JP2022130803A - 誘導加熱装置 - Google Patents

誘導加熱装置 Download PDF

Info

Publication number
JP2022130803A
JP2022130803A JP2021029403A JP2021029403A JP2022130803A JP 2022130803 A JP2022130803 A JP 2022130803A JP 2021029403 A JP2021029403 A JP 2021029403A JP 2021029403 A JP2021029403 A JP 2021029403A JP 2022130803 A JP2022130803 A JP 2022130803A
Authority
JP
Japan
Prior art keywords
circuit
current
inverter circuit
induction heating
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021029403A
Other languages
English (en)
Inventor
信晴 錦織
Nobuharu Nishikori
正幸 大田原
Masayuki Otawara
朋之 金川
Tomoyuki Kanekawa
将 笹川
Masashi Sasagawa
正樹 小野
Masaki Ono
裕 八木
Yutaka Yagi
太郎 吉田
Taro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2021029403A priority Critical patent/JP2022130803A/ja
Priority to PCT/KR2022/002382 priority patent/WO2022182066A1/ko
Publication of JP2022130803A publication Critical patent/JP2022130803A/ja
Priority to US18/238,396 priority patent/US20230403766A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/04Heating plates with overheat protection means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Induction Heating Cooking Devices (AREA)
  • General Induction Heating (AREA)

Abstract

【課題】誘導加熱装置の加熱動作中におけるインバータ電流を低減させる。【解決手段】誘導加熱装置Aは、加熱コイルCを含むインダクタと、共振コンデンサ26と、を有する並列共振回路20と、並列共振回路20に電力を供給するインバータ回路1と、インバータ回路1から並列共振回路20に出力される出力電流を検出する第1電流検出手段35と、第1電流検出手段35で検出された出力電流のピーク電流値が小さくなるようにインバータ回路1の駆動周波数を制御する制御手段40とを備える。【選択図】図1

Description

本発明は、加熱コイルを用いた誘導加熱装置に関するものである。
特許文献1には、共振負荷に接続してPWM制御されるインバータ装置において、加熱コイルの電圧位相と、インバータ出力電圧位相を一致させることにより共振周波数で動作させる技術が示されている。特許文献1では、短いパルス幅を出力して、パルス幅の位相と共振回路の電圧位相とが一致するように、駆動周波数をシフトさせる。
国際公開第2019/176256号
しかしながら、特許文献1の技術では、加熱途中にインバータの出力電圧の位相状態を検出するのが困難であるため、加熱動作中は、駆動周波数をロックし、変更しないようになっている。そうすると、加熱中に被加熱物が移動して共振点がずれた場合に、インバータの駆動周波数が共振周波数からずれて、効率が劣化するという問題がある。また、特許文献1の技術を高周波の誘導加熱装置に適用する場合、位相を正確に検知するために、高速な位相検知手段が必要であるという課題がある。
本発明は、かかる点に鑑みてなされたものであり、その目的は、誘導加熱装置の加熱動作中における加熱コイルに流れる電流に対し、インバータ電流を低減させることにある。
上記課題を解決するために、本発明の第1態様に係る誘導加熱装置は、被加熱物を誘導加熱する加熱コイルと、当該加熱コイルを含むインダクタと共振コンデンサとを含む並列共振回路と、前記並列共振回路に電力を供給するインバータ回路と、前記インバータ回路から前記並列共振回路に出力される出力電流を検出する電流検出手段と、前記電流検出手段で検出された出力電流のピーク電流が小さくなるように制御する制御手段とを備える。
上記態様によると、例えば、共振周波数とピーク電流の最小値が一致する場合、電流検出手段で検出された出力電流のピーク電流が小さくなるように制御するので、動作中に並列共振回路の共振点が変化しても、変化した共振点に対して追従が可能であり、共振周波数付近での継続的な動作が可能となる。また、従来技術のように、位相を検知する必要がなく、インバータのピーク電流の取得のみでよいので、共振周波数の制御が容易である。
本発明の第2態様では、第1態様において、前記制御手段は、前記インバータ回路の駆動周波数を変動させつつ前記駆動周波数の変化に対する前記出力電流の傾きが小さくなる方向に前記インバータ回路の駆動周波数を制御する。
本発明の第3態様では、第1態様において、前記制御手段は、前記電流検出手段で検出された出力電流のピーク電流が所定の閾値以下になるように前記インバータ回路の駆動周波数を制御する。
上記第2態様および第3態様では、制御手段による制御の具体的態様を特定している。
第2態様によると、制御手段は、時間変動に対する電流変化を制御するため、電流ピークをより確実に最小電流で制御できる。これに対し、第3態様では、電流ピークを制御する閾値が決められているため、第2態様と比較して制御が容易である。
本発明の第4態様では、第1態様において、前記インバータ回路と前記並列共振回路との間に、前記インバータ回路から出力される矩形波状の出力電圧をならして正弦波状の波形にするフィルタ手段を備える。
これにより、インバータ回路への入力電圧に対してインバータの出力電圧の実効値が小さい場合においても、ピーク電流の検知がしやすくなり、ピーク電流に基づく制御が可能となる。また、インバータ回路の出力電圧のデューティ比を大きな範囲で共振周波数の制御ができる。さらに、火力を幅広く制御することができる。
本発明の第5態様では、第1態様から第4態様において、前記制御手段は、前記インバータ回路の入力電圧を前記加熱コイルの設定熱量に応じて変化させる入力電圧制御部を備える。
これにより、インバータ回路の出力電圧のデューティ比を大きく保持し、入力電圧制御部で入力電圧を変えることにより火力を制御することができるので、火力を幅広く制御することができる。
本発明の第6態様では、第1態様において、前記並列共振回路に流れる電流を検知する第2の電流検出手段を備え、前記制御手段は、前記第1電流検出手段で検出された出力電流のピーク電流が所定の第1閾値以上になると前記インバータ回路の駆動周波数を下げるように制御し、前記第2電流検出手段で検出された電流が所定の第2閾値以下になると前記インバータ回路の駆動周波数を上げるように制御する。
これにより、インバータ回路の出力電圧の実効値がインバータ回路の入力電圧に対して小さいような場合において、動作中に並列共振回路の共振点が変化しても、変化した共振点に対して追従が可能であり、継続して共振周波数付近での動作が可能となる。
本発明の第7態様に係る誘導加熱装置は、加熱コイルと、当該加熱コイルを含むインダクタと共振コンデンサとを含む並列共振回路と、前記並列共振回路に電力を供給するインバータ回路とを備え、前記並列共振回路は、前記インバータ回路の出力から分岐された一方側の回路である第1回路と、他方側の回路である第2回路との並列回路であり、前記第1回路の電流を検出する第1電流検出手段と、前記第2回路の電流を検出する第2電流検出手段と、前記第1電流検出手段で検出された電流の第1ピーク電流値と、前記第2電流検出手段で検出された電流の第2ピーク電流値との差が小さくなるように前記第1電流検出手段で検出された電流の第1ピーク電流値と、前記第2電流検出手段で検出された電流の第2ピーク電流値との差が所定の範囲内になるように前記インバータ回路の駆動周波数を制御する制御手段とをさらに備える。
ここで、並列共振回路が共振している場合には、第1回路に流れる分岐電流の波形と、第2回路に流れる分岐電流の波形とが理想的には同じになる。そこで、制御手段により、第1ピーク電流値と第2ピーク電流値との差が所定の範囲内になるように、インバータ回路の駆動周波数を制御する。そうすることで、インバータ回路の駆動周波数を並列共振回路の共振周波数に近づけることができる。また、加熱中においても、駆動周波数の調整は可能なので、鍋が移動して共振点がずれた場合においても、自動的に共振点での動作に合わせなおすことができる。
本発明の第6態様では、第1態様において、前記制御手段は、前記第1ピーク電流値と前記第2ピーク電流値とを比較し、相互間の誤差が20%以内になるように、前記インバータ回路の駆動周波数を制御する。
ここでは、第7態様の所定の範囲について、具体的に特定している。
本発明によれば、誘導加熱装置において、インバータの制御周波数が並列共振周波数に追従するように制御できるので、誘導加熱装置の加熱動作中における加熱コイルに流れる電流に対し、インバータ電流を低減させることができる。
実施形態に係る誘導加熱装置の等価回路構成図 図1の誘導加熱装置についての具体的な構成例を示す図 並列共振回路の周波数-インピーダンス特性を示す図 インバータ回路の出力電圧の実効値が大きい場合のシミュレーション波形図 インバータ回路の駆動周波数に対する電流の変化を示す図 コイル(フィルタ手段)を設ける場合と設けない場合とで電流を比較した図 インバータ回路の出力電圧の実効値が大きい場合と小さい場合とをまとめた図 誘導加熱装置の他の例を示す等価回路構成図 図8の誘導加熱装置の動作を説明するための図 誘導加熱装置の他の例を示す等価回路構成図 図10の誘導加熱装置の動作を説明するための図 並列共振回路の他の構成例を示す図 誘導加熱装置の他の例を示す等価回路構成図 誘導加熱装置の他の例を示す等価回路構成図
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
図1及び図2に示すように、誘導加熱装置Aは、加熱コイルCと、加熱コイルCを含むインダクタ24,25と共振コンデンサ26で構成された並列共振回路20と、並列共振回路20に電力を供給するインバータ回路1と、インバータ回路1の出力電流(以下、「インバータ電流I3」という)を検出する第1電流検出手段35と、制御手段40とを備える。
-インバータ-
インバータ回路1の回路構成は、特に限定されるものではなく、従来から知られている構成を適用することができる。本実施形態では、アーム11,12が並列接続されたフルブリッジ構成のインバータ回路1の例を示す。
アーム11,12は、それぞれ、直列接続された2つのスイッチング素子13を有する。より詳しくは、アーム11の両スイッチング素子13の間が第1配線N1で接続され、アーム12の両スイッチング素子13の間が第2配線N2で接続される。各スイッチング素子13は、トランジスタと、該トランジスタに並列かつ逆方向に接続されたダイオードとの並列回路になっている。アーム11のスイッチング素子13は、後述するCPU42の制御を受けて動作するドライバ61からの駆動信号を受けてスイッチング動作をする。同様に、アーム12のスイッチング素子13は、CPU42の制御を受けて動作するドライバ62からの駆動信号を受けてスイッチング動作をする。このアーム11,12のスイッチング動作により、直流電力が交流電力に変換されて出力される。
第1配線N1と第2配線N2との間には、電圧フィルタ用のコイル31と、並列共振回路20と、第1電流検出手段35とが直列に接続される。なお、第1電流検出手段35は、従来から知られている構成であり、ここでは具体的構成についての説明を省略する。
-電圧フィルタ用コイル-
コイル31(電圧フィルタ)は、インバータ回路1の出力と並列共振回路20との間に挿入され、インバータ電流I3が正弦波に近くなるように作用する(図3の実施例参照)。これにより、直流電源5からの入力電圧に対してインバータ回路1の出力電圧(以下、「インバータ電圧Vo」という)の実効値が小さいような場合であっても、ピーク電流に基づく共振周波数の制御が可能になる。インバータ電圧Voは、矩形波状である。なお、コイル31に代えて、インバータ電圧Voの高調波成分を除去し、波形をならして正弦波状の波形にするような他のフィルタ回路を用いてもよい。ピーク電流に基づく共振周波数の制御については、後ほど説明する。
-並列共振回路-
並列共振回路20は、インダクタ24と共振コンデンサ26とが直列接続された第1回路21に、インダクタ25が並列接続された構成になっている。
図2(a),(b)には、図1の等価回路で示される並列共振回路20の具体的な構成例を示している。図2(a),(b)において、加熱コイルCは、所定の一方向に向かって螺旋状に巻かれている。
図2(a)では、加熱コイルCは、一端が第1電流検出手段35を介して第2配線N2に接続され、他端が共振コンデンサ26及び第1電流検出手段35を介して第2配線N2に接続される。そして、加熱コイルCの中間に位置する中間点P1がコイル31を介して第1配線N1に接続される。すなわち、加熱コイル3は、中間点P1を境にして、第1加熱コイルC1と第2加熱コイルC2とに分割されている。第1加熱コイルC1は、インダクタ24を構成し、第2加熱コイルC2は、インダクタ25を構成する。
図2(b)では、並列共振回路20は、加熱コイルCと共振コンデンサ26とが直列接続された第1回路21と、インダクタ25で構成された第2回路22とが並列接続された構成になっている。図2(b)の場合、加熱コイルCは、インダクタ24を構成する。
-制御手段-
図1に戻り、制御手段40は、ピーク電流変換回路41と、CPU42とを備え、第1電流検出手段35で検出された出力電流のピーク電流が小さくなるようにインバータ回路1の駆動周波数を制御する。
ピーク電流変換回路41は、第1電流検出手段35で検出された出力電流をピーク電流に変換する回路であり、換言すると、インバータ電流I3のピーク電流値を検知する回路である。ピーク電流変換回路41は、インバータ回路1の駆動周波数の周期毎のピーク電流値(以下、単に「ピーク電流値」という)をCPU42に出力する。
CPU42は、ピーク電流変換回路41から受信したピーク電流値に基づき、インバータ電圧Voの実効値が固定条件において、ピーク電流値が最小、もしくは、ある閾値範囲以内になるようにインバータ回路1の駆動周波数を制御する。図1に示すように、CPU42は、インバータ回路1の駆動周波数を制御するために、電圧位相差制御指令を出力する。
<並列共振回路のインピーダンス>
図3は、並列共振回路20の周波数-インピーダンス特性の一例を示している。図3において、太実線は並列共振回路20の特性を示し、破線は第1回路21の特性、細実線は第2回路22の特性をそれぞれ示している。
ここで、並列共振回路20で、インピーダンスZ20が最大値を示す共振周波数foで共振している場合における第1回路21のインピーダンスZ21及び第2回路22のインピーダンスZ22は、以下の式(1)で近似される。また、並列共振回路20のインピーダンスZ20は、以下の式(2)で近似される。
Figure 2022130803000002
Figure 2022130803000003
式(1)において、Lmは第1回路21(ここではインダクタ24)のインダクタンス、Lsは第2回路22(ここではインダクタ25)のインダクタンス、Mは第1回路21と第2回路22の相互インダクタンス、Cmは第1回路21(ここでは共振コンデンサ26)の容量値である。また、式(2)は、加熱コイルC上に鍋が置かれた状態での式であり、Rmは鍋の影響を含む第1回路21の抵抗成分、Rsは鍋の影響を含む第2回路22の抵抗成分、Rtは相互インダクタに対応する抵抗成分である。
式(1)のインピーダンスZ21は、加熱コイルCの巻数と被加熱物である鍋の大きさで決まり、鍋の材質にはほとんど依存しない。インピーダンスZ21の値は、例えば、3~10[Ω]程度になるように設計される。
アルミ鍋の場合、(Rm+Rs+2Rt)は、1[Ω]程度であり、上記式(1),(2)より、インピーダンスZ20は、10~100[Ω]程度となる。すなわち、アルミ鍋の場合におけるインピーダンスZ20とインピーダンスZ21,Z22との関係は、(Z20>Z21,Z22)となる。
SUS鍋の場合、(Rm+Rs+2Rt)は、20[Ω]程度であり、上記式(1),(2)より、インピーダンスZ20は、0.05~5[Ω]程度となる。すなわち、SUS鍋の場合におけるインピーダンスZ20とインピーダンスZ21,Z22との関係は、(Z20<Z21,Z22)となる。
並列共振回路20のインピーダンスについてまとめると、アルミ鍋のような非磁性の鍋の場合、並列共振周波数において、並列共振回路20のインピーダンスZ20が、第1回路21のインピーダンスZ21より大きく、かつ、第2回路22のインピーダンスZ22より大きいという特徴がある。
<インバータ回路の駆動周波数制御>
次に、インバータ回路1の駆動周波数制御について、具体的に説明する。なお、図1の回路において、コイル31を設けないようにしてもよい。以下では、インバータ回路1の駆動周波数制御について、場合分けをして説明する。
本実施形態では、制御手段40は、(1)コイル31を設ける場合、または、コイル31は設けないがインバータ電圧Voの実効値が相対的に大きい場合と、(2)コイル31は設けず、かつ、インバータ電圧Voの実効値が相対的に小さい場合とで、異なる制御を行う。
なお、インバータ電圧Voの実効値の相対的な大小の境界は、回路の構成等に応じて任意に設定される。例えば、制御手段40は、インバータ電圧Voの実効値がインバータ回路1の入力電圧Viに対して60%以上の場合にインバータ電圧Voの実効値が相対的に大きい(以下、単に「実効値が大きい」という)と判断し、60%未満の場合にインバータ電圧Voの実効値が相対的に小さい(以下、単に「実効値が小さい」という)と判断する。
-インバータ回路の駆動周波数制御(1)-
まず、第1回路21においてコイル31を設ける場合、または、インバータ電圧Voの実効値が大きい場合におけるインバータ回路1の駆動周波数制御について説明する。
図4は、第1回路21に流れる分岐電流I1、第2回路22に流れる分岐電流I2及びインバータ電流I3のシミュレーション波形を示している。図4において、上図はインバータ電圧Voの時間変化であり、下図は分岐電流I1,I2及びインバータ電流I3の時間変化である。
また、図5において、上の波形は、共振周波数fo付近における駆動周波数に対する分岐電流I1,I2及びインバータ電流I3のAC解析の結果を示し、下の波形は、駆動周波数に対するピーク電流値Ipの実測値の変化の一例を示す。
図4に示すとおり、第1回路21においてコイル31を設ける場合、または、インバータ電圧Voの実効値が大きい場合には、インバータ電流I3が正弦波に近づく。そして、図5の上の波形に示すように、第1回路の分岐電流I1と第2回路22の分岐電流I2が実質的に等しいときが、並列共振回路20が共振しており、最も効率よく加熱が行われているといえる。
図5からもわかるように、上のAC解析においてインバータ電流I3が最小値のときの周波数と、実動作における出力電流I3が最小値ときの周波数とが共振周波数foとほぼ一致している。具体的には、例えば、AC解析による並列共振回路20の共振周波数foが75.95[kHz]の場合に、出力電流I3の最小値(実測値)から換算した駆動周波数が76.0[kHz]であり、ピーク電流値Ipを最小にすることで、実質的に共振周波数での動作が可能であることが確認された。
そこで、CPU42は、インバータ電圧Voの実効値が大きい場合、第1電流検出手段35の検出結果に基づくピーク電流値Ipが最小になるようにインバータ回路1の駆動周波数を制御する。これにより、誘導加熱装置Aの共振周波数での動作を実現させることができる。
CPU42によるインバータ回路1の駆動周波数制御の具体的な方法は、特に限定されない。
例えば、CPU42は、インバータ回路1の駆動周波を常に微小に(例えば、1[kHz]未満で)変動させつつ、駆動周波数の変化Δfに対する出力電流の傾きΔIが小さくなる方向にインバータ回路1の駆動周波数を制御する。すなわち、ΔI/Δfが「0」に近づくように制御する。
また、例えば、CPU42は、誘導加熱装置Aの出力レベルに応じて、インバータ電流I3に閾値Ith1を設定し、インバータ回路1の駆動周波数が閾値Ith1以下になるように制御する。
具体例を用いて説明すると、例えば、誘導加熱装置Aの出力電力が2500[W]の場合において、標準サイズのアルミ鍋を設置した場合の、駆動周波数における加熱コイルの抵抗値を1[Ω]に設計するとき、加熱コイルに流す電流は、50[A]となる。ここで、アルミ鍋を設置した場合の各インピーダンス値は、鍋のサイズと相関関係があるので、標準サイズの鍋の場合には、前述の式(1),(2)の値が求まる。例えば、Z21=Z22=6[Ω]、Z20=36[Ω]となる。この場合において、理論的に求められるインバータ電流I3は、「出力電流×Z21/Z20」となり、ここでは8.3[A]となる。
そうすると、理論的に求められるピーク電流は、11.7[A]となる。そこで、例えば、この理論値よりも20%程度大きい14[A]を制御の閾値として設ければ、共振周波数fo±350[Hz]の範囲でインバータ回路1の駆動周波数を制御できることになる。
-インバータ回路の駆動周波数制御(2)-
次に、図1においてコイル31は設けず、かつ、インバータ電圧Voの実効値が相対的に小さい場合におけるインバータ回路1の駆動周波数制御について説明する。
図6に示すように、インバータ電圧Voの実効値が大きい場合(左列参照)、インバータ電流I3が正弦波状の波形であり、AC解析においてインバータ電流I3が最小値のときの周波数と、実動作における出力電流I3が最小値ときの周波数とが共振周波数foとほぼ一致していた。
これに対し、インバータ電圧Voの実効値が小さい場合(右列参照)、インバータ電流I3が正弦波状の波形にならず、実動作における出力電流I3が最小値ときの周波数が共振周波数foと一致しない。そこで、コイル31を設けない場合において、インバータ電圧の実効値が小さい場合には、インバータ電圧の実効値が大きい場合と異なる方法を採用する。
具体的には、図8に示すように、第1電流検出手段35に加えて、並列共振回路20に流れる電流を検出する第2電流検出手段36を設ける。なお、第2電流検出手段36は、第1回路21に設けてもよいし、第2回路22に設けてもよい。
また、図10に示すように、第1回路21に第1電流検出手段37を設け、かつ、第2回路22に第2電流検知手段38を設けてもよい。
以下において、それぞれの方法について、図面を参照しつつ説明する。
まず、図8の誘導加熱装置Aについて説明する。なお、図8において、図1と共通の構成には、図1と同じ符号を付しており、ここでは相違点を中心に説明する。また、図9には、図8の構成において、横軸の駆動周波数に対する分岐電流I1,I2及びインバータ電流I3の変化を示す。
図8の誘導加熱装置Aは、前述のとおり、第1電流検出手段35に加えて、並列共振回路20に流れる電流を検出する第2電流検出手段36を備える。図8の例では、第2電流検出手段36が第2回路22に設けられた例を示す。
さらに、制御手段40には、第2電流検出手段36で検出された出力電流をピーク電流に変換するピーク電流変換回路43を備える。また、CPU42は、ピーク電流変換回路41から受信したインバータ電流I3のピーク電流値と、ピーク電流変換回路43から受信した第2回路22に流れる分岐電流I2のピーク電流値に基づき、インバータ回路1の駆動周波数を制御する。
具体的には、CPU42は、インバータ電流I3が所定の閾値Ith2を超えると、インバータ回路1の駆動周波数を下げるように制御する。図9では、閾値Ith2における駆動周波数はf2(ここで、f2>fo)なので、駆動周波数をf2よりも下げるように制御する。
また、CPU42は、第2回路22に流れる分岐電流I2が所定の閾値Ith3(ここで、Ith3>Ith2)を超えると、インバータ回路1の駆動周波数を上げるように制御する。図9では、閾値Ith3における駆動周波数はf1(ここで、f1<fo<f2)なので、駆動周波数をf1よりも上げるように制御する。
これにより、CPU42は、インバータ回路1の駆動周波数をf1~f2の間で調整することができる。すなわち、CPU42は、インバータ回路1の駆動周波数を並列共振回路20の共振周波数foに近づけることができる。また、加熱中においても、駆動周波数の調整は可能なので、鍋が移動して共振点がずれた場合においても、自動的に共振点での動作に合わせなおすことができる。
なお、駆動周波数f1及びf2は、それぞれ、閾値Ith2,Ith3により任意の値に設定することができるので、駆動周波数f1と駆動周波数f2との周波数間隔を調整することができる。
次に、図10の誘導加熱装置Aについて説明する。なお、図10において、図1と共通の構成には、図1と同じ符号を付しており、ここでは相違点を中心に説明する。また、図11には、図10の構成において、横軸の時間に対する分岐電流I1,I2及びインバータ電流I3の変化を示す。
図10の誘導加熱装置Aは、前述のとおり、第1回路21に流れる分岐電流I1を検出する第1電流検出手段37と、第2回路22に流れる分岐電流I2を検出する第2電流検出手段38とを備える。
さらに、制御手段40には、第1電流検出手段37で検出された分岐電流I1をピーク電流に変換するピーク電流変換回路44と、第2電流検出手段38で検出された分岐電流I2をピーク電流に変換するピーク電流変換回路45と備える。CPU42は、ピーク電流変換回路44から受信した分岐電流I1のピーク電流値と、ピーク電流変換回路45から受信した分岐電流I2のピーク電流値に基づき、インバータ回路1の駆動周波数を制御する。
ここで、並列共振回路20が共振している場合、インバータ電流I3が最小値になり、第1回路21に流れる分岐電流I1の波形と、第2回路22に流れる分岐電流I2の波形とが理想的には同じになる。
そこで、CPU42は、分岐電流I1のピーク電流と分岐電流I2のピーク電流とが一致するように、もしくは、分岐電流I1のピーク電流と分岐電流I2のピーク電流と所定の範囲内になるように、インバータ回路1の駆動周波数を制御する。
そうすることで、インバータ回路1の駆動周波数を並列共振回路20の共振周波数foに近づけることができる。また、加熱中においても、駆動周波数の調整は可能なので、鍋が移動して共振点がずれた場合においても、自動的に共振点での動作に合わせなおすことができる。
以上のように、本開示の技術の例示として、好ましい実施形態について説明した。しかし、本開示の技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須でない構成要素が添付図面や詳細な説明に記載されていることを以て、直ちにそれらの必須でない構成要素が必須であるとの認定をするべきではない。
例えば、上記実施形態について、以下のような構成としてもよい。
上記の実施形態では、インバータ回路1がフルブリッジ型の例について説明したが、図12に示すように、ハーフブリッジ型のインバータ回路1を用いてもよく、上記実施形態と同様の効果が得られる。
また、上記実施形態とは異なる並列共振回路20を用いてもよい。例えば、図13(a)では、並列共振回路20の第1回路21が共振コンデンサ26で構成され、第2回路22が加熱コイルCからなるインダクタ24で構成されている。また、例えば、図13(b)では、並列共振回路20の第1回路21が加熱コイルCからなるインダクタ24と共振コンデンサ26で構成され、第2回路22が共振コンデンサ27で構成されている。このように、並列共振回路20が異なる場合においても、本開示の技術は適用が可能であり、同様の効果を得ることができる。
また、図14に示すような構成にしてもよい。図14では、制御手段40は、インバータ回路1の入力電圧Viを加熱コイルCの設定熱量に応じて変化させる入力電圧制御手段を備える。図14の例では、CPU42が入力電圧制御手段としての機能を有する例を示している。
これにより、インバータ回路の出力電圧のデューティ比を大きく保持し、入力電圧制御部で入力電圧を変えることにより火力を制御することができるので、火力を幅広く制御することができる。
以上説明したように、本発明は、加熱コイルを用いた誘導加熱装置において、アルミ鍋の加熱効率向上(加熱時短化)、部品削減による筐体の小型化、コスト削減、低騒音化に寄与できるので、きわめて有用で産業上の利用可能性は高い。
A 誘導加熱装置
C 加熱コイル
1 インバータ回路
4 制御手段
13 スイッチング素子
24,25 インダクタ
35 第1電流検出手段
36 第2電流検出手段
37 第1電流検出手段
38 第2電流検出手段

Claims (8)

  1. 加熱コイルと、
    当該加熱コイルを含むインダクタと、共振コンデンサと、を有する並列共振回路と、
    前記並列共振回路に電力を供給するインバータ回路と、
    前記インバータ回路から前記並列共振回路に出力される出力電流を検出する第1電流検出手段と、
    前記第1電流検出手段で検出された出力電流のピーク電流値が小さくなるように前記インバータ回路の駆動周波数を制御する制御手段とを備える、誘導加熱装置。
  2. 請求項1に記載の誘導加熱装置において、
    前記制御手段は、前記インバータ回路の駆動周波数を変動させつつ前記駆動周波数の変化に対する前記出力電流の傾きが小さくなる方向に前記インバータ回路の駆動周波数を制御する、誘導加熱装置。
  3. 請求項1に記載の誘導加熱装置において、
    前記制御手段は、前記第1電流検出手段で検出された出力電流のピーク電流が所定の閾値以下になるように前記インバータ回路の駆動周波数を制御する、誘導加熱装置。
  4. 請求項1に記載の誘導加熱装置において、
    前記インバータ回路と前記並列共振回路との間に、前記インバータ回路から出力される矩形波状の出力電圧をならして正弦波状の波形にするフィルタ手段を備える、誘導加熱装置。
  5. 請求項1から4のいずれかに記載の誘導加熱装置において、
    前記制御手段は、前記インバータ回路の入力電圧を前記加熱コイルの設定熱量に応じて変化させる入力電圧制御手段を備える、誘導加熱装置。
  6. 請求項1に記載の誘導加熱装置において、
    前記並列共振回路に流れる電流を検知する第2電流検出手段を備え、
    前記制御手段は、前記第1電流検出手段で検出された出力電流のピーク電流が所定の第1閾値以上になると前記インバータ回路の駆動周波数を下げるように制御し、前記第2電流検出手段で検出された電流が所定の第2閾値以下になると前記インバータ回路の駆動周波数を上げるように制御する、誘導加熱装置。
  7. 加熱コイルと、
    当該加熱コイルを含むインダクタと共振コンデンサとを含む並列共振回路と、
    前記並列共振回路に電力を供給するインバータ回路とを備え、
    前記並列共振回路は、前記インバータ回路の出力から分岐された一方側の回路である第1回路と、他方側の回路である第2回路との並列回路であり、
    前記第1回路の電流を検出する第1電流検出手段と、
    前記第2回路の電流を検出する第2電流検出手段と、
    前記第1電流検出手段で検出された電流の第1ピーク電流値と、前記第2電流検出手段で検出された電流の第2ピーク電流値との差が小さくなるように前記インバータ回路の駆動周波数を制御する制御手段とをさらに備える、誘導加熱装置。
  8. 請求項7に記載の誘導加熱装置において、
    前記制御手段は、前記第1ピーク電流値と前記第2ピーク電流値とを比較し、相互間の誤差が20%以内になるように、前記インバータ回路の駆動周波数を制御する、誘導加熱装置。
JP2021029403A 2021-02-26 2021-02-26 誘導加熱装置 Pending JP2022130803A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021029403A JP2022130803A (ja) 2021-02-26 2021-02-26 誘導加熱装置
PCT/KR2022/002382 WO2022182066A1 (ko) 2021-02-26 2022-02-17 공진 주파수를 추종하는 가열 장치
US18/238,396 US20230403766A1 (en) 2021-02-26 2023-08-25 Heating device for tracking resonance frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021029403A JP2022130803A (ja) 2021-02-26 2021-02-26 誘導加熱装置

Publications (1)

Publication Number Publication Date
JP2022130803A true JP2022130803A (ja) 2022-09-07

Family

ID=83049400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021029403A Pending JP2022130803A (ja) 2021-02-26 2021-02-26 誘導加熱装置

Country Status (3)

Country Link
US (1) US20230403766A1 (ja)
JP (1) JP2022130803A (ja)
WO (1) WO2022182066A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4362608A1 (en) * 2022-10-24 2024-05-01 Pietro Montalto Energy saving power supply device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783147B1 (ko) * 2007-07-04 2007-12-12 (주)아코 유도가열 조리장치
CN102171919B (zh) * 2009-08-04 2013-11-13 松下电器产业株式会社 电力变换装置及感应加热装置
JP6361240B2 (ja) * 2014-04-03 2018-07-25 富士電機株式会社 誘導加熱装置の制御回路
KR20170136869A (ko) * 2016-06-02 2017-12-12 주식회사 윌링스 유도가열 인버터의 공진피크전압 저감회로 및 그 제어방법
US10524508B2 (en) * 2016-11-15 2020-01-07 Rai Strategic Holdings, Inc. Induction-based aerosol delivery device
KR20200009990A (ko) * 2018-07-18 2020-01-30 엘지전자 주식회사 용기 감지 기능을 수행하는 유도 가열 장치

Also Published As

Publication number Publication date
WO2022182066A1 (ko) 2022-09-01
US20230403766A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
US10432026B2 (en) Primary-side power control for inductive power transfer
JP4698769B2 (ja) 電力変換装置及び誘導加熱装置
US7919950B2 (en) Power factor correction converter
CN110048597B (zh) 功率因数校正电路的控制方法、控制器及系统
EP2066013A2 (en) Electric power converter and control method for the same
EP1423907B1 (en) Power supply for induction heating or melting
US8817494B2 (en) PFC AC/DC converter reducing harmonics, switching loss, and switching noise
WO1999008373A2 (en) Voltage regulation scheme for power supply having a voltage-fed inverter
KR102201189B1 (ko) 유도 가열 장치
CN103079299B (zh) 电磁感应加热装置
KR101844981B1 (ko) 플라즈마 공정용 llcc 공진컨버터
JP2010080359A (ja) 電磁誘導加熱装置
JP7045295B2 (ja) 電磁誘導加熱装置
JP2022130803A (ja) 誘導加熱装置
JPWO2005060083A1 (ja) 放電灯点灯装置および照明器具
JP4301867B2 (ja) 高周波加熱装置のインバータ電源制御回路
JP2020064719A (ja) 電磁誘導加熱装置
JP2007026906A (ja) 電磁調理器
JP7344740B2 (ja) 電磁誘導加熱装置
EP3669438A1 (en) Contactless electrical energy transfer system and operating method thereof
JP2004040995A (ja) 負荷に供給される電力の制御方法及び制御装置
CN113036939A (zh) 非接触电磁转换供电装置及供电方法
JP7397762B2 (ja) 電磁誘導加熱装置
JP7373842B2 (ja) 非接触給電システム及び非接触給電制御方法
WO2023161669A1 (ja) 電力変換方法及び電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240221