CN109722005B - 具有高工作频段的二维磁矩软磁复合材料及其制备方法 - Google Patents

具有高工作频段的二维磁矩软磁复合材料及其制备方法 Download PDF

Info

Publication number
CN109722005B
CN109722005B CN201910000894.7A CN201910000894A CN109722005B CN 109722005 B CN109722005 B CN 109722005B CN 201910000894 A CN201910000894 A CN 201910000894A CN 109722005 B CN109722005 B CN 109722005B
Authority
CN
China
Prior art keywords
magnetic moment
dimensional
dimensional magnetic
composite material
micro powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910000894.7A
Other languages
English (en)
Other versions
CN109722005A (zh
Inventor
汪小明
杨正
李发伸
郭春生
乔亮
王涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou xinlaifu New Material Co.,Ltd.
Lanzhou University
Original Assignee
Lanzhou University
Guangzhou Newlife Magnet Electricity Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University, Guangzhou Newlife Magnet Electricity Co Ltd filed Critical Lanzhou University
Priority to CN201910000894.7A priority Critical patent/CN109722005B/zh
Publication of CN109722005A publication Critical patent/CN109722005A/zh
Priority to JP2020571819A priority patent/JP2022516212A/ja
Priority to US17/055,630 priority patent/US20210225568A1/en
Priority to PCT/CN2019/108896 priority patent/WO2020140506A1/zh
Application granted granted Critical
Publication of CN109722005B publication Critical patent/CN109722005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明涉及具有高工作频段的二维磁矩软磁复合材料及其制备方法。根据一实施例,一种二维磁矩软磁复合材料可包括:绝缘基质;以及分散在所述绝缘基质中的二维磁矩微粉,其中,在所述二维磁矩微粉内部,磁矩分布在特定的二维平面中。本发明的二维磁矩软磁复合材料由于具有较现有材料更高的截止频率,因此能广泛应用于高频微波应用领域。

Description

具有高工作频段的二维磁矩软磁复合材料及其制备方法
技术领域
本发明总体上涉及磁性材料领域,更特别地,涉及一种二维磁矩软磁复合材料,其具有更高的工作频率,从而获得优异的高频及微波频段磁性。
背景技术
工作在不同频率下的软磁材料的基本功能是进行电磁能量或电磁信号的转换,其转换效率与该材料的磁感应强度和工作频率的乘积成正比。叠层硅钢片和软磁铁氧体是两类传统的软磁铁芯材料,其中硅钢片具有高的饱和磁感应强度,但是随着频率增加,涡流损耗急剧增大,因此只能工作在较低频率,一般在1KHz以下。铁氧体铁芯具有较好的高频磁性能,工作频率可达到约10MHz,并且电阻率大,涡流损耗低,但是存在磁通密度低的缺点,因而转换效率不高。这两种传统软磁材料在交流设备小型化的过程中均遇到了困难。
提高软磁材料的磁感应强度和工作频率是优化软磁器件工作效率,进一步实现磁性器件的小型化、轻量化、节能的重要途径。针对传统叠层硅钢片和软磁铁氧体中存在的问题,已经提出了软磁复合材料(SMC),其包括分散于有机或无机绝缘材料基质中的软磁材料微粉(一般为Fe、FeSiAl、FeNi等)。软磁复合材料具有比叠层硅钢片更高的工作频率,例如可达到100KHz左右,同时具有比软磁铁氧体更高的饱和磁感应强度,因而在一些领域中得到了广泛的应用。
理论研究表明,目前大量生产和广泛使用的软磁复合材料所用的软磁微粉的高频磁性均遵从Snoek极限,其由下面的公式1表示:
Figure BDA0001933526590000011
其中μi为起始磁导率,fr为自然共振频率(或称截止频率),γ'为旋磁比,Ms为饱和磁感应强度。由于Snoek极限的限制,目前的软磁复合材料的工作频率最高只能在100KHz-200KHz以下,阻碍了软磁复合材料在高频微波领域的应用。
发明内容
本发明的一个方面在于提供一种二维磁矩软磁复合材料及其制备方法,该二维磁矩软磁复合材料能够突破Snoek极限,从而能够应用于更高频带,并且有助于实现器件的小型化、轻量化和节能等。
根据一实施例,提供一种二维磁矩软磁复合材料,包括:绝缘基质;以及分散在所述绝缘基质中的二维磁矩微粉,其中,在所述二维磁矩微粉内部,磁矩分布在特定的二维平面中。
在一些示例中,所述二维磁矩微粉包括人工二维磁矩微粉和本征二维磁矩微粉中的至少一种。
在一些示例中,所述人工二维磁矩微粉具有立方晶体结构;所述本征二维磁矩微粉具有非立方晶体结构,并且易磁化轴垂直于C轴。
在一些示例中,所述人工二维磁矩微粉的尺寸在20μm以下,优选地在15μm以下,厚度在500nm以下,优选地在100nm以下,径厚比在40至200的范围,优选地在50至150的范围。
在一些示例中,所述本征二维磁矩微粉的尺寸在10μm以下,优选地在5μm以下。
在一些示例中,所述人工二维磁矩微粉包括下列材料中的一种或多种:Fe、羰基铁、Fe与Co和Ni中的至少一种形成的合金、FeSiAl、以及FeNiMo。
在一些示例中,所述本征二维磁矩微粉包括下列材料中的一种或多种:R2(Fe,Ni,Si,Al)17N3,其中R为Y、Ce、Nd或Pr;Sm2(Fe,Ni,Co)14B;R2(Co,Fe,Ni)17,其中R为Y或Nd。
在一些示例中,所述绝缘基质包括热塑性树脂、热固树脂、以及合成橡胶中的至少一种。
在一些示例中,所述二维磁矩微粉在所述绝缘基质中被取向为使得所述二维磁矩微粉的磁矩分布在二维平面中。
根据一实施例,提供一种电子器件,包括:电路;以及紧邻所述电路内设置的绝缘磁性部件,所述绝缘磁性部件由上述二维磁矩软磁复合材料制成。
在一些示例中,所述电子器件是电感器、天线、微波隔离器、微波环行器、相移器、滤波器、变压器中的一种。
根据一实施例,提供一种制备二维磁矩软磁复合材料的方法,包括:制备二维磁矩微粉,在所述二维磁矩微粉内部,磁矩分布在特定的二维平面中;使所述二维磁矩微粉均匀分散在绝缘基质中;以及固化所述绝缘基质。
在一些示例中,所述方法还包括:在固化所述绝缘基质之前,利用外磁场使得所述绝缘基质中的二维磁矩微粉的磁矩取向在外磁场产生的二维平面中。
本发明的二维磁矩软磁复合材料能够突破传统软磁复合材料的Snoek极限,在高频及微波频段仍具有良好的磁特性,而且适于批量生产,因而具有广泛的应用前景。
附图说明
图1示出根据本发明一实施例的本征二维磁矩微粉晶胞内磁矩分布(左)及人工二维磁矩微粉内的磁矩分布(右)。
图2示出根据本发明一实施例的二维磁矩复合材料内磁矩在外磁场取向前(左)和外磁场取向后(右)的空间取向示意图。
图3示出退磁因子与径厚比之间的关系曲线。
图4示出根据本发明一实施例的制备二维磁矩软磁复合材料的方法的流程图。
图5示出根据本发明一实施例制备的二维磁矩软磁复合材料的Fe57穆斯堡尔谱图。
图6为图5的二维磁矩软磁复合材料的磁滞回线测量结果。
图7A和图7B为图5的二维磁矩软磁复合材料在不同频带的磁谱。
图8示出根据本发明一实施例的二维磁矩软磁复合材料在外磁场取向前和取向后的XRD谱图。
具体实施方式
下面将参照附图描述本发明的示例性实施例。
图1示出根据本发明一实施例的本征二维磁矩微粉晶胞内磁矩分布(左)及人工二维磁矩微粉内的磁矩分布(右),图2示出根据本发明一实施例的二维磁矩复合材料内磁炬在外磁场取向前(左)和外磁场取向后(右)的空间取向示意图。如图1和2所示,二维磁矩软磁复合材料100可包括绝缘基质110和分散在绝缘基质110中的二维磁矩微粉120。
绝缘基质110可以是常规软磁复合材料中使用的那些绝缘基质,一般为有机绝缘材料,例如,诸如热塑性树脂、热固树脂、合成橡胶之类的有机高分子粘接剂,其示例可包括但不限于聚氨酯、聚酰亚胺等。
二维磁矩微粉120分散并且固定在绝缘基质110中,从而二维磁矩软磁复合材料100是电绝缘磁性材料。在本发明的二维磁矩软磁复合材料100中,二维磁矩微粉120的磁矩被其内部存在某种作用约束在磁粉内特定的二维平面中,因此称为二维磁矩软磁复合材料。应理解,二维磁矩软磁复合材料本身可以具有各种物理形状,例如薄膜状、诸如立方体和矩形块体之类的三维块体形状等。对于任意形状的二维磁矩软磁复合材料,其中的二维磁矩微粉120的磁矩处于磁粉内特定的二维平面内。
在本发明的一些实施例中,二维磁矩微粉120可包括两类微粉中的至少一种,即人工二维磁矩微粉和本征二维磁矩微粉,分别如图1中的右图和左图所示。顾名思义,本征二维磁矩微粉是本征具有二维磁矩分布的材料,而人工二维磁矩微粉是通过人工加工处理而具有二维磁矩分布的材料,下面将分别详细描述。
本征二维磁矩微粉可包括具有非立方晶体结构的软磁材料的微粉,并且该软磁材料的所有易磁化轴(简称“易轴”)垂直于晶体结构的C轴。对于非立方晶体结构的磁性材料,例如某些非立方晶体结构稀土-3d过渡金属间化合物和某些非立方晶体结构铁磁合金,具有很强的磁晶各向异性,其磁晶各向异性常数K1绝对值很大但为负值。对于这类K1<0的材料,其易轴都垂直于C轴,磁矩沿特定的晶体平面例如六角平面、C平面取向,因而形成二维磁矩分布。这种材料的径向(或面内)各向异性场Hxy和法向(或面外)各向异性场Hz均源自于材料自身的磁晶各向异性,因此称为本征二维磁矩微粉。
本征二维磁矩微粉的一些非限制性示例包括:R2(Fe,Ni,Si,Al)17N3,其中R为Y、Ce、Nd或Pr;Sm2(Fe,Ni,Co)14B;R2(Co,Ni,Fe)17,其中R为Y或Nd,等等。本征二维磁矩微粉的形状并无特殊限制,可以为例如大致球形的颗粒,也可以为片状等,无论什么形状,其磁矩沿特定的晶体平面例如六角平面、C平面等分布,形成二维磁矩结构。一般而言,本征二维磁矩微粉的尺寸可以在10μm以下,优选地在5μm以下。应理解,在本文中提及微粉的尺寸时,除非上下文另外说明,否则一般是指微粉的最大长度方向上的尺寸。
人工二维磁矩微粉可包括具有立方晶体结构的金属和合金软磁材料。对于立方晶体结构的软磁材料而言,其磁晶各向异性场很小。在本发明的实施例中,通过将这类材料加工成高径厚比的磁粉,可以获得二维磁矩结构。图3示出了退磁因子与径厚比之间的关系曲线。如图3所示,随着径厚比增大,法向(面外)退磁因子Nout持续增大,最后趋近于1,而面内退磁因子Nin持续减小,最后趋近于0。当法向退磁因子Nout接近于1,而面内退磁因子Nin(例如,X方向退磁因子Nx和Y方向退磁因子Ny)接近于零时,微粉内的磁矩分布在其XY平面内,形成二维磁矩结构。其面外(或法向)各向异性场Hz来自于退磁场,面内(或径向)各向异性场Hxy来自于材料自身的磁晶各向异性场。由于通过人工加工成特定形状而具有二维磁矩结构,因此这类材料也称为人工二维磁矩微粉。
人工二维磁矩微粉的一些非限制性示例包括:Fe、羰基铁、Fe与Co和Ni中的至少一种形成的合金、FeSiAl、以及FeNiMo等。人工二维磁矩微粉的径厚比的范围可以在40至200的范围,优选地在50至150的范围。如前所述,径厚比越大,越有利于形成二维磁矩结构,因此优选地当径厚比大于50时,能实现基本上良好的二维磁矩结构。但是,当追求过大的径厚比时,可能会导致复杂的制备工艺,从而大幅度增加工业生产的成本,因此径厚比可以在200以下,优选地在150以下,更优选地在100以下。此外,人工二维磁矩微粉的尺寸可以在20μm以下,优选地在15μm以下,厚度可以在500nm以下,优选地在300nm以下。
对于上述二维磁矩软磁微粉,理论分析可以得到下面的公式2:
Figure BDA0001933526590000051
其中,μi为起始磁导率,fr为自然共振频率,γ'为旋磁比,Ms为饱和磁感应强度,Hz为面外各向异性场,Hxy为面内各向异性场。如前所述,面外各向异性场Hz远大于面内各向异性场Hxy,一般要大三个量级,所以当外磁场为零时,二维磁矩微粉的磁矩分布在特定的平面内;当外磁场不为零时,磁矩在外磁场的作用下,沿该平面转动或进动。正是这种沿二维磁矩平面的进动方式,大幅度提升了微粉的截止频率(或称自然共振频率),从而能够应用于高频和微波频段。在一些实施例中,为进一步提高磁导率,如图2所示,可以通过外加旋转磁场或多极磁场将所有磁粉取向,使得所有磁粉的二维磁矩被取向在二维平面中,从而二维磁矩软磁复合材料在外场取向平面内的磁导率较未取向材料大幅度提高,理论上可提高1.5倍,且在取向平面内表现为各向同性。
下面参照图4描述根据本发明一实施例的制备二维磁矩软磁复合材料100的方法。如图4所示,方法200可始于步骤S210,制备二维磁矩微粉120。
对于本征二维磁矩微粉,因为对其微粉没有形状例如径厚比要求,其微粉的制备步骤比较简单。例如,可以采用常规方法诸如速凝法、熔炼铸锭粉碎法、还原扩散法等制备初始粉料,或者可以直接购买初始粉料,然后用高能球磨机或砂磨机加工,使磁粉精细化到10μm以下,优选5μm以下。
对于人工二维磁矩微粉,可以采用例如气雾法、水雾法等制备例如铁粉、羰基铁粉、FeSiAl粉、FeNi粉等,尺寸小于5-20μm,或者可直接购买该磁粉。然后,用高能球磨机或砂磨机对磁粉进行处理,通过优化研磨工艺,使得得到的大部分微粉的径厚比在40以上,优选地在50以上,厚度小于500nm,优选地小于300nm。应理解,通过优化球磨工艺来调整径厚比是相关领域的技术人员已知的,这里不再赘述。
然后在步骤S220中,可以将所制备的二维磁矩微粉120均匀分散在绝缘基质110例如高分子粘结剂中,这可以通过例如混合和搅拌步骤来实现。
接下来在步骤S230中,可以利用外加的取向磁场使绝缘基质110中的所有二维磁矩微粉120取向。例如,可以通过旋转磁场、多极磁场等,将二维磁矩微粉120取向在外场产生的平面内。应理解,在步骤S230中,由于二维磁矩微粉120在粘稠度适当的有机绝缘基质110中可以缓慢转动,通过取向步骤S230,可以使所有微粉120的易磁化平面取向在外场产生的二维平面中。
最后,在步骤S240中,可以使绝缘基质固化,从而获得确定的形状,并且使二维磁矩软磁微粉120固定在绝缘基质110中。根据绝缘基质110的材料,可以采用相应的固化手段,例如加热、紫外线照射、加压、自然固化等。
在一些实施例中,根据实际需要,可不经过取向步骤S230,而直接进行步骤S240,通过压延、模压、挤出、注射或流延等工艺,制备具有期望形状例如块体、柱状、薄膜状等的二维磁矩软磁复合材料。当然可以理解,进行步骤S230是优选的,因为可以提高二维磁矩软磁复合材料的磁导率。
通过上面的描述可以理解,本发明的“二维磁矩”可以在两个层面上理解。第一,在微粉内部,磁矩是分布在二维平面中的,这可以提高材料的自然共振频率,从而使得材料可用于高频和微波等更高频段。第二,在软磁复合材料内,所有微粉的磁矩可取向在多个彼此平行的二维平面内,从而提高磁导率。但是应理解,第二点仅是优选的,而不是必需的。
下面描述本发明的二维磁矩软磁复合材料的一些实例。
实例1
球磨加工前的原粉为市售羰基铁粉,型号为MCIP-4,尺寸为4到5微米。用高能球磨或砂磨机,对羰基铁粉进行研磨,得到高径厚比的二维磁矩微粉。将微粉与聚氨酯均匀混合,磁粉体积浓度为65%,在旋转磁场(2T)中取向,压结,单向压强为3MPa,得到样品。
图5为试样的Fe57穆斯堡尔谱图,此数据表明,用本发明得到的复合材料样品磁矩的平面取向度优于95%。图6为用振动样品磁强计(VSM)对该样品进行的X、Y、Z三个方向的磁滞回线测量结果,表明样品在XY平面内更容易磁化且各向同性,其磁矩的平面取向度优于95%。图7A和图7B为图5的二维磁矩软磁复合材料在不同频带的磁谱,其中图7A对应的频带为1-110MHz,图7B对应的频带为0.1-18GHz。下面的表1给出了10-110MHz频段内的几个特征点的磁导率实部μ’和虚部μ”及Q值。可以看出,实例1的二维磁矩软磁复合材料能够良好地工作于1-100MHz的高频范围内,对应的磁导率实部约为25-27,Q值为181-9。
表1
频率 10MHz 20MHz 30MHz 40MHz 50MHz 60MHz 80MHz 100MHz
μ 25.46-0.14i 25.55-0.15i 25.73-0.23i 25.92-0.27i 26.21-0.44i 26.57-0.78i 27.15-1.74i 27.36-3.06i
Q 181 167 112 95 59 34 16 9
实例2
FeNi二维磁矩软磁复合材料,球磨加工前的原粉为市售铁镍粉,尺寸为15-20微米。用高能球磨或砂磨机,采用优化的球磨条件,得到径厚比30-50的二维磁矩微粉。将FeNi二维磁矩微粉与聚氨酯均匀混合,磁粉体积浓度为30%,在旋转磁场(2T)中压结,单向压强3MPa,得到样品。
对该样品同样进行了Fe57穆斯堡尔谱测量和振动样品磁强计测量,测量结果(未示出)表明样品在XY平面内更容易磁化且具有各向同性,其磁矩的平面取向度优于95%。还对该样品进行了1-110MHz和0.1-18GHz频段的磁谱测量,下面的表2给出了1-110MHz频段内的几个特征点的磁导率实部μ’和虚部μ”及Q值。可以看出,实例2的二维磁矩软磁复合材料也能够良好地工作于1-100MHz的高频范围内,对应的磁导率实部约为25左右,Q值为283-4。
表2
频率 1MHz 20MHz 40MHz 80MHz 100MHz 110MHz
μ 25.5-0.09i 24.6-0.37i 25.2-0.98i 25.77-3.86i 25.15-5.57i 24.61-6.29i
Q 283 66 26 7 5 4
实例3
NdFeN二维磁矩软磁复合材料,用还原扩散法制备Nd2Fe17球形微粉,氮化后获得Nd2Fe17N3-δ二维磁矩微粉。优化球磨工艺,获得粒度合适的二维磁矩微粉。将微粉与聚胺脂均匀混合,磁粉体积浓度为65%,在旋转磁场或多极磁场(2T)中取向,压结(单向压强3MPa)得到复合材料样品。
对实例3的NdFeN二维磁矩软磁复合材料在外磁场取向前和取向后进行了XRD测量,图8示出其测量结果。由图8可以看出,在取向后(006)峰明显增强,计算表明Nd2Fe17N3-δ二维磁矩软磁复合材料的磁矩平面取向度优于95%,该结果也与穆斯堡尔谱测量和振动样品磁强计的测量结果一致。此外,还对该样品进行了1-110MHz和0.1-18GHz频段的磁谱测量,下面的表3给出了1MHz至10GHz频段内的几个特征点的磁导率及Q值。可以看出,实例3的二维磁矩软磁复合材料的工作频率可以高达10GHz左右,对应的磁导率约为7.5-2。通过优化制备工艺,其高频磁导率还有很大的提升空间。
表3
Figure BDA0001933526590000091
上面描述了根据本发明一些实施例的二维磁矩软磁复合材料及其制备方法。应理解,本发明的二维磁矩软磁复合材料可以应用于各种器件,尤其是具有高频和微波段工作频率的器件。因此,本发明的一些实施例还提供一种电子器件,其包括电路和紧邻电路设置的绝缘磁性部件。例如,取决于不同的电子器件,所述电路可以是线圈、谐振电路等,紧邻电路设置的绝缘磁性部件可以是芯体等,其可以由根据本发明上述实施例的二维磁矩软磁复合材料制成。这样的电子器件的示例包括但不限于电感器、天线、微波隔离器、微波环行器、相移器、滤波器、以及变压器等。由于这些器件的结构是已知的,此处不再重复描述。在本发明的另一些实施例中,还提供包括这些电子器件的电子设备。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。

Claims (10)

1.一种二维磁矩软磁复合材料,包括:
绝缘基质;以及
分散在所述绝缘基质中的二维磁矩微粉,
其中,在所述二维磁矩微粉内部,磁矩分布在特定的二维平面中,且
其中,分散在所述绝缘基质中的所述二维磁矩微粉被取向为使得所述二维磁矩微粉的磁矩分布在二维平面中。
2.如权利要求1所述的二维磁矩软磁复合材料,其中,所述二维磁矩微粉包括人工二维磁矩微粉和本征二维磁矩微粉中的至少一种。
3.如权利要求2所述的二维磁矩软磁复合材料,其中,所述人工二维磁矩微粉具有立方晶体结构,且
其中,所述本征二维磁矩微粉具有非立方晶体结构,并且易磁化轴垂直于C轴。
4.如权利要求3所述的二维磁矩软磁复合材料,其中,所述人工二维磁矩微粉的尺寸在20μm以下,厚度在500nm以下,径厚比在40至200的范围,且
其中,所述本征二维磁矩微粉的尺寸在10μm以下。
5.如权利要求3所述的二维磁矩软磁复合材料,其中,所述人工二维磁矩微粉的尺寸在15μm以下,厚度在100nm以下,径厚比在50至150的范围,且
其中,所述本征二维磁矩微粉的尺寸在5μm以下。
6.如权利要求2所述的二维磁矩软磁复合材料,其中,所述人工二维磁矩微粉包括下列材料中的一种或多种:Fe、羰基铁、Fe与Co和Ni中的至少一种形成的合金、FeSiAl、以及FeNiMo,且
其中,所述本征二维磁矩微粉包括下列材料中的一种或多种:R2(Fe,Ni,Si,Al)17N3,其中R为Y、Ce、Nd或Pr;Sm2(Fe,Ni,Co)14B;R2(Co,Fe,Ni)17,其中R为Y或Nd。
7.如权利要求1所述的二维磁矩软磁复合材料,其中,所述绝缘基质包括热塑性树脂、热固树脂、以及合成橡胶中的至少一种。
8.一种电子器件,包括:
电路;以及
紧邻所述电路内设置的绝缘磁性部件,所述绝缘磁性部件由权利要求1至7中的任一项所述的二维磁矩软磁复合材料制成。
9.如权利要求8所述的电子器件,其中,所述电子器件是电感器、天线、微波隔离器、微波环行器、相移器、滤波器、变压器中的一种。
10.一种制备二维磁矩软磁复合材料的方法,包括:
制备二维磁矩微粉,在所述二维磁矩微粉内部,磁矩分布在特定的二维平面中;
使所述二维磁矩微粉均匀分散在绝缘基质中;
利用外磁场使得所述绝缘基质中的二维磁矩微粉的磁矩取向在外磁场决定的二维平面中;以及
固化所述绝缘基质。
CN201910000894.7A 2019-01-02 2019-01-02 具有高工作频段的二维磁矩软磁复合材料及其制备方法 Active CN109722005B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910000894.7A CN109722005B (zh) 2019-01-02 2019-01-02 具有高工作频段的二维磁矩软磁复合材料及其制备方法
JP2020571819A JP2022516212A (ja) 2019-01-02 2019-09-29 二次元磁気モーメントと高動作周波数帯を有する軟磁性複合材とその調製方法
US17/055,630 US20210225568A1 (en) 2019-01-02 2019-09-29 Soft magnetic composite with two-dimensional magnetic moment and high working frequency band, and preparation method therefor
PCT/CN2019/108896 WO2020140506A1 (zh) 2019-01-02 2019-09-29 具有高工作频段的二维磁矩软磁复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910000894.7A CN109722005B (zh) 2019-01-02 2019-01-02 具有高工作频段的二维磁矩软磁复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109722005A CN109722005A (zh) 2019-05-07
CN109722005B true CN109722005B (zh) 2020-06-30

Family

ID=66298735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910000894.7A Active CN109722005B (zh) 2019-01-02 2019-01-02 具有高工作频段的二维磁矩软磁复合材料及其制备方法

Country Status (4)

Country Link
US (1) US20210225568A1 (zh)
JP (1) JP2022516212A (zh)
CN (1) CN109722005B (zh)
WO (1) WO2020140506A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643893A (zh) * 2021-08-25 2021-11-12 兰州大学 软磁复合材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561114B2 (en) * 2004-12-03 2009-07-14 Nitta Corporation Electromagnetic interference suppressor, antenna device and electronic information transmitting apparatus
KR101250673B1 (ko) * 2007-04-27 2013-04-03 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 고주파용 자성 재료와 그 제조 방법
GB0716442D0 (en) * 2007-08-23 2007-10-03 Qinetiq Ltd Composite material
CN101699577B (zh) * 2009-10-25 2012-02-15 兰州大学 高频软磁材料及复合材料和制备方法
WO2016084683A1 (ja) * 2014-11-27 2016-06-02 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置及び通信装置
JP6585011B2 (ja) * 2015-09-14 2019-10-02 株式会社東芝 軟磁性材料、回転電機、モータ及び発電機

Also Published As

Publication number Publication date
US20210225568A1 (en) 2021-07-22
CN109722005A (zh) 2019-05-07
WO2020140506A1 (zh) 2020-07-09
JP2022516212A (ja) 2022-02-25

Similar Documents

Publication Publication Date Title
Yang et al. Research and development of high-performance new microwave absorbers based on rare earth transition metal compounds: a review
Maeda et al. Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds
Lu et al. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles
Yan et al. Synthesis, characterization and electromagnetic properties of Fe1− xCox alloy flower-like microparticles
Liu et al. Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites
Yang et al. Microwave absorption studies of W-hexaferrite prepared by co-precipitation/mechanical milling
Yang et al. Size-dependent microwave absorption properties of Fe 3 O 4 nanodiscs
Pratap et al. Electromagnetic and absorption properties of U-type barium hexaferrite-epoxy composites
Hapishah et al. Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co 0.5 Zn 0.5 Fe 2 O 4) composite
Leger et al. Composite magnetic materials based on nanocrystalline powders for middle-and high-frequency applications up to 1 MHz
Poorbafrani et al. Structural, magnetic and electromagnetic wave absorption properties of SrFe 12 O 19/ZnO nanocomposites
Yeo et al. Improving power-inductor performance by mixing sub-micro Fe powder with amorphous soft magnetic composites
Lin et al. In situ preparation of PANI/ZnO/CoFe 2 O 4 composite with enhanced microwave absorption performance
Han et al. Electromagnetic performance and microwave absorbing property of nanocrystalline Sm 2 Fe 14 B compound
CN109722005B (zh) 具有高工作频段的二维磁矩软磁复合材料及其制备方法
Dobák et al. On the ferrite-controlled iron coupling for enhanced soft magnetic hybrid composites via first-order reversal curves
Rusly et al. Effects of crystalline phase formation of multiferroic BiFeO 3 on microwave absorption characteristics
Raj et al. Cobalt–polymer nanocomposite dielectrics for miniaturized antennas
Yang et al. Research and development of interstitial compounds
Idris et al. Electromagnetic wave reduction of multiwalled carbon nanotubes (MWCNT) mixed nanometer CoFe2O4 at higher frequency range
Woo et al. Formation of Mixed-Powder composites with improved magnetic properties by adding carbonyl iron powders to FeSiCrB amorphous powder
Idris et al. Broadening of EM energy-absorption frequency band by micrometer-to-nanometer grain size reduction in NiZn ferrite
CN113223845B (zh) 一种软磁合金粉末的绝缘包覆方法
WO2011046125A1 (ja) 高周波用磁性材料及び高周波デバイス
Zeng et al. Improving high-frequency properties via selectable diameter of amorphous-ferroalloy particle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: No.4 Canghai 4th Road, Yonghe Economic Zone, Guangzhou Economic and Technological Development Zone, Guangdong Province

Patentee after: Guangzhou xinlaifu New Material Co.,Ltd.

Patentee after: LANZHOU University

Address before: No.4 Canghai 4th Road, Yonghe Economic Zone, Guangzhou Economic and Technological Development Zone, Guangdong Province

Patentee before: Guangzhou Newlife Magnet Electricity Co.,Ltd.

Patentee before: LANZHOU University