WO2005060083A1 - 放電灯点灯装置および照明器具 - Google Patents

放電灯点灯装置および照明器具 Download PDF

Info

Publication number
WO2005060083A1
WO2005060083A1 PCT/JP2004/018837 JP2004018837W WO2005060083A1 WO 2005060083 A1 WO2005060083 A1 WO 2005060083A1 JP 2004018837 W JP2004018837 W JP 2004018837W WO 2005060083 A1 WO2005060083 A1 WO 2005060083A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
discharge lamp
frequency
lighting
inverter circuit
Prior art date
Application number
PCT/JP2004/018837
Other languages
English (en)
French (fr)
Inventor
Yuuji Takahashi
Keiichi Shimizu
Original Assignee
Toshiba Lighting & Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting & Technology Corporation filed Critical Toshiba Lighting & Technology Corporation
Priority to JP2005516346A priority Critical patent/JPWO2005060083A1/ja
Priority to EP04807196A priority patent/EP1696547A4/en
Publication of WO2005060083A1 publication Critical patent/WO2005060083A1/ja
Priority to US11/302,356 priority patent/US7211970B2/en
Priority to HK07101633.4A priority patent/HK1097113A1/xx

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a discharge lamp lighting device and a lighting fixture.
  • a discharge lamp lighting device As a discharge lamp lighting device, a pair of switch elements are connected in series to a DC power supply, and a resonance load circuit including an inductor, a capacitor and a discharge lamp is connected in parallel to one of the switch elements, It is known that a DC voltage is converted into a high-frequency voltage by a switching operation of each switch element and supplied to a discharge lamp, and the power loss of the switch element and the inductor is reduced to improve the power conversion efficiency. (See, for example, JP-A-10-243661).
  • the present invention provides a discharge lamp lighting device and a lighting fixture that can reduce reactive power and improve power conversion efficiency.
  • the present invention further provides a discharge lamp lighting device and a lighting fixture capable of reducing the size of the inductor and stably lighting and maintaining the discharge lamp.
  • the present invention further provides a discharge lamp lighting device and a lighting fixture capable of sufficiently securing a control width of an output voltage.
  • the invention according to claim 1 provides an inverter circuit that controls a switch element to turn on and off to convert a DC power supply voltage to a high-frequency voltage; a high-frequency voltage is supplied from the inverter circuit, and the inductor, the capacitor, and a predetermined lighting frequency fs are supplied.
  • a resonant load circuit comprising a discharge lamp to be lit, and an eccentric force S-20d eg—40 deg with respect to a lighting frequency fs at an impedance when the discharge lamp is in rated operation; a lighting cycle of the discharge lamp In a shorter period, a pulse voltage for driving the switch element on and off is continuously generated.
  • a control circuit that performs pulse width modulation on the ON width of the source voltage in accordance with a waveform change of a sine wave voltage corresponding to the lighting cycle, and controls the inverter circuit to supply a substantially sine wave current to the discharge lamp; It is a discharge lamp lighting device characterized by comprising:
  • FIG. 1 is a circuit configuration diagram including partial blocks showing a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an operation reference frequency in a preheating period, a starting voltage application period, and a lighting maintenance control period and a frequency change at the time of each transition in the embodiment.
  • FIG. 3 is a diagram showing a drive signal waveform for driving the MOSFET on and off in the same embodiment.
  • FIG. 4 is a diagram showing a voltage waveform generated between both ends of a MOSFET of the inverter circuit according to the embodiment.
  • FIG. 5 is a view showing a waveform of a voltage applied to a discharge lamp in the embodiment.
  • FIG. 6 is a circuit configuration diagram showing a second embodiment of the present invention.
  • FIG. 7A is a sine wave voltage waveform diagram output from a sine wave voltage source according to the same embodiment.
  • FIG. 7B is a pulse-width-modulated pulse voltage waveform diagram output from the comparator in the same embodiment.
  • FIG. 8 is a circuit diagram showing a third embodiment of the present invention.
  • FIG. 9A is a voltage waveform diagram output from the multiplier according to the embodiment.
  • FIG. 9B is a waveform diagram of a pulse voltage output from the comparator according to the embodiment.
  • FIG. 9C is a diagram showing a pulse voltage waveform output from the comparator according to the embodiment.
  • FIG. 9D is a waveform diagram of a current flowing through the discharge lamp in the same embodiment.
  • FIG. 10 is a circuit configuration diagram showing a fourth embodiment of the present invention.
  • FIG. 11A is a voltage waveform output from the voltage-controlled oscillator according to the embodiment.
  • FIG. 11B is a waveform diagram of a pulse voltage output from the comparator according to the embodiment.
  • FIG. 11C is a waveform diagram of a pulse voltage output from the comparator according to the embodiment.
  • FIG. 11D is a waveform diagram of a current flowing through the discharge lamp in the same embodiment.
  • FIG. 12 is a waveform diagram showing amplitudes of a triangular wave signal and a sine wave signal according to a fifth embodiment of the present invention.
  • FIG. 13 is a view showing a pulse width modulated pulse voltage waveform output from a comparator in the same embodiment.
  • FIG. 14 is a graph showing the effective values of the frequency fs component and the frequency fc component included in the pulse voltage waveform output from the comparator and the effective value of the sum in the same embodiment.
  • FIG. 15 is a diagram showing an output voltage waveform of the inverter circuit in the same embodiment.
  • FIG. 16 is a circuit diagram showing an equivalent circuit of the resonance load circuit in the embodiment.
  • FIG. 17 is a diagram showing output voltage characteristics generated across a resistor R when power of each frequency is supplied from the power supply to the equivalent circuit shown in FIG. 16 while changing its effective value.
  • FIG. 19 is a view for explaining an argument of the resonance load circuit according to the sixth embodiment of the present invention.
  • FIG. 20 is a graph showing a relationship between the argument and power VA generated in inductor component Lr in the same embodiment.
  • FIG. 21 is a graph showing the power VA generated in the inductor component Lr with respect to the DC power supply voltage VDC when the impedance deflection angle of the resonance load circuit is set to Odeg in the seventh embodiment of the present invention. It is.
  • FIG. 22 is a diagram showing an output voltage waveform of the inverter circuit in the same embodiment.
  • FIG. 23 shows the inductor component Lr of the resonant load circuit, the loss of the switching element, and the sum of these losses when the frequency fc of the pulse voltage is changed in the eighth embodiment of the present invention. It is a graph shown.
  • FIG. 24 is a perspective view of a lighting fixture according to a ninth embodiment of the present invention.
  • a high-frequency inverter circuit 2 is connected to a DC power supply 1.
  • the high frequency inverter circuit 2 connects a series circuit of a pair of MOS type FETs 3 and 4 to the DC power supply 1 as a switch element, and connects a drain terminal of the FET 4 to a first capacitor 5 and an inductor 6 in series.
  • the discharge lamp 7 is connected to one end of one filament electrode 7a of the discharge lamp 7 and the source terminal is connected to one end of the other filament electrode 7b of the discharge lamp 7.
  • a second capacitor 8 for flowing a preheating current is connected between the other ends of the filament electrodes 7a and 7b of the discharge lamp 7.
  • the inductor 6, the discharge lamp 7, and the second capacitor 8 constitute a resonance load circuit including an LC series resonance circuit.
  • the first capacitor 5 is a DC cut capacitor.
  • Diodes 9 and 10 are connected in parallel to the MOS FETs 3 and 4 as parasitic diodes.
  • Driving circuits 11 and 12 are connected to the gates of the MOS type FETs 3 and 4, respectively.
  • the driving circuits 11 and 12 are driven and controlled by signals from a CPU 13 constituting a control circuit. I have.
  • the drive circuit 11 is composed of a pair of MOS FETs 14 and 15, and the drive circuit 12 is composed of a pair of MOS FETs 16 and 17, each of which amplifies a signal from the CPU 13 to generate each of the MOS FETs 3. , 4 are supplied with on / off drive signals.
  • the CPU 13 has a built-in timer and controls the timing of signals supplied to the drive circuits 11 and 12 based on a sequence program and data stored in the memory 18. It has become. That is, when the start operation is started, the CPU 13 first preheats the discharge lamp 7 for a certain period of time as shown in FIG. 2, and then applies a high voltage for starting for a certain period of time as shown in FIG. Is to perform the lighting maintenance control.
  • the CPU 13 sets the operating frequency to a high reference frequency during the preheating period, outputs a signal to the driving circuits 11 and 12 based on the reference frequency, and the driving circuits 11 and 12 output the signals based on the reference frequency.
  • the MOS type FETs 3 and 4 are alternately driven for switching.
  • a starting voltage application period starts, and the operating frequency is reduced to switch to the reference frequency at the time of starting.
  • the operating frequency is not reduced rapidly in a short time of the order of msec, but is reduced stepwise and shifted to the reference frequency at the start.
  • the change period for stepwise reduction is set to, for example, about 10 msec.
  • a high starting voltage is applied to the discharge lamp 7.
  • the CPU 13 sets a lighting cycle (1 / lighting frequency) as a lighting cycle when the discharge lamp 7 is lit at high frequency by the high frequency voltage from the high frequency inverter circuit 2.
  • Is T one cycle of this lighting cycle T is divided into 10 as n divisions, and a pulse voltage for turning on and off the MOS FETs 3 and 4 is generated in each section, and the ON width of this pulse voltage is determined as the lighting cycle. It changes according to the waveform change of the sine wave voltage corresponding to T. In other words, pulse width modulation is performed so that the ON width changes from medium ⁇ large ⁇ medium ⁇ small ⁇ medium ⁇ large in accordance with the peak value, average value, or absolute value of the effective value of each section. You.
  • the CPU 13 supplies the pulse-width-modulated signal to the drive circuit 11, and supplies the drive signal shown in FIG. Further, the CPU 13 supplies a signal whose on / off is completely opposite to the signal supplied to the drive circuit 11 to the drive circuit 12, and supplies a drive signal from the drive circuit 12 to the MOSFET 4 to perform on / off drive.
  • the CPU 13 is connected to the pair of M-S type FETs 3 of the inverter circuit 2. 4 are turned on and off at such timing, a pulse voltage as shown in FIG. 4 is generated between both ends of the MOS type F ⁇ 4 of the inverter circuit 2, and the pulse voltage waveform is changed to the first capacitor. 5, the inductor 6, the discharge lamp 7, and the second capacitor 8 are supplied to a resonance load circuit. In the resonance load circuit, harmonic components are removed by the filter effect of the inductor 6 and the capacitor 8, and the voltage waveform applied to the discharge lamp 7 becomes a substantially sinusoidal voltage waveform as shown in FIG. As a result, a substantially sinusoidal current flows through the discharge lamp 7.
  • the lighting total of the discharge lamp 7 is divided into ten, and the MOS type FETs 3, 4 are turned on and off in each of the divided sections.
  • a pulse voltage is generated, and the pulse width modulation is performed so that the ON width of the pulse voltage changes from medium ⁇ large ⁇ medium ⁇ small ⁇ medium ⁇ large according to the waveform change of the sine wave voltage corresponding to lighting cycle ⁇ .
  • a substantially sinusoidal current can be supplied from the inverter circuit 2 to the discharge lamp 7, so that the reactive power can be reduced. Thereby, the power conversion efficiency can be improved.
  • the operating frequency is reduced to the reference frequency at the time of starting to apply a starting voltage. Since the operating frequency is sometimes reduced stepwise to shift to the reference frequency at the time of starting, the circuit stress at the time of the shifting can be reduced, and there is no possibility that the circuit element will be destroyed at the time of starting.
  • the reference frequency also decreases when the power discharge lamp 7 is turned on at the time of starting. In this case, too, the reference frequency is decreased stepwise to shift to the reference frequency for maintaining the lighting, so that the circuit stress can be reduced.
  • a hardware circuit is used in place of the CPU to control on / off of each of the MS FETs 3 and 4 of the inverter circuit 2. That is, a sine wave voltage source 21 that generates a sine wave voltage of a frequency fL, and a triangular wave signal source 2 that generates a triangular wave signal having a frequency that is an integral multiple of the sine wave voltage frequency fL generated from the sine wave voltage source 21 And the sine wave voltage from the sine wave voltage source 21 and the triangular wave signal from the triangular wave signal source 22.
  • the comparator 23 outputs a high-level signal when the sine wave voltage is higher than the triangular signal voltage, and outputs a low-level signal when the sine wave signal voltage is equal to or lower than the triangular signal voltage, and drives the output signal of the comparator 23. It is supplied to the circuit 11 and to the drive circuit 12 via the inversion circuit 24.
  • the frequency fL of the sine wave voltage generated from the sine wave voltage source 21 corresponds to the lighting cycle of the discharge lamp 7, that is, the lighting frequency.
  • the pulse voltage in each section changes between a high level and a low level according to the average value of the sine wave voltage in the section, and the smaller the average value, the longer the period during which the low level is output. Is larger, the period during which the high level is output becomes longer. In this manner, pulse width modulation is performed according to the average value in the section of the sine wave voltage.
  • the drive circuit 11 drives the MOS FET 3 on and off by a drive signal having the same waveform as that of FIG. 7B, and the drive circuit 12 turns on and off the MOS FET 4 by a drive signal having a waveform inverted from the waveform of FIG. 7B. Drive off.
  • a pulse voltage as shown in FIG. 4 is generated between both ends of the MOS FET 4 of the inverter circuit 2 in the same manner as in the above-described first embodiment.
  • the harmonic components of the voltage are removed by the filter effect of the inductor 6 and the capacitor 8.
  • a substantially sinusoidal voltage waveform as shown in FIG. 5 is applied to the discharge lamp 7.
  • a substantially sinusoidal current flows through the discharge lamp 7. Therefore, also in this embodiment, an effect is obtained that the reactive power can be reduced and the power conversion efficiency can be improved.
  • the lamp current is detected to perform feedback control.
  • a lamp current detecting means is provided on the other filament electrode 7b of the discharge lamp 7.
  • the transformer 25 to be formed is connected. That is, one end of the first and second windings 25a and 25b is connected to each end of the filament electrode 7b, the other end of the first winding 25a is connected to the source terminal of the MOS FET 4, and the second The other end of the winding 25b is connected to the capacitor 8.
  • a third winding 25c magnetically coupled to each of the windings 25a and 25b is provided, and an input terminal of a full-wave rectifier circuit 26 composed of a diode bridge is provided between both ends of the winding 25c. I'm tying it up.
  • a parallel circuit of a resistor 27 and a capacitor 31 is connected between the output terminals of the full-wave rectifier circuit 26, and an output voltage generated between the output terminals is applied to an inverting input terminal (-) of an error amplifier 28 via a resistor 32.
  • a reference voltage Vref ⁇ is supplied to a non-inverting input terminal (+) of the error amplifier 28.
  • the error amplifier 28 amplifies and outputs the difference between the output voltage from the full-wave rectifier circuit 26 and the reference voltage Vref.
  • the output from the error amplifier 28 is supplied to a multiplier 29.
  • the multiplier 29 receives a sine wave voltage from the sine wave voltage source 21.
  • the multiplier 29 multiplies the sine wave voltage from the sine wave voltage source 21 by the output from the error amplifier 28 to vary the amplitude of the sine wave voltage and supplies the sine wave voltage to the comparator 23.
  • the comparator 23 compares the sine wave voltage from the multiplier 29 with the triangular wave signal from the triangular wave signal source 22.
  • the lamp current flowing through the discharge lamp 7 is detected by the transformer 25. That is, when the lamp current flows through the first winding 25a, a voltage is induced in the third winding 25c. At this time, the influence of the current flowing through the capacitor 8 is eliminated by the relationship between the first winding 25a and the second winding 25b. Thus, a voltage is induced in the third winding 25c by only the lamp current.
  • the voltage is applied as an AC voltage to the input terminal of the full-wave rectifier circuit 26. Then, a full-wave rectified voltage is output from an output terminal of the full-wave rectification circuit 26, and the full-wave rectified voltage is smoothed by a parallel circuit of the resistor 27 and the capacitor 31, and becomes a DC voltage. This DC voltage is input to the inverting input terminal (-) of the error amplifier 28.
  • the error amplifier 28 When the lamp current in the discharge lamp 7 is in a steady state, the error amplifier 28 The DC voltage input to the input terminal (-) becomes substantially equal to the reference voltage Vref, and at this time, the output from the error amplifier 28 becomes substantially equal to Vref. Accordingly, the voltage waveform from the multiplier 29 becomes a voltage waveform substantially equal to the voltage obtained by multiplying the sine wave voltage waveform from the sine wave voltage source 21 by Vref as shown by a waveform V10 in FIG. 9A).
  • the comparator 23 compares the sine-wave voltage waveform from the multiplier 29 with the triangular-wave signal from the triangular-wave signal source 22, and goes high when the sine-wave voltage from the multiplier 29 is higher than the triangular-wave signal voltage from the triangular-wave signal source 22.
  • the sine wave voltage from the multiplier 29 is lower than the triangular wave signal voltage from the triangular wave signal source 22, a low-level signal is output, and the pulse voltage output from the comparator 23 is as shown in FIG. Become. Therefore, at this time, a voltage waveform as shown by a waveform V20 in FIG. 9D is applied to the discharge lamp 7.
  • the pulse voltage output from the comparator 23 is controlled so that the low-level period becomes longer in the period tl and becomes shorter in the period t2 as shown in FIG. 9C. Voltage.
  • the waveform of the current flowing through the discharge lamp 7 has a smaller amplitude as shown by the waveform V21 in FIG. 9D, and the increase in the lamp current is suppressed.
  • the lamp current flowing through the discharge lamp 7 is kept constant.
  • the current limiting effect of the lamp current is obtained by such feedback control, a sufficient current limiting operation can be obtained as a whole even if an inductor 6 having a small capacity is used. Therefore, the discharge lamp can be stably lit and maintained.
  • the power conversion efficiency can be improved by simple control as in the above-described embodiment.
  • a lamp current is detected and feedback control is performed. Note that the same parts as those in the third embodiment or corresponding parts are denoted by the same reference numerals, and detailed description is omitted.
  • a voltage controlled oscillator (VC ⁇ ) 30 is used instead of the sine wave voltage source 21 and the multiplier 29 in FIG.
  • Other configurations are the same as those in FIG.
  • the output from the error amplifier 28 is supplied to the voltage controlled oscillator 30, and the output of the voltage controlled oscillator 30 is supplied to the comparator 23.
  • the voltage-controlled oscillator 30 makes the frequency of the sine wave voltage output as shown by the waveform V31 in FIG. 11A higher than the reference frequency fL.
  • the sine wave voltage output from the voltage controlled oscillator 30 is compared with the triangular wave signal voltage from the triangular wave signal source 22 in the comparator 23.
  • the comparator 23 outputs a high-level signal when the sine wave voltage from the voltage controlled oscillator 30 is higher than the triangular wave signal voltage from the triangular wave signal source 22, and the sine wave voltage from the voltage controlled oscillator 30 three A low level signal is output when the voltage is equal to or lower than the square wave signal voltage. Therefore, when the frequency of the sine wave voltage output from the voltage controlled oscillator 30 increases, the pulse voltage output from the comparator 23 changes as shown in FIG. 11C. As a result, the voltage applied to the discharge lamp 7 increases in frequency as shown by the waveform V41 in FIG.
  • the lamp current flowing through the discharge lamp 7 is kept constant.
  • a current limiting effect of the lamp current can be obtained. Therefore, even if an inductor 6 having a small capacity is used, a sufficient current limiting effect can be obtained as a whole. Therefore, the discharge lamp can be stably lit and maintained.
  • the power conversion efficiency can be improved by simple control as in the above-described embodiment.
  • the lighting frequency of the discharge lamp 7 is fs
  • the frequency of the pulse voltage output from the comparator 23 is fc (> fs). Then, in the output voltage-frequency characteristics of the resonant load circuit using the rated load, the output voltage Vs at the frequency fs component and the output voltage Vc at the frequency fc component are set so that Vs> Vc. , To state.
  • the output voltage supplied to the discharge lamp 7 as a load can be varied by changing the sine wave voltage from the sine wave voltage source 21, and the output voltage can be controlled. A sufficient width can be secured.
  • the amplitude of the triangular wave signal S1 from the triangular wave signal source 22 is set to 1
  • the amplitude of the sine wave signal S2 from the sinusoidal voltage source 21 is 0.8
  • the lighting frequency fs of the discharge lamp 7 is 5 OkHz
  • the frequency fc of the pulse voltage output from the comparator 23 is 1 MHz
  • the comparator 23 When the voltage of the sine wave signal S2 is higher than the voltage of the triangular signal S1, the output is set to "1", and when the voltage of the sine wave signal S2 is lower than the voltage of the triangular signal S1, the output is set to "0".
  • the pulse width modulated pulse voltage waveform output from is shown in FIG.
  • the effective value of the frequency fs component is approximately 0.4, and the effective value of the frequency fc component is approximately 0.7.
  • the amplitude of the sine wave signal S2 is 0.8, the effective value of the frequency fs component and the effective value of the frequency fc component are approximately 0.6, and when the amplitude of the sine wave signal S2 is 1.0, the frequency fs It can be seen that the effective value of the component is approximately 0.7, and the effective value of the frequency fc component is inverted to approximately 0.4. Also, it can be seen that when the amplitude of the sine wave signal S2 is 0.4 or more, the sum of the effective value of the frequency fs component and the effective value of the frequency fc component is constant at approximately 1.13.
  • the pulse voltage from the comparator 23 is supplied to the drive circuit 11 to drive the MOS FET 3 of the inverter circuit 2 for switching, and the pulse voltage is inverted by the inversion circuit 24 and supplied to the drive circuit 12.
  • the MOS type FET 4 of the inverter circuit 2 When the MOS type FET 4 of the inverter circuit 2 is switched and driven, the inverter circuit 2 generates the output voltage of which the width is modulated as shown in FIG. 15, and the first capacitor 5, the inductor 6, the discharge lamp 7, and the Supplied to the resonant load circuit consisting of two capacitors 8. At this time, an output according to the frequency characteristics of the resonance load circuit is supplied to the discharge lamp 7 as a load.
  • Lr indicates an inductor component
  • Cf indicates a capacitor component
  • R indicates an equivalent load resistance of the discharge lamp 7 during rated operation.
  • the resonance frequency (1 / 2 ⁇ Lr'Cf) of the resonance load circuit is set to be higher than the frequency fs and lower than the frequency fc.
  • the solid line graph gll in FIG. 17 shows the case where the AC effective value is approximately 0.4, and the solid line graph gl2 shows the case where the AC effective value is approximately 0.7. This corresponds to the case where the amplitude of the sine wave signal S2 is 0.6.
  • the present inventor considers that the output voltage Vs at the frequency fs is made different from the output voltage Vc at the frequency fc, and from the characteristics of FIG. 17, the force for changing the inductor component Lr and the capacitor component Cf, By changing fc, Vs> Vc can be set, so experiments were conducted on this.
  • the final output supplied to 7 changes as shown by the graph g4 in FIG. That is, assuming that the lighting frequency of the discharge lamp 7 is fs and the frequency of the pulse voltage output from the comparator 23 is fc (> fs), the resonance load using the equivalent load resistance at the rated operation of the discharge lamp 7 is used.
  • the frequency characteristics of the output voltage of the circuit if the output voltage Vs at the frequency fs component and the output voltage Vc at the frequency fc component and the force Vs> Vc are set, the amplitude of the sine wave voltage from the sine wave voltage source 21 By changing the output voltage, the output voltage supplied to the discharge lamp 7 can be varied, and the control width of the output voltage can be sufficiently secured.
  • present embodiment is not limited to the force described in the second embodiment and is not limited to the first embodiment.
  • third and fourth embodiments are also applicable to the first embodiment. It can also be applied to forms.
  • the equivalent load resistance at the rated operation of the discharge lamp 7 is used.
  • the output voltage Vs at the frequency fs component, the output voltage Vc at the frequency fc component, and the force Vs> Vc are set so that the rated load is further reduced.
  • the condition is that the angle of deviation of the impedance of the used resonance load circuit with respect to the lighting frequency fs of the discharge lamp 7 is set between -20 deg to 40 deg.
  • the imaginary part can be reduced by reducing the argument from the vector in FIG. This will reduce reactive power. Therefore, in the resonant load circuit, in order to reduce the reactive power and reduce the circuit loss, it is possible to specify the deviation angle of the impedance Z of the resonant load circuit.
  • DC voltage VDC 350V
  • lighting frequency fs 20kHz
  • pulse voltage frequency fc 200kHz
  • the equivalent resistance of rated operation of discharge lamp 7 is 300 ⁇
  • the rated current of discharge lamp 7 is 0.37A.
  • the equivalent load resistance at the rated operation of the discharge lamp 7 is used.
  • the output voltage Vs at the frequency fs component, the output voltage Vc at the frequency fc component, and the force Vs> Vc are set so that the impedance of the resonant load circuit using the rated load.
  • the deflection angle of the discharge lamp 7 with respect to the lighting frequency fs is set between 1 lOdeg and 40 deg
  • the load voltage generated in the resonance load circuit using the rated load is further included.
  • the inverter circuit 2 is marked so that the effective value VLrais of the lighting frequency fs component of the discharge lamp 7 and the effective value Virms of the lighting frequency fs component of the discharge lamp 7 included in the output voltage of the inverter circuit 2 are approximately equal.
  • the condition is that the DC power supply voltage VDC from the DC power supply 1 to be applied is set It is.
  • the lighting frequency fs of the discharge lamp 7 is 20 kHz
  • the frequency of the pulse voltage fc is 200 kHz
  • the sine wave voltage source for the triangle wave signal from the triangle wave signal source 22 is used.
  • the modulation degree of the sine wave voltage generated from 21 is 0.9
  • the rated current of the discharge lamp 7 is 0.37A
  • the lamp voltage is 113V
  • the first capacitor 5, inductor 6, the impedance declination of the resonant load circuit consisting of the discharge lamp 7 and the second capacitor 8 is set to Odeg
  • the graph in Fig. 21 shows that the power VA generated in the inductor component Lr decreases as the DC power supply voltage VDC increases, and the inductor 6 used decreases as the DC power supply voltage VDC increases. Show that it can be
  • the output voltage supplied from the inverter circuit 2 to the resonance load circuit is a pulse width modulation waveform, and this waveform includes the frequency component of the sine wave voltage and the frequency component of the pulse voltage. Since the triangular wave signal having the amplitude of 1 is modulated with the sine wave voltage having the amplitude of 0.9, the modulation degree of the output voltage from the inverter circuit 2 is also 0.9. That is, the output voltage of the inverter circuit 2 has a voltage waveform as shown in FIG.
  • Virms is the effective value of the lighting frequency fs component of the discharge lamp 7 included in the output voltage of the inverter circuit 2
  • is the modulation factor.
  • DC power supply voltage VDC can be set high, whereby power VA generated in inductor component Lr can be reduced, and circuit loss in the resonant load circuit can be reduced. Further, since the power VA generated in the inductor component Lr can be reduced, the size of the inductor 6 used can be reduced.
  • the lighting frequency fs of the discharge lamp 7 is 20 kHz, and the sinusoidal wave generated from the sinusoidal voltage source 21 with respect to the triangular wave signal from the triangular wave signal source 22.
  • the voltage modulation factor is 0.9
  • the impedance at the lighting frequency fs of the discharge lamp is the load
  • the deflection angle of the impedance of the resonant load circuit at the lighting frequency fs is Odeg
  • the pulse voltage frequency fc The inductance component Lr of the resonant load circuit and the losses of the switching elements 3 and 4 when the value is changed can be determined.
  • the frequency fc be 5 times or less the lighting frequency fs. That is, in this embodiment, the frequency fc of the pulse voltage is 30 kHz to 100 kHz, and the preferable range is 30 kHz to 50 kHz.
  • FIG. 24 shows a lighting fixture 100, which is a socket 1 of a lighting fixture body 101. 02, a discharge lamp 103 is mounted therein, and the discharge lamp lighting device of any of the above-described embodiments is incorporated therein as a discharge lamp lighting device 104, and the discharge lamp 103 is lit by the discharge lamp lighting device 104. I have.
  • a lighting fixture including the discharge lamp lighting device of each of the above-described embodiments can be realized. That is, a lighting fixture that can improve the power conversion efficiency can be realized. In addition, when a discharge lamp lighting device that performs feedback control is used, a lighting fixture that can stably maintain the discharge lamp even when the inductor 6 is reduced can be realized.
  • the control range of the output voltage is sufficient. Lighting equipment that can be secured can be realized. Furthermore, by setting the declination of the impedance of the resonance load circuit with respect to the discharge lamp lighting frequency fs between 1 lOdeg and 40deg, the discharge lamp lighting frequency included in the load voltage generated in the resonance load circuit is further increased. Circuit loss can be reduced by setting the DC power supply voltage so that the effective value VLrms of the fs component and the effective value Virms of the discharge lamp fs component included in the output voltage of the inverter circuit 2 are approximately equal. Thus, a lighting device that can reduce the size of the inductor can be realized.
  • the present invention can be used for a discharge lamp lighting device and a lighting fixture that can reduce reactive power and improve power conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

 1対のMOS型FETを交互にオン、オフ制御して直流電源1の電圧を高周波電圧に変換する高周波インバータ回路(2)と、このインバータ回路からの高周波電圧が供給される、インダクタ(6)、キャパシタ(8)及び放電灯(7)を備え、放電灯が定格動作しているときのインピーダンスにおいて点灯周波数fsに対する偏角が−20deg~40degの間に設定されてなる共振負荷回路と、プログラムデータとメモリ(18)に格納されたデータに基づいて放電灯(7)の点灯周期よりも短い周期でMOS型FET(3,4)をオン、オフ駆動するパルス電圧を連続的に生成し、このパルス電圧のオン幅を点灯周期に対応した正弦波電圧の波形変化に応じてパルス幅変調制御するCPU(13)とを備え、インバータ回路(2)からの高周波出力により放電灯(7)に略正弦波状の電流を供給する。

Description

明 細 書
放電灯点灯装置および照明器具
技術分野
[0001] 本発明は、放電灯点灯装置および照明器具に関する
背景技術
[0002] 従来、放電灯点灯装置としては、直流電源に、 1対のスィッチ素子を直列に接続し 、一方のスィッチ素子にインダクタ、キャパシタ及び放電灯を備えた共振負荷回路を 並列に接続し、各スィッチ素子のスィッチング動作により直流電圧を高周波電圧に変 換して放電灯に供給するものにおいて、スィッチ素子及びインダクタの電力損失を低 減し電力変換効率の向上を図ったものが知られている(例えば、特開平 10— 24366 1号公報参照)。
発明の開示
[0003] し力、しながら、スィッチ素子及びインダクタの電力損失を低減して電力変換効率の 向上を図るものでは、制御が複雑化する問題があった。また、インダクタの限流作用 が小さくなつて放電灯を安定に点灯維持できなくなる虞があった。
[0004] 本発明は、無効電力を低減できて電力変換効率の向上を図ることができる放電灯 点灯装置および照明器具を提供する。
また、本発明は、さらに、インダクタを小さくできるとともに放電灯を安定に点灯維持 することができる放電灯点灯装置および照明器具を提供する。
[0005] また、本発明は、さらに、出力電圧の制御幅を充分に確保できる放電灯点灯装置 および照明器具を提供する。
請求項 1記載の発明は、スィッチ素子をオン、オフ制御して直流電源電圧を高周波 電圧に変換するインバータ回路と;インバータ回路から高周波電圧が供給され、イン ダクタ、キャパシタおよび所定の点灯周波数 fsで点灯される放電灯を備え、放電灯が 定格動作しているときのインピーダンスにおいて点灯周波数 fsに対する偏角力 S-20d eg— 40degの間に設定されてなる共振負荷回路と;放電灯の点灯周期よりも短い周 期で前記スィッチ素子をオン、オフ駆動するパルス電圧を連続的に生成し、このパル ス電圧のオン幅を前記点灯周期に対応した正弦波電圧の波形変化に応じてパルス 幅変調し、前記インバータ回路から前記放電灯に略正弦波状の電流を供給する制 御を行う制御回路と;を備えたことを特徴とする放電灯点灯装置である。
図面の簡単な説明
[図 1]図 1は、本発明の、第 1の実施の形態を示す一部ブロックを含む回路構成図で める。
[図 2]図 2は、同実施の形態における、予熱期間、始動電圧印加期間、点灯維持制 御期間における動作基準周波数とそれぞれの移行時の周波数変化を示す図である
[図 3]図 3は同実施の形態における MOSFETをオン、オフ駆動する駆動信号波形を 示す図である。
[図 4]図 4は同実施の形態におけるインバータ回路の MOSFETの両端間に発生す る電圧波形を示す図である。
[図 5]図 5は同実施の形態における放電灯への印加電圧波形を示す図である。
[図 6]図 6は本発明の、第 2の実施の形態を示す回路構成図である。
[図 7A]図 7Aは同実施の形態における正弦波電圧源から出力される正弦波電圧波 形図である。
[図 7B]図 7Bは同実施の形態におけるコンパレータから出力されるパルス幅変調され たパルス電圧波形図である。
[図 8]図 8は本発明の、第 3の実施の形態を示す回路構成図である。
[図 9A]図 9Aは同実施の形態における乗算器から出力される電圧波形図である。
[図 9B]図 9Bは同実施の形態におけるコンパレータから出力されるパルス電圧波形図 である。
[図 9C]図 9Cは同実施の形態におけるコンパレータから出力されるパルス電圧波形 図である。
[図 9D]図 9Dは同実施の形態における放電灯に流れる電流波形図である。
[図 10]図 10は本発明の、第 4の実施の形態を示す回路構成図である。
[図 11A]図 11Aは同実施の形態における電圧制御発振器から出力される電圧波形 図である。
[図 11B]図 11Bは同実施の形態におけるコンパレータから出力されるパルス電圧波 形図である。
[図 11C]図 11Cは同実施の形態におけるコンパレータから出力されるパルス電圧波 形図である。
[図 11D]図 11Dは同実施の形態における放電灯に流れる電流波形図である。
[図 12]図 12は本発明の、第 5の実施の形態における三角波信号と正弦波信号との 振幅を示す波形図である。
[図 13]図 13は同実施の形態においてコンパレータから出力されるパルス幅変調され たパルス電圧波形を示す図である。
[図 14]図 14は同実施の形態においてコンパレータから出力されるパルス電圧波形に 含まれる周波数 fs成分と周波数 fc成分の実効値及びその和の実効値を示すグラフ である。
[図 15]図 15は同実施の形態におけるインバータ回路の出力電圧波形を示す図であ る。
[図 16]図 16は同実施の形態における共振負荷回路の等価回路を示す回路図である
[図 17]図 17は図 16に示す等価回路に対して電源から各周波数の電力を、実効値を 変えて供給した場合の抵抗 Rに両端間に発生する出力電圧特性を示す図である。
[図 18]図 18は同実施の形態において、 Vs=Vc及び Vs >Vcとして正弦波信号の振 幅を変化させたときの放電灯に供給される最終出力を示すグラフである。
[図 19]図 19は本発明の、第 6の同実施の形態における共振負荷回路の偏角を説明 するための図である。
[図 20]図 20は同実施の形態における偏角とインダクタ成分 Lrに発生する電力 VAと の関係を示すグラフである。
[図 21]図 21は本発明の、第 7の同実施の形態において共振負荷回路のインピーダ ンス偏角を Odegに設定した場合の直流電源電圧 VDCに対するインダクタ成分 Lrに 発生する電力 VAを示すグラフである。 [図 22]図 22は同実施の形態におけるインバータ回路の出力電圧波形を示す図であ る。
[図 23]図 23は本発明の、第 8の実施の形態において、パルス電圧の周波数 fcを変 化させたときの共振負荷回路のインダクタ成分 Lr、スイッチング素子の損失及びこら の損失の和を示すグラフである。
[図 24]図 24は本発明の、第 9の実施の形態を示す照明器具の斜視図である。
発明を実施するための最良の形態
[0007] 以下、本発明の実施の形態を、図面を参照して説明する。
(第 1の実施の形態)
図 1に示すように、直流電源 1に高周波インバータ回路 2を接続している。前記高周 波インバータ回路 2は、スィッチ素子として、 1対の MOS型 FET3、 4の直列回路を前 記直流電源 1に接続し、前記 FET4のドレイン端子を第 1のキャパシタ 5、インダクタ 6 を直列に介して放電灯 7の一方のフィラメント電極 7aの一端に接続するとともにソース 端子を前記放電灯 7の他方のフィラメント電極 7bの一端に接続してレ、る。前記放電灯 7の各フィラメント電極 7a、 7bの他端間に予熱電流を流すための第 2のキャパシタ 8を 接続している。
[0008] 前記インダクタ 6、放電灯 7及び第 2のキャパシタ 8は LC直列共振回路を含む共振 負荷回路を構成している。また、前記第 1のキャパシタ 5は直流カット用のキャパシタ である。前記各 MOS型 FET3, 4には、寄生ダイオードとしてダイオード 9, 10が並列 に接続されている。
[0009] 前記各 MOS型 FET3, 4のゲートには駆動回路 11 , 12が接続され、この各駆動回 路 11 , 12は制御回路を構成する CPU13からの信号によって駆動制御されるように なっている。前記駆動回路 11は 1対の MOS型 FET14, 15力らなり、また、前記駆動 回路 12は 1対の MOS型 FET16, 17力らなり、それぞれ CPU13からの信号を増幅 して前記各 MOS型 FET3, 4のゲートに対して、オン、オフ駆動信号を供給するよう になっている。
[0010] 前記 CPU13はタイマを内蔵し、シーケンスプログラムとメモリ 18に格納されている データに基づいて、前記各駆動回路 11, 12に供給する信号のタイミングを制御する ようになっている。すなわち、前記 CPU13は、スタート操作が開始されると、放電灯 7 に対し、図 2に示すように、先ず、一定時間予熱を行い、その後始動用高電圧の印加 を一定時間行い、ランプ点灯後は点灯維持制御を行うようになってレ、る。
[0011] 前記 CPU13は、予熱期間においては動作周波数を高い基準周波数に設定し、こ の基準周波数に基づいて駆動回路 11, 12に信号を出力し、駆動回路 11 , 12は基 準周波数に基づいて前記各 MOS型 FET3, 4を交互にスイッチング駆動する。
[0012] そして、一定時間の予熱が終了すると始動電圧印加期間に入り、動作周波数を低 下させて始動時の基準周波数に切替える。このとき、動作周波数を msecオーダという 短い時間で急速に低下させないで段階的に低下させて始動時の基準周波数に移行 させる。この段階的に低下させる変化期間は、例えば、約 10msec程度に設定してい る。この始動期間においては、放電灯 7に始動用高電圧が印加する。
[0013] そして、一定時間が経過し放電灯 7が点灯を開始すると点灯維持制御期間に入り、 動作周波数はさらに低下して点灯時の基準周波数になる。このとき、動作周波数を nsecオーダという短い時間で急速に低下させないで段階的に低下させて点灯時の基 準周波数に移行させる。
[0014] 放電灯 7を点灯維持させる制御期間においては、 CPU13は、放電灯 7が高周波ィ ンバータ回路 2からの高周波電圧によって高周波点灯される時の点灯周期としての 点灯サイクル(1/点灯周波数)を Tとすると、この点灯サイクル Tの 1サイクルを n分割 としての 10分割し、各区間で MOS型 FET3, 4をオン、オフ駆動するパルス電圧を 生成し、このパルス電圧のオン幅を点灯サイクル Tに対応した正弦波電圧の波形変 化に応じて変化させる。すなわち、オン幅が、各区間の電圧値のピーク値、平均値又 は実効値の絶対値に応じて中→大→中→小→中→大' · ·と変化するようにパルス幅 変調される。そして、 CPU13はこのパルス幅変調した信号を駆動回路 11に供給し、 この駆動回路 11から M〇S型 FET3に図 3に示す駆動信号を供給してオン、オフ駆 動する。また、 CPU13は駆動回路 11に供給した信号とはオン、オフが全く逆の信号 を駆動回路 12に供給し、この駆動回路 12から MOSFET4に駆動信号を供給してォ ン、オフ駆動する。
[0015] 点灯維持制御期間において、 CPU13はインバータ回路 2の 1対の M〇S型 FET3 , 4をこのようなタイミングでオン、オフ駆動することで、インバータ回路 2の MOS型 F ΕΤ4の両端間には図 4に示すようなパルス電圧が発生し、このパルス電圧波形が第 1のキャパシタ 5、インダクタ 6、放電灯 7及び第 2のキャパシタ 8からなる共振負荷回 路に供給される。共振負荷回路では、インダクタ 6とキャパシタ 8とのフィルタ効果によ つて高調波成分が除去され、放電灯 7に印加される電圧波形は図 5に示すような略 正弦波の電圧波形となる。これにより、放電灯 7には略正弦波状の電流が流れるよう になる。
[0016] このように、放電灯 7が点灯した後の点灯維持制御においては、放電灯 7の点灯サ イタル Τを 10分割し、この分割した各区間で MOS型 FET3, 4をオン、オフ駆動する パルス電圧を生成し、このパルス電圧のオン幅を点灯サイクル Τに対応した正弦波 電圧の波形変化に応じて中→大→中→小→中→大…と変化するようにパルス幅変 調させることにより、インバータ回路 2から放電灯 7に略正弦波状の電流を供給できる ので、無効電力を低減できる。これにより、電力変換効率の向上を図ることができる。
[0017] また、放電灯 7に対して動作周波数を高い基準周波数に設定して一定時間予熱を 行った後、動作周波数を始動時の基準周波数に低下させて始動電圧の印加を行う 力、このときに動作周波数を段階的に低下させて始動時の基準周波数に移行させる ようにしているので、この移行時における回路ストレスを小さくでき、始動時に回路素 子が破壊される虞はない。また、始動時力 放電灯 7が点灯したときも基準周波数の 低下があるがこのときにも段階的に低下させて点灯維持時の基準周波数に移行させ ているので、回路ストレスを小さくできる。
[0018] (第 2の実施の形態)
なお、前述した実施の形態と同一の部分または、対応する部分には同一の符号を 付し、詳細な説明は省略する。
この実施の形態は、図 6に示すように、 CPUに代えてハード回路を使用してインバ ータ回路 2の各 M〇S型 FET3, 4をオン、オフ制御するものである。すなわち、周波 数 fLの正弦波電圧を発生する正弦波電圧源 21と、この正弦波電圧源 21から発生す る正弦波電圧周波数 fLの整数倍の周波数の三角波信号を発生する三角波信号源 2 2と、前記正弦波電圧源 21からの正弦波電圧と三角波信号源 22からの三角波信号 を比較し、正弦波電圧が三角波信号電圧よりも高いときハイレベル信号を出力し、三 角波信号電圧以下のときローレベル信号を出力するコンパレータ 23を設け、前記コ ンパレータ 23の出力信号を駆動回路 11に供給するとともに反転回路 24を介して駆 動回路 12に供給している。前記正弦波電圧源 21から発生する正弦波電圧の周波 数 fLは放電灯 7の点灯サイクル、すなわち、点灯周波数に対応している。
[0019] このような構成においては、正弦波電圧源 21から図 7Aに示すような正弦波電圧が 発生すると、コンパレータ 23からは、例えば、点灯サイクルの 1サイクルを 10分割し、 この分割した各区間でパルス幅変調した図 7Bに示すようなパルス電圧が出力され、 駆動回路 11に供給されるとともに反転回路 24を介して駆動回路 12に供給される。
[0020] 各区間におけるパルス電圧は、区間内の正弦波電圧の平均値に応じてハイレベル とローレベルの期間が変化し、平均値が小さいほどローレベルを出力する期間が長く なり、平均値が大きいほどハイレベルを出力する期間が長くなる。このように正弦波電 圧の区間内の平均値に応じてパルス幅変調される。
[0021] 駆動回路 11は図 7Bと同じ波形の駆動信号によって MOS型 FET3をオン、オフ駆 動し、駆動回路 12は図 7Bの波形を反転した波形の駆動信号によって MOS型 FET 4をオン、オフ駆動する。
[0022] これにより、点灯維持制御期間においては、インバータ回路 2の MOS型 FET4の 両端間には前述した第 1の実施の形態と同様に図 4に示すようなパルス電圧が発生 し、このパルス電圧の高調波成分はインダクタ 6とキャパシタ 8とのフィルタ効果によつ て除去される。こうして、放電灯 7には図 5に示すような略正弦波の電圧波形が印加さ れる。これにより、放電灯 7には略正弦波状の電流が流れるようになる。従って、この 実施の形態においても、無効電力を低減して電力変換効率の向上を図ることができ るという効果が得られる。
[0023] (第 3の実施の形態)
なお、前述した実施の形態と同一の部分または、対応する部分には同一の符号を 付し、詳細な説明は省略する。この実施の形態はランプ電流を検出してフィードバッ ク制卸するものである。
図 8に示すように、放電灯 7の他方のフィラメント電極 7bにランプ電流検出手段を構 成するトランス 25を接続している。すなわち、フィラメント電極 7bの各端に第 1、第 2の 卷線 25a, 25bの一端を接続し、第 1の卷線 25aの他端を MOS型 FET4のソース端 子に接続し、第 2の卷線 25bの他端をキャパシタ 8に接続している。
[0024] そして、前記各卷線 25a, 25bと磁気的に結合した第 3の卷線 25cを設け、この卷 線 25cの両端間にダイオードブリッジで構成された全波整流回路 26の入力端子を接 糸冗してレヽる。
前記全波整流回路 26の出力端子間に抵抗 27とキャパシタ 31との並列回路を接続 し、この出力端子間に発生する出力電圧を、抵抗 32を介して誤差増幅器 28の反転 入力端子 (-)に供給している。この誤差増幅器 28の非反転入力端子 (+)には基準電 圧 Vref^供給されている。前記誤差増幅器 28は、全波整流回路 26からの出力電圧 と基準電圧 Vrefとの差を増幅して出力するようになっている。
[0025] 前記誤差増幅器 28からの出力を乗算器 29に供給している。また、前記乗算器 29 には正弦波電圧源 21からの正弦波電圧が入力されている。前記乗算器 29は前記 正弦波電圧源 21からの正弦波電圧と前記誤差増幅器 28からの出力を乗算して正 弦波電圧の振幅を可変してコンパレータ 23に供給している。前記コンパレータ 23は 、前記乗算器 29からの正弦波電圧と三角波信号源 22からの三角波信号を比較する ようになつている。
[0026] このような構成においては、放電灯 7に流れるランプ電流はトランス 25によって検出 される。すなわち、ランプ電流が第 1の卷線 25aを介して流れると、第 3の卷線 25cに 電圧が誘起される。このときキャパシタ 8を介して流れる電流の影響は第 1の卷線 25a と第 2の卷線 25bとの関係で除去される。こうして、第 3の卷線 25cにはランプ電流の みによる電圧が誘起される。
[0027] この第 3の卷線 25cに誘起される電圧はランプ電流の向きによって極性が反転する ので、交流電圧となって全波整流回路 26の入力端子に印加される。そして、全波整 流回路 26の出力端子から全波整流電圧を出力し、この全波整流電圧が抵抗 27とキ ャパシタ 31との並列回路によって平滑され直流電圧となる。この直流電圧が誤差増 幅器 28の反転入力端子 (-)に入力される。
[0028] 放電灯 7においてランプ電流が定常状態にあるときには、誤差増幅器 28の反転入 力端子 (-)に入力される直流電圧は基準電圧 Vrefと略等しくなり、このときには誤差増 幅器 28からの出力は略 Vrefに等しい値になる。従って、乗算器 29からの電圧波形 は図 9A)に波形 V10で示すように正弦波電圧源 21からの正弦波電圧波形を Vref倍 した電圧と略等しい電圧波形になる。コンパレータ 23はこの乗算器 29からの正弦波 電圧波形と三角波信号源 22からの三角波信号を比較し、乗算器 29からの正弦波電 圧が三角波信号源 22からの三角波信号電圧よりも高いときハイレベル信号を出力し 、乗算器 29からの正弦波電圧が三角波信号源 22からの三角波信号電圧以下のとき ローレベル信号を出力するので、コンパレータ 23から出力されるパルス電圧は図 9B に示すようになる。従って、この時に放電灯 7には図 9Dに波形 V20で示すような電圧 波形が印加される。
[0029] この状態で、放電灯 7のランプ電流が増加すると、全波整流回路 26の出力が大きく なって誤差増幅器 28の反転入力端子 (-)に入力する電圧が基準電圧 Vreはりも大き くなり、誤差増幅器 28からの出力は基準電圧 Vreはりも小さくなる。従って、乗算器 2 9からの電圧波形は、図 9Aに波形 VIIで示すように、正弦波電圧源 21からの正弦波 電圧波形を Vref倍した電圧波形よりも振幅が小さくなる。すなわち、乗算器 29からの 電圧波形の振幅が小さくなる。
[0030] このため、コンパレータ 23から出力されるパルス電圧は図 9Cに示すように tlの区間 においてローレベル期間が長くなるように、また、 t2の区間では短くなるように制御さ れたノ^レス電圧になる。この結果、放電灯 7に流れる電流波形は図 9Dに波形 V21で 示すように振幅が小さくなつて、ランプ電流の増加が抑えられる。
[0031] また、放電灯 7のランプ電流が減少すると、全波整流回路 26の出力が小さくなつて 誤差増幅器 28の反転入力端子 (-)に入力する電圧が基準電圧 Vreはりも小さくなり、 誤差増幅器 28からの出力は基準電圧 Vreはりも大きくなる。従って、乗算器 29から の電圧波形の振幅は逆に大きくなり、コンパレータ 23から出力されるパルス電圧は tl の区間においてローレベル期間が短くなるように、また、 t2の区間では長くなるように 制御されたパルス電圧になる。この結果、放電灯 7に流れる電流の振幅が大きくなつ て、ランプ電流の減少が抑えられる。
[0032] このようなフィードバック制御によって放電灯 7に流れるランプ電流が一定に保たれ る。また、このようなフィードバック制御によってランプ電流の限流作用効果が得られ るので、インダクタ 6として容量の小さなものを使用しても、全体として充分な限流作 用が得られる。従って、放電灯を安定に点灯維持することができる。勿論、この実施 の形態においても前述した実施の形態と同様に簡単な制御で電力変換効率の向上 を図ることができる。
[0033] (第 4の実施の形態)
この実施の形態は第 3の実施の形態と同様、ランプ電流を検出してフィードバック制 御するものである。なお、第 3の実施の形態と同一の部分または、対応する部分には 同一の符号を付し、詳細な説明は省略する。
図 10に示すように、図 8の正弦波電圧源 21及び乗算器 29に代えて、電圧制御発 振器 (VC〇) 30を使用している。その他の構成は図 8と同じである。誤差増幅器 28か らの出力を前記電圧制御発振器 30に供給し、この電圧制御発振器 30の出力をコン パレータ 23に供給している。
[0034] 放電灯 7においてランプ電流が定常状態にあるときには、誤差増幅器 28の反転入 力端子 (-)に入力される直流電圧は基準電圧 Vrefと略等しくなり、このときには誤差増 幅器 28からの出力は略 Vrefに等しい値になる。これにより、電圧制御発振器 30は図 11 Aに波形 V30で示すように基準周波数 fLの正弦波電圧を出力する。
このときコンパレータ 23から出力されるパルス電圧は図 11Bに示すようになつてい る。従って、放電灯 7には図 11Dに波形 V40で示すような電流が流れる。
[0035] この状態で放電灯 7のランプ電流が増加すると、全波整流回路 26の出力が大きく なって誤差増幅器 28の反転入力端子 (-)に入力する電圧が基準電圧 Vreはりも大き くなり、誤差増幅器 28からの出力は基準電圧 Vreはりも小さくなる。これにより、電圧 制御発振器 30は図 11Aに波形 V31で示すように出力する正弦波電圧の周波数を基 準周波数 fLよりも高くする。
[0036] 電圧制御発振器 30が出力する正弦波電圧はコンパレータ 23において三角波信号 源 22からの三角波信号電圧と比較される。コンパレータ 23は電圧制御発振器 30か らの正弦波電圧が三角波信号源 22からの三角波信号電圧よりも高いときハイレベル 信号を出力し、電圧制御発振器 30からの正弦波電圧が三角波信号源 22からの三 角波信号電圧以下のときローレベル信号を出力する。従って、電圧制御発振器 30 が出力する正弦波電圧の周波数が高くなると、コンパレータ 23から出力されるパルス 電圧は図 11Cに示すように変化する。この結果、放電灯 7に印加される電圧波形は 図 11Dに波形 V41で示すように周波数が高くなつて、ランプ電流の増加が抑えられる
[0037] 逆に、放電灯 7のランプ電流が減少すると、全波整流回路 26の出力が小さくなつて 誤差増幅器 28の反転入力端子 (-)に入力する電圧が基準電圧 Vreはりも小さくなり、 誤差増幅器 28からの出力は基準電圧 Vreはりも大きくなる。これにより、電圧制御発 振器 30は出力する正弦波電圧の周波数を基準周波数 fLよりも低くする。
[0038] 電圧制御発振器 30が出力する正弦波電圧の周波数が低くなると、コンパレータ 23 力 出力されるパルス電圧もそれに応じて変化し、放電灯 7に印加される電圧波形は 周波数が低くなつて、ランプ電流の減少が抑えられる。
[0039] このようなフィードバック制御によって放電灯 7に流れるランプ電流が一定に保たれ る。そして、このようなフィードバック制御を行うことで、ランプ電流の限流作用効果が 得られるので、インダクタ 6として容量の小さなものを使用しても、全体として充分な限 流作用が得られる。従って、放電灯を安定に点灯維持することができる。勿論、この 実施の形態においても前述した実施の形態と同様に簡単な制御で電力変換効率の 向上を図ることができる。
[0040] (第 5の実施の形態)
この実施の形態は、例えば、前述した第 2の実施の形態、すなわち、図 6において、 放電灯 7の点灯周波数を fs、コンパレータ 23から出力されるパルス電圧の周波数を f c ( >fs)としたとき、定格負荷を使用した共振負荷回路の出力電圧周波数特性にお いて、周波数 fs成分における出力電圧 Vsと周波数 fc成分における出力電圧 Vcとが、 Vs > Vcとなるように設定したものにっレ、て述べる。
[0041] このような設定を行うことで、正弦波電圧源 21からの正弦波電圧を変化させることで 負荷である放電灯 7に供給される出力電圧を可変させることができ、出力電圧の制御 幅を充分に確保できる。
[0042] 例えば、図 12に示すように、三角波信号源 22からの三角波信号 S1の振幅を 1、正 弦波電圧源 21からの正弦波信号 S2の振幅を 0. 8とし、放電灯 7の点灯周波数 fsを 5 OkHz、コンパレータ 23から出力されるパルス電圧の周波数 fcを 1MHzとした場合、 コンパレータ 23は正弦波信号 S2の電圧が三角波信号 S1の電圧よりも大きいときに は出力を「1」、正弦波信号 S2の電圧が三角波信号 S1の電圧以下のときには出力を 「0」とするので、コンパレータ 23から出力されるパルス幅変調されたパルス電圧波形 は図 13に示すようになる。
[0043] ところで、三角波信号 S1の振幅を「1」としたときの、正弦波信号 S2の振幅に対して 、コンパレータ 23から出力されるパルス電圧波形に含まれる周波数 fs成分と周波数 f c成分の実効値を示すと図 14に示すようになる。図 14におレ、てグラフ glは周波数 fs 成分の実効値を示し、グラフ g2は周波数 fc成分の実効値を示し、グラフ g3は周波数 f s成分の実効値と周波数 fc成分の実効値を加算した値を示している。
[0044] 図 14のグラフからは、例えば、正弦波信号 S2の振幅が 0. 6のときには、周波数 fs 成分の実効値は略 0. 4、周波数 fc成分の実効値は略 0. 7になり、正弦波信号 S2の 振幅が 0. 8のときには、周波数 fs成分の実効値も周波数 fc成分の実効値も略 0. 6に なり、正弦波信号 S2の振幅が 1. 0のときには、周波数 fs成分の実効値は略 0. 7、周 波数 fc成分の実効値は略 0. 4に逆転することが分かる。また、正弦波信号 S2の振幅 が 0. 4以上においては、周波数 fs成分の実効値と周波数 fc成分の実効値との和が 略 1. 13で一定になることも分かる。
[0045] コンパレータ 23からのパルス電圧を駆動回路 11に供給してインバータ回路 2の M OS型 FET3をスイッチング駆動し、また、このパルス電圧を反転回路 24で反転し駆 動回路 12に供給してインバータ回路 2の MOS型 FET4をスイッチング駆動すると、ィ ンバータ回路 2から、図 15に示すノ^レス幅変調された出力電圧が発生し、第 1のキヤ パシタ 5、インダクタ 6、放電灯 7及び第 2のキャパシタ 8からなる共振負荷回路に供給 される。このとき、負荷である放電灯 7には、共振負荷回路の周波数特性に従った出 力が供給される。
[0046] すなわち、インバータ回路 2から出力されるパルス幅変調された出力電圧に含まれ る各周波数成分に対して、その各周波数成分について共振負荷回路のゲインに従 つた出力が得られるので、これらを合成した出力が最終出力となって放電灯 7に供給 される。
この放電灯 7に供給される最終出力が略正弦波状の出力とするためには、共振負 荷回路の周波数特性を利用して、周波数 fc成分を含む高調波成分を減衰させる必 要がある。
[0047] また、図 14に示すグラフから、周波数 fs成分の実効値を大きくすると、周波数 fc成 分の実効値が小さくなることが分かる。例えば、正弦波信号 S2の振幅が 0. 6のときに は、周波数 fs成分の実効値は略 0. 4、周波数 fc成分の実効値は略 0. 7となる力 こ の場合において、図 16に示す共振負荷回路の等価回路に対して電源 ACから各周 波数の電力を供給すると、抵抗 Rに両端間に発生する出力電圧として図 17に実線の グラフで示す特性が得られた。
[0048] 図 16の等価回路において、 Lrはインダクタ成分を示し、 Cfはキャパシタ成分を示し 、 Rは放電灯 7の定格動作時の等価負荷抵抗を示してレ、る。
また、共振負荷回路の共振周波数(1/2 π Lr' Cf)は、周波数 fsよりも大きぐか つ、周波数 fcよりも低く設定されている。
図 17における実線のグラフ gl lは ACの実効値が略 0. 4の場合を示しており、実線 のグラフ gl2は ACの実効値が略 0. 7の場合を示している。これは、正弦波信号 S2の 振幅を 0. 6としたときに相当する。
[0049] 図 14から、正弦波信号 S2の振幅が 0. 6のときには、周波数 fs成分の実効値が略 0 . 4で、周波数 fc成分の実効値が略 0. 7であり、その実効値の和は略一定である。ま た、正弦波信号 S2の振幅を 0. 8、 1. 0と変化させると周波数 fs成分の実効値が大き くなり、周波数 fc成分の実効値が小さくなるが、その実効値の和は略一定で変化しな レ、。
[0050] このことは、コンパレータ 23からのパルス電圧でインバータ回路 2を駆動したときに インバータ回路 2から出力されるパルス幅変調された出力電圧においても同じように なることを示している。すなわち、正弦波信号 S2の振幅を 0. 6- 1. 0と変化させた場 合に、インバータ回路 2からの出力電圧において周波数 fs成分の実効値及び周波数 fc成分の実効値はそれぞれ変化するが、その実効値の和は略一定になる。
[0051] また、図 17において、 ACの実効値が略 0. 4のときの周波数 fsにおける出力電圧 V sと ACの実効値が略 0. 7のときの周波数 fcにおける出力電圧 Vclとの関係を調べた 結果、両者が略等しくなるような Lr、 Crの設定となっている場合、正弦波の振幅を 0. 4一 1. 0と変化させても出力電圧の実効値はほとんど変化しない。
[0052] 換言すれば、周波数 fsにおける出力電圧と周波数 fcにおける出力電圧が略等しく なる関係においては、正弦波信号 S2の振幅を、例えば 0. 2- 1. 0と変化させても放 電灯 7に供給される最終出力は、図 18にグラフ g3で示すようにほとんど変化しないと レ、うことが分かった。
[0053] そこで、本発明者は、周波数 fsにおける出力電圧 Vsと周波数 fcにおける出力電圧 Vcを異ならせることを考え、図 17の特性から、インダクタ成分 Lrやキャパシタ成分 Cf を変化させる力、、周波数 fcを変化させれば、 Vs >Vcに設定できるので、これについ て実験を行った。
[0054] 周波数 fc付近で出力電圧が大きく低下するようにインダクタ成分 Lrやキャパシタ成 分 Cf¾r設定して抵抗 Rに両端間に現われる出力電圧特性を測定したところ、 ACの実 効値が略 0. 4のときには図 17に点線のグラフ g21で示す特性が得られ、 ACの実効 値が略 0. 7のときには図 17に点線のグラフ g22で示す特性が得られた。そして、この 特性から、 ACの実効値が略 0. 4のときの周波数 fsにおける出力電圧 Vsと ACの実 効値が略 0. 7のときの周波数 fcにおける出力電圧 Vc2との関係力 Vs >Vc2となつ た。
[0055] このような条件の下で、正弦波信号 S2の振幅を 0. 2— 1. 0と変化したところ放電灯
7に供給される最終出力は図 18にグラフ g4で示すように変化することが分かった。す なわち、放電灯 7の点灯周波数を fs、コンパレータ 23から出力されるパルス電圧の周 波数を fc ( >fs)としたとき、放電灯 7の定格動作時の等価負荷抵抗を使用した共振 負荷回路の出力電圧の周波数特性において、周波数 fs成分における出力電圧 Vsと 周波数 fc成分における出力電圧 Vcと力 Vs >Vcとなるように設定すれば、正弦波電 圧源 21からの正弦波電圧の振幅を変化させることで放電灯 7に供給される出力電圧 を可変させることができ、出力電圧の制御幅を充分に確保できることになる。
これにより、正弦波電圧源 21からの正弦波電圧の振幅を変化させて放電灯 7を調 光制御することが可能になる。また、点灯したい放電灯 7の定格に合うように出力を制 ί卸することち簡単にできる。
[0056] なお、図 17の実線のグラフ gl2において、周波数 fcを大きくすれば周波数 fcにおけ る出力電圧 Vclが低下することが分かる。従って、正弦波電圧源 21からの正弦波電 圧の振幅を変化させることで放電灯 7に供給される出力電圧を可変させるには、イン ダクタ成分 Lrやキャパシタ成分 Ci¾r変化させずに周波数 fcを大きくしてもよい。
[0057] なお、この実施の形態は、第 2の実施の形態に適用したものについて述べた力 こ れに限定するものではなぐ第 1の実施の形態にも、第 3、第 4の実施の形態にも適用 できるものである。
[0058] (第 6の実施の形態)
この実施の形態は、放電灯 7の点灯周波数を fs、コンパレータ 23から出力されるパ ノレス電圧の周波数を fc ( >fs)としたとき、放電灯 7の定格動作時の等価負荷抵抗を 使用した共振負荷回路の出力電圧の周波数特性において、周波数 fs成分における 出力電圧 Vsと周波数 fc成分における出力電圧 Vcと力 Vs >Vcとなるように設定した 第 5の実施の形態において、さらに、定格負荷を使用した共振負荷回路のインピー ダンスの、放電灯 7の点灯周波数 fsに対する偏角を、 -20deg— 40degの間に設定 することを条件としたものである。
[0059] すなわち、インバータ回路 2に供給する直流電圧 VDCに対して所望の電力を放電 灯 7に供給するためのインダクタ成分 Lrとキャパシタ成分 Cfとの組み合わせは無限に 存在する。このため、無効電力を減らして回路損失を低減するのを単純にインダクタ 成分 Lrとキャパシタ成分 Cfとの組み合わせによって規定することは困難である。
[0060] 一方、図 16の等価回路において、電源 ACから見た共振負荷回路のインピーダン ス Zは、 Re(Z)+j 'Im(Z)=j co Lr+ lZ ( (lZR) +j ω Cf,となる。これをベクトルで示 すと、図 19に示すようになる。このときの、インピーダンス Zと実数部の Re(Z)との為す 角度が偏角となる。すなわち、偏角 =tan— ^m^/ReG))となる。
[0061] 図 19のベクトルから偏角を小さくすれば虚数部を減らすことができる。これは無効 電力を減らすことになる。従って、共振負荷回路において、無効電力を減らして回路 損失を低減するには共振負荷回路のインピーダンス Zの偏角で規定することが可能 である。 [0062] 例えば、直流電圧 VDC = 350V、点灯周波数 fs = 20kHz、パルス電圧の周波数 fc = 200kHzとし、放電灯 7の定格動作時の等価抵抗を 300 Ω、放電灯 7の定格電流 を 0. 37Aとしたときにおいて、偏角を一 40deg、一 20deg、 Odeg、 20deg、 40deg、 6 Odegと変ィ匕させ、そのときのインダクタ成分 Lrに発生する電力 VAをプロットしたとこ ろ図 20に示す結果が得られた。
[0063] この図 20の結果から、偏角を一 20deg 40degの範囲で設定すればインダクタ成 分 Lrに発生する電力 VAを小さくでき、無効電力を減らすことができる。特に、 Odeg 一 20degにおいてはインダクタ成分 Lrに発生する電力 VAを充分小さくでき、無効電 力を大幅に減らすことができる。
[0064] これに対し、偏角カ 20degを下回るとインダクタ成分 Lrに発生する電力 VAが急 激に増加する。また、偏角力 Odegを上回ると同じくインダクタ成分 Lrに発生する電 力 VAが急激に増加する。従って、偏角カ 20degを下回る範囲や偏角力 Odegを 上回る範囲は無効電力が多くなつて回路損失が大きくなり好ましくない。
[0065] このように、偏角を _20deg— 40degの範囲に設定することで、インダクタ成分 に 発生する電力 VAを小さくでき、共振負荷回路における回路損失を低減できる。そし て、インダクタ成分 Lrに発生する電力 VAを小さくできるので、使用するインダクタ 6も 小型化できる。
[0066] (第 7の実施の形態)
この実施の形態は、放電灯 7の点灯周波数を fs、コンパレータ 23から出力されるパ ノレス電圧の周波数を fc ( >fs)としたとき、放電灯 7の定格動作時の等価負荷抵抗を 使用した共振負荷回路の出力電圧の周波数特性において、周波数 fs成分における 出力電圧 Vsと周波数 fc成分における出力電圧 Vcと力 Vs >Vcとなるように設定し、 さらに、定格負荷を使用した共振負荷回路のインピーダンスの、放電灯 7の点灯周波 数 fsに対する偏角を、一 lOdeg— 40degの間に設定した第 6の実施の形態において 、さらに、定格負荷を使用した共振負荷回路に発生する負荷電圧に含まれる放電灯 7の点灯周波数 fs成分の実効値 VLraisと、インバータ回路 2の出力電圧に含まれる 放電灯 7の点灯周波数 fs成分の実効値 Virmsと力 略等しくなるように、インバータ回 路 2に印加する直流電源 1からの直流電源電圧 VDCを設定することを条件としたもの である。
[0067] 図 6に示す回路構成の放電灯点灯装置において、例えば、放電灯 7の点灯周波数 fs = 20kHz、パルス電圧の周波数 fc = 200kHz、三角波信号源 22からの三角波信 号に対する正弦波電圧源 21から発生する正弦波電圧の変調度を 0. 9、放電灯 7の 定格電流を 0. 37A、ランプ電圧を 113Vとし、直流電源 1からの直流電源電圧 VDC について、第 1のキャパシタ 5、インダクタ 6、放電灯 7及び第 2のキャパシタ 8からなる 共振負荷回路のインピーダンス偏角を Odegに設定し、直流電源電圧 VDCをパラメ ータとして、各直流電源電圧 VDCに対するインダクタ成分 Lrに発生する電力 VAを 求めたところ、図 21に示す結果が得られた。
[0068] この図 21のグラフは、直流電源電圧 VDCを高くするほどインダクタ成分 Lrに発生 する電力 VAが低下することを示しており、直流電源電圧 VDCを高くするほど使用す るインダクタ 6を小形化できることを示してレ、る。
[0069] インバータ回路 2から共振負荷回路に供給される出力電圧はパルス幅変調波形で あり、この波形には正弦波電圧の周波数成分とパルス電圧の周波数成分が含まれて いる。そして、振幅 1の三角波信号を振幅 0. 9の正弦波電圧で変調しているので、ィ ンバータ回路 2からの出力電圧の変調度も 0· 9である。すなわち、インバータ回路 2 力 の出力電圧は図 22に示すような電圧波形となる。
[0070] ここに含まれる変調信号成分は、 Virms=VDC/ {2 2) · a、として表わすことが できる。ここで、 Virmsは、インバータ回路 2の出力電圧に含まれる放電灯 7の点灯周 波数 fs成分の実効値であり、 αは変調度である。
この実効値 Virmsを、定格負荷を使用した共振負荷回路に発生する負荷電圧に含 まれる放電灯 7の点灯周波数 fs成分の実効値 VLraisと略等しくなるように設定するこ とで、直流電源電圧 VDCを高く設定することが可能になる。すなわち、実効値 VLrms はランプ電圧に相当するので、上記した例では VLrms= 113Vとなる。 ひ = 0. 9とな つているので、直流電源電圧 VDCは上記式から、 355Vとなる。この電圧値は設定で きる直流電源電圧 VDCの略上限値になっている。なお、直流電源電圧 VDCを 355V よりも高くすると、必要なインダクタ成分 Lrやキャパシタ成分 Cfの設定が不可能になる [0071] このように、直流電源電圧 VDCを高く設定することができ、これにより、インダクタ成 分 Lrに発生する電力 VAを小さくでき、共振負荷回路における回路損失を低減でき る。また、インダクタ成分 Lrに発生する電力 VAを小さくできるので、使用するインダク タ 6も小型化できる。
[0072] (第 8の実施の形態)
この実施の形態は、図 6に示す回路構成の放電灯点灯装置において、例えば、放 電灯 7の点灯周波数 fs = 20kHz、三角波信号源 22からの三角波信号に対する正弦 波電圧源 21から発生する正弦波電圧の変調度を 0. 9、放電ランプが定格点灯して レ、るときのインピーダンスを負荷としたときの、点灯周波数 fsにおける共振負荷回路 のインピーダンスの偏角を Odegとし、パルス電圧の周波数 fcを変化させたときの共振 負荷回路のインダクタンス成分 Lrおよびスイッチング素子 3, 4の損失を求めたもので める。
[0073] この結果を図 23に示す。この図力 分かるように、バルス電圧の周波数 fc = 40kHz = 2 *点灯周波数 fsにおいて、インダクタ成分 Lrおよびスィッチ素子 3, 4の損失が 極小となり、両損失の和も、パルス電圧の周波数 fc = 40kHz = 2 *点灯周波数 fsで 極小となる。
[0074] また、パルス電圧の周波数 fc = 500kHz付近には、インダクタ成分 Lrの極小点があ る力 パルス電圧の周波数 fcはスイッチング周波数でもあるため、スイッチング損失が 増加している。
[0075] 従って、スィッチ素子 3, 4のスイッチング損失 3, 4の両方の損失を大きく増加させ ないで、インダククタ成分 Lrおよびスィッチ素子 3、 4の両方の損失の低減を図るには 、パルス電圧の周波数 fcが点灯周波数 fsの 5倍以下の範囲がよい。すなわち、本実 施例ではパルス電圧の周波数 fc = 30kHz— 100kHzであり、好適範囲としては、 30 kHz— 50kHzである。
[0076] (第 9の実施の形態)
この実施の形態は前述した各実施の形態の放電灯点灯装置を備えた照明器具に ついて述べる。
図 24は照明器具 100を示し、この照明器具 100は、照明器具本体 101のソケット 1 02に放電灯 103を取付け、内部に前述した各実施の形態のいずれかの放電灯点灯 装置を放電灯点灯装置 104として組み込み、この放電灯点灯装置 104によって放電 灯 103を点灯するようになっている。
[0077] このようにして、前述した各実施の形態の放電灯点灯装置を備えた照明器具が実 現できる。すなわち電力変換効率の向上を図ることができる照明器具が実現できる。 また、フィードバック制御する放電灯点灯装置を使用した場合は、さらに、インダクタ 6 を小さくしても放電灯を安定に点灯維持することができる照明器具が実現できる。
[0078] また、周波数 fs成分における出力電圧 Vsと周波数 fc成分における出力電圧 Vcとが 、 Vs >Vcとなるように設定した放電灯点灯装置を使用した場合は、出力電圧の制御 幅を充分に確保できる照明器具が実現できる。さらに、共振負荷回路のインピーダン スの、放電灯の点灯周波数 fsに対する偏角を一 lOdeg— 40degの間に設定すること で、さらに、共振負荷回路に発生する負荷電圧に含まれる放電灯の点灯周波数 fs成 分の実効値 VLrmsとインバータ回路 2の出力電圧に含まれる放電灯の点灯周波数 fs 成分の実効値 Virmsとが略等しくなるように直流電源電圧を設定することで、回路損 失を低減でき、インダクタを小型化できる照明器具が実現できる。
産業上の利用可能性
[0079] 本発明は、無効電力を低減できて電力変換効率の向上を図る放電灯点灯装置お よび照明器具に利用することができる。

Claims

請求の範囲
[1] スィッチ素子をオン、オフ制御して直流電源電圧を高周波電圧に変換するインバー タ回路と;
インバータ回路から高周波電圧が供給され、インダクタ、キャパシタおよび所定の点 灯周波数 fsで点灯される放電灯を備え、放電灯が定格動作してレ、るときのインピーダ ンスにおいて前記点灯周波数 fsに対する偏角カ 20deg 40degの間に設定され てなる共振負荷回路と;
放電灯の点灯周期よりも短い周期で前記スィッチ素子をオン、オフ駆動するパルス 電圧を連続的に生成し、このパルス電圧のオン幅を前記点灯周期に対応した正弦 波電圧の波形変化に応じてパルス幅変調し、前記インバータ回路から前記放電灯に 略正弦波状の電流を供給する制御を行う制御回路と;
を備えたことを特徴とする放電灯点灯装置。
[2] スィッチ素子をオン、オフ制御して直流電源電圧を高周波電圧に変換するインバー タ回路と;
インバータ回路から高周波電圧が供給され、インダクタ、キャパシタおよび所定の点 灯周波数 fsで点灯させる放電灯を備えた共振負荷回路と;
放電灯の点灯周期よりも短い周期で前記スィッチ素子をオン、オフ駆動するパルス 電圧を連続的に生成し、このパルス電圧の周波数 fcが前記点灯周波数 fsの 5倍以 下の範囲に設定され、このパルス電圧のオン幅を前記点灯周期に対応した正弦波 電圧の波形変化に応じてパルス幅変調し、前記インバータ回路から前記放電灯に略 正弦波状の電流を供給する制御を行う制御回路と;
を備えたことを特徴とする放電灯点灯装置。
[3] スィッチ素子をオン、オフ制御して直流電源電圧を高周波電圧に変換するインバー タ回路と;
インバータ回路から高周波電圧が供給され、インダクタ、キャパシタおよび所定の点 灯周波数で点灯される放電灯を備えた共振負荷回路と;
放電灯の点灯周期よりも短い周期で前記スィッチ素子をオン、オフ駆動するパルス 電圧を連続的に生成し、このパルス電圧のオン幅を前記点灯周期に対応した正弦 波電圧の波形変化に応じてパルス幅変調し、前記インバータ回路から前記放電灯に 略正弦波状の電流を供給する制御を行う制御回路と;
放電灯に流れるランプ電流を検出するランプ電流検出手段と;
ランプ電流検出手段が検出するランプ電流量に応じてオン幅をパルス幅変調する のに使用する点灯周期に対応した正弦波電圧波形の周波数を、ランプ電流が一定 になるように可変制御するフィードバック制御手段と;
を備えたことを特徴とする放電灯点灯装置。
[4] 前記制御回路は、スィッチ素子をオン、オフ駆動する駆動周波数を可変制御しな 力 ¾前記放電灯に対し一定時間の予熱を行った後始動電圧の印加を一定時間行い 、ランプ始動後は点灯維持制御を行い、少なくとも予熱時の基準駆動周波数力 始 動電圧印加時の基準駆動周波数への切換え時には周波数を徐々に変化させる制 御を行い、点灯維持制御においては前記放電灯の点灯周期よりも短い周期で前記 スィッチ素子をオン、オフ駆動するパルス電圧を連続的に生成し、このパルス電圧の オン幅を前記放電灯の点灯周期に対応した正弦波電圧の波形変化に応じてパルス 幅変調し、前記インバータ回路から前記放電灯に略正弦波状の電流を供給する制 御を行うことを特徴とする請求項 1ないし 3いずれか一に記載の放電灯点灯装置。
[5] 放電灯が定格動作しているときの共振負荷回路に発生する負荷電圧に含まれる、 放電灯の点灯周波数 fs成分の実効値 VLrmsと、インバータ回路の出力電圧に含ま れる、放電灯の点灯周波数 fs成分の実効値 Virmsとが、略等しくなるように、直流電 源電圧を設定したことを特徴とする請求項 1記載の放電灯点灯装置。
[6] 制御回路は、パルス幅変調の変調度を 0. 8以上に設定したことを特徴とする請求 項 1ないし 3いずれか一に記載の放電灯点灯装置。
[7] 請求項 1乃至 3のいずれか一に記載の放電灯点灯装置と;
放電灯点灯装置を有する照明器具本体と;
を備えたことを特徴とする照明器具。
PCT/JP2004/018837 2003-12-17 2004-12-16 放電灯点灯装置および照明器具 WO2005060083A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005516346A JPWO2005060083A1 (ja) 2003-12-17 2004-12-16 放電灯点灯装置および照明器具
EP04807196A EP1696547A4 (en) 2003-12-17 2004-12-16 OPERATING DEVICE AND LIGHT FRAME FOR A DISCHARGE LAMP
US11/302,356 US7211970B2 (en) 2003-12-17 2005-12-14 Discharge lamp lighting device and lighting unit
HK07101633.4A HK1097113A1 (en) 2003-12-17 2007-02-12 Discharge lamp operation device and lighting fixture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003419269 2003-12-17
JP2003-419269 2003-12-17
JP2004085638 2004-03-23
JP2004-085638 2004-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/302,356 Continuation US7211970B2 (en) 2003-12-17 2005-12-14 Discharge lamp lighting device and lighting unit

Publications (1)

Publication Number Publication Date
WO2005060083A1 true WO2005060083A1 (ja) 2005-06-30

Family

ID=34703287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018837 WO2005060083A1 (ja) 2003-12-17 2004-12-16 放電灯点灯装置および照明器具

Country Status (7)

Country Link
US (1) US7211970B2 (ja)
EP (1) EP1696547A4 (ja)
JP (1) JPWO2005060083A1 (ja)
KR (1) KR100721631B1 (ja)
HK (1) HK1097113A1 (ja)
TW (1) TWI258322B (ja)
WO (1) WO2005060083A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028259A (ja) * 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd 放電灯点灯装置および放電灯点灯装置を備える照明器具

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423388B2 (en) * 2006-02-15 2008-09-09 Monolithic Power Systems, Inc. Fixed lamp frequency synchronization with the resonant tank for discharge lamps
EP1903598A3 (en) * 2006-09-22 2010-01-06 Toshiba Lighting & Technology Corporation High-pressure discharge lamp, high-pressure discharge lamp operating apparatus, and illuminating apparatus.
EP2091304A4 (en) * 2006-10-27 2011-04-27 Toshiba Lighting & Technology HIGH-PRESSURE DISCHARGE LAMP, ILLUMINATOR AND HIGH-PRESSURE DISCHARGE LAMP UNIT
KR100859063B1 (ko) * 2007-04-18 2008-09-17 엘지이노텍 주식회사 백라이트 인버터에서의 구동 회로
US7459867B1 (en) * 2007-05-11 2008-12-02 Osram Sylvania Inc. Program start ballast
DE102008058819A1 (de) * 2007-11-28 2009-06-25 Toshiba Lighting & Technology Corp. Entladungslampenzündvorrichtung
EP2112684A3 (en) * 2008-04-25 2010-06-16 Toshiba Lighting & Technology Corporation High-pressure discharge lamp and lighting equipment
US20100033106A1 (en) * 2008-08-08 2010-02-11 Toshiba Lighting & Technology Corporation High-pressure discharge lamp, high-pressure discharge lamp lighting system and lighting equipment
JP5053395B2 (ja) * 2010-01-29 2012-10-17 Tdkラムダ株式会社 放電灯点灯装置
KR101658210B1 (ko) * 2010-02-19 2016-09-21 페어차일드코리아반도체 주식회사 예열 제어 장치, 이를 포함하는 램프 구동 장치및 예열 제어 방법
JP6244806B2 (ja) * 2013-10-17 2017-12-13 セイコーエプソン株式会社 放電ランプ点灯装置、放電ランプ点灯方法及びプロジェクター
KR101529860B1 (ko) * 2014-02-10 2015-06-19 (주) 포코 디밍이 가능한 전류 피드백 제어 방식의 형광등용 안정기 및 그 전류 피드백 제어 방법
KR101701699B1 (ko) 2015-12-28 2017-02-03 (주) 포코 전자식 형광등용 안정기 및 그 점등 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202365A (ja) * 1989-01-26 1990-08-10 Matsushita Electric Works Ltd 電源装置
JPH11220889A (ja) * 1998-01-30 1999-08-10 Toshiba Lighting & Technology Corp 電源装置、放電灯点灯装置および照明装置
JP2001052889A (ja) * 1999-08-11 2001-02-23 Matsushita Electric Works Ltd 放電灯点灯装置
JP2002324688A (ja) * 2001-04-24 2002-11-08 Matsushita Electric Works Ltd 放電灯点灯装置、及びこれを用いた照明器具
JP2003224981A (ja) * 2002-01-28 2003-08-08 Matsushita Electric Works Ltd 放電ランプ点灯装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038299A (ja) * 1989-06-02 1991-01-16 Koito Mfg Co Ltd 車輌用高圧放電灯の点灯回路
JPH0728537B2 (ja) * 1989-06-02 1995-03-29 三菱電機株式会社 インバータ出力電圧誤差の補正装置
US5804924A (en) * 1995-07-26 1998-09-08 Matsushita Electric Works, Ltd. Discharge lamp with two voltage levels
DE19546588A1 (de) * 1995-12-13 1997-06-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren und Schaltungsanordnung zum Betrieb einer Entladungslampe
US5774351A (en) * 1996-05-21 1998-06-30 National Science Council Series resonant DC-to-AC inverter system
JP3698226B2 (ja) 1996-12-25 2005-09-21 東芝ライテック株式会社 電源装置、放電灯点灯装置および照明装置
JP2933077B1 (ja) * 1998-02-26 1999-08-09 サンケン電気株式会社 放電灯点灯装置
US6680582B1 (en) * 2000-10-06 2004-01-20 Koninklijke Philips Electronics N.V. System and method for employing pulse width modulation for reducing vertical segregation in a gas discharge lamp
JP4561350B2 (ja) * 2004-12-20 2010-10-13 東芝ライテック株式会社 放電灯点灯装置及び照明器具並びに照明システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202365A (ja) * 1989-01-26 1990-08-10 Matsushita Electric Works Ltd 電源装置
JPH11220889A (ja) * 1998-01-30 1999-08-10 Toshiba Lighting & Technology Corp 電源装置、放電灯点灯装置および照明装置
JP2001052889A (ja) * 1999-08-11 2001-02-23 Matsushita Electric Works Ltd 放電灯点灯装置
JP2002324688A (ja) * 2001-04-24 2002-11-08 Matsushita Electric Works Ltd 放電灯点灯装置、及びこれを用いた照明器具
JP2003224981A (ja) * 2002-01-28 2003-08-08 Matsushita Electric Works Ltd 放電ランプ点灯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1696547A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028259A (ja) * 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd 放電灯点灯装置および放電灯点灯装置を備える照明器具

Also Published As

Publication number Publication date
US7211970B2 (en) 2007-05-01
US20060097655A1 (en) 2006-05-11
TWI258322B (en) 2006-07-11
TW200524480A (en) 2005-07-16
EP1696547A4 (en) 2010-01-20
JPWO2005060083A1 (ja) 2007-07-12
EP1696547A1 (en) 2006-08-30
KR20060024415A (ko) 2006-03-16
HK1097113A1 (en) 2007-06-15
KR100721631B1 (ko) 2007-05-23

Similar Documents

Publication Publication Date Title
US7211970B2 (en) Discharge lamp lighting device and lighting unit
US7652898B2 (en) Soft start circuit and power supply including soft start circuit
JP3427385B2 (ja) 力率補正付き高周波数ac/acコンバータ
US5923542A (en) Method and apparatus for driving piezoelectric transformer
JP3805927B2 (ja) 交流電圧調整器
JPH11289778A (ja) 圧電トランスインバータ
JPH0993922A (ja) 共振型dc−dcコンバータ
US7084584B2 (en) Low frequency inverter fed by a high frequency AC current source
KR20030076565A (ko) 단일-스테이지 pfc + 밸러스트 제어 회로/범용 전력변환기
US6909258B2 (en) Circuit device for driving an AC electric load
JP2003164163A (ja) 圧電トランス駆動回路
JPH10201248A (ja) 電源装置
JP2004527896A (ja) 高効率高力率電子安定器
JP2022130803A (ja) 誘導加熱装置
US6816394B2 (en) Approximated sinusoidal waveform inverter
WO1992016085A1 (en) Power supply having high power factor with control that tracks the input alternating supply
JP3269460B2 (ja) 圧電トランス駆動回路及び駆動方法
JP2001086737A (ja) 電源装置
JP4807022B2 (ja) 誘導加熱装置
JP2018064380A (ja) ハーフブリッジ回路を用いた電源装置
JP3230560B2 (ja) 直流電源装置
JP2007103097A (ja) 放電灯点灯装置および照明装置
JP3029422B2 (ja) 電源装置
JP2001068289A (ja) 放電灯点灯装置
JP2004048853A (ja) 圧電トランス式直列共振型dc−dcコンバータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021317.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005516346

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11302356

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004807196

Country of ref document: EP

Ref document number: 1020057024056

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057024056

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11302356

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004807196

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020057024056

Country of ref document: KR