / releasing paper is excellent in terms of dimensional stability because inorganic particles such as silica gel / zeolite which have moisture absorbing / releasing properties do not swell even if it absorbs moisture.
  • inorganic particles have a small amount of moisture absorption, so it is difficult to make a paper with high moisture absorption and desorption properties.
  • there is a drawback such as crushing and lowering the performance, and thus there is a problem that the field of application is limited.
  • Patent Document 1 JP-A-6-207398
  • Patent Document 2 JP-A-10-212692
  • An object of the present invention is to provide a moisture-absorbing and desorbing paper that overcomes the above problems and achieves both high moisture absorption and desorption and high dimensional stability, and a method for producing the same.
  • the inventor of the present invention has conducted intensive studies to achieve the above-mentioned object, and as a result, the use of inorganic fibers having excellent dimensional stability has reduced the amount of binder fibers used.
  • Organic fine particles having a crosslinked structure and an acidic group are adopted as the substance having the organic fine particles, and the moisture absorption and desorption properties of the organic fine particles are maximized even after papermaking by devising a papermaking method.
  • the present inventors have found that a moisture absorbing / releasing paper having both dimensional stability can be obtained, and have reached the present invention.
  • the present invention is achieved by the following means.
  • the organic fine particles having a crosslinked structure and an acidic group bind to the acidic group! /
  • the dispersion is obtained by dispersing or emulsifying in water having a cation concentration of lppm or less, excluding the metal ion, and impregnating the inorganic fiber and pulp-like fiber paper with the aqueous solution.
  • the moisture absorbing and releasing paper according to (1).
  • the organic fine particles having a crosslinked structure and an acidic group are acrylic acid-based moisture-absorbing and desorbing fine particles obtained by subjecting acrylonitrile-based polymer fine particles to a crosslinking introduction treatment with a hydrazine compound and a hydrolysis treatment with an alkali metal salt.
  • the moisture absorbing / releasing paper according to any one of (1) to (3).
  • the organic fine particles having a crosslinked structure and an acidic group are those having a crosslinked structure with divinylbenzene and a carboxyl group. paper.
  • (10) It has a crosslinked structure and an acidic group of 110 mmol Zg, and a metal ion of at least one metal selected from the group consisting of Li, Na, K, Mg, and Ca is bound to the acidic group by I mmol Zg or more.
  • a method for producing a moisture-absorbing / desorbing paper comprising using water having a cation concentration of 1 ppm or less after removing metal ions by binding to the acidic group.
  • (11) It has a cross-linking structure and an acidic group of 110 mmolZg, and a metal ion of at least one kind of metal selected from the group consisting of Li, Na, K, Mg, and Ca binds to the acidic group at least 1 mmolZg! / Pull organic particles bind to the acidic group!
  • Water absorption / desorption paper characterized by impregnating inorganic fiber and pulp-like fiber paper with an aqueous liquid dispersed or emulsified in water having a cation concentration of lppm or less after removing metal ions. Manufacturing method.
  • the moisture-absorbing and desorbing paper of the present invention has both high moisture-absorbing and desorbing properties and high dimensional stability. Can also provide high moisture absorption and release properties. Further, since the change in dimensions due to repeated moisture absorption and desorption is small, it can be suitably used as a moisture absorption element for a dehumidifying air conditioner in which the durability of the moisture absorption and desorption paper itself is high.
  • the moisture absorbing and desorbing paper of the present invention has a crosslinked structure and 11 lOmmolZg of acidic groups, and the acidic group is composed of at least one metal selected from the group consisting of Li, Na, K, Mg, and Ca.
  • the organic fine particles having a crosslinked structure and an acidic group according to the present invention are the main components that are responsible for the hygroscopicity in the hygroscopic paper of the present invention.
  • Representative examples of the acidic group include a carboxyl group and a sulfonic acid group. These acidic groups may be obtained by copolymerizing a monomer containing these acidic groups when polymerizing the polymer constituting the organic fine particles, or, in the case of a carboxy group, a nitrile group or a carboxylic acid ester. It can be introduced by, for example, hydrolyzing after copolymerizing a monomer containing.
  • the amount of acidic groups in the organic fine particles having a crosslinked structure and acidic groups is 11 lOmmol Zg, preferably 3-10mmol Zg, more preferably 3-8mmol Zg.
  • the amount of the acidic group is less than ImmolZg, only a small amount of the metal ion described below can be bound, so that sufficient moisture absorption / desorption properties may not be obtained, and the amount exceeds 10 mmolZg. In such cases, swelling at the time of moisture absorption becomes severe, which may cause problems such as insufficient dimensional stability of the moisture absorbing / releasing paper.
  • At least a part of the acidic group in the organic fine particles having a crosslinked structure and an acidic group includes a metal ion of at least one metal selected from the group consisting of Li, Na, K, Mg, and Ca. It is necessary to combine. By employing these metal ions, it is possible to exhibit high moisture absorption / release properties. In particular, when sodium ions are used, the saturated moisture absorption can be made excellent, and when potassium ions are used, the moisture absorption and desorption rate can be made excellent.
  • the total amount of the metal ions bonded is desirably not less than ImmolZg. That is, if sodium ions and potassium ions are bound, the total amount of sodium ions and potassium ions is preferably at least ImmolZg.
  • the upper limit of the binding amount is the maximum amount capable of binding to an acidic group in the organic fine particles having a crosslinked structure and an acidic group.
  • the moisture absorbing and releasing paper of the present invention As described later, organic fine particles having a crosslinked structure and an acidic group dispersed or emulsified in water are used. Since the metal ions bonded to the acidic groups in the medium are ionic bonded to the acidic groups, the paper raw material is made into an aqueous slurry with a concentration of 13 to 13% by weight, and then diluted to 0.1 to 1% by weight. When a large amount of water is used as in the so-called paper making process, the metal ions may be exchanged with other cations present in the water. If exchange with other cations occurs, the moisture absorption / desorption properties may be reduced. Therefore, it is necessary to minimize this exchange in order to achieve high moisture absorption / release properties.
  • organic fine particles having a crosslinked structure and an acidic group are mixed with other paper raw materials.
  • the preparation of an aqueous slurry containing the organic fine particles, the inorganic fibers and the pulp-like fibers, and the paper making are combined with the acidic groups of the organic fine particles by a cation excluding metal ions.
  • the organic fine particles have a cation concentration of S lppm or less excluding a metal ion bonded to the acidic group.
  • aqueous liquid dispersed or emulsified in water is impregnated into paper comprising inorganic fibers and pulp-like fibers.
  • aqueous liquid include emulsions and suspensions of organic fine particles having a crosslinked structure and an acidic group.
  • water having a cation concentration of lppm or less excluding a metal ion bonded to an acidic group refers to, for example, sodium ion bonded to an acidic group of organic fine particles when sodium ion is bonded to the acidic group.
  • water whose total concentration of other cations except l is lppm or less.
  • the ion-exchanged water refers to water having a conductivity of 3 SZcm or less. Normally, the total thione concentration at 3 / z SZcm is about 0.6 ppm.
  • not only distilled water and ion-exchanged water, but also water containing only the same ions as the metal ions bonded to the acidic groups can be used.
  • the organic fine particles having a crosslinked structure and an acidic group since the polymers constituting the organic fine particles are linked to each other by the crosslinked structure, it is possible to suppress swelling during moisture absorption.
  • the type of the cross-linking structure is not particularly limited.
  • a crosslinked structure formed by reacting a polyfunctional compound can be exemplified.
  • the organic fine particles As for the particle diameter when making the paper into paper, it is desirable that the average particle diameter is 1 to 50 m from the viewpoint of keeping the fine particles on the paper!
  • Preferred examples of the organic fine particles having a cross-linked structure and an acidic group include acrylic acid-based hygroscopic materials obtained by subjecting acrylonitrile-based polymer fine particles to a cross-linking treatment with a hydrazine compound and a hydrolysis treatment with an alkali metal salt. Fine particles.
  • the fine particles are relatively easy to adjust the amount of the crosslinked structure and the amount of the carboxyl group, and can contain a large amount of lipoxyl groups. It can respond flexibly to sex.
  • the acrylic acid-based hygroscopic fine particles will be described in detail.
  • the acrylonitrile-based polymer fine particles to be used as raw material fine particles of the acrylic acid-based moisture-absorbing and desorbing fine particles include acrylonitrile homopolymer or acrylonitrile in an amount of 40% by weight or more, preferably 50% by weight or more, more preferably 80% by weight or more. Fine particles formed of the acrylonitrile copolymer can be used.
  • the monomer to be copolymerized with acrylonitrile may be appropriately selected without any particular limitation.
  • the acrylonitrile-based polymer fine particles may be in a dry powder form or in an emulsion form. Even in the case of an emulsion shape, the processing described later can be performed as it is. In this case, by using ion-exchanged water as the water from the stage of polymerizing the acrylonitrile-based polymer fine particles, it is possible to easily suppress the exchange of metal ions with other cations by binding to the above-mentioned acidic group. Is possible.
  • Acrylonitrile-based polymer fine particles are subjected to a cross-linking introduction treatment with a hydrazine-based compound.
  • the -tolyl group of the acrylonitrile-based polymer fine particles reacts with the amino group of the hydrazine-based compound to form a cross-link.
  • a structure is formed and the nitrogen content in the fiber increases.
  • this increase in the nitrogen content is a measure of the degree of crosslinking, it is preferably set to 1.0 to 10% by weight when adopted for the moisture absorbing and releasing paper of the present invention.
  • the above-mentioned Atari mouth nitrile-based polymer fine particles are heated in an aqueous solution having a hydrazine-based compound concentration of 5 to 60% by weight.
  • a method of treating at a temperature of 50 to 120 ° C within 5 hours is industrially preferable.
  • the hydrazine compound used here is not particularly limited, Hydrazine derivatives such as hydrazine, hydrazine sulfate, hydrazine hydrochloride, hydrazine hydrobromide, hydrazine carbonate, and compounds containing a plurality of amino groups such as ethylenediamine, guanidine sulfate, guanidine hydrochloride, guanidine phosphate, and melamine Is exemplified.
  • the fine particles that have been subjected to a cross-linking introduction treatment with a hydrazine-based compound may be subjected to an acid treatment after sufficiently removing the hydrazine-based compound remaining in the treatment.
  • the acid used here is not particularly limited, and examples thereof include mineral acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids.
  • the conditions for the acid treatment are not particularly limited, but the particles to be treated are added to an aqueous solution having an acid concentration of 3 to 20% by weight, preferably 7 to 15% by weight at a temperature of 50 to 120 ° C for 0.5 to 10 hours. Examples include immersion.
  • the fine particles that have been subjected to a cross-linking treatment with a hydrazine-based compound, or the fine particles that have been further subjected to an acid treatment are subsequently subjected to a hydrolysis treatment with an alkali metal salt. Due to this hydrolysis treatment, the residual -tolyl group not participating in the cross-linking treatment with the hydrazine-based compound, or the residual -tolyl group when the acid treatment is performed after the cross-linking treatment.
  • Ability to convert an amide group generated by hydrolysis by acid treatment into a carboxyl group A metal ion corresponding to the alkaline metal salt used is bonded to the carboxyl group.
  • alkaline metal salt used herein examples include alkali metal hydroxides, alkaline earth metal hydroxides, and alkali metal carbonates.
  • metal species include Li, Na, and K.
  • alkaline earth metals such as rukari metal, Mg, and Ca.
  • the amount of the carboxyl group generated by the hydrolysis treatment is 1 to 10 mmol Zg, preferably 3 to 10 mmol Zg, more preferably 3 to 8 mmol Zg. If the amount of carboxyl group is less than 1 mmol Zg, sufficient moisture absorption / desorption properties may not be obtained. If the amount exceeds 10 mmol Zg, swelling during moisture absorption becomes severe and the dimensional stability of moisture absorption / desorption paper May be insufficient.
  • the conditions of the hydrolysis treatment may be appropriately set so that a necessary amount of carboxyl group is generated, but is preferably 0.5 to 10% by weight, more preferably 115 to 15% by weight of alkaline metal. It is industrially preferable to carry out the treatment in a salt aqueous solution at a temperature of 50 to 120 ° C. for 110 hours.
  • the fine particles that have undergone the hydrolysis treatment may or may not have nitrile groups remaining. . If the nitrile group remains, there is a possibility that further functions can be imparted by utilizing its reactivity.
  • the hydrolyzed fine particles may be subjected to a treatment for adjusting a metal ion to be bonded to a carboxyl group using a metal salt, if necessary.
  • a metal species of the metal salt used in the strong metal ion adjustment treatment forces Na, K, and Ca selected from Li, Na, K, Ca, and Mg are particularly recommended.
  • a hydroxide, a halide, a nitrate, a sulfate, a carbonate and the like can be used as long as it is a water-soluble salt of these metals.
  • NaOH, NaCO, KOH as K salt, and Ca (OH), Ca (NO), and CaCl as Ca salts are representative of each metal.
  • the metal ion to be bonded to the carboxyl group of the acrylic acid-based moisture-absorbing and desorbing fine particles may be sodium ion if the saturated moisture absorption amount is to be increased, and potassium ion if the moisture absorption and desorption rate is to be increased. Desired,.
  • the acrylic acid-based moisture absorbing / releasing fine particles have been subjected to further treatments in addition to the above-mentioned cross-linking introduction treatment with a hydrazine-based compound, acid treatment, hydrolysis treatment with an alkali metal salt, and metal ion adjustment treatment. It is also possible to apply a crosslinking treatment and a hydrolysis treatment at the same time.
  • the method for producing the fine particles is, for example, a method of forming a crosslinked structure by reacting an organic polymer having a functional group with an inexpensive functional group with divinylbenzene, and forming a carboxyl group by a hydrolysis reaction or the like.
  • the method includes graft polymerization of a vinyl monomer having a carboxylic acid group.However, divinylbenzene, a butyl monomer having a carboxyl group, or a carboxyl group can be easily controlled in terms of crosslinking density and carboxyl group content.
  • a method of copolymerizing a monomer having a convertible functional group and, if necessary, another vinyl monomer is easy to use. Hereinafter, the method will be described.
  • the amount of dibutylbenzene used is not particularly limited.
  • the moisture and moisture absorption / desorption properties may be set to desired values, but it is usually preferable to set the amount to 3 to 40% by weight based on all monomers used. If the amount is less than 3% by weight, the swelling of the fine particles when absorbing moisture becomes severe, and the dimensional stability of the moisture absorbing / releasing paper decreases. If the amount exceeds 40% by weight, the amount of carboxyl groups decreases, and sufficient moisture absorbing / releasing properties are obtained. There are things.
  • Examples of the vinyl monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, itaconic acid, bulpropionic acid, and lithium, sodium, potassium, and ammonium salts of these acids.
  • Examples of the monomer having a functional group that can be converted into a carboxyl group include acrylonitrile, methyl acrylate, methyl methacrylate, and the like. One or more of these can be used.
  • the carboxyl group is generated by subjecting the fine particles obtained by polymerization to a hydrolysis treatment or the like.
  • the amount of these monomers used is such that the resulting fine particles have a carboxyl group power of 1-1 Ommol / g, preferably 3-10mmolZg, more preferably 3-8mmolZg. desirable. If the amount of carboxyl groups is less than ImmolZg, sufficient moisture absorption / desorption properties may not be obtained. If the amount exceeds lOmmolZg, the swelling during moisture absorption becomes severe and the dimensional stability of the moisture absorption / desorption paper is insufficient. It may be.
  • the polymerization method is not particularly limited! /, But as a method for obtaining powdery fine particles, it is preferable to use a method by suspension polymerization (pearl polymerization) or suspension precipitation polymerization. As a method for obtaining the zonal fine particles, a method based on emulsion polymerization is preferable. In the case of emulsion polymerization, it is preferable to conduct polymerization using ion-exchanged water or the like from the viewpoint of binding to the above-described acidic group and suppressing exchange of metal ions with other cations.
  • the carboxyl group of the fine particles having a crosslinked structure and a carboxyl group obtained by divinylbenzene obtained by the above method is bonded to the carboxyl group using a metal salt, if necessary, as in the case of the acrylic acid-based hygroscopic fine particles.
  • a treatment for adjusting the metal ions to be absorbed may be performed, and it is desirable to use sodium ions when the saturated moisture absorption is to be increased, and potassium ions when the moisture absorption / desorption rate is to be increased.
  • inorganic fibers are used in combination as a measure for expressing high dimensional stability. Inorganic fibers are extremely effective in improving the dimensional stability of moisture-absorbing and dehumidifying paper, whose dimensional change due to moisture absorption and desorption or heating is extremely small. Examples of such inorganic fibers include, but are not limited to, glass fibers, carbon fibers, alumina fibers, and metal fibers.
  • pulp fibers are used in addition to organic fine particles and inorganic fibers having a crosslinked structure and an acidic group. If pulp-like fibers are not used, the entanglement between the fibers will be insufficient, and the restraint of each fiber will be loosened. It becomes difficult.
  • the norp-like fiber include non-wood pulp such as softwood pulp and hardwood pulp, hemp pulp, cotton pulp and kenaf pulp, synthetic fiber such as rayon, vinylon and acrylic. Etc. can be adopted. Above all, when acrylic pulp is used, water resistance is increased compared to cellulosic pulp, and paper with high strength when wet can be obtained, so that it has durability to repeat moisture absorption and desorption. Suitable for required applications.
  • the organic fine particles having a crosslinked structure and an acidic group, the inorganic fibers, and the pulp fibers, which are the components of the moisture absorbing and releasing paper of the present invention have been described.
  • the organic fine particles having a crosslinked structure and an acidic group be 5 to 80% by weight
  • the inorganic fibers be 10 to 40% by weight
  • the norp fibers be 10 to 55% by weight. Outside of these ranges, high moisture absorption / release properties and high dimensional stability may not be compatible at the same time.
  • heat-fusible fibers When higher dimensional stability is desired, it is also possible to use heat-fusible fibers in addition to the above-described configuration.
  • synthetic fibers such as polyester, polyethylene, polypropylene, polyamide, and vinylon, which are not particularly limited, can be used.
  • the heat fusible fiber is prepared by shaping organic fine particles having a cross-linked structure and an acidic group! May reduce moisture absorption / release properties.
  • an aqueous liquid of organic fine particles having a crosslinked structure and an acidic group it is preferable to use a polyester heat-fusible fiber.
  • the moisture absorbing and desorbing paper of the present invention includes, in addition to the above-mentioned organic fine particles, inorganic fibers, pulp-like fibers, and heat-fusible fibers having a crosslinked structure and an acidic group, other natural fibers and synthetic fibers. Needless to say, fibers and the like can be used together.
  • the saturated moisture absorption of the moisture absorbing / releasing paper of the present invention is preferably 15% or more, more preferably 20% or more in a 20 ° C-65% RH atmosphere. If the saturated moisture absorption rate is less than 15%, it will not be very useful as moisture absorbing and releasing paper.
  • the water swelling ratio of the moisture absorbing / releasing paper of the present invention is preferably 50% or less, more preferably 40% or less. When the water swelling ratio exceeds 50%, the dimensional change between moisture absorption and moisture release becomes too large, so that many applications cannot be used.
  • the heat shrinkage is desirably 5% or less, preferably 3% or less, and more preferably 2% or less.
  • the heat shrinkage exceeds 5%, it may be difficult to use the molded article as a moisture absorbing element for a dehumidifying air conditioner.
  • the saturated moisture absorption, water swelling and heat shrinkage referred to in the present invention are determined by the measuring methods described below.
  • the moisture absorbing and releasing paper of the present invention has a crosslinked structure and an acidic group of 110 mmol Zg, and a metal ion of at least one metal selected from the group consisting of Li, Na, K, Mg, and Ca is bound to the acidic group by I mmol Zg or more.
  • Machine particles, inorganic fibers, and pulp-like fibers are uniformly mixed and dispersed in water to form an aqueous slurry.
  • the aqueous slurry is made into a paper using a paper machine such as a circular net, a short net, a long net, or a composite machine thereof.
  • the paper After making the paper, the paper can be dried using a conventional dryer such as a cylinder dryer, a Yankee dryer, an air dryer, etc., to obtain the moisture absorbing and releasing paper of the present invention.
  • a conventional dryer such as a cylinder dryer, a Yankee dryer, an air dryer, etc.
  • water having a cation concentration of lppm or less excluding metal ions bound to acidic groups is used. It is preferable to use exchanged or distilled water Yes.
  • organic fine particles having a crosslinked structure and an acidic group are dispersed or emulsified in water. If the organic fine particles are originally in the form of an aqueous liquid such as when they are originally emulsified, they are usually prepared in advance.
  • the moisture absorbing / desorbing paper of the present invention can also be produced by impregnating the paper made of the inorganic fiber and the pulp-like fiber made by the papermaking method with the aqueous liquid and drying. As the impregnation method in this case, a method such as dipping, spraying, or coating can be employed without particular limitation.
  • water forming the aqueous liquid as described above, water having a cation concentration of lppm or less excluding the metal ion bonded to the acidic group is used, and particularly, ion-exchanged water or distilled water is used. Is preferred.
  • organic fine particles having a crosslinked structure and an acidic group are in the form of an emulsion, they can be aggregated with a flocculant or the like to form a floc, thereby forming other inorganic fibers or pulp-like fibers as described above. It is possible to make paper together with the paper raw material.
  • the above-mentioned organic fine particles having a crosslinked structure and an acidic group are added to a stock solution for spinning a fiber, and this is spun to obtain a fiber containing the fine particle.
  • the method include a method of making paper as a raw material of the moisture-absorbing and releasing paper, and a method of forming paper as a raw material of the moisture-absorbing and releasing paper of the present invention using fibers to which organic fine particles having a crosslinked structure and an acidic group described above are attached in advance.
  • the aqueous slurry may be added with other fibers, a viscosity agent, a sizing agent, a dye, a paper strength enhancer, etc. used in ordinary wet papermaking. I do not care. Further, if necessary, a binder can be added to the aqueous slurry to suppress the loss of the filler.
  • the fixing agent include modified polyethyleneimine, modified polyacrylamide, sodium alginate, gum arabic, positive starch, aluminum sulfate, potash and the like.
  • organic fine particles A having an emulsion-like crosslinked structure and an acidic group were obtained.
  • the organic fine particles have an average particle size of 0.4 m, an acidic group content of 2.lmmol / g, metal
  • the amount of ion-bound carboxyl groups was 1.5 mmol / g, and the amount of sodium ions was 1.5 mmol / g.
  • organic fine particles B having a group were obtained.
  • the organic fine particles had an average particle diameter of 0.6 / ⁇ , an amount of acidic group of 5.8 mmolZg, an amount of metal ion-bound carboxyl group of 4.9 mmolZg, and an amount of potassium ion of 4.8 mmolZg.
  • the crosslinked structure and the acidic structure were obtained in the same manner as the organic fine particles A having a crosslinked structure and an acidic group.
  • Organic fine particles C having a group were obtained.
  • the organic fine particles had an average particle diameter of 0.9 / ⁇ , an amount of acidic groups of 9.2 mmol Zg, an amount of metal ion-bonded carboxyl groups of 7.3 mmol Zg, and an amount of sodium ions of 7.5 mmol / g.
  • organic fine particles D having an emulsion-like crosslinked structure and an acidic group were obtained.
  • the organic fine particles had an average particle diameter of 0.3 / ⁇ , an amount of acidic groups of 5.9 mmolZg, an amount of metal ion-bound carboxyl groups of 4.4 mmolZg, and an amount of sodium ions of 4.5 mmolZg.
  • organic fine particles E having a crosslinked structure and an acidic group.
  • the organic fine particles had an average particle size of 45 m, an acidic group content of 4.7 mmol / g, a metal ion-bonded carboxyl group content of 3.7 mmol / g, and a sodium ion content of 3.9 mmol Zg.
  • An aqueous slurry having the strength of inorganic fiber, pulp fiber, and binder fiber shown in Table 1 was prepared, paper-made using a square sheet machine manufactured by Kumagaya Riki Kogyo Co., Ltd., and then sandwiched between filter papers. It was dried at 145 ° C. using a rotary dryer manufactured by Riki Kogyo Co., Ltd. to prepare a raw paper.
  • the raw paper was immersed in organic fine particles having an emulsion-like crosslinked structure and an acidic group having the concentration shown in Table 1, and excess emulsion was squeezed out, followed by drying at 120 ° C. to obtain a moisture absorbing / releasing paper.
  • the amount of the attached organic fine particles was determined, and the water swelling rate and the heat shrinkage rate were measured as an index of dimensional stability, and the saturated moisture-absorbing rate was measured as an index of the moisture absorbing / desorbing property.
  • Table 1 shows the evaluation results of Examples 1 to 5 and Comparative Examples 1 and 2.
  • the details of the inorganic fibers, pulp-like fibers, and heat-fusible fibers in the table are as follows.
  • Bi-PUL Acrylic pulp manufactured by Nippon Xelan Industry Co., Ltd., Canadian standard freeness 150 ml • Softwood kraft pulp: Canadian standard freeness 600 ml
  • VPB-105 Kuraray Co., Ltd. vinylon binder fiber, fineness 1T, fiber length 3mm [0066] [Table 1]
  • Comparative Example 1 water swelling could not be sufficiently suppressed and thermal shrinkage was also large because the power was increased without using pulp-like fibers and inorganic fibers were used. It is.
  • Comparative Example 2 the amount of heat-bondable fiber-based heat-fusible fibers that could be used was increased, so that the paper strength during impregnation was low, and the heating after impregnation was also performed. The paper was distorted by drying and was in a state unsuitable for practical use.
  • Fine particles, inorganic fibers, pulp-like fibers and heat-fusible fibers in the proportions shown in Table 2 were dispersed in ion-exchanged water for Example 6 and Comparative Example 4 and in industrial water for Comparative Example 3 to a concentration of 0.5. % Aqueous slurry was made. After making the aqueous slurry using a square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd., it is sandwiched between filter papers and dried at 145 ° C. using a rotary dryer manufactured by Kumagaya Riki Kogyo Co., Ltd. This created a moisture absorbing and releasing paper. The water swelling ratio, heat shrinkage ratio and saturation moisture absorption ratio of the obtained moisture absorbing / releasing paper were measured. Table 2 shows the evaluation results of Example 6 and Comparative Examples 3 and 4.
  • the organic fine particles E having a crosslinked structure and an acidic group used in Example 6 are in the form of powder, the water swelling rate and the heat shrinkage rate are low and the saturated moisture absorption rate is high as in Examples 15 to 15. Moist paper was obtained.
  • the moisture absorbing / releasing paper of Comparative Example 3 had exactly the same fiber structure as that of Example 6, but had a low saturated moisture absorption rate. This is probably due to the fact that the ion was exchanged between the cations in the industrial water and the sodium ions of the organic microparticles E having a cross-linked structure and an acidic group in the industrial water because the water was produced using the industrial water.
  • Comparative Example 4 the use of silica gel as an inorganic particle in place of the organic fine particle E having a crosslinked structure and an acidic group did not provide a sufficient saturated moisture absorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 高い吸放湿特性および高い寸法安定性をともに有する吸放湿紙を提供する。架橋構造および1~10mmol/gの酸性基を有し、該酸性基にLi、Na、K、Mg、Caよりなる群から選ばれる少なくとも1種類の金属の金属イオンが1mmol/g以上結合している有機微粒子、無機繊維、並びにパルプ状繊維という基本構成により、バインダーの使用を極力抑えて有機微粒子の本来の吸放湿性を有効に活用する一方で、吸湿時の水膨潤などによる紙の変形や熱収縮も抑制できるようにした吸放湿紙。

Description

明 細 書
吸放湿紙およびその製造法
技術分野
[0001] 本発明は高 ヽ吸放湿性と高!ヽ寸法安定性を両立した吸放湿紙およびその製造法 に関する。
背景技術
[0002] 吸放湿紙、すなわち、吸放湿性を有する紙については従来から多くの研究開発が なされており、紙に吸放湿性を有する物質を含有させたものがよく知られている。吸 放湿性を有する物質としては、吸放湿性を有する繊維や吸放湿性を有する微粒子が 多く利用されている。一般にこのような吸放湿性を有する物質には、有機系のものと 無機系のものが存在するが、前者は吸放湿性は高いが膨潤する、後者は膨潤はな いが吸湿量が少ないという特徴がある。このため、高い吸放湿性と高い寸法安定性を 両立した吸放湿紙を得ることは容易でな!、。
[0003] 吸放湿性を有する繊維を利用する吸放湿紙としては、アクリル系繊維に架橋結合と カルボキシル基を導入しナトリウムイオンを付加して得られる吸放湿性繊維、ポリエス テルバインダー繊維及び針葉樹パルプカゝらなる吸放湿紙などが知られて ヽる(特許 文献 1参照)。上記吸放湿性繊維は、多量のカルボキシル基を含有せしめることがで きるため、吸放湿性が優れており、また、架橋結合によって通常の吸放湿性繊維より も繊維の膨潤を抑制しうるものであるため、少量の使用であれば吸放湿紙の寸法安 定性を保持できる。しかし、高吸湿率の吸放湿紙とするために使用量を増やした場 合には、その膨潤抑制効果は十分とは言えず、寸法安定性の低下は避けられない。 このため、該文献に開示されている吸放湿紙においては、バインダー繊維を多量に 使用したり、さらに紙とした後に熱プレスを施したりすることで寸法安定性の向上を図 つている。しかし、バインダー繊維を多く使用すると、吸放湿性繊維が融着したバイン ダー繊維で覆われ束縛されてしまうので、吸放湿性繊維の本来の吸放湿性が優れて いても、その性能を十分に発揮させることはできず、吸放湿紙としての吸放湿性を高 めることは難し 、。 [0004] 吸放湿性を有する微粒子を利用する例としては、シリカゲルゃゼオライトなどの無 機粒子、木材パルプ及び熱融着性繊維カゝらなる吸放湿紙などが知られている(特許 文献 2参照)。該吸放湿紙は、吸放湿性を担うシリカゲルゃゼオライトなどの無機粒子 が吸湿しても膨潤しないため、寸法安定性の面では優れている。しかし、上述したよう に無機粒子は吸湿量が少ないため高吸放湿性の吸放湿紙とすることは難しぐさら に吸湿速度が遅い、放湿に高温を要す、あるいは吸放湿を繰り返すと破砕して性能 低下を引き起こすなどの欠点があるため、利用分野が限られてしまうという問題を有 している。
特許文献 1:特開平 6— 207398号公報
特許文献 2 :特開平 10- 212692号公報
発明の開示
発明が解決しょうとする課題
[0005] 上述したように従来の技術にお!、ては、高!、吸放湿性と高!、寸法安定性を両立さ せた吸放湿紙を得ることは極めて困難なことであった。本発明の目的は、かかる問題 点を克服した高 ヽ吸放湿性と高 ヽ寸法安定性を両立させる吸放湿紙およびその製 造法を提供することである。
課題を解決するための手段
[0006] 本発明者は上述の目的を達成すべく鋭意検討を進めた結果、寸法安定性に優れ た無機繊維を採用することでバインダー繊維の使用量を抑制し、カロえて、吸放湿性 を有する物質として架橋構造および酸性基を有する有機微粒子を採用し、抄紙方法 の工夫により抄紙後も該有機微粒子の吸放湿性を最大限に高めた状態とすることで 、高 、吸放湿性と高 、寸法安定性を両立させた吸放湿紙が得られることを見出し、 本発明に到達した。
[0007] すなわち、本発明は以下の手段によって達成される。
(1)架橋構造および 1一 lOmmolZgの酸性基を有し、該酸性基に Li、 Na、 K、 Mg 、 Caよりなる群力 選ばれる少なくとも 1種類の金属の金属イオンが ImmolZg以上 結合して!/ヽる有機微粒子 (以下、架橋構造および酸性基を有する有機微粒子とも!ヽ う)、無機繊維、並びにパルプ状繊維力もなり、 20°C— 65%RH雰囲気下における飽 和吸湿率が 15%以上であることを特徴とする吸放湿紙。
(2)架橋構造および酸性基を有する有機微粒子、無機繊維並びにパルプ状繊維を 含有する水性スラリーの調製および抄紙を、前記酸性基に結合して!/、る金属イオン を除いたカチオン濃度が lppm以下の水を用いて行って得られたことを特徴とする(1 )に記載の吸放湿紙。
(3)架橋構造および酸性基を有する有機微粒子が、該酸性基に結合して!/ヽる金属ィ オンを除 ヽたカチオン濃度が lppm以下の水に分散または乳化して 、る水性液を、 無機繊維およびパルプ状繊維カゝらなる紙に含浸させて得られたことを特徴とする(1) に記載の吸放湿紙。
(4)架橋構造および酸性基を有する有機微粒子が、アクリロニトリル系高分子微粒子 にヒドラジン系化合物による架橋導入処理およびアルカリ金属塩による加水分解処 理を施してなるアクリル酸系吸放湿性微粒子であることを特徴とする(1)一 (3)の ヽ ずれかに記載の吸放湿紙。
(5)架橋構造および酸性基を有する有機微粒子が、ジビニルベンゼンによる架橋構 造およびカルボキシル基を有するものであることを特徴とする(1)一 (3)の 、ずれか に記載の吸放湿紙。
(6)パルプ状繊維がフィブリルィ匕アクリル繊維であることを特徴とする(1)一 (5)の ヽ ずれかに記載の吸放湿紙。
(7)熱融着性繊維の含有量が 20重量%以下であることを特徴とする請求項( 1)一(6 )の 、ずれかに記載の吸放湿紙。
(8)水膨潤率が 50%以下であることを特徴とする(1)一 (7)の 、ずれかに記載の吸 放湿紙。
(9)熱収縮率が 5%以下であることを特徴とする(1)一 (8)のいずれかに記載の吸放 湿紙。
(10)架橋構造および 1一 lOmmolZgの酸性基を有し、該酸性基に Li、 Na、 K、 Mg 、 Caよりなる群力 選ばれる少なくとも 1種類の金属の金属イオンが ImmolZg以上 結合している有機微粒子、無機繊維、および、パルプ状繊維を含有する水性スラリー の調製、並びに、該水性スラリーを用いての湿式抄紙法による抄紙工程において、 前記酸性基に結合して 、る金属イオンを除 ヽたカチオン濃度が lppm以下である水 を使用することを特徴とする吸放湿紙の製造方法。
(11)架橋構造および 1一 lOmmolZgの酸性基を有し、該酸性基に Li、 Na、 K、 Mg 、 Caよりなる群力 選ばれる少なくとも 1種類の金属の金属イオンが ImmolZg以上 結合して!/ヽる有機微粒子が、前記酸性基に結合して!/ヽる金属イオンを除 ヽたカチォ ン濃度が lppm以下である水に分散または乳化している水性液を、無機繊維および パルプ状繊維力 なる紙に含浸させることを特徴とする吸放湿紙の製造方法。
発明の効果
[0008] 本発明の吸放湿紙は、高い吸放湿性と高い寸法安定性を両立したものであるため 、寸法維持のために吸放湿性を抑制せざるを得な力つたような用途においても、高い 吸放湿性を提供することが可能である。また、吸湿放湿の繰り返しによる寸法の変化 が小さいため、吸放湿紙自体の耐久性が高ぐ除湿空調機用の吸湿素子などにも好 適に使用することができる。
発明を実施するための最良の形態
[0009] 以下、本発明を詳述する。本発明の吸放湿紙は、架橋構造および 1一 lOmmolZ gの酸性基を有し、該酸性基に Li、 Na、 K、 Mg、 Caよりなる群力 選ばれる少なくと も 1種類の金属の金属イオンが ImmolZg以上結合して ヽる有機微粒子、無機繊維
、並びにパルプ状繊維力もなることを特徴とするものである。
[0010] 本発明にかかる架橋構造および酸性基を有する有機微粒子は、本発明の吸放湿 紙において吸放湿性を担う主成分である。該酸性基としては、カルボキシル基、スル ホン酸基が代表的なものである。これらの酸性基は有機微粒子を構成する高分子を 重合する際にこれらの酸性基を含有した単量体を共重合したり、あるいはカルボキシ ル基の場合であれば、二トリル基やカルボン酸エステルを含有する単量体を共重合 した後に加水分解したりするなどして導入することができる。
[0011] また、架橋構造および酸性基を有する有機微粒子中の酸性基量は、 1一 lOmmol Zgであり、好ましくは 3— 10mmolZg、より好ましくは 3— 8mmolZgである。酸性基 の量が ImmolZg未満の場合には、後述する金属イオンを少量しか結合させること ができないので、十分な吸放湿性が得られないことがあり、また lOmmolZgを超える 場合には、吸湿時の膨潤が激しくなり吸放湿紙の寸法安定性が不十分となるなどの 問題を起こすことがある。
[0012] さらに、架橋構造および酸性基を有する有機微粒子中の酸性基の少なくとも一部 には、 Li、 Na、 K、 Mg、 Caよりなる群力 選ばれる少なくとも 1種類の金属の金属ィ オンが結合して 、ることが必要である。これらの金属イオンを採用することで高 、吸放 湿性を発現することが可能である。特に、ナトリウムイオンを採用した場合には飽和吸 湿量の優れたものとすることができ、カリウムイオンを採用した場合には吸放湿速度 の優れたものとすることができる。
[0013] 前記金属イオンの結合量は、吸放湿性を得るためには、総量で ImmolZg以上で あることが望ましい。すなわち、ナトリウムイオンおよびカリウムイオンが結合している 場合であれば、ナトリウムイオンおよびカリウムイオンの合計量が ImmolZg以上であ ることが望ましい。なお、結合量の上限については、架橋構造および酸性基を有する 有機微粒子中の酸性基に結合できる最大量である。
[0014] なお、架橋構造および酸性基を有する有機微粒子中に酸性基が ImmolZgよりも 多量にある場合でも、上述したように金属イオンが ImmolZg結合していれば吸放湿 性が得られる。しかし、多くの酸性基はその潜在的な吸放湿性を有効に利用されな Vヽまま存在するだけで、多量の酸性基を有することの吸放湿性に対する利点が現れ ない。この利点を顕在させるには酸性基全体の少なくとも 50mol%以上、好ましくは 70mol%以上に金属イオンが結合して 、ることが望まし 、。
[0015] また、本発明の吸放湿紙の作成にあたっては、後述するように、水に分散または乳 化している架橋構造および酸性基を有する有機微粒子を使用することになるが、該 有機微粒子中の酸性基に結合している金属イオンは、酸性基とイオン結合をしてい るので、紙原料を濃度 1一 3重量%の水性スラリーとした後、さらに 0. 1— 1重量%に 希釈して抄紙すると!/ヽつた 、わゆる抄紙工程のように大量の水を使用する場合など には、該金属イオンが水中に存在する他のカチオンと交換する可能性がある。他の カチオンとの交換が起きた場合、吸放湿性の低下を起こすことがあるので、高吸放湿 性とするためにはこの交換ができるだけ起こらないように配慮する必要がある。
[0016] 具体的な方法としては、架橋構造および酸性基を有する有機微粒子を他の紙原料 とともに漉き込む場合であれば、該有機微粒子、無機繊維並びにパルプ状繊維を含 有する水性スラリーの調製および抄紙を、該有機微粒子の酸性基に結合して!/ヽる金 属イオンを除いたカチオン濃度が lppm以下の水を用いて行う方法が挙げられる。ま た、原料となる紙に架橋構造および酸性基を有する有機微粒子を付与する場合であ れば、該有機微粒子が、該酸性基に結合している金属イオンを除いたカチオン濃度 力 S lppm以下の水に分散または乳化している水性液を、無機繊維およびパルプ状繊 維からなる紙に含浸する方法が挙げられる。なお、該水性液としては架橋構造およ び酸性基を有する有機微粒子のェマルジヨンや懸濁液などが挙げられる。
[0017] ここで、酸性基に結合している金属イオンを除いたカチオン濃度が lppm以下の水 とは、例えば、有機微粒子の酸性基にナトリウムイオンが結合している場合であれば 、ナトリウムイオンを除くその他のカチオンの濃度の合計が lppm以下の水を指す。こ のような水を使用することで、酸性基に結合して 、る金属イオンと他のカチオンとの交 換を最小限に留めることができる。これに対して、工業用水のようなカチオンを 50— 1 OOppm程度と多く含むような水を使用すると、他のカチオンとの交換がある程度起こ るので、場合によっては所期の吸放湿性が得られな ヽことがある。
[0018] 酸性基に結合している金属イオンを除いたカチオン濃度が lppm以下の水としては 、蒸留水やイオン交換水を使用することを推奨する。これらを使用した場合には、吸 放湿性に与える影響が小さぐまた、工業的にも利用しやすい。なお、本発明におい てイオン交換水とは導電率が 3 SZcm以下の水を指す。通常、 3 /z SZcmの場合 で全力チオン濃度が 0. 6ppm程度である。また、蒸留水やイオン交換水に限らず、 酸性基に結合している金属イオンと同じイオンのみを含む水なども使用することがで きる。
[0019] 本発明にかかる架橋構造および酸性基を有する有機微粒子は、架橋構造によって 有機微粒子を構成する高分子同士が結び付けられているため、吸湿時の膨潤を抑 制することが可能となる。該架橋構造の種類には特に限定はなぐ例えば高分子重 合時にジビニルベンゼンなどの多官能単量体を加えて形成させた架橋構造や、高分 子重合後にヒドラジン、エチレングリコールジグリシジルエーテルなどの多官能化合 物を反応させて形成させた架橋構造などを挙げることができる。また、該有機微粒子 を紙に漉き込む場合の粒子径としては、微粒子を紙に保持するという点から、平均粒 子径が 1一 50 mであるものが望まし!/、。
[0020] 架橋構造および酸性基を有する有機微粒子の好ましい例としては、アクリロニトリル 系高分子微粒子にヒドラジン系化合物による架橋導入処理およびアルカリ金属塩に よる加水分解処理を施してなるアクリル酸系吸放湿性微粒子が挙げられる。該微粒 子は、架橋構造の量およびカルボキシル基量の調節が比較的容易であり、多量の力 ルポキシル基を含有せしめることも可能であるため、吸放湿紙に求められる吸放湿性 および寸法安定性に柔軟に対応することができる。以下、該アクリル酸系吸放湿性微 粒子について詳述する。
[0021] アクリル酸系吸放湿性微粒子の原料微粒子となるアクリロニトリル系高分子微粒子 としては、アクリロニトリル単独重合体またはアクリロニトリルを 40重量%以上、好ましく は 50重量%以上、より好ましくは 80重量%以上含有するアクリロニトリル系共重合体 により形成された微粒子を採用することができる。アクリロニトリルと共重合させる単量 体については、特に制限はなぐ適宜選択すればよい。
[0022] 該アクリロニトリル系高分子微粒子は乾燥粉末状であっても、ェマルジヨン状であつ てもよ 、。ェマルジヨン状の場合でもそのまま後述する処理を行うことが可能である。 その場合、アクリロニトリル系高分子微粒子を重合する段階から、水としてイオン交換 水を使用することで、上述した酸性基に結合して 、る金属イオンと他のカチオンとの 交換を容易に抑制することが可能である。
[0023] アクリロニトリル系高分子微粒子はヒドラジン系化合物による架橋導入処理を施され る力 該処理においてはアクリロニトリル系高分子微粒子の有する-トリル基とヒドラジ ン系化合物の有するァミノ基が反応することによって架橋構造が形成され、繊維中の 窒素含有量が増加する。この窒素含有量の増加は架橋度合の目安となるが、本発 明の吸放湿紙に採用する場合、 1. 0— 10重量%とするのが好ましい。
[0024] 窒素含有量の増加を 1. 0— 10重量%に調整し得る方法としては、上述のアタリ口 二トリル系高分子微粒子をヒドラジン系化合物の濃度 5— 60重量%の水溶液中、温 度 50— 120°Cで 5時間以内で処理する方法が工業的に好ましい。
[0025] ここで使用されるヒドラジン系化合物としては、特に限定されるものでなぐ水加ヒド ラジンや、硫酸ヒドラジン、塩酸ヒドラジン、臭化水素酸ヒドラジン、炭酸ヒドラジンなど のヒドラジン誘導体、エチレンジァミン、硫酸グァ-ジン、塩酸グァ-ジン、リン酸グァ 二ジン、メラミン等のアミノ基を複数含有する化合物が例示される。
[0026] ヒドラジン系化合物による架橋導入処理を施された微粒子は、該処理で残留したヒ ドラジン系化合物を十分に除去した後、酸処理を施しても良い。ここに使用する酸と しては、特に限定されず、硝酸、硫酸、塩酸等の鉱酸や、有機酸等が挙げられる。該 酸処理の条件としても、特に限定されないが、酸濃度 3— 20重量%、好ましくは 7— 1 5重量%の水溶液に、温度 50— 120°Cで 0. 5— 10時間被処理微粒子を浸漬すると いった例が挙げられる。
[0027] ヒドラジン系化合物による架橋導入処理を経た微粒子、或いはさらに酸処理を経た 微粒子は、続いてアルカリ性金属塩による加水分解処理を施される。この加水分解 処理により、ヒドラジン系化合物による架橋導入処理に関与せずに残留している-トリ ル基、又は架橋導入処理後酸処理を施した場合には残留している-トリル基と一部 酸処理で加水分解されて生成して ヽるアミド基がカルボキシル基に変換される力 該 カルボキシル基には使用したアルカリ性金属塩に対応する金属イオンが結合した状 態となる。
[0028] ここで使用するアルカリ性金属塩としては、アルカリ金属水酸化物、アルカリ土類金 属水酸化物、アルカリ金属炭酸塩等が挙げられ、金属種としては、 Li、 Na、 K等のァ ルカリ金属、 Mg、 Ca等のアルカリ土類金属を挙げることができる。
[0029] 加水分解処理によって生成されるカルボキシル基の量は 1一 10mmolZg、好まし くは 3— 10mmolZg、より好ましくは 3— 8mmolZgである。カルボキシル基の量が 1 mmolZg未満の場合には、充分な吸放湿性が得られないことがあり、また lOmmol Zgを超える場合には、吸湿時の膨潤が激しくなり吸放湿紙の寸法安定性が不十分 となることがある。
[0030] 加水分解処理の条件は、必要量のカルボキシル基が生成されるように適宜設定す ればよいが、好ましくは 0. 5— 10重量%、さらに好ましくは 1一 5重量%のアルカリ性 金属塩水溶液中、温度 50— 120°Cで 1一 10時間処理する方法が工業的に好ましい 。なお、加水分解処理を経た微粒子は、二トリル基が残留していてもしてなくてもよい 。二トリル基が残留していれば、その反応性を利用して、さらなる機能を付与できる可 能性がある。
[0031] 加水分解処理を施された微粒子は、必要に応じ金属塩を用いてカルボキシル基に 結合させる金属イオンを調整する処理を行っても良 、。力かる金属イオン調整処理 に採用される金属塩の金属種としては、 Li、 Na、 K、 Ca、 Mgから選ばれる力 Na、 K、 Caが特に推奨される。また、該処理に用いる塩の種類としては、これらの金属の 水溶性塩であれば良ぐ例えば水酸化物,ハロゲン化物,硝酸塩,硫酸塩,炭酸塩 等が挙げられる。具体的には、夫々の金属で代表的なものとして、 Na塩としては Na OH、 Na CO、 K塩としては KOH、 Ca塩としては Ca (OH) 、 Ca (NO ) 、 CaClが
2 3 2 3 2 2 好適である。
[0032] なお、アクリル酸系吸放湿性微粒子のカルボキシル基に結合させる金属イオンは、 飽和吸湿量を高くしたい場合にはナトリウムイオン、吸放湿速度を高くしたい場合に はカリウムイオンとすることが望まし 、。
[0033] また、アクリル酸系吸放湿性微粒子は上述してきたヒドラジン系化合物による架橋 導入処理、酸処理、アルカリ金属塩による加水分解処理、金属イオン調整処理以外 に、さらに別の処理を施したものであっても構わないし、架橋導入処理と加水分解処 理を同時に施したものであっても構わない。
[0034] 架橋構造および酸性基を有する有機微粒子の別の好ま 、例としては、ジビュル ベンゼンによる架橋構造およびカルボキシル基を有する微粒子が挙げられる。該微 粒子の製造方法としては、特に限定はなぐ官能基を有する有機高分子にジビニル ベンゼンを反応させて架橋構造を形成させ、加水分解反応などでカルボキシル基を 形成させる方法ゃジビニルベンゼンおよびカルボキシル基を有するビニル単量体を グラフト重合させる方法などが挙げられるが、架橋密度とカルボキシル基量を容易に 制御できるという点で、ジビュルベンゼン、カルボキシル基を有するビュル単量体ま たはカルボキシル基に変換できる官能基を有する単量体、および必要に応じその他 のビニル単量体を共重合させる方法が利用しやすい。以下、該方法について述べる
[0035] ジビュルベンゼンの使用量としては、特に限定はなぐ吸放湿紙の寸法安定性およ び吸放湿性が望ましい数値となるように設定すればよいが、通常、使用する全単量 体に対して、 3— 40重量%となるようにするのが好ましい。 3重量%未満では吸湿時 の微粒子の膨潤が激しくなるため、吸放湿紙の寸法安定性が低下し、 40重量%を越 えるとカルボキシル基量が少なくなるため、十分な吸放湿性が得られな 、ことがある。
[0036] カルボキシル基を有するビュル単量体としては、アクリル酸、メタクリル酸、マレイン 酸、ィタコン酸、ビュルプロピオン酸、およびこれらの酸のリチウム塩、ナトリウム塩、力 リウム塩、アンモニゥム塩など、また、カルボキシル基に変換できる官能基を有する単 量体としては、アクリロニトリル、アクリル酸メチル、メタクリル酸メチルなどが挙げられ、 これらのうちの一種または複数種を使用することができる。なお、カルボキシル基に変 換できる官能基を有する単量体を使用した場合には、重合によって得られた微粒子 に加水分解処理を施すなどしてカルボキシル基を生成させる。
[0037] これらの単量体の使用量としては、得られる微粒子中に、カルボキシル基力 1-1 Ommol/g,好ましくは 3— 10mmolZg、より好ましくは 3— 8mmolZgとなるように 使用するのが望ましい。カルボキシル基量が ImmolZg未満の場合には、充分な吸 放湿性が得られないことがあり、また lOmmolZgを超える場合には、吸湿時の膨潤 が激しくなり吸放湿紙の寸法安定性が不十分となることがある。
[0038] 重合方法としては、特に限定はな!/、が、粉末状の微粒子を得る方法としては、懸濁 重合 (パール重合)または懸濁沈殿重合による方法を用いることが好ましぐまたエマ ルジョン状の微粒子を得る方法としては、乳化重合による方法が好ましい。乳化重合 による場合は、上述した酸性基と結合して 、る金属イオンと他のカチオンとの交換を 抑制するという観点からイオン交換水などを使用して重合することが望ましい。
[0039] 上記方法により得られたジビニルベンゼンによる架橋構造およびカルボキシル基を 有する微粒子のカルボキシル基は、アクリル酸系吸放湿性微粒子の場合と同様に、 必要に応じ金属塩を用いてカルボキシル基に結合させる金属イオンを調整する処理 を行ってもよく、飽和吸湿量を高くしたい場合にはナトリウムイオン、吸放湿速度を高 くした 、場合にはカリウムイオンとすることが望まし 、。
[0040] 以上、架橋構造および酸性基を有する有機微粒子につ!ヽて述べてきたが、上述し たような架橋構造および酸性基を有する有機微粒子であっても、吸放湿や加熱など によってある程度の寸法変化が起こる。そこで本発明では、高い寸法安定性を発現 させる方策として、無機繊維を併用する。無機繊維は吸放湿や加熱などによる寸法 変化が極めて小さぐ吸放湿紙の寸法安定性を向上させるうえで極めて有効である。 このような無機繊維としては、特に限定はなぐガラス繊維、炭素繊維、アルミナ繊維 、金属繊維などが例示される。
[0041] さらに、本発明の吸放湿紙においては、架橋構造および酸性基を有する有機微粒 子と無機繊維に加えてパルプ状繊維を使用する。パルプ状繊維を使用しなければ、 繊維同士の絡み合いが不十分となり、各繊維の拘束が緩くなつてしまうので、上述し た無機繊維の寸法安定の効果が現れにくくなり、場合によっては紙とすることが困難 となる。該ノルプ状繊維としては、特に限定はなぐ針葉樹パルプ、広葉樹パルプな どの木材パルプ、麻パルプ、コットンパルプ、ケナフパルプなどの非木材パルプ、レ 一ヨン、ビニロン、アクリルなどの合成繊維をフイブリルィ匕したものなどを採用すること ができる。なかでも、アクリルパルプを採用した場合には、セルロース系のパルプに比 ベて耐水性が増し、含水時の強度が高い紙を得ることができるため、吸湿放湿を繰り 返すような耐久性を求められる用途に好適である。
[0042] 以上、本発明の吸放湿紙の構成成分である、架橋構造および酸性基を有する有機 微粒子、無機繊維、並びにパルプ状繊維について述べてきたが、各構成成分の使 用割合は、一般的には、架橋構造および酸性基を有する有機微粒子が 5— 80重量 %、無機繊維が 10— 40重量%、ノルプ状繊維が 10— 55重量%とするのが望まし い。これらの範囲内を外れると、高い吸放湿性と高い寸法安定性を両立できなくなる ことがある。
[0043] また、より高い寸法安定性が望まれる場合には、上述した構成に加えて熱融着性 繊維を使用することも可能である。熱融着性繊維としては、特に限定はなぐポリエス テル、ポリエチレン、ポリプロピレン、ポリアミド、ビニロンなどの合成繊維などを採用す ることができる。ただし、熱融着性繊維は、架橋構造および酸性基を有する有機微粒 子を漉き込んで!/ヽる場合には、加熱乾燥で熱融着させた際に該有機微粒子を覆うな どして吸放湿性を低下させることがある。また、架橋構造および酸性基を有する有機 微粒子の水性液を含浸させる場合には、ポリエステル系の熱融着性繊維すると該有 機微粒子が付着しにくくなつたり、ビニロン系の熱融着性繊維すると含浸時の吸水で 紙の強度が低下し、加熱乾燥時に紙が変形したりするなどして性能を低下させること がある。従って、熱融着性繊維の使用には十分な注意が必要であり、できれば使用 しないことが望ましい。止むを得ず使用する場合であっても、その使用量としては 20 重量%以下、より好ましくは 10重量%以下、さらに好ましくは 5重量%以下に留めるこ とが望ましい。
[0044] なお、本発明の吸放湿紙には、上述した架橋構造および酸性基を有する有機微粒 子、無機繊維、パルプ状繊維および熱融着性繊維のほかに、その他の天然繊維や 合成繊維などを併用しても構わな 、ことは言うまでもな 、。
[0045] また、本発明の吸放湿紙の飽和吸湿率としては、 20°C— 65%RH雰囲気下で 15% 以上、より好ましくは 20%以上であることが望ましい。飽和吸湿率が 15%未満では、 吸放湿紙としてはあまり有用ではなくなる。さらに、本発明の吸放湿紙の水膨潤率と しては 50%以下、より好ましくは 40%以下であることが望ましい。水膨潤率が 50%を 越える場合、吸湿時と放湿時の寸法の変化が大きくなりすぎるため、使用できない用 途が多くなる。また、熱収縮率としては 5%以下、好ましくは 3%以下、より好ましくは 2 %以下であることが望ましい。熱収縮率が 5%を越える場合、除湿空調機用の吸湿 素子などの成形体に利用することが難しくなることがある。なお、本発明にいう飽和吸 湿率、水膨潤率および熱収縮率は後述する測定方法により求められるものである。
[0046] 次に本発明の吸放湿紙の一般的な製造方法について説明する。まず、架橋構造 および 1一 lOmmolZgの酸性基を有し、該酸性基に Li、 Na、 K、 Mg、 Caよりなる群 力 選ばれる少なくとも 1種類の金属の金属イオンが ImmolZg以上結合している有 機微粒子、無機繊維、並びにパルプ状繊維を水中に均一に混合分散し、水性スラリ 一とする。次いで、該水性スラリーを、円網、短網、長網、あるいはこれらの複合マシ ーンなどの抄紙機を用いて抄紙する。抄紙後、シリンダードライヤー、ヤンキードライ ヤー、エアードライヤーなどの通常の乾燥機を用いて乾燥することにより本発明の吸 放湿紙を得ることができる。ここで、水性スラリーおよび抄紙工程に使用する水として は既述したように酸性基に結合して 、る金属イオンを除 、たカチオン濃度が lppm以 下である水を使用するが、なかでもイオン交換水または蒸留水を使用するのが好まし い。
[0047] また、架橋構造および酸性基を有する有機微粒子を水に分散または乳化させた場 合ゃ該有機微粒子がもともとェマルジヨン状である場合などのように水性液の形態で あれば、予め、通常の抄紙方法で作成した無機繊維およびパルプ状繊維カゝらなる紙 に該水性液に含浸させ、乾燥することによつても本発明の吸放湿紙を作成することが できる。この場合の含浸方法としては、特に限定はなぐ浸漬、スプレー噴霧、塗布な どの方法を採用することができる。なお、水性液を形成する水としては、既述したよう に酸性基に結合している金属イオンを除いたカチオン濃度が lppm以下である水を 使用し、なかでもイオン交換水または蒸留水を使用するのが好ましい。
[0048] なお、架橋構造および酸性基を有する有機微粒子がェマルジヨン状である場合で も、凝集剤などで凝集させてフロック状とすることで、上述のように無機繊維やパルプ 状繊維などの他の紙原料とともに抄紙することが可能である。
[0049] この他の製造方法としては、上述した架橋構造および酸性基を有する有機微粒子 を繊維の紡糸原液に添加し、これを紡糸して該微粒子を含有する繊維とし、該繊維 を本発明の吸放湿紙の原料として抄紙する方法や、予め上述した架橋構造および 酸性基を有する有機微粒子を付着させた繊維を本発明の吸放湿紙の原料として抄 紙する方法などが挙げられる。
[0050] なお、以上に説明してきた製造方法中の抄紙においては、水性スラリーに、その他 の繊維や通常の湿式抄紙で用いる粘剤、サイズ剤、染料、紙力増強剤などを添加し ても構わない。また、必要に応じて、填料の流失を抑制するために水性スラリーに定 着剤を添加することもできる。この定着剤としては、ポリエチレンィミン変性物、ポリア クリルアミド変性物、アルギン酸ナトリウム、アラビアゴム、陽性デンプン、硫酸アルミ- ゥム、カリミヨウバンなどを挙げることができる。
実施例
[0051] 以下実施例により本発明を具体的に説明する力 これらはあくまでも例示的なもの であり、本発明の要旨はこれらにより限定されるものではない。なお、実施例中の部 及び百分率は、断りのない限り重量基準で示す。また、実施例中のイオン交換水は カチオン濃度 0. 6ppmのものである。以下に実施例中の測定方法、評価方法を示す [0052] (1)酸性基量 (全カルボキシル基量)
十分乾燥した試料約 lgを精秤し (Wl [g])、これに 200mlの水をカ卩えた後、 50°C に加温しながら ImolZl塩酸水溶液を添カ卩して ρΗ2にし、次いで 0. ImolZl水酸化 ナトリウム水溶液で常法に従って滴定曲線を求めた。該滴定曲線力もカルボキシル 基に消費された水酸ィ匕ナトリウム水溶液消費量 (Vl [ml])を求め、次式によって全力 ルボキシル基量 (Al [mmol/g] )を算出した。 全カルボキシル基量 [mmolZg] =0. 1 XV1/W1
[0053] (2)金属イオン結合カルボキシル基量
上述の全カルボキシル基量測定操作中の ImolZl塩酸水溶液添カ卩による PH2へ の調整をすることなく同様に滴定曲線を求め、試料中に含まれる H型カルボキシル 基 (COOH)の量 (A2 [mmol/g] )を求めた。これらの結果力 次式により金属ィォ ン結合カルボキシル基量を算出した。 金属イオン結合カルボキシル基量 [mmol/g] =A1— A2
[0054] (3)金属イオン量
十分乾燥した試料を精秤した後、湿式分解し、原子吸光法を用いて金属イオン量 を求めた。
[0055] (4)飽和吸湿率
試料約 5. Ogを絶乾し、重量を測定する (W2[g])。次に該試料を温度 20°Cで 65 %RHの恒湿槽に 24時間入れておく。このようにして吸湿した試料の重量を測定する (W3 [g]) 0以上の測定結果から、次式によって算出した。 飽和吸湿率 [%] = { (W3-W2) /W2} X 100 [0056] (5)水膨潤率
試料を絶乾し、厚みを測定する (Tl)。該試料を水に 24時間浸漬した後、遠心脱 水機(国産遠心機 (株)社製 TYPE H-770A)で遠心加速度 160G (Gは重力加速 度を示す)下 2分間脱水し、再度厚みを測定する (T2)。これらの測定値から、次式に よって算出した。 水膨潤率 [%] = { (T2-TD /T1 } X 100
[0057] (6)熱収縮率
四角形に切断した試料を温度 20°Cで 65%RHの恒湿槽に 24時間入れた後、縦横 の寸法 (Ll、 L2)を測定する。次に該試料を 105°C、 30分間の条件下に保持した後 、再度縦横の寸法 (L3、 L4)を測定する。以上の測定結果から、次式によって算出し た。 熱収縮率 [%] = { (L1 +L2) - (L3 + L4) }Z(L1 +L2)
[0058] また、実施例中の架橋構造および酸性基を有する有機微粒子の作成方法は以下 のとおりである。
[0059] <架橋構造および酸性基を有する有機微粒子 A>
アクリロニトリル 390部、ジビュルベンゼン 100部、 p—スチレンスルホン酸ナトリウム 1 6部及びイオン交換水 1181部をオートクレープ内に仕込み、更に重合開始剤として ジー tert—ブチルパーオキサイドを単量体全量に対して 0. 5%添加した後、密閉し、 次いで撹拌下において 150°Cの温度にて 23分間重合せしめた。反応終了後、撹拌 を継続しながら約 90°Cまで冷却し、原料微粒子 aのェマルジヨンを得た。この原料微 粒子 aのェマルジヨンに、浴中濃度が 1%となるように水酸ィ匕ナトリウムを加え、 102°C で 5時間加水分解処理を行った後、セルロースチューブに入れてイオン交換水で 1 週間透析 ·脱塩し、ェマルジヨン状の架橋構造および酸性基を有する有機微粒子 A を得た。該有機微粒子は平均粒子径が 0. 4 m、酸性基量が 2. lmmol/g,金属 イオン結合カルボキシル基量が 1. 5mmol/g,ナトリウムイオン量が 1. 5mmol/g であった。
[0060] <架橋構造および酸性基を有する有機微粒子 B>
原料微粒子 aのェマルジヨンの加水分解処理において、浴中濃度が 3%となるよう に水酸化カリウムを加えた以外は、架橋構造および酸性基を有する有機微粒子 Aと 同様の方法により、架橋構造および酸性基を有する有機微粒子 Bを得た。該有機微 粒子は平均粒子径が 0. 6 /ζ πι、酸性基量が 5. 8mmolZg、金属イオン結合カルボ キシル基量が 4. 9mmolZg、カリウムイオン量が 4. 8mmolZgであった。
[0061] <架橋構造および酸性基を有する有機微粒子 C>
原料微粒子 aのェマルジヨンの加水分解処理において、浴中濃度が 10%となるよう に水酸化ナトリウムを加えた以外は、架橋構造および酸性基を有する有機微粒子 A と同様の方法により、架橋構造および酸性基を有する有機微粒子 Cを得た。該有機 微粒子は平均粒子径が 0. 9 /ζ πι、酸性基量が 9. 2mmolZg、金属イオン結合カル ボキシル基量が 7. 3mmolZg、ナトリウムイオン量が 7. 5mmol/gであった。
[0062] <架橋構造および酸性基を有する有機微粒子 D>
アクリロニトリル 490部、 p—スチレンスルホン酸ソーダ 16部及びイオン交換水 1181 部をオートクレーブ内に仕込み、更に重合開始剤としてジー tert—ブチルパーォキサ イドを単量体全量に対して 0. 5%添加した後、密閉し、次いで撹拌下において 150 °Cの温度にて 23分間重合せしめた。反応終了後、撹拌を継続しながら約 90°Cまで 冷却し、原料微粒子 dのェマルジヨンを得た。この原料微粒子 dのェマルジヨンに、浴 中濃度が 35%となるようにヒドラジンをカ卩え、 102°Cで 2. 5時間架橋処理を行った。 続いて浴中濃度が 10%となるように水酸ィ匕ナトリウムを加え、 102°Cで 5時間加水分 解処理を行った後、セルロースチューブに入れてイオン交換水で 1週間透析'脱塩し 、ェマルジヨン状の架橋構造および酸性基を有する有機微粒子 Dを得た。該有機微 粒子は平均粒子径が 0. 3 /ζ πι、酸性基量が 5. 9mmolZg、金属イオン結合カルボ キシル基量が 4. 4mmolZg、ナトリウムイオン量が 4. 5mmolZgであった。
[0063] <架橋構造および酸性基を有する有機微粒子 E>
メタクリル酸 Zp—スチレンスルホン酸ソーダ = 70Z30の水溶性重合体 300部及び 硫酸ナトリウム 30部を 6595部の水に溶解し、櫂型撹拌機付きの重合槽に仕込んだ 。次にアタリノレ酸メチノレ 2700咅およびジビ-ノレベンゼン 300咅に 2, 2,一ァゾビス一( 2, 4ージメチルバレ口-トリル) 15部を溶解して重合槽に仕込み、 400rpmの撹拌条 件下、 60°Cで 2時間懸濁重合を行い、重合率 87%で原料微粒子 eを得た。該原料 微粒子 100部をイオン交換水 900部中に分散し、これに 100部の水酸ィ匕ナトリウムを 添加し、 90°Cで 2時間加水分解反応を行った後、得られた重合体を、イオン交換水 で洗浄した後、脱水、乾燥し、架橋構造および酸性基を有する有機微粒子 Eを得た 。該有機微粒子は平均粒子径が 45 m、酸性基量が 4. 7mmol/g,金属イオン結 合カルボキシル基量が 3. 7mmol/g,ナトリウムイオン量が 3. 9mmolZgであった。
[0064] [実施例 1一 5、比較例 1、 2]
表 1に示す割合の無機繊維、パルプ状繊維およびバインダー繊維力 なる水性ス ラリーを作成し、熊谷理機工業 (株)製角型シートマシンを用いて抄紙した後、濾紙の 間に挟み、熊谷理機工業 (株)製ロータリードライヤーを用いて、 145°Cで乾燥させ、 原料紙を作成した。該原料紙を表 1に示す濃度のェマルジヨン状の架橋構造および 酸性基を有する有機微粒子に浸漬し、余分なェマルジヨンを搾り出した後、 120°Cで 乾燥することで吸放湿紙を得た。得られた吸放湿紙について、有機微粒子の付着量 を求め、寸法安定性の指標として水膨潤率および熱収縮率を、吸放湿性の指標とし て飽和吸湿率を測定した。
[0065] 実施例 1一 5および比較例 1、 2の評価結果を表 1に示す。なお、表中の無機繊維、 パルプ状繊維および熱融着性繊維の詳細は以下のとおりである。
•ガラス繊維:繊維径 6 μ m、繊維長 6mm
•Bi-PUL :日本ェクスラン工業 (株)製アクリルパルプ、カナダ標準濾水度 150ml •針葉樹クラフトパルプ:カナダ標準濾水度 600ml
•VPB-105 : (株)クラレ製ビニロンバインダー繊維、繊度 1T、繊維長 3mm [0066] [表 1]
Figure imgf000019_0001
の高いものであった。これに対して、比較例 1では、パルプ状繊維を増やした力 無 機繊維を使用しな力つたため、水膨潤を十分に抑制することができず、熱収縮も大き くなつたものと思われる。また、比較例 2では、一応、紙を得ることができた力 ビ-ロ ン系の熱融着性繊維の使用量を増やしたため、ェマルジヨン含浸時の紙強度が低く 、また、含浸後の加熱乾燥で紙が歪むなど、実用には適さない状態であった。
[0068] [実施例 6および比較例 3、 4]
表 2に示す割合の微粒子、無機繊維、パルプ状繊維および熱融着性繊維を、実施 例 6および比較例 4についてはイオン交換水、比較例 3については工業用水に分散 させ、濃度 0. 5%の水性スラリーを作成した。作成した水性スラリーを熊谷理機工業 ( 株)製角型シートマシンを用いて抄紙した後、濾紙の間に挟み、熊谷理機工業 (株) 製ロータリードライヤーを用いて、 145°Cで乾燥させることで吸放湿紙を作成した。得 られた吸放湿紙について、水膨潤率、熱収縮率および飽和吸湿率を測定した。実施 例 6および比較例 3、 4の評価結果を表 2に示す。
[0069] [表 2]
Figure imgf000021_0001
実施例 6で使用している架橋構造および酸性基を有する有機微粒子 Eは粉体状で あるが、実施例 1一 5と同様に水膨潤率および熱収縮率が低ぐ飽和吸湿率の高い 吸放湿紙が得られた。これに対して、比較例 3の吸放湿紙は繊維構成としては実施 例 6と全く同じであるが、飽和吸湿率の低いものであった。これは、工業用水を使用し て作成したため、工業用水中のカチオンと架橋構造および酸性基を有する有機微粒 子 Eのナトリウムイオンがイオン交換を起こしたことが影響したものと思われる。また、 比較例 4では架橋構造および酸性基を有する有機微粒子 Eに代えて無機粒子であ るシリカゲルを使用した力 十分な飽和吸湿率が得られな力つた。

Claims

請求の範囲
[1] 架橋構造および 1一 lOmmolZgの酸性基を有し、該酸性基に Li、 Na、 K、 Mg、 C aよりなる群力 選ばれる少なくとも 1種類の金属の金属イオンが ImmolZg以上結 合して!/ヽる有機微粒子 (以下、架橋構造および酸性基を有する有機微粒子とも!ヽぅ) 、無機繊維、並びにパルプ状繊維力もなり、 20°C— 65%RH雰囲気下における飽和 吸湿率が 15%以上であることを特徴とする吸放湿紙。
[2] 架橋構造および酸性基を有する有機微粒子、無機繊維並びにパルプ状繊維を含 有する水性スラリーの調製および抄紙を、前記酸性基に結合して!/、る金属イオンを 除いたカチオン濃度が lppm以下の水を用いて行って得られたことを特徴とする請 求項 1に記載の吸放湿紙。
[3] 架橋構造および酸性基を有する有機微粒子が、該酸性基に結合して!/ヽる金属ィォ ンを除 ヽたカチオン濃度が lppm以下の水に分散または乳化して 、る水性液を、無 機繊維およびパルプ状繊維カゝらなる紙に含浸させて得られたことを特徴とする請求 項 1に記載の吸放湿紙。
[4] 架橋構造および酸性基を有する有機微粒子が、アクリロニトリル系高分子微粒子に ヒドラジン系化合物による架橋導入処理およびアルカリ金属塩による加水分解処理を 施してなるアクリル酸系吸放湿性微粒子であることを特徴とする請求項 1一 3のいず れかに記載の吸放湿紙。
[5] 架橋構造および酸性基を有する有機微粒子が、ジビニルベンゼンによる架橋構造 およびカルボキシル基を有するものであることを特徴とする請求項 1一 3のいずれか に記載の吸放湿紙。
[6] ノルプ状繊維がフィブリルィ匕アクリル繊維であることを特徴とする請求項 1一 5の ヽ ずれかに記載の吸放湿紙。
[7] 熱融着性繊維の含有量が 20重量%以下であることを特徴とする請求項 1一 6のい ずれかに記載の吸放湿紙。
[8] 水膨潤率が 50%以下であることを特徴とする請求項 1一 7のいずれかに記載の吸 放湿紙。
[9] 熱収縮率が 5%以下であることを特徴とする請求項 1一 8のいずれかに記載の吸放 湿紙。
[10] 架橋構造および 1一 lOmmolZgの酸性基を有し、該酸性基に Li、 Na、 K、 Mg、 C aよりなる群力 選ばれる少なくとも 1種類の金属の金属イオンが ImmolZg以上結 合している有機微粒子、無機繊維、および、パルプ状繊維を含有する水性スラリーの 調製、並びに、該水性スラリーを用いての湿式抄紙法による抄紙工程において、前 記酸性基に結合して 、る金属イオンを除 ヽたカチオン濃度が lppm以下である水を 使用することを特徴とする吸放湿紙の製造方法。
[11] 架橋構造および 1一 lOmmolZgの酸性基を有し、該酸性基に Li、 Na、 K、 Mg、 C aよりなる群力 選ばれる少なくとも 1種類の金属の金属イオンが ImmolZg以上結 合して 、る有機微粒子が、前記酸性基に結合して 、る金属イオンを除 、たカチオン 濃度が lppm以下である水に分散または乳化している水性液を、無機繊維およびパ ルプ状繊維力 なる紙に含浸させることを特徴とする吸放湿紙の製造方法。
PCT/JP2004/017700 2004-03-03 2004-11-29 吸放湿紙およびその製造法 WO2005085523A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20040821715 EP1722035B1 (en) 2004-03-03 2004-11-29 Paper capable of moisture absorption and desorption and process for producing the same
KR1020067020418A KR101060028B1 (ko) 2004-03-03 2004-11-29 흡방습지 및 그 제조법
JP2006510612A JP4375397B2 (ja) 2004-03-03 2004-11-29 吸放湿紙およびその製造法
US10/587,147 US7998312B2 (en) 2004-03-03 2004-11-29 Moisture absorptive and desorptive paper and a method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004059188 2004-03-03
JP2004-059188 2004-03-03

Publications (1)

Publication Number Publication Date
WO2005085523A1 true WO2005085523A1 (ja) 2005-09-15

Family

ID=34917962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017700 WO2005085523A1 (ja) 2004-03-03 2004-11-29 吸放湿紙およびその製造法

Country Status (7)

Country Link
US (1) US7998312B2 (ja)
EP (1) EP1722035B1 (ja)
JP (1) JP4375397B2 (ja)
KR (1) KR101060028B1 (ja)
CN (1) CN100558982C (ja)
TW (1) TWI376441B (ja)
WO (1) WO2005085523A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031093A (ja) * 2016-08-24 2018-03-01 帝人株式会社 繊維シートおよびその製造方法および繊維シートの複合体および湿度交換用吸着体およびその製造方法
JP2019031633A (ja) * 2017-08-09 2019-02-28 帝人フロンティア株式会社 繊維構造体およびその製造方法
JP2019118899A (ja) * 2018-01-10 2019-07-22 帝人フロンティア株式会社 吸湿性繊維構造体
WO2021070777A1 (ja) * 2019-10-07 2021-04-15 王子ホールディングス株式会社 フィルター用ガラス繊維シート

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172035B2 (en) * 2008-03-27 2012-05-08 Bose Corporation Waterproofing loudspeaker cones
US7913808B2 (en) * 2008-03-27 2011-03-29 Bose Corporation Waterproofing loudspeaker cones
JP6239541B2 (ja) * 2015-02-05 2017-11-29 三菱製紙株式会社 ペーパー捺染法に用いる捺染用紙
JP6339957B2 (ja) * 2015-03-24 2018-06-06 三菱製紙株式会社 建築部材用ガラス繊維含有不織布複合体
CN107524055B (zh) * 2016-06-22 2020-07-21 浙江科技学院 一种采用林业废弃物为原料的pm2.5过滤纸及其制备方法
JP6247800B1 (ja) * 2016-09-26 2017-12-13 東洋紡株式会社 吸湿発熱性繊維
US10727731B1 (en) 2017-04-01 2020-07-28 Smart Power Partners, LLC Power adapters adapted to receive a module and methods of implementing power adapters with modules
US10996645B1 (en) 2017-04-01 2021-05-04 Smart Power Partners LLC Modular power adapters and methods of implementing modular power adapters
US10530597B1 (en) 2017-04-01 2020-01-07 Smart Power Partners LLC System for controlling a plurality of power switches configured to apply power to devices
JP6989319B2 (ja) * 2017-08-10 2022-01-05 帝人フロンティア株式会社 繊維シートおよびその製造方法
CN111868322B (zh) * 2018-05-31 2023-03-14 日本爱克兰工业株式会社 含羧基的打浆状丙烯腈系纤维、该纤维的制造方法和含有该纤维的结构体
US10938168B2 (en) 2019-06-30 2021-03-02 Smart Power Partners LLC In-wall power adapter and method of controlling the application of power to a load
US11579640B1 (en) 2019-06-30 2023-02-14 Smart Power Partners LLC Control attachment for an in-wall power adapter
US10965068B1 (en) 2019-06-30 2021-03-30 Smart Power Partners LLC In-wall power adapter having an outlet and method of controlling an in-wall power adapter
US10958020B1 (en) 2019-06-30 2021-03-23 Smart Power Partners LLC Control attachment for an in-wall power adapter and method of controlling an in-wall power adapter
US10917956B1 (en) 2019-06-30 2021-02-09 Smart Power Partners LLC Control attachment configured to provide power to a load and method of configuring a control attachment
US11990718B1 (en) 2019-06-30 2024-05-21 Smart Power Partners LLC Power adapter having a plurality of interfaces and methods of implementing a power adapter
US11231730B1 (en) 2019-06-30 2022-01-25 Smart Power Power LLC Control attachment for a power adapter configured to control power applied to a load
US11460874B1 (en) 2019-06-30 2022-10-04 Smart Power Partners LLC In-wall power adapter configured to control the application of power to a load
US10958026B1 (en) 2019-06-30 2021-03-23 Smart Power Partners LLC Contactless thermometer for an in-wall power adapter
US11264769B1 (en) 2019-06-30 2022-03-01 Smart Power Partners LLC Power adapter having contact elements in a recess and method of controlling a power adapter
US11043768B1 (en) 2019-06-30 2021-06-22 Smart Power Partners LLC Power adapter configured to provide power to a load and method of implementing a power adapter
US11201444B1 (en) 2019-06-30 2021-12-14 Smart Power Partners LLC Power adapter having contact elements in a recess and method of controlling a power adapter
US11189948B1 (en) 2019-06-30 2021-11-30 Smart Power Partners LLC Power adapter and method of implementing a power adapter to provide power to a load
CN114086423A (zh) * 2020-08-25 2022-02-25 中国制浆造纸研究院有限公司 一种磺化改性无水加湿器件及其制备方法和应用
CN114134756A (zh) * 2020-09-04 2022-03-04 中国制浆造纸研究院有限公司 一种聚多巴胺型无水加湿器件及其制备方法和应用
CN114994315B (zh) * 2022-05-24 2023-03-24 山东博科快速检测技术有限公司 一种新冠病毒胶体金检测试纸条及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282465A (ja) * 1985-06-01 1986-12-12 大建工業株式会社 吸、放湿性繊維成形体
US4873143A (en) 1986-05-06 1989-10-10 Japan Exlan Company Limited Water-swellable fiber
JPH10212692A (ja) 1997-01-29 1998-08-11 Tokushu Paper Mfg Co Ltd 防塵性調湿紙及びそれを用いた調湿方法
JPH1181188A (ja) * 1997-09-03 1999-03-26 Tokushu Paper Mfg Co Ltd 防塵性調湿紙及びその製造方法
JP2000129574A (ja) * 1998-10-23 2000-05-09 Toyobo Co Ltd 高吸放湿吸湿発熱性不織布
EP1065222A1 (en) 1999-06-28 2001-01-03 Japan Exlan Company Limited Moisture-absorbing and desorbing polymer and compositions derived therefrom
JP2002030553A (ja) * 2000-07-13 2002-01-31 Toyobo Co Ltd 吸放湿性不織布
US6387970B1 (en) 1998-07-01 2002-05-14 Ryosuke Nishida Porous moisture-absorbing and desorbing polymer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1137364A (en) * 1979-07-20 1982-12-14 Yoshiji Hiraoka Water-impermeable sheet material
JPH06207398A (ja) 1992-11-17 1994-07-26 Mitsubishi Paper Mills Ltd 吸放湿性繊維シート及びその製造法
EP0716882B1 (en) * 1994-12-13 2000-01-12 Japan Exlan Company, Ltd. High moisture adsorptive and desorptive fine particles and process for producing the same
JP3997438B2 (ja) * 1995-08-04 2007-10-24 東洋紡績株式会社 低温再生型吸湿素子
US5791153A (en) * 1995-11-09 1998-08-11 La Roche Industries Inc. High efficiency air conditioning system with humidity control
US6046119A (en) 1998-01-28 2000-04-04 Toyo Boseki Kabushiki Kaisha Heat-retaining, moisture-permeable, waterproof fabrics
DE69919605T2 (de) 1998-01-28 2005-07-14 Toyo Boseki K.K. Wärmehaltendes, dampfdurchlässiges und wasserundurchlässiges Textilflächengebilde
BR0113995A (pt) * 2000-09-21 2003-08-12 Rohm & Haas Processo para preparar uma dispersão aquosa polimérica nanocompósita de argila, produto de aditivo plástico, produto em pó nanocompósito, resina termoplástica ou aditivo de plásticos, composição polimérica nanocompósita de núcleo-casca, e, produto de revestimento, adesivo, calafetação ou selante

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282465A (ja) * 1985-06-01 1986-12-12 大建工業株式会社 吸、放湿性繊維成形体
US4873143A (en) 1986-05-06 1989-10-10 Japan Exlan Company Limited Water-swellable fiber
JPH10212692A (ja) 1997-01-29 1998-08-11 Tokushu Paper Mfg Co Ltd 防塵性調湿紙及びそれを用いた調湿方法
JPH1181188A (ja) * 1997-09-03 1999-03-26 Tokushu Paper Mfg Co Ltd 防塵性調湿紙及びその製造方法
US6387970B1 (en) 1998-07-01 2002-05-14 Ryosuke Nishida Porous moisture-absorbing and desorbing polymer
JP2000129574A (ja) * 1998-10-23 2000-05-09 Toyobo Co Ltd 高吸放湿吸湿発熱性不織布
EP1065222A1 (en) 1999-06-28 2001-01-03 Japan Exlan Company Limited Moisture-absorbing and desorbing polymer and compositions derived therefrom
JP2002030553A (ja) * 2000-07-13 2002-01-31 Toyobo Co Ltd 吸放湿性不織布

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1722035A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031093A (ja) * 2016-08-24 2018-03-01 帝人株式会社 繊維シートおよびその製造方法および繊維シートの複合体および湿度交換用吸着体およびその製造方法
JP2019031633A (ja) * 2017-08-09 2019-02-28 帝人フロンティア株式会社 繊維構造体およびその製造方法
JP7032076B2 (ja) 2017-08-09 2022-03-08 帝人フロンティア株式会社 繊維構造体およびその製造方法
JP2019118899A (ja) * 2018-01-10 2019-07-22 帝人フロンティア株式会社 吸湿性繊維構造体
WO2021070777A1 (ja) * 2019-10-07 2021-04-15 王子ホールディングス株式会社 フィルター用ガラス繊維シート

Also Published As

Publication number Publication date
CN1926284A (zh) 2007-03-07
US7998312B2 (en) 2011-08-16
EP1722035B1 (en) 2012-06-06
EP1722035A4 (en) 2011-05-04
TW200532072A (en) 2005-10-01
JP4375397B2 (ja) 2009-12-02
TWI376441B (en) 2012-11-11
JPWO2005085523A1 (ja) 2008-01-24
CN100558982C (zh) 2009-11-11
KR101060028B1 (ko) 2011-08-29
KR20060134141A (ko) 2006-12-27
US20070158043A1 (en) 2007-07-12
EP1722035A1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
WO2005085523A1 (ja) 吸放湿紙およびその製造法
JP2831165B2 (ja) 保留と水排出の改善された製紙方法
CA2594856C (en) Method of producing high dry strength paper and cardboard and paper and cardboard thus obtained
JP4408959B2 (ja) 充填紙及びこれに使用するための組成物の製造
KR0159921B1 (ko) 양이온성 및 음이온성 중합체의 혼합물, 그 제법 및 종이용 건조강도 개선 첨가제로서의 용도
RU2363656C2 (ru) Золи на основе диоксида кремния, их получение и использование
KR101971194B1 (ko) 제지에서 페이퍼 강도 보조 성능을 개선시키기 위한 지료 전처리
CN113529479B (zh) 通过在含有淀粉的施胶压榨制剂中使用二烯丙基胺丙烯酰胺共聚物来提高纸块体强度的方法
KR100602806B1 (ko) 종이 및 판지의 제조방법
AU2006213639A1 (en) An additive system for use in paper making and process of using the same
EP0000922B1 (en) A process for preparing a non-woven fibrous web from fibers and a latex, and the non-woven fibrous material so prepared
NO177866B (no) Fremgangsmåte for fremstilling av papir eller kartong
EP1395703B1 (en) Aqueous composition
US4187142A (en) Method for forming high strength composites
KR20150035723A (ko) 호프만 분해에 의해 수득된 양이온성 중합체를 사용하는 개선된 제지 방법
NO324301B1 (no) Hydrofile dispersjons-polymerer for papiranvendelser
JP4281060B2 (ja) 吸放湿紙およびその製造方法
JPS6215391A (ja) 製紙方法
WO2014105647A1 (en) Enhanced bulk and high strength paper
CN102677535B (zh) 造纸中改进脱水效率、增加板湿纸幅强度、增加板湿强度和提高填料保持力的方法
CN111287017A (zh) 一种基于碳酸钙纤维复合填料的原纸制备工艺
KR20200119735A (ko) 수용성 폴리머 기반의 신규한 첨가제 및 이의 용도
JPH0345798A (ja) 耐水性パルプシートの製造方法
JP2002004192A (ja) 製紙方法
JPH11302994A (ja) 製紙方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510612

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004821715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007158043

Country of ref document: US

Ref document number: 10587147

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200480042260.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067020418

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004821715

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020418

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10587147

Country of ref document: US