WO2005054134A1 - 誘電体膜形成用組成物の製造方法、誘電体膜形成用組成物、ならびに誘電体膜およびその形成方法 - Google Patents

誘電体膜形成用組成物の製造方法、誘電体膜形成用組成物、ならびに誘電体膜およびその形成方法 Download PDF

Info

Publication number
WO2005054134A1
WO2005054134A1 PCT/JP2004/018065 JP2004018065W WO2005054134A1 WO 2005054134 A1 WO2005054134 A1 WO 2005054134A1 JP 2004018065 W JP2004018065 W JP 2004018065W WO 2005054134 A1 WO2005054134 A1 WO 2005054134A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric film
forming
composition
metal
film
Prior art date
Application number
PCT/JP2004/018065
Other languages
English (en)
French (fr)
Inventor
Tomotaka Shinoda
Masayuki Takahashi
Kinji Yamada
Kyouichirou Ryuu
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003407323A external-priority patent/JP4257518B2/ja
Priority claimed from JP2004069428A external-priority patent/JP2005255464A/ja
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to EP04819949A priority Critical patent/EP1860068A1/en
Publication of WO2005054134A1 publication Critical patent/WO2005054134A1/ja
Priority to US11/446,903 priority patent/US20060283354A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material

Definitions

  • composition for forming dielectric film composition for forming dielectric film, and dielectric film and method for forming the same
  • the present invention relates to a method for producing a composition for forming a dielectric film, a composition for forming a dielectric film, a dielectric film, and a method for forming the same.
  • a gas phase method such as a PVD method (physical vapor deposition method) such as sputtering, a CVD method (chemical vapor deposition method) using an organometallic compound, and the like
  • various methods such as a liquid phase method represented by a sol-gel method have been studied!
  • a liquid phase method is more expected than a gas phase method from the viewpoints of composition control, easy formation, and production cost.
  • the sol-gel method starts with a metal alkoxide sol solution (precursor solution) As a raw material, it refers to a synthesis process through a hydrolysis and polycondensation reaction, through a sol-state, a gel-state, and finally to a metal oxide.
  • the thin film formation by the sol-gel method is more limited to the shape and size of the substrate on which the thin film is formed. It does not require expensive equipment!
  • the dielectric film obtained by the conventional sol-gel method tends to crack during firing. There is a tendency. If a dielectric film with a film thickness of 200 nm or more is formed by one coating and baking, cracks will occur. When the film thickness is less than 200 nm, there is a problem that the withstand voltage is low and the leak current is large, and the practicality as a capacitor or the like is low. Therefore, in the conventional sol-gel method, coating and baking had to be repeated several times in order to obtain a dielectric film having a high withstand voltage and a small leak current.
  • a dielectric film formed by a liquid phase method such as a sol-gel method has a higher crystallization temperature and a higher dielectric constant when the sintering temperature is increased.
  • high-temperature sintering increases dielectric loss and leakage current. In some cases, resulting in inferior characteristics as a capacitor.
  • Patent Document 1 describes a method for forming a BaTiO film using a metal stone of Ba and Ti as a raw material and crystallizing at 600 to 1300 ° C. But this way cracks
  • the thickness of one coating and baking is about 100 nm, and the coating and baking is repeated nine times to obtain a film thickness of 1.0 m.
  • electrical characteristics there is no description about electrical characteristics.
  • Patent Document 2 describes a composition in which barium carboxylate, strontium carboxylate, and titanium alkoxide are mixed in an organic solvent in order to suppress the above-described cracks.
  • this method does not describe a film thickness that is free from cracks, and does not describe electric characteristics.
  • Patent Document 3 describes a crystalline gel-dispersed coating solution prepared by hydrolyzing alkoxides such as Ba and Ti to produce a crystalline gel, and using this.
  • this coating solution has a problem that barium alkoxide used as a raw material is very expensive.
  • Patent Document 4 describes that a fine barium titanate powder can be obtained by mixing an aqueous solution of barium hydroxide and an alcohol solution of Ti alkoxide and then reacting the mixture at 60-100 ° C.
  • Non-Patent Document 1 describes a coating solution obtained by partially hydrolyzing a precursor solution obtained from norium ethoxide, titanium isopropoxide, and methoxyethanol. However, in this document, it is necessary to perform coating and baking several times in order to measure the electrical characteristics.
  • Patent Document 1 JP-A 1-308801
  • Patent Document 2 Patent No. 3456305
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-275390
  • Patent Document 4 JP 2002-60219
  • Non-Patent Document l Mte. RES. Soc. Symp. Proc., VOL. 271, 339 (1992) Disclosure of the Invention
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to realize a lower process temperature in a dielectric film having an ABOx type crystal structure, and to achieve a shorter time.
  • An object of the present invention is to provide a method for producing a composition for forming a dielectric film, which is capable of greatly improving productivity by enabling the above treatment.
  • an object of the present invention is to provide a dielectric film having an ABOx-type crystal structure, which is excellent in crack resistance without using expensive raw materials such as alkoxides of Ba, Sr, and Ca;
  • An object of the present invention is to provide a composition for forming a dielectric film capable of forming a dielectric film having a small value and good insulation properties.
  • the method for producing a dielectric film forming composition of the present invention includes the following steps (a) and (b).
  • step (b) a step of reacting the precursor in the solution prepared in the step (a).
  • the precursor in the solution prepared in the step (a) refers to the metal hydroxide and at least one of the metal alkoxide and the metal complex (and Z or its hydrolysis) Condensate) and ⁇ ⁇ .
  • the above reaction in the step (b) can be achieved by heating the solution prepared in the step (a).
  • the above-mentioned reaction in the step (b) may be hydrolysis condensation.
  • perovskite-type crystal particles having an average particle size of 100 nm or less can be formed by the hydrolytic condensation.
  • the method may further include a step (c) of purifying the vitreous buskite crystal particles with an organic solvent.
  • the metal A is at least one selected from Ca, Sr and Ba
  • the metal B is Ti, Zr And at least one selected from Hf.
  • composition for forming a dielectric film of the present invention is obtained by the method for producing the composition for forming a dielectric film of the present invention.
  • perovskite-type crystal particles having an average particle size of 100 nm or less can be dispersed.
  • composition for forming a dielectric film of the present invention comprises:
  • A a metal hydroxide (A1) containing at least one metal A selected from Ba, Sr, and Ca; a metal alkoxide containing at least one metal B selected from Ti, Zr, and Hf; A reaction product with Z or a partially hydrolyzed condensate thereof (A2),
  • the molar ratio between the metal A and the metal B is 0.9.1-1.1.
  • the reaction product may be crystalline particles! /, Or may be an amorphous solid, but in order to obtain a dielectric film having an excellent dielectric constant, More preferably, the reaction product is a crystal particle.
  • the method for forming a dielectric film according to the present invention comprises:
  • the method includes a step of forming a coating film using the composition for forming a dielectric film of the present invention, and a step of heat-treating the coating film.
  • a composition capable of forming a dielectric film having good dielectric properties even under a moderate temperature condition of, for example, 400 ° C. or less is obtained. be able to.
  • the dielectric film is compared with a conventional process that requires crystallization by high-temperature baking in a heating furnace. Since the process for forming the simplicity is simplified, the productivity can be greatly improved. Furthermore, by using the composition for forming a dielectric film of the present invention, a crystallization step at a high temperature is not required, and the conventional sol-gel method which requires a crystallization step at a high temperature cannot be applied. In addition, it is possible to produce a dielectric film having good dielectric properties even for various substrates having low heat resistance. In addition, since the substrate can be fired at, for example, 700 ° C. to 950 ° C. on a substrate having high heat resistance, a dielectric film having high dielectric constant, low dielectric loss, and high insulation can be obtained.
  • a dielectric film is formed using the above-described composition for forming a dielectric film of the present invention, whereby a high dielectric constant, a low dielectric loss, and a high insulation It is possible to obtain a dielectric film that is conductive.
  • the dielectric film of the present invention has a high dielectric constant, a low dielectric loss, and a high insulating property.
  • Method for producing a composition for forming a dielectric film includes the following steps (a) and (b).
  • a metal hydroxide containing at least one metal A selected from Li, Na, Ca, Sr and Ba, and containing at least one metal B selected from Ti, Zr, Hf, Ta and Nb Dissolving at least one of a metal alkoxide and a metal complex in an organic solvent to prepare a solution;
  • step (b) a step of adding water to the solution prepared in the step (a) and reacting a precursor in the solution;
  • step (a) Step of preparing a solution
  • step (a) as a raw material, at least one selected from metal hydroxides containing a metal A capable of forming particles having an ABOx type crystal structure, and a metal B capable of forming particles having an ABOx type crystal structure Using at least one of a metal alkoxide and a metal complex, the metal hydroxide and the metal alkoxide and Z or the metal complex are dissolved in an organic solvent by an ordinary method.
  • Examples of the metal A include Li, Na, Ca, Sr and Ba, and preferably Ca, Sr and Ba.
  • Examples of the metal B include Ti, Zr, Hf, Ta and Nb, preferably Ti, Zr and Hf, and more preferably Ti.
  • the concentration of metals A and B in the solution is preferably 0.01-2. Ommol / g, more preferably 0.1-1. Ommol / g, and still more preferably 0.2-0.8 mmol Zg. is there.
  • the ratio of metal A to metal B (AZB: molar ratio) is preferably 0.6-1.5, more preferably 0.8-1.2, and still more preferably 0.9-1.1. .
  • step (a) the substances used in step (a) will be described.
  • the metal alkoxide is a compound obtained by reacting a metal atom with an alcohol, and is represented by the following general formula (1).
  • M represents a metal selected from Ti, Zr, Hf, Ta, and Nb; It is an integer of 417 corresponding to the valency of M, and R 1 is a residue excluding the OH group of the alcohol.
  • R 1 represents a saturated or unsaturated hydrocarbon group having 116 carbon atoms, or a hydrocarbon group substituted with an alkoxyl group having 116 carbon atoms.
  • the alcohol when R 1 is a saturated or unsaturated hydrocarbon group having 16 carbon atoms, the alcohol may be, for example, methanol, ethanol, 1-propanol, 2-propanol, butanol, amyl Alcohol, cyclohexanol and the like can be mentioned.
  • R 1 is a hydrocarbon group having 16 carbon atoms and substituted by an alkoxyl group
  • examples of the alcohol include methoxymethanol, methoxyethanol, Examples thereof include ethoxymethanol, ethoxyethanol, methoxypropanol, ethoxypropanol, and propoxypropanol.
  • Examples of the metal alkoxide represented by the general formula (1) include titanium alkoxides such as tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, and tetraisobutoxytitanium.
  • Zirconium alkoxides such as tetramethoxyzirconium, tetraethoxydinoreconium, tetrapropoxydinoreconium, tetraisopropoxyzirconium, tetrabutoxyzirconium, tetramethylhafnium, tetraethylhafnium, tetrapropoxyhaum, tetraisopropane
  • hafnium alkoxides such as mouth oxyhafnium and tetrabutoxyhafnium.
  • metal alkoxides are used for the purpose of improving the solubility in a solvent and controlling the reactivity with moisture, etc., for example, ethyl acetate acetate, acetylacetone, diacetone alcohol, ethylene glycol monomethinoleate ethylene glycol, ethylene glycol alcohol. It may be used as a chelate conjugate obtained by reacting with a ligand such as tinoleatel.
  • Metal hydroxide is a compound in which a hydroxyl group is bonded to a metal atom, and is represented by the following general formula (3). expressed.
  • M represents a metal selected from Li, Na, Ca, Sr, and Ba, and a is an integer of 1 to 2 according to the valence of the metal M.
  • These metal hydroxides may not contain water of crystallization, or may be any of anhydrides or hydrates containing water of crystallization.
  • Examples of metal hydroxides represented by the general formula (3) include LiOH, NaOH, Ca (OH), Sr (OH), Ba (OH), Ba (OH) , Ba (OH) -8H0, etc.
  • Ba (OH) 2 is particularly preferable.
  • the metal complex is a compound having an organic compound coordinated to a metal atom, and is represented by the following general formula (4). Also, a partial hydrolysis condensate of the metal complex may be used together with or instead of the metal complex.
  • M represents a metal selected from Ti, Zr, Hf, Ta, and Nb
  • a is an integer of 417 corresponding to the valence of the metal M
  • b is 0 —
  • R 1 is a residue excluding the OH group of the alcohol
  • L is a residue of an organic compound capable of coordinating to a metal (a so-called ligand).
  • Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, butanol, amyl alcohol, cyclohexanol and the like.
  • Examples of the organic compound capable of coordinating to a metal include acetone, acetylacetone, methyl acetoacetate, ethyl acetoacetate, monoethanolamine, diethanolamine, and triethanolamine. .
  • Examples of the metal complex represented by the general formula (4) include, for example, titanium aryl acetate triisopropoxide, titanium dibutoxide (bis-2,4 pentanedionate), and titanium diisopropoxide.
  • Side bis-1,2 pentanedionate
  • titanium dibutoxide bis tetramethyl heptane dionate
  • titanium diisopropoxide bis tetramethyl heptane dionate
  • titanium diisopropo Quixed bis (ethyl acetate) and the like can be suitably used.
  • organic solvent used for dissolving the metal hydroxide, metal alkoxide, Z or metal complex examples include, for example, alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, Ester solvents and the like can be mentioned.
  • Examples of the alcohol-based solvent include methanol, ethanol, propanol, isopropanol, n-butanol, i-butanol, sec-butanol, amyl alcohol, cyclohexanol, methylcyclohexanol, and furfuryl alcohol. it can.
  • polyhydric alcohol solvents examples include ethylene glycol, propylene glycol, butylene glycolone, hexylene glycolone, ethylene glycolone monomethynooleate, ethylene glycole monoethylenate, and ethylene glycolonepropane.
  • Norethene ethylene glycol monobutyl ether, ethylene glycol monoacetate, diethylene glycol monomethyl ether, diethylene glycol monoacetate, propylene glycol monomonoethyl ether, propylene glycol monoethyl acetate, dipropylene glycol monoethylenoleate
  • Tenoré propylene glycolone monomethinoleate, propylene glycolone monopropyl ether, methoxybutanol, propylene glycol Over monomethyl E chill ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol propyl ether, and dipropylene glycol monobutyl ether.
  • ether solvents include dimethyl ether, getyl ether, dipropyl ether, dibutyl ether, diamyl ether, getyl acetal, dihexyl ether, trioxane, dioxane, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, butyl cellosolve, and the like. Can be mentioned.
  • Ketone solvents include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl cyclohexyl ketone, getyl ketone, ethyl butyl ketone, trimethyl nonanone, acetonylacetone, dimethyl oxide, Examples thereof include holon, cyclohexanone, and diacetone alcohol.
  • ester solvent examples include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, and vinegar.
  • examples thereof include cyclohexyl acid, methyl propionate, ethyl ethyl butyrate, ethyl ethyl oxyisobutyrate, ethyl ethyl acetate, ethyl ethyl lactate, methoxybutyl acetate, getyl oxalate, and diethyl ethyl malonate.
  • organic solvent a hydrophilic solvent is preferable.
  • One type of organic solvent may be used, or two or more types may be used in combination.
  • a lanthanoid conjugate to the solution obtained in step (a).
  • lanthanoids include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm.
  • the lanthanoid compound is preferably used as an alkoxide, halide, carboxylate or hydroxide of these lanthanoids.
  • step (b) Step of reacting precursor in solution
  • the precursor in the solution prepared in the step (a) is reacted.
  • a reaction product can be obtained.
  • the reaction can be a condensation (eg, a hydrolytic condensation).
  • the reaction product can be an amorphous solid and Z or crystalline particles. That is, the reaction product may be a crystal particle or an amorphous solid, but in order to obtain a dielectric film having an excellent dielectric constant, the reaction product is a crystal particle. That is more preferred.
  • the reaction product perovskite-type crystal particles having an ABOx-type crystal structure
  • the precursor in the solution prepared in the step (a) is reacted (hydrolyzed and condensed) with the precursor in the solution prepared in the step (a). How to get.
  • crystal particles having excellent crystallinity can be obtained.
  • the temperature of the solution prepared in step (a) is preferably from 78 to 200 ° C, more preferably from -20 to 100 ° C. C, more preferably in the range of 0-50 ° C., and water in the solution is usually 5-300-fold mol, preferably 10-200-fold mol, more preferably 20-100 mol, per mol of metal A. 2 times the molar amount of the precursor in the solution Crystallization can be performed by decomposition and condensation.
  • the hydrolytic condensation can be performed by adding water to the solution prepared in the step (a). When water is contained in the solution, it is not necessary to further add water.
  • the amount of water to be added is preferably in the above range with respect to metal A in order to obtain particles having high crystallinity. If the amount of water to be added is smaller than the above lower limit or larger than the above upper limit, crystallinity may be reduced.
  • step (b) water for hydrolytic condensation is added dropwise to a solution using only water in a liquid state or an organic solvent containing water in a liquid state. Then, the hydrolysis and condensation can be performed efficiently with good reproducibility.
  • a catalyst may be contained in the water to be added.
  • usable catalysts include, for example, acid catalysts such as inorganic acids (for example, hydrochloric acid, sulfuric acid, and nitric acid) and organic acids (for example, acetic acid, propionic acid, butyric acid, and maleic acid), and sodium hydroxide.
  • acid catalysts such as inorganic acids (for example, hydrochloric acid, sulfuric acid, and nitric acid) and organic acids (for example, acetic acid, propionic acid, butyric acid, and maleic acid), and sodium hydroxide.
  • inorganic or organic alkali catalysts such as lithium hydroxide, barium hydroxide, ammonia, monoethanolamine, diethanolamine, tetramethylammonium hydroxide and the like.
  • an alkali catalyst it is more preferable to use an alkali catalyst.
  • an organic acid such as a carboxylic acid
  • carbon dioxide generated by the decomposition of the organic acid may remain in the film and affect the electrical characteristics of the formed dielectric film.
  • an inorganic acid such as hydrochloric acid or nitric acid
  • a part of the acid component may remain in the film, thereby deteriorating the leak current characteristics of the formed dielectric film.
  • the resulting hydrolyzed condensate is usually brought to a temperature of 10 to 200 ° C, preferably 20 to 150 ° C, more preferably 30 to 100 ° C, usually 0.5 to 100 ° C. It is desirable to hold for 200 hours, preferably for 1 to 100 hours, more preferably for 3 to 20 hours.
  • the second method is to heat the solution prepared in the step (a) so that It is a method of reacting the carcass.
  • the reaction refers to, for example, condensation.
  • at least an amorphous solid can be obtained as a reaction product by heating.
  • the metal A constituting the metal hydroxide (A1) contained in the solution prepared in the step (a) is at least one metal atom selected from Ba, Sr, and Ca;
  • the metal B constituting the metal alkoxide and / or the partially hydrolyzed condensate (A2) contained in the solution prepared in the step is at least one metal atom selected from Ti, Zr, and Hf.
  • the reaction product can be easily obtained by heating the solution.
  • the dielectric constant of the dielectric film formed using the obtained dielectric film forming composition may decrease
  • the insulating properties of the dielectric film formed using the obtained dielectric film forming composition may be reduced.
  • the hydrolysis and condensation can be advanced by heating the solution without adding water.
  • the metal hydroxide is a hydrate (for example, barium hydroxide monohydrate)
  • the water derived from the hydrate is present in the reaction system, so that it is not necessary to add water.
  • hydrolytic condensation easily proceeds, and crystal particles can be more easily obtained.
  • the temperature of the solution prepared in the step (a) is preferably 60 ° C. or higher, more preferably 100 ° C. or higher, and still more preferably 130 ° C. or higher.
  • the precursor in the solution can be reacted to obtain a reaction product.
  • an amorphous solid and Z or vitreous buskite-type crystal particles can be obtained through the above steps (a) and (b).
  • the obtained perovskite-type crystal particles have an ABOx-type crystal structure, and have an average particle diameter of preferably 100 nm or less, more preferably 50 nm or less.
  • a step of dispersing the crystal particles in an organic solvent (hereinafter, referred to as a “dispersion step”) can be performed.
  • a bevelskite-type crystal particle dispersion (composition for forming a dielectric film) of the present invention can be obtained.
  • the perovskite-type crystal particles contained in the dispersion have an ABOx-type crystal structure and have an average particle diameter of 100 nm or less (more preferably, 50 nm or less). Like! / ,.
  • the method further includes (c) a step of purifying the perovskite-type crystal particles with an organic solvent before the dispersing step. By this step, impurities can be removed.
  • Crystal particles produced by crystallization of the reaction product (hydrolysis condensate) as described above include, for example, unreacted metal alkoxide, metal carboxylate, and metal complex (hereinafter simply referred to as " Also referred to as “organic metal compound”), partially hydrolyzed and condensed organic metal compounds, and metal hydroxides and metal ions formed by completely hydrolyzing and condensing the organic metal compounds.
  • organic metal compound also referred to as “organic metal compound”
  • partially hydrolyzed and condensed organic metal compounds partially hydrolyzed and condensed organic metal compounds
  • metal hydroxides and metal ions formed by completely hydrolyzing and condensing the organic metal compounds.
  • the dielectric film shows ionic conductivity, increasing the leakage current
  • Etc. may occur.
  • any method may be used as long as the crystal particles and the organic solvent can be separated after the purification.
  • an organic solvent is added to the crystal particles, the crystal particles are precipitated by decantation or centrifugation, the supernatant is removed, and the organic solvent is precipitated again.
  • a method in which the step of heating in addition to the particles is repeated 2 to 5 times can be used.
  • impurities and water contained in the crystal grains can be removed, and their concentrations can be reduced.
  • by adding an organic solvent to the particles and repeating dialysis using a semipermeable membrane 2 to 5 times the concentration of impurities and water contained is reduced.
  • the composition for forming a dielectric film in which the purified crystal particles are dispersed in an organic solvent When (crystal particle dispersion) is obtained, the concentration of metal A in the liquid and the concentration of water in the impurities in the composition for forming a dielectric film can be reduced to a predetermined concentration. Problems (1) and (2) can be solved.
  • Examples of the organic solvent used in the purification step include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents, amide solvents, and the like. .
  • Examples of the alcohol-based solvent include methanol, ethanol, propanol, butanol, amyl alcohol, cyclohexanol, methylcyclohexanol and the like.
  • polyhydric alcohol solvent examples include ethylene glycol monomethyl ether, ethylene glycol monomethyl acetate, ethylene glycol derivatives such as diethylene glycol monomethyl ether, and diethylene glycol monoacetate; propylene glycol monoethyl ether; Propylene glycolone monoacetate, dipropyleneglyconelemonoethylene oleate, propylene glycolone monomethyoleatenoate, propylene glycolone monopropyl ether, methoxybutanol, propylene glycol monoethyl ether acetate, propylene glycol Propylene such as monomethyl ether acetate, dipropylene glycolone propionole ether, dipropylene glycolone monobutynoleate Nguriko Le derivatives and the like.
  • ether-based solvent examples include methylal, getyl ether, dipropyl ether, dibutyl ether, diamyl ether, getyl acetal, dihexyl ether, trioxane, dioxane, methyl cellosolve, ethyl cellosolve, and butyl cellosolve. Can be mentioned.
  • ketone solvents include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl cyclohexyl ketone, getyl ketone, ethyl butyl ketone, trimethyl nonanone, acetonylacetone, dimethyl oxide, Examples thereof include holon, cyclohexanone, and diacetone alcohol.
  • ester solvents include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, cyclohexyl acetate, methyl propionate, ethyl ethyl butyrate, ethyl ethyl oxyisobutyrate, and acetate.
  • ester solvents include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, cyclohexyl acetate, methyl propionate, ethyl ethyl butyrate, ethyl ethyl oxyisobutyrate, and acetate.
  • examples thereof include ethyl acetate, ethyl lactate, methoxybutyl acetate, getyl oxalate, and diethyl methyl malonate.
  • amide-based solvent examples include amides such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • One of the above organic solvents may be used, or two or more thereof may be used in combination.
  • the crystal particles obtained by the present invention are separated from an organic solvent as a washing liquid, and then added to a new organic solvent and dispersed to obtain a composition for forming a dielectric film (crystal particles). (Dispersing body) can also be prepared.
  • any method may be used as long as the crystal particles can be uniformly dispersed in the organic solvent.
  • crystal particles are dispersed in a solvent while performing mechanical stirring or stirring using ultrasonic waves.
  • Examples of the organic solvent used for dispersion include the same alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, and ester solvents as those exemplified as the organic solvent used in the purification step. Can be mentioned. More specifically, as the organic solvent used for dispersion, methylcellosolve, an ethylene glycol derivative or a propylene dalicol derivative is preferable. Further, a hydrophilic solvent is preferable in that it can dissolve the crystal particles and can impart coating characteristics when forming a coating film by using a spin coating method or the like.
  • organic solvents may be used, or two or more thereof may be used in combination. Further, the organic solvent used for dispersion may be the same as or different from the organic solvent used for purification.
  • the content of the crystal particles in the dielectric film forming composition is determined as a solid content concentration for the dielectric film forming. It is 11 to 20% by weight, preferably 3 to 15% by weight of the whole composition.
  • a non-ionic surfactant an a-ionic surfactant, a click
  • An on-surfactant may be used as a dispersant.
  • surfactants include polyoxyethylene polyoxypropylene glycol, polyoxypropylene-polyoxyethylene condensate of ethylenediamine (pull nick type), sodium alkylbenzenesulfonate, polyethyleneimine, and polybutyl. Pyrrolidone, perfluoroalkyl group-containing oligomers and the like can be used.
  • the type and amount of the dispersant can be appropriately selected and used depending on the type of the crystal particles and the type of the solvent in which the crystal particles are dispersed. It is preferably in the range of 0.001 to 10 g, more preferably 0.005 to 3 g, and still more preferably 0.01 to 1 lg relative to 100 g.
  • the film forming composition of the present invention can also contain a high dielectric constant filler such as barium titanate, PZT, or ⁇ , and the powerful filler has a particle size of 1 m or less. It is preferable to use those! / ,.
  • a high dielectric constant filler such as barium titanate, PZT, or ⁇
  • composition for forming a dielectric film obtained by dispersing the crystal particles obtained by the present invention in an organic solvent is applied to a substrate to form a coating film, and this is optionally coated. By drying, preferably further heating and firing, a dielectric film can be formed.
  • the composition for forming a dielectric film is applied on a substrate to form a coating film.
  • a method of applying the composition for forming a dielectric film on a substrate for example, an open spin coating method, a closed spin coating method, an LSM-CVD method of mist formation coating (solution vapor deposition chemical vapor deposition method), Known coating methods such as a dive method, a spray method, a roll coating method, a printing method, an ink jet method, and an electrophoretic electrodeposition method can be used.
  • the coating film is dried at a temperature of usually 50 to 300 ° C, preferably 100 to 250 ° C.
  • the coating film is heated at a temperature of usually higher than 300 ° C to 900 ° C or lower, preferably 400 to 750 ° C, and fired to obtain a dielectric film. That is, the dielectric film forming set
  • a dielectric film can be obtained by firing in a high-temperature region as in the conventional case.
  • a dielectric film suitable for practical use can be obtained.
  • the substrate on which the composition for forming a dielectric film is applied may be flat or non-planar (for example, one having a step), and the form is particularly limited as long as desired coverage can be realized. Not something. Further, the shape of the substrate is not particularly limited, and for example, a bulk, thin plate, or film shape can be used. Specific examples of the material of such a substrate include a semiconductor, glass, metal, plastic, and ceramics.
  • Examples of the semiconductor substrate include a silicon wafer. Even though silicon oxide films, metals such as Pt, Ir, and Ru, and conductive electrodes that are metal oxides thereof, such as conductive electrodes, are formed on the silicon wafer. Good. In addition, a compound semiconductor substrate such as GaAs or InP can be used as the substrate.
  • the glass substrate for example, a substrate having high strength such as quartz glass, borosilicate glass, soda glass, lead glass, and lanthanum glass can be used.
  • the metal substrate for example, a substrate made of a material such as gold, silver, copper, nickel, aluminum, iron, and stainless steel can be used.
  • the plastic substrate for example, a substrate made of polyimide, methacrylic resin, or the like can be used. Although these plastic substrates may have lower heat resistance than glass substrates and metal substrates, the present invention can be applied to the present invention because a dielectric film (crystallized film) can be formed at a low temperature. There is no fundamental problem.
  • the ceramic substrate for example, a substrate having a high strength such as silicon oxide, aluminum oxide, titanium oxide, silicon nitride, aluminum nitride, titanium nitride, silicon carbide, and titanium carbide can be used.
  • the dielectric film thus obtained has good dielectric characteristics and leak current characteristics, and thus can be suitably used as an electronic component such as a capacitor.
  • Methylcellosolve was added to a concentration of 15% by weight, and a polyoxypropylene / polyoxyethylene condensate of ethylenediamine was added as a dispersant in an amount of 0.1 per 100 parts by weight of the particles.
  • the crystal particles A-1 were dispersed in the above to prepare a composition a-1 for forming a dielectric film.
  • the particle size distribution of the crystal particles in the dielectric film forming composition a-1 was determined by the dynamic scattering method using a dynamic light scattering type particle size distribution measuring device "LB-500" (Horiba, Ltd.). As a result of the measurement, the median diameter was 22 nm.
  • the composition a-1 for forming a dielectric film was easily filtered through a filter having a pore size of 200 nm to remove coarse particles.
  • FIG. 1 shows an X-ray diffraction chart of a thin film formed by dropping the composition a-1 for forming a dielectric film on a glass plate and drying at room temperature. According to FIG. 1, it was confirmed that the crystal particles A-1 had an ABOx-type crystal structure of the BaTiO composite oxide at room temperature.
  • a methanol solution of barium hydroxide and methyl cellosolve were added to prepare a raw material solution 2 having a Ba concentration of 0.5 mmol Zg and a Ti concentration of 0.5 mmol Zg.
  • Methyl cellosolve was added to a concentration of 15% by weight, and a polyoxypropylene / polyoxyethylene condensate of ethylenediamine was added as a dispersant in an amount of 0.1 with respect to the particle weight of 100.
  • the crystal particles A-6 were dispersed in the above to prepare a composition a-6 for forming a dielectric film.
  • dielectric film 117 using composition a—11 a—6 for forming dielectric film
  • a silicon oxide layer having a thickness of lOOOnm obtained by the thermal oxidation method was used.
  • a lower electrode made of lOOnm-thick Pt was formed by sputtering on a 6-inch diameter silicon wafer formed on the surface.
  • the composition for forming a dielectric film a-11-a-6 was spin-coated on the lower electrode using a spin coater at 300 rpm for 5 seconds, and then at 100 rpm for 20 seconds. Drying was performed at 250 ° C for 1 minute. Then, the coated film was heated at 400 ° C for 1 minute, and baked at 750 ° C for 60 minutes, thereby producing six types of dielectric films having a thickness of about 250 nm. When these dielectric films were observed visually and using a microscope, no cracks were observed.
  • the dielectric film forming composition a-1 was spin-coated at 300 rpm for 5 seconds, and then at 100 rpm for 20 seconds, and then dried at 250 ° C. for 1 minute. Then, the coating film was baked at 400 ° C for 60 minutes to produce a dielectric film having a thickness of about 270 nm.
  • a 200 nm-thick Pt upper electrode having a diameter of 0.2 mm was formed on each of the seven types of dielectric films 117 by a sputtering method via a metal mask to obtain seven types of samples.
  • a 200 nm-thick Pt upper electrode having a diameter of 0.2 mm was formed on each of the seven types of dielectric films 117 by a sputtering method via a metal mask to obtain seven types of samples.
  • Table 2 shows the relative dielectric constant, dielectric loss, and leakage current at 0.2 MVZcm of each dielectric film when measured at 1 MHz for these samples. Table 2 shows that in this experimental example It was confirmed that each of the dielectric films 117 has a high dielectric constant, a small dielectric loss and a small leakage current, and can be suitably used as a capacitor. It was also confirmed that the composition exhibited a high dielectric constant even at a low temperature of 400 ° C.
  • a polyoxypropylene polyoxyethylene condensate of ethylenediamine was added in an amount of 0.2 with respect to a solid weight of 100, and dispersed using an ultrasonic disperser. The coarse particles were separated by filtration to prepare a dielectric film-forming composition a-8.
  • Table 3 shows the median diameter of the reaction products (crystal particles) contained in the dielectric film forming composition a-7-a-12 obtained in Experimental Examples 7-12.
  • the median diameter is determined by the dynamic scattering method using a dynamic light scattering type particle size distribution analyzer LB-500 (Horiba, Ltd.) using the particle size distribution of the particles contained in each dielectric film forming composition. It was obtained by measurement.
  • Comparative Example 2 a—1 4 85 mmol 100 mmol EGME 130 ° C 5 hours 43 nm
  • Comparative Example 3 a—1 5 1 15 mmol 100 mmol EGME 130 ° C 5 hours 62 nm (Al) component; barium hydroxide 'monohydrate
  • Non-Patent Document 1 Ba (OCH CH OCH) is converted from Ba metal and methylene glycol monomethyl ether to titanium isopropoxide and methylene glycol.
  • Comparative Examples 2 and 3 the raw materials were used in the proportions shown in Table 1, and the preparation method was the same as in Experimental Example 8, and the reaction temperature and reaction time were as shown in Table 1. Thereafter, the same ultrasonic treatment and filter filtration as those in Experimental Example 8 were performed to obtain compositions a-14 and a-15.
  • composition a-8-a-12 and the composition a-15 contained particles having a perovskite-type crystal structure. [0138] 3. 2. 5-2. Evaluation of cracking property
  • a TiO film having a thickness of lOOnm was successively formed by a sputtering method.
  • the obtained film-forming composition a-7 was spin-coated on the lower electrode using a spin coater at 300 rpm for 5 seconds, and subsequently at 2000 rpm for 20 seconds. It was dried for a minute.
  • the composition a-7 for forming a dielectric film was spin-coated again at 300 rpm for 5 seconds and then at 2000 rpm for 20 seconds using a spin coater, and then dried at 250 ° C. for 1 minute. Thereafter, the coating film was baked at 750 ° C. for 60 minutes to produce a dielectric film 8 having a thickness of about 300 nm. This dielectric film 8 was observed visually and using a microscope.
  • the lower electrode was formed on the silicon oxide layer in the same manner as in the evaluation of the cracking property described above.
  • the composition for forming a dielectric film a-8-a-12 was spin-coated on the lower electrode using a spin coater at 300 rpm for 5 seconds, and then at 100 rpm for 20 seconds, and then dried at 250 ° C for 1 minute. Was done. Thereafter, the coating film was baked at 700 ° C. for 60 minutes to produce a dielectric film 913 having a thickness of about 270 nm. As a result of observing these dielectric films 9-113 visually and using a microscope, no cracks were observed.
  • composition a-13 also for the composition a-13 according to Comparative Example 1, a lower electrode was first formed on the silicon oxide layer in the same manner as in the evaluation of the cracking property described above.
  • the composition a-13 was spin-coated on the lower electrode at 300 rpm for 5 seconds and then at 100 rpm for 20 seconds using a spin coater, and then dried at 250 ° C. for 1 minute. Although the obtained film 14 had a thickness of 150 nm, a crack was visually observed.
  • Ethylene glycol monomethyl ether was added to composition a-13, and diluted so that the film thickness after one coating and drying was 70 nm. After repeating spin coating and drying at 250 ° C. for 1 minute three times, baking was performed at 700 ° C.
  • films 15 and 16 were formed using compositions a-14 and a-15 according to Comparative Examples 2 and 3, respectively, in the same manner as when film 14 was formed from compositions a-13.
  • the cracking property was evaluated in the same manner as the evaluation method for the film 14. As a result, it was confirmed that cracks were generated in the film 16 which had no cracks generated in the film 15.
  • a 200 nm thick Pt upper electrode having a diameter of 0.2 mm was formed on each of the dielectric films 8-13 and 15 formed by the above-described evaluation of the cracking property by a sputtering method via a metal mask.
  • Table 4 shows the relative permittivity, dielectric loss, and leakage current at 0.2 MVZcm of each dielectric film measured at 1 MHz for these samples. Note that cracks occurred in the films 14 and 16, and the dielectric properties could not be evaluated.
  • the dielectric film formed using the dielectric film forming composition of the present example is suitable as a capacitor having a high V, a high dielectric constant and a small dielectric loss and a small leak current. It was confirmed that it could be used.
  • Comparative Example 1 the composition a-13 used for forming the film did not use metal hydroxide as a raw material, and cracks occurred in the obtained film. Also, a comparative example In Section 2, in the composition a-14 used for forming the film, the metal A constituting the metal hydroxide (barium hydroxide 'monohydrate) and the metal constituting the metal alkoxide (titanium isopropoxide) Since the molar ratio with B was less than 0.9, a film having a low dielectric constant was obtained.
  • the metal A constituting the metal hydroxide barium hydroxide 'monohydrate
  • the metal constituting the metal alkoxide titanium isopropoxide
  • FIG. 1 is an X-ray diffraction chart of the crystal particles of Example 1.

Abstract

 本発明の誘電体膜形成用組成物の製造方法は、以下の工程(a)および(b)を含む。  (a)Li、Na、Ca、SrおよびBaから選ばれる少なくとも1種の金属Aを含む金属水酸化物と、Ti、Zr、Hf、TaおよびNbから選ばれる少なくとも1種の金属Bを含む、金属アルコキシドおよび金属錯体の少なくとも一方と、を有機溶媒に溶解させて溶液を調製する工程、および(b)前記工程(a)で調製した溶液中の前駆体を反応させる工程。

Description

明 細 書
誘電体膜形成用組成物の製造方法、誘電体膜形成用組成物、ならびに 誘電体膜およびその形成方法
技術分野
[0001] 本発明は、誘電体膜形成用組成物の製造方法、誘電体膜形成用組成物、ならび に誘電体膜およびその形成方法に関する。
背景技術
[0002] 携帯電話をはじめとする情報産業分野のデバイスには、今後ますます高速化、高 容量化、小型化が要求され、それを実現するための高機能デバイスの研究開発が広 範囲で精力的に進められている。その中でも、チタン酸バリウム、チタン酸バリウムスト ロンチウム、チタン酸ジルコン酸鉛に代表される ABOx型 (ぺロブスカイト型)結晶構 造を有する誘電体材料はキャパシタゃメモリー材料を始めとする電子デバイス分野 で広く利用されている。し力しながら、それらの電子デバイスのさらなる小型化、高性 能化のためには素子の薄膜ィヒが不可欠の条件であり、そのためには高機能、高品 質の誘電特性を有する薄膜の製造技術の確立が鍵となっている。
[0003] 現在、誘電体膜の薄膜の製造方法としては、スパッタリング等の PVD法 (物理気相 堆積法)、有機金属化合物を用いた CVD法 (化学気相堆積法)等の気相法、さらに はゾルーゲル法に代表される液相法等の種々の方法が検討されて!、る。
[0004] たとえば、チタン酸ジルコン酸鉛の場合には、気相法でも液相法でも良好な誘電特 性を持つ結晶性薄膜が比較的容易に得られている。その一方、チタン酸バリウムや チタン酸バリウムストロンチウムの場合、誘電特性を示す薄膜の合成が気相法ゃゾル ゲル法を用いて行なわれたことが数例報告されては 、るが、実用レベルの製造方 法は確立されて ヽな 、のが現状である。
[0005] このようなチタン酸バリウムやチタン酸バリウムストロンチウムの薄膜合成法としては 、組成制御と形状付与の容易さ、さらに製造コストの観点から、気相法よりも液相法に 期待が寄せられ、ゾルーゲル法や塗布熱分解法による薄膜の合成研究が活発に行 なわれている。ゾルーゲル法とは、金属アルコキシドのゾル溶液 (前駆体溶液)を出発 原料として、加水分解と重縮合反応によってゾル状態カゝらゲル状態を経由し、最終 的には金属酸ィ匕物に至るまでの合成プロセスを指す。ゾルーゲル法による薄膜形成 は、 PVD法や CVD法を用いた気相法等の他の薄膜形成方法と比較し、薄膜形成の 対象となる基板の形状やサイズに制約を受けにくぐまた薄膜形成に高価な装置を 必要としな!/ヽ等の利点を有する。
[0006] し力しながら、従来のゾルーゲル法で得られる誘電体膜は焼成時にクラックが生じや す ヽと!ヽぅ傾向があり、 1回の塗布 ·焼成で膜厚が 200nm以上の誘電体膜を形成す るとクラックが生じる。膜厚が 200nm以下では絶縁耐圧が低ぐリーク電流も大きいと いう問題があり、キャパシタなどとしての実用性が低い。そのため、従来のゾルーゲル 法では、絶縁耐圧が高ぐリーク電流が小さい誘電体膜を得るためには塗布 ·焼成を 複数回繰り返す必要があった。
[0007] また、ゾルーゲル法などの液相法で形成した誘電体膜は、焼成温度を高くすると結 晶化が進行し高誘電率化するが、高温焼成では誘電損失の増大、リーク電流の増大 を生じ、キャパシタとしての特性に劣る場合があった。
[0008] このため、液相法による薄膜形成方法において、耐クラック性の向上および高温焼 成しても誘電損失およびリーク電流が増大しないような塗布材料が求められている。
[0009] たとえば、特許文献 1には、 Baおよび Tiの金属石鹼を原料とし、 600— 1300°Cで 結晶化させる BaTiO膜の形成方法が述べられている。しかし、この方法ではクラック
3
が発生しやすぐ 1回の塗布'焼成では膜厚が lOOnm程度であり、 1. 0 mの膜厚 を得るために塗布'焼成を 9回繰り返している。また、電気特性に関する記述がない。
[0010] 特許文献 2には、上記のクラック発生を抑制するために、カルボン酸バリウム、カル ボン酸ストロンチウム、およびチタンアルコキシドを有機溶媒中に混合した組成物に 関して述べられている。しかしながら、この方法ではクラックフリーとなる膜厚が記載さ れておらず、電気特性に関する記述もない。
[0011] 特許文献 3には Ba、 Ti等のアルコキシドを加水分解して結晶性のゲルを作製し、こ れを用いた結晶性ゲル分散コーティング溶液に関して述べられて 、る。しかしながら 、このコーティング溶液は、原料として用いているバリウムアルコキシドが非常に高価 であるという問題がある。 [0012] 特許文献 4には、水酸化バリウム水溶液と Tiアルコキシドのアルコール溶液を混合 した後、 60— 100°Cで反応させて微粒チタン酸バリゥム粉末が得られると述べられて いる。し力しながら、この文献には、得られた粉末を 950— 1100°Cで熱処理して得ら れる微粒チタン酸バリウム粉末を主成分とする生のセラミック層と電極層との積層体を 焼成してキャパシタを形成したと記載されて 、るのみで、得られた微粒チタン酸バリウ ム粉末力 の誘電体形成用組成物に関する記述がない。
[0013] 非特許文献 1にはノリウムェトキシド、チタニウムイソプロポキシドとメトキシエタノー ルカゝら得られた前躯体溶液を部分加水分解したコーティング溶液に関して述べられ ている。し力しながら、この文献では電気特性を測定するためには塗布'焼成を複数 回数行なう必要がある。
特許文献 1:特開平 1-308801号公報
特許文献 2:特許第 3456305号公報
特許文献 3:特開 2002— 275390号公報
特許文献 4:特開 2002— 60219号公報
非特許文献 l : Mte. RES. Soc. Symp. Proc. , VOL. 271, 339 (1992) 発明の開示
[0014] 本発明は上述の実情に鑑みてなされたものであり、その目的は、 ABOx型の結晶 構造を有する誘電体膜の形成において、プロセス温度の低温化を実現し、かつ、より 短時間の処理を可能にすることにより、生産性を大幅に向上することができる、誘電 体膜形成用組成物の製造方法を提供することにある。
[0015] また、本発明の目的は、 ABOx型の結晶構造を有する誘電体膜の形成において、 Ba, Sr, Caのアルコキシドなどの高価な原料を使用することなぐ耐クラック性に優れ 、誘電損失が小さぐ絶縁性が良好な誘電体膜を形成することができる誘電体膜形 成用組成物を提供することにある。
[0016] さらに、本発明の目的は、耐クラック性に優れ、誘電損失が小さぐ絶縁性が良好な 誘電体膜およびその形成方法を提供することにある。
[0017] 本発明の誘電体膜形成用組成物の製造方法は、以下の工程 (a)および (b)を含む [0018] (a) Li、 Na、 Ca、 Srおよび Baから選ばれる少なくとも 1種の金属 Aを含む金属水酸 化物と、 Ti、 Zr、 Hf、 Taおよび Nbから選ばれる少なくとも 1種の金属 Bを含む、金属 アルコキシドおよび金属錯体の少なくとも一方と、を有機溶媒に溶解させて溶液を調 製する工程、および
(b)前記工程 (a)で調製した溶液中の前駆体を反応させる工程。
[0019] 本発明において、「前記工程 (a)で調製した溶液中の前駆体」とは、前記金属水酸 化物と、前記金属アルコキシドおよび前記金属錯体の少なくとも一方 (および Zまた はその加水分解縮合物)とを ヽぅ。
[0020] 本発明の誘電体膜形成用組成物の製造方法において、前記 (b)工程における前 記反応は、前記工程 (a)で調製した溶液を加熱することにより達成可能である。
[0021] 本発明の誘電体膜形成用組成物の製造方法において、前記 (b)工程における前 記反応は、加水分解縮合であることができる。この場合、前記加水分解縮合により、 平均粒径が lOOnm以下であるぺロブスカイト型結晶粒子が形成可能である。さらに
、この場合、前記工程 (b)の後に、(c)前記べ口ブスカイト型結晶粒子を有機溶媒で 精製する工程をさらに含むことができる。
[0022] 本発明の誘電体膜形成用組成物の製造方法にお!、て、前記金属 Aは、 Ca、 Srお よび Baから選ばれる少なくとも 1種であり、前記金属 Bは、 Ti、 Zrおよび Hfから選ば れる少なくとも 1種であることができる。
[0023] 本発明の誘電体膜形成用組成物は、上記本発明の誘電体膜形成用組成物の製 造方法により得られる。
[0024] 本発明の誘電体膜形成用組成物において、平均粒径が lOOnm以下であるべロブ スカイト型結晶粒子を分散させることができる。
[0025] また、本発明の誘電体膜形成用組成物は、
(A) Ba、 Sr、および Caから選ばれる少なくとも 1種の金属 Aを含む金属水酸化物( A1)と、 Ti、 Zr、および Hfから選ばれる少なくとも 1種の金属 Bを含む金属アルコキシ ドおよび Zまたはその部分加水分解縮合物 (A2)との反応生成物と、
(B)有機溶媒と、を含み、
前記金属 Aと、前記金属 Bとのモル比は、 0. 9-1. 1である。 [0026] ここで、前記反応生成物は結晶粒子であってもよ!/、し、ある 、は非晶質固体であつ てもよいが、誘電率に優れた誘電体膜を得るためには、該反応生成物は結晶粒子で あることがより好ましい。
[0027] 本発明の誘電体膜の形成方法は、
上記本発明の誘電体膜形成用組成物を用いて塗布膜を形成する工程と、該塗布 膜を熱処理する工程とを含む。
[0028] 本発明の誘電体膜は、
上記本発明の誘電体膜形成用組成物を用いて形成された塗布膜を熱処理するこ とによって得られる。
[0029] 本発明の誘電体膜形成用組成物の製造方法によれば、たとえば 400°C以下の穏 やかな温度条件下においても良好な誘電特性を有する誘電体膜を形成できる組成 物を得ることができる。
[0030] また、本発明の誘電体膜形成用組成物を用いて誘電体膜を形成する場合、加熱 炉での高温焼成による結晶化が必要である従来のプロセスと比較して、誘電体膜の 形成プロセスが簡便になるため、生産性を大幅に向上させることができる。さらに、本 発明の誘電体膜形成用組成物を用いることにより、高温での結晶化工程が不要とな り、高温での結晶化工程が必要である従来のゾルーゲル法では適用不可能であった 、耐熱性の低い各種基板に対しても、誘電特性が良好である誘電体膜を作製するこ とができる。また、耐熱性の高い基板上では、たとえば 700°C— 950°Cで焼成するこ とができるため、高誘電率、低誘電損失、高絶縁性の誘電体膜を得ることができる。
[0031] 本発明の誘電体膜の形成方法によれば、上記本発明の誘電体膜形成用組成物を 用いて誘電体膜を形成することにより、高誘電率、低誘電損失、および高絶縁性であ る誘電体膜を得ることがでさる。
[0032] 本発明の誘電体膜は、高誘電率、低誘電損失、および高絶縁性であることを特徴 とする。
発明を実施するための最良の形態
[0033] 以下、本発明について具体的に説明する。
1.誘電体膜形成用組成物の製造方法 本発明の誘電体膜形成用組成物の製造方法は、以下の工程 (a)および (b)を含む
[0034] (a) Li、 Na、 Ca、 Srおよび Baから選ばれる少なくとも一種の金属 Aを含む金属水 酸化物と、 Ti、 Zr、 Hf、 Taおよび Nbから選ばれる少なくとも一種の金属 Bを含む、金 属アルコキシドおよび金属錯体の少なくとも一方と、を有機溶媒に溶解させて溶液を 調製する工程、および
(b)前記工程 (a)で調製した溶液に水を添加し、該溶液中の前駆体を反応させる 工程。
[0035] 以下、各工程について述べる。
[0036] 1. 1.溶液を調製する工程 (以下「工程 (a)」ともいう)
工程 (a)では、原料として、 ABOx型の結晶構造を有する粒子を構成しうる金属 A を含む金属水酸化物から選ばれる少なくとも一種と、 ABOx型の結晶構造を有する 粒子を構成しうる金属 Bを含む、金属アルコキシドおよび金属錯体の少なくとも一方と を用い、常法によりこれらの金属水酸ィ匕物と金属アルコキシドおよび Zまたは金属錯 体とを有機溶媒に溶解させる。
[0037] 金属 Aとしては、 Li、 Na、 Ca、 Srおよび Baが挙げられ、好ましくは Ca、 Srおよび Ba である。金属 Bとしては、 Ti、 Zr、 Hf, Taおよび Nbが挙げられ、好ましくは Ti、 Zrおよ び Hfであり、より好ましくは Tiである。
[0038] 溶液中の金属 Aおよび Bの濃度は、好ましくは 0. 01-2. Ommol/g,より好ましく は 0. 1- 1. Ommol/g,さらに好ましくは 0. 2-0. 8mmolZgである。金属 Aと金 属 Bとの比率 (AZB:モル比)は、好ましくは 0. 6—1. 5、より好ましくは 0. 8—1. 2、 さらに好ましくは 0. 9-1. 1である。
[0039] 次に、工程(a)で用いられる物質につ!、て述べる。
[0040] 1. 1. 1.金属アルコキシド
金属アルコキシドは、金属原子とアルコールとが反応したィ匕合物であり、下記一般 式(1)で表される。
[0041] M^OR1) · · ·式(1)
a
式(1)中、 Mは、 Ti、 Zr、 Hf、 Ta、 Nbから選択された金属を表しており、 aは、金属 Mの価数に応じた 4一 7の整数であり、 R1は、アルコールの OH基を除いた残基であ る。
[0042] 上記金属アルコキシドを形成するアルコールとしては、たとえば、下記式(2)に示す ものを好適例として挙げることができる。
[0043] R'OH · · ·式(2)
[式 (2)中、 R1は、炭素原子数 1一 6の飽和または不飽和の炭化水素基、あるいは 炭素原子数 1一 6の、アルコキシル基で置換された炭化水素基を示す。 ]
上記一般式 (2)において、 R1が炭素原子数 1一 6の飽和または不飽和の炭化水素 基の場合は、アルコールとして、たとえば、メタノール、エタノール、 1 プロパノール、 2—プロパノール、ブタノール、ァミルアルコール、シクロへキサノール等を挙げること ができる。
[0044] また、上記一般式(2)において、 R1が炭素原子数 1一 6の、アルコキシル基で置換 された炭化水素基の場合は、アルコールとしては、たとえば、メトキシメタノール、メト キシエタノール、エトキシメタノール、エトキシエタノール、メトキシプロパノール、ェトキ シプロパノール、プロポキシプロパノール等を挙げることができる。
[0045] 上記一般式(1)で表される金属アルコキシドとしては、たとえば、テトラメトキシチタ ン、テトラエトキシチタン、テトラプロポキシチタン、テトライソプロポキシチタン、テトラ ブトキシチタン、テトライソブトキシチタンなどのチタンアルコキシド、テトラメトキシジル コニゥム、テトラエトキシジノレコニゥム、テトラプロボキシジノレコニゥム、テトライソプロボ キシジルコニウム、テトラブトキシジルコニウムなどのジルコニウムアルコキシド、テトラ メチルハフニウム、テトラエチルハフニウム、テトラプロポキシハウ-ゥム、テトライソプ 口ポキシハフニウム、テトラブトキシハフニウムなどのハフニウムアルコキシドなどを挙 げることができる。また、これらの金属アルコキシドは溶剤への溶解性向上、水分との 反応性の制御などを目的としてァセト酢酸ェチル、ァセチルアセトン、ジアセトンアル コーノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエー テルなどの配位子と反応させたキレートイ匕合物として用いても良 、。
[0046] 1. 1. 2.金属水酸化物
金属水酸化物は、金属原子に水酸基が結合した化合物であり、下記一般式 (3)で 表される。
[0047] Ma(OH) · · ·式(3)
a
[式(3)中、 Mは、 Li、 Na、 Ca、 Sr、 Baから選択された金属を表しており、 aは、金属 Mの価数に応じた 1一 2の整数である。 ]
これらの金属水酸化物は、結晶水を含まな!/、無水物あるいは結晶水を含む水和物 のいずれかでもよい。
[0048] 上記一般式(3)で表される金属水酸ィ匕物としては、たとえば、 LiOH, NaOH, Ca ( OH) , Sr(OH) , Ba (OH) ,Ba (OH) ·Η 0、 Ba (OH) - 8H 0、;等を挙げること
2 2 2 2 2 2 2
ができ、中でも、 Ba (OH) ·Η Οが特に好ましい。
2 2
[0049] 1. 1. 3.金属錯体
金属錯体は、金属原子に有機化合物が配位したィ匕合物であり、下記一般式 (4)で 表される。また、金属錯体とともに、あるいは金属錯体のかわりに、金属錯体の部分 加水分解縮合物を用いてもょ ヽ。
[0050] M^OR1) L · · ·式(4)
b c
[式 (4)中、 Mは、 Ti、 Zr、 Hf, Ta、 Nbから選ばれる金属を表しており、 aは、金属 Mの価数に応じた 4一 7の整数であり、 bは 0— 7の整数、 cは 0— 7の整数であり、 a = b + cを満たす。 R1は、アルコールの OH基を除いた残基であり、 Lは金属への配位能 を有する有機化合物の残基 (いわゆる配位子)である。 ]
アルコールとして、たとえば、メタノール、エタノール、 1 プロパノール、 2—プロパノ ール、ブタノール、ァミルアルコール、シクロへキサノール等を挙げることができる。
[0051] 金属への配位能を有する有機化合物としては、たとえばアセトン、ァセチルアセトン 、ァセト酢酸メチル、ァセト酢酸ェチル、モノエタノールァミン、ジエタノールァミン、トリ エタノールァミンなどを挙げることができる。
[0052] 上記一般式 (4)で表される金属錯体として、たとえば、チタンァリルァセトアセテート トリイソプロポキサイド、チタンジブトキサイド(ビス— 2, 4 ペンタンジォネート)、チタン ジイソプロポキサイド(ビス一 2, 4 ペンタンジォネート)、チタンジブトキサイドビス(テ トラメチルヘプタンジォネート)、チタンジイソプロポキサイドビス(テトラメチルヘプタン ジォネート)、チタンジブトキサイドビス(ェチルァセトアセテート)、チタンジイソプロボ キサイドビス (ェチルァセトアセテート)、等を好適に使用することができる。
[0053] 1. 1. 4.有機溶媒
前記金属水酸ィヒ物、金属アルコキシドおよび Zまたは金属錯体を溶解する際に使 用する有機溶媒としては、たとえば、アルコール系溶媒、多価アルコール系溶媒、ェ 一テル系溶媒、ケトン系溶媒、エステル系溶媒等を挙げることができる。
[0054] アルコール系溶媒としては、メタノール、エタノール、プロパノール、イソプロパノー ル、 n—ブタノール、 iーブタノール、 sec—ブタノール、ァミルアルコール、シクロへキサ ノール、メチルシクロへキサノール、フルフリルアルコール等を挙げることができる。
[0055] 多価アルコール系溶媒としては、エチレングリコール、プロピレングリコール、ブチレ ングリコーノレ、へキシレングリコーノレ、エチレングリコーノレモノメチノレエーテノレ、ェチレ ングリコーノレモノェチノレエーテノレ、エチレングリコーノレモノプロピノレエーテノレ、ェチレ ングリコールモノブチルエーテル、エチレングリコーノレモノアセテート、ジエチレングリ コールモノメチルエーテル、ジエチレングリコールモノアセテート、プロピレングリコー ノレモノェチノレエーテル、プロピレングリコーノレモノアセテート、ジプロピレングリコーノレ モノェチノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレングリコーノレ モノプロピルエーテル、メトキシブタノール、プロピレングリコールモノェチルエーテル アセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコ ールプロピルエーテル、ジプロピレングリコールモノブチルエーテル等を挙げることが できる。
[0056] エーテル系溶媒としては、ジメチルエーテル、ジェチルエーテル、ジプロピルエー テル、ジブチルエーテル、ジァミルエーテル、ジェチルァセタール、ジへキシルエー テル、トリオキサン、ジォキサン、テトラヒドロフラン、メチルセルソルブ、ェチルセルソ ルブ、ブチルセルソルブ等を挙げることができる。
[0057] ケトン系溶媒としては、アセトン、メチルェチルケトン、メチルプロピルケトン、メチル イソブチルケトン、メチルアミルケトン、メチルシクロへキシルケトン、ジェチルケトン、 ェチルブチルケトン、トリメチルノナノン、ァセトニルアセトン、ジメチルォキシド、ホロン 、シクロへキサノン、ダイアセトンアルコール等を挙げることができる。
[0058] エステル系溶媒としては、ギ酸ェチル、酢酸メチル、酢酸ェチル、酢酸ブチル、酢 酸シクロへキシル、プロピオン酸メチル、酪酸ェチル、ォキシイソ酪酸ェチル、ァセト 酢酸ェチル、乳酸ェチル、メトキシブチルアセテート、シユウ酸ジェチル、マロン酸ジ ェチル等を挙げることができる。
[0059] 有機溶媒としては、親水性溶媒が好ましい。有機溶媒は、 1種を用いてもよいし、 2 種以上を組合せて用いることもできる。
[0060] 1. 1. 5.溶液
本発明では、工程 (a)で得られた溶液にランタノイドィ匕合物を添加することも可能で ある。かかるランタノイドとしては、 La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H o, Er, Tmを挙げることができる。ランタノイド化合物は、これらランタノイドのアルコキ シド、ハロゲン化物、カルボキシレート、水酸化物として用いることが好ましい。
[0061] 1. 2.溶液中の前駆体を反応させる工程 (以下、「工程 (b)」ともいう)
工程 (b)においては、前記工程 (a)で調製した溶液中の前駆体を反応させる。これ により、反応生成物を得ることができる。前記反応は、縮合 (例えば加水分解縮合)で あることができる。また、反応生成物は、非晶質固体および Zまたは結晶粒子である ことができる。すなわち、反応生成物は結晶粒子であってもよいし、あるいは非晶質 固体であってもよいが、誘電率に優れた誘電体膜を得るためには、反応生成物は結 晶粒子であることがより好ま 、。
[0062] ここで、反応生成物を得るためには、例えば、下記の第 1および第 2の方法が例示 できる。以下、第 1および第 2の方法についてそれぞれ説明する。
[0063] 1. 2. 1.第 1の方法
第 1の方法は、前記工程 (a)で調製した溶液中の前駆体を反応 (加水分解縮合)さ せることにより、反応生成物 (ABOx型の結晶構造を有するぺロブスカイト型結晶粒 子)を得る方法である。第 1の方法によれば、結晶性に優れた結晶粒子を得ることが できる。
[0064] 第 1の方法にぉ 、ては、工程 (b)にお 、て、前記工程 (a)で調製した溶液の温度を 好ましくは 78— 200°C、より好ましくは— 20— 100°C、さらに好ましくは 0— 50°Cの 範囲に保ち、該溶液中に水を金属 Aの 1モルに対して通常 5— 300倍モル、好ましく は 10— 200倍モル、より好ましくは 20— 100倍モル添加し、溶液中の前駆体を加水 分解縮合して結晶化を行なうことができる。
[0065] 加水分解縮合は、前記工程 (a)で調製した溶液に水を添加して行なうことができる 。なお、該溶液中に水が含まれている場合、さらに水を添加しなくてもよい。
[0066] また、加水分解縮合の際に前記溶液に添加する場合、添加する水の量は、金属 A に対して上記範囲の量が結晶性の高い粒子を得るためには好ましい。添加する水の 量が上記下限値よりも少ない場合、あるいは上記上限値よりも多い場合には、結晶 性が低下することがある。
[0067] 工程 (b)における溶液への水の添加方法は、直接、水のみを溶液中に添カ卩しても よいし、 1. 4.の項で記載した有機溶媒の 1種以上と水と混合して添加してもよい。
[0068] このように、工程 (b)において、加水分解縮合のための水を、液体状態の水のみ、 あるいは液体状態の水を含む有機溶媒を用いて、溶液中に滴下することにより添カロ すると、加水分解縮合を再現性よぐ効率的に行なうことができる。
[0069] また、このとき、添加する水に触媒が含まれていてもよい。この場合の使用可能な触 媒としては、たとえば、無機酸 (たとえば、塩酸、硫酸、硝酸)、有機酸 (たとえば、酢 酸、プロピオン酸、酪酸、マレイン酸)等の酸触媒や、水酸化ナトリウム、水酸化力リウ ム、水酸化バリウム、アンモニア、モノエタノールァミン、ジエタノールァミン、テトラメチ ルアンモ-ゥムヒドロキシド等の無機または有機アルカリ触媒等を挙げることができる
[0070] これらのうちでは、アルカリ触媒を用いることがより好ましい。カルボン酸等の有機酸 を用いた場合には、有機酸が分解して生成する二酸化炭素が膜中に残存して、形成 される誘電体膜の電気特性に影響を与える場合がある。また、塩酸、硝酸等の無機 酸を用いた場合には、酸成分の一部が膜中に残留し、形成される誘電体膜のリーク 電流特性を悪化させる場合がある。
[0071] 水を溶液に添加した後、生成する加水分解縮合物を通常 10— 200°C、好ましく は 20— 150°C、より好ましくは 30— 100°Cの温度に、通常 0. 5— 200時間、好ましく は 1一 100時間、より好ましくは 3— 20時間保持することが望ましい。
[0072] 1. 2. 2.第 2の方法
第 2の方法は、前記工程 (a)で調製した溶液を加熱することにより、該溶液中の前 駆体を反応させる方法である。ここで、反応とは、例えば縮合をいう。第 2の方法によ れば、加熱により、反応生成物として、少なくとも非晶質固体を得ることができる。
[0073] 特に、前記 (a)工程で調製した溶液中に含まれる金属水酸化物 (A1)を構成する 金属 Aが Ba、 Sr、および Caから選ばれる少なくとも 1種の金属原子であり、前記(a) 工程で調製した溶液中に含まれる金属アルコキシドおよび/またはその部分加水分 解縮合物 (A2)を構成する金属 Bが Ti、 Zr、および Hfから選ばれる少なくとも 1種の 金属原子であって、かつ、金属 Aと金属 Bとのモル比が 0. 9-1. 1である場合、該溶 液を加熱することにより、反応生成物を容易に得ることができる。ここで、金属 Aと金属 Bとのモル比が 0. 9より小さい場合、得られた誘電体膜形成用組成物を用いて形成 された誘電体膜の誘電率が低下することがあり、金属 Aと金属 Bとのモル比が 1. 1よ り大き 、場合、得られた誘電体膜形成用組成物を用いて形成された誘電体膜の絶 縁性が低下することがある。
[0074] なお、第 1の方法の欄でも説明したように、反応系内に水が存在する場合、水を添 加せずに該溶液を加熱することにより、加水分解縮合を進行させることができる。例 えば、金属水酸化物が水和物である場合 (例えば、水酸化バリウム ·一水和物)、反 応系内に水和物由来の水が存在するため、水を添加しなくても、該溶液を加熱する ことにより、加水分解縮合が容易に進行して、結晶粒子をより容易に得ることができる
[0075] 第 2の方法においては、工程 (b)において、前記工程 (a)で調製した溶液の温度を 好ましくは 60°C以上、より好ましくは 100°C以上、さらに好ましくは 130°C以上に加熱 することにより、溶液中の前駆体を反応して、反応生成物を得ることができる。
[0076] 以上説明したように、本発明によれば、上記工程 (a)および工程 (b)を経ることによ り、非晶質固体および Zまたはべ口ブスカイト型結晶粒子を得ることができる。ここで、 得られるぺロブスカイト型結晶粒子は、 ABOx型の結晶構造を有し、かつ平均粒径 が好ましくは lOOnm以下、より好ましくは 50nm以下である。
[0077] 1. 3.分散工程
前記工程 (a)および (b)で得られた前記反応生成物が結晶粒子である場合、前記 結晶粒子を有機溶媒に分散させる工程 (以下、「分散工程」と 、う)を行なうことができ る。これにより、本発明のベロブスカイト型結晶粒子分散体 (誘電体膜形成用組成物 )を得ることができる。ここで、前記分散体に含まれるぺロブスカイト型結晶粒子は前 述したように、 ABOx型の結晶構造を有し、かつ平均粒径が lOOnm以下 (より好まし くは 50nm以下)であるのが好まし!/、。
[0078] この場合、前記分散工程の前に、(c)ベロブスカイト型結晶粒子を有機溶媒で精製 する工程をさらに含むことが好ましい。この工程により、不純物を除去することができ る。
[0079] 上述したようにして反応生成物 (加水分解縮合物)を結晶化させて作製した結晶粒 子には、例えば、未反応の金属アルコキシド、金属カルボキシレート、金属錯体(以 下、単に「有機金属化合物」ともいう。)、一部加水分解縮合された有機金属化合物、 有機金属化合物が完全に加水分解縮合されて生成する金属水酸化物、金属イオン 等の不純物が含まれている。このような結晶粒子がそのまま有機溶媒中に分散して いる誘電体膜形成用組成物において、不純物における金属 Aの液中濃度が 1モル %よりも高濃度で存在すると、この誘電体膜形成用組成物を用いて誘電体膜を形成 した場合に、
(1)誘電体膜がイオン導電性を示し、リーク電流が増大する、
(2)誘電体膜の誘電損失が大きくなる、
等の問題が生じることがある。
[0080] 工程 (b)で得られた結晶粒子を有機溶媒で精製する方法は、精製後、結晶粒子と 有機溶媒とを分離することが可能であればどのような手法を用いてもよい。結晶粒子 の精製方法としては、たとえば、有機溶媒を結晶粒子に加え、デカンテーシヨンある いは遠心分離によって該結晶粒子を沈降させて、上澄液を除去し、再度、有機溶媒 を沈降した結晶粒子に加えて加熱する工程を、 2— 5回繰り返す方法を用いることが できる。この方法によって、結晶粒子に含まれる不純物および水分を除去し、これら の濃度を減少させることができる。また、たとえば有機溶媒を粒子に加え、半透膜を 用いた透析を 2— 5回繰り返すことで、含まれる不純物および水の濃度を減少させる ことちでさる。
[0081] これにより、精製後の結晶粒子を有機溶媒中に分散させた誘電体膜形成用組成物 (結晶粒子分散体)を得た場合に、該誘電体膜形成用組成物中の、不純物における 金属 Aの液中濃度および水の濃度を所定の濃度まで低減させることが可能となり、上 記の(1) , (2)の問題を解決することができる。
[0082] 前記精製工程にお!ヽて使用する有機溶媒としては、アルコール系溶媒、多価アル コール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アミド系溶媒等を 挙げることができる。
[0083] アルコール系溶媒としては、メタノール、エタノール、プロパノール、ブタノール、アミ ルアルコール、シクロへキサノール、メチルシクロへキサノール等を挙げることができ る。
[0084] 多価アルコール系溶媒としては、エチレングリコールモノメチルエーテル、エチレン グリコーノレモノァセトエステル、ジエチレングリコーノレモノメチノレエーテル、ジエチレン グリコールモノアセテート等のエチレングリコール誘導体、プロピレングリコールモノエ チノレエ一テル、プロピレングリコーノレモノアセテート、ジプロピレングリコーノレモノェチ ノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレングリコーノレモノプロ ピルエーテル、メトキシブタノーノレ、プロピレングリコールモノェチルエーテルァセテ ート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコーノレプ ロピノレエーテル、ジプロピレングリコーノレモノブチノレエーテノレ等のプロピレングリコー ル誘導体等を挙げることができる。
[0085] エーテル系溶媒としては、メチラール、ジェチルエーテル、ジプロピルエーテル、ジ ブチルエーテル、ジァミルエーテル、ジェチルァセタール、ジへキシルエーテル、トリ ォキサン、ジォキサン、メチルセルソルブ、ェチルセルソルブ、ブチルセルソルブ等を 挙げることができる。
[0086] ケトン系溶媒としては、アセトン、メチルェチルケトン、メチルプロピルケトン、メチル イソブチルケトン、メチルアミルケトン、メチルシクロへキシルケトン、ジェチルケトン、 ェチルブチルケトン、トリメチルノナノン、ァセトニルアセトン、ジメチルォキシド、ホロン 、シクロへキサノン、ダイアセトンアルコール等を挙げることができる。
[0087] エステル系溶媒としては、ギ酸ェチル、酢酸メチル、酢酸ェチル、酢酸ブチル、酢 酸シクロへキシル、プロピオン酸メチル、酪酸ェチル、ォキシイソ酪酸ェチル、ァセト 酢酸ェチル、乳酸ェチル、メトキシブチルアセテート、シユウ酸ジェチル、マロン酸ジ ェチル等を挙げることができる。
[0088] アミド系溶媒としては、ジメチルフオルムアミド、ジメチルァセトアミド、 N—メチルピロリ ドンなどのアミド類等を挙げることができる。
[0089] 上記の有機溶媒は、 1種を用いてもよいし、 2種以上を組合せて用いることもできる
[0090] なお、本発明により得られた結晶粒子を、洗液である有機溶媒と分離した後、あら たな有機溶媒に投入し、分散させることにより、誘電体膜形成用組成物 (結晶粒子分 散体)を作製することもできる。
[0091] この場合、結晶粒子を有機溶媒中に分散させる方法は、該結晶粒子を有機溶媒中 に均一に分散させることが可能であればどのような手法を用いてもよい。たとえば、機 械的攪拌、あるいは超音波を使用した攪拌を行な ヽながら結晶粒子を溶媒中に分散 させる。
[0092] 分散に用いられる有機溶媒としては、精製工程で用いた有機溶媒として例示したも のと同様のアルコール系溶媒、多価アルコール系溶媒、エーテル系溶媒、ケトン系 溶媒、エステル系溶媒等を挙げることができる。より具体的には、分散に用いられる 有機溶媒として、メチルセルソルブ、エチレングリコール誘導体またはプロピレンダリ コール誘導体が好ましい。また、結晶粒子を溶解させることができる点、ならびにスピ ンコート法などを用いて塗膜を形成する際のコーティング特性を付与することができ る点では、親水性の溶媒が好ましい。
[0093] 上記の有機溶媒は、 1種を用いてもよいし、 2種以上を組合せて用いることもできる 。また、分散に用いられる有機溶媒は、精製に用いた有機溶媒と同じでもよぐ異な つてもよい。
[0094] 誘電体膜形成用組成物 (結晶粒子分散体)の安定性を考慮すると、該誘電体膜形 成用組成物中の結晶粒子の含有量は、固形分濃度として誘電体膜形成用組成物全 体の 1一 20重量%、好ましくは 3— 15重量%である。
[0095] 前記分散工程では、結晶粒子の分散を容易にするために、精製後の結晶粒子を 有機溶媒に分散させる際に、ノ-オン系界面活性剤、ァ-オン系界面活性剤、カチ オン系界面活性剤を分散剤として用いてもよい。カゝかる界面活性剤としては、たとえ ば、ポリオキシエチレン ポリオキシプロピレングリコール、エチレンジァミンのポリオキ シプロピレン-ポリオキシエチレン縮合物(プル口ニック型)、アルキルベンゼンスルホ ン酸ナトリウム、ポリエチレンィミン、ポリビュルピロリドン、パーフルォロアルキル基含 有オリゴマー等を使用することができる。
[0096] 分散剤の種類と添加量は結晶粒子の種類と結晶粒子を分散させる溶媒の種類に より適宜選定して使用することができるが、得られる誘電体膜の誘電特性を考慮する と粒子 lOOgに対して好ましくは 0. 001— 10g、より好ましくは 0. 005— 3g、さらに好 ましくは 0. 01— lgの範囲である。
[0097] また、本発明の膜形成用組成物には、チタン酸バリウム、 PZT、 ΡΜΝなどの高誘 電率フイラ一を添加することも可能で、力かるフイラ一は粒径が 1 m以下のものを用 、ることが好まし!/、。
[0098] 2.誘電体膜およびその形成方法
本発明によって得られた結晶粒子を有機溶媒中に分散して得られた誘電体膜形成 用組成物 (結晶粒子分散体)を基板に塗布して塗布膜を形成し、これを必要に応じ て乾燥すること、好ましくはさらに加熱焼成することにより、誘電体膜を形成することが できる。
[0099] 具体的には、まず、誘電体膜形成用組成物を基板上に塗布して塗布膜を形成する 。ここで、基板上への誘電体膜形成用組成物の塗布方法としては、たとえば、オーブ ンスピン塗布法、密閉スピン塗布法、ミスト化塗布の LSM— CVD法 (溶液気化化学 気相堆積法)、デイツビング法、スプレー法、ロールコート法、印刷法、インクジェット 法、電気泳動電着法等の公知の塗布法を用いることができる。
[0100] 塗布膜の乾燥は、通常 50— 300°C、好ましくは 100— 250°Cの温度で行なう。
[0101] このように、基板上への誘電体膜形成用組成物の塗布、ならびに必要に応じて乾 燥までの一連の操作を数回繰り返して行なうことにより、最終的に得られる誘電体膜 を所望の膜厚に設定することができる。
[0102] その後、該塗布膜を、通常 300°Cを超えて 900°C以下、好ましくは 400— 750°Cの 温度で加熱して焼成し、誘電体膜を得ることができる。すなわち、誘電体膜形成用組 成物を用いた場合には、従来と同様に高温域での焼成により誘電体膜を得ることが できることは言うまでもなぐさらに従来よりも低い温度、たとえば、 400°C以下の温度 で焼成することによつても実用に適した誘電体膜を得ることができる。
[0103] 誘電体膜形成用組成物が塗布される基板としては、平面でも非平面 (たとえば段差 があるもの)でもよく、所望のカバレージを実現できるものであればその形態は特に限 定されるものではない。また、基板の形状は特に制限されるものではなぐたとえばバ ルク、薄板、フィルム形状のものを用いることができる。このような基板の材質の具体 例としては、半導体、ガラス、金属、プラスチック、セラミックスなどを挙げることができ る。
[0104] 半導体基板の例としては、シリコンウェハなどが挙げられる。このシリコンウェハ上に はシリコン酸ィ匕膜、 Pt、 Ir、 Ru等の金属、およびその金属酸ィ匕物である導電性金属 酸ィ匕物などカゝらなる電極などが形成されていてもよい。また、基板としては、 GaAsや I nPなどの化合物半導体基板も使用可能である。
[0105] ガラス基板としては、たとえば石英ガラス、ホウ珪酸ガラス、ソーダガラス、鉛ガラス、 ランタン系ガラス等力もなる基板が使用できる。
[0106] 金属基板としては、たとえば金、銀、銅、ニッケル、アルミニウム、鉄の他ステンレス 鋼等力 なる基板が使用できる。
[0107] プラスチック基板としては、たとえばポリイミドゃメタクリル榭脂等カゝらなる基板を使用 することができる。これらのプラスチック基板は、ガラス基板や金属基板よりも耐熱性 が低い場合があるが、本発明では、低温で誘電体膜 (結晶化膜)を形成することがで きるため、本発明に適用するにあたって原理的な問題は存在しな ヽ。
[0108] セラミックス基板としては、たとえば、酸化ケィ素、酸化アルミ、酸化チタン、窒化ケィ 素、窒化アルミ、窒化チタン、炭化ケィ素、炭化チタン等力もなる基板が使用できる。
[0109] このようにして得られる誘電体膜は、誘電特性およびリーク電流特性が良好である ため、キャパシタなどの電子部品として好適に用いることが可能である。
[0110] 3.実施例
以下、実施例に基づいて本発明をさらに具体的に説明する力 本発明はこれらの 実施例に限定されるものではな 、。 [0111] 3. 1.実施例 1
3. 1. 1.実験例 1
3. 1. 1-1.結晶粒子 A— 1および誘電体膜形成用組成物 (結晶粒子分散体) a— 1 の作製
メチノレセノレソノレブ 152. 7gに、 Ti (OCH (CH ) ) を 28. 4g (100mmol)カロ免て室
3 2 4
温で 1時間撹拌した。得られた溶液に純度 98%の Ba (OH) ·Η Oを 19. 3g (100m
2 2
mol)加えて 60°Cで 3時間加熱して溶解させた。室温まで冷却後、孔径 3 mのフィ ルターを用いて不溶分をろ別して、 Ba濃度 0. 5mmolZg、 Ti濃度 0. 5mmolZgの 原料溶液 1を調製した。
[0112] 上記原料溶液 1 (40g)を 5°Cに冷却して、 Baの 30倍モル相当の水 10. 8gとメタノ ール 10. 8gとの混合溶液を撹拌しながら添加し、反応生成物 (加水分解縮合物)を 得た。その後、生成した反応生成物を 60°Cで 5時間静置して結晶化させた。
[0113] 結晶化後、デカンテーシヨンによって結晶粒子と上澄溶液を分離し、メチルセルソ ルブを 120g添加し、再度 60°Cで静置して 3時間放置した。この操作を 2回繰り返し、 精製された結晶粒子 A— 1を得た。
[0114] 得られた結晶粒子 A— 1と上澄溶液を分離した後、 BaTiO換算した場合の固形分
3
濃度が 15重量%になるようにメチルセルソルブをカ卩え、さらに分散剤としてエチレン ジァミンのポリオキシプロピレン ポリオキシエチレン縮合物を、粒子重量 100に対し て 0. 1添加し、超音波分散機で結晶粒子 A— 1を分散させ、誘電体膜形成用組成物 a— 1を作製した。
[0115] 誘電体膜形成用組成物 a— 1中の結晶粒子の粒子径分布を、動的光散乱式粒径分 布測定装置「LB— 500」(堀場製作所)により動的散乱法にて測定した結果、メジアン 径は 22nmであった。なお、誘電体膜形成用組成物 a— 1は容易に孔径 200nmのフ ィルターで濾過され、粗大粒子を除去することが可能であった。
[0116] この誘電体膜形成用組成物 a— 1をガラス板へ滴下し、室温で乾燥させて形成され た薄膜の X線回折チャートを図 1に示す。図 1によれば、結晶粒子 A— 1が室温で Ba TiO複合酸ィ匕物の ABOx型の結晶構造になって ヽることが確認された。
3
[0117] 3. 1. 2.実験例 2— 5 原料溶液 1を用いて、表 1に示す条件で結晶粒子 A— 2— A— 5を得た。得られた 結晶粒子は実験例 1と同様の処理を行なヽ、誘電体膜形成用組成物 a— 2— a— 5を 得た。これらの誘電体膜形成用組成物 a— 2— a— 5を用いて実験例 1と同様にして薄 膜を形成した。それらの X線回折チャート (XRD)および誘電体膜形成用組成物 a— 2 一 a— 5のメジアン径の分析結果を表 1に併せて記載した。
[0118] 3. 1. 3.実験例 6
メタノール lOOgに純度 98%の Ba (OH) ·Η 019. 3g (100mmol)を加えて 3時
2 2
間撹拌して溶解させた。その後、孔径 3 mのフィルターを用いて不溶分をろ別して 水酸化バリウムのメタノール溶液を得た。別な容器でメチルセルソルブ 15. 2gに、 Ti (OCH (CH ) ) を 28. 4g (100mmol)加えて室温で 1時間撹拌した。これに上記の
3 2 4
水酸化バリウムのメタノール溶液、およびメチルセルソルブを加え、 Ba濃度 0. 5mmo lZg、 Ti濃度 0. 5mmolZgの原料溶液 2を調製した。
[0119] 上記原料溶液 2 (40g)を 5°Cに冷却して、 Baの 30倍モル相当の水 10. 8gとメタノ ール 10. 8gとの混合溶液を撹拌しながら添加し、反応生成物 (加水分解縮合物)を 得た。その後、生成した反応生成物を 60°Cで 5時間静置して結晶化させた。
[0120] 結晶化後、デカンテーシヨンによって結晶粒子と上澄溶液を分離し、メチルセルソ ルブを 120g添加し、再度 60°Cで静置して 3時間放置した。この操作を 2回繰り返し、 精製された結晶粒子 A— 6を得た。
[0121] 得られた結晶粒子 A— 6と上澄溶液を分離した後、 BaTiO換算した場合の固形分
3
濃度が 15重量%になるようにメチルセルソルブをカ卩え、さらに分散剤として、エチレン ジァミンのポリオキシプロピレン ポリオキシエチレン縮合物を粒子重量 100に対して 0. 1添加し、超音波分散機で結晶粒子 A - 6を分散させ、誘電体膜形成用組成物 a - 6を作製した。
[0122] [表 1] XRD
組成物 Ba辰度 Τί濃度 水の添加量 反応条件 メジアン径
分析結果
mmol/g mmol/g H20/Ba (モル比) nm 実験例 2 a— 2 0.5 0.5 20 60°C5時間 BaTi03結晶 15 実験例 3 a-3 0.5 0.5 90 60°C5時間 BaTi03結晶 42 実験例 4 a-4 0.3 0.3 20 60°C5時間 BaTi03結晶 12 実験例 5 a— 5 0.5 0.5 20 1 70°C6時間 * BaTi03結晶 23 実験例 6 a— 6 0.5 0.5 30 60°C5時間 BaTi03結晶 24
* テフロン製オートクレーブを用いて反応を行った
[0123] 3. 1. 4.試験例
3. 1. 4-1.誘電体膜形成用組成物 a— 1一 a— 6を用いた誘電体膜 1一 7の形成 熱酸ィ匕法により得られた膜厚 lOOOnmの酸化シリコン層が表面に形成された直径 6 インチのシリコンウェハ上に、スパッタリング法によって、膜厚 lOOnmの Ptからなる下 部電極を形成した。
[0124] 次に、前記下部電極上に、誘電体膜形成用組成物 a— 1一 a— 6を、それぞれスピン コータを用いて 300rpmで 5秒間、続いて lOOOrpmで 20秒間回転塗布した後、 250 °Cで 1分間乾燥を行った。その後、塗布膜を 400°Cで 1分間加熱後、 750°Cで 60分 間焼成することにより、膜厚が約 250nmの 6種類の誘電体膜を作製した。これらの誘 電体膜を目視および顕微鏡を用いて観察したが、クラックは全く観察されな力つた。
[0125] また、スピンコータを用いて、誘電体膜形成用組成物 a— 1を 300rpmで 5秒間、続 いて lOOOrpmで 20秒間回転塗布した後、 250°Cで 1分間乾燥を行った。その後、 塗布膜を 400°Cで 60分間焼成することにより、膜厚が約 270nmの誘電体膜を作製 した。
[0126] 3. 1. 4-2.誘電体膜 1一 7の誘電特性
次いで、上記 7種の誘電体膜 1一 7上に、それぞれメタルマスクを介して、スパッタリ ング法により直径 0. 2mmの 200nm膜厚の Pt上部電極を形成して、 7種類のサンプ ルを得た。
[0127] これらのサンプルについて、 1MHzで測定した時の、各誘電体膜の比誘電率、誘 電損失および 0. 2MVZcmにおけるリーク電流を表 2に示す。表 2から、本実験例で は、誘電体膜 1一 7は、いずれも誘電率が高ぐ誘電損失およびリーク電流が小さく、 キャパシタとして好適に使用できることが確認された。また、 400°Cという低温焼成で も高 ヽ誘電率を示すことが確認された。
[0128] [表 2]
Figure imgf000023_0001
[0129] 3. 2.実施例 2
3. 2. 1.実験例 7
エチレングリコーノレモノメチノレエーテノレ 152. 7g【こ、 Ti (OCH (CH ) ) を 28. 4g (
3 2 4 lOOmmol)加えて室温で 1時間撹拌した。得られた溶液に純度 98%の Ba (OH) ·
2
H Oを 19. 3g (100mmol)加えて 60°Cで 3時間加熱して溶解させた。その後、ェチ
2
レンダリコールモノメチルエーテル 49. 6gをカロえ、 80°Cで 3時間反応を行ない赤褐 色の透明溶液を得た。室温まで冷却後、孔径 0. 2 mのフィルターを用いて不溶分 をろ別して、 BaZTi= 1/1 (mol/mol)の誘電体膜形成用組成物 a— 7を調製した
[0130] 3. 2. 2.実験例 8
エチレングリコーノレモノメチノレエーテノレ 152. 7gに、 Ti (OCH (CH ) ) を 28. 4g (
3 2 4 lOOmmol)加えて室温で 1時間撹拌した。得られた溶液に純度 98%の Ba (OH) ·
2
H Oを 19. 3g ( lOOmmol)加えて 60°Cで 3時間加熱して溶解させた。室温まで冷却
2
後、孔径 1 μ mのフィルターを用いて不溶分をろ別した。この溶液を撹拌機、還流冷 却機をつけた反応容器に入れ 130°Cに加温したところ、約 30分後に溶液が濁り始め 、結晶粒子が析出し始めた。 130°Cでさらに 4. 5時間反応させた。室温まで冷却後、 BaTiO換算した場合の固形分濃度が 12重量%になるようにメチルセルソルブをカロ
3
え、さらに分散剤として、エチレンジァミンのポリオキシプロピレン ポリオキシエチレン 縮合物を固形分重量 100に対して 0. 2添加し、超音波分散機を用いて分散させた 後、 0. 2 mのフィルターを用いて粗大粒子をろ別して、誘電体膜形成用組成物 a— 8を調製した。
[0131] 3. 2. 3.実験例 9一 12
実験例 9一 12は、表 3に示す割合で原料を用いて、調製方法は、実験例 8と同様に して、反応温度および反応時間を表 1に示す条件で行なった。その後、実験例 8と同 様の超音波処理およびフィルターろ過を行な!ヽ、誘電体膜形成用組成物 a - 9一 a - 1 2を得た。
[0132] また、表 3には、実験例 7— 12によって得られた誘電体膜形成用組成物 a— 7— a— 1 2に含まれる反応生成物(結晶粒子)のメジアン径を示す。なお、メジアン径は、それ ぞれの誘電体膜形成用組成物に含まれる粒子の粒子径分布を、動的光散乱式粒径 分布測定装置 LB-500 (堀場製作所)により動的散乱法にて測定することにより得 られた。
[0133] [表 3]
(A1 ) (A2) (A2) (B)
組成物 反応温度 反応時間 メジアン径
成分 成分一 1 成分一 2 有機溶媒
実験例 7 a— 7 100 mmol 100 mmol EGME 60。C 3時間 実験例 8 a— 8 100 mmol 100 mmol EG E 130°C 4. 5時間 45nm 実験例 9 a-9 100 mmol 101 mmol EGME 130°C 5時間 46nm 実験例 10 a— 1 0 100 mmol 85 mmol 15 mmol EGME 130°C 5時間 52nm 実験例 1 1 a— 1 1 100 mmol 100 mmol EGBE 150°C 5時間 49nm 実験例 12 a— 1 2 100 mmol 100 mmol EGME 180°C*1 7時間 54nm 比較例 1 a— 1 3 後述の記載を参照
比較例 2 a— 1 4 85 mmol 100 mmol EGME 130°C 5時間 43nm 比較例 3 a— 1 5 1 15 mmol 100 mmol EGME 130°C 5時間 62nm [0134] (Al)成分;水酸化バリウム '一水和物
(A2)成分- 1;チタンイソプロポキシド
(A2)成分- 2 ;ジルコニウムブトキシド
EGME ;エチレングリコールモノメチルエーテル
EGBE;エチレングリコーノレモノブチノレエーテノレ
* 1;テフロン (登録商標)ライニングのオートクレープを用いて加圧条件下で反応 [0135] 3. 2. 4.比較例
3. 2. 4-1.比較例 1
上述の非特許文献 1に記載の方法に従 、、 Ba金属とメチレングリコールモノメチル エーテルから Ba (OCH CH OCH ) を、チタニウムイソプロポキシドとメチレングリコ
2 2 3 2
ールモノメチルエーテルから Ti (OCH CH OCH ) を合成した。 Ba (OCH CH O
2 2 3 4 2 2
CH ) 〖こ Ti (OCH CH OCH ) のメチレングリコールモノメチルエーテル溶液を等
3 2 2 2 3 4
モルカ卩えた後、 130°Cで 2時間加熱下で還流を行ない、濃度 0. 4Mの反応生成物を 得た。これに 1当量の H Oを加えて部分加水分解を行ない、組成物 a— 13を得た。
2
[0136] 3. 2. 4-2.比較例 2、 3
比較例 2、 3は、表 1に示す割合で原料を用いて、調製方法は実験例 8と同様にし て、反応温度および反応時間を表 1に示す条件で行なった。その後、実験例 8と同様 の超音波処理およびフィルターろ過を行ない、組成物 a— 14、 a— 15を得た。
[0137] 3. 2. 5.評価
3. 2. 5-1. X線回折分析
上述の実験例 7— 12および比較例 1一 3により得られた組成物 a— 7— a— 15をそれ ぞれガラス板に滴下し、室温で乾燥させることにより形成された薄膜について、 X線 回折分析を行なった。測定結果より、誘電体膜形成用組成物 a— 7については、 BaTi O結晶構造に起因したピークは微弱であり、非晶質の状態であることが確認された。
3
誘電体膜形成用組成物 a— 8— a— 12および組成物 a— 15につ ヽては、 X線回折チヤ ートより BaTiO結晶構造に起因したピークが明瞭に表れており、誘電体膜形成用組
3
成物 a— 8— a— 12および組成物 a— 15では、ぺロブスカイト型の結晶構造を有する粒 子が含有されて 、ることが確認された。 [0138] 3. 2. 5-2.クラック性の評価
熱酸ィ匕法により得られた膜厚 lOOOnmの酸ィ匕シリコン層が表面に形成された直径 6 インチのシリコンウェハ上に、スパッタリング法によって、膜厚 lOOnmの TiO膜を、続
2 いて膜厚 1 OOnmの Ptからなる下部電極を形成した。
[0139] 次に、前記下部電極上に、スピンコータを用いて、得られた膜形成用組成物 a— 7を 300rpmで 5秒間、続いて 2000rpmで 20秒間回転塗布した後、 250°Cで 1分間乾 燥を行った。次いで、スピンコータを用いて、誘電体膜形成用組成物 a— 7を再度 300 rpmで 5秒間、続いて 2000rpmで 20秒間回転塗布した後、 250°Cで 1分間乾燥を 行った。その後、塗布膜を 750°Cで 60分焼成することで膜厚が約 300nmの誘電体 膜 8を作製した。この誘電体膜 8を目視および顕微鏡を用いて観察した。
[0140] 誘電体膜 8を目視および顕微鏡を用いて観察した結果、クラックは全く観察されな かった。
[0141] 誘電体膜形成用組成物 a-8— a-12、 a—14、 a— 15についても、上述のクラック性 の評価と同様に酸ィ匕シリコン層の上に下部電極を形成した。前記下部電極の上に、 スピンコータを用いて、誘電体膜形成用組成物 a— 8— a— 12を 300rpmで 5秒間、続 いて lOOOrpmで 20秒間回転塗布した後、 250°Cで 1分間乾燥を行った。その後、 塗布膜を 700°Cで 60分焼成することで膜厚が約 270nmの誘電体膜 9一 13を作製し た。これらの誘電体膜 9一 13を目視および顕微鏡を用いて観察した結果、クラックは 全く観察されな力つた。
[0142] 比較例 1にかかる組成物 a— 13についても、上述のクラック性の評価と同様にまず酸 化シリコン層の上に下部電極を形成した。前記下部電極の上に、スピンコータを用い て、組成物 a— 13を 300rpmで 5秒間、続いて lOOOrpmで 20秒間回転塗布した後、 250°Cで 1分間乾燥を行った。得られた膜 14は膜厚 150nmであったが、目視でクラ ックが観察された。組成物 a— 13にエチレングリコールモノメチルエーテルを加え、 1 回塗布'乾燥時の膜厚が 70nmになるように希釈した。スピンコート、 250°C1分間の 乾燥を 3回繰り返した後、 700°Cで 1時間焼成を行ない、膜 14を作成した。この膜 14 を目視および顕微鏡を用いて観察した結果、クラックが発生して 、ることが確認され た。 [0143] また、比較例 2, 3にかかる組成物 a— 14, a— 15それぞれを用いて、組成物 a— 13か ら膜 14を形成する場合と同様に膜 15, 16を形成した。この膜 15, 16についても、膜 14に対する評価方法と同様の方法にてクラック性の評価を行なった。その結果、膜 1 5にはクラックの発生が認められな力つた力 膜 16にはクラックが発生していることが 確認された。
[0144] 3. 2. 5-3.誘電特性の評価
上述のクラック性の評価の際に形成された誘電体膜 8— 13、膜 15の上に、それぞ れメタルマスクを介して、スパッタリング法により直径 0. 2mmの 200nm膜厚の Pt上 部電極を形成した。これらのサンプルについて、 1MHzで測定した時の、各誘電体 膜の比誘電率、誘電損失および 0. 2MVZcmにおけるリーク電流を表 4に示す。な お、膜 14, 16にはクラックが発生したため、誘電特性を評価できなかった。
[0145] [表 4]
Figure imgf000027_0001
[0146] 表 4から、本実施例の誘電体膜形成用組成物を用いて形成された誘電体膜は、 V、 ずれも誘電率が高ぐ誘電損失およびリーク電流が小さぐキャパシタとして好適に使 用できることが確認された。
[0147] これに対して、比較例 1においては、膜の形成に使用した組成物 a— 13は金属水酸 化物を原料とするものではないため、得られた膜にクラックが発生した。また、比較例 2では、膜の形成に使用した組成物 a— 14において、金属水酸化物(水酸化バリウム' 一水和物)を構成する金属 Aと、金属アルコキシド (チタンイソプロポキシド)を構成す る金属 Bとのモル比が 0. 9未満であるため、誘電率が低い膜が得られた。さらに、比 較例 3では、膜の形成に使用した組成物 a— 15において、金属水酸化物(水酸化バリ ゥム ·一水和物)を構成する金属 Aと、金属アルコキシド(チタンイソプロポキシド)を構 成する金属 Bとのモル比が 1. 1を超えるため、リーク電流が大きな膜が得られた。 図面の簡単な説明
[図 1]図 1は、実施例 1の結晶粒子の X線回折チャートである。

Claims

請求の範囲
[1] 以下の工程 (a)および (b)を含む、誘電体膜形成用組成物の製造方法。
(a) Li, Na、 Ca、 Srおよび Baから選ばれる少なくとも 1種の金属 Aを含む金属水酸 化物と、 Ti、 Zr、 Hf、 Taおよび Nbから選ばれる少なくとも 1種の金属 Bを含む、金属 アルコキシドおよび金属錯体の少なくとも一方と、を有機溶媒に溶解させて溶液を調 製する工程、および
(b)前記工程 (a)で調製した溶液中の前駆体を反応させる工程。
[2] 請求項 1において、
前記 (b)工程における前記反応は、前記工程 (a)で調製した溶液を加熱することに より達成される、誘電体膜形成用組成物の製造方法。
[3] 請求項 1において、
前記 (b)工程における前記反応は、加水分解縮合である、誘電体膜形成用組成物 の製造方法。
[4] 請求項 3において、
前記加水分解縮合により、平均粒径が lOOnm以下であるぺロブスカイト型結晶粒 子が形成される、誘電体膜形成用組成物の製造方法。
[5] 請求項 4において、
前記工程 (b)の後に、 (c)前記べ口ブスカイト型結晶粒子を有機溶媒で精製するェ 程をさらに含む、誘電体膜形成用組成物の製造方法。
[6] 請求項 1ないし 5のいずれかにおいて、
前記金属 Aは、 Ca、 Srおよび Baから選ばれる少なくとも 1種であり、
前記金属 Bは、 Ti、 Zrおよび Hfから選ばれる少なくとも 1種である、誘電体膜形成 用組成物の製造方法。
[7] 請求項 1な!ヽし 6の ヽずれかに記載の方法により得られた誘電体膜形成用組成物。
[8] 請求項 7において、
平均粒径が lOOnm以下であるべ口ブスカイト型結晶粒子が分散された、誘電体膜 形成用組成物。
[9] (A) Ba、 Sr、および Caから選ばれる少なくとも 1種の金属 Aを含む金属水酸化物( Al)と、 Ti、 Zr、および Hfから選ばれる少なくとも 1種の金属 Bを含む金属アルコキシ ドおよび Zまたはその部分加水分解縮合物 (A2)との反応生成物と、
(B)有機溶媒と、を含み、
前記金属 Aと、前記金属 Bとのモル比は、 0. 9-1. 1である、誘電体膜形成用組成 物。
[10] 請求項 8または 9に記載の誘電体膜形成用組成物を用いて塗布膜を形成する工程 と、該塗布膜を熱処理する工程とを含む、誘電体膜の形成方法。
[11] 請求項 8または 9に記載の誘電体膜形成用組成物を用いて形成された塗布膜を熱 処理することによって得られた、誘電体膜。
PCT/JP2004/018065 2003-12-05 2004-12-03 誘電体膜形成用組成物の製造方法、誘電体膜形成用組成物、ならびに誘電体膜およびその形成方法 WO2005054134A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04819949A EP1860068A1 (en) 2004-12-03 2004-12-03 Method for producing composition for forming dielectric film ,composition for forming dielectric film and method for producing same
US11/446,903 US20060283354A1 (en) 2003-12-05 2006-06-05 Method of producing composition for forming dielectric film, composition for forming dielectric film, dielectric film and method of producing dielectric film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-407323 2003-12-05
JP2003407323A JP4257518B2 (ja) 2003-12-05 2003-12-05 ペロブスカイト型結晶粒子の製造方法、ペロブスカイト型結晶粒子分散体の製造方法および誘電体膜
JP2004069428A JP2005255464A (ja) 2004-03-11 2004-03-11 膜形成用組成物
JP2004-069428 2004-03-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/446,903 Continuation US20060283354A1 (en) 2003-12-05 2006-06-05 Method of producing composition for forming dielectric film, composition for forming dielectric film, dielectric film and method of producing dielectric film

Publications (1)

Publication Number Publication Date
WO2005054134A1 true WO2005054134A1 (ja) 2005-06-16

Family

ID=34656227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018065 WO2005054134A1 (ja) 2003-12-05 2004-12-03 誘電体膜形成用組成物の製造方法、誘電体膜形成用組成物、ならびに誘電体膜およびその形成方法

Country Status (3)

Country Link
US (1) US20060283354A1 (ja)
KR (1) KR20070001918A (ja)
WO (1) WO2005054134A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2050127A2 (en) * 2006-07-13 2009-04-22 Nanoscale Corporation Nanocrystalline materials for electronic applications
JP2012204817A (ja) * 2011-03-28 2012-10-22 Daicel Corp 積層セラミック部品製造用溶剤組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914755B2 (en) 2001-04-12 2011-03-29 Eestor, Inc. Method of preparing ceramic powders using chelate precursors
JP4709544B2 (ja) * 2004-05-31 2011-06-22 セイコーエプソン株式会社 前駆体組成物、前駆体組成物の製造方法、強誘電体膜の製造方法、圧電素子、半導体装置、圧電アクチュエータ、インクジェット式記録ヘッド、およびインクジェットプリンタ
US7993611B2 (en) 2006-08-02 2011-08-09 Eestor, Inc. Method of preparing ceramic powders using ammonium oxalate
US8853116B2 (en) 2006-08-02 2014-10-07 Eestor, Inc. Method of preparing ceramic powders
WO2010111311A2 (en) * 2009-03-23 2010-09-30 Sba Materials, Inc. New dielectric oxide films and method for making same
US20130089934A1 (en) * 2011-10-07 2013-04-11 Taiwan Semiconductor Manufacturing Company, Ltd. Material Delivery System and Method
CN112830512A (zh) * 2014-06-13 2021-05-25 户田工业株式会社 钛酸钡微粒粉末、分散体和涂膜的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412020A (ja) * 1990-05-01 1992-01-16 Murata Mfg Co Ltd チタン酸バリウム粉末の製造方法
JPH04362014A (ja) * 1991-06-04 1992-12-15 Mitsubishi Materials Corp チタン酸バリウム薄膜の製造方法
JPH08337421A (ja) * 1995-06-12 1996-12-24 Mitsubishi Materials Corp Ba1−xSrxTiO3薄膜形成用組成物
JP2002060219A (ja) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd 微粒チタン酸バリウム粉末、カルシウム変性微粒チタン酸バリウム粉末、ならびにその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948168A1 (en) * 1998-03-31 1999-10-06 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Method and device for data flow control
US6384853B1 (en) * 1999-06-15 2002-05-07 Siemens Information And Communcation Networks, Inc. Apparatus and method for preventing screen savers from shutting down ToL clients
WO2002052811A1 (en) * 2000-12-22 2002-07-04 Nokia Corporation Method and system for modifying a connection parameter
US6694471B1 (en) * 2000-12-27 2004-02-17 Cisco Technology, Inc. System and method for periodic retransmission of messages
JP2002244069A (ja) * 2001-02-19 2002-08-28 Nec Corp レーザ走査光学装置及び該光学装置を用いたレーザ走査方法
EP1513165A1 (en) * 2003-09-03 2005-03-09 JSR Corporation Dielectric-forming composition containing particles with perovskite crystal structure, production process and uses of the same, and process for preparing crystal particles having perovskite crystal structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412020A (ja) * 1990-05-01 1992-01-16 Murata Mfg Co Ltd チタン酸バリウム粉末の製造方法
JPH04362014A (ja) * 1991-06-04 1992-12-15 Mitsubishi Materials Corp チタン酸バリウム薄膜の製造方法
JPH08337421A (ja) * 1995-06-12 1996-12-24 Mitsubishi Materials Corp Ba1−xSrxTiO3薄膜形成用組成物
JP2002060219A (ja) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd 微粒チタン酸バリウム粉末、カルシウム変性微粒チタン酸バリウム粉末、ならびにその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2050127A2 (en) * 2006-07-13 2009-04-22 Nanoscale Corporation Nanocrystalline materials for electronic applications
EP2050127A4 (en) * 2006-07-13 2011-11-02 Nanoscale Corp NANOCRYSTALLINE MATERIALS FOR ELECTRONIC APPLICATIONS
JP2012204817A (ja) * 2011-03-28 2012-10-22 Daicel Corp 積層セラミック部品製造用溶剤組成物

Also Published As

Publication number Publication date
US20060283354A1 (en) 2006-12-21
KR20070001918A (ko) 2007-01-04

Similar Documents

Publication Publication Date Title
US20060283354A1 (en) Method of producing composition for forming dielectric film, composition for forming dielectric film, dielectric film and method of producing dielectric film
RU2567142C2 (ru) Способ получения слоев, содержащих оксид индия, полученные этим способом слои, содержащие оксид индия, и их применение
US5645634A (en) Composition and method for forming Ba1-X Srx Tiy O3 thin films
KR20060051401A (ko) 전구체 용액, 전구체 용액의 제조 방법, pztn 복합산화물, pztn 복합 산화물의 제조 방법, 압전 소자,잉크제트 프린터, 강유전체 캐패시터, 강유전체 메모리
EP3176142B1 (en) Precursor solution and method for the preparation of a lead-free piezoelectric material
JP4329287B2 (ja) Plzt又はpzt強誘電体薄膜、その形成用組成物及び形成方法
US7238388B2 (en) Ferroelectric thin film and method for forming the same
JP4257518B2 (ja) ペロブスカイト型結晶粒子の製造方法、ペロブスカイト型結晶粒子分散体の製造方法および誘電体膜
US10696597B2 (en) Precursor solution and method for the preparation of a lead-free piezoelectric material
US20170236994A1 (en) Precursor solution and method for the preparation of a lead-free piezoelectric material
JP5734741B2 (ja) 結晶性チタン酸塩の製造方法および結晶性チタン酸塩
KR20050024251A (ko) 페로브스카이트형 결정 구조를 갖는 입자를 함유하는유전체 형성용 조성물, 그의 제조 방법 및 용도, 및페로브스카이트형 결정 구조를 갖는 결정 입자의 제조방법
EP3176143A1 (en) Precursor solution from anhydrous or dehydrated precursors and method for the preparation of a lead-free piezoelectric material
US6086957A (en) Method of producing solution-derived metal oxide thin films
EP1860068A1 (en) Method for producing composition for forming dielectric film ,composition for forming dielectric film and method for producing same
JP2005075715A (ja) 誘電体形成用組成物、その製造方法、ならびにそれを用いた誘電体膜、キャパシタ
JP2005075713A (ja) 誘電体形成用組成物、その製造方法、ならびにそれを用いた誘電体膜、キャパシタ
JP2005075714A (ja) ペロブスカイト型結晶粒子の製造方法
WO2004026762A1 (ja) 金属酸化物超微粒子分散溶液、及び金属酸化物超微粒子薄膜
JP4329289B2 (ja) Sbt強誘電体薄膜、その形成用組成物及び形成方法
JP4329288B2 (ja) Blt又はbt強誘電体薄膜、その形成用組成物及び形成方法
JP2005255464A (ja) 膜形成用組成物
US5858323A (en) Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films
JP2005247660A (ja) 誘電体膜形成用組成物、誘電体膜形成用組成物の製造方法ならびに誘電体膜および誘電体膜を含むキャパシタ
JP5925358B2 (ja) 結晶性チタン酸アルカリ土類金属塩の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004819949

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11446903

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067013416

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11446903

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067013416

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004819949

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP