WO2005078746A1 - 高周波磁芯材及びその製造方法並びに該磁芯材を備えたアンテナ - Google Patents

高周波磁芯材及びその製造方法並びに該磁芯材を備えたアンテナ Download PDF

Info

Publication number
WO2005078746A1
WO2005078746A1 PCT/JP2005/001997 JP2005001997W WO2005078746A1 WO 2005078746 A1 WO2005078746 A1 WO 2005078746A1 JP 2005001997 W JP2005001997 W JP 2005001997W WO 2005078746 A1 WO2005078746 A1 WO 2005078746A1
Authority
WO
WIPO (PCT)
Prior art keywords
core material
magnetic core
powder
antenna
soft magnetic
Prior art date
Application number
PCT/JP2005/001997
Other languages
English (en)
French (fr)
Inventor
Takanori Endo
Tomohiro Mori
Seirou Yahata
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to US10/597,887 priority Critical patent/US20080003457A1/en
Priority to EP05710049A priority patent/EP1720178A1/en
Publication of WO2005078746A1 publication Critical patent/WO2005078746A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07771Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card the record carrier comprising means for minimising adverse effects on the data communication capability of the record carrier, e.g. minimising Eddy currents induced in a proximate metal or otherwise electromagnetically interfering object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Definitions

  • the present invention relates to a high-frequency magnetic core material, a method for manufacturing the same, and an antenna provided with the magnetic core material.
  • the present invention relates to a magnetic core material, and more particularly, to a high-frequency magnetic core material suitable for use in an RFID tag or an RFID reader Z writer antenna operating in a VHF band and a UHF band, a method for manufacturing the same, and a magnetic core material comprising the magnetic core material About the antenna.
  • RFID systems for exchanging data between a tag having an IC chip and a reader, writer, or reader Z writer have become widespread. Since this RFID system exchanges data using antennas provided for each of the tag and the reader / writer, it is possible to communicate even if the tag is separated from the reader / writer, and it is resistant to dirt. It has been used for various purposes such as factory production management, physical distribution management, and entry / exit management (for example, Japanese Patent Application Laid-Open No. 2003-249820).
  • the communicable distance varies depending on the frequency band used. For example, in the short-wave band of about 13.56 MHz, the communication distance is several cm to several tens of cm.When this system is used for purposes such as access control, the tag is used in close proximity to the reader Z writer. Although there is no practical problem with the short communication distance, a longer communication distance is more advantageous for applications such as logistics management. Therefore, in such applications, higher frequency bands such as the VHF band and the UHF band are used.
  • Patent Document 1 JP-A-2003-249820 (page 48, FIG. 1)
  • an antenna for an RFID tag an antenna in which a magnetic core is wound around a magnetic core is used, and ferrite is known as a magnetic core that can be used at high frequencies. There is a problem shown in
  • the first problem is that soft magnetic ferrite is isotropic, that is, since the magnetic permeability in the direction perpendicular to the magnetization direction is equal to the magnetization direction of the magnetic core, the side force of the magnetic core material also leaks magnetic flux. so is there. This leakage magnetic flux degrades the performance of the antenna and causes problems such as dispersing unnecessary radio noise around the inductor.
  • Ni—Cu—Zn farite which can be used in the high frequency band, especially in the UFH band, has a low magnetic permeability and thus cannot perform an antenna operation in the high frequency band. It is.
  • the third problem is that the above-mentioned fly is usually manufactured by a sintering method, but the sintering method causes shrinkage and Z deformation during sintering, resulting in poor dimensional accuracy. In order to obtain the material, expensive grinding is required, which will increase the cost of the antenna! /
  • the fourth problem is that the RFID tag or the antenna for the reader / writer is mounted on the surface of the housing of the article or the electronic circuit, so that the magnetic core material must be used to avoid collision with other articles. Forces that need to be thinned Ferrite is brittle, so if thinned, it may be damaged by the antenna manufacturing process or by contact with other articles after the device is installed.
  • Such a problem is not limited to the magnetic core material used for the RFID tag or the antenna for the reader Z writer, but also occurs for the magnetic core material used for the other high-frequency antennas.
  • the present invention has been made in view of the above problems, and a main object of the present invention is to provide a magnetic core material that has high magnetic permeability in a specific direction, has good dimensional accuracy, and is hard to break, especially An object of the present invention is to provide a high-frequency magnetic core material suitable for use in an RFID tag or an antenna of a reader Z writer operating in the VHF band and the UHF band, a method of manufacturing the same, and an antenna provided with the magnetic core material.
  • a magnetic core material of the present invention is a magnetic core material made of a composite material of soft magnetic metal powder and plastic or rubber, and the soft magnetic metal powder is spontaneously magnetized.
  • the soft magnetic metal powder is spontaneously magnetized.
  • the magnetic core material of the present invention comprises a soft magnetic metal powder having a diameter of about 1 ⁇ m or less, Is a magnetic core material made of a composite material with rubber, and the soft magnetic metal powder is connected in a chain by spontaneous magnetization to form a plurality of aggregates. It is aimed at a certain direction.
  • the volume ratio of the soft magnetic metal powder is in the range of approximately 10% to 50%.
  • it is preferably in the range of approximately 10% to 40%.
  • the soft magnetic metal powder contains any one of a nickel powder, a cobalt powder, and an iron powder obtained by reducing an oxide, or a gas phase.
  • the antenna of the present invention is such that a spiral conductor pattern is formed on one surface of the magnetic core material processed into a plate shape.
  • the antenna of the present invention is configured such that a spiral conductor pattern is formed on one surface of the magnetic core material processed into a plate shape, and a conductive material is disposed on the other surface. .
  • the magnetic core material may be constituted by a plurality of magnetic core materials each having a different longitudinal direction of the aggregate of the soft magnetic metal powder.
  • the conductor pattern is formed in a rectangular shape
  • the plate-shaped magnetic core material is formed in a rectangular shape when viewed from a direction orthogonal to a surface of the plate-shaped magnetic core material. It is also possible to adopt a configuration in which the conductor pattern is arranged so as to overlap only one side or two opposing sides.
  • a conductive wire is wound around the magnetic core material processed into a plate shape such that the magnetic axis thereof substantially coincides with the length of the aggregate of the soft magnetic metal powder. It has been a thing.
  • the antenna may be used in an RFID tag or an RFID reader Z writer having a communication frequency of at least a VHF band to a UHF band.
  • the method of manufacturing a magnetic core material of the present invention is a method of manufacturing a magnetic core material using a composite material of a soft magnetic metal powder and a plastic, wherein the soft magnetic metal powder and the plastic are heated. Kneading
  • the plurality of aggregates formed by connecting the soft magnetic metal powders in a chain shape by spontaneous magnetization are processed so that the lengths thereof are oriented in a substantially constant direction.
  • a method of manufacturing a magnetic core material of the present invention is a method of manufacturing a magnetic core material using a composite material of soft magnetic metal powder and plastic, wherein the soft magnetic metal is dissolved in a solvent in which the plastic is dissolved. After applying the ink in which the powder is suspended to the film and before drying, a direct current magnetic field is applied to make the plurality of aggregates formed by connecting the soft magnetic metal powders in a chain by spontaneous magnetization to have a substantially constant length. Is oriented in the direction of.
  • the magnetic core material is manufactured using a composite material in which soft magnetic metal powder having a predetermined particle size or less and plastic or rubber are mixed at a predetermined ratio.
  • the magnetic susceptibility can be increased, and the dimensional accuracy can be improved.
  • the composite material is stretched in one direction so that the soft magnetic metal powder continues in a predetermined direction, the magnetic permeability can be made direction-dependent, and the plastic can be reduced. If an ink in which the soft magnetic metal powder is suspended in a dissolved solvent is applied to a film and a DC magnetic field is applied before drying, the aggregate of the soft magnetic metal powder can be reliably aligned in the direction of the magnetic flux.
  • the magnetic core material of the present invention As described above, according to the magnetic core material of the present invention, the method of manufacturing the same, and the antenna provided with the magnetic core material, the following effects can be obtained.
  • the first effect of the present invention is that the magnetic permeability of the magnetic core material can be increased, the dimensional accuracy can be improved, and even if the magnetic core material is thin, it can be broken.
  • the magnetic core material is formed by using a composite material in which soft magnetic metal powder having a predetermined particle size or less and plastic or rubber are mixed at a predetermined ratio.
  • a second effect of the present invention is that the magnetic permeability of the magnetic core material can have direction dependency.
  • the reason is that when processing the above-mentioned composite material, the composite material is extended in one direction so that the soft magnetic metal powder is connected in a predetermined direction, or the ink in which the soft magnetic metal powder is suspended is used. fill This is because a DC magnetic field is applied after application to the film and before drying.
  • a third effect of the present invention is that a high-performance RFID tag or a reader Z writer antenna that operates in the VHF band and the UHF band can be manufactured.
  • FIG. 1 is a diagram schematically showing a general configuration of an RFID system.
  • FIG. 2 is a top view and a side view schematically showing a configuration of an antenna according to one embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing a method for manufacturing a magnetic core material and a cross-sectional structure according to one embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of a conventional antenna without a magnetic core material.
  • FIG. 5 is a diagram showing a configuration of an antenna including a magnetic core material according to one embodiment of the present invention.
  • FIG. 6 is a diagram showing another configuration of the magnetic core material according to one embodiment of the present invention.
  • FIG. 7 is a diagram showing another configuration of the antenna provided with the magnetic core material according to one embodiment of the present invention.
  • FIG. 8 is a diagram showing another configuration of the antenna including the magnetic core material according to one embodiment of the present invention.
  • FIG. 9 is a diagram showing another configuration of the antenna provided with the magnetic core material according to one embodiment of the present invention.
  • FIG. 10 is a top view and a side view schematically showing a configuration of a conventional antenna.
  • ferrite is generally used as the magnetic core material.
  • the soft magnetic fly is isotropic, the side force flux of the magnetic core material leaks,
  • the magnetic permeability of Ni—Cu—Zn farite which can be used at high frequencies, especially in the UFH band, is low.
  • the above ferrite is manufactured by the sintering method, but shrinks and deforms during sintering, resulting in low dimensional accuracy. Further, the ferrite is brittle, so the antenna must be manufactured and handled! / Easy to break sometimes! ,When! There is also a problem.
  • the composite material using the powder is isotropic, the composite material is directly oriented in the magnetizing direction like the fly. Leakage of magnetic flux occurs in the crossing direction.
  • the magnetic flux 11 leaks from the side surface (vertical direction in FIG. 10 (a)) and the front and back surfaces (vertical direction in FIG. 10 (b)) of the magnetic core material 10.
  • the magnetic permeability in the thickness direction can be made lower than that in the rolling direction, but the magnetic permeability on the side surface perpendicular to the rolling direction is almost the same as the magnetic permeability in the rolling direction. Therefore, the leakage of the magnetic flux 11 from the side surface (the vertical direction in FIG. 10A) cannot be suppressed. If the magnetic flux 11 leaks from the upper and lower surfaces or the side surfaces, the effective length of the magnetic core decreases, and the performance when used as an antenna decreases.
  • the following extremely fine soft magnetic metal powder is used to solve the above-mentioned drawbacks of the conventional magnetic core material, and this soft magnetic metal powder is compounded with plastic or rubber. It is manufactured by performing a process of extending the material in one direction, such as extrusion, rolling, rolling after extrusion, drawing after extrusion, or rolling after injection.
  • an ink in which soft magnetic metal powder is suspended in a solvent in which a plastic is dissolved is applied to a film, and a DC magnetic field is applied before drying to manufacture the film.
  • the extremely fine soft magnetic powder is connected in a chain for spontaneous magnetization.
  • this soft magnetic powder is combined with plastic or rubber and stretched in one direction, or when a DC magnetic field is applied to a film coated with an ink in which the soft magnetic metal powder is suspended, the chain becomes as shown in FIG. 3 (b). Aggregates of connected powders are aligned in the extended direction.
  • the magnetic flux passes through the aggregate of chain-like powder, so that the magnetic permeability in the extended direction can be increased.
  • the magnetic permeability is low because the powder does not have a binding force S.
  • the powder is fine, there is no effect of the eddy current flowing inside the powder. Therefore, if the content of the powder is adjusted so that the powder is not connected to each other in a direction perpendicular to the magnetic direction, it is possible to use even a high frequency exceeding 40 MHz.
  • the following powders are suitable as such powders.
  • nickel powder, cobalt powder or iron powder obtained by low-temperature reduction of a fine oxide or the like obtained by thermally decomposing an organic acid salt such as oxalic acid of a metal such as nickel, cobalt or iron, or sulfuric acid
  • an organic acid salt such as oxalic acid of a metal such as nickel, cobalt or iron, or sulfuric acid
  • a fine iron powder obtained by neutralizing a ferrous solution.
  • Powder obtained by gas phase method There are nickel powder, cobalt powder, iron powder, and the like obtained by heating and evaporating a metal such as nickel, cobalt, or iron under reduced pressure and solidifying in a gas phase.
  • Examples include nickel powder and conoreto powder obtained by reducing a solution containing an ammonium complex ion of nickel or cobalt at high temperature and high pressure with hydrogen.
  • the lower the powder content the easier it is to process such as rolling, and the resulting composite material is also flexible.Therefore, the antenna is bent to mount the antenna on a curved surface, wind the antenna, and transport it. If necessary, the content may be appropriately reduced. On the other hand, when the content of the powder decreases, the magnetic permeability decreases. Therefore, the content of the powder of 10 v% or less is not appropriate.
  • the powder having the protective layer does not ignite even when handled in the air, but cannot prevent long-term oxidation.
  • the plastic cuts off the contact between the powder and the atmosphere, so that the composite material of the present invention also has the effect of preventing deterioration due to oxidation. .
  • the powder having the above content is heated and kneaded with polyethylene, polypropylene, nylon, vinyl chloride, fluorine resin, or the like, and then is extruded, rolled, or extruded material is rolled in one direction.
  • the ink is prepared by applying an ink in which the above-mentioned powder is suspended in a solvent in which plastic is dissolved, to the film, and before drying, applying a DC magnetic field.
  • the above fine powder is spherical, but is attracted to each other by the spontaneous magnetic field of the powder and is connected in a chain shape.
  • the powder containing this is stretched in one direction, or the powder is aggregated by applying a DC magnetic field.
  • the body can be aligned in the extended direction.
  • the magnetic core material thus manufactured has a high magnetic permeability in the extended direction and a low magnetic permeability in the direction perpendicular thereto. For this reason, if the winding is performed so that the magnetic permeability is high and the method is in the direction of the magnetic component, the magnetic flux does not leak out from the upper and lower surfaces or the side surface, and all of the magnetic flux comes out from the end surface. It is possible to manufacture a thin RFID tag or reader Z writer antenna that operates in one UHF band and can be used in close contact with metal objects.
  • FIG. 1 is a diagram schematically illustrating a general configuration of an RFID system
  • FIG. 2 is a diagram schematically illustrating a configuration of an antenna according to the present embodiment
  • FIG. 3 is a diagram schematically illustrating a method of manufacturing a magnetic core material and a cross-sectional structure according to the present embodiment
  • FIG. 4 is a diagram illustrating a configuration of a conventional antenna.
  • 5 to 9 are diagrams showing variations of the configuration of the antenna according to the present embodiment.
  • a force showing a case where the magnetic core material of the present invention is applied to a tag antenna is not limited to the following embodiments.
  • the present invention is not limited to the magnetic core material of the present invention. May be applied.
  • the RFID system 1 of the present embodiment includes a tag 2 for exchanging data using a frequency band such as a UHF band or an SHF band, and a reader Z writer (or reader) 6.
  • the tag 2 includes an antenna 3 and a capacitor 4 (which are not necessarily required when the IC chip 5 has a built-in capacitance) constituting a resonance circuit, and an IC chip 5 for storing information.
  • the DA Z writer (or reader) 6 includes a reader Z writer antenna 7 for communicating with the antenna 3 of the tag 2, a communication circuit 8a for converting transmission / reception signals, and an arithmetic processing circuit 8b for decoding transmission / reception signals.
  • the tag 2 is driven using a built-in power supply or a power supply supplied from the reader Z writer 6.
  • the antenna of the RFID system 1 (the antenna 3 for the tag 2) has a winding 9 around a magnetic core material 10, which is also a feature of the present invention.
  • the antenna is wound, and the antenna is installed on the surface of an article or a housing, particularly on an article or a housing containing a metal material (metal article 12).
  • the magnetic core material 10 is manufactured by subjecting an extremely fine soft magnetic metal powder to compounding with plastic or rubber, and extruding or rolling the material in one direction. Therefore, the aggregate of the powders connected in a chain by the spontaneous magnetism is aligned in the extending direction, and the permeability in the extending direction is increased, and the permeability in the direction orthogonal to the extending direction can be reduced ( (See Fig. 3 (b)). Therefore, by arranging the magnetic core material 10 so that the direction in which the composite material extends and the direction of the magnetic axis of the coil match, as shown in FIG. Forces (vertical direction in Fig. 2 (a)) and front and rear surfaces (vertical direction in Fig.
  • a method may be used in which a DC magnetic field is applied after the ink in which the powder is suspended in a solvent in which the plastic is dissolved is applied to the film and before drying. It is not possible to obtain the direction dependency of the magnetic permeability by simply dispersing the ultrafine powder evenly.However, it is possible to form an antenna that operates at high frequencies such as at least the VHF band and the UHF band. .
  • the antenna can be directly arranged on the metal article 12, but when the metal article 12 is an iron plate, the loss is reduced. growing.
  • a conductive material such as aluminum, pure copper, or brass can be interposed between the antenna and the metal article 12.
  • gold The antenna can be operated stably irrespective of the type of metal material constituting the metal article 12.
  • the thickness of this conductive material can be about 1 ⁇ m-lmm, preferably about 10 ⁇ m, and the force can be about 20 ⁇ m. If it also has a function as a structural material, it should be about 0.05 mm-0.5 mm. Good.
  • this material is slit into a tape shape and wound into a coil shape, which can be used as a core of an inductor.
  • the magnetic permeability in the longitudinal direction (rolling direction) is high, and the material is perpendicular to the material. If the magnetic permeability in the direction (side surface and thickness direction of the tape) is low, the wetting magnetic flux of the coil decreases.
  • the magnetic core material 10 was manufactured using the powders A to E shown below, and 1 to 25, Comparative Example 1 to 12
  • Powder A Conoleto powder obtained by reducing an acid oxidized product having an average diameter of 0.8-1 m
  • Powder B Carbonyl nickel powder having an average diameter of 0.2-0.5 m
  • Powder C Carbonyl iron powder having an average diameter of 0.8-1 ⁇ m
  • Powder D water atomized alloy iron powder containing 10% silicon, 90% or more of the weight is 20 ⁇ m or less
  • Powder E A flake having a thickness of 10 m or less at least 90% of the weight obtained by flattening powder D with an attritor.
  • the powders A, B, C, D, and E were kneaded with nylon at a content of about 38 v% (85.5% by weight, hereinafter referred to as w%) and rolled to form a 0.5 mm thick plate.
  • the magnetic permeability at 15 MHz and the Q value were measured in three directions, ie, the rolling direction, the direction perpendicular to the rolling direction, and the plane direction shown in FIG. 3 (a) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa) (Exa)
  • Example 13 and 13 and Comparative Examples 12 and 13 were measured for Q and Q values in the rolling direction while changing the frequency in the range of 10 MHz to 1000 MHz (Examples 4 and 6 and Comparative Examples 3 and 4). .
  • the results are shown in Table 2. The reason why the V% is the same and the W% changes is that the powder has a different density depending on the composition.
  • Example 4 Example 5 Example 6 Comparative Example 3 Comparative Example 4 Powder A B C D E w% 85.5 85.5 84 80 80
  • Example 4 the magnetic permeability starts to decrease when the frequency exceeds 100 MHz, and the force decreases to 15 at 1000 MHz.
  • the magnetic permeability of the Ni—Cu—Zn ferrite usable at this frequency ( Compared to 7), the value is maintained about twice or more.
  • Example 5 is almost the same as Example 4, and the Q value of each of Examples 4 and 5 is within the usable range (10 or more) within the range tested.
  • the magnetic permeability is higher than those in Examples 4 and 5 below 100 MHz, and the Q value is in a usable range.
  • Example 7 60 13.5 6.2 58
  • Example 8 70 19.5 9.5 60
  • Example 1 1 85 37 23.1 63
  • Comparative Examples 5, 6, and 7 have low magnetic permeability, while Examples 7-16 have higher magnetic permeability as the powder content increases.
  • the Q value increases up to the powder content power OV%, and when it exceeds that, the power decreases rapidly to 50 V%, which remains within the usable range of 10 or more.
  • Comparative Examples 9 and 10 when the powder content exceeds 50 V%, the Q value is further reduced, and the powder cannot be used. From this, it is said that the content of the powder is suitably 50% or less, and furthermore, the content of 40% or less is suitable for suppressing the above-mentioned problem caused by the mutual contact of the powders.
  • Magnetic core materials were prepared using methods such as extrusion, rolling, drawing, and injection, and ⁇ and Q values at 15 MHz were measured (Examples 17-21, Comparative Example 11). The results are shown in Table 4.
  • Example 17 the magnetic permeability is high in the extrusion direction (rolling direction), and the magnetic permeability is high in the direction perpendicular to the extrusion direction (orthogonal direction or plane direction). The direction is rather high and the plane direction is extremely low. Further, in Example 19, after the extrusion, the rolling was performed more than the rolling alone.
  • Example 20 when the wire is pulled out after extrusion, the magnetic permeability in the direction of pulling out increases and the magnetic permeability in the direction perpendicular to the direction of pulling out decreases.
  • Example 21 the properties of the material rolled after the injection were almost the same as those of the material rolled alone. Based on the above results, extrusion, rolling, post-extrusion rolling, extrusion-extrusion drawing, or post-injection rolling can be used as a processing method for imparting direction dependency of the magnetic permeability. Post-drawing is preferred. In addition, it can be expected that the production of Example 19-21 becomes easy besides the improvement of the characteristics.
  • Example 12 an antenna without a magnetic core in which only a circuit 13 was formed on a base 14 as shown in FIG. 4 was created.
  • Example 22 an antenna was prepared in which a magnetic core material 10 and an aluminum plate 12a were arranged below a circuit as shown in FIG.
  • Example 23 as shown in FIG. 7, in order to use only one magnetic core material in a direction having good characteristics, the magnetic core material 10 was disposed so as to straddle only one side of the rectangular circuit.
  • Example 24, as shown in FIG. 8 the magnetic core material 10 was disposed so as to straddle only a pair of sides facing the magnetic core material 10.
  • Example 25 as shown in FIG. 9, a coated copper wire was wound around the magnetic core material 10 such that the magnetic axis was parallel to the metal surface.
  • the sensitivity of the antenna is high only in a predetermined direction.
  • the magnetic core material 10 is divided and each portion is vertically oriented (vertical direction in the figure).
  • An antenna with good characteristics can be formed in any part of the circuit by using the magnetic core material 10 having good characteristics and the magnetic core material 10 having good characteristics in the horizontal direction (left and right directions in the figure).
  • the soft magnetic metal powder having a predetermined particle size (about 1 ⁇ m) or less is mixed with a plastic or rubber at a content of about 10% to 50%, preferably about 10% to 40% by volume.
  • the composite material was extruded, rolled, extruded and rolled, extruded and drawn, or extruded and rolled to extend the composite material in the negative direction, or the powder was suspended in a solvent in which the plastic was dissolved.
  • the magnetic permeability can be increased and the direction can be made dependent, and the dimensional accuracy can be improved. can do.
  • an antenna pattern is formed on one surface of the magnetic core material, and a conductive material is further disposed on the other surface to form an RFID tag or a reader Z writer antenna.
  • a high performance antenna can be manufactured.
  • the dielectric of the present invention can be used not only as an antenna for an RFID system, but also for any application in which a dielectric having a high dielectric constant can be used, such as a high-frequency antenna.

Abstract

【課題】特定の方向の透磁率が高く、また、寸法精度が良好で、破損しにくい磁芯材、特に、VHF帯~UHF帯で作動する高周波磁芯材及びその製造方法並びに該磁芯材を備えたRFIDのタグ又はリーダ/ライタ用アンテナの提供。 【解決手段】所定の粒径(略1μm)以下の軟磁性金属粉末を、体積比率が略10%~50%、好ましくは略10%~40%の含有量でプラスチック又はゴムと混練し、押出し、圧延、押出し後圧延、押出し後引抜き加工、又は、射出後圧延などの複合材を一方向に延ばす加工を施すことにより、透磁率を高く、方向依存性を持たせることができると共に、寸法精度を高め、破損しにくくできる。また、この磁芯材の一方の面にアンテナパターン、他方の面に導電材を配置してRFIDタグやリーダ/ライタのアンテナを形成することにより、磁束の漏れの少ない高性能のアンテナを製作できる。

Description

明 細 書
高周波磁芯材及びその製造方法並びに該磁芯材を備えたアンテナ 技術分野
[0001] 本発明は磁芯材に関し、特に、 VHF帯一 UHF帯で作動する RFIDタグ又は RFID リーダ Zライタのアンテナに用いて好適な高周波磁芯材及びその製造方法並びに該 磁芯材を備えたアンテナに関する。
背景技術
[0002] 近年、 ICチップを備えたタグとリーダ、ライタ又はリーダ Zライタ(以下、総称してリー ダ Zライタと呼ぶ。)との間でデータの交信を行う RFIDシステムが普及している。この RFIDシステムは、タグ及びリーダ Zライタの各々〖こ備えたアンテナを用いてデータ の交信を行うため、タグをリーダ Zライタ力も離しても通信可能であり、また、汚れなど に強いという長所から、工場の生産管理、物流の管理、入退室管理等の様々な用途 に利用されるようになってきている(例えば、特開 2003— 249820号公報など)。
[0003] RFIDシステムでは、使用する周波数帯に応じて通信可能な距離が異なる。例えば 、 13. 56MHz程度の短波帯では通信距離は数 cmから数十 cmであり、このシステム を入退室管理などの用途に用いる場合、タグはリーダ Zライタに近接して使用される ため、この程度の通信距離で実用上問題はないが、物流管理などの用途では通信 距離が長い方が有利である。そこでこのような用途では VHF帯や UHF帯などのより 周波数の高 、帯域が用いられる。
[0004] 特許文献 1 :特開 2003— 249820号公報 (第 4 8頁、第 1図)
発明の開示
発明が解決しょうとする課題
[0005] 通常、 RFIDタグ用のアンテナとしては、磁芯材に卷線をしたアンテナが用いられて おり、高周波で使用できる磁芯材としてフェライトが知られているが、従来のフェライト には以下に示す問題がある。
[0006] 第 1の問題は、軟磁性フェライトは等方性、即ち磁芯の磁化方向と磁化方向に直交 する方向の透磁率が等しいため、磁芯材の側面力も磁束が漏れてしまうということで ある。この漏れ磁束によりアンテナの性能が低下し、インダクタ一等では周辺に不要 な電波騒音を撒き散らすなどの問題が生じる。
[0007] また、第 2の問題は、高周波、特に UFH帯で使用可能な Ni— Cu— Znファライト等は 透磁率が低ぐ高周波帯で性能のょ 、アンテナが得られな 、と 、うことである。
[0008] また、第 3の問題は、上記フ ライトは通常、焼結法で製造されるが、焼結法では焼 結時に収縮 Z変形するために寸法精度が悪く、表面が平滑で寸法精度の良!、材料 を得るためには高価な研削加工が必要になり、その結果、アンテナのコストが上昇し てしまうと!/、うことである。
[0009] また、第 4の問題は、 RFIDのタグまたはリーダ Zライタ用アンテナは、物品または 電子回路の筐体の表面に取り付けるため、他の物品との衝突を避けるためには磁芯 材も薄くする必要がある力 フェライトは脆いために、薄くするとアンテナの製造工程 や装置の取りつけ後の他の物品等との接触などにより破損する恐れがあるということ である。
[0010] このような問題は RFIDタグやリーダ Zライタ用のアンテナに用いられる磁芯材に限 らず、他の高周波用アンテナに用いられる磁芯材などに関しても同様に生じ、磁束の 漏れが少なぐ透磁率が高ぐ寸法精度が良好で、破損しにくい高周波磁芯材が求 められている。
[0011] 本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、特定の 方向の透磁率が高ぐまた、寸法精度が良好で、破損しにくい磁芯材、特に、 VHF 帯一 UHF帯で作動する RFIDのタグ又はリーダ Zライタのアンテナに用いて好適な 高周波磁芯材及びその製造方法並びに該磁芯材を備えたアンテナを提供すること にある。
課題を解決するための手段
[0012] 上記目的を達成するため、本発明の磁芯材は、軟磁性金属粉末とプラスチック又 はゴムとの複合材料カゝらなる磁芯材であって、自発磁化により前記軟磁性金属粉末 が鎖状に繋がって複数の集合体が形成され、各々の前記集合体は、その長手が略 一定の方向を向 ヽて 、るものである。
[0013] また、本発明の磁芯材は、直径が略 1 μ m以下の軟磁性金属粉末とプラスチック又 はゴムとの複合材料カゝらなる磁芯材であって、自発磁化により前記軟磁性金属粉末 が鎖状に繋がって複数の集合体が形成され、各々の前記集合体は、その長手が略 一定の方向を向 ヽて 、るものである。
[0014] 本発明においては、前記軟磁性金属粉末の体積比率が略 10%乃至 50%の範囲
、又は、略 10%乃至 40%の範囲であることが好ましい。
[0015] また、本発明にお ヽては、前記軟磁性金属粉末が、酸化物を還元して得られた-ッ ケル粉、コバルト粉又は鉄粉のいずれかを含む構成、又は、気相法で得られた-ッケ ル粉、コバルト粉又は鉄粉のいずれかを含む構成、又は、金属イオンを含む溶液を 還元して得られたニッケル粉又はコバルト粉を含む構成、又は、カーボニル-ッケル 粉又はカーボニル鉄粉を含む構成とすることができる。
[0016] また、本発明のアンテナは、板状に加工された前記磁芯材の一方の面に渦巻き状 の導体パターンが形成されて ヽるものである。
[0017] また、本発明のアンテナは、板状に加工された前記磁芯材の一方の面に渦巻き状 の導体パターンが形成され、他方の面に導電材が配置されて ヽるものである。
[0018] 本発明においては、前記磁芯材が、前記軟磁性金属粉末の集合体の長手の方向 が相異なる複数の磁芯材片力 構成されているものとすることができる。
[0019] また、本発明においては、前記導体パターンが矩形状に形成され、前記板状の磁 芯材が、該板状の磁芯材の面に直交する方向から見て、前記矩形状の導体パター ンの 1辺又は対向する 2辺のみと重なるように配置されている構成とすることもできる。
[0020] また、本発明のアンテナは、板状に加工された前記磁芯材の周囲に、その磁気的 軸が前記軟磁性金属粉末の集合体の長手と略一致するように導線が卷回されて 、 るものである。
[0021] 本発明においては、前記アンテナは、少なくとも VHF帯乃至 UHF帯を通信周波数 とする RFIDタグ又は RFIDリーダ Zライタに用いられるものとすることができる。
[0022] また、本発明の磁芯材の製造方法は、軟磁性金属粉末とプラスチックとの複合材料 を用いた磁芯材の製造方法であって、前記軟磁性金属粉末と前記プラスチックとを 加熱混練し
た後、押出し、圧延、押出し後圧延、押出し後引抜き加工、又は、射出後圧延のいず れか一の方法により、自発磁化により前記軟磁性金属粉末が鎖状に繋がって形成さ れた複数の集合体の長手が略一定の方向を向くように加工するものである。
[0023] また、本発明の磁芯材の製造方法は、軟磁性金属粉末とプラスチックとの複合材料 を用いた磁芯材の製造方法であって、前記プラスチックを溶解した溶媒に前記軟磁 性金属粉末を懸濁させたインクをフィルムに塗布後、乾燥前に、直流磁場を印加して 、 自発磁化により前記軟磁性金属粉末が鎖状に繋がって形成された複数の集合体 の長手を略一定の方向に配向させるものである。
[0024] このように、本発明では、所定の粒径以下の軟磁性金属粉末とプラスチック又はゴ ムとを所定の比率で混合した複合材を用いて磁芯材を製作しているため、透磁率を 高くすることができると共に、寸法精度を向上させ、薄くしても破損しに《することが できる。また、軟磁性金属粉末が所定の方向に連なるように複合材を一方向に延ば すカ卩ェをしているため、透磁率に方向依存性を持たせることができ、また、プラスチッ クを溶解した溶媒に軟磁性金属粉末を懸濁させたインクをフィルムに塗布し、乾燥前 に直流磁場を印加すれば軟磁性金属粉末の集合体を磁束の方向に確実に整列さ せることができる。そして、このような磁芯材を RFIDのタグやリーダ Zライタのアンテ ナに用いることにより、磁束の漏れの少ない高性能のアンテナを製作することができ る。
発明の効果
[0025] 以上説明したように、本発明の磁芯材及びその製造方法並びに該磁芯材を備えた アンテナによれば下記記載の効果を奏する。
[0026] 本発明の第 1の効果は、磁芯材の透磁率を高くすることができると共に、寸法精度 を高め、かつ、薄くしても破損しに《することができるということである。
[0027] その理由は、所定の粒径以下の軟磁性金属粉末とプラスチック又はゴムとを所定の 比率で混合した複合材を用いて磁芯材を形成して ヽるからである。
[0028] また、本発明の第 2の効果は、磁芯材の透磁率に方向依存性を持たせることができ るということである。
[0029] その理由は、上記複合材を加工する際に、軟磁性金属粉末が所定の方向に連な るように複合材を一方向に延ばしたり、軟磁性金属粉末を懸濁させたインクをフィル ムに塗布後、乾燥前に直流磁場を印加しているからである。
[0030] また、本発明の第 3の効果は、 VHF帯一 UHF帯で作動する高性能の RFIDタグや リーダ Zライタのアンテナを製作することができるということである。
[0031] その理由は、上記複合材を RFIDシステムのタグやリーダ、リーダ Zライタ用アンテ ナの磁芯として用いることにより、磁束の漏れを抑制することができるからである。 図面の簡単な説明
[0032] [図 1]RFIDシステムの一般的な構成を模式的に示す図である。
[図 2]本発明の一実施例に係るアンテナの構成を模式的に示す上面図及び側面図 である。
[図 3]本発明の一実施例に係る磁芯材の製造方法及び断面構造を模式的に示す斜 視図である。
[図 4]磁芯材のない従来のアンテナの構成を示す図である。
[図 5]本発明の一実施例に係る磁芯材を備えたアンテナの構成を示す図である。
[図 6]本発明の一実施例に係る磁芯材の他の構成を示す図である。
[図 7]本発明の一実施例に係る磁芯材を備えたアンテナの他の構成を示す図である
[図 8]本発明の一実施例に係る磁芯材を備えたアンテナの他の構成を示す図である
[図 9]本発明の一実施例に係る磁芯材を備えたアンテナの他の構成を示す図である
[図 10]従来のアンテナの構成を模式的に示す上面図及び側面図である。
符号の説明
[0033] 1 RFIDシステム
2 タグ
3 アンテナ
4 コンデンサ
5 ICチップ
6 リーダ Zライタ 7 リーダ Zライタ用アンテナ
8 制御部
8a 通信回路
8b 演算処理回路
9 卷線
10 磁芯材
11 磁束
12 金属物品
12a アルミ板
13 回路
14 ベース
15 スぺーサ
発明を実施するための最良の形態
[0034] 従来技術で示したように、磁芯材料としてフェライトが一般的に用いられているが、 軟磁性フ ライトは等方性であるために磁芯材の側面力 磁束が漏れてしま 、、この 漏れ磁束によりアンテナの性能が低下し、また、高周波、特に UFH帯で使用可能な Ni— Cu— Znファライト等は透磁率が低いという問題がある。また、上記フェライトは焼 結法で製造されるが、焼結時に収縮 Z変形するため寸法精度が低ぐ更に、フェライ トは脆 、ため、アンテナの製造や取り扱!/、時に破損しやす!、と!、う問題もある。
[0035] このような問題に対して、本願発明者は特開 2002— 215321号公報において、軟 磁性合金の粉末またはフレークとプラスチックとの複合材を用いる技術を開示してお り、該公報記載の複合材を用いることにより、柔軟で割れ難ぐ寸法精度の良好な磁 芯材を形成することができる。し力しながら、この材料は 13. 56MHz用では特性が 良好であるが、 40MHzを超える周波数では損失が増加するために使用することが できない。また、上記磁芯材の製造に際し、アトライターで長時間粉砕してもフレーク が再結合してしまうため、粉末の微細化には限界があり、 40MHzより高周波で使用 できる複合材を製作することができな 、。
[0036] また、粉末を用いた複合材は等方性であるため、フ ライトと同様に磁ィ匕方向に直 交する方向で磁束の漏れが生じる。例えば、図 10に示すように、磁芯材 10の側面( 図 10 (a)の上下方向)や表裏面(図 10 (b)の上下方向)から磁束 11が漏れ出る。ま た、フレークを用いて圧延した複合材では、厚さ方向の透磁率を圧延方向に比べて 低くすることができるが、圧延に直交する側面の透磁率は圧延方向の透磁率とほぼ 等 、ため、やはり側面(図 10 (a)の上下方向)からの磁束 11の漏れを抑制すること ができない。そして、上下面や側面より磁束 11が漏れ出ると磁芯の有効な長さが減 少しアンテナとして使用したときの性能が低下する。
[0037] そこで本発明では、上記従来の磁芯材の欠点を解消すベぐ下記に示す極めて微 細な軟磁性金属の粉末を使用し、この軟磁性金属の粉末をプラスチックまたはゴムと 複合化し、押出し、圧延、押出し後圧延、押出し後引抜き、又は、射出後圧延等、材 料を一方向に延ばす加工を施して製作する。また、プラスチックを溶解した溶媒に軟 磁性金属粉末を懸濁させたインクをフィルムに塗布後、乾燥前に、直流磁場を印加 して製作する。
[0038] この極めて微細な軟磁性粉末は自発磁ィ匕のため鎖状に繋がって 、る。この軟磁性 粉末をプラスチックまたはゴムと複合ィ匕し一方向に延ばしたり、軟磁性金属粉末を懸 濁させたインクを塗布したフィルムに直流磁場を印加すると、図 3 (b)に示すように鎖 状の繋がった粉末の集合体は延ばした方向に揃う。そして、材料を延ばした方向に 磁場を印加すると、磁束が鎖状の粉末の集合体を通じることにより、延ばした方向の 透磁率を高くすることができる。一方、延ばした方向に直交する方向では、粉末は繋 力 Sつていないために透磁率は低ぐまた、粉末が微細であるため粉末の内部を流れ る渦電流の影響はない。従って、粉末が磁ィ匕方向に直交する方向で相互に繋がらな いよう粉末の含有量を調整すれば 40MHzを超える高周波でも使用することが可能と なる。このような粉末としては以下の粉末が適当である。
[0039] 1.金属の酸化物を還元した粉末
例えば、ニッケル、コバルト又は鉄などの金属の蓚酸等の有機酸塩を熱分解して得 た微細な酸化物等を水素で低温還元して得られたニッケル粉、コバルト粉又は鉄粉 や、硫酸第一鉄溶液を中和酸ィ匕して得た微細な鉄粉などがある。
[0040] 2.気相法で得た粉末 ニッケル、コバルト又は鉄などの金属を減圧化で加熱蒸発させ、気相で凝固させて 得られたニッケル粉、コバルト粉又は鉄粉などがある。
[0041] 3.溶液中で還元した粉末
ニッケル又はコバルトのアンモニア錯イオンを含む溶液を高温、高圧で水素還元し て得られたニッケル粉、コノ レト粉などがある。
[0042] 4.カーボ-ルニッケル粉、カーボ-ル鉄粉
ニッケルカーボ-ル(Ni(CO) )、鉄カーボ-ル(Fe(CO) )を熱分解して得られた力
4 5
一ボニルニッケル粉、カーボニル鉄粉などがある。
[0043] これらの粉末は極めて微細であるため、表面に酸ィ匕層、有機化合物等の保護層を 設け、大気中で発火することを防止している。しかしながら、これらの保護層は、粉末 が相互に接し粉末間に渦電流が流れることを防止できない。そのため、粉末が相互 に直接接触することを防止するため、粉末の含有量は体積比率で 40% (以下、 40v %と記す。)以下にすることが望ましい。なお、これらの材料の固有抵抗は小さいが粉 末の粒径も小さいため、粉末相互の接触がなければ渦電流は流れない。また、粉末 の含有量が少ないほうが圧延等の加工が容易であり得られた複合材も柔軟であるこ とから、アンテナを曲面に取付けたり、アンテナを巻いて搬送する等のためにアンテ ナを曲げる必要がある場合は適宜含有量を減じればよい。一方、粉末の含有量が少 なくなると透磁率が低下するため、粉末の含有量が 10v%以下は適当ではない。
[0044] また、上記保護層を持つ粉末は大気中で取扱っても発火しないが長期の酸ィ匕を防 止できない。し力しながら、粉末をプラスチックとの複合材とすることにより、プラスチッ クが粉末と大気の接触を絶っため、本発明の複合材では酸ィ匕による劣化を防止する ことができるという効果もある。
[0045] そして、上記含有量の粉末をポリエチレン、ポリプロピレン、ナイロン、塩化ビニール 、弗素榭脂等に加熱混練した後、押出し、圧延、押出材を圧延する等、一方向に延 ばす加工をして形成する。また、プラスチックを溶解した溶媒に上記粉末を懸濁させ たインクをフィルムに塗布後、乾燥前に、直流磁場を印加して製作する。上記微細な 粉末は球状であるが粉末の自発磁ィヒで相互に吸引し鎖状に繋がっている力 これを 含むプラスチックを一方向に延ばしたり、直流磁場を印加することにより粉末の集合 体を延ばした方向に整列させることができる。
[0046] このようにして製造された磁芯材は、延ばした方向の透磁率は高くそれに直交する 方向の透磁率は低 、。このため透磁率の高 、方法が磁気成分の方向になるように卷 線をすれば磁束は上下面や側面力 漏れ出ることはなく全て端面より出るため、この 磁芯材を用いれば、 VHF帯一 UHF帯で作動し、かつ、金属製の物品に密着して使 用可能な薄い RFIDタグ又はリーダ Zライタ用のアンテナを製作することができる。
[0047] なお、上記した材料、製造方法は例示であり、透磁率が高ぐ寸法精度が良好で、 破損しにく ヽ磁芯材を製造できる限りにお ヽて、他の材料や製造方法を用いることも できる。
実施例
[0048] 上記した本発明の実施の形態についてさらに詳細に説明すベぐ本発明の磁芯材 を RFIDタグ又はリーダ Zライタ用アンテナに適用した例について、図 1乃至図 9を参 照して説明する。図 1は、 RFIDシステムの一般的な構成を模式的に示す図であり、 図 2は本実施例のアンテナの構成を模式的に示す図である。又、図 3は、本実施例 の磁芯材の製造方法及び断面構造を模式的に示す図であり、図 4は、従来のアンテ ナの構成を示す図である。また、図 5乃至図 9は、本実施例のアンテナの構成のバリ エーシヨンを示す図である。なお、以下では、本発明の磁芯材をタグ用アンテナに適 用する場合について示す力 本発明は以下の実施例に限定されるものではなぐ本 発明の磁芯材をリーダ Zライタ用アンテナに適用してもよい。
[0049] 図 1に示すように、本実施例の RFIDシステム 1は、 UHF帯又は SHF帯等の周波 数帯を用いてデータの交信を行うタグ 2とリーダ Zライタ (又はリーダ) 6とからなり、タ グ 2は、共振回路を構成するアンテナ 3及びコンデンサ 4 (ICチップ 5に容量が内蔵 されている場合は必ずしも必要ではない。)と情報を記憶する ICチップ 5とを備え、リ ーダ Zライタ (又はリーダ) 6は、タグ 2のアンテナ 3と交信するリーダ Zライタ用アンテ ナ 7と、送受信信号を変換するための通信回路 8aや送受信信号をデコードするため の演算処理回路 8b等の制御部 8とを備え、タグ 2は内蔵する電源又はリーダ Zライタ 6から供給される電源を用いて駆動される。そして、タグ 2及びリーダ Zライタ用アンテ ナ 7の共振周波数をキャリア周波数に合わせることにより、データの交信が行われる。 [0050] この RFIDシステム 1のアンテナ(ここではタグ 2用のアンテナ 3)は、図 2に示すよう に、本発明の特徴である複合材カもなる磁芯材 10の周囲に卷線 9が卷回されて構成 され、このアンテナが物品や筐体の表面、特に、金属材料を含む物品や筐体 (金属 物品 12)上に設置される。
[0051] 上記磁芯材 10は、上述したように、極めて微細な軟磁性金属の粉末をプラスチック またはゴムと複合ィ匕し、押出し、圧延等の材料を一方向に延ばす加工を施して製作 するため、自発磁ィヒで鎖状に繋がった粉末の集合体は延ばした方向に揃い、延ばし た方向の透磁率を高ぐ延ばした方向に直交する方向の透磁率を低くすることができ る(図 3 (b)参照)。従って、複合材を延ばした方向とコイルの磁気的軸の方向とがー 致するように磁芯材 10を配置することにより、図 2に示すように、磁束 11は磁芯材 10 の側面(図 2 (a)の上下方向)や表裏面(図 2 (b)の上下方向)力 漏れ出ることなく端 面(図 2の左右方向)のみから出るようにすることができる。これにより磁芯の有効長の 減少を抑え、アンテナとして使用したときの性能を向上させることができると共に、表 裏面(図 2 (b)の上下方向)から漏れ出る磁束 11を抑えることにより、金属物品 12上 に直接載置しても動作させることができる。
[0052] 上述した透磁率の方向依存性は、押出し、圧延でも見られるが、押出し材を圧延し たり、押出し材を引抜き加工すれば透磁率の差はより顕著になる。また、上記方向依 存性を得る方法として極微細な粉末を一定の方向に鎖状に延ばす方法の他、微細 な針状の磁性体を形成し、この針状の磁性体が一定の方向に配列するように押出し 、圧延等の加工を施す方法を用いることもできる(図 3 (c)参照)。また、プラスチックを 溶解した溶媒に上記粉末を懸濁させたインクをフィルムに塗布後、乾燥前に、直流 磁場を印加する方法を用いることもできる。なお、極微細な粉末を均等に分散させた だけでは透磁率の方向依存性を得ることはできな ヽが、少なくとも VHF帯一 UHF帯 等の高周波で動作するアンテナを形成することは可能である。
[0053] また、金属物品 12がアルミニウム、マグネシウム、銅合金等の非磁性材料からなる 場合は金属物品 12上に直接アンテナを配置することができるが、金属物品 12が鉄 板の場合は損失が大きくなる。その場合は、アンテナと金属物品 12との間にアルミ、 純銅、黄銅等の導電材を介在させることもできる。このような構成にすることにより、金 属物品 12を構成する金属材料の種類にかかわらず、アンテナを安定して作動させる ことができる。この導電材の厚さは略 1 μ m— lmm、好ましくは略 10 μ m力 20 μ m とすることができる力 構造材としての機能も持たせる場合は略 0. 05mm— 0. 5mm としてちよい。
[0054] また、この材料をスリットしテープ状とし、コイル状に卷 、たものはインダクターの磁 芯としても使用できるが、この場合、長手方向(圧延方向)の透磁率が高くそれに直 交する方向(テープの側面及び厚さ方向)の透磁率が低ければコイルの濡れ磁束が 少なくなる。
[0055] 次に、軟磁性金属粉末の好ま ヽ径、含有量、複合材の加工方法を特定するため に、下記に示す粉末 A— Eを用いて磁芯材 10を製作して、実施例 1一 25、比較例 1 一 12に
示す実験を行った。その実験方法及び結果につ!ヽて説明する。
[0056] 粉末 A:平均径 0. 8— 1 mの酸ィ匕物を還元して得られたコノ レト粉末、
粉末 B:平均径 0. 2—0. 5 mのカーボニルニッケル粉末、
粉末 C :平均径 0. 8-1 ^ mのカーボニル鉄粉、
粉末 D:シリコン 10%を含む水アトマイズ合金鉄粉、重量の 90%以上が 20 μ m以 下、
粉末 E:粉末 Dをアトライターで扁平ィ匕した重量の 90%以上が厚さ 10 m以下であ るフレーク。
[0057] 1.圧延材の粉末の種類を変えた時の 15MHzにおける方向依存性
粉末 A, B, C, D, Eを約 38v% (85. 5重量%、以下 w%と記す。)の含有量でナイ ロンと混練、圧延して、厚さ 0. 5mmの板とし、図 3 (a)に示す圧延方向、圧延方向に 直交する方向、面方向の 3つの方向に関して 15MHzにおける透磁率 )と Q値とを 測定した(実施例 1一 3、比較例 1一 2)。その結果を表 1に示す。
[0058] [表 1] 実施例 1 実施例 2 実施例 3 比較例 1 比較例 2
粉末 A B C D E
% S 5. 5 8 5. 5 84 SO 80
( V % ) 38 38 38. 3 38. 1 38 . 1
圧延方向 25 20 30 20 43
β 直交方向 13 10 15 20 42
面方向 3 4 5 20 1 . 9
圧延方向 50 65 45 60 2 1
Q 直交方向 55 65 56 60 2 8
面方向 53 62 5S 60 3 0
[0059] 表 1より、実施例 1一 3では圧延方向のみ透磁率は高ぐ直角方向と面方向の透磁 率は低い。一方、比較例 1では圧延方向、直角方向、面方向で透磁率の差はなぐ また、比較例 2では圧延方向及び直角方向の透磁率は高いが、その差はない。従つ て、粒径が 20 μ mの粉末 Dやフレークの厚さが 10 μ mの粉末 Εで形成した磁芯材で は透磁率の方向依存性が得られないが、粒径が 0. 2 μ χη—1 μ mの粉末 Α— Cでは 十分な方向依存性が得られることから、透磁率の方向依存性を得るためには、粉末 の粒径を 1 m以下にすればよいことが分かる。なお、実施例 1一 3、比較例 1一 2とも に圧延方向の Q値は使用可能な範囲にある。
[0060] 2.圧延材の粉末の種類を変えた時の周波数特性
実施例 1一 3、比較例 1一 2の磁芯材を、周波数を 10MHz— 1000MHzの範囲で 変えて圧延方向の と Q値とを測定した(実施例 4一 6、比較例 3— 4)。その結果を 表 2に示す。なお、 V%は同じで W%が変わるのは、粉末は組成により密度が異な ることによる。
[0061] [表 2]
実施例 4 実施例 5 実施例 6 比較例 3 比較例 4 粉末 A B C D E w% 85.5 85.5 84 80 80
( v % ) 38 38 38. 3 38. 1 38.1
MHz Q Q a Q Q li Q
10 25 50 20 65 35 70 20 65 43 35
15 25 50 20 65 35 70 20 60 43 27
20 25 50 20 65 35 70 20 48 43 22
40 25 50 20 65 35 69 20 35 42 8
60 25 50 20 60 35 50 20 15 40 5
80 25 48 20 55 30 35 19 8 35 2
100 25 45 22 40 25 30 19 3 20 1
200 24 40 20 35 12 10 15 1
400 23 35 18 30 7 2
600 19 22 15 15 5 1
1000 15 15 10 10
[0062] 表 2より、実施例 4では周波数が 100MHzを超えると透磁率が低下し始め、 1000 MHzでは 15まで低下する力 それでもこの周波数で使用可能な Ni— Cu— Znフェラ イトの透磁率(7)と比較すると約 2倍以上の値を維持している。また、実施例 5も実施 例 4とほぼ同様であり、実施例 4、 5ともに Q値は試験した範囲で使用可能な範囲(10 以上)に留まっている。また、実施例 6では 100MHz以下では実施例 4、 5より透磁率 が高く Q値も使用可能な範囲にある。一方、比較例 3では周波数が 60MHzを超える と Q値は 10以下、比較例 4では 20MHzを超えると Q値は 10以下になり使用できなく なる。以上の結果から、 1 m以下の粒径の粉末を用いれば、高周波帯においても 十分な透磁率及び Q値を有する磁芯材を製作することができる。
[0063] 3.磁性粉末の含有量を変えた試験
粉末 Aの含有量を変えてナイロンと混連、圧延した磁芯材の 15MHzにおける と Q値とを測定した (実施例 7— 16、比較例 5— 10)。その結果を表 3に示す。
[0064] [表 3] 粉末含有量 磁性
W% V % Q
比較例 5 30 4. 3 1. 8 45
比較例 6 40 6. 5 2. 7 50
比較例 7 50 9. 4 4. 1 55
実施例 7 60 13. 5 6. 2 58
実施例 8 70 19. 5 9. 5 60
実施例 9 75 23. 7 12. 2 60
実施例 1 0 80 29. 3 16. 3 61
実施例 1 1 85 37 23. 1 63
実施例 1 2 86 38. 9 25 65
実施例 1 3 87 4L 27. 3 15
実施例 1 4 88 43. 2 29. 8 12
実施例 1 5 89 45. 7 36. 7 11
実施例 1 6 90 47. 8 40. 2 10
比較例 9 91 50. 1 47 5
比較例 1 0 92 52. 7 32 1
測定周波数 15M H z
[0065] 表 3より、比較例 5、 6、 7は透磁率が低いのに対して、実施例 7— 16は粉末の含有 量が増すほど透磁率は増している。また、 Q値は粉末の含有量力 OV%までは増し 、それを超えると急激に減少する力 50V%までは使用可能な範囲である 10以上に 留まっている。一方、比較例 9、 10では、粉末の含有量が 50V%を超えると Q値は更 に下がり使用出来なくなる。このことから、粉末の含有量は 50%以下が適当であり、 更に、上述した粉末の相互接触による問題を抑制するためには 40%以下が適当で あると言;^る。
[0066] 4.加工法を変えた試験
押出し、圧延、引抜き、射出などの方法を用いて磁芯材を作成し、 15MHzにおけ る μ、 Q値を測定した (実施例 17— 21、比較例 11)。その結果を表 4に示す。
[0067] [表 4] 実施例 17 実施例 1 8 実施例 19 実施例 2 0 実施例 2 1 比較例 1 1 工程 押出し 圧延 押出 し 押出 し 射出 射出
圧延 引抜き 圧延
圧延方向 2 3 25 2 6 2 S 2 5 2 0
β 直交方向 1 0 L 3 1 0 8 1 3 1 9 面方向 1 0 3 3 8 3 1 9 圧延方向 60 65 65 62 5 5 5 5
Q 直交方向 60 65 65 62 5 5 5 5 面方向 60 62 60 60 5 5 5 5
[0068] 表 4より、比較例 11の射出では方向による透磁率の差は少ない。一方、実施例 17 では透磁率は押出し方向(圧延方向)は高ぐ押出し方向に直交する方向(直交方向 又は面方向)は低ぐ実施例 18では透磁率は圧延方向に高ぐそれに直交する面方 向はやや高く面方向は極めて低い。また、実施例 19では押出し後、圧延すると圧延 のみの場合より
も圧延方向の透磁率はやや増し、直交方向の透磁率はやや下がる。また、実施例 2 0では押出し後、引抜くと引抜く方向の透磁率は上がりそれに直交する方向の透磁 率は低下する。また、実施例 21では射出後、圧延した材料の特性は圧延のみの場 合とほぼ同等であった。以上の結果から、透磁率の方向依存性を持たせるための加 ェ方法として、押出し、圧延、押出し後圧延、押出し後引抜き加工、又は、射出後圧 延が使用でき、特に押出し後圧延、押出し後引抜きが好ましい。なお、実施例 19一 2 1は特性向上以外に製造が容易になることも期待できる。
[0069] 5.アンテナ試作例
比較例 12として、図 4に示すようなベース 14に回路 13が形成されただけの磁芯の ないアンテナを作成した。一方、実施例 22として、図 5に示すように回路の下に磁芯 材 10、アルミ板 12aを配置したアンテナを作成した。また、実施例 23として、図 7に示 すように一枚の磁芯材で特性の良い方向のみを使用するため、角形の回路の一辺 のみを跨ぐように磁芯材 10を配置した。また、実施例 24として、図 8に示すように磁 芯材 10を対向する一対の辺のみを跨ぐように磁芯材 10を配置した。また、実施例 25 として、図 9に示すように磁芯材 10に磁ィ匕軸が金属の面に平行になるように被覆銅 線を巻いた。
[0070] その結果、比較例 12では単体では正常に作動したが金属上では作動しないのに 対して、実施例 22乃至 25では単体でも金属上でも作動した。従って、磁芯材 10を 用いな 、アンテナでは金属上で作動しな 、が、本実施例の磁芯材 10を用いれば金 属物品(アルミ板 12a)上でも作動させることができ、更に磁芯材 10の物品貼付面に 導電材 (アルミ板 12a)を配置すれば金属物品の種類によらず作動させることができ ることが確認できた。ただし、実施例 22、 23は対向するアンテナが図の上面にある場 合に感度が良ぐ実施例 24、 25ではアンテナが図の側面にある場合に感度が良い。
[0071] また、図 5の構成では、所定の方向のみアンテナの感度が高いが、図 6に示すよう に磁芯材 10を分割して、各々の部分を垂直方向(図の上下方向)に特性のよい磁芯 材 10と水平方向(図の左右方向)に特性のよい磁芯材 10とで構成することにより、回 路のどの部分でも特性の良いアンテナを形成することができる。
[0072] このように、所定の粒径 (略 1 μ m)以下の軟磁性金属粉末を、体積比率が略 10% 一 50%、好ましくは略 10%— 40%の含有量でプラスチック又はゴムと混練し、押出 し、圧延、押出し後圧延、押出し後引抜き加工、又は、射出後圧延などの複合材をー 方向に延ばす加工を施したり、プラスチックを溶解した溶媒に上記粉末を懸濁させた インクをフィルムに塗布後、乾燥前に、直流磁場を印加することにより、透磁率を高く 、かつ方向依存性を持たせることができると共に、寸法精度を向上させ、薄くしても破 損しに《することができる。また、この磁芯材の一方の面にアンテナパターンを形成 し、更に他方の面に導電材を配置して RFIDのタグやリーダ Zライタのアンテナを形 成することにより、磁束の漏れの少ない高性能のアンテナを製作することができる。 産業上の利用可能性
[0073] 本発明の誘電体は RFIDシステムのアンテナ用途のみならず、高周波用アンテナ 等、誘電率の高い誘電体を利用可能な任意の用途に用いることができる。

Claims

請求の範囲
[1] 軟磁性金属粉末とプラスチック又はゴムとの複合材料力 なる磁芯材であって、 自発磁化により前記軟磁性金属粉末が鎖状に繋がって複数の集合体が形成され、 各々の前記集合体は、その長手が略一定の方向を向いていることを特徴とする磁 芯材。
[2] 直径が略 1 μ m以下の軟磁性金属粉末とプラスチック又はゴムとの複合材料力もな る磁芯材であって、
自発磁化により前記軟磁性金属粉末が鎖状に繋がって複数の集合体が形成され、 各々の前記集合体は、その長手が略一定の方向を向いていることを特徴とする磁 芯材。
[3] 前記軟磁性金属粉末の含有量の体積比率が略 10%乃至 50%の範囲であることを 特徴とする請求項 1又は 2に記載の磁芯材。
[4] 前記軟磁性金属粉末の含有量の体積比率が略 10%乃至 40%の範囲であることを 特徴とする請求項 1又は 2に記載の磁芯材。
[5] 前記軟磁性金属粉末が、酸化物を還元して得られたニッケル粉、コバルト粉又は鉄 粉のいずれかを含むことを特徴とする請求項 1乃至 4のいずれか一に記載の磁芯材
[6] 前記軟磁性金属粉末が、気相法で得られたニッケル粉、コバルト粉又は鉄粉の 、 ずれかを含むことを特徴とする請求項 1乃至 4のいずれか一に記載の磁芯材。
[7] 前記軟磁性金属粉末が、金属イオンを含む溶液を還元して得られたニッケル粉又 はコノ レト粉を含むことを特徴とする請求項 1乃至 4のいずれか一に記載の磁芯材。
[8] 前記軟磁性金属粉末が、カーボ-ルニッケル粉又はカーボニル鉄粉を含むことを 特徴とする請求項 1乃至 4のいずれか一に記載の磁芯材。
[9] 板状にカ卩ェされた請求項 1乃至 8のいずれか一に記載の前記磁芯材の一方の面 に渦巻き状の導体パターンが形成されていることを特徴とするアンテナ。
[10] 板状にカ卩ェされた請求項 1乃至 8のいずれか一に記載の前記磁芯材の一方の面 に渦巻き状の導体パターンが形成され、他方の面に導電材が配置されていることを 特徴とするアンテナ。
[11] 前記板状の磁芯材は、前記軟磁性金属粉末の集合体の長手の方向が相異なる複 数の磁芯材片カも構成されていることを特徴とする請求項 9又は 10に記載のアンテ ナ。
[12] 前記導体パターンが矩形状に形成され、
前記板状の磁芯材が、該板状の磁芯材の面に直交する方向から見て、前記矩形 状の導体パターンの 1辺又は対向する 2辺のみと重なるように配置されていることを特 徴とする請求項 9乃至 11の 、ずれか一に記載のアンテナ。
[13] 板状に加工された請求項 1乃至 8のいずれか一に記載の前記磁芯材の周囲に、そ の磁気的軸が前記軟磁性金属粉末の集合体の長手と略一致するように導線が卷回 されて 、ることを特徴とするアンテナ。
[14] 前記アンテナは、少なくとも VHF帯乃至 UHF帯を通信周波数とする RFIDタグ又 は RFIDリーダ/ライタに用いられるものであることを特徴とする請求項 9乃至 13の
V、ずれか一に記載のアンテナ。
[15] 軟磁性金属粉末とプラスチックとの複合材料を用いた磁芯材の製造方法であって、 前記軟磁性金属粉末と前記プラスチックとを加熱混練した後、押出し、圧延、押出 し後圧延、押出し後引抜き加工、又は、射出後圧延のいずれか一の方法により、自 発磁化により前記軟磁性金属粉末が鎖状に繋がって形成された複数の集合体の長 手が略一定の方向を向くように加工することを特徴とする磁芯材の製造方法。
[16] 軟磁性金属粉末とプラスチックとの複合材料を用いた磁芯材の製造方法であって、 前記プラスチックを溶解した溶媒に前記軟磁性金属粉末を懸濁させたインクをフィ ルムに塗布後、乾燥前に、直流磁場を印加して、自発磁化により前記軟磁性金属粉 末が鎖状に繋がって形成された複数の集合体の長手を略一定の方向に配向させる ことを特徴とする磁芯材の製造方法。
PCT/JP2005/001997 2004-02-13 2005-02-10 高周波磁芯材及びその製造方法並びに該磁芯材を備えたアンテナ WO2005078746A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/597,887 US20080003457A1 (en) 2004-02-13 2005-02-10 High-frequency magnetic core material, its manufacturing method, and antenna including the magnetic core material
EP05710049A EP1720178A1 (en) 2004-02-13 2005-02-10 High-frequency magnetic core material, its manufacturing method, and antenna with the magnetic core material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004036065A JP2005228908A (ja) 2004-02-13 2004-02-13 高周波磁芯材及びその製造方法並びに該磁芯材を備えたアンテナ
JP2004-036065 2004-02-13

Publications (1)

Publication Number Publication Date
WO2005078746A1 true WO2005078746A1 (ja) 2005-08-25

Family

ID=34857710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001997 WO2005078746A1 (ja) 2004-02-13 2005-02-10 高周波磁芯材及びその製造方法並びに該磁芯材を備えたアンテナ

Country Status (4)

Country Link
US (1) US20080003457A1 (ja)
EP (1) EP1720178A1 (ja)
JP (1) JP2005228908A (ja)
WO (1) WO2005078746A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070113A (ja) * 2013-09-30 2015-04-13 京セラ株式会社 磁性シートおよびこれを用いた電子機器
WO2016157773A1 (ja) * 2015-03-27 2016-10-06 株式会社デンソー コイルユニット

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2891091B1 (fr) 2005-09-22 2008-01-11 Commissariat Energie Atomique Antenne plane omnidirectionnelle et procede de fabrication
JP2007214754A (ja) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd アンテナ装置
JP2007324865A (ja) * 2006-05-31 2007-12-13 Sony Chemical & Information Device Corp アンテナ回路及びトランスポンダ
US7981528B2 (en) 2006-09-05 2011-07-19 Panasonic Corporation Magnetic sheet with stripe-arranged magnetic grains, RFID magnetic sheet, magnetic shielding sheet and method of manufacturing the same
EP2243190A1 (en) 2008-01-11 2010-10-27 Mu-Gahat Holdings INC. Enhancing the efficiency of energy transfer to/from passive id circuits using ferrite cores
WO2009108702A1 (en) * 2008-02-25 2009-09-03 Mu-Gahat Holdings, Inc Extending the read range of passive rfid tags
JP5499443B2 (ja) * 2008-04-16 2014-05-21 パナソニック株式会社 複合磁性物およびそれを備えた無線通信装置
US8395507B2 (en) * 2008-04-21 2013-03-12 Magnet Consulting, Inc. H-field shaping using a shorting loop
JP4566255B2 (ja) * 2008-08-21 2010-10-20 アルプス電気株式会社 磁性シートの製造方法、磁性シートおよび磁性シートの製造装置
JP4980322B2 (ja) * 2008-09-17 2012-07-18 アルプス電気株式会社 多層配線板およびその製造方法
JP4831183B2 (ja) * 2009-02-26 2011-12-07 パナソニック株式会社 アンテナ装置
US20100176924A1 (en) * 2009-01-09 2010-07-15 Mu-Gahat Holdings Inc. RFID System with Improved Tracking Position Accuracy
JP5271132B2 (ja) * 2009-03-25 2013-08-21 日立マクセル株式会社 方向判別機能を備えているワーク
JP5299223B2 (ja) * 2009-10-30 2013-09-25 Tdk株式会社 複合磁性材料、並びに、これを用いたアンテナ及び無線通信機器
JP5472153B2 (ja) * 2010-12-24 2014-04-16 株式会社村田製作所 アンテナ装置、アンテナ付きバッテリーパックおよび通信端末装置
JP2014183428A (ja) * 2013-03-19 2014-09-29 Dexerials Corp コイルモジュール、アンテナ装置及び電子機器
JP6323616B2 (ja) * 2015-09-17 2018-05-16 株式会社村田製作所 アンテナ装置および電子機器
EP3166181A1 (fr) * 2015-11-05 2017-05-10 Gemalto Sa Procede de fabrication d'antenne radiofrequence sur un support et antenne ainsi obtenue
US11158450B2 (en) 2019-06-17 2021-10-26 International Business Machines Corporation Particle-based, anisotropic composite materials for magnetic cores

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244682A (ja) * 1986-04-17 1987-10-26 Seiko Epson Corp インク媒体
JPH04188703A (ja) * 1990-11-22 1992-07-07 Natl Res Inst For Metals 複合磁性材料
JP2001274029A (ja) * 2000-03-28 2001-10-05 Tokin Corp チョークコイル用コアおよびその製造方法およびチョークコイル
JP2002325013A (ja) * 2001-04-26 2002-11-08 Mitsubishi Materials Corp アンテナコイル
JP2003318633A (ja) * 2002-04-25 2003-11-07 Mitsubishi Materials Corp リーダライタ装置、リーダ装置又はライタ装置用アンテナコイル及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244682A (ja) * 1986-04-17 1987-10-26 Seiko Epson Corp インク媒体
JPH04188703A (ja) * 1990-11-22 1992-07-07 Natl Res Inst For Metals 複合磁性材料
JP2001274029A (ja) * 2000-03-28 2001-10-05 Tokin Corp チョークコイル用コアおよびその製造方法およびチョークコイル
JP2002325013A (ja) * 2001-04-26 2002-11-08 Mitsubishi Materials Corp アンテナコイル
JP2003318633A (ja) * 2002-04-25 2003-11-07 Mitsubishi Materials Corp リーダライタ装置、リーダ装置又はライタ装置用アンテナコイル及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070113A (ja) * 2013-09-30 2015-04-13 京セラ株式会社 磁性シートおよびこれを用いた電子機器
WO2016157773A1 (ja) * 2015-03-27 2016-10-06 株式会社デンソー コイルユニット

Also Published As

Publication number Publication date
EP1720178A1 (en) 2006-11-08
US20080003457A1 (en) 2008-01-03
JP2005228908A (ja) 2005-08-25

Similar Documents

Publication Publication Date Title
WO2005078746A1 (ja) 高周波磁芯材及びその製造方法並びに該磁芯材を備えたアンテナ
JP3896965B2 (ja) リーダ/ライタ用アンテナ及び該アンテナを備えたリーダ/ライタ
JP2005309811A (ja) Rfidタグ及びrfidシステム
JP2002325013A (ja) アンテナコイル
CN102474011B (zh) 线圈天线及使用该线圈天线的电子设备
EP2146357A1 (en) Magnetic material for high frequency wave, and method for production thereof
KR101923570B1 (ko) 가요성 연성 자기 코어, 가요성 연성 자기 코어를 갖는 안테나, 및 가요성 연성 자기 코어를 생성하는 방법
JP2006295981A (ja) リーダ/ライタ用アンテナ及び該アンテナを備えたリーダ/ライタ
CN102190332B (zh) 单分散纳米四氧化三铁空心球电磁波吸收材料及其制备方法与应用
CN109215922B (zh) 复合磁性材料及磁芯
Li et al. Synthesis and enhancement of microwave absorption property by coating silicon dioxide and polyaniline for Fe-Co alloy
JP2019504482A (ja) 磁気遮断材、その製造方法及びそれを含むデバイス
Alcalá et al. Toroidal cores of MnxCo1− xFe2O4/PAA nanocomposites with potential applications in antennas
JP2009054709A (ja) 圧粉磁心及びその製造方法
JP2005006263A (ja) 磁芯部材及びそれを用いたrfid用アンテナ
JP2010135567A (ja) 電波吸収材料
Raj et al. Cobalt–polymer nanocomposite dielectrics for miniaturized antennas
JP6242568B2 (ja) 高周波用圧粉体、及びそれを用いた電子部品
JP2005184424A (ja) アンテナ用磁芯及び該磁芯を備えるアンテナ
CN113165068A (zh) 磁性构件用的合金粉末
US20160086705A1 (en) Magnetic material and device
JP6167560B2 (ja) 絶縁性の平板状磁性粉体とそれを含む複合磁性体及びそれを備えたアンテナ及び通信装置並びに複合磁性体の製造方法
JP3979210B2 (ja) Rfidのアンテナ用磁芯部材
CN109722005B (zh) 具有高工作频段的二维磁矩软磁复合材料及其制备方法
Shirakata et al. Low-loss composite material containing fine Zn–Ni–Fe flakes for high-frequency applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005710049

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005710049

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10597887

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10597887

Country of ref document: US