WO2005054553A1 - ゼラチン繊維とその製造方法 - Google Patents

ゼラチン繊維とその製造方法 Download PDF

Info

Publication number
WO2005054553A1
WO2005054553A1 PCT/JP2004/017792 JP2004017792W WO2005054553A1 WO 2005054553 A1 WO2005054553 A1 WO 2005054553A1 JP 2004017792 W JP2004017792 W JP 2004017792W WO 2005054553 A1 WO2005054553 A1 WO 2005054553A1
Authority
WO
WIPO (PCT)
Prior art keywords
gelatin
solution
aqueous
fiber
spinning
Prior art date
Application number
PCT/JP2004/017792
Other languages
English (en)
French (fr)
Inventor
Seiichi Tokura
Hiroshi Tamura
Noboru Itoh
Original Assignee
A School Corporation Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A School Corporation Kansai University filed Critical A School Corporation Kansai University
Publication of WO2005054553A1 publication Critical patent/WO2005054553A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods

Definitions

  • the present invention relates to a low-toxicity gelatin fiber having mechanical properties and water resistance, which can be mainly used as a bioabsorbable material or a food packaging material, and a method for producing the same.
  • Gelatin is produced by dissolving a triple helical molecule of collagen, such as bovine bone, cow skin, and pig skin, which can be obtained by strong force. It is used as a bioabsorbable material because its bioabsorbability is much faster than that of an absorbent material.
  • an aqueous solution of gelatin obtained by dissolving the gelatin in water has low ductility at low concentrations and gelles at high concentrations, making it difficult to use gelatin as fibers.
  • the present inventors have conducted intensive studies on a method of producing gelatin fibers by wet spinning.As a result, the use of a solution containing an amide compound, a halogen salt of an alkali metal or an alkaline earth metal as a solvent for dissolving the gelatin, They found that fiber could be manufactured and filed a patent application (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Publication No. 2001-89929
  • an object of the present invention is to provide a gelatin fiber having lower toxicity and higher strength than conventional gelatin fibers.
  • a method for producing a gelatin fiber according to the present invention comprises heating a gelatin aqueous solution so as to be in a sol state, spinning the heated gelatin aqueous solution in the air, and then forming a crosslinking agent. It is characterized in that it is immersed in a solution and crosslinked. Further, the gelatin fiber of the present invention is heated so that the aqueous gelatin solution is in a sol state, the heated aqueous gelatin solution is spun in the air, and then immersed in a polyvalent glycidyl ligated product. It is characterized by being crosslinked.
  • gelatin fibers with high strength and few impurities and low toxicity can be obtained by dry spinning.
  • the method for producing a gelatin fiber of the present invention is characterized in that an aqueous gelatin solution containing dimethyl sulfoxide is spun in a coagulation solution. Further, the gelatin fiber of the present invention is characterized in that it is spun in a gelatin aqueous coagulation solution containing dimethyl sulfoxide.
  • the method for producing a gelatin fiber of the present invention is characterized in that an aqueous gelatin solution containing a hydrophilic solvent (excluding an amide compound) is spun in the air or in a coagulating liquid. Further, the gelatin fiber of the present invention is characterized in that a gelatin aqueous solution containing a hydrophilic solvent (excluding amidy conjugate) is spun in the air or in a coagulating liquid.
  • the method for producing a gelatin fiber of the present invention is characterized in that an aqueous gelatin solution containing a polyvalent glycidyl conjugate is spun in the air or in a coagulating solution.
  • the gelatin of the present invention The fibers are characterized in that an aqueous gelatin solution containing a polyvalent glycidyl conjugate is spun in the air or in a coagulating liquid.
  • the polyvalent glycidyl compound functions as a crosslinking agent for crosslinking gelatin molecules.
  • the cross-linking points cross-linked by the polyvalent glycidyl conjugate have high stability and little change with time, and thus the obtained gelatin fibers maintain high strength for a long time.
  • the gelatin fiber of the present invention has higher strength and lower toxicity as compared with the conventional gelatin fiber.
  • FIG. 1 is a graph showing the relationship between tensile strength and elongation for the gelatin fibers of Examples 13 and 13 and Comparative Example 1.
  • FIG. 2 is a graph showing the relationship between tensile strength and elongation for the gelatin fibers of Examples 4 and 5.
  • FIG. 3 is a graph showing the relationship between tensile strength and elongation for the gelatin fiber of Example 6.
  • Gelatin used in the present invention is obtained as a single molecule by unraveling the triple helix of a collagen, such as bovine bone, cowhide, or pig skin, which has also obtained strength.
  • Methods for producing such gelatin include an acid treatment method for a gelatin raw material and a lime treatment method, and the gelatin used in the present invention may be gelatin produced by any method. Alternatively, commercially available gelatin may be used.
  • gelatin undergoes various purification steps before being extracted in the production process, so that components other than protein are small.
  • the composition is generally 8-14% in water, 2% or less in ash, and 1% or less in other components (lipids, polysaccharides, etc.).
  • a powerful general gelatin can also be used.
  • the molecular weight of the gelatin is not particularly limited.
  • an aqueous gelatin solution obtained by dissolving the above gelatin in a solvent is used as a viscous liquid for dry spinning or wet spinning.
  • an aqueous gelatin solution To dry spin an aqueous gelatin solution, the aqueous solution is heated until it becomes a sol state, and the aqueous gelatin solution in the sol state is extruded into the air of a nozzle and spun.
  • the temperature of the aqueous gelatin solution is in the sol state at 40 ° C. or higher, and the heating temperature is preferably 40 ° C. or higher, more preferably 45 ° C. or higher.
  • the aqueous gelatin solution is added with a halogen salt of an alkali metal or an alkaline earth metal, and further added with dimethyl sulfoxide, and then the aqueous gelatin solution is extruded into a coagulation solution. And spin.
  • the concentration of the dimethyl sulfoxide is preferably from 60 to 85% by weight, more preferably from 72 to 75% by weight.
  • the concentration of the hydrophilic solvent is preferably 5 to 30% by weight, more preferably 10 to 20% by weight.
  • hydrophilic solvent examples include alcohols such as methyl alcohol, ethyl alcohol, and butyl alcohol, acetone, and ethyl acetate. Among them, alcohols having 14 to 14 carbon atoms are preferable as the hydrophilic solvent.
  • Nozzle force When a hydrophilic solvent is mixed with a viscous liquid that is extruded into the air or a coagulating liquid and spun, friction between the viscous aqueous gelatin solution and the inner wall of the nozzle is reduced. Nozzle tip force Extrusion into the air or coagulating liquid is smooth, and the orientation of the gelatin molecules is improved. As a result, higher strength gelatin fibers can be obtained.
  • a polyvalent glycidyl conjugate it is preferable to add a polyvalent glycidyl conjugate to the aqueous gelatin solution.
  • the polyvalent glycidyl compound include sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, glycerol polyglycidyl ether, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, hydrogenated bisphenol A type diglycidyl ether, and polyethylene glycol diglycidyl ether.
  • glycidyl ether, polypropylene glycol diglycidyl ether, and the like are preferable.
  • the addition amount of the polyvalent glycidyl ligated product is preferably 0.01 to 0.1 part by weight based on 100 parts by weight of the aqueous gelatin solution.
  • the polyvalent glycidyl compound When the polyvalent glycidyl compound is added to an aqueous gelatin solution, gelatin is cross-linked and the viscosity of the aqueous gelatin solution is increased. Therefore, it is preferable to add the polyvalent glycidyl compound while adjusting the viscosity so as to facilitate spinning.
  • the polyvalent glycidyl compound acts as a so-called cross-linking agent, but the cross-linking point becomes a more stable ether bond as compared with a conventional cross-linking agent.
  • the length By selecting the length, the size of the crosslinked matrix can be adjusted, and it becomes possible to obtain elastic gelatin fibers according to the application.
  • the method of dissolving gelatin in a solvent is not particularly limited, but gelatin is easily dissolved in water.
  • water and gelatin are mixed at, for example, 50 ° C or higher.
  • the above-mentioned dimethyl sulfoxide, hydrophilic solvent, or polyvalent glycidyl conjugate is added and kneaded so as to form a uniform solution.
  • the gelatin aqueous solution obtained as described above is pressure-filtered using a stainless steel filter of about 600 to 2000 mesh.
  • the gelatin solution after filtration was defoamed under a reduced pressure or normal pressure, 5 transported by the gear first pump from a pressurized tank lOkg / cm 2, through a pipeline, 0. 05-0. 5mm about caliber Is extruded from a plurality of nozzles into a coagulation bath containing a coagulation liquid.
  • organic solvents such as alcohols, ketones, and ethers
  • alcohols include methanol, ethanol, butanol, and the like.
  • ketones include acetone, 2-ketopropyl alcohol, cyclohexanone, and the like.
  • ethers include getyl ether and tetrahydrofuran. And dioxane.
  • the temperature of the coagulation liquid varies depending on the viscosity of the gelatin solution. Generally, it is preferable to heat the coagulation liquid to about 30 to 50 ° C.
  • the gelatin fiber extruded and coagulated into the coagulating liquid is wound up on a bobbin or the like at a speed of about 11 lOmZmin, and after sufficiently removing the coagulating liquid, it is stretched or immediately rolled up. Stretch with a roller.
  • the stretching ratio is about 2 to 8 times, and it is preferable to stretch as much as possible.
  • ketones and ethers which have a high volatility of the coagulating liquid, may be rapidly eliminated and the physical properties of the fiber may be reduced. Therefore, a polyhydric alcohol or a derivative thereof having low volatility may be used. For example, glycerin or polyethylene glycol is preferably added.
  • Examples of the addition method include a method of immersing gelatin fibers in a polyhydric alcohol solution.
  • the thus obtained yarn is washed with a coagulating liquid, and then dried under tension to obtain a colorless and high-quality gelatin fiber having a single yarn diameter of 5 to 100 ⁇ m. it can.
  • the strength of such gelatin fibers is about 21 to 36 MPa, which is higher than that of conventional gelatin fibers.
  • the dry spinning method 30 to 80 parts by weight, preferably 40 to 50 parts by weight of gelatin powder is added to 100 parts by weight of deionized water, and the suspension is added. , Preferably 4 Dissolve the gelatin powder in deionized water by heating to 5-50 ° C. Further, a hydrophilic solvent or a polyvalent glycidyl conjugate is preferably added to the aqueous gelatin solution, and the mixture is stirred so as to form a uniform solution to obtain a spinning dope.
  • a pore force of about 500 m in diameter is introduced into an air at 15-20 ° C, preferably 15-17 ° C, at a pressure of 0.4-1.2 kgZcm 2 .
  • High-strength gelatin fibers can be obtained by extruding at a speed of 30-40 m / min so as to coagulate in a space of about 4-5 m.
  • the gelatin fibers can be dipped in a crosslinking agent solution to crosslink the gelatin fibers to increase the strength.
  • the crosslinking agent remaining in the gelatin fiber may be removed by washing with alcohol.
  • the gelatin fiber thus obtained can be processed in the form of a long fiber or a short fiber.
  • a body for example, a flocculent laminate, a nonwoven fabric, a knitted fabric, a woven fabric, or a fibrous cloth made of the same.
  • gelatin fiber aggregate After such a gelatin fiber aggregate is cut into a required size, it is subjected to a manufacturing process, that is, cutting, sterilization, packaging, etc., to perform various bioabsorbable materials (for example, artificial dura or adhesion prevention). Material, wound protection material, etc.) and can be used.
  • a manufacturing process that is, cutting, sterilization, packaging, etc., to perform various bioabsorbable materials (for example, artificial dura or adhesion prevention). Material, wound protection material, etc.) and can be used.
  • a bioabsorbable material produced using the gelatin fiber of the present invention has a high strength, so that it can be made thinner than a conventional bioabsorbable material, and the amount absorbed into a living body is reduced. Will be done.
  • 165 g of gelatin powder was added to 165 mL of distilled water, dissolved by heating at 50-60 ° C., and a solution prepared by adding 135 g of lithium chloride to 339 mL of dimethyl sulfoxide (DMSO) was added and kneaded. Further, a solution was prepared by adding 70 mL of DMSO, 7.3 g of lithium salt, 30 mL of distilled water, and 70 mL of glutaraldehyde separately, and mixed with the gelatin solution to prepare a viscous liquid.
  • DMSO dimethyl sulfoxide
  • Gelatin powder (150 g) was suspended in 150 mL of deionized water, and dissolved by heating to about 80 ° C. After adding 3 g of "Denacol EX-931" manufactured by Nagase ChemteX Corporation and 30 g of ethyl alcohol to this aqueous solution of gelatin as a polyvalent glycidyl ligated product and kneading the mixture further, the mixture was heated to about 60 ° C. The mixture was allowed to stand for 24 hours to allow sufficient crosslinking reaction and defoaming. While maintaining this viscous liquid at about 80-100 ° C, it was passed through a stainless steel single nozzle (500 ⁇ m diameter) at 15-18 ° C. 0. the airborne 2-0. extruded at a pressure of 4kgZcm 2, by winding the cassette (diameter 12cm) at a rate of 33 m so as to solidify in the space of about 4m A gelatin fiber was obtained.
  • a gelatin fiber was obtained in the same manner as in Example 4, except that "Denacol EX-931" manufactured by Nagase ChemteX Corporation as a polyvalent glycidyl compound was not added.
  • 96 g of gelatin powder is added to 200 mL of distilled water and heated to 80 ° C to dissolve sufficiently.Heat at 60 ° C for 24 hours to remove bubbles, fill the spinning tube with power, and maintain at 60 ° C. Extruded through a tenless single nozzle (500 m diameter) into air at 15-18 ° C at a pressure of 0.2-0.4 kg Zcm 2 , and force set at a speed of 33 meters per minute to solidify in a space of about 4 m (diameter). 12 cm) to obtain a gelatin fiber.
  • the fibers were kept in a cassette and immersed in a 0.01% methanol solution of daltaraldehyde at room temperature for 2 hours for crosslinking. The fiber was thoroughly washed with methanol to remove unreacted darthal aldehyde and air dried.
  • gelatin fibers of Examples 13 to 13 are extremely low in toxicity, they are highly toxic such as DMAc and inferior to the gelatin fibers of Comparative Example 1 using a solvent. ⁇ ! High, showing strength and helping to understand.
  • the gelatin fiber of Example 5 by dry spinning has a much higher strength than that of Examples 13 to 13 by wet spinning, and the polyvalent glycidyl liquefaction is obtained. It can be seen that the gelatin fiber of Example 4 to which the compound was added had higher strength. Since the gelatin fibers of Examples 4 and 5 were obtained without using a solvent other than water, it can be said that the gelatin fibers were dramatically improved in terms of toxicity (safety).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 従来のゼラチン繊維と比較して、より低毒性であってしかも強度の高いゼラチン繊維を提供することを課題とする。本発明のゼラチン繊維の製造方法は、ゼラチン水溶液をゾル状態となるように加温し、該加温されたゼラチン水溶液を空気中で紡糸することを特徴とする。また、ジメチルスルホキシドを含むゼラチン水溶液を、凝固液中で紡糸することを特徴とする。また、親水溶媒を含むゼラチン水溶液を、空気中又は凝固液中で紡糸することを特徴とする。また、多価グリシジル化合物を含むゼラチン水溶液を、空気中又は凝固液中で紡糸することを特徴とする。

Description

明 細 書
ゼラチン繊維とその製造方法
技術分野
[0001] 本発明は、主として生体吸収性材料や食品包装用材料などとして使用可能な機械 的性質、耐水性を有した低毒性のゼラチン繊維とその製造方法に関する。
背景技術
[0002] ゼラチンは、牛骨、牛皮、豚皮など力 得られるコラーゲンの三重螺旋分子を解!ヽ て作成されるものであり、生体内に入れた場合に抗原性が低ぐ且つ従来の生体吸 収性材料に比べて生体吸収性が各段に早 ヽことから、生体吸収性材料として好適に 使用されている。
しかし、該ゼラチンを水に溶力して得られたゼラチン水溶液は、低濃度では延糸性 が低ぐ高濃度ではゲルイ匕してしまうため、ゼラチンを繊維とすることは困難であった そこで、本発明者らは、湿式紡糸によってゼラチン繊維を製造する方法に関して鋭 意研究した結果、ゼラチンを溶解させる溶剤として、アミド化合物、アルカリ金属又は アルカリ土類金属のハロゲン塩を含む溶液を用いることによってゼラチン繊維を製造 し得ることを見出し、特許出願を行った (特許文献 1)。
[0003] 特許文献 1:日本国特開 2001— 89929号公報
[0004] し力しながら、ゼラチン溶液を紡糸するには、凝固液であるアルコール溶液中へ押 し出してゼラチンを凝固させ、しかも架橋剤等の添加成分を洗浄して毒性を下げる必 要があり、このような工程を経て得られるゼラチン繊維は、強度が低いという問題があ つ 7こ。
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、上記のような問題点に鑑み、従来のゼラチン繊維と比較して、より低毒 性であってしかも強度の高いゼラチン繊維を提供することを課題とする。
課題を解決するための手段 [0006] 前記課題を解決すベぐ本発明のゼラチン繊維の製造方法は、ゼラチン水溶液を ゾル状態となるように加温し、該加温されたゼラチン水溶液を空気中で紡糸した後、 架橋剤溶液中に浸漬して架橋させることを特徴とする。また、本発明のゼラチン繊維 は、ゼラチン水溶液がゾル状態となるように加温され、該加温されたゼラチン水溶液 が空気中で紡糸された後、多価グリシジルイ匕合物中に浸漬して架橋させてなることを 特徴とする。
[0007] 本発明によれば、乾式紡糸によって高強度で且つ不純物の少な!/、低毒性のゼラチ ン繊維を得ることができる。
[0008] また本発明のゼラチン繊維の製造方法は、ジメチルスルホキシドを含むゼラチン水 溶液を、凝固液中で紡糸することを特徴とする。また、本発明のゼラチン繊維は、ジメ チルスルホキシドを含むゼラチン水溶液力 凝固液中で紡糸されてなることを特徴と する。
[0009] ゼラチン溶液にジメチルスルホキシドを配合するとゼラチンが架橋されて高粘性とな り、紡糸する際の延糸性に優れたものとなる。しカゝも、該ジメチルスルホキシドは、従 来使用されていたジメチルァセトアミド (DMAc)と比べて毒性が低いため、アルコー ル等による洗浄工程を簡略ィ匕することができる。よって、斯かる製造方法によって紡 糸されたゼラチン繊維は、従来のゼラチン繊維と比べて強度の高ぐし力も低毒性の ものとなる。
[0010] また、本発明のゼラチン繊維の製造方法は、親水溶媒 (アミド化合物を除く)を含む ゼラチン水溶液を、空気中又は凝固液中で紡糸することを特徴とする。また、本発明 のゼラチン繊維は、親水溶媒 (アミドィ匕合物を除く)を含むゼラチン水溶液が、空気中 又は凝固液中で紡糸されてなることを特徴とする。
[0011] 紡糸する際のゼラチン水溶液に親水溶媒を配合すると、ノズル力 空気中又は凝 固液中へ押し出される際に、ゼラチン水溶液とノズル内壁との摩擦が低減されるため 、ノズル先端力 空気中又は凝固液中への押し出し力 Sスムーズとなり、ゼラチン分子 の配向性が良くなる結果、より高強度のゼラチン繊維を得ることができる。
[0012] また、本発明のゼラチン繊維の製造方法は、多価グリシジルイ匕合物を含むゼラチン 水溶液を、空気中又は凝固液中で紡糸することを特徴とする。また、本発明のゼラチ ン繊維は、多価グリシジルイ匕合物を含むゼラチン水溶液が、空気中又は凝固液中で 紡糸されてなることを特徴とする。
[0013] 紡糸する際のゼラチン水溶液に多価グリシジルイ匕合物が含まれていると、該多価グ リシジル化合物はゼラチン分子を架橋する架橋剤として機能する。そして、該多価グ リシジルイ匕合物によって架橋された架橋点は、安定性が高く経時変化の少ないもの となるため、得られたゼラチン繊維は高強度を長時間持続するものとなる。
さらに、該多価グリシジルイ匕合物の架橋マトリックスのサイズを調節することにより、 用途に応じた弾性のゼラチン繊維を得ることが可能となる。
発明の効果
[0014] 以上のように、本発明に係るゼラチン繊維の製造方法によれば、従来に比してより 高強度で低毒性のゼラチン繊維を得ることが可能となる。また、本発明のゼラチン繊 維は、従来のゼラチン繊維に比してより高強度且つ低毒性のものとなる。
図面の簡単な説明
[0015] [図 1]実施例 1一 3および比較例 1のゼラチン繊維について、引張強さと伸び率の関 係を示したグラフ。
[図 2]実施例 4および 5のゼラチン繊維について、引張強さと伸び率の関係を示した グラフ。
[図 3]実施例 6のゼラチン繊維について、引張強さと伸び率の関係を示したグラフ。 発明を実施するための最良の形態
[0016] 以下、本発明に係るゼラチン繊維およびゼラチン繊維の製造方法の一最良の形態 について、詳細に説明する。
[0017] 本発明において使用するゼラチンは、牛骨、牛皮、豚皮など力も得られたコラーゲ ンの三重螺旋をほぐし、一本の分子として得られるものである。斯カるゼラチンの製造 方法としては、ゼラチン原料の酸処理方法や、石灰処理法などがあるが、本発明に おいて使用するゼラチンは、いずれの方法によって製造されたゼラチンであってもよ ぐ又は市販されているゼラチンであってもよい。
また、市販されているゼラチンは、その製造工程において、抽出されるまでに種々 の精製工程を経るため、タンパク質以外の成分は少なぐ通常は、タンパク質 85%以 上、水分 8— 14%、灰分 2%以下、その他 (脂質、多糖類など) 1%以下という組成が 一般的であるが、本発明は力かる一般的なゼラチンを使用することもできる。
また、該ゼラチンの分子量についても、とくに限定されるものではない。
[0018] 本発明にお 、ては、前記ゼラチンを溶媒中に溶解させてなるゼラチン水溶液を乾 式紡糸又は湿式紡糸の粘稠液とする。
ゼラチン水溶液を乾式紡糸するには、該水溶液がゾル状態となるまで加温し、該ゾ ル状態となったゼラチン水溶液をノズル力 空気中へ押し出して紡糸する。一般的に 、ゼラチン水溶液がゾル状態となるのは 40°C以上であるため、加温する温度としては 、 40°C以上が好ましぐ 45°C以上がより好ましい。
但し、あまり高温にするとゲルイ匕が起こって紡糸が阻害され易くなるため、通常 60 °C以下、好ましくは 50°C以下とする。
一方、ゼラチン水溶液を湿式紡糸するには、該ゼラチン水溶液にアルカリ金属又は アルカリ土類金属のハロゲン塩を添カ卩し、さらにジメチルスルホキシドを添カ卩した後、 該ゼラチン水溶液を凝固液中に押し出して紡糸する。
ジメチルスルホキシドを添加する場合、該ジメチルスルホキシドの濃度は 60— 85重 量%とすることが好ましぐ 72— 75重量%とすることがより好ましい。
[0019] また、ゼラチン水溶液を空気中で乾式紡糸する際、又は凝固液中で湿式紡糸する 際には、該ゼラチン水溶液に親水溶媒を添加することが好ましい。
[0020] 親水溶媒を添加する場合、該親水溶媒の濃度は、 5— 30重量%とすることが好まし く、 10— 20重量%とすることがより好ましい。
また、該親水溶媒としては、メチルアルコール、エチルアルコール、ブチルアルコー ルなどのアルコール類、アセトン、酢酸ェチルなどを使用することができる。中でも、 該親水溶媒としては、炭素数 1一 4のアルコール類が好ましい。
[0021] ノズル力 空気中又は凝固液中へ押し出して紡糸される粘稠液に親水溶媒が配合 されて ヽると、粘稠液であるゼラチン水溶液とノズル内壁との摩擦が低減されるため、 ノズル先端力 空気中又は凝固液中への押し出しがスムーズとなり、ゼラチン分子の 配向性が良くなる結果、より高強度のゼラチン繊維を得ることができる。
[0022] また、前記ゼラチン水溶液には、多価グリシジルイ匕合物を添加することが好ましい。 該多価グリシジル化合物としては、ソルビトールポリグリシジルエーテル、ペンタエリス リトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、レゾルシノー ルジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、水添ビスフ ェノール A型ジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポ リプロピレングリコールジグリシジルエーテル等を挙げることができる力 中でも、直鎖 状アルキル基を有する 2官能性グリシジルイ匕合物を使用することが好ましい。
斯カる多価グリシジルイ匕合物としては、市販のものを使用することもでき、例えば、 ナガセケムテックス(株)製、「デナコール EX— 931」、「デナコール EX— 841」「デナコ ール EX - 411」「デナコール EX - 252」「デナコール EX - 314」「デナコール EX - 61 4BJ「デナコール EX— 201」「デナコール EX— 211」等を挙げることができる。
また、該多価グリシジルイ匕合物の添加量は、前記ゼラチン水溶液 100重量部に対 し 0. 01-0. 1重量部が好ましい。
[0023] 該多価グリシジル化合物をゼラチン水溶液に添加すると、ゼラチンが架橋してゼラ チン水溶液の粘性が増加するため、紡糸しやす 、粘度に調整しながら添加するのが よい。
該多価グリシジル化合物は、いわゆる架橋剤として作用するものであるが、従来の 架橋剤と比べて、架橋点がより安定なエーテル結合となるためにゼラチン繊維が高 強度となり、し力もアルキル鎖長の長さを選択することによって架橋マトリックスサイズ を調節でき、用途に応じた弾性のゼラチン繊維を得ることが可能となる。
[0024] 溶媒にゼラチンを溶解させる方法としては、特に限定されるものではないが、ゼラチ ンが水に溶解しやす 、性質を考慮すれば、水とゼラチンとを例えば 50°C以上で混合 して溶解させた後に、前記ジメチルスルホキシド、親水溶媒、又は多価グリシジルイ匕 合物を添加し、均一な溶液となるように練り混ぜる方法が好ましい。
[0025] 次に、斯カるゼラチン水溶液を粘稠液としてゼラチン繊維を製造する方法について 説明する。紡糸方法としては、通常の乾式および湿式紡糸法を採用することができ、 以下のような方法で紡糸することができる。
[0026] 湿式紡糸法においては、まず、 600— 2000メッシュ程度のステンレス製フィルター を用いて、上述のようにして得られたゼラチン水溶液を加圧濾過する。 濾過後のゼラチン溶液を減圧下又は常圧下で脱泡し、 5— lOkg/cm2で加圧した タンクからギヤ一ポンプで輸送し、パイプラインを経て、 0. 05-0. 5mm程度の口径 の複数本のノズルから、凝固液を貯めた凝固槽中に押し出す。
[0027] 湿式紡糸における凝固液としては、アルコール類、ケトン類、エーテル類などの有 機溶剤を好適に使用し得る。アルコール類としては、例えばメタノール、エタノール、 ブタノールなどが例示でき、ケトン類としては、例えばアセトン、 2—ケトプロピルアルコ ール、シクロへキサノンなどが例示でき、エーテル類としては、例えばジェチルエーテ ル、テトラヒドロフラン、ジォキサンなどが例示できる。また、凝固液の温度は、ゼラチ ン溶液の粘性によっても異なる力 通常は 30— 50°C程度に加温することが好ましい
[0028] 力かる凝固液中に押し出されて凝固したゼラチン繊維は、そのまま 1一 lOmZmin 程度の速度でボビン等で巻き取り、十分に凝固液を除去した後延伸するか、または 巻き取ってすぐにローラーにて延伸する。
この際、ゼラチン繊維に溶剤が付着したままであれば、延伸後にかかるゼラチン繊 維同士が癒着しやすいので、十分に凝固液を除去した後、延伸するのが好ましい。
[0029] 延伸の倍率は 2— 8倍程度で、可能な限り伸長するのが好ましい。
また、延伸の際は、凝固液の揮発性が高ぐケトン類やエーテル類が急激に脱離し 、繊維の物性を低下させるおそれがあるので、揮発性が低い、多価アルコールまた はその誘導体 (例えばグリセリン、ポリエチレングリコールなど)を添加して行うのが好 ましい。
添加方法としては、例えば多価アルコール溶液にゼラチン繊維を浸漬する方法が 例示される。
[0030] このようにして得られた糸を、凝固液で洗浄した後、緊張下で乾燥させることにより、 単糸の直径が 5— 100 μ mである無色で良質なゼラチン繊維を得ることができる。 斯カるゼラチン繊維の強度は 21— 36MPa程度であり、従来のゼラチン繊維と比べ て強度の高いものとなる。
[0031] 一方、乾式紡糸法の場合には、脱イオン水 100重量部に対して、ゼラチン粉末 30 一 80重量部、好ましくは 40— 50重量部を加えて懸濁させ、 40— 60°C、好ましくは 4 5— 50°Cに加温してゼラチン粉末を脱イオン水に溶解させる。さらに、該ゼラチン水 溶液に、好ましくは親水溶媒又は多価グリシジルイ匕合物を添加し、均一な溶液となる ように撹拌して紡糸原液とする。そして、この紡糸原液を、加温した温度に保ちながら 直径 500 m程度の細孔力ら 15— 20°C、好ましくは 15— 17°Cの空気中に 0. 4— 1 . 2kgZcm2の圧力で押し出し、約 4一 5mの空間で凝固させるよう毎分 30— 40mの 速度で巻き取ることにより、高強度のゼラチン繊維を得ることができる。
また、架橋剤を添加せずに乾式紡糸してゼラチン繊維を得た後、該ゼラチン繊維を 架橋剤溶液中に浸漬し、ゼラチン繊維を架橋させて高強度化を図ることも可能である 。尚、ゼラチン繊維中に残存した架橋剤は、アルコール洗浄によって除去すればよ い。
[0032] このようにして得られたゼラチン繊維は、長繊維又は短繊維の形で加工することが 可能であるため、該ゼラチン繊維力 一般的なカ卩ェ方法によって、種々のゼラチン繊 維集合体 (例えば、綿状積層体、不織布、編み物、織物、又はこれらからなる繊維布 等)を得ることができる。
このようなゼラチン繊維集合体は、必要なサイズにカットした後、製造工程、即ち、 切断、滅菌、包装等を実施して、種々の生体吸収性材料 (例えば、人工硬膜や、癒 着防止材、創傷保護材など)として完成し、使用することができる。
[0033] 特に、本発明のゼラチン繊維を用いて製造された生体吸収性材料は強度が高いた め、従来の生体吸収材料よりも薄く構成することが可能となり、生体への吸収量も低 減されることとなる。
実施例
[0034] (実施例 1)
ゼラチン粉末 165gを蒸留水 165mLに加えて 50— 60°Cに加熱して溶解させ、ジメ チルスルホキシド(DMSO) 339mLに 135gの塩化リチウムをカ卩えた液を添カ卩して練 り合わせた。さらに、 DMSO70mLと塩ィ匕リチウム 7. 3gと蒸留水 30mLとグルタルァ ルデヒド 70mLとを加えた溶液を別途調製し、前記ゼラチン溶液に混ぜ合わせて粘 稠液を作製した。
[0035] この粘稠液を、布で濾過した後、常圧下で一昼夜脱泡することにより、泡を完全に 除去した。こうして作製した紡糸原液をメタノール溶液中へステンレスノズル(0. lm m径、 50穴)から、押し出して凝固させることにより、紡糸した。該繊維をメタノールで 充分洗浄した後、室温で乾燥させることにより、ゼラチン繊維を得た。
[0036] (実施例 2)
ゼラチン粉末 48gを蒸留水 80mLに加えて 50— 60°Cに加熱して溶解させ、 DMS 0112mLに 22. 4gの塩化カルシウム · 2水和物を溶解させた液を添カ卩して練り合わ せた。さらに、メタノール 25mlをカ卩えてメタノール濃度を 15重量%とし、よく練り合わ せて粘稠液を作製した。
この粘稠液を用 ヽて実施例 1と同様の手順で脱泡および紡糸し、ゼラチン繊維を得 た。
[0037] (実施例 3)
ゼラチン粉末 30gを 50mLの 10 (w/v) %の塩化カルシウム水溶液に加えて懸濁 させ 50— 60°Cに加熱して溶解させた。このゼラチン水溶液に多価グリシジルイ匕合物 としてナガセケムテックス(株)製、「デナコール EX— 931」 0. 5gをカ卩えてさらに 50— 60°Cでよく練り合わせて均一溶液とした。この粘稠液を用いて実施例 1と同様の手順 で脱泡し、約 10cmのエアギャップでメタノール:アセトン = 3 : 1 (体積比)中にステン レスシングルノズル(500 m径)を通して押し出し紡糸した。さらに、紡糸された繊維 をメタノールで十分洗浄して塩ィ匕カルシウムを除去した後、室温で乾燥させてゼラチ ン繊維を得た。
[0038] (実施例 4)
ゼラチン粉末 150gを 150mLの脱イオン水にカ卩えて懸濁させ約 80°Cに加熱して溶 解させた。このゼラチン水溶液に多価グリシジルイ匕合物としてナガセケムテックス (株) 製、「デナコール EX— 931」 3gおよびエチルアルコール 30gをカ卩えてさらによく練り合 わせた後、約 60°Cの加温状態で 24時間静置して架橋反応と脱泡とを十分に行った この粘稠液を約 80— 100°Cに保ちながらステンレスシングルノズル(500 μ m径)を 通して 15— 18°Cの空気中に 0. 2-0. 4kgZcm2の圧力で押し出し、約 4mの空間 で凝固させるよう毎分 33メートルの速度でカセット(直径 12cm)に巻き取ることにより ゼラチン繊維を得た。
[0039] (実施例 5)
多価グリシジル化合物としてのナガセケムテックス (株)製、「デナコール EX— 931」 を加えないこと以外は、実施例 4と同様にしてゼラチン繊維を得た。
尚、実施例 4および 5で得られたゼラチン繊維の物性は、下記表 1に示すようなもの であった。
[0040] [表 1]
Figure imgf000011_0001
[0041] (実施例 6)
ゼラチン粉末 96gを蒸留水 200mLに加え 80°Cに加熱して充分溶解させた後、 60 °Cで 24時間加熱状態に保ち脱泡させて力も紡糸管に充填し、 60°Cに保ちながらス テンレスシングルノズル(500 m径)を通して 15 18°Cの空気中に 0. 2— 0. 4kg Zcm2の圧力で押し出し、約 4mの空間で凝固させるよう毎分 33メートルの速度で力 セット(直径 12cm)に卷き取ることによりゼラチン繊維を得た。
この繊維をカセットのまま 0. 01%のダルタルアルデヒドメタノール溶液に室温で 2時 間浸漬して架橋させた。この繊維をメタノールで充分洗浄して未反応のダルタルアル デヒドを除去して力も風乾した。
実施例 6で得られたゼラチン繊維の物性は、下記表 2に示したようなものであった。
[0042] [表 2] 直径 断面積 破断点 破断点荷重 ヤング率 引張鏃 (mm; (腿2) (MPa) ( cN) (Gpa) ( cN/dTex) 難例 6
0.09 0.0064 226.86 144.32 7.312 0.479 ①
霞例 6
0.09 0.0064 278.07 176. 9 8.621 0.588 ② [0043] (比較例 1)
ゼラチン 170gを蒸留水 283gに混合して、 80°Cに加熱し、十分に溶解させた後、 塩化リチウム 70gを溶解させたジメチルァセトアミド溶液 700gを加え、 80°Cで攪拌し 続けたところ、黄色透明なゼラチン溶液を得た。これ〖こ 0. 275gのダルタルアルデヒド を含んだ lOcc水溶液を、前記ゼラチン溶液に攪拌しながら添加することにより、粘稠 液を作製した。得られた粘稠液を実施例 1と同様の手順で脱泡および紡糸し、ゼラチ ン繊維を得た。尚、該繊維をメタノールで洗浄する際には、ジメチルァセトアミドと塩 ィ匕リチウムを充分に除去するため、実施例 1よりも長時間洗浄する必要があった。
[0044] (試験方法)
上述のようにして得られた実施例および比較例のゼラチン繊維にっ 、て、 JIS L 1095「一般紡績糸試験方法」に基づき、引張強さと伸び率との関係を測定した。結 果を図 1および図 2に示す。
[0045] 図 1に示すように、実施例 1一 3のゼラチン繊維は、毒性が極めて低いにもかかわら ず、 DMAcのような毒性の高 、溶媒を用いた比較例 1のゼラチン繊維と遜色のな!ヽ 高 、強度を示して 、ることがわ力る。
[0046] また、図 2に示すように、乾式紡糸による実施例 5のゼラチン繊維は、湿式紡糸によ る実施例 1一 3と比較して非常に高い強度を示しており、多価グリシジルイヒ合物を添 カロした実施例 4のゼラチン繊維は、さらに高い強度を示していることがわかる。これら 実施例 4および 5のゼラチン繊維は、水以外の溶媒を使用せずに得られたものである ため、毒性 (安全性)の点でも飛躍的に向上したものであると言える。
[0047] さらに、図 3に示すように、乾式紡糸後に架橋させた実施例 6の場合についても、非 常に高強度のゼラチン繊維が得られていることがわかる。

Claims

請求の範囲
[1] ゼラチン水溶液をゾル状態となるように加温し、該加温されたゼラチン水溶液を空 気中で紡糸した後、架橋剤溶液中に浸漬して架橋させることを特徴とするゼラチン繊 維の製造方法。
[2] ゼラチン水溶液がゾル状態となるように加温され、該加温されたゼラチン水溶液が 空気中で紡糸された後、多価グリシジル化合物中に浸漬して架橋されてなることを特 徴とするゼラチン繊維。
[3] ジメチルスルホキシドを含むゼラチン水溶液を、凝固液中で紡糸することを特徴と するゼラチン繊維の製造方法。
[4] ジメチルスルホキシドを含むゼラチン水溶液力 凝固液中で紡糸されてなることを特 徴とするゼラチン繊維。
[5] 親水溶媒 (アミドィ匕合物を除く)を含むゼラチン水溶液を、空気中又は凝固液中で 紡糸することを特徴とするゼラチン繊維の製造方法。
[6] 親水溶媒 (アミドィ匕合物を除く)を含むゼラチン水溶液が、空気中又は凝固液中で 紡糸されてなることを特徴とするゼラチン繊維。
[7] 多価グリシジル化合物を含むゼラチン水溶液を、空気中又は凝固液中で紡糸する ことを特徴とするゼラチン繊維の製造方法。
[8] 多価グリシジル化合物を含むゼラチン水溶液力 空気中又は凝固液中で紡糸され てなることを特徴とするゼラチン繊維。
PCT/JP2004/017792 2003-12-01 2004-11-30 ゼラチン繊維とその製造方法 WO2005054553A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003401583A JP3887703B2 (ja) 2003-12-01 2003-12-01 ゼラチン繊維とその製造方法
JP2003-401583 2003-12-01

Publications (1)

Publication Number Publication Date
WO2005054553A1 true WO2005054553A1 (ja) 2005-06-16

Family

ID=34649979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017792 WO2005054553A1 (ja) 2003-12-01 2004-11-30 ゼラチン繊維とその製造方法

Country Status (2)

Country Link
JP (1) JP3887703B2 (ja)
WO (1) WO2005054553A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298901C (zh) * 2005-03-14 2007-02-07 东华大学 大豆蛋白质/聚氨酯/聚丙烯腈共混复合纤维及制备方法
WO2007015327A1 (ja) * 2005-08-03 2007-02-08 Kurashiki Boseki Kabushiki Kaisha セルロース/ゼラチン複合ビスコースレーヨンフィラメントの製造方法
WO2009036958A2 (de) * 2007-09-18 2009-03-26 Carl Freudenberg Kg Bioresorbierbarer gelatinevliesstoff
WO2014190443A1 (en) 2013-05-31 2014-12-04 Eth Zurich Improved spinning process and novel gelatin fibers
JP2015200055A (ja) * 2014-04-01 2015-11-12 兵庫県 コラーゲン繊維の製造方法及び高濃度コラーゲン溶液の製造方法
US9186472B2 (en) 2005-09-12 2015-11-17 Abela Pharmaceuticals, Inc. Devices for removal of dimethyl sulfoxide (DMSO) or related compounds or associated odors and methods of using same
US9186297B2 (en) 2005-09-12 2015-11-17 Abela Pharmaceuticals, Inc. Materials for facilitating administration of dimethyl sulfoxide (DMSO) and related compounds
US9427419B2 (en) 2005-09-12 2016-08-30 Abela Pharmaceuticals, Inc. Compositions comprising dimethyl sulfoxide (DMSO)
US9839609B2 (en) 2009-10-30 2017-12-12 Abela Pharmaceuticals, Inc. Dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) formulations to treat osteoarthritis
CN111334883A (zh) * 2020-04-21 2020-06-26 中国科学院长春应用化学研究所 天然蛋白纤维的制备及其应用
JP2021513617A (ja) * 2018-02-14 2021-05-27 ソシエテ・デ・プロデュイ・ネスレ・エス・アー 食用繊維

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186556A (ja) * 2006-01-12 2007-07-26 Hyogo Prefecture 物性改善したタンパク質組成物及び成形品
EP2722425B1 (en) * 2006-04-24 2016-01-20 Coloplast A/S Gelatin non-woven structures produced by a non-toxic dry solvent spinning process
KR100765549B1 (ko) 2006-05-19 2007-10-11 이형경 천연 젤라틴 섬유의 제조 방법
JP6960862B2 (ja) * 2018-01-15 2021-11-05 日本バイリーン株式会社 ゼラチン溶液と該ゼラチン溶液からなる紡糸液、および、該紡糸液を用いた繊維集合体の製造方法と該ゼラチン溶液を用いたフィルムならびに複合体の製造方法
JP2022001669A (ja) * 2018-07-19 2022-01-06 Spiber株式会社 タンパク質繊維の製造方法
CN109851826B (zh) * 2018-12-19 2021-09-17 福建鸿大革业有限公司 一种高弹聚氨酯合成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4615033B1 (ja) * 1967-09-16 1971-04-22
JPS4993562A (ja) * 1973-01-11 1974-09-05
JPH0335000A (ja) * 1989-06-30 1991-02-14 Koken Co Ltd 架橋コラーゲンまたは架橋ゼラチンの製造方法
JPH03259927A (ja) * 1990-03-08 1991-11-20 Konika Zerachin Kk ゲル組成物およびその製造法
JPH07505417A (ja) * 1992-03-30 1995-06-15 ドイチェ ゲラティネ−ファブリケン シュテス アクチェンゲゼルシャフト 生分解性耐水性高分子材料
JP2000093497A (ja) * 1998-09-18 2000-04-04 Nissho Corp 医療用コラーゲン膜
JP2001089929A (ja) * 1999-09-17 2001-04-03 Univ Kansai ゼラチン繊維、及びその製造方法、及びゼラチン繊維集合体、及び生体吸収性材料
JP2003183595A (ja) * 2001-12-19 2003-07-03 Nitta Gelatin Inc ゲル化特性に優れたゼラチン
JP2003193328A (ja) * 2001-12-19 2003-07-09 Nipro Corp コラーゲン単糸の製造方法
JP2004149953A (ja) * 2002-10-30 2004-05-27 Kurabo Ind Ltd セルロース/蛋白質複合繊維用紡糸原液およびセルロース/蛋白質複合繊維

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4615033B1 (ja) * 1967-09-16 1971-04-22
JPS4993562A (ja) * 1973-01-11 1974-09-05
JPH0335000A (ja) * 1989-06-30 1991-02-14 Koken Co Ltd 架橋コラーゲンまたは架橋ゼラチンの製造方法
JPH03259927A (ja) * 1990-03-08 1991-11-20 Konika Zerachin Kk ゲル組成物およびその製造法
JPH07505417A (ja) * 1992-03-30 1995-06-15 ドイチェ ゲラティネ−ファブリケン シュテス アクチェンゲゼルシャフト 生分解性耐水性高分子材料
JP2000093497A (ja) * 1998-09-18 2000-04-04 Nissho Corp 医療用コラーゲン膜
JP2001089929A (ja) * 1999-09-17 2001-04-03 Univ Kansai ゼラチン繊維、及びその製造方法、及びゼラチン繊維集合体、及び生体吸収性材料
JP2003183595A (ja) * 2001-12-19 2003-07-03 Nitta Gelatin Inc ゲル化特性に優れたゼラチン
JP2003193328A (ja) * 2001-12-19 2003-07-09 Nipro Corp コラーゲン単糸の製造方法
JP2004149953A (ja) * 2002-10-30 2004-05-27 Kurabo Ind Ltd セルロース/蛋白質複合繊維用紡糸原液およびセルロース/蛋白質複合繊維

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298901C (zh) * 2005-03-14 2007-02-07 东华大学 大豆蛋白质/聚氨酯/聚丙烯腈共混复合纤维及制备方法
WO2007015327A1 (ja) * 2005-08-03 2007-02-08 Kurashiki Boseki Kabushiki Kaisha セルロース/ゼラチン複合ビスコースレーヨンフィラメントの製造方法
US8293157B2 (en) 2005-08-03 2012-10-23 Kurashiki Boseki Kabushiki Kaisha Method of manufacturing cellulose/gelatin composite viscose rayon filament
US9427419B2 (en) 2005-09-12 2016-08-30 Abela Pharmaceuticals, Inc. Compositions comprising dimethyl sulfoxide (DMSO)
US9186297B2 (en) 2005-09-12 2015-11-17 Abela Pharmaceuticals, Inc. Materials for facilitating administration of dimethyl sulfoxide (DMSO) and related compounds
US9186472B2 (en) 2005-09-12 2015-11-17 Abela Pharmaceuticals, Inc. Devices for removal of dimethyl sulfoxide (DMSO) or related compounds or associated odors and methods of using same
EP2409718A1 (de) * 2007-09-18 2012-01-25 Carl Freudenberg KG Bioresorbierbarer Gelatinevliesstoff
AU2008300873B2 (en) * 2007-09-18 2011-11-10 Carl Freudenberg Kg Bioresorbable nonwoven fabric made of gelatin
CN101861173B (zh) * 2007-09-18 2014-06-18 卡尔·弗罗伊登伯格公司 明胶制成的可生物再吸收的非织造织物
US10624985B2 (en) 2007-09-18 2020-04-21 Carl Freudenberg Kg Bioresorbable nonwoven fabric made of gelatin
EP2042199A3 (de) * 2007-09-18 2011-09-14 Carl Freudenberg KG Bioresorbierbare Wundauflagen
WO2009036958A3 (de) * 2007-09-18 2010-02-25 Carl Freudenberg Kg Bioresorbierbarer gelatinevliesstoff
WO2009036958A2 (de) * 2007-09-18 2009-03-26 Carl Freudenberg Kg Bioresorbierbarer gelatinevliesstoff
US9855212B2 (en) 2009-10-30 2018-01-02 Abela Pharmaceuticals, Inc. Dimethyl sulfoxide (DMSO) or DMSO and methylsulfonylmethane (MSM) formulations to treat infectious diseases
US9839609B2 (en) 2009-10-30 2017-12-12 Abela Pharmaceuticals, Inc. Dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) formulations to treat osteoarthritis
US10596109B2 (en) 2009-10-30 2020-03-24 Abela Pharmaceuticals, Inc. Dimethyl sulfoxide (DMSO) or DMSO and methylsulfonylmethane (MSM) formulations to treat infectious diseases
US10156028B2 (en) 2013-05-31 2018-12-18 Eth Zurich Spinning process
WO2014190443A1 (en) 2013-05-31 2014-12-04 Eth Zurich Improved spinning process and novel gelatin fibers
JP2015200055A (ja) * 2014-04-01 2015-11-12 兵庫県 コラーゲン繊維の製造方法及び高濃度コラーゲン溶液の製造方法
JP2021513617A (ja) * 2018-02-14 2021-05-27 ソシエテ・デ・プロデュイ・ネスレ・エス・アー 食用繊維
CN111334883A (zh) * 2020-04-21 2020-06-26 中国科学院长春应用化学研究所 天然蛋白纤维的制备及其应用
CN111334883B (zh) * 2020-04-21 2021-08-17 中国科学院长春应用化学研究所 天然蛋白纤维的制备及其应用

Also Published As

Publication number Publication date
JP3887703B2 (ja) 2007-02-28
JP2005163204A (ja) 2005-06-23

Similar Documents

Publication Publication Date Title
WO2005054553A1 (ja) ゼラチン繊維とその製造方法
JP3581899B2 (ja) 配向セルロースフィルムの製造方法
US20200330641A1 (en) Biodegradable graphene oxide biocomposite fibrous membrane, preparation method and uses thereof
JP3783239B2 (ja) ポリ(テトラフルオロエチレン)および関連ポリマー類の分散紡糸方法
CN103272492B (zh) 一种增强型纤维素中空纤维膜及其制备方法
WO2007064123A1 (en) A braid-reinforced composite hollow fiber membrane
JPH1080942A (ja) 繊維強化複合材セルロース系フィルム及びその製造方法
JP2011208293A (ja) ポリビニルアルコール系コンポジット繊維およびその製造方法
JP2013019065A (ja) 未修飾セルロースの中空繊維及びその紡糸法
JP5828643B2 (ja) ゼラチン水溶液を用いた弾性に富む繊維ならびに中空糸の乾式紡糸法
RU2408746C1 (ru) Способ получения хитозансодержащих нитей
US5951933A (en) Processes for precipitating tertiary amine oxide cellulose solutions containing water soluble polymers and products made therefrom
JP4009911B2 (ja) ゼラチン繊維の製造方法
JP2022159315A (ja) ゼラチンフィラメント糸及びこれを用いた繊維構造物
JPS59166208A (ja) 気体分離膜の製造法
JP2012040521A (ja) 中空糸膜および中空糸膜の製造方法
JP3829954B2 (ja) 中空断面再生セルロース繊維およびその製法
JP2007075271A (ja) 生体吸収性材料およびその製造方法
JP2020204119A (ja) ゼラチンフィラメント糸、その製造方法及びこれを用いた繊維構造物
CN117679962B (zh) 一种纤维素除病毒滤膜及其制备工艺和应用
JPS59199807A (ja) 選択透過性セルロ−スエステル系中空繊維の製造方法
JPH0924261A (ja) ポリスルホン系多孔質中空糸膜の製造方法
JP2020204120A (ja) ゼラチン中空糸及びその製造方法
JP2503092B2 (ja) ポリビニルアルコ―ル系合成繊維の製造方法
JP2818352B2 (ja) 中空糸膜の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 04819832

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 4819832

Country of ref document: EP