WO2005056185A1 - 複合酸化物触媒の製造方法 - Google Patents

複合酸化物触媒の製造方法 Download PDF

Info

Publication number
WO2005056185A1
WO2005056185A1 PCT/JP2004/013461 JP2004013461W WO2005056185A1 WO 2005056185 A1 WO2005056185 A1 WO 2005056185A1 JP 2004013461 W JP2004013461 W JP 2004013461W WO 2005056185 A1 WO2005056185 A1 WO 2005056185A1
Authority
WO
WIPO (PCT)
Prior art keywords
producing
composite oxide
oxide catalyst
nitrate
catalyst
Prior art date
Application number
PCT/JP2004/013461
Other languages
English (en)
French (fr)
Inventor
Nariyasu Kanuka
Isao Teshigahara
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2005056185A1 publication Critical patent/WO2005056185A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation

Definitions

  • the present invention relates to a composite oxide catalyst capable of producing a corresponding unsaturated aldehyde and an unsaturated carboxylic acid in a high yield and with good reproducibility and advantageously in a gas phase catalytically oxidizing an olefin with a molecular oxygen-containing gas. It relates to a manufacturing method.
  • Patent Document 1 discloses that in a molybdenum-bismuth-based composite oxide catalyst, a water-soluble raw material is used for a molybdenum component, and a bismuth component is a water-insoluble raw material that does not disperse each raw material component uniformly.
  • the production method in a homogeneous system is described. It is described that the purpose is to avoid a decrease in catalytic performance due to the use of a large amount of nitrate when the bismuth component is a water-soluble nitrate.
  • components such as molybdenum and bismuth are solidified and integrated by thermal diffusion in a firing step as a final step.
  • Patent Document 2 discloses that the activity, selectivity, and catalyst life of a molybdenum-bismuth-based composite oxide catalyst are determined by the amount of nitrate in an aqueous solution of a raw material mixture of a catalyst component at the time of preparation. Are disclosed to be relevant. Then, in order to improve the catalyst performance, the amount of nitrate in the aqueous solution of the raw material mixture at the time of preparing the catalyst was reduced.
  • the content ratio of 3 be 1.8 or less.
  • Patent Document 3 discloses a method for producing a molybdenum, bismuth, iron, cobalt and Z or nickel-based composite oxide catalyst.
  • a catalyst precursor powder containing components such as molybdenum, iron, cobalt, and Z or nickel is prepared in advance, and the resulting catalyst precursor powder is mixed with a bismuth component, integrated, dried and calcined.
  • a high-performance catalyst be produced.
  • Patent Document 1 Japanese Patent Publication No. 5—87299
  • Patent Document 2 JP-A-2000-325795
  • Patent Document 3 JP 2003-205240 A
  • the object of the present invention is to reproducibly obtain the corresponding unsaturated aldehyde and unsaturated carboxylic acid in high yield by gas phase catalytic oxidation of olefins with a molecular oxygen-containing gas.
  • An object of the present invention is to provide a method for producing a catalyst which can be produced advantageously. Means for solving the problem
  • the aqueous dispersion containing the component (A), the component (C), and the component (D) is dried, and the dried product is heat-treated.
  • the catalyst precursor powder and the component (B) raw material are integrated in an aqueous solvent, and the integrated product is dried and calcined to produce a composite oxide catalyst, the nitric acid contained in the aqueous dispersion is used.
  • the amount of the root (NO) is greatly related to the catalytic performance of the composite oxide catalyst to be produced.
  • the present invention has a gist having the following features.
  • Molybdenum, (B) bismuth, (C) used in the production of corresponding unsaturated aldehydes and unsaturated carboxylic acids by gas-phase catalytic oxidation of olefins with a molecular oxygen-containing gas.
  • the component (A), the component (C) and the component (D) are integrally incorporated.
  • a method for producing acrolein and acrylic acid by subjecting propylene to gas-phase catalytic oxidation with a molecular oxygen-containing gas in the presence of the composite oxide catalyst obtained by the production method according to any one of the above items 15 to 15.
  • the conversion of olefin used in producing gaseous phase catalytically oxidized gas with a molecular oxygen-containing gas to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid respectively.
  • a composite oxide catalyst containing at least (A) molybdenum, (B) bismuth, (C) conoreto and Z or nickel, and (D) iron, which have excellent characteristics with respect to selectivity of the target substance. Is provided.
  • the catalyst produced by the present invention is a composite oxide catalyst containing at least (A) molybdenum, (B) bismuth, (C) cobalt and Z or nickel, and (D) iron.
  • A molybdenum
  • B bismuth
  • C cobalt
  • Z or nickel nickel
  • D iron
  • Mo molybdenum
  • Bi bismuth
  • Co cobalt
  • Ni nickel
  • Fe iron
  • Si silicon
  • O oxygen
  • X, Y, Z a, b, c, d, e, f, g, h, i, j and k are as defined above.
  • the catalyst having the above composition according to the present invention is obtained by drying a dispersion obtained by integrating the component (A), the component (C), and the component (D) with an aqueous medium,
  • the catalyst precursor powder produced through the pre-process of heat treatment is integrated with the component (B) raw material in an aqueous medium system, and the integrated product is dried and fired.
  • integration of each component raw material means that an aqueous solution or aqueous dispersion of the raw material compound of each component is mixed or aged at once or stepwise, or mixed and aged.
  • ripening refers to an operation of treating under specific conditions such as a certain time and a certain temperature to obtain desired physical properties and Z or chemical properties.
  • the fixed time is usually in the range of 10 minutes to 24 hours
  • the fixed temperature is usually in the range of the boiling point of an aqueous solution or aqueous dispersion at room temperature, preferably 10 to 95 ° C.
  • a mixture of an iron compound, a nickel compound and a Z or cobalt compound is added to an aqueous solution of a molybdenum conjugate, and Depending on the conditions, the X component-containing compound, the Y component-containing compound, the Z component-containing compound, the Q component-containing compound, and other component-containing compounds other than bismuth such as silica are added, and the above-described integration treatment in an aqueous medium is performed. Done.
  • the content of nitrate groups contained in the aqueous dispersion containing the respective component raw materials in the preceding step integrally satisfies the following formula (1).
  • NO, Fe, Co, and Ni are the mole fractions of nitrate, iron, connort, and nickel, respectively.
  • the value on the right side including the contents of nitrate, iron and nickel in the formula (1) is smaller than 1.2, the effect of the present invention cannot be sufficiently obtained.
  • the value on the right side is preferably 1.3 or more, and particularly preferably 1.5 or more.
  • the value on the right side is preferably 50 or less, particularly preferably 10 or less.
  • nitrate chloride is preferably used as each catalyst component raw material.
  • a thermally decomposable nitrate, preferably ammonium nitrate, or the like is preferably added to the aqueous dispersion.
  • the slurry-like aqueous dispersion obtained by integrating the catalyst component raw materials in the preceding step is sufficiently stirred and then dried.
  • the drying method and the state of the obtained dried product are not particularly limited.
  • a powdery dried product may be obtained using a usual spray dryer, slurry dryer, drum dryer, etc. Blocks or flakes may be obtained using a dryer or a tunnel-type firing furnace.
  • the dried granules or cakes are subjected to a short-time heat treatment in air at a temperature of 200 to 400 ° C, preferably 250 to 350 ° C.
  • the type and method of the furnace at that time are not particularly limited.
  • the dried product may be heated in a fixed state using a normal box-type heating furnace, a tunnel-type heating furnace, or the like, or The dried product may be heated while flowing using a rotary kiln or the like.
  • the catalyst precursor powder obtained in the preceding step and the bismuth raw material compound are integrated in an aqueous medium.
  • water is used to stabilize the slurry.
  • a basic substance such as ammonia during sexual medium is preferably added to a 0. 01- 20 weight 0/0.
  • the bismuth raw material conjugate is preferably a compound that is hardly soluble or insoluble in water.
  • the bismuth raw material conjugate is preferably used in the form of a powder.
  • the catalyst precursor powder and the bismuth raw material compound may be particles having a large diameter, but are small and particles in order to efficiently promote the thermal diffusion reaction between the particles in the firing step performed in the next step V. Is more preferred. It is preferable that these raw materials are pulverized to preferably have an average particle diameter of 0.1 to 1000 m.
  • the obtained slurry is sufficiently stirred and then dried.
  • the dried product thus obtained is shaped into an arbitrary shape by a method such as extrusion molding, tablet molding, or carrier molding. This is then subjected to a final heat treatment, preferably at a temperature of 450-600 ° C., preferably for about 116 hours. In this way, a composite oxide catalyst having high activity and providing the desired oxidation product in high yield can be obtained.
  • a compound of iron, cobalt and nickel preferably an aqueous solution of each nitrate
  • an appropriate aqueous solution of molybdenum conjugate preferably an aqueous solution of ammonium molybdate.
  • a compound of sodium, potassium, rubidium, thallium, boron, phosphorus, arsenic, and / or tandasten is preferably obtained as a water-soluble salt or an aqueous solution thereof. More preferably, ammonium nitrate is prepared as an aqueous solution, and NO
  • the obtained heat-treated product is dispersed in water, preferably after adding aqueous ammonia, and then adding a bismuth compound powder.
  • the bismuth compound powder include (1) at least one of bismuth oxide and bismuth subcarbonate, (2) bismuth subcarbonate in which Na is dissolved, (31 and: the ⁇ component (where is the same as the above definition)) Complex carbonate compounds or (4) complex carbonate conjugates of Bi, Na and X containing Na and X components are preferred.
  • the obtained slurry is thoroughly stirred and then dried. Obtained in this way
  • the dried product is formed into an arbitrary shape by a method such as extrusion molding, tablet molding, or carrier molding.
  • the molded article is fired in air at a temperature of preferably 450 to 600 ° C., preferably for about 116 hours.
  • the specific surface area, average pore diameter, and pore volume of the composite oxide catalyst produced by the present invention are within the range of existing catalysts, and are not particularly limited.
  • the surface area is preferably 5-25 m 2 Zg, the average pore diameter is 0.03—: m, and the pore volume is preferably 0.2-0.7 cc Zg.
  • means for producing the corresponding unsaturated aldehyde and unsaturated carboxylic acid by using the above catalyst and subjecting the olefin to gas phase catalytic oxidation using a molecular oxygen-containing gas is known. It can be performed by the method of. For example, the reaction is performed using a fixed-bed tubular reactor. In this case, the reaction can be carried out under a condition generally used for this type of reaction, whether it is a simple flow method or a reital method through a reactor.
  • a mixed gas such as propylene, 11 to 15% by volume, molecular oxygen, 3 to 30% by volume, steam, 0 to 60% by volume, and an inert gas such as nitrogen and carbon dioxide, 20 to 80% by volume is used. It is introduced into the catalyst layer packed in each reaction tube having an inner diameter of preferably 15 to 50 mm at 250 to 450 ° C. under a pressure of 0.1 to 1 MPa at a space velocity (SV) of 300 to 5000 hr- 1 . Further, in the present invention, it is possible to operate under high load reaction conditions, for example, under a condition of a higher raw material concentration or a high space velocity in order to further increase productivity.
  • SV space velocity
  • Ammonium paramolybdate 94.lg was dissolved by heating in 400 ml of pure water. Next, 7.18 g of ferric nitrate, 38.7 g of nitrate nitrate and 25.8 g of nickel nitrate were heated and dissolved in 60 ml of pure water. These solutions were slowly mixed with good stirring.
  • Comparative Example 1 A composite oxide catalyst having the same composition as in Example 1 was produced in the same manner as in Example 1, except that ammonium nitrate was not added.
  • the ratio of the molar amount of nitrate groups in the aqueous dispersion in the previous step and the molar amounts of Fe, Co, and Ni calculated from the raw material charge was as follows.
  • Ammonium paramolybdate 94.lg was dissolved by heating in 400 ml of pure water. Next, 7.18 g of ferric nitrate, 38.7 g of nitrate nitrate and 25.8 g of nickel nitrate were heated and dissolved in 60 ml of pure water. These solutions were slowly mixed with good stirring.
  • the obtained granular solid was pulverized and dispersed in 150 ml of pure water by adding 10 ml of aqueous ammonia. Next, 58.lg of bismuth subcarbonate in which 0.52% by weight of Na was dissolved was added, and the mixture was stirred and mixed. After heating and drying the slurry, the obtained granular solid was tableted into a tablet having a diameter of 5 mm and a height of 4 mm using a small molding machine, and then calcined at 500 ° C. for 4 hours to obtain a catalyst.
  • the catalyst calculated from the charged raw materials is a composite oxide having the following atomic ratio.
  • Ammonium paramolybdate 94.lg was dissolved by heating in 400 ml of pure water. Next, 7.18 g of ferric nitrate, 38.7 g of nitrate nitrate and 25.8 g of nickel nitrate were heated and dissolved in 60 ml of pure water. These solutions were slowly mixed with good stirring. Next, 0.85 g of borax and 0.36 g of potassium nitrate were dissolved in 40 ml of pure water while heating, and added to the slurry. Next, 360 ml of pure water and 358.2 g of ammonium nitrate were dissolved with heating, and added to the slurry. Next, 64 g of silica was added, followed by sufficient stirring.
  • the obtained granular solid was pulverized, and dispersed in 150 ml of pure water by adding 10 ml of aqueous ammonia. Next, 58.lg of bismuth subcarbonate in which 0.52% by weight of Na was dissolved was added, and the mixture was stirred and mixed. After heating and drying the slurry, the obtained granular solid was tableted into a tablet having a diameter of 5 mm and a height of 4 mm using a small molding machine, and then calcined at 500 ° C. for 4 hours to obtain a catalyst.
  • the catalyst calculated from the charged raw materials is a composite oxide having the following atomic ratio.
  • the catalyst produced by the method of the present invention is used for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid at a high yield by gas-phase catalytic oxidation of olefin with a molecular oxygen-containing gas.
  • the unsaturated aldehydes and unsaturated carboxylic acids produced are widely used as raw materials for various chemicals, monomers for general-purpose resins, monomers for functional resins such as water-absorbing resins, flocculants and thickeners. used.

Abstract

 オレフィンから高収率で対応する不飽和アルデヒド及び不飽和カルボン酸製造用触媒及びその製造法を提供する。  オレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を製造する際に使用される、(A)モリブデン、(B)ビスマス、(C)コバルト及び/又はニッケル、及び(D)鉄を少なくとも含む複合酸化物触媒の製造方法において、前記(A)成分原料、前記(C)成分原料及び前記(D)成分原料を一体化して含み、かつ硝酸根の含有量が、式:1.2≦NO3/(3×Fe+2×(Co+Ni))を満足する水分散液を乾燥し、該乾燥物を加熱処理する前工程を経て製造された触媒前駆体粉末と、前記(B)成分原料とを水性溶媒中で一体化し、該一体化物を乾燥、焼成することを特徴とする複合酸化物触媒の製造方法。但し、式中、NO3、Fe、Co及びNiは、それぞれ、硝酸根、鉄、コバルト、及びニッケルのモル含有量を示す。

Description

複合酸化物触媒の製造方法
技術分野
[0001] 本発明は、ォレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応 する不飽和アルデヒド及び不飽和カルボン酸を高収率で再現性よく有利に製造でき る複合酸化物触媒の製造方法に関する。
背景技術
[0002] 従来、プロピレンを分子状酸素により気相接触酸ィ匕してァクロレイン及びアクリル酸 を製造するための触媒、また、イソブチレンを分子状酸素含有ガスにより気相接触酸 化してメタクロレイン及びメタクリル酸を製造するための触媒が種々提案されて 、る。
[0003] これらの触媒は、原料ォレフィン資源の有効利用及び反応における工程の合理ィ匕 の観点から、ォレフィンの転ィ匕率や目的物の選択率の少しでも高い触媒性能が求め られる。この場合、例えば、プロピレン力ゝらァクロレイン及びアクリル酸を製造するプロ セスは、上記転化率や選択率が 0. 1%でも向上すると、得られる生成物である、ァク ロレイン及びアクリル酸の量は、数百一数千トン Z年のレベルで大きく増加する。した がって、原料転化率や選択率等の触媒性能の向上は、たとえ少しの値であっても、 資源の有効活用や工程の合理ィ匕に大きく寄与する。
[0004] 従来、これらの反応の原料転化率や目的物の選択率等の触媒性能の改善を目指 して種々の提案がなされている。例えば、特許文献 1には、モリブデン一ビスマス系 複合酸化物触媒において、各原料成分を均一に分散させるのではなぐモリブデン 成分は水溶性原料を使用し、ビスマス成分は水に不溶性原料を使用した不均一系 での製造方法が記載されている。その目的は、ビスマス成分が水溶性の硝酸塩の場 合には、硝酸塩などの多量の使用により触媒性能が低下するのを避けるためと説明 されている。この場合、モリブデン、ビスマスなどの成分は、最終工程である焼成工程 での熱拡散により固溶化し一体化されると説明されている。
[0005] また、特許文献 2には、モリブデン一ビスマス系複合酸化物触媒の活性、選択性及 び触媒寿命が、その調製時における触媒成分の原料混合物水溶液中の硝酸根量 が関係することが開示されている。そして、触媒性能を向上させるために、触媒調製 時における原料混合物水溶液中の硝酸根量を低下させ、具体的には、 NO /Mo
3 の含有量の比率を 1. 8以下にすることが提案されている。
[0006] さらに、特許文献 3には、モリブデン、ビスマス、鉄、コバルト及び Z又はニッケル系 の複合酸化物触媒の製造方法が開示されている。そこでは、モリブデン、鉄、コバル ト及び Z又はニッケルなどの成分を含む触媒前駆体粉末を予め調製し、得られた触 媒前駆体粉末に、ビスマス成分を混合、一体化して、乾燥、焼成することにより、高性 能の触媒が製造されることが提案されて 、る。
[0007] し力しながら、これら従来技術によるモリブデン一ビスマス系複合酸ィ匕物触媒は、な お、原料転化率や選択率等の触媒性能が不充分であり、更なる触媒性能の向上が 求められている。
特許文献 1:特公平 5— 87299号公報
特許文献 2:特開 2000-325795号公報
特許文献 3:特開 2003— 205240号公報
発明の開示
発明が解決しょうとする課題
[0008] 上記のような従来技術に鑑み、本発明の目的は、ォレフィンを分子状酸素含有ガス により気相接触酸化してそれぞれ対応する不飽和アルデヒド及び不飽和カルボン酸 を高収率で再現性よく有利に製造できる触媒の製造方法を提供することにある。 課題を解決するための手段
[0009] 本発明者は、上記課題を解決すべく鋭意研究を進めたところ、(A)モリブデン、 (B )ビスマス、 (C)コバルト及び Z又はニッケル、及び (D)鉄を少なくとも含む複合酸ィ匕 物触媒の製造方法において、前記 (A)成分原料、前記 (C)成分原料、及び前記 (D )成分原料を含む水分散液を乾燥し、該乾燥物を加熱処理して製造された触媒前駆 体粉末と、前記 (B)成分原料とを水性溶媒中で一体化し、該一体化物を乾燥、焼成 して複合酸化物触媒を製造する場合において、上記水分散液中に含有される硝酸 根 (NO )の量が製造される複合酸化物触媒の触媒性能と大きく関係し、該硝酸根の
3
含有量を所定の範囲に制御することにより優れた特性の触媒を製造できることを見出 した。
力べして、本発明は、下記の特徴を有する構成を要旨とするものである。
1.ォレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応する不飽 和アルデヒド及び不飽和カルボン酸を製造する際に使用される、(A)モリブデン、 (B )ビスマス、(C)コバルト及び Z又はニッケル、及び (D)鉄を少なくとも含む複合酸ィ匕 物触媒の製造方法において、前記 (A)成分原料、前記 (C)成分原料及び前記 (D) 成分原料を一体化して含み、かつ硝酸根の含有量が下記の式(1)を満足する水分 散液を乾燥し、該乾燥物を加熱処理する前工程を経て製造された触媒前駆体粉末 と、前記 (B)成分原料とを水性溶媒中で一体化し、該一体化物を乾燥、焼成すること を特徴とする複合酸化物触媒の製造方法。
1. 2≤NO / (3 X Fe + 2 X (Co+Ni) ) (1)
3
(但し、式中、 NO、 Fe、 Co、及び Niは、それぞれ、上記水分散液中の硝酸根、鉄
3
、コバルト、及びニッケルのモル含有量を示す。 )
2.上記前工程の水分散液に硝酸塩ィ匕合物が添加される上記 1に記載の複合酸ィ匕 物触媒の製造方法。
3.上記 (B)成分原料が、水に難溶性乃至不溶性のビスマス化合物である上記 1又 は 2に記載の複合酸化物触媒の製造方法。
4.上記前工程の水分散液中の硝酸根の含有量が下記の式(2)を満足する上記 1一 3の 、ずれかに記載の複合酸化物触媒の製造方法。
1. 2≤NO / (3 X Fe + 2 X (Co+Ni) )≤10 (2)
5.上記複合酸化物触媒、下記の式(3)で表される上記 1一 4のいずれかに記載の複 合酸化物触媒の製造方法。
MoaBibCocNidFeeXfYgZhQiSijOk (3) (但し、 Xは Na、 K、 Rb、 Cs及び Τ1からなる群から選ばれる少なくとも一種を示し、 Yは B、 P、 As及び Wからなる群から選ばれる少なくとも一種を示し、 Zは Mg、 Ca、 Z n、 Ce及び Sm力 なる群力 選ばれる少なくとも一種を示す。 Qはハロゲンを示し、 また、 a— kはそれぞれの元素の原子比を表わし、 a= 12とするとき、 b = 0. 5— 7、 c =0— 10、 d=0— 10、 c + d= l— 10、 e = 0. 05— 3、 f=0. 0005— 3、 g = 0— 3、 h=0— 1、 i=0—0. 5、 j = 0— 40、の範囲にあり、また、 kは他の元素の酸化状態を 満足させる値である。 )
6.上記 1一 5の ヽずれかに記載の製造方法で得られた複合酸化物触媒の存在下に プロピレンを分子状酸素含有ガスにより気相接触酸化してァクロレイン及びアクリル 酸を製造する方法。
発明の効果
[0011] 本発明によれば、ォレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞ れ対応する不飽和アルデヒド及び不飽和カルボン酸を製造する際に使用される、ォ レフインの転化率及び目的物の選択率につ 、て優れた特性を有する、 (A)モリブデ ン、(B)ビスマス、 (C)コノ レト及び Z又はニッケル、及び (D)鉄を少なくとも含む複 合酸化物触媒の製造方法が提供される。
[0012] 本発明において、硝酸根 (NO )の量の上記範囲内への制御により何故に触媒の
3
性能が向上するかについては必ずしも明らかではないが、上記前工程により調製さ れる触媒前駆体粉末がより安定化され、目的の触媒がより好適に再現性良く得られ るためと推定される。
発明を実施するための最良の形態
[0013] 本発明により製造される触媒は、(A)モリブデン、(B)ビスマス、 (C)コバルト及び Z 又はニッケル、及び (D)鉄を少なくとも含む複合酸化物触媒である。カゝかる成分を含 む複合酸化物触媒であれば、特に制限はないが、なかでも、下記の式 (3)で表され る触媒が好ましく適用できる。
MoaBibCocNidFeeXfYgZhQiSijOk 上記の式における、 Moはモリブデン、 Biはビスマス、 Coはコバルト、 Niはニッケル 、 Feは鉄、 Siはケィ素、 Oは酸素を示し、 X、 Y、 Z、 a、 b、 c、 d、 e、 f、 g、 h、 i、 j及び k は、上記において定義したとおりである。なかでも、本発明では、 Qが塩素原子である の力 S好適であり、また、 a= 12のとき、 b = 0. 5— 7、 c = 0— 10、 d=0— 10、 c + d= l 一 10、 e = 0. 05— 3、 f=0. 0005— 3、 g = 0— 3、 h=0— 1、 i=0— 0. 05、 j = 0— 40の範囲が特に好ましい。
[0014] 本発明の上記組成を有する触媒は、前記 (A)成分原料、前記 (C)成分原料及び 前記 (D)成分原料を水性媒体系で一体化した分散液を乾燥し、該乾燥物を加熱処 理する前工程を経て製造された触媒前駆体粉末と、前記 (B)成分原料と水性媒体 系で一体化し、該一体化物を乾燥、焼成することによって製造される。
[0015] 本発明にお 、て、各成分原料の「一体化」とは、各成分の原料化合物の水溶液あ るいは水分散液を一括に若しくは段階的に混合若しくは熟成処理し、又は混合及び 熟成処理を行うことをいう。即ち、(a)上記の各成分原料化合物を一括して混合する方 法、(b)上記の各成分原料化合物を一括して混合し、そして熟成処理する方法、(c)上 記の各成分原料化合物を段階的に混合する方法、(d)上記の各成分原料化合物を 段階的に混合'熟成処理を繰り返す方法、及び (a)— (d)を組み合わせた方法のいず れもが含まれる。ここで、熟成とは、一定時間、一定温度等の特定条件で処理し、所 望の物理性、及び Z又は化学性を得る操作をいう。ここで、一定時間とは、通常 10 分一 24時間の範囲であり、一定温度とは通常室温一水溶液又は水分散液の沸点の 範囲、好ましくは 10— 95°Cをいう。
[0016] 力べして、上記前工程における具体的な方法としては、例えば、モリブデンィ匕合物 の水溶液に、鉄化合物とニッケル化合物及び Z又はコバルト化合物との混合物を添 加し、更に、必要に応じて、 X成分含有化合物、 Y成分含有化合物、 Z成分含有化合 物、 Q成分含有化合物、シリカなどのビスマスを除く他の成分含有化合物を添加し、 水性媒体中で上記した一体化処理が行われる。
[0017] 本発明では、かかる前工程における各成分原料を一体ィ匕して含む水分散液中に 含有される硝酸根含有量が下記の式(1)を満足することが必要である。但し、式中、 NO、 Fe、 Co、及び Niは、それぞれ、硝酸根、鉄、コノルト、及びニッケルのモル含
3
有量を示す。
1. 2 ≤ NO / (3 X Fe + 2 X (Co+Ni) ) (1)
3 本発明において、式(1)における硝酸根、鉄及びニッケルの含有量を含む右辺の 値が 1. 2より小さい場合には本発明の効果を充分に得ることができない。なかでも、 上記右辺の値は、好ましくは 1. 3以上、特に好ましくは、 1. 5以上が好適である。一 方、上記右辺の値が過度に大きい場合にもさらなる効果が得られず、その場合には 、硝酸根含有化合物や水を多量に添加することになるため触媒製造上経済的に不 利である。従って、右辺の値は、好ましくは 50以下、特に好ましくは 10以下が好適で ある。
[0018] 本発明において、前工程における水分散液中に含有される硝酸根の含有量を上 記の範囲に制御するために、通常、好ましくは、各触媒成分原料として硝酸塩化合 物を使用するか、又は、水分散液中に好ましくは熱分解性の硝酸塩、好ましくは硝酸 アンモ-ゥムなどを添加することが行われる。
[0019] 上記前工程で触媒成分原料を一体化して得られたスラリー状の水分散液は充分に 撹拌した後、乾燥される。乾燥方法及び得られる乾燥物の状態については特に限定 はなぐ例えば、通常のスプレードライヤー、スラリードライヤー、ドラムドライヤー等を 用いて粉体状の乾燥物を得てもよいし、また、通常の箱型乾燥器、トンネル型焼成炉 を用いてブロック状又はフレーク状の乾燥物を得てもよ!、。
[0020] 乾燥された顆粒あるいはケーキ状のものは空気中で 200— 400°C、好ましくは 250 一 350°Cの温度で短時間の熱処理を行う。その際の炉の形式及びその方法につい ては特に限定はなぐ例えば、通常の箱型加熱炉、トンネル型加熱炉等を用いて乾 燥物を固定した状態で加熱してもよいし、また、ロータリーキルン等を用いて乾燥物 を流動させながら加熱してもよ 、。
[0021] 本発明では、次 、で、上記の前工程にお!ヽて得られる触媒前駆体粉体とビスマス 原料化合物とを水性媒体中で一体化させる。この際、スラリーの安定ィ匕のために水 性媒体中にアンモニアなどの塩基性物質を好ましくは 0. 01— 20重量0 /0になるよう に添加するのが好ましい。上記ビスマス原料ィ匕合物は、水に難溶性乃至不溶性の化 合物が好ましぐまた、ビスマス原料ィ匕合物は、粉末の形態で使用することが好ましい 。触媒前駆体粉体及びビスマス原料化合物は大きな径の粒子であってもよいが、次 V、で行われる焼成工程で粒子間の熱拡散反応を効率的に進めるためには小さ 、粒 子である方が好ましい。力べして、これらの原料ィ匕合物は、粉砕を行って好ましくは平 均粒径が 0. 1— 1000 mにするのが好適である。
[0022] 次に、得られたスラリーを充分に撹拌した後、乾燥される。このようにして得られた乾 燥品を、押出し成形、打錠成形、あるいは担持成形等の方法により任意の形状に賦 形する。次に、このものを、好ましくは 450— 600°Cの温度にて、好ましくは 1一 16時 間程度の最終熱処理に付される。このようにして、高活性で、かつ目的とする酸化生 成物を高 、収率で与える複合酸化物触媒が得られる。
[0023] 次に、本発明による複合酸化物触媒の製造方法の具体例を示す。まず、適当なモ リブデンィ匕合物、好ましくはモリブデン酸アンモ-ゥムの水溶液に、鉄、コバルト、及 びニッケルの化合物を好ましくはそれぞれの硝酸塩の水溶液をカ卩える。更に必要に 応じて、ナトリウム、カリウム、ルビジウム、タリウム、ホウ素、リン、ヒ素、及び/又はタン ダステンの化合物を、好ましくはそれぞれの水溶性塩又はそれらの水溶液としてカロえ る。更に好ましくは硝酸アンモニゥムを水溶液としてカ卩え、水溶液中の NO
3を上記し た本発明の範囲に調整する。更にシリカを加える。次に、得られたスラリーを充分に 撹拌した後、乾燥する。乾燥された顆粒あるいはケーキ状のものは空気中で好ましく は 200— 400°C、特に好ましくは 250— 350°Cの温度にて好ましくは 0. 1秒一 24時 間の熱処理を行う。
[0024] 次に、得られた熱処理物を水に分散し、好ましくはアンモニア水を添加した後、ビス マス化合物粉末を加える。ビスマス化合物粉末としては、(1)酸化ビスマス及び次炭 酸ビスマスの少なくとも一方、(2) Naを固溶した次炭酸ビスマス、 (3 1と:^成分( は 、上記の定義と同じ)との複合炭酸塩化合物、又は (4) Na及び X成分を含む Biと Na と Xとの複合炭酸塩ィ匕合物が好ま 、。
[0025] 次に、得られたスラリー状物を充分に撹拌した後、乾燥する。このようにして得られ た乾燥品を、押出成形、打錠成形、あるいは担持成形等の方法により任意の形状に 成形する。次に、成形物を、空気中で好ましくは 450— 600°Cの温度条件にて好まし くは 1一 16時間程度焼成する。
[0026] 本発明で製造される複合酸化物触媒の有する比表面積、平均細孔直径、及び細 孔容積については、既存の触媒の有する範囲のもので、特に制限されないが、それ ぞれ、比表面積は 5— 25m2Zg、平均細孔直径は 0. 03—: m、細孔容積は 0. 2 一 0. 7ccZgが好ましい。
[0027] 本発明において、上記の触媒を使用し、ォレフィンを分子状酸素含有ガスを使用し て気相接触酸化し、それぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を製 造する手段は、既存の方法により行うことができる。例えば、反応器としては、固定床 管型反応器を用いて行われる。この場合、反応は、反応器を通じて単流通法でもリサ イタル法であってもよぐこの種の反応に一般的に使用される条件下で実施できる。
[0028] 例えば、プロピレン 1一 15容量%、分子状酸素 3— 30容量%、水蒸気 0— 60容量 %、窒素、炭酸ガスなどの不活性ガス 20— 80容量%など力ゝらなる混合ガスを、内径 が好ましくは 15— 50mmの各反応管に充填した触媒層に 250— 450°C、 0. 1一 1M Paの圧力下、空間速度(SV) 300— 5000hr— 1で導入される。また、本発明では、より 生産性を上げるために高負荷反応条件下、例えば、より高い原料濃度、又は高い空 間速度の条件下でも運転することもできる。
実施例
[0029] 以下に本発明の実施例を挙げて本発明をさらに詳細に説明するが、本発明はかか る実施例に限定して解釈されるものでないことはもちろんである。なお、下記におい て、プロピレン転化率、ァクロレイン収率、アクリル酸収率、及び合計収率の定義はそ れぞれ次の式で算出される。
•プロピレン転化率(モル0 /0) = (反応したプロピレンのモル数 z供給したプロピレンの モノレ数) X 100
.ァクロレイン収率(モル%) = (生成したァクロレインのモル数) z供給したプロピレン のモル数) X 100
•アクリル酸収率 (モル%) = (生成したアクリル酸のモル数) Z供給したプロピレンの モノレ数) X 100
•合計収率 (モル0 /0) =ァクロレイン収率 (モル0 /0) +アクリル酸収率 (モル0 /0)
[0030] 実施例 1
(複合酸化物触媒の調製)
パラモリブデン酸アンモン 94. lgを純水 400mlに加温して溶解させた。次に硝酸 第二鉄 7. 18g、硝酸コノ レト 38.7g及び硝酸ニッケル 25.8gを純水 60mlに加温し て溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
次に、純水 40mlにホウ砂 0.85g及び硝酸カリウム 0.36gを加温下に溶解させて、 上記スラリーに加えた。次に、純水 20mlに硝酸アンモニゥム 19.9gを加温下に溶解 させて、上記スラリーに加えた。次に、シリカ 64gを加えて、充分に撹拌した。
このスラリーを加熱乾燥した後、空気雰囲気で 300°CZl時間の熱処理に付した。 得られた粒状固体を粉砕し、純水 150ml及びアンモニア水 10mlをカ卩ぇ分散させた 。次に、 Naが 0.52%固溶した次炭酸ビスマス 58. lgを加えて、撹拌混合した。 このスラリーを加熱乾燥した後、得られた粒状固体を小型成形機にて径 5mm、高さ 4mmの錠剤に打錠成形し、次に 500°CZ4時間の焼成を行うことにより、触媒を得た 仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:3:2:0.4:0.4:0.2:0.08:24 また、仕込み原料力 計算される前工程の水分散液中の硝酸根のモル量と Fe、 C o及び Niのモル量の比率は次の通りであった。
NO /(3XFe + 2X (Co+Ni))=l.51
3
[0031] (プロピレンの酸化反応)
上記のようにして調製した複合酸ィ匕物触媒 20mlを内径 15mmのステンレス鋼製ナ イタ一ジャケット付反応管に充填し、プロピレン濃度 10容量%、スチーム濃度 17容量 %、及び空気濃度 73容量%の原料ガスを常圧にて、反応浴温 305°C、接触時間 1. 8秒にて通過させて、プロピレンの酸化反応を実施した。その結果、表 1に示す、プロ ピレン転ィヒ率、ァクロレイン収率、及びアクリル酸収率が得られた。
[0032] 比較例 1 実施例 1において、硝酸アンモ-ゥムを加えないこと以外は同様に実施し、実施例 1と同一組成の複合酸化物触媒を製造した。仕込み原料カゝら計算される前工程の水 分散液中の硝酸根のモル量と Fe、 Co及び Niのモル量の比率は次の通りであった。
NO /(3XFe + 2X (Co+Ni))=l.01
3
実施例 1と同様にプロピレンの酸ィ匕反応を実施し、得られた結果を表 1に示した。
[0033] 実施例 2
パラモリブデン酸アンモン 94. lgを純水 400mlに加温して溶解させた。次に硝酸 第二鉄 7. 18g、硝酸コノ レト 38.7g及び硝酸ニッケル 25.8gを純水 60mlに加温し て溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
次に、純水 40mlにホウ砂 0.85g及び硝酸カリウム 0.36gを加温下に溶解させて、 上記スラリーに加えた。次に、純水 80mlに硝酸アンモニゥム 79.6gを加温下に溶解 させて、上記スラリーに加えた。次に、シリカ 64gを加えて、充分に撹拌した。このスラ リーを加熱乾燥した後、空気雰囲気で 300°CZ 1時間の熱処理に付した。
得られた粒状固体を粉砕し、純水 150mlにアンモニア水 10mlを加え分散させた。 次に、 Naを 0.52重量%固溶した次炭酸ビスマス 58. lgを加えて、撹拌混合した。 このスラリーを加熱乾燥した後、得られた粒状固体を小型成形機にて径 5mm、高さ 4mmの錠剤に打錠成形し、次に 500°CZ4時間の焼成を行うことにより、触媒を得た 仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:3:2:0.4:0.4:0.2:0.08:24 また、仕込み原料力 計算される前工程の水分散液中の硝酸根のモル量と Fe、 C o及び Niのモル量の比率は次の通りであった。
NO /(3XFe + 2X (Co+Ni))=3.01
3
実施例 1と同様にプロピレンの酸ィ匕反応を実施し、得られた結果を表 1に示した。
[0034] 実施例 3
パラモリブデン酸アンモン 94. lgを純水 400mlに加温して溶解させた。次に硝酸 第二鉄 7. 18g、硝酸コノ レト 38.7g及び硝酸ニッケル 25.8gを純水 60mlに加温し て溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。 次に、純水 40mlにホウ砂 0.85g及び硝酸カリウム 0.36gを加温下に溶解させて、 上記スラリーに加えた。次に、純水 360ml〖こ硝酸アンモニゥム 358.2gを加温下に 溶解させて、上記スラリーに加えた。次に、シリカ 64gを加えて、充分に撹拌した。こ のスラリーを加熱乾燥した後、空気雰囲気で 300°CZl時間の熱処理に付した。 得られた粒状固体を粉砕し、純水 150mlにアンモニア水 10mlを加え分散させた。 次に、 Naを 0.52重量%固溶した次炭酸ビスマス 58. lgを加えて、撹拌混合した。 このスラリーを加熱乾燥した後、得られた粒状固体を小型成形機にて径 5mm、高さ 4mmの錠剤に打錠成形し、次に 500°CZ4時間の焼成を行うことにより、触媒を得た 仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:3:2:0.4:0.4:0.2:0.08:24 また、仕込み原料力 計算される前工程の水分散液中の硝酸根のモル量と Fe、 C o及び Niのモル量の比率は次の通りであった。
NO /(3XFe + 2X (Co+Ni))=10.01
3
実施例 1と同様にプロピレンの酸ィ匕反応を実施し、得られた結果を表 1に示した。
[0035] [表 1]
Figure imgf000012_0001
産業上の利用可能性
[0036] 本発明の方法により製造された触媒は、ォレフィンを分子状酸素含有ガスにより気 相接触酸化してそれぞれ対応する不飽和アルデヒド及び不飽和カルボン酸を高収 率で製造するために使用される。製造された不飽和アルデヒド及び不飽和カルボン 酸は、各種化学品の原料、汎用樹脂のモノマー、吸水性榭脂などの機能性榭脂の モノマー、凝集剤、増粘剤となどとして広範な用途に使用される。

Claims

請求の範囲 [1] ォレフィンを分子状酸素含有ガスにより気相接触酸化してそれぞれ対応する不飽 和アルデヒド及び不飽和カルボン酸を製造する際に使用される、(A)モリブデン、 (B )ビスマス、(C)コバルト及び Z又はニッケル、及び (D)鉄を少なくとも含む複合酸ィ匕 物触媒の製造方法において、前記 (A)成分原料、前記 (C)成分原料及び前記 (D) 成分原料を一体化して含み、かつ硝酸根の含有量が下記の式(1)を満足する水分 散液を乾燥し、該乾燥物を加熱処理する前工程を経て製造された触媒前駆体粉末 と、前記 (B)成分原料とを水性溶媒中で一体化し、該一体化物を乾燥、焼成すること を特徴とする複合酸化物触媒の製造方法。
1. 2≤NO / (3 X Fe + 2 X (Co+Ni) ) (1)
3
(但し、式中、 NO
3、 Fe、 Co、及び Niは、それぞれ、上記水分散液中の硝酸根、鉄
、コバルト、及びニッケルのモル含有量を示す。 )
[2] 上記前工程の水分散液に硝酸塩ィ匕合物が添加される請求項 1に記載の複合酸化 物触媒の製造方法。
[3] 上記 (B)成分原料が、水に難溶性乃至不溶性のビスマス化合物である請求項 1又 は 2に記載の複合酸化物触媒の製造方法。
[4] 上記前工程の水分散液中の硝酸根の含有量が下記の式 (2)を満足する請求項 1 一 3のいずれかに記載の複合酸化物触媒の製造方法。
1. 2≤NO / (3 X Fe + 2 X (Co+Ni) )≤10 (2)
3
[5] 上記複合酸ィ匕物触媒が下記の式(3)で表される請求項 1一 4のいずれかに記載の 複合酸化物触媒の製造方法。
MoaBibCocNidFeeXfYgZhQiSijOk (但し、 Xは Na、 K、 Rb、 Cs及び Τ1力 なる群力 選ばれる少なくとも一種を示し、 Y は B、 P、 As及び Wからなる群から選ばれる少なくとも一種を示し、 Zは Mg、 Ca、 Zn、 Ce及び Sm力もなる群力 選ばれる少なくとも一種を示す。 Qはハロゲンを示し、また 、 a— kはそれぞれの元素の原子比を表わし、 a= 12とするとき、 b = 0. 5— 7、 c = 0 一 10、 d=0— 10、 c + d= l— 10、 e = 0. 05— 3、 f=0. 0005— 3、 g = 0— 3、 h= 0— 1、 i=0-0. 5、 j = 0— 40の範囲にあり、また kは他の元素の酸化状態を満足さ せる値である。 )
請求項 1一 5のいずれかに記載の製造方法で得られた複合酸化物触媒の存在下 にプロピレンを分子状酸素含有ガスにより気相接触酸ィ匕してァクロレイン及びアタリ ル酸を製造する方法。
PCT/JP2004/013461 2003-12-12 2004-09-15 複合酸化物触媒の製造方法 WO2005056185A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003415020A JP2005169311A (ja) 2003-12-12 2003-12-12 複合酸化物触媒の製造方法
JP2003-415020 2003-12-12

Publications (1)

Publication Number Publication Date
WO2005056185A1 true WO2005056185A1 (ja) 2005-06-23

Family

ID=34675112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013461 WO2005056185A1 (ja) 2003-12-12 2004-09-15 複合酸化物触媒の製造方法

Country Status (3)

Country Link
JP (1) JP2005169311A (ja)
CN (1) CN1697701A (ja)
WO (1) WO2005056185A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482501B2 (en) 2005-01-17 2009-01-27 Boehringer Ingelheim International Gmbh Process for continuous ringclosing metathesis in compressed carbondioxide

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075735A (ja) * 2005-09-14 2007-03-29 Mitsubishi Rayon Co Ltd モリブデン、ビスマス、及び鉄含有酸化物触媒の製造方法
JP5387297B2 (ja) 2009-09-30 2014-01-15 住友化学株式会社 複合酸化物触媒の製造方法
DE102013004755B4 (de) 2013-03-20 2014-12-11 Clariant International Ltd. Kompositmaterial enthaltend ein Bismut-Molybdän-Nickel-Mischoxid oder ein Bismut-Molybdän-Cobalt-Mischoxid und SiO2
JP6238354B2 (ja) * 2014-02-07 2017-11-29 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2017176931A (ja) * 2016-03-28 2017-10-05 三菱ケミカル株式会社 触媒
CN110227482A (zh) * 2018-03-05 2019-09-13 上海华谊新材料有限公司 复合氧化物催化剂及其制备方法
CN112439442B (zh) * 2019-09-05 2023-08-11 中石油吉林化工工程有限公司 一种丙烯氧化制丙烯醛的催化剂制备方法
CN117042878A (zh) 2021-03-24 2023-11-10 三菱化学株式会社 催化剂、催化剂的制造方法、以及α,β-不饱和醛、α,β-不饱和羧酸和α,β-不饱和羧酸酯的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234549A (ja) * 1986-03-24 1987-10-14 Mitsubishi Petrochem Co Ltd 複合酸化物触媒の製造法
JPH02227140A (ja) * 1989-03-01 1990-09-10 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸の製造用触媒の調製法
JP2000288396A (ja) * 1999-04-09 2000-10-17 Sumitomo Chem Co Ltd 不飽和アルデヒド及び不飽和カルボン酸合成用の複合酸化物触媒の製造法
WO2002049757A2 (de) * 2000-12-18 2002-06-27 Basf Aktiengesellschaft Verfahren zur herstellung einer mo, bi, fe sowie ni und/oder co enthaltenden multimetalloxidaktivmasse
JP2003220335A (ja) * 2001-11-21 2003-08-05 Mitsubishi Chemicals Corp 複合酸化物触媒の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234549A (ja) * 1986-03-24 1987-10-14 Mitsubishi Petrochem Co Ltd 複合酸化物触媒の製造法
JPH02227140A (ja) * 1989-03-01 1990-09-10 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸の製造用触媒の調製法
JP2000288396A (ja) * 1999-04-09 2000-10-17 Sumitomo Chem Co Ltd 不飽和アルデヒド及び不飽和カルボン酸合成用の複合酸化物触媒の製造法
WO2002049757A2 (de) * 2000-12-18 2002-06-27 Basf Aktiengesellschaft Verfahren zur herstellung einer mo, bi, fe sowie ni und/oder co enthaltenden multimetalloxidaktivmasse
JP2003220335A (ja) * 2001-11-21 2003-08-05 Mitsubishi Chemicals Corp 複合酸化物触媒の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482501B2 (en) 2005-01-17 2009-01-27 Boehringer Ingelheim International Gmbh Process for continuous ringclosing metathesis in compressed carbondioxide

Also Published As

Publication number Publication date
CN1697701A (zh) 2005-11-16
JP2005169311A (ja) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4280797B2 (ja) 複合酸化物触媒の製造方法
JP5562038B2 (ja) 鉄元素を酸化された形で含む、多元素酸化物材料の製造方法
JPH0570502B2 (ja)
JP4954750B2 (ja) モリブデン、ビスマス、鉄、シリカ含有複合酸化物触媒の製造方法
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JPH0587299B2 (ja)
JP4242597B2 (ja) 不飽和アルデヒド合成用触媒とその製造方法、およびその触媒を用いた不飽和アルデヒドの製造方法
JPH0441454A (ja) メタクロレインの製造方法
JP6812869B2 (ja) 複合酸化物触媒の製造方法
JPS5888033A (ja) 酸化およびアンモキシデ−シヨン触媒
EP1350784B1 (en) Process for production of unsaturated aldehyde or acid using Mo-Bi-Fe catalyst
WO2005056185A1 (ja) 複合酸化物触媒の製造方法
JPS5820944B2 (ja) プロピレンの飾媒酸化によるアクロレインの製法
WO2005113140A1 (ja) 複合酸化物の製造方法、及び複合酸化物触媒
JP3939187B2 (ja) 不飽和アルデヒドの製造方法
JP3288197B2 (ja) メタクロレイン及びメタクリル酸合成用触媒の製造法
JP4200744B2 (ja) メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JP2003010691A (ja) メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JP2003146920A (ja) アクロレインおよびアクリル酸の製造方法
JP4385587B2 (ja) 複合酸化物触媒の製造方法
JP3347263B2 (ja) 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の調製法
JP2003164763A (ja) プロピレン酸化用複合酸化物触媒の製造方法
JP4629886B2 (ja) メタクロレインおよび/またはメタクリル酸製造用触媒、その製造方法、および、メタクロレインおよび/またはメタクリル酸の製造方法
JP4207531B2 (ja) メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JPH09299802A (ja) 酸化触媒の製造方法及びメタクリル酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 20048003451

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase