WO2005075365A1 - 気液溶解装置 - Google Patents

気液溶解装置 Download PDF

Info

Publication number
WO2005075365A1
WO2005075365A1 PCT/JP2005/001268 JP2005001268W WO2005075365A1 WO 2005075365 A1 WO2005075365 A1 WO 2005075365A1 JP 2005001268 W JP2005001268 W JP 2005001268W WO 2005075365 A1 WO2005075365 A1 WO 2005075365A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
water
chamber
liquid dissolving
Prior art date
Application number
PCT/JP2005/001268
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kitasako
Masao Katsube
Katsuhiro Sakamoto
Junzo Sago
Hiroaki Tanaka
Jun Tsumori
Original Assignee
Matsuedoken Co., Ltd.
Incorporated Administrative Agency Public Works Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuedoken Co., Ltd., Incorporated Administrative Agency Public Works Research Institute filed Critical Matsuedoken Co., Ltd.
Priority to EP05704266.5A priority Critical patent/EP1734012B1/en
Priority to JP2005517662A priority patent/JP3849986B2/ja
Priority to US10/597,627 priority patent/US7571899B2/en
Publication of WO2005075365A1 publication Critical patent/WO2005075365A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/20Dissolving using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen

Definitions

  • the present invention relates to a gas-liquid dissolving apparatus that continuously generates a liquid in which a gas component is dissolved at a high concentration, and in particular, dissolves a gas containing oxygen in water taken from a poorly oxygenated water area.
  • the present invention relates to a gas-liquid dissolving apparatus that raises the concentration of dissolved oxygen and sends it back to the water area.
  • a hypoxic water area is a region where the dissolved concentration of oxygen is at most 12 mg / liter, which is much lower than 10 mg / liter near the water surface.
  • a poorly oxygenated water area enters a vicious cycle in which water is often contaminated and photosynthesis cannot be performed, so that algae cannot grow, and since no algae can grow, oxygen is not generated and hypoxia progresses.
  • the bottom layer is in an oxygen-deficient state, benthic organisms may die.
  • the bottom layer becomes hypoxic, the atmosphere becomes a reducing atmosphere, and metals may be eluted from surrounding rocks and sludge, resulting in deterioration of water quality.
  • Japanese Patent Application Laid-Open No. 11-207162 “Pressurized oxygen dissolving method”, similarly, high-concentration oxygen-dissolved water is generated in a sealed tank, and once released into the atmosphere in a tank, poor oxygen is dissolved. A method for supplying oxygenated water bodies is disclosed. Further, Japanese Patent Application Laid-Open No. 2002-346351 discloses a method of dissolving a gas by filling a gas to be dissolved in a closed tank and jetting water into the tank. Let's do it.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-168981
  • Patent Document 2 JP-A-7-185281
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-200415
  • Patent Document 4 JP 2002-177953 A
  • Patent Document 5 JP-A-2000-245295
  • Patent Document 6 JP-A-11-207162
  • Patent Document 7 JP-A-2002-346351
  • the present invention has been made in view of the above, and it is possible to efficiently increase the oxygen concentration in an oxygen-deficient water area while preventing the sediment from being rolled up by air bubbles, and furthermore, it is possible to construct an inexpensive construction. It is an object to provide a liquid dissolution apparatus.
  • Another object of the present invention is to provide a gas-liquid dissolving apparatus capable of stably and continuously supplying a liquid in which a gas component is dissolved at a high concentration and contains no bubbles.
  • the gas-liquid dissolving apparatus dissolves a gas containing oxygen in water taken from a poor oxygen water area to increase the concentration of dissolved oxygen, A gas-liquid dissolving device that sends back water with an increased dissolved oxygen concentration to an oxygen water area, wherein the oxygen-deficient water area power intake section for taking in water to be treated, a supply section for supplying the oxygen-containing gas, A bottomed gas-liquid dissolving chamber having at least one hole and a top plate at the top, and a gas supplied by the supply unit and water supplied by the water intake unit facing upward so as to collide with the inner wall of the top plate.
  • the gas-liquid chamber is filled with gas bubbles and water, A nozzle that vigorously agitates the bubbles and water by the force of the discharged gas and water, and a nozzle that is disposed outside the gas-liquid dissolving chamber and communicates with the gas-liquid dissolving chamber through the hole; Liquid Separates and stores bubbles and water flowing out from the dissolution chamber through the holes, has a gas vent hole at the top to allow the separated bubbles to escape to the outside, and an outlet at the bottom to take out water separated from the bubbles.
  • a gas-liquid separation chamber having a water supply section for returning water taken out from the outlet to the oxygen-deficient water area.
  • the invention according to claim 1 generates high-concentration oxygen-dissolved water as described below.
  • the gas containing oxygen supplied from the supply unit and the oxygen-deficient water supplied from the water intake unit form a gas-liquid multiphase fluid in the nozzle.
  • the gas-liquid multiphase fluid is ejected from the nozzle into the gas-liquid dissolving chamber, collides with the top plate, scatters and reverses, and descends in the gas-liquid dissolving chamber.
  • the gas-liquid multiphase fluid forms a vortex-like flow or turbulent flow with its own jetting force, and the bubbles are fragmented. Due to this vortex or turbulent flow, the gas in the gas-liquid multiphase fluid and the water come into intense contact and are stirred, and the gas (oxygen) dissolves in the water.
  • the gas-liquid mixed-phase fluid ejected from the nozzle continuously collides with the gas-liquid mixed-phase fluid descending in the gas-liquid dissolving chamber, causing further contact and agitation of gas and water, and the gas (oxygen) dissolves in water. I do.
  • the gas-liquid dissolving apparatus of the present invention differs from the apparatus for forcibly dissolving the gas, in that the contact area and the contact opportunity between the gas and water are superimposed by the force of the gas-liquid multiphase fluid ejected from the nozzle. And promote the dissolution of gas.
  • the gas-liquid dissolving apparatus of the present invention locks the water flow by the wall in the gas-liquid dissolving chamber, and prevents large bubbles from excessively flowing out to the gas-liquid separating chamber due to the force of the water. As a result, fine bubbles are naturally separated in the gas-liquid separation chamber, and continuous removal of only high-concentration oxygen-dissolved water becomes possible.
  • the high-concentration oxygen-dissolved water produced by the gas-liquid dissolution apparatus according to the present invention is not generated by setting the internal pressure at which the gas is forcibly dissolved to be excessively higher than the atmospheric pressure as in the related art. Even when the water is returned to the oxygen-deficient water area, no bubbles are generated due to the release of pressure.
  • a closed reaction vessel such as a high-pressure tank and equipment for controlling the internal pressure and water level of the reaction vessel are not required, and the apparatus itself can be simplified.
  • the atmospheric pressure is the pressure around the place where the main parts of the gas-liquid dissolving apparatus (gas-liquid dissolving chamber, gas-liquid separating chamber, nozzle) are located. Means the atmospheric pressure if the installation location is on land, and the water pressure if it is underwater.
  • the pressurization for jetting water and gas from the nozzle (for example, pressurization of about 1 atm) is necessary to create a water flow, and does not correspond to the above-mentioned pressurization mechanism for setting an excessively high pressure. .
  • water includes water and water from rivers, lakes and marshes and dams, water without salt, water including salt, such as seawater and brackish water.
  • bottomed means that the gas-liquid dissolving chamber is substantially sealed, and “a bottomed gas-liquid dissolving chamber having at least one hole at the bottom and a top plate at the top” In other words, it means that the gas-liquid dissolving chamber is in a closed state except for the hole and the penetrating portion of the nozzle.
  • the top plate may be an upper surface (a surface forming a ceiling) of the gas-liquid dissolving chamber, which is not necessarily provided separately in the gas-liquid dissolving chamber.
  • the inner wall of the top plate means the inner surface at the top of the gas-liquid dissolving chamber.
  • the outlet can be regarded as an outlet for sending a liquid having a high dissolved concentration of a gas component out of the apparatus.
  • the gas-liquid dissolving apparatus according to claim 2 is characterized in that the top plate has a dome shape in comparison with the gas-liquid dissolving apparatus according to claim 1. That is, in the invention according to claim 2, the gas-liquid multiphase fluid ejected from the nozzle flows without stagnating along the dome, and the contact area between the gas and the water can be efficiently increased, and the contact area can be increased. Promotes dissolution more. In addition, by making the shape of the top plate into a dome shape, it becomes possible to improve the durability of the gas-liquid dissolving chamber.
  • the tip of the nozzle is tapered toward a jet port.
  • the feature is. That is, the invention according to claim 3 can urge the gas-liquid multiphase fluid to flow into the gas-liquid melting chamber.
  • a gas-liquid dissolving apparatus is the gas-liquid dissolving apparatus according to claim 1, 2 or 3, wherein the gas-liquid dissolving chamber is accommodated in the gas-liquid separating chamber.
  • a pipe or the like for feeding the high-concentration oxygen-dissolved water into the gas-liquid separation chamber is provided. No equipment required.
  • the device since the device is integrally configured, Pulling up can be performed easily.
  • the gas-liquid dissolving apparatus according to claim 5 is the gas-liquid dissolving apparatus according to any one of claims 14 to 14, wherein a total cross-sectional area of the hole is determined by an area of an ejection port of the nozzle.
  • the feature is that it is wider. That is, the invention according to claim 5 prevents an excessive increase in the internal pressure of the gas-liquid dissolving chamber due to the gas-liquid mixed phase fluid ejected from the nozzle.
  • the gas-liquid dissolving apparatus is the gas-liquid dissolving apparatus according to any one of claims 115, wherein at least the water intake section, the gas-liquid dissolving chamber, the nozzle, and And a gas-liquid separation chamber is provided in the oxygen-deficient water area. That is, in the invention according to claim 6, since the water pressure is increased, many gases can be dissolved in water. Further, according to such an installation method, it is possible to save energy required for water intake and discharge as compared with the case where the apparatus is installed on land.
  • the side surface of the gas-liquid dissolving chamber has a cylindrical shape or an axially symmetric shape.
  • the gas-liquid dissolving chamber is formed in the gas-liquid separation chamber, and a partition wall having an open top and having a cylindrical or axially symmetrical side surface and tapered toward the top is formed.
  • the gas flows out at an angle between the gas-liquid dissolution chamber and the inside of the partition, and generates a swirling flow.
  • the invention according to claim 7 collects bubbles having a small specific gravity at the center by the swirling flow whose flow velocity increases toward the upper portion, and efficiently and effectively separates the bubbles from the water.
  • the device since the device is integrally configured, the device can be easily set up and pulled up.
  • the side surface of the gas-liquid dissolving chamber is cylindrical or axisymmetrical shape, for example, when the upper part is hemispherical and the side surface is cylindrical, and is perpendicular to the axis of the gas-liquid dissolving chamber. This includes the case where the cross-sectional shape is circular and the diameter varies along the axis.
  • the phrase that the partition wall has a cylindrical or axially symmetrical side surface and is tapered toward the top, preferably a tapered hollow conical shape, includes a truncated hollow conical shape, and a diameter having a common axis.
  • hollow cylinders with different diameters or hollow cylinders with a common axis and different diameters Includes items that have been lost.
  • the gas-liquid dissolving apparatus according to claim 8 is different from the gas-liquid dissolving apparatus according to claim 7 in that the hole-punching direction of the hole is determined by utilizing the thickness of the gas-liquid dissolving chamber. In the direction of the predetermined angle. That is, the invention according to claim 7 can contribute to long-term continuous use by simplifying the device configuration to reduce the cause of a failure.
  • the gas-liquid dissolving apparatus has a supply part for supplying a gas-liquid multiphase fluid of liquid and gas, and a fluid release hole in a lower part while receiving a flow of the gas-liquid multiphase fluid in an upper part.
  • the gas-liquid dissolving chamber provided, a nozzle that penetrates the gas-liquid dissolving chamber, and ejects the gas-liquid multiphase fluid supplied by the supply unit upward toward the upper part of the gas-liquid dissolving chamber, and the gas-liquid dissolving through the escape hole
  • a gas-liquid separation chamber is provided outside the gas-liquid dissolution chamber and communicates with the chamber to store the gas-liquid multiphase fluid from the escape hole and separates the liquid from the gas.
  • the outlet has an outlet, and the dissolved concentration of the gas component in the liquid is increased by stirring by the force of the jet from the nozzle and the reflux from the upper part of the gas-liquid dissolving chamber.
  • the invention according to claim 9 promotes dissolution of the gas by superimposingly increasing the contact area and the chance of contact between the liquid and the gas by the force of the gas-liquid multiphase fluid ejected from the nozzle, and The gas is separated stepwise in the gas-liquid dissolution chamber and the gas-liquid separation chamber, and only the liquid portion is stably and continuously taken out.
  • the upper and lower parts respectively mean the vertically upper side and the vertically lower side of the gas-liquid dissolving chamber when the apparatus is installed.
  • the escape hole is a hole through which the gas-liquid multiphase fluid flows out of the gas-liquid dissolution chamber.
  • the configuration of the supply unit is not particularly limited as long as it can supply the gas-liquid multiphase fluid to the nozzle functionally.
  • the supply unit includes a case where the liquid supply unit and the gas supply unit are directly connected to the nozzle.
  • the present invention does not describe the gas vent hole and the gas recovery part. This does not exclude the existence of such components, but merely specifies them, and does not prevent them from being provided as necessary.
  • the invention according to claim 9 may employ the configuration of each unit described in claims 1 to 8. That is, the upper part may have a dome shape, May be tapered. Further, the gas-liquid dissolving chamber may be disposed outside the gas-liquid dissolving chamber, and the gas-liquid dissolving chamber may be separated from the gas-liquid dissolving chamber. .
  • the gas-liquid dissolving apparatus is characterized in that, in the gas-liquid dissolving apparatus according to claim 9, the upper part of the gas-liquid dissolving chamber is formed in a dome shape.
  • the invention according to claim 10 allows the gas-liquid multiphase fluid ejected from the nozzle to flow without stagnating along the dome, effectively increasing the chance of contact between the gas and the liquid, increasing the contact area thereof, Promotes dissolution more.
  • the durability of the gas-liquid dissolving chamber can be improved.
  • the gas-liquid dissolving apparatus according to claim 11 is the gas-liquid dissolving apparatus according to claim 9 or 10, wherein the tip portion of the nozzle is formed so as to be tapered toward the ejection port. It is characterized by. That is, the invention according to claim 11 can urge the gas-liquid multiphase fluid to flow into the gas-liquid dissolving chamber.
  • the gas-liquid dissolving apparatus according to claim 12 is the gas-liquid dissolving apparatus according to claim 9, 10, or 11, wherein the gas-liquid dissolving chamber is accommodated in the gas-liquid separating chamber.
  • the gas-liquid multiphase fluid having a high dissolved concentration of the gas component is directly discharged from the escape hole of the gas-liquid dissolving chamber to the gas-liquid separating chamber. No equipment such as pipes for feeding liquid multiphase fluid is required. Further, since the apparatus is integrally configured, installation and operation of the apparatus can be easily performed.
  • the gas-liquid dissolving apparatus is the gas-liquid dissolving apparatus according to any one of claims 9-112, wherein the total cross-sectional area of the escape hole is set to be smaller than the area of the nozzle opening of the nozzle. It is characterized by being formed to be wide. That is, the invention according to claim 13 prevents the internal pressure of the gas-liquid dissolving chamber from excessively rising due to the gas-liquid mixed phase fluid ejected from the nozzle.
  • the gas-liquid dissolving apparatus according to claim 9, 10, or 11 is configured such that a side surface of the gas-liquid dissolving chamber has a cylindrical shape or an axially symmetric shape. It is formed and accommodated in a gas-liquid separation chamber, and a partition body having an open top and having a cylindrical shape or an axially symmetrical side surface and tapered toward the top is formed as a gas-liquid dissolution chamber.
  • the gas-liquid dissolving apparatus according to claim 14 utilizes the thickness of the gas-liquid dissolving chamber to determine the direction in which the holes are drilled. It is characterized by a direction at a predetermined angle from the radial direction of the room. That is, the invention according to claim 15 can reduce the cause of a failure by simplifying the device configuration, and can contribute to long-term continuous use.
  • the holes (release holes) in the gas-liquid dissolving chamber are too large, and large bubbles and vortices flow out into the gas-liquid separating chamber. It is preferable that the size of the jet is not large enough to prevent the jet urged by the holes from flowing out into the gas-liquid separation chamber. In other words, it is preferable that the size of the water flow in the gas-liquid separation chamber is large enough to keep the water flow small enough not to break bubbles and generate fine bubbles. At this time, it is more preferable to provide a plurality of holes (release holes) so that the size of the holes (release holes) does not increase.
  • the energetic water flow is confined in the gas-liquid dissolution chamber, and only a stable and weak water flow is used in the gas-liquid separation chamber, enabling efficient separation of bubbles from high-concentration oxygen water.
  • a method for preventing large bubbles from flowing into the gas-liquid separation chamber a method of increasing the length of the gas-liquid dissolution chamber can be mentioned.
  • the gas-liquid dissolving apparatus of the present invention (claim 1) superimposes the contact area between gas and water and the chance of contact with water by the force of the gas-liquid multiphase fluid ejected from the nozzles, thereby promoting gas dissolution. Therefore, it is possible to efficiently increase the oxygen concentration in the low oxygen water area.
  • the gas-liquid dissolving device (Claim 1) shuts down the water flow by the wall of the gas-liquid dissolving chamber, separates fine bubbles in the gas-liquid separating chamber, and continuously extracts only the high-concentration oxygen-dissolved water part. In addition, it is possible to prevent the sediment from being rolled up by bubbles. Furthermore, since a sealed reaction vessel such as a high-pressure tank and equipment for controlling the internal pressure and water level are not required, the apparatus itself can be simplified, and a gas-liquid dissolving apparatus can be provided at low cost.
  • the gas-liquid dissolving apparatus of the present invention (Claim 2) is characterized in that, in the gas-liquid dissolving apparatus according to Claim 1, the gas-liquid multiphase fluid ejected from the nozzle does not settle along the dome. It is possible to efficiently increase the chance of contact between the stream and the gas and the water, thereby increasing the contact area thereof and promoting the dissolution of the gas, thereby increasing the oxygen concentration in the anoxic water area more efficiently.
  • a liquid dissolution apparatus can be provided.
  • the gas-liquid multi-phase fluid is energized and flows into the gas-liquid dissolving chamber in the gas-liquid dissolving apparatus according to claim 1 or 2.
  • the gas can be more efficiently dissolved with a simple configuration, thereby providing a gas-liquid dissolving apparatus that can more efficiently increase the oxygen concentration in the oxygen-deficient water region and can be constructed at a low cost.
  • the gas-liquid dissolving apparatus of the present invention is the gas-liquid dissolving apparatus according to claim 1, 2 or 3, wherein the high-concentration oxygen-dissolved water is vaporized through a hole in the gas-liquid dissolving chamber. Since the gas is directly discharged into the liquid separation chamber, the equipment itself can be simplified by eliminating the need for pipes and other equipment for sending high-concentration oxygen-dissolved water into the gas-liquid separation chamber, thereby enabling gas-liquid dissolution to be constructed at lower cost. Equipment can be provided.
  • a gas-liquid dissolving apparatus of the present invention (Claim 5) is a gas-liquid multi-phase fluid ejected from a nozzle by the gas-liquid dissolving apparatus according to any one of Claims 14 to 14. It is possible to prevent an excessive increase in the internal pressure of the gas-liquid dissolving chamber due to the above, thereby prolonging the life of the gas-liquid dissolving chamber and providing a gas-liquid dissolving apparatus in which maintenance costs and repair costs are low.
  • the gas-liquid dissolving apparatus of the present invention is the gas-liquid dissolving apparatus according to any one of Claims 15 to 15, in which a large amount of gas is dissolved in water due to a high water pressure. It will be possible to In addition, energy required for water intake and discharge can be saved as compared with the case of installation on land. This makes it possible to efficiently increase the oxygen concentration in the oxygen-deficient water region and provide an inexpensive gas-liquid dissolving apparatus.
  • the gas-liquid dissolving apparatus of the present invention (Claim 7) is the gas-liquid dissolving apparatus according to Claim 1, 2 or 3, wherein the specific gravity is small due to the swirling flow whose flow velocity increases toward the upper part.
  • a gas-liquid dissolving apparatus capable of efficiently and effectively separating air bubbles and water by collecting air bubbles at the center, thereby enabling stable and continuous generation of high-concentration oxygen-dissolved water containing no air bubbles. It can be provided.
  • the gas-liquid dissolving apparatus of the present invention (claim 8) is a gas-liquid dissolving apparatus according to claim 7, which simplifies the configuration of the apparatus to reduce the cause of a failure location and reduce long-term failure. It is possible to provide a gas-liquid dissolving device with low maintenance and repair costs.
  • the gas-liquid dissolving apparatus of the present invention dissolves the gas by superimposingly increasing the contact area and the opportunity of contact between the liquid and the gas by the force of the gas-liquid multiphase fluid ejected from the nozzle. Gas is gradually separated in the gas-liquid dissolution chamber and the gas-liquid separation chamber, and only the liquid portion can be continuously taken out.
  • a gas-liquid dissolving device capable of continuously supplying a liquid containing no gas can be provided.
  • the gas-liquid dissolving apparatus of the present invention (Claim 10) is characterized in that the gas-liquid multi-phase fluid ejected from the nozzle does not settle along the dome. It is possible to efficiently increase the chance of contact between the flow and the liquid and the gas, increase the contact area, and further promote the dissolution of the gas, so that the gas component is dissolved in a high concentration and contains no bubbles. Can be provided stably and continuously.
  • the gas-liquid dissolving apparatus of the present invention energizes the gas-liquid multiphase fluid to flow into the gas-liquid dissolving chamber. Therefore, a gas can be more efficiently dissolved with a simple configuration, and thereby a gas-liquid dissolving apparatus capable of stably and continuously supplying a liquid in which a gas component is dissolved at a high concentration and contains no bubbles is provided. Able to provide at low cost.
  • the gas-liquid dissolving apparatus of the present invention (Claim 12) is the same as the gas-liquid dissolving apparatus according to Claim 9, 10 or 11, and further comprises a gas-liquid mixed phase having an increased dissolved concentration of a gas component. Since the fluid flows directly to the gas-liquid separation chamber through the relief hole of the gas-liquid dissolution chamber, the equipment itself can be simplified by eliminating the need for pipes and other equipment for feeding the gas-liquid mixed-phase fluid to the gas-liquid separation chamber. Cheaper It is possible to provide a gas-liquid dissolving apparatus that can be constructed at a low price.
  • a gas-liquid dissolving apparatus of the present invention is a gas-liquid dissolving apparatus according to any one of claims 9-112, and is provided with a gas-liquid mixed phase jetted from a nozzle. It is possible to prevent an excessive increase in the internal pressure of the gas-liquid dissolving chamber due to the fluid, thereby prolonging the life of the gas-liquid dissolving chamber, and providing a gas-liquid dissolving apparatus with low maintenance and repair costs.
  • the gas-liquid dissolving apparatus of the present invention is the gas-liquid dissolving apparatus according to Claim 9, 10 or 11, wherein the specific gravity is increased by the swirling flow whose flow velocity increases in accordance with the upper part. Gas and liquid can be efficiently separated by collecting small gas at the center, which enables stable and continuous supply of liquid with high concentration of gas components and no bubbles.
  • a solution device can be provided.
  • the gas-liquid dissolving apparatus of the present invention (claim 15) is the gas-liquid dissolving apparatus according to claim 9, which simplifies the configuration of the apparatus to reduce the cause of a failure location and to provide a long-term solution. It is possible to provide a gas-liquid dissolving apparatus with low maintenance cost and repair cost.
  • FIG. 1 is an explanatory diagram showing an example of improving the deoxygenation of a lake using the gas-liquid dissolving apparatus of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration example of a main part of the gas-liquid dissolving apparatus of Embodiment 1.
  • FIG. 3 is a diagram schematically illustrating a main part of the gas-liquid dissolving apparatus according to the first embodiment, as viewed from an obliquely upward force.
  • FIG. 4 is a graph showing changes in the amount of dissolved oxygen in water treated by the gas-liquid dissolving apparatus described in Embodiment 1 together with the operation time of the apparatus.
  • FIG. 5 is a schematic diagram of a conventional device.
  • FIG. 6 is an explanatory diagram when the gas-liquid dissolving device is installed on land.
  • FIG. 7 is a cross-sectional view illustrating a schematic configuration example of a main part of a gas-liquid dissolving apparatus according to a third embodiment.
  • Garden 8 a cross-sectional view including a hole provided in a gas-liquid dissolving chamber according to a third embodiment. is there.
  • Garden 9 is an external perspective view of a nozzle portion of the gas-liquid dissolving apparatus of Embodiment 4.
  • FIG. 1 shows an example of improving the deoxygenation of a lake using the gas-liquid dissolving apparatus of the present embodiment.
  • FIG. FIG. 2 is a cross-sectional view showing a schematic configuration example of a main part of the gas-liquid dissolving apparatus of the present embodiment.
  • FIG. 3 is a diagram schematically showing a main part of the gas-liquid dissolving apparatus of the present embodiment from obliquely above.
  • the gas-liquid dissolving apparatus 1 includes a pump 3 that takes in water from the oxygen-deficient water area B of the lake A and supplies it to the nozzle 2, a gas containing oxygen (hereinafter, appropriately referred to as an oxygen gas.
  • Nozzle 2 for making water, a gas-liquid dissolving chamber 5 that agitates the water and oxygen gas ejected from the nozzle 2 to generate high-concentration oxygen-dissolved water, And a gas-liquid separation chamber 6 for storing and separating oxygen gas bubbles not dissolved in water.
  • the gas-liquid dissolving apparatus 1 is installed in the anoxic water area B.
  • the gas-liquid dissolving apparatus 1 of the present embodiment includes an upper surface 8 and a lower surface 9. Providing the umbrella 8 and the weight 9 in this way makes it easy to set up the equipment simply by throwing it in from the water surface.
  • the gas-liquid dissolving chamber 5 is a vertically long cylindrical body having a bottom, a top plate portion 5a having a dome shape, and a plurality of holes 5b on a lower side surface. The structure is closed except for the parts. Inside the gas-liquid dissolution chamber 5, a nozzle 2 formed such that the inner diameter of the tip portion 2a becomes thinner toward the ejection port 2b is disposed so as to face the center of the dome shape with the ejection port 2b facing upward. . A pump 3 and an oxygen supply unit 4 are connected to the nozzle 2, so that a gas-liquid multi-phase fluid in which oxygen-deficient water and oxygen gas are mixed flows constantly at a certain water pressure.
  • the gas-liquid separation chamber 6 is a vertically long cylindrical body, is provided so as to completely cover the gas-liquid dissolution chamber 5, and has a configuration in which the gas-liquid dissolution chamber 5 is held by the fixing part 10.
  • the gas-liquid separation chamber 6 is provided with a gas vent hole 6a at an upper portion to discharge or reuse a gas remaining as a gas.
  • a water supply port 6b is provided at the bottom of the gas-liquid separation chamber 6 so that the high-concentration oxygen-dissolved water is returned to the poor oxygen water area B.
  • the shape of the gas-liquid separation chamber 6 is cylindrical, but its cross section is not particularly limited, and may be a polygon such as a circle or an ellipse.
  • the pump 3 is operated to take in the water in the low oxygen water area B and supply it to the nozzle 2.
  • the oxygen supply unit 4 supplies oxygen gas to the nozzle 2.
  • the supplied water and oxygen gas form a gas-liquid multiphase fluid 11 in the nozzle 2.
  • the gas-liquid multiphase fluid 11 is further urged by the tapered tip 2 a of the nozzle 2 in addition to the pump pressure, and gushes into the gas-liquid dissolving chamber 5 vigorously.
  • the jetted gas-liquid multiphase fluid collides with the top plate 5a and then descends along the dome shape. At this time, the gas-liquid multiphase fluid 11 forms a vortex or a turbulent flow by the force of its own ejection. Due to this complicated flow, the oxygen gas in the gas-liquid multi-phase fluid 11 becomes extremely fine bubbles, the contact area is remarkably increased, and violently comes into contact with water and is stirred.
  • the gas-liquid mixed-phase fluid 11 descending in the gas-liquid dissolving chamber 5 collides with the gas-liquid mixed-phase fluid 11 ejected from the nozzle 2, and further contact and agitation of oxygen gas and water occur. Oxygen gas is efficiently dissolved in water. As described above, high-concentration oxygen-dissolved water is generated in the gas-liquid dissolution chamber 5.
  • the high-concentration oxygen-dissolved water descends in the gas-liquid dissolution chamber 5 and moves to the gas-liquid separation chamber 6 through the hole 5b in a state of being mixed with oxygen gas bubbles that have not been dissolved in water.
  • the holes 5b are provided on the lower side surface of the gas-liquid dissolving chamber 5, large bubbles remain at the upper part, and fine bubbles and high-concentration oxygen-dissolved water move to the gas-liquid separating chamber 6.
  • the gas-liquid dissolution chamber 5 confines the violent water flow, rectifies the jet so that it does not flow into the gas-liquid separation chamber 6, and prevents the fine bubbles from dancing in the gas-liquid separation chamber 6. It can also be said to send out.
  • the high-concentration oxygen-dissolved water and the bubbles are temporarily stored in the gas-liquid separation chamber 6, so that the bubbles are separated to the upper part, and only the high-concentration oxygen-dissolved water without bubbles is contained. Is constantly returned from the water inlet 6b to the oxygen-deficient water area B. In order to prevent air bubbles flowing out of the hole 5b from mixing with the high-concentration oxygen-dissolved water sent out from the water inlet 6b, the water outlet 6b is provided at a position farther away from the hole 5b than the hole 5b. .
  • the oxygen-deficient water was treated using the above-described gas-liquid dissolving apparatus, and the dissolved oxygen concentration was measured.
  • FIG. 4 is a graph showing changes in the dissolved oxygen concentration of water treated by the gas-liquid dissolving apparatus described in Embodiment 1 together with the operation time of the apparatus.
  • the measurement conditions were as follows: the flow rate of water ejected from the nozzle was 10 liters / min, and the supplied oxygen gas concentration was 99.9% (oxygen cylinder). Use), oxygen gas supply rate 0.5 liter / min, pressurization in gas-liquid dissolution chamber 0. IMpa (pressurization for about 1 atm), water temperature 27 ° C.
  • the graph of FIG. 4 also shows the dissolved oxygen concentration of water treated by the conventional apparatus shown in FIG. 5 as a comparative example.
  • the conventional device shown in Fig. 5 is a type that can supply high-concentration oxygen-dissolved water even among similar devices.
  • the conventional apparatus includes a sealed tank that serves as a reaction vessel for a gas-liquid dissolution reaction, a pump that takes in water, a flow control valve that controls a supply amount of water provided upstream of the pump, and an oxygen gas A nozzle for ejecting water and oxygen gas to the closed tank, a baffle for hitting the gas and liquid ejected from the nozzle, a valve for discharging excess gas accumulated in the closed tank, and a And a valve for adjusting the discharge amount of the generated high-concentration oxygen-dissolved water.
  • the closed tank is filled with oxygen gas in advance, the water level is adjusted below the baffle plate, and water and oxygen gas are ejected from the nozzle toward the baffle plate, thereby reducing the gas. Is dissolved in water.
  • the conventional apparatus of this system requires a control unit for controlling the pressure and water level in the closed tank.
  • the valve that discharges surplus air has a water level adjustment function, the control is complicated, and the device itself is bulky and expensive.
  • the gas-liquid dissolving apparatus of the present embodiment becomes a steady-state operation about 4 minutes after the start of the apparatus operation, and can supply high-concentration oxygen-dissolved water having an oxygen concentration of 50 mg / liter. It can be seen that it is.
  • the operation becomes almost steady in about 8 minutes after the start of operation of the apparatus, but the concentration of the high-concentration oxygen-dissolved water obtained is 40-45 mg / liter, and the water level is controlled. As a result, the control to discharge the surplus gas is added, and the oxygen concentration is not stable.
  • the supply of high-concentration oxygen-dissolved water to the oxygen-deficient water zone B was not constant due to the discharge of surplus gas.
  • the gas-liquid dissolving apparatus of the present embodiment High-concentration oxygen-dissolved water can be generated stably and continuously. In this embodiment, since it is not necessary to pump up the water in the oxygen-deficient water area to the land, it is possible to save energy.
  • FIG. 6 is an explanatory diagram when the gas-liquid dissolving device is installed on land.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals.
  • reference numeral 12 indicates a pumping hose for pumping water from the oxygen-depleted water area B
  • reference numeral 13 indicates a water supply for returning high-concentration oxygen-dissolved water from the water supply port 6b to the oxygen-depleted water area B. Show the hose.
  • the oxygen supply unit may be configured to supply the gas from land using an oxygen generator and a compressor, or may be configured to supply a gas cylinder installed in water. Is also good.
  • the installation location is not limited to underwater or land, and a pressurizing means for jetting water from a nozzle may be provided in addition to the pump. The pressurizing means may be used to pressurize the gas-liquid dissolving chamber or the gas-liquid separating chamber with caro.
  • a plurality of knurls may be provided depending on the mode of using force with one nozzle.
  • the number of lower holes is appropriately adjusted so that the total area of the holes is larger than the total sectional area of the nozzle.
  • the position of the hole may be provided on the lower side surface of the gas-liquid dissolving chamber or may be provided on the bottom portion as long as it does not prevent the separation of bubbles and water in the gas-liquid separating chamber.
  • the structure consists of a supply section for supplying a gas-liquid mixed liquid of liquid and gas, a gas-liquid dissolving chamber with an upper part that receives the flow of the gas-liquid mixed-phase fluid, and has a hole for releasing the fluid at the lower part, and a gas-liquid dissolving chamber.
  • a gas-liquid dissolving chamber With the gas-liquid dissolving chamber through the escape port, and the outside of the gas-liquid dissolving chamber communicating with the gas-liquid dissolving chamber through the escape hole.
  • a gas-liquid separation chamber for storing the gas-liquid multiphase fluid from the escape hole to separate the liquid from the gas, and an outlet for taking out the liquid separated in the gas-liquid separation chamber.
  • the outlet may be provided below the gas-liquid separation chamber as in Embodiment 1.
  • an outlet is provided at the upper part so that it can be appropriately scooped out.
  • a wide-mouthed configuration may be used.
  • FIG. 7 is a cross-sectional view showing a schematic configuration example of a main part of the gas-liquid dissolving apparatus of the present embodiment.
  • FIG. 8 is a cross-sectional view including a hole provided in the gas-liquid dissolving chamber.
  • the gas-liquid dissolving device 21 has a dome-shaped (hemispherical) having a pump 23 that takes in seawater from the oxygen-deficient water area and supplies it to the nozzle 22, an oxygen supply port 24 that supplies oxygen gas to the nozzle 22, and a hole 25 b below.
  • a bottomed gas-liquid dissolution chamber 25 having a ceiling 25a, and seawater and oxygen gas supplied by a pump 23 and an oxygen supply port 24 are directed upward so as to collide with the inner wall of the ceiling 25a from inside the gas-liquid dissolution chamber 25.
  • a gas-liquid separation chamber 26 having a gas discharge hole 26a and a water supply port 26b for supplying seawater separated from air bubbles is provided at a lower portion.
  • the gas-liquid dissolving apparatus 21 is assumed to be installed in an oxygen-deficient seawater area.
  • An example of such a place is an inner bay part which is substantially separated from the open sea by a breakwater or a narrow water supply.
  • the gas-liquid dissolving device 21 is provided on a pedestal 30 in order to maintain its posture, and the pedestal 30 is fixed to the seabed by legs 31.
  • the gas-liquid dissolving apparatus 21 is characterized in that it has a partition wall 27, thereby separating microbubbles from seawater.
  • the partition wall 27 has a bottomed and open upper portion 27a, and the inner surface is tapered toward the upper portion 27a.
  • the gas-liquid dissolution chamber 25 has a hemispherical cylindrical shape in the upper part, and a hole 25b is provided in the lower part so that a multiphase fluid of air bubbles and seawater blows obliquely (see FIG. 8).
  • the multiphase fluid forms a swirling flow along the outer periphery of the gas-liquid dissolving chamber 25 (the inner periphery of the partition wall 27). Since the multiphase fluid is sequentially supplied from the holes 25b, the multiphase fluid consequently spirally moves upward.
  • the diameter of the partition wall 27 is narrowed, so that the flow velocity of the multiphase fluid increases. Then, due to the centrifugal force, seawater having a large specific gravity gathers outward, and microbubbles gather at the center and rise. The water current and air current are released at the upper part 27a, the water current part returns by its own weight from the water inlet 26b to the oxygen-deficient seawater area, and the air current part is collected through the gas vent 26a. As a result, seawater with a high dissolved oxygen concentration can be generated, separated, and supplied even when the bubbles are miniaturized.
  • 25b is a force provided symmetrically to two, without being limited to this, may be three or four. However, in consideration of the stability of the flow, it is preferable to provide them at symmetric positions. Further, in this example, the hole 25b is formed obliquely and a swirling flow is formed directly by the hole 25b. However, the present invention is not limited to this. The swirling flow may be generated by bending the tip to discharge the multiphase fluid in the tangential direction.
  • FIG. 9 is a perspective view of a nozzle tip portion of the gas-liquid dissolving apparatus according to the fourth embodiment.
  • an air supply pipe 34 passes through a nozzle 32 to a position on the same plane as a jet port 32b.
  • the nozzle 32 is formed so as to be tapered toward the ejection port 32b, so that water is urged and ejected.
  • a pressure difference is generated, and the air is sucked from the air supply pipe 34.
  • the fluid ejected from the nozzle 32 becomes a gas-liquid multiphase fluid.
  • the gas-liquid dissolving device can be used for, for example, a water tank for transferring live fish.
  • the present invention can be used to reform brackish lakes, dam lakes, or closed sea areas (sea areas where seawater is less likely to enter and exit).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

 貧酸素水域から取り込んだ水に酸素を含んだガスを溶解させて溶存酸素濃度を高め、再びその水域へ送り返す気液溶解装置である。これは、貧酸素水域から水を取り込むポンプ3と、酸素を含んだガスを供給する酸素供給部4と、下部に少なくとも一つの孔5bを有し上部にドーム状の天板5aを有する縦長筒状の気液溶解室5と、酸素供給部4からのガスとポンプ3からの水とを気液溶解室5の天板5a内壁に衝突するよう上向きに噴出させ、この勢いによってガスと水とを激しく攪拌させる先端内部が先細り形状のノズル2と、気液溶解室5と孔5bを介して連通し、気液溶解室5から孔5bを通って流出する気泡と水とを貯留しつつ分離する気液分離室6と、気泡と分離した水を貧酸素水域に送り返す送水口6bと、を備えている。

Description

明 細 書
気液溶解装置
技術分野
[0001] 本発明は、気体成分を高濃度に溶かし込んだ液体を連続的に生成する気液溶解 装置に関し、特に、貧酸素化した水域から取り込んだ水に酸素を含んだガスを溶解 させて溶存酸素濃度を高め、再びその水域へ送り返す気液溶解装置に関する。 背景技術
[0002] 湖沼、ダム、河川、内湾等の底層には、陸上から流入する生活廃水や農耕廃水に 起因した有機物、または、この有機物を栄養源として増殖した水生植物やプランクト ンの遺骸が堆積している。これらの有機物や堆積物は、底層水中の酸素を消費しな 力 Sら分解していく。従って、この酸素消費を伴う分解反応により、湖沼などの底層には 貧酸素化した水域が発生する。
[0003] 貧酸素化した水域とは、酸素の溶存濃度がせいぜい 1一 2mg/リットルの領域をい レ、、これは水面付近の lOmg/リットルより遙かに低い値である。特に、貧酸素化した 水域は、水が汚れている場合が多ぐ光合成が行えないため藻が生えず、藻が生え ないため酸素が生成されず貧酸素化が進む、という悪循環に陥る。
[0004] 底層の貧酸素化は、湖沼等の環境に様々な悪影響を及ぼすことが知られている。
例えば、底層が貧酸素な状態であると底生生物が死滅してしまう場合がある。また、 底層が貧酸素化すると、還元雰囲気となり、周辺岩石やへドロから金属が溶出し水質 の悪化を招く場合もある。
[0005] このような貧酸素状態を解消するため、貧酸素化した水域に酸素を供給し溶存酸 素濃度を高める方法が知られている。例えば、特開平 5— 168981号公報「酸素吹込 装置」、特開平 7—185281号公報「気体の溶解装置」、特開 2002—200415号公報 「空気を水に溶解する装置」には、泡状の酸素や空気を直接貧酸素化した水域に供 給する方法が開示されている。
[0006] また、特開 2002— 177953号公報「水中設置型加圧タンク方式水の溶存酸素自動 制御方法」、特開 2000-245295号公報「酸素水供給装置」には、密閉したタンク内 で酸素と水とを加圧混合することによって強制的に酸素を水に溶解し、溶存酸素濃 度を高めた水(以下、高濃度酸素溶解水と適宜称する)を生成し、貧酸素化した水域 に供給する方法が開示されている。
[0007] また、特開平 11一 207162号公報「加圧式酸素溶解方法」には、同様に密閉したタ ンク内で高濃度酸素溶解水を生成し、一旦、タンク内で大気開放した後、貧酸素化 した水域へ供給する方法が開示されている。さらに、特開 2002-346351号公報「 気体溶解装置」には、密閉したタンク内に溶解させるガスを充満させ、このタンクの中 に、水を噴出させてガスの溶解を行う方法が開示されてレ、る。
[0008] 特許文献 1 :特開平 5— 168981号公報
特許文献 2 :特開平 7 - 185281号公報
特許文献 3:特開 2002 - 200415号公報
特許文献 4 :特開 2002— 177953号公報
特許文献 5:特開 2000 - 245295号公報
特許文献 6 :特開平 11 - 207162号公報
特許文献 7 :特開 2002 - 346351号公報
発明の開示
発明が解決しょうとする課題
[0009] し力、しながら、従来の技術では以下の問題点があった。
まず、特開平 5— 168981号公報、特開平 7— 185281号公報、特開 2002— 20041 5号公報に開示される技術では、泡状の酸素や空気を直接貧酸素化した水域へ送り 込むと、そのほとんどが水面へ浮上してしまうため、酸素濃度を効率的に高められな レ、という問題点があった。
[0010] 次に、水面へ浮上する泡自体も底質を巻き上げる水流を作り出すため、以下の問 題を引き起こしてしまう場合があった。すなわち、底質が巻き上がると、堆積していた 有機物などが撹拌されて分解反応を促進してしまい、かえって酸素濃度を低下させ てしまったり、貧酸素水域を拡大させてしまう場合があった。また、底質が巻き上がる 際に、周辺岩石やへドロから溶出した金属成分が拡散し、水質悪化を拡大してしまう 場合もあった。 [0011] また、特開 2002-177953号公報、特開 2000—245295号公報に開示される技術 では、圧力の高い高濃度酸素溶解水を貧酸素化した水域に供給すると、圧力低下 に伴い酸素が気泡となって析出してしまうので、同様に、底質の巻き上げに伴う問題 点が生じてしまう。また、特開平 11—207162号公報に開示される技術の場合も、タ ンクから供給される高濃度酸素溶解水中には、一旦大気開放した際に発生した気泡 が混在しており、やはり底質を巻き上げてしまうという問題点があった。
[0012] さらに、密閉したタンク内で高濃度酸素溶解水の生成を行う場合、タンク内の圧力 や水位を制御するための設備が必要であった。このため装置自体が大掛かりとなり、 設備に力かる費用が高くなつてしまうという問題点があった。
[0013] また、湖底やダムといった大容量の水を処理する場合には、一般的に、連続して水 を処理させたいという要望がある。また、このとき、ポンプ駆動や上述した底質卷上の 観点から、泡を含まない液体部分だけを取り出したいという要望もある。
[0014] さらに、生成された高濃度酸素溶解水も、一定量を連続的に供給したい、すなわち 、安定的に供給したいという要請もある。これは、水量が変化すると水流が揺らぎ、底 質卷上の原因となるためである。
[0015] 本発明は上記に鑑みてなされたものであって、気泡による底質の巻き上げを防止し つつ貧酸素化した水域の酸素濃度を効率よく高めることができ、しかも安価に構築で きる気液溶解装置を提供することを目的とする。
[0016] また、本発明は、気体成分が高濃度に溶存し泡を含まない液体を安定的かつ連続 的に供給可能な気液溶解装置を提供することを目的とする。
課題を解決するための手段
[0017] 上記の目的を達成するために、請求項 1に記載の気液溶解装置は、貧酸素水域か ら取り込んだ水に酸素を含んだガスを溶解させて溶存酸素濃度を高め、当該貧酸素 水域へ溶存酸素濃度の高まった水を送り返す気液溶解装置であって、前記貧酸素 水域力 処理すべき水を取り込む取水部と、前記酸素を含んだガスを供給する供給 部と、下部に少なくとも一つの孔を有し上部に天板を有する有底の気液溶解室と、前 記供給部が供給するガスと前記取水部が供給する水とを前記天板内壁に衝突する よう上向きに噴出させ、ガスの気泡と水とで前記気液溶解室内を満たすと同時に、噴 出させたガスと水との勢いによって気泡と水とを激しく攪拌させるノズルと、前記気液 溶解室の外部に配され、前記気液溶解室と前記孔を介して連通しており、前記気液 溶解室から前記孔を通って流出する気泡と水とを貯留しつつ分離し、上部には分離 した気泡を外部へ逃がすガス抜孔を有し、下部には気泡と分離した水を取り出す取 出口を有する気液分離室と、前記取出口から取り出される水を前記貧酸素水域に送 り返す送水部と、を有したことを特徴とする。
[0018] すなわち、請求項 1にかかる発明は、以下の通りに高濃度酸素溶解水を生成する。
まず、供給部から供給された酸素を含んだガスと取水部から供給された貧酸素水と が、ノズル内で気液混相流体を形成する。この気液混相流体は、ノズルから気液溶 解室内へ噴出し、天板に衝突した後、飛散、反転して気液溶解室内を下降する。こ の際、気液混相流体は自らの噴出した勢いで渦状の流れないし乱流を形成し気泡 は細分化する。この渦状の流れないし乱流により、気液混相流体中のガスと水とは激 しく接触し攪拌され、ガス (酸素)が水に溶解していく。さらに、気液溶解室内を下降 する気液混相流体にノズルから噴出する気液混相流体が連続的に衝突し、ガスと水 との更なる接触および攪拌が起こり、ガス(酸素)が水に溶解する。
[0019] つまり、本発明の気液溶解装置は、強制的にガスを溶解させるものとは異なり、ノズ ノレから噴出する気液混相流体の勢いによってガスと水との接触面積および接触機会 を重畳的に高め、ガスの溶解を促進する。
[0020] また、本発明の気液溶解装置は、気液溶解室内の壁により水流を閉じこめて、水の 勢いにより大きな泡が気液分離室側に過度に流出するのを防止する。これにより、気 液分離室内で細かな泡が自然に分離し、高濃度酸素溶解水のみの連続的な取り出 しが可能となる。
[0021] なお、本発明による気液溶解装置による高濃度酸素溶解水は従来のように強制的 にガスを溶解させるベく内圧を雰囲気圧力より過度に高圧にして生成したものではな いので、貧酸素水域に戻しても圧力開放に基づく気泡が析出しない。また、高圧タン クのような密閉した反応容器や、その内圧および水位を制御するための設備も不要と なり、装置自体の簡素化を図ることも可能となる。なお、雰囲気圧力とは、気液溶解 装置の主要部(気液溶解室、気液分離室、ノズル)が配置される場所の周囲の圧力 を意味し、設置場所が陸上であるならば大気圧、水中であるならば水圧をいう。なお
、ノズルから水とガスを噴出させるための加圧(例えばプラス 1気圧程度の加圧)は、 水流を作るために必要であって前述した過度の高圧とするための加圧機構には該当 しない。
[0022] なお、水とは、河川、湖沼やダムの水とレ、つた塩分を含まなレ、水の他、海水や汽水 といった塩分を含む水も含むものとする。また、有底とは、気液溶解室が略密閉され ていることを表現するものであり、「下部に少なくとも一つの孔を有し上部に天板を有 する有底の気液溶解室」とは、換言すれば、孔とノズルの貫入部分を除いては気液 溶解室が閉じた状態であることを意味する。また、天板とは、必ずしも気液溶解室内 に別個に設けられている必要はなぐ気液溶解室の上部の面 (天井を形成する部分 の面)であってもよい。従って、天板内壁とは、気液溶解室の上部にある内側の面を 意味する。また、取出口とは、換言すれば、気体成分の溶存濃度が高まった液体を 装置外へ送出する送出口とレ、うこともできる。
[0023] また、請求項 2に記載の気液溶解装置は、請求項 1に記載の気液溶解装置にぉレ、 て、前記天板をドーム形状としたことを特徴とする。すなわち、請求項 2にかかる発明 は、ノズルから噴出した気液混相流体がドームに沿って澱まず流れ、ガスと水との接 触機会を効率的に高めてその接触面積を大きくでき、ガスの溶解をより促進する。ま た天板部分の形をドーム状とすることにより、気液溶解室の耐久性を向上させること が可能となる。
[0024] また、請求項 3に記載の気液溶解装置は、請求項 1または 2に記載の気液溶解装 置において、前記ノズルの先端部分を噴出口に向かって先細りとなるようにしたことを 特徴とする。すなわち、請求項 3にかかる発明は、気液混相流体を付勢して気液溶 解室へ流入させることができる。
[0025] また、請求項 4に記載の気液溶解装置は、請求項 1、 2または 3に記載の気液溶解 装置において、前記気液分離室内に前記気液溶解室を収容したことを特徴とする。 すなわち、請求項 4にかかる発明は、高濃度酸素溶解水を気液溶解室の孔から気液 分離室へ直接流出させるので、気液分離室へ高濃度酸素溶解水を送り込むための 管等の設備を必要としない。また、装置が一体的に構成されるので、装置の設営や 引上げを簡便に行うことが可能となる。
[0026] また、請求項 5に記載の気液溶解装置は、請求項 1一 4のいずれか一つに記載の 気液溶解装置において、前記孔の総断面積を前記ノズルの噴出口の面積より広くし たことを特徴とする。すなわち、請求項 5にかかる発明は、ノズルから噴出する気液混 相流体による気液溶解室の内圧の過度の上昇を防止する。
[0027] また、請求項 6に記載の気液溶解装置は、請求項 1一 5のいずれか一つに記載の 気液溶解装置において、少なくとも、前記取水部、気液溶解室、ノズル、および、気 液分離室を、前記貧酸素水域中に設置したことを特徴とする。すなわち、請求項 6に かかる発明は、水圧が高くなるため、多くのガスを水に溶解させることが可能となる。 また、このような設置方法によれば、陸上に設置した場合と比較して、水の取り込み および吐き出しに必要なエネルギーを節約することができる。
[0028] また、請求項 7に記載の気液溶解装置は、請求項 1、 2または 3に記載の気液溶解 装置において、前記気液溶解室の側面を円筒形状ないし軸対称形状になるように形 成して前記気液分離室内に収容し、さらに、開放された上部を有し側面が円筒形状 ないし軸対称形状であって上部にいくに従って先細りに形成された隔壁体を前記気 液溶解室と前記気液分離室との間に配し、前記孔を介して前記気液溶解室から前 記隔壁体側へ移動する気泡と水とを、前記気液溶解室の径方向に対して所定の角 度をつけて流出させ、前記気液溶解室外側と前記隔壁体内側との間に上方に移動 してレ、く旋回流を発生させることを特徴とする。
[0029] すなわち、請求項 7にかかる発明は、上部にいくに従って流速が増す旋回流により 、比重の小さな気泡を中心に集め、気泡と水とを効率的かつ効果的に分離させる。ま た、装置が一体的に構成されるので、装置の設営や引上げを簡便に行うことが可能 となる。なお、気液溶解室の側面が円筒形状ないし軸対称形状であるとは、例えば、 上部が半球形、側面が円柱形であるような場合をはじめとし、気液溶解室の軸に垂 直な断面の外形が円であって軸に沿って径が異なる場合を含むものとする。同様に 、隔壁体が、その側面が円筒形状ないし軸対称形状であって上部にレ、くに従って先 細りに形成されているとは、切頭中空円錐形状をはじめとし、軸を共通にした径の異 なる中空円柱の結合体や、軸を共通にした径の異なる中空円柱を中空円錐でつな いだものも含むものとする。
[0030] また、請求項 8に記載の気液溶解装置は、請求項 7に記載の気液溶解装置にぉレ、 て、前記気液溶解室の厚みを利用して、前記孔の穿孔方向を前記所定の角度のつ レ、た方向とすることを特徴とする。すなわち、請求項 7にかかる発明は、装置構成を 簡素化することにより故障箇所の要因を低減し、長期の連続使用に資することができ る。
[0031] また、請求項 9に記載の気液溶解装置は、液体と気体の気液混相流体を供給する 供給部と、上部で気液混相流体の流れを受け止めつつ下部に流体の逃がし孔を設 けた気液溶解室と、気液溶解室に貫入し、供給部が供給する気液混相流体を気液 溶解室の上部へ向けて上向きに噴出させるノズルと、逃がし孔を介して気液溶解室 と連通しつつ、気液溶解室の外側に配され、逃がし孔からの気液混相流体を貯留し て液体を気体から分離する気液分離室と、気液分離室で分離された液体を取り出す 取出口と、を有し、ノズルからの噴出の勢いと気液溶解室の上部からの還流とによる 攪拌により液体中の気体成分の溶存濃度を高めたものである。
[0032] すなわち、請求項 9にかかる発明は、ノズルから噴出する気液混相流体の勢いによ つて液体と気体との接触面積および接触機会を重畳的に高めて気体の溶解を促進 し、かつ、気液溶解室内と気液分離室とで段階的に気体を分離して液体部分のみを 安定的、連続的に取り出す。
[0033] なお、上部、下部とは、それぞれ、装置を設置したときの気液溶解室の鉛直上方側 と、鉛直下方側をいう。また、逃がし孔とは、気液混相流体を気液溶解室外部へ流出 させる孔をいう。また、供給部は、機能的に、気液混相流体をノズルへ供給できれば その構成は特に限定されず、例えば、液体の供給部と気体の供給部が直接ノズノレに 接続される場合も含むものとする。なお、気液分離室で気体は上部に集まってくるが 、本請求項では、ガス抜孔ゃガス回収部を述べていない。これは、そのような構成部 分の存在を排除する意味ではなぐ単に特定していないだけであって、必要に応じて 設けることを何ら妨げない。
[0034] なお、次に説明するように、請求項 9にかかる発明は、請求項 1から 8までに記載し た各部の構成を採用してもよい。すなわち、上部をドーム形状としてもよいし、ノズル の先端を先細りにしてもよい。また、気液溶解室の外側に配する態様は、気液溶解室 と気液分離室とを別体としてもよぐ気液溶解室が気液分離室に内包される態様であ つてもよい。
[0035] すなわち、請求項 10に記載の気液溶解装置は、請求項 9に記載の気液溶解装置 において、気液溶解室の上部をドーム状に形成したことを特徴とする。すなわち、請 求項 10にかかる発明は、ノズルから噴出した気液混相流体がドームに沿って澱まず 流れ、気体と液体との接触機会を効率的に高めてその接触面積を大きくでき、気体 の溶解をより促進する。また気液溶解室の上部をドーム状に形成することにより、気 液溶解室の耐久性を向上させることが可能となる。
[0036] また、請求項 11に記載の気液溶解装置は、請求項 9または 10に記載の気液溶解 装置において、ノズルの先端部分を噴出口に向かって先細りとなるように形成したこ とを特徴とする。すなわち、請求項 11にかかる発明は、気液混相流体を付勢して気 液溶解室へ流入させることができる。
[0037] また、請求項 12に記載の気液溶解装置は、請求項 9、 10または 11に記載の気液 溶解装置において、気液分離室内に気液溶解室を収容したことを特徴とする。すな わち、請求項 12にかかる発明は、気体成分の溶存濃度の高まった気液混相流体を 気液溶解室の逃がし孔から気液分離室へ直接流出させるので、気液分離室へ気液 混相流体を送り込むための管等の設備を必要としない。また、装置が一体的に構成 されるので、装置の設置や設営を簡便に行うことが可能となる。
[0038] また、請求項 13に記載の気液溶解装置は、請求項 9一 12のいずれか一つに記載 の気液溶解装置において、逃がし孔の総断面積をノズノレの噴出口の面積より広くな るように形成したことを特徴とする。すなわち、請求項 13にかかる発明は、ノズルから 噴出する気液混相流体による気液溶解室の内圧の過度の上昇を防止する。
[0039] また、請求項 14に記載の気液溶解装置は、請求項 9、 10または 11に記載の気液 溶解装置において、気液溶解室の側面を円筒形状ないし軸対称形状になるように形 成して気液分離室内に収容し、さらに、開放された上部を有し側面が円筒形状ない し軸対称形状であって上部にいくに従って先細りに形成された隔壁体を気液溶解室 と気液分離室との間に配し、逃がし孔を介して気液溶解室から隔壁体側へ移動する 気液混相流体を、気液溶解室の径方向に対して所定の角度をつけて流出させ、気 液溶解室外側と隔壁体内側との間に上方に移動していく旋回流を発生させることを 特徴とする。すなわち、請求項 14にかかる発明は、上部にいくに従って流速が増す 旋回流により、比重の小さな気体が中心に集まり、気体と液体とを効率的に分離させ る。また、装置が一体的に構成されるので、装置の設営や引上げを簡便に行うことが 可能となる。
[0040] また、請求項 15に記載の気液溶解装置は、請求項 14に記載の気液溶解装置にお いて、気液溶解室の厚みを利用して、孔の穿孔方向を気液溶解室の径方向から所 定の角度のついた方向とすることを特徴とする。すなわち、請求項 15にかかる発明 は、装置構成を簡素化することにより故障箇所の要因を低減し、長期の連続使用に 資すること力 Sできる。
[0041] なお、本発明(請求項 1一 6、請求項 9一 13)において、気液溶解室の孔 (逃がし孔 )は、大きくしすぎて大きな泡や渦流が気液分離室に流出してしまったり、小さくしす ぎて孔で付勢された噴流が気液分離室に流出してしまったりしない程度の大きさとす るのが好ましい。換言すれば、気液分離室における水流が泡を砕いて微細な泡を生 成してしまわない程度の水流が保てる大きさとするのが好ましい。このとき、孔 (逃がし 孔)の大きさが大きくならないように孔 (逃がし孔)を複数設けるのがさらに好ましい。こ れにより、勢いのある水流を気液溶解室に閉じこめ、気液分離室では安定した弱い 水流だけにして、泡と高濃度酸素水の効率的な分離が可能となる。また、大きな泡を 気液分離室に流出させない方法として、気液溶解室の長さを長くする方法を挙げる こと力 Sできる。
[0042] 一方、請求項 7、 8、 14および 15では、旋回流を発生させるために、孔である程度 付勢された流れとなることが好ましい。従って、孔 (逃がし孔)の径および個数は、付 勢された流れを形成可能なように設計することが好ましい。
発明の効果
[0043] 本発明の気液溶解装置 (請求項 1)は、ノズルから噴出する気液混相流体の勢いに よってガスと水との接触面積および接触機会を重畳的に高め、ガスの溶解を促進す るので、貧酸素水域の酸素濃度を効率よく高めることが可能となる。また、本発明の 気液溶解装置 (請求項 1)は、気液溶解室の壁により水流を閉じこめて、気液分離室 内で細力な泡を分離し、高濃度酸素溶解水部分のみを連続的に取り出すので、気 泡による底質の巻き上げを防止することができる。さらに、高圧タンクのような密閉した 反応容器や、その内圧および水位を制御するための設備も不要となるので、装置自 体を簡素化でき、安価に気液溶解装置を提供できる。
[0044] また、本発明の気液溶解装置 (請求項 2)は、請求項 1に記載の気液溶解装置にお レ、て、ノズルから噴出した気液混相流体がドームに沿って澱まず流れ、ガスと水との 接触機会を効率的に高めてその接触面積を大きくし、ガスの溶解をより促進させるこ とができ、これにより、貧酸素水域の酸素濃度をより効率的に高める気液溶解装置が 提供可能となる。
[0045] また、本発明の気液溶解装置 (請求項 3)は、請求項 1または 2に記載の気液溶解 装置において、気液混相流体を付勢して気液溶解室へ流入させるので、簡単な構 成でより効率的にガスの溶解を行うことができ、これにより、貧酸素水域の酸素濃度を より効率的に高め安価に構築できる気液溶解装置が提供可能となる。
[0046] また、本発明の気液溶解装置 (請求項 4)は、請求項 1、 2または 3に記載の気液溶 解装置において、高濃度酸素溶解水を気液溶解室の孔から気液分離室へ直接流 出させるので、気液分離室へ高濃度酸素溶解水を送り込むための管等の設備を不 要として装置自体を簡素化でき、これにより、より安価に構築できる気液溶解装置が 提供可能となる。
[0047] また、本発明の気液溶解装置 (請求項 5)は、請求項 1一 4のいずれか一つに記載 の気液溶解装置にぉレ、て、ノズルから噴出する気液混相流体による気液溶解室の 内圧の過度の上昇を防止でき、これにより、気液溶解室の寿命をのばし、維持費用 や補修費用が安価な気液溶解装置を提供することが可能となる。
[0048] また、本発明の気液溶解装置 (請求項 6)は、請求項 1一 5のいずれか一つに記載 の気液溶解装置において、水圧が高くなるため多くのガスを水に溶解させることが可 能となる。また、陸上に設置した場合と比較して、水の取り込みおよび吐き出しに必 要なエネルギーを節約することができる。これにより、貧酸素水域の酸素濃度を効率 よく高め安価な気液溶解装置を提供することが可能となる。 [0049] また、本発明の気液溶解装置 (請求項 7)は、請求項 1、 2または 3に記載の気液溶 解装置において、上部にいくに従って流速が増す旋回流により、比重の小さな気泡 を中心に集めて気泡と水とを効率的かつ効果的に分離することができ、これにより、 泡を含まない高濃度酸素溶解水を安定的かつ連続的に生成可能な気液溶解装置 が提供可能となる。
[0050] また、本発明の気液溶解装置 (請求項 8)は、請求項 7に記載の気液溶解装置にお いて、装置構成を簡素化することにより故障箇所の要因を低減し、長期の連続使用 に資することができ、これにより、維持費用や補修費用が安価な気液溶解装置を提 供すること力 S可肯 となる。
[0051] また、本発明の気液溶解装置 (請求項 9)は、ノズルから噴出する気液混相流体の 勢いによって液体と気体との接触面積および接触機会を重畳的に高めて気体の溶 解を促進し、かつ、気液溶解室内と気液分離室とで段階的に気体を分離して液体部 分のみを連続的に取り出すことができ、これにより、気体成分が高濃度に溶存し泡を 含まない液体を連続的に供給可能な気液溶解装置が提供可能となる。
[0052] また、本発明の気液溶解装置 (請求項 10)は、請求項 9に記載の気液溶解装置に ぉレ、て、ノズルから噴出した気液混相流体がドームに沿って澱まず流れ、液体と気体 との接触機会を効率的に高めてその接触面積を大きくでき、気体の溶解をより促進さ せることができ、これにより、気体成分が高濃度に溶存し泡を含まない液体を安定的 力つ連続的に供給可能な気液溶解装置が提供可能となる。
[0053] また、本発明の気液溶解装置 (請求項 11 )は、請求項 9または 10に記載の気液溶 解装置において、気液混相流体を付勢して気液溶解室へ流入させるので、簡単な 構成でより効率的に気体の溶解を行うことができ、これにより、気体成分が高濃度に 溶存し泡を含まない液体を安定的かつ連続的に供給可能な気液溶解装置を安価に 提供すること力 Sできる。
[0054] また、本発明の気液溶解装置 (請求項 12)は、請求項 9、 10または 11に記載の気 液溶解装置にぉレ、て、気体成分の溶存濃度の高まった気液混相流体を気液溶解室 の逃がし孔から気液分離室へ直接流出させるので、気液分離室へ気液混相流体を 送り込むための管等の設備を不要として装置自体を簡素化でき、これにより、より安 価に構築できる気液溶解装置が提供可能となる。
[0055] また、本発明の気液溶解装置 (請求項 13)は、請求項 9一 12のいずれか一つに記 載の気液溶解装置にぉレ、て、ノズルから噴出する気液混相流体による気液溶解室 の内圧の過度の上昇を防止でき、これにより、気液溶解室の寿命をのばし、維持費 用や補修費用が安価な気液溶解装置を提供することが可能となる。
[0056] また、本発明の気液溶解装置 (請求項 14)は、請求項 9、 10または 11に記載の気 液溶解装置において、上部にレ、くに従って流速が増す旋回流により、比重の小さな 気体を中心に集めて気体と液体とを効率的に分離することができ、これにより、気体 成分が高濃度に溶存し泡を含まない液体を安定的かつ連続的に供給可能な気液溶 解装置が提供可能となる。
[0057] また、本発明の気液溶解装置 (請求項 15)は、請求項 9に記載の気液溶解装置に おいて、装置構成を簡素化することにより故障箇所の要因を低減し、長期の連続使 用に資することができ、これにより、維持費用や補修費用が安価な気液溶解装置を 提供することが可能となる。
図面の簡単な説明
[0058] [図 1]実施の形態 1の気液溶解装置を利用して湖の貧酸素化を改善する例を示した 説明図である。
[図 2]実施の形態 1の気液溶解装置の主要部分の概略構成例を示した断面図である
[図 3]実施の形態 1の気液溶解装置の主要部分を斜め上方力、ら模式的に表した図で ある。
[図 4]実施の形態 1で説明した気液溶解装置により処理した水の溶存酸素量の変化 を装置の運転時間とともに示したグラフである。
[図 5]従来装置の概略図である。
[図 6]気液溶解装置を陸上に設置した場合の説明図である。
[図 7]実施の形態 3の気液溶解装置の主要部分の概略構成例を示した断面図である 園 8]実施の形態 3の気液溶解室に設けられた孔部分を含む断面図である。 園 9]実施の形態 4の気液溶解装置のノズル部分の外観斜視図である。
符号の説明
1、 21 気液溶解装置
2、 22、 32 ノズノレ
2a 先端部分
2b、 32b 噴出口
3、 23 ポンプ
4、 24 酸素供給部
5、 25 気液溶解室
5a 天板部分
5b、 25b 孔
6、 26 気液分離室
6a、 26a ガス抜孔
6b、 26b 送水口
10 固定部
11 気液混相流体
12 汲上ホース
13 送水ホース
25a 天井
27 隔壁体
27a 上部
30 台座
31 脚部
34 空気の供給管
発明を実施するための最良の形態
〔実施の形態 1〕
以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
図 1は、本実施の形態の気液溶解装置を利用して湖の貧酸素化を改善する例を示 した説明図である。図 2は、本実施の形態の気液溶解装置の主要部分の概略構成 例を示した断面図である。図 3は、本実施の形態の気液溶解装置の主要部分を斜め 上方から模式的に表した図である。気液溶解装置 1は、湖 Aの貧酸素水域 Bから水を 取り込みノズル 2へ供給するポンプ 3と、酸素を含んだガス(以下、酸素ガスと適宜称 する。またこの酸素ガスとして空気を用いることができる。)をノズル 2へ供給する酸素 供給部 4と、ポンプ 3が供給する水と酸素供給部 4が供給する酸素ガスとを気液溶解 室 5内の天板部分 5aへ向けて噴出させるノズル 2と、ノズル 2から噴出した水と酸素ガ スとを攪拌して高濃度酸素溶解水を生成する気液溶解室 5と、気液溶解室 5内で生 成した高濃度酸素溶解水と水に溶けなかった酸素ガスの気泡とを貯留して分離する 気液分離室 6と、を有している。
[0061] 図示したように、気液溶解装置 1は、貧酸素水域 Bに設置されている。なお、姿勢を 保っために、本実施の形態の気液溶解装置 1は、上部にうき 8と、下部におもり 9とを 備えている。このようにうき 8とおもり 9を備えることにより、水面から投入するだけで簡 便な装置設営が可能となる。
[0062] 気液溶解室 5は、有底の縦長筒状体で、天板部分 5aがドーム形状をしており、下 部側面には複数の孔 5bを有し、この孔 5bとノズル 2部分を除いて密閉した構成とな つている。気液溶解室 5内部には、先端部分 2aの内径が噴出口 2bに向かって細くな るよう形成されたノズル 2が噴出口 2bを上向きとしてドーム形状の中心に対向するよう に配置されている。ノズノレ 2には、ポンプ 3と酸素供給部 4とが接続され、貧酸素水と 酸素ガスとが混合した気液混相流体がある程度の水圧を以て常時流入するようにな つている。
[0063] 気液分離室 6は、縦長筒状体であって、気液溶解室 5をすっぽりと覆うように設けら れ、固定部 10により気液溶解室 5を保持する構成としている。この気液分離室 6は、 上部にガス抜孔 6aを設け、最終的に気体として残ったガスを放出または再利用可能 にしている。また、気液分離室 6の底部には送水口 6bを設け、高濃度酸素溶解水を 貧酸素水域 Bに送り返すようにしている。なお、気液分離室 6の形状は筒状であるが 、その断面に特に限定はなぐ円形や楕円形をはじめとし多角形であってもよいもの とする。また、使用の態様によっては、卵形のような楕円体形も含まれるものとする。 [0064] 気液溶解装置 1の処理動作を以下に説明する。まず、ポンプ 3を作動させて、貧酸 素水域 Bの水を取り込みノズル 2へと供給する。これと同時に、酸素供給部 4が酸素 ガスをノズル 2へと供給する。供給された水と酸素ガスとはノズル 2内で気液混相流体 11を形成する。気液混相流体 11はポンプ圧に加えてノズル 2の先細りの先端部分 2 aでさらに付勢され、気液溶解室 5内へ勢いよく噴出する。
[0065] 噴出した気液混相流体は、天板 5aに衝突した後ドーム形状に沿って下降する。こ の際、気液混相流体 11は自らの噴出の勢いで渦ないし乱流を形成する。この複雑な 流れにより、気液混相流体 11中の酸素ガスは極めて細かな気泡となり接触面積を著 しく増大して水と激しく接触し、攪拌される。これに加えて、気液溶解室 5内を下降す る気液混相流体 11とノズル 2から噴出する気液混相流体 11とが衝突し、酸素ガスと 水との更なる接触および攪拌が起こり、酸素ガスが水に効率的に溶解していく。以上 のようにして気液溶解室 5内で、高濃度酸素溶解水が生成される。
[0066] この高濃度酸素溶解水は、水に溶けなかった酸素ガスの気泡と混在した状態で、 気液溶解室 5内を下降し、孔 5bを通って気液分離室 6へと移動する。ここで、孔 5bは 気液溶解室 5の下部側面に設けられているので、大きな気泡は上部に残留し細かな 泡と高濃度酸素溶解水が気液分離室 6へ移動することとなる。見方を変えれば、気 液溶解室 5は、激しい水流を閉じこめ、噴流が気液分離室 6に出ないように整流して 細かな泡が気液分離室 6内で踊ってしまわないように流体を送り出すともいえる。
[0067] 高濃度酸素溶解水と気泡とは、気液分離室 6で一時的に貯留されることによって、 気泡が上部へ分離してレ、き、泡の含まれない高濃度酸素溶解水だけが送水口 6bか ら貧酸素水域 Bへ定常的に送り返される。なお、孔 5bから流出する気泡が送水口 6b から送出される高濃度酸素溶解水へ混ざることを防止するため、送水口 6bは孔 5bよ り低ぐし力、も離れた位置に設けられている。
実施例 1
[0068] 上述の気液溶解装置を用いて貧酸素水を処理し、溶存酸素濃度の測定を行った。
図 4は、実施の形態 1で説明した気液溶解装置により処理した水の溶存酸素濃度の 変化を装置の運転時間とともに示したグラフである。測定の条件は、ノズルから噴出 する水の流量 10リットル/ min、供給した酸素ガス濃度 99. 9パーセント(酸素ボンべ 使用)、酸素ガスの供給量 0. 5リットル/ min、気液溶解室内の加圧 0. IMpa (約 1 気圧分の加圧)、水温 27°Cである。なお、図 4のグラフには、比較例として図 5に示し た従来装置で処理した水の溶存酸素濃度をあわせて記載している。
[0069] 図 5に示した従来装置は、同様の装置の中でも高濃度の酸素溶解水を供給可能な 型である。簡単に説明すると、従来装置は、気液溶解反応の反応容器となる密閉タ ンクと、水を取り込むポンプと、ポンプ上流に配された水の供給量を調整する流量調 整バルブと、酸素ガスの供給源と、水と酸素ガスとを密閉タンクへ噴出させるノズルと 、ノズルから噴出した気体と液体をぶつけるじゃま板と、密閉タンク内にたまる剰余気 体を排出するバルブと、密閉タンク内で生成した高濃度酸素溶解水の吐出量を調整 するバルブと、を有している。
[0070] 従来装置は、密閉タンク内に予め酸素ガスを充満させて、じゃま板の下に水面がく るように調整し、じゃま板へ向けてノズルから水と酸素ガスとを噴出させて、ガスを水 に溶解させる構成を採用している。なお、この方式の従来装置は、図示を省略するが 、密閉タンク内の圧力や水位を制御するための制御部が必要となる。特に、剰余気 体を排出するバルブは、水位調節機能を有するため、制御が複雑で、装置自体が大 掛カりで高価とならざるを得ない。
[0071] 図 4から明ら力なように、本実施例の気液溶解装置は、装置運転開始後 4分程度で 定常運転となり、酸素濃度 = 50mg/リットルの高濃度酸素溶解水を供給可能である ことがわかる。一方、図 5に示した従来装置では、装置運転開始後 8分程度で略定常 的な運転となるが、得られる高濃度酸素溶解水の濃度は 40— 45mg/リットルであり 、しかも、水位調節のため剰余気体を排出する制御が加わるため、酸素濃度が安定 していないことがわかる。なお、従来装置では、剰余気体の排出に伴い、高濃度酸素 溶解水の貧酸素水域 Bへの供給が一定しないことも改めて確認できた。
[0072] 高濃度酸素溶解水の溶存酸素濃度が相対的に低い場合には、貧酸素水域へは 大量の高濃度酸素溶解水を供給しなければならず、水流によって底質の撹乱を起こ してしまうことがある。底質の撹乱を起こさず、効率よく貧酸素水域の溶存酸素濃度を 向上させるには、より濃度の高い酸素溶解水を揺らぎなく安定的に供給する必要が ある。図 4に示した通り、本実施の形態の気液溶解装置は、従来より溶存酸素濃度の 高い高濃度酸素溶解水を、安定的に連続して生成することができる。なお、この実施 例では、貧酸素水域の水を陸上までポンプアップする必要がなくなるため、エネルギ 一を節約することも可能となっている。
[0073] 以上、実施例も含めて実施の形態 1では、気液溶解装置を貧酸素水域に設置した 場合を説明したが、使用の態様によっては陸地に設置してもよい。図 6は、気液溶解 装置を陸上に設置した場合の説明図である。なお、図 1に示した構成部と同様の構 成部には同一の符号を付している。図 6において、符号 12は、貧酸素水域 Bから水 をくみ上げるための汲上ホースを示しており、符号 13は、送水口 6bからの高濃度酸 素溶解水を貧酸素水域 Bへ送り返すための送水ホースを示してレ、る。装置を陸地に 設置する場合としては、例えば、貧酸素水域 Bへ投下するとコストが高くなる場合や、 貧酸素水域 Bにへドロが多く足場を確保できない場合や、ヘドロに埋没してしまい引 上げが困難となる場合などが挙げられる。
[0074] なお、酸素の溶存濃度の観点から水中設置と陸上設置とを比較すれば、設置する 場所の深度が深ければ気液溶解室内の圧力が上昇し、多くの酸素ガスを水に溶解 させることができるため、水中設置が好ましい。なお、気液溶解装置を水中に設置す る場合の酸素供給部は、酸素発生装置とコンプレッサーとを用いて陸上から供給す る構成としてもよいし、ガスボンベを水中に設置して供給する構成としてもよい。また、 設置場所が水中、陸上に限らず、ノズルから水を噴出させるための加圧手段をボン プ以外に設けてもよい。またこの加圧手段を利用して気液溶解室内や気液分離室内 をカロ圧してもよレ、。
[0075] なお、以上の例では、ノズルを 1本とした力 使用の態様によっては複数のノズノレを 設けてもよい。このとき、気液溶解室の内圧が高まり破損してしまうのを防止するため 、適宜下部の孔の個数を調整して、孔の総面積がノズルの総断面積より大きくなるよ うにする。また、孔の位置は、気液分離室内における気泡と水との分離を妨げないの であれば気液溶解室の下部側面に設けてもよいし、底部分に設けてもよい。
[0076] 〔実施の形態 2〕
実施の形態 1では、「酸素」を高濃度に溶解させた水を得る装置を挙げたが、これに 限ることなぐある気体成分を液体に溶存させたい場合にも、同様の構成を用いること ができる。その構成としては、液体と気体の気液混相流体を供給する供給部と、上部 で気液混相流体の流れを受け止めつつ下部に流体の逃がし孔を設けた気液溶解室 と、気液溶解室に貫入し、供給部が供給する気液混相流体を気液溶解室の上部へ 向けて上向きに噴出させるノズノレと、逃がし孔を介して気液溶解室と連通しつつ、気 液溶解室の外側に配され、逃がし孔からの気液混相流体を貯留して液体を気体から 分離する気液分離室と、気液分離室で分離された液体を取り出す取出口と、を設け る構成が挙げられる。このとき、ノズルからの噴出の勢いと天板部分からの還流とによ る攪拌により液体中の気体成分の溶存濃度を高めることができる。
[0077] なお、取出口を、実施の形態 1のように気液分離室の下に設けてもよいが、例えば 陸上に設置する場合には、上部に取出口を設けて、適宜すくい出せるような広口の 構成としてもよい。
[0078] 〔実施の形態 3〕
次に、海水対応型の気液溶解装置について説明する。海水や塩分濃度の高い汽 水域で実施の形態 1の気液溶解装置を駆動すると、泡が極めて微小となり、気液分 離室内で気泡と海水との分離がほとんど進まない現象が生じる。これは、塩分により 気泡が極めて微小となってしまレ、、浮力よりも、例え緩やかであったとしても水流がま さるためである。実施の形態 3では、旋回流を用いて気泡と海水との分離を行う装置 について説明する。
[0079] 図 7は、本実施の形態の気液溶解装置の主要部分の概略構成例を示した断面図 である。図 8は、気液溶解室に設けられた孔部分を含む断面図である。気液溶解装 置 21は、貧酸素水域から海水を取り込みノズノレ 22へ供給するポンプ 23と、酸素ガス をノズル 22へ供給する酸素供給口 24と、下部に孔 25bを有しドーム状(半球状)の 天井 25aを有する有底の気液溶解室 25と、ポンプ 23および酸素供給口 24により供 給される海水と酸素ガスとを気液溶解室 25の内側から天井 25a内壁に衝突するよう 上向きに噴出させるノズノレ 22と、気液溶解室 25を包み、気液溶解室 25の外壁との 間で旋回流を生じさせる隔壁体 27と、隔壁体 27を包み、上部には気泡を外部へ逃 がすガス抜孔 26aを有し、下部には気泡と分離した海水を送水する送水口 26bを有 する気液分離室 26と、を有する。 [0080] なお、図示は省略するが、気液溶解装置 21は、貧酸素海水域に設置されているも のとする。このような場所として、例えば、防波堤や狭い水道により外海と略隔てられ た内湾部を挙げることができる。なお、気液溶解装置 21は、その姿勢を保っために、 台座 30に備え付けられ、台座 30は脚部 31により海底に固定されている。
[0081] 気液溶解装置 21は、隔壁体 27を有する点に特徴があり、これにより微小気泡を海 水から分離する。次に、処理動作について説明する。隔壁体 27は、有底であり開放 された上部 27aを有し、上部 27aにいくに従って、内側面が先細りの形状となってい る。また、気液溶解室 25は、上部が半球の円筒形状であり、また、下部には、気泡と 海水との混相流体が斜めに吹き出すように孔 25bが設けられている(図 8参照)。これ により、混相流体は、気液溶解室 25の外周(隔壁体 27の内周)に沿った旋回流を形 成する。混相流体は順次孔 25bから供給されるため、結果的に混相流体は螺旋状に 上部に移動していく。
[0082] 上部では隔壁体 27の径が絞り込まれているので、混相流体の流速が増す。すると 、遠心力により比重の大きな海水は外側に、微小気泡は中心に集まり上昇する。水 流および気流は上部 27aで開放され、水流部分は自重により下り送水口 26bから貧 酸素海水域に還流し、気流部分はガス抜孔 26aにより回収される。これにより、気泡 が微小化する場合でも、溶存酸素濃度の高まった海水を生成し分離して供給可能と なる。
[0083] なお、図示した例では、?し 25bは、 2つ対称に設けられている力 これに限ることなく 、 3つでも 4つでもよい。ただし、流れの安定性を考慮すれば対称的な位置に設ける ことが好ましい。また、この例では、孔 25bが斜めに穿たれ、孔 25bにより直接旋回流 が形成されるようにしているが、これに限らず、例えば径方向に孔を開けて管を取付 け、管の先を曲げて接線方向に混相流体を排出するようにして旋回流を発生させて あよい。
[0084] なお、実施の形態 3では、脚部 31により装置全体を海底に固定する態様を説明し たが、これに限ることなぐ例えば、実施の形態 1に示したように、上部にうき、下部に おもりを備え、水面から投入するだけで装置設営を可能とし、また、水中における装 置の姿勢を維持できる態様としても良レ、。 [0085] 〔実施の形態 4〕
実施の形態 4では、自然吸気によりノズルから気液混相流体を噴出させる装置につ いて説明する。図 9は、実施の形態 4にかかる気液溶解装置のノズル先端部分の斜 視図である。本実施の形態の気液溶解装置は、ノズル 32内に空気の供給管 34が噴 出口 32bと同一面の位置まで通してある。ノズノレ 32は、噴出口 32bに向かって先細り に形成されているので水が付勢されて噴出する。このとき、圧力差が生じ空気の供給 管 34から空気が吸引され、結果としてノズル 32から噴出する流体が気液混相流体と なる。
[0086] このような構成にすれば、ポンプにより送気する必要がなくなり、空気の供給管 34 の他端を取り回し、水面より上にもってくるだけで空気の供給が可能となる。なお、大 気圧との関係から気液溶解装置の設置深さに制約が生じるが、本実施の形態による 気液溶解装置は、例えば、活魚移送時の水槽などに用いることができる。
[0087] なお、ノズル以外の構成にっレ、ては、他の実施の形態で説明した各種構成部を採 用すること力 Sできる。
産業上の利用可能性
[0088] 本発明を利用して、汽水湖やダム湖、または、閉鎖海域 (海水の出入りの少ない海 域)を改質することができる。

Claims

請求の範囲
[1] 貧酸素水域から取り込んだ水に酸素を含んだガスを溶解させて溶存酸素濃度を高 め、当該貧酸素水域へ溶存酸素濃度の高まった水を送り返す気液溶解装置であつ て、
前記貧酸素水域から処理すべき水を取り込む取水部と、
前記酸素を含んだガスを供給する供給部と、
下部に少なくとも一つの孔を有し上部に天板を有する有底の気液溶解室と、 前記供給部が供給するガスと前記取水部が供給する水とを前記天板内壁に衝突 するよう上向きに噴出させ、ガスの気泡と水とで前記気液溶解室内を満たすと同時に 、噴出させたガスと水との勢いによって気泡と水とを激しく攪拌させるノズルと、 前記気液溶解室の外部に配され、前記気液溶解室と前記孔を介して連通しており 、前記気液溶解室から前記孔を通って流出する気泡と水とを貯留しつつ分離し、上 部には分離した気泡を外部へ逃がすガス抜孔を有し、下部には気泡と分離した水を 取り出す取出口を有する気液分離室と、
前記取出口から取り出される水を前記貧酸素水域に送り返す送水部と、 を有したことを特徴とする気液溶解装置。
[2] 前記天板をドーム形状としたことを特徴とする請求項 1に記載の気液溶解装置。
[3] 前記ノズルの先端部分を噴出口に向かって先細りとなるようにしたことを特徴とする 請求項 1または 2に記載の気液溶解装置。
[4] 前記気液分離室内に前記気液溶解室を収容したことを特徴とする請求項 1、 2また は 3に記載の気液溶解装置。
[5] 前記孔の総断面積を前記ノズルの噴出口の面積より広くしたことを特徴とする請求 項 1一 4のいずれか一つに記載の気液溶解装置。
[6] 少なくとも、前記取水部、気液溶解室、ノズル、および、気液分離室を、前記貧酸素 水域中に設置したことを特徴とする請求項 1一 5のいずれか一つに記載の気液溶解 装置。
[7] 前記気液溶解室の側面を円筒形状ないし軸対称形状になるように形成して前記気 液分離室内に収容し、 さらに、開放された上部を有し側面が円筒形状ないし軸対称形状であって上部に レ、くに従って先細りに形成された隔壁体を前記気液溶解室と前記気液分離室との間 に配し、
前記孔を介して前記気液溶解室から前記隔壁体側へ移動する気泡と水とを、前記 気液溶解室の径方向に対して所定の角度をつけて流出させ、
前記気液溶解室外側と前記隔壁体内側との間に上方に移動していく旋回流を発 生させることを特徴とする請求項 1、 2または 3に記載の気液溶解装置。
[8] 前記気液溶解室の厚みを利用して、前記孔の穿孔方向を前記所定の角度のつい た方向とすることを特徴とする請求項 7に記載の気液溶解装置。
[9] 液体と気体の気液混相流体を供給する供給部と、
上部で気液混相流体の流れを受け止めつつ下部に流体の逃がし孔を設けた気液 溶解室と、
気液溶解室に貫入し、供給部が供給する気液混相流体を気液溶解室の上部へ向 けて上向きに噴出させるノズノレと、
逃がし孔を介して気液溶解室と連通しつつ、気液溶解室の外側に配され、逃がし 孔からの気液混相流体を貯留して液体を気体から分離する気液分離室と、 気液分離室で分離された液体を取り出す取出口と、
を有し、
ノズルからの噴出の勢いと気液溶解室の上部からの還流とによる攪拌により液体中 の気体成分の溶存濃度を高める気液溶解装置。
[10] 気液溶解室の上部をドーム状に形成したことを特徴とする請求項 9に記載の気液 溶解装置。
[11] ノズノレの先端部分を噴出口に向かって先細りとなるように形成したことを特徴とする 請求項 9または 10に記載の気液溶解装置。
[12] 気液分離室内に気液溶解室を収容したことを特徴とする請求項 9、 10または 11に 記載の気液溶解装置。
[13] 逃がし孔の総断面積をノズルの噴出口の面積より広くなるように形成したことを特徴 とする請求項 9一 12のいずれか一つに記載の気液溶解装置。
[14] 気液溶解室の側面を円筒形状ないし軸対称形状になるように形成して気液分離室 内に収容し、
さらに、開放された上部を有し側面が円筒形状ないし軸対称形状であって上部に レ、くに従って先細りに形成された隔壁体を気液溶解室と気液分離室との間に配し、 逃がし孔を介して気液溶解室から隔壁体側へ移動する気液混相流体を、気液溶解 室の径方向に対して所定の角度をつけて流出させ、
気液溶解室外側と隔壁体内側との間に上方に移動してレ、く旋回流を発生させるこ とを特徴とする請求項 9、 10または 11に記載の気液溶解装置。
[15] 気液溶解室の厚みを利用して、孔の穿孔方向を気液溶解室の径方向から所定の 角度のついた方向とすることを特徴とする請求項 14に記載の気液溶解装置。
PCT/JP2005/001268 2004-02-03 2005-01-28 気液溶解装置 WO2005075365A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05704266.5A EP1734012B1 (en) 2004-02-03 2005-01-28 Gas-liquid dissolution apparatus
JP2005517662A JP3849986B2 (ja) 2004-02-03 2005-01-28 気液溶解装置
US10/597,627 US7571899B2 (en) 2004-02-03 2005-01-28 Gas-liquid dissolving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-027318 2004-02-03
JP2004027318 2004-02-03

Publications (1)

Publication Number Publication Date
WO2005075365A1 true WO2005075365A1 (ja) 2005-08-18

Family

ID=34835887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001268 WO2005075365A1 (ja) 2004-02-03 2005-01-28 気液溶解装置

Country Status (5)

Country Link
US (1) US7571899B2 (ja)
EP (1) EP1734012B1 (ja)
JP (1) JP3849986B2 (ja)
CN (1) CN100457244C (ja)
WO (1) WO2005075365A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203217A (ja) * 2006-02-02 2007-08-16 Asahi Kogyo Kk 溶解タンク
JP2007209883A (ja) * 2006-02-09 2007-08-23 Daiho Constr Co Ltd 水質改善装置
JP2008178780A (ja) * 2007-01-24 2008-08-07 Matsushita Electric Works Ltd 微細気泡発生装置
JP2008178779A (ja) * 2007-01-24 2008-08-07 Matsushita Electric Works Ltd 微細気泡発生装置
JP2008178806A (ja) * 2007-01-25 2008-08-07 Matsushita Electric Works Ltd 微細気泡発生装置
JP2008272631A (ja) * 2007-04-26 2008-11-13 Asahi Kogyo Kk 微細気泡発生装置
JP2009112909A (ja) * 2007-11-02 2009-05-28 Sanso Electric Co Ltd 微細気泡発生装置における気液溶解タンク
JP2010042394A (ja) * 2008-07-14 2010-02-25 Panasonic Electric Works Co Ltd 微細気泡発生方法及び携帯型の気体溶解水供給装置
CN101977672A (zh) * 2008-11-28 2011-02-16 康源太 溶解装置
JP2011101867A (ja) * 2009-11-11 2011-05-26 Matsue Doken Kk 気液溶解装置
JP2013066815A (ja) * 2011-09-20 2013-04-18 Panasonic Corp 気体溶解装置
CN103706280A (zh) * 2013-12-31 2014-04-09 江苏金铁人自动化科技有限公司 一种纺织浆料搅拌器
CN103785313A (zh) * 2014-01-24 2014-05-14 邵英倚 水压式溶气设备
US9309103B2 (en) 2010-05-03 2016-04-12 Cgp Water Systems, Llc Water dispenser system
US9610551B2 (en) 2011-06-23 2017-04-04 Apiqe Holdings, Llc Flow compensator
US9878273B2 (en) 2011-06-23 2018-01-30 Apiqe Holdings, Llc Disposable filter cartridge for water dispenser
US10150089B2 (en) 2010-05-03 2018-12-11 Apiqe Holdings, Llc Apparatuses, systems and methods for efficient solubilization of carbon dioxide in water using high energy impact
JP2021186795A (ja) * 2020-06-05 2021-12-13 松江土建株式会社 気液溶解装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940760B2 (ja) * 2005-08-31 2007-07-04 株式会社菊池エコアース 微細気泡液生成装置とこれに用いる気泡微細化器
CN101391158B (zh) * 2008-11-05 2012-04-25 通化师范学院长白山新药研究与开发中心 动态提取罐
JP5224382B2 (ja) * 2009-03-30 2013-07-03 株式会社イズミフードマシナリ 分離装置を備えた溶解ポンプ
JP2010269301A (ja) * 2009-04-24 2010-12-02 Anlet Co Ltd 微細気泡発生装置
JP2010264384A (ja) * 2009-05-14 2010-11-25 Matsue Doken Kk アオコの除去方法
KR101157642B1 (ko) * 2010-01-08 2012-06-18 (주)광명바이오산업 버블을 이용한 산소용해장치
WO2012008805A2 (ko) * 2010-07-15 2012-01-19 한국기계연구원 선회유닛 기반의 미세 기포 발생장치
CN103826731A (zh) * 2011-04-26 2014-05-28 奇泰克特许有限责任公司 气体溶解设备
CN103007870B (zh) * 2011-09-20 2014-12-17 中国石油化工股份有限公司 一种喷嘴撞击流重排反应器
JP5681910B2 (ja) * 2011-09-20 2015-03-11 パナソニックIpマネジメント株式会社 気体溶解装置
CN102701427A (zh) * 2012-06-19 2012-10-03 江苏青禾环境修复有限公司 一种新型臭氧气液转换装置
JP5975385B2 (ja) * 2012-07-05 2016-08-23 パナソニックIpマネジメント株式会社 気体溶解装置
CN103861544B (zh) * 2012-12-17 2016-07-27 中国石油化工股份有限公司 一种撞击流反应器及其应用
RU2553875C2 (ru) * 2013-08-16 2015-06-20 Сергей Васильевич Лузан Устройство для насыщения воды кислородом
EP3068734B1 (en) * 2013-11-15 2020-09-23 Nano Gas Technologies, Inc. Machine and process for providing a pressurized liquid stream with dissolved gas
NO339652B1 (no) * 2014-06-24 2017-01-16 Kca Deutag Drilling As Anordning for blanding av borefluid
CN105999777A (zh) * 2016-05-31 2016-10-12 浙江凯色丽科技发展有限公司 气浮式云母粉分级沉降罐
CN106064849B (zh) * 2016-07-11 2023-10-31 上海泰誉节能环保科技有限公司 一种双喷嘴射流曝气装置及其曝气方法
US11254595B2 (en) * 2016-11-15 2022-02-22 Todd BALDRIDGE Microbubble aerator
CN108404699A (zh) * 2017-02-09 2018-08-17 埃尔微尘科技(北京)有限公司 一种气液混合装置
CN107261967A (zh) * 2017-08-12 2017-10-20 张维国 一种溶气水直饮机
US11155482B2 (en) * 2018-04-04 2021-10-26 Somerset Environmental Solutions Inc. Apparatus and method for aerating wastewater
CN108719174A (zh) * 2018-06-13 2018-11-02 河海大学 一种增氧机
CN111361010B (zh) * 2020-03-27 2021-06-08 衡阳市升旺混凝土有限公司 一种高效型立轴式强制混凝土搅拌设备
CN113101852B (zh) * 2021-04-02 2022-02-08 上海乐纯生物技术有限公司 一种小批量药物罐装专用设备
WO2023283064A1 (en) * 2021-07-09 2023-01-12 Particle Measuring Systems, Inc. Liquid impinger sampling systems and methods
CN115193282B (zh) * 2022-07-05 2023-06-30 河北中森化工有限公司 一种甲醛溶液生产用设备及生产工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107240A (en) 1971-06-01 1978-08-15 Atlas Copco Aktiebolag Method and device for lake restoration by oxygen-enriching of the water
JPH05168981A (ja) 1991-12-26 1993-07-02 Nippon Carbon Co Ltd 酸素吹込装置
JPH07185281A (ja) 1993-12-28 1995-07-25 Masayuki Sato 気体の溶解装置
JPH11207162A (ja) 1998-01-22 1999-08-03 Yamahiro:Kk 加圧式酸素溶解方法
JP2000245295A (ja) 1999-02-26 2000-09-12 Matsushita Electric Works Ltd 酸素水供給装置
JP2002177953A (ja) 2000-12-12 2002-06-25 Mikasa:Kk 水中設置型加圧タンク方式水の溶存酸素自動制御方法
JP2002200415A (ja) 2000-12-28 2002-07-16 Fukuoka Prefecture 空気を水に溶解する装置
JP2002273183A (ja) * 2001-03-23 2002-09-24 Nikuni:Kk 気液混合溶解装置
JP2002346351A (ja) 2001-05-28 2002-12-03 Yokogawa Electric Corp 気体溶解装置
JP2003053168A (ja) * 2001-08-21 2003-02-25 Yokogawa Electric Corp ガス溶解装置並びに酸素溶解システム
JP2003340251A (ja) * 2002-05-30 2003-12-02 Ryosaku Fujisato 気体溶解器及びそれらを備えた水処理装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2094778A (en) * 1935-08-31 1937-10-05 Alexander James Carbonating machine
US2790506A (en) * 1955-06-20 1957-04-30 Nat Mine Service Co Exhaust gas conditioner
DE1471625A1 (de) * 1964-05-19 1968-12-05 Keller Fa Otto Venturi-Gaswaescher
US3271304A (en) * 1964-06-26 1966-09-06 Pacific Flush Tank Co Venturi aerator and aerating process for waste treatment
US3671022A (en) * 1969-10-06 1972-06-20 Air Reduction Method and apparatus for the microdispersion of oxygen in water
US3653182A (en) * 1970-01-21 1972-04-04 Lewis Hall Sr M Water conditioning method and apparatus
US3722679A (en) * 1970-09-24 1973-03-27 L Logue Method and means for froth flotation concentration utilizing an aerator having a venturi passage
CA1058158A (en) * 1975-11-04 1979-07-10 Mitsubishi Precision Co. Gas sparger with axially adjustable elements
JPS5316963A (en) * 1976-07-22 1978-02-16 Kurita Water Ind Ltd Air bubble generating device
DE2634496C2 (de) * 1976-07-31 1985-10-17 Bayer Ag, 5090 Leverkusen Injektor zur Begasung einer Flüssigkeit
US4211733A (en) * 1978-12-26 1980-07-08 Chang Shih Chih Gas-liquid mixing process and apparatus
DE3008476A1 (de) * 1980-03-05 1981-09-17 Bayer Ag, 5090 Leverkusen Verfahren zur flotation und verwendung von trichterduesen zur flotation
JPS5870895A (ja) * 1981-10-26 1983-04-27 Hisao Makino 多段浄化方法および装置
FR2550469B1 (fr) * 1983-08-09 1985-10-04 Alsthom Atlantique Injecteur de microbulles
US4707308A (en) * 1983-11-28 1987-11-17 Ryall Ronald W Apparatus for circulating water
JPS62213897A (ja) * 1986-03-12 1987-09-19 Jiyabara:Kk ダム貯水池等の曝気方法及びその装置
US4789503A (en) * 1987-06-15 1988-12-06 Atara Corporation Air removal snorkel device
CN2042465U (zh) * 1989-01-12 1989-08-09 郑创新 高效充氧机
CA2030391C (en) * 1989-11-21 1997-02-11 Masaki Iijima Method for the fixation of carbon dioxide, apparatus for fixing and disposing carbon dioxide, and apparatus for the treatment of carbon dioxide
US5605653A (en) * 1995-11-09 1997-02-25 Devos; Jerry Liquid circulation apparatus
US5783118A (en) * 1997-07-02 1998-07-21 Kolaini; Ali R. Method for generating microbubbles of gas in a body of liquid
US6120008A (en) * 1998-04-28 2000-09-19 Life International Products, Inc. Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
WO2001000316A1 (fr) * 1999-06-29 2001-01-04 Sumitomo Metal Industries, Ltd. Procede de dissolution de gaz hydrosoluble en mer destine a etre isole a grande profondeur, dispositif afferent, procede de pose du dispositif

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107240A (en) 1971-06-01 1978-08-15 Atlas Copco Aktiebolag Method and device for lake restoration by oxygen-enriching of the water
JPH05168981A (ja) 1991-12-26 1993-07-02 Nippon Carbon Co Ltd 酸素吹込装置
JPH07185281A (ja) 1993-12-28 1995-07-25 Masayuki Sato 気体の溶解装置
JPH11207162A (ja) 1998-01-22 1999-08-03 Yamahiro:Kk 加圧式酸素溶解方法
JP2000245295A (ja) 1999-02-26 2000-09-12 Matsushita Electric Works Ltd 酸素水供給装置
JP2002177953A (ja) 2000-12-12 2002-06-25 Mikasa:Kk 水中設置型加圧タンク方式水の溶存酸素自動制御方法
JP2002200415A (ja) 2000-12-28 2002-07-16 Fukuoka Prefecture 空気を水に溶解する装置
JP2002273183A (ja) * 2001-03-23 2002-09-24 Nikuni:Kk 気液混合溶解装置
JP2002346351A (ja) 2001-05-28 2002-12-03 Yokogawa Electric Corp 気体溶解装置
JP2003053168A (ja) * 2001-08-21 2003-02-25 Yokogawa Electric Corp ガス溶解装置並びに酸素溶解システム
JP2003340251A (ja) * 2002-05-30 2003-12-02 Ryosaku Fujisato 気体溶解器及びそれらを備えた水処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1734012A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203217A (ja) * 2006-02-02 2007-08-16 Asahi Kogyo Kk 溶解タンク
JP2007209883A (ja) * 2006-02-09 2007-08-23 Daiho Constr Co Ltd 水質改善装置
JP4489709B2 (ja) * 2006-02-09 2010-06-23 大豊建設株式会社 水質改善装置
JP2008178780A (ja) * 2007-01-24 2008-08-07 Matsushita Electric Works Ltd 微細気泡発生装置
JP2008178779A (ja) * 2007-01-24 2008-08-07 Matsushita Electric Works Ltd 微細気泡発生装置
JP2008178806A (ja) * 2007-01-25 2008-08-07 Matsushita Electric Works Ltd 微細気泡発生装置
JP2008272631A (ja) * 2007-04-26 2008-11-13 Asahi Kogyo Kk 微細気泡発生装置
JP2009112909A (ja) * 2007-11-02 2009-05-28 Sanso Electric Co Ltd 微細気泡発生装置における気液溶解タンク
JP2010042394A (ja) * 2008-07-14 2010-02-25 Panasonic Electric Works Co Ltd 微細気泡発生方法及び携帯型の気体溶解水供給装置
CN101977672B (zh) * 2008-11-28 2014-01-08 康源太 溶解装置
CN101977672A (zh) * 2008-11-28 2011-02-16 康源太 溶解装置
JP2011101867A (ja) * 2009-11-11 2011-05-26 Matsue Doken Kk 気液溶解装置
US9309103B2 (en) 2010-05-03 2016-04-12 Cgp Water Systems, Llc Water dispenser system
US10150089B2 (en) 2010-05-03 2018-12-11 Apiqe Holdings, Llc Apparatuses, systems and methods for efficient solubilization of carbon dioxide in water using high energy impact
US9610551B2 (en) 2011-06-23 2017-04-04 Apiqe Holdings, Llc Flow compensator
US9878273B2 (en) 2011-06-23 2018-01-30 Apiqe Holdings, Llc Disposable filter cartridge for water dispenser
JP2013066815A (ja) * 2011-09-20 2013-04-18 Panasonic Corp 気体溶解装置
CN103706280A (zh) * 2013-12-31 2014-04-09 江苏金铁人自动化科技有限公司 一种纺织浆料搅拌器
CN103785313A (zh) * 2014-01-24 2014-05-14 邵英倚 水压式溶气设备
JP2021186795A (ja) * 2020-06-05 2021-12-13 松江土建株式会社 気液溶解装置
JP7343102B2 (ja) 2020-06-05 2023-09-12 松江土建株式会社 気液溶解装置

Also Published As

Publication number Publication date
CN1914123A (zh) 2007-02-14
EP1734012A4 (en) 2011-03-23
JP3849986B2 (ja) 2006-11-22
JPWO2005075365A1 (ja) 2007-08-02
US7571899B2 (en) 2009-08-11
CN100457244C (zh) 2009-02-04
EP1734012B1 (en) 2013-12-04
US20080142424A1 (en) 2008-06-19
EP1734012A1 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
WO2005075365A1 (ja) 気液溶解装置
JP4378337B2 (ja) 気液溶解装置
US6382601B1 (en) Swirling fine-bubble generator
JP2000000447A (ja) 旋回式微細気泡発生装置
JP5395627B2 (ja) 気液溶解装置
WO2001097958A9 (fr) Generateur de bulles d'air fines et dispositif de generation de bulles d'air fines muni de ce generateur
JP2003205228A (ja) 旋回式微細気泡発生装置
JP2005262200A (ja) 水質浄化装置
JP2010155243A (ja) 旋回式微細気泡発生装置
JP2011152534A (ja) 気液混合循環流発生装置
FI96388C (fi) Menetelmä ja laitteisto kaasun liuottamiseksi
CA3110207A1 (en) Floating, sub-surface discharge aerator
JP2018176094A (ja) 気体溶解装置
EP1670574B1 (en) Method and apparatus for mixing of two fluids
JP2002059186A (ja) 水流式微細気泡発生装置
US4230570A (en) Aerator
JP2011167674A (ja) 水中曝気装置
EP1478452B1 (en) Mixing apparatus
JP2003181259A (ja) 旋回式微細気泡発生方法及び旋回式微細気泡発生装置
EP4142483A1 (en) System and method for supplying gas bubbles into fluid
JP2004097982A (ja) 移動式水質浄化装置
WO2002053505A1 (fr) Dispositif et procede de purification d'eau
CN113754084B (zh) 气液溶解装置
AU770174B2 (en) Swirling type micro-bubble generating system
JP2004243173A (ja) 気泡発生装置、揚液装置、攪拌装置及び気泡発生方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005517662

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580003399.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10597627

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005704266

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005704266

Country of ref document: EP