RU2567142C2 - Способ получения слоев, содержащих оксид индия, полученные этим способом слои, содержащие оксид индия, и их применение - Google Patents

Способ получения слоев, содержащих оксид индия, полученные этим способом слои, содержащие оксид индия, и их применение Download PDF

Info

Publication number
RU2567142C2
RU2567142C2 RU2012130174/02A RU2012130174A RU2567142C2 RU 2567142 C2 RU2567142 C2 RU 2567142C2 RU 2012130174/02 A RU2012130174/02 A RU 2012130174/02A RU 2012130174 A RU2012130174 A RU 2012130174A RU 2567142 C2 RU2567142 C2 RU 2567142C2
Authority
RU
Russia
Prior art keywords
indium
halogen
indium oxide
composition
alkoxide
Prior art date
Application number
RU2012130174/02A
Other languages
English (en)
Other versions
RU2567142C9 (ru
RU2012130174A (ru
Inventor
Юрген ШТАЙГЕР
Дуй Ву ФАМ
Хайко ТИМ
Алексей МЕРКУЛОВ
Арне ХОППЕ
Original Assignee
Эвоник Дегусса Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эвоник Дегусса Гмбх filed Critical Эвоник Дегусса Гмбх
Publication of RU2012130174A publication Critical patent/RU2012130174A/ru
Publication of RU2567142C2 publication Critical patent/RU2567142C2/ru
Application granted granted Critical
Publication of RU2567142C9 publication Critical patent/RU2567142C9/ru

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemically Coating (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Formation Of Insulating Films (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Изобретение относится к получению содержащих оксид индия слоев из безводного раствора. В способе безводную композицию, содержащую по меньшей мере один индий-галоген-алкоксид общей формулы InX(OR)2, в которой R=алкильный и/или алкоксиалкильный остаток и X=F, Cl, Br или I, и по меньшей мере один растворитель или дисперсионную среду, в определенной последовательности в безводной атмосфере наносят на подложку, облучают нанесенную на подложку композицию электромагнитным излучением с длиной волны ≤360 нм и при необходимости сушат и затем термически преобразуют в слой, содержащий оксид индия. Предложенный способ получения содержащих оксид индия слоев пригоден для получения тонких структур, при этом не требует высоких плотностей потока энергии в течение более длительного времени и аппаратно мало затратный. Изобретение обеспечивает образование упомянутых слоев с лучшими электрическими свойствами. 2 н. и 14 з.п. ф-лы, 3 пр.

Description

Изобретение относится к способу получения слоев, содержащих оксид индия, слоям, содержащим оксид индия, получаемым способом согласно изобретению, а также их применению.
Изготовление полупроводниковых электронных структурных слоев в процессах печати и в других процессах жидкостного осаждения в сравнении со многими другими способами, такими как метод химического осаждения из газовой фазы (CVD), делает возможными упрощение технологического процесса и удешевление продукции, так как осаждение полупроводника здесь может происходить в непрерывном процессе. Кроме того, в случае более низких температур процесса открывается возможность работать также на гибких подложках и при необходимости (прежде всего в случае очень тонких слоев и особенно при оксидных полупроводниках) достигать оптического светопропускания печатных слоев. Под полупроводниковыми слоями здесь и в дальнейшем можно понимать слои, которые имеют подвижности носителей заряда от 1 до 50 см2/B·c у структурного элемента с длиной канала 20 мкм при напряжении затвор-исток 50 B и напряжении сток-исток 50 B.
Так как материал структурного слоя, получаемого печатью или другими способами жидкостного осаждения, в значительной степени определяет соответствующие свойства слоя, его выбор имеет существенное влияние на каждый структурный элемент, содержащий этот структурный слой. Важными параметрами для печатных полупроводниковых слоев являются их соответствующие подвижности носителей заряда, а также обрабатываемость и температуры обработки примененных при их изготовлении пригодных для печатания прекурсоров. Материалы должны были бы иметь хорошую подвижность носителей заряда и быть пригодными к получению из раствора и при температурах четко ниже 500°C, чтобы подходить для множества задач и подложек. Также для многих задач нового типа желательно оптическое светопропускание полученных полупроводниковых слоев.
Оксид индия (оксид индия (III), In2O3), по причине большой энергетической щели между 3,6 и 3,75 эВ (измерено для напыленных слоев, H.S.Kim, P.D.Byrne, A.Facchetti, T.J.Marks; J. Am. Chem. Soc. 2008, 130, 12580-12581), является перспективным и, таким образом, охотно применяемым полупроводником. Тонкие пленки толщиной в несколько сотен нанометров могут иметь, кроме того, высокое светопропускание в видимом диапазоне спектра более 90% при 550 нм. В крайне высоко упорядоченных монокристаллах оксида индия к тому же можно измерить подвижности носителей заряда до 160 см2/B·c. Однако до сих пор такие значения все еще не могут быть достигнуты посредством переработки из раствора (Н.Nakazawa, Y.Ito, Е.Matsumoto, К.Adachi, N.Aoki, Y.Ochiai; J. Appl. Phys. 2006, 100, 093706, и A.Gupta, Н.Cao, Parekh, K.K.V.Rao, A.R.Raju, U.V.Waghmare; J. Appl. Phys. 2007, 101, 09N513).
Оксид индия часто применяется прежде всего вместе с оксидом олова (IV) (SnO2) в качестве полупроводникового смешанного оксида ITO. В связи со сравнительно высокой проводимостью ITO-слоев при одновременном светопропускании в видимой области спектра он находит применение, в числе прочего, в области жидкокристаллических экранов (LCD; liquid crystal display), особенно в качестве "прозрачных электродов". Эти преимущественно легированные слои оксидов металлов в промышленности получают прежде всего дорогостоящими методами напыления в высоком вакууме. В связи с большим экономическим интересом к ITO-покрытым подложкам между тем существуют некоторые основанные прежде всего на технологии золь-гель способы покрытия для содержащих оксид индия слоев.
Принципиально существует две возможности для производства полупроводников на основе оксида индия способом печати: 1) «концепции частиц», при которых (нано)частицы представлены в виде пригодной для печатания дисперсии и в результате процесса печати посредством метода спекания превращаются в требуемый полупроводниковый слой, и 2) «концепции прекурсоров», при которых по меньшей мере один растворимый или диспергируемый продукт-предшественник в результате печати соответствующей композиции превращается в содержащий оксид индия слой. Под прекурсором при этом можно понимать соединение, разрушаемое термически или с помощью электромагнитного излучения, при помощи которого в присутствии или в отсутствие кислорода или других окислителей могут образовываться содержащие оксид металла слои. «Концепция частиц» имеет два значительных недостатка по сравнению с применением прекурсоров: с одной стороны, дисперсии частиц имеют коллоидную нестабильность, которая делает необходимым применение (невыгодных относительно будущих свойств) диспергирующих добавок, с другой стороны, многие из применяемых частиц (например, на основании пассивирующих слоев) посредством спекания формируют только не полностью покрытые слои, так что в слоях встречаются частично еще обособленные структуры, на границах частиц которых наблюдается значительное сопротивление частица-частица, которое понижает подвижность носителей заряда и повышает общее сопротивление слоя.
Существуют различные прекурсоры для получения слоев оксида индия. Так, наряду с солями индия в качестве прекурсоров для получения слоев, содержащих оксид индия, могут применяться также алкоксиды индия (гомолептические, то есть соединения, имеющие только индий и остатки алкоксидов) и индий-галоген-алкоксиды (т.е. соединения индия, имеющие как остатки галогена, так и остатки алкоксида, особенно трехвалентные соединения индия типа InXm(OR)3-m с X=галоген, R=алкильный или оксиалкильный остаток и m=1, 2).
Например, Marks и др. описывают структурные элементы, при получении которых применяется содержащая прекурсор композиция, включающая соль InCl3, а также основание моноэтаноламин (МЕА), растворенное в метоксиэтаноле. После нанесения покрытия композиции методом центрифугирования (Spin-coating) посредством термической обработки при 400°C получают соответствующий слой оксида индия (H.S.Kim, P.D.Byrne, А.Facchetti, T.J.Marks; J. Am. Chem. Soc. 2008, 730, 12580-12581, и дополнительная информация (supplemental informations)).
По сравнению с композициями, содержащими соль индия, композиции, содержащие алкоксид индия или индий-галоген-алкоксид, обнаруживают то преимущество, что они при более низких температурах могут превращаться в содержащие оксид индия пленки. Кроме того, до сих пор исходили из того, что галогенсодержащие прекурсоры потенциально имеют недостаток приводить к галогенсодержащим слоям с пониженным качеством. По этой причине в прошлом эксперименты для образования слоя проводили с алкоксидами индия.
Алкоксиды индия, а также индий-галоген-алкоксиды и их синтез описаны еще с семидесятых годов прошлого столетия.
Так, например, Carmalt и др. в обзорной статье обобщают известные к этому моменту времени данные для синтеза, структуры и активностей в том числе алкоксидов и алкилалкоксидов индия (III) (Carmalt et al., Coord. Chem Rev. 250 (2006), 682-709).
Один из наиболее давно известных синтезов алкоксидов индия описывают Chatterjee и др. Они описывают получение трисалкоксида индия ln(OR)3 из хлорида индия (III) (InCl3) с алкоксидом натрия Na-OR, причем R означает остатки -метила, -этила, изопропила, н-, в-, т-бутила и -пентила (S.Chatterjee, S.R.Bindal, R.C.Mehrotra; J. Indian Chem. Soc. 1976, 53, 867).
Bradley и др. сообщают о подобной реакции, как Chatterjee и др., и получают при примерно идентичных эдуктах (InCl3, изопропил-натрий) и условиях реакции индий-оксо-алкоксидный кластер с кислородом в качестве центрального атома (D.C.Bradley, Н.Chudzynska, D.M.Frigo, М.Е.Hammond, М.В.Hursthouse, М.А.Mazid; Polyhedron 1990, 9, 719).
Особенно хороший вариант этого способа, который приводит к особенно малой примеси хлора в продукте, описывается в US 2009-0112012 A1. Стремление достичь по возможности малой степени примесей хлора в продукте сводится при этом к тому, что до сих пор исходили из того, что примеси хлора способствуют понижению производительности или технического ресурса/срока службы электронных структурных элементов (ср., например, US 6426425 B2).
Также на галогениде индия, однако на других основаниях, основывается описанный в US 5237081 A способ получения чистых алкоксидов индия, у которых галогенид индия (III) взаимодействует со спиртом в основной среде. Основание должно быть сильным основанием с низкой нуклеофильностью. Наряду с названными в качестве примера комплексными циклическими гетероциклами упомянутые основания являются, например, третичными аминами.
US 4681959 A описывает общий двухступенчатый способ получения алкоксидов металлов (особенно тетраалкокси-соединений, таких как тетраметилтитанат), при котором галогенид по меньшей мере двухвалентного металла взаимодействует со спиртом, при необходимости в присутствии ароматического растворителя, сначала с образованием промежуточного продукта (галоген-алкокси-соединения металла). Затем промежуточный продукт взаимодействует со спиртом в присутствии галогенводородного акцептора (особенно третичным амином) с образованием алкоксида металла.
Альтернативные пути синтеза с образованием гомолептических комплексов алкоксидов индия описываются Seigi Suh et al. в J. Am. Chem. Soc. 2000, 122, 9396-9404. Описанные там способы являются, однако, очень дорогостоящими и/или основаны не на коммерчески доступных (и, следовательно, лишь невыгодно синтезируемых на предшествующей стадии) исходных продуктах.
Общий способ получения соединений галоген-алкокси-металл описан в US 4681959 A: там в общих чертах описывается двухступенчатый способ получения алкоксидов металлов (особенно тетраалкоксисоединений, таких как тетраметилтитанат), при котором галогенид по меньшей мере двухвалентного металла взаимодействует со спиртом, при необходимости в присутствии ароматического растворителя, сначала с образованием промежуточного продукта (галоген-алкокси-соединения металла). Образующийся при этом галоген водород предпочтительно удаляют с инертным газом, таким как азот.
Галогеналкоксиды индия и их синтез описаны в JP 02-113033 A и JP 02-145459 A. Так, JP 02-113033 A раскрывает, что хлорсодержащие алкоксиды индия могут быть получены после растворения хлорида индия в спирте, соответствующем встраиваемому алкоксидному остатку, посредством последующего добавления определенной доли щелочного металла или оксида щелочного металла. Соответствующий способ описывает также JP 02-145459 A.
Получение слоев оксида индия из алкоксидов индия и индий-галоген-алкоксидов может происходить принципиально i) посредством процессов золь-гель, при которых использованные прекурсоры реагируют в присутствии воды через гидролиз и последующую конденсацию сначала с образованием гелей и затем превращаются в оксиды металлов, или ii) из безводных растворов.
Изготовление слоев, содержащих оксид индия, из алкоксидов индия способом золь-гель в присутствии значительных количеств воды относится к уровню техники. Например, WO 2008/083310 A1 описывает способ получения неорганических слоев или органических/неорганических гибридных слоев на подложке, при котором алкоксид металла (например, общей формулы R1M (OR2)y-x) или преполимер из него наносят на подложку и затем полученный слой алкоксида металла отверждают в присутствии и в реакции с водой при подаче тепла. У примененных алкоксидов металлов речь может идти, среди прочего, об алкоксиде индия.
JP 01-115010 A также имеет дело с термическим превращением при процессе золь-гель. В этом документе описываются композиции для светопроницаемых, проводящих тонких слоев, которые имеют большую жизнеспособность, когда композицию не гидролизовали, и имеют хлорсодержащие алкоксиды индия формулы In(OR)xCl3-x. Эти композиции могут быть превращены при температурах 400-600°C после нанесения на подложку, гелеобразования алкоксида на подложке благодаря содержанию воды в воздухе и последующей сушки при 200°C.
JP 02-113033 A описывает способ нанесения антистатического покрытия на неметаллический материал, при котором неметаллический материал покрывается композицией, включающей хлорсодержащий алкоксид индий, композиция застывает на воздухе и в дальнейшем кальцинируется.
JP 09-157855 A описывает золь-гель-способ получения слоя оксида металла, при котором золь оксида металла, полученный гидролизом, наносится на поверхность подложки из оксида металла или соли металла (например, алкоксида или соли индия), при необходимости при температуре, при которой гель еще не кристаллизуется, сушится и облучается УФ-излучением менее 360 нм.
JP 2000-016812 A также описывает способ получения слоя оксида металла золь-гель-способом. При нем подложка покрывается покрывающей композицией золя оксида металла из соли металла или алкоксида металла, в частности композицией In2O3-SnO2, и облучается УФ-излучением длиной волны меньше 360 нм и термически обрабатывается.
JP 59-198606 A описывает композиции для образования светопроницаемых, проводящих электричество слоев, которые имеют InClx(OR)3-x и органический растворитель и имеют часть воды 0,1-10% в пересчете на органический растворитель. Таким образом, при этой композиции речь идет о золе индий-галоген-алкоксида. Для образования светопроницаемого, проводящего электричество слоя композицию после нанесения на подложку и сушки обычно при 150°C обжигают при температуре предпочтительно 300°C.
Недостатком применения золь-гель-способа, однако, является то, что реакция гидролиза-конденсации автоматически запускается в присутствии воды и после ее начала плохо контролируема. Если процесс гидролиза-конденсации начинается уже перед нанесением на подложку, как в случае JP 09-157855 A, JP 2000-016812 A и JP 59-198606 A, полученные за это время гели часто не годятся для способа получения тонких оксидных слоев по причине их высокой вязкости. Если процесс гидролиза-конденсации, напротив, начинается лишь после нанесения на подложку посредством подачи воды в жидкой форме или в качестве пара, как в случае WO 2008/083310 A1, JP 01-115010 A или JP 02-113033 A, получаемые таким образом плохо перемешанные и негомогенные гели часто приводят к соответственно негомогенным слоям с невыгодными свойствами.
По этой причине представляют интерес безводные, основанные на прекурсорах способы получения слоев, содержащих оксид индия, т.е. способы, которые протекают не через золь-гель-процесс.
Так, JP 2007-042689 A описывает растворы алкоксидов металлов, которые могут содержать алкоксиды индия, а также способы получения полупроводниковых структурных элементов, которые применяют эти растворы алкоксидов металлов.
JP 02-145459 A описывает композиции покрытий, содержащие индий-галоген-алкоксид, которые при хранении не могут гидролизоваться и которые посредством кальцинирования могут быть превращены в слой, содержащий оксид индия.
JP 59-198607 A описывает способ получения светопроницаемых проводящих слоев, которые могут иметь защитную пленку из различных смол. Светопроницаемый проводящий слой может быть содержащим оксид индия слоем и может быть получен жидкофазным способом, при котором соответствующая композиция наносится на подложку, сушится и термически преобразовывается. Согласно примерам может применяться композиция, содержащая InCl(OC3H7)2.
JP 11-106935 A описывает способ получения светопроницаемой проводящей пленки на основе оксида, при котором среди прочего безводная композиция, включающая алкоксид металла (например, индия), наносится на подложку и нагревается. Кроме того, пленка затем может быть преобразована в тонкий слой на основе оксида металла с помощью УФ- и видимого излучения.
Однако известные до сих пор способы безводного получения слоев, содержащих оксид индия, также имеют недостатки: чисто термически проведенное преобразование имеет тот недостаток, что с его помощью не могут быть получены тонкие структуры и что, наряду с этим, с его помощью невозможна высокоточная регуляция результирующих свойств слоя. Кроме того, исключительно благодаря излучению происходящие преобразования имеют тот недостаток, что они в течение более длительного времени требуют очень высоких плотностей потока энергии и в этом отношении аппаратно очень затратные. Далее, все имеющиеся до сих пор в распоряжении безводные способы получения слоев, содержащих оксид индия, имеют тот недостаток, что получающиеся слои имеют недостаточно хорошие электрические свойства, особенно подвижность в электрическом поле µFET.
Таким образом, задача состоит в том, чтобы предоставить способ получения слоев, содержащих оксид индия, который избежит известных недостатков уровня техники и который также особенно пригоден для получения тонких структур, не требует высоких плотностей потока энергии в течение более длительного времени, аппаратно мало затратный и приводит к образованию слоев с лучшими электрическими свойствами, особенно подвижностью в электрическом поле.
Эта задача согласно изобретению решается посредством жидкофазного способа получения слоев, содержащих оксид индия, из безводного раствора по п.1, при котором безводная композиция, содержащая по меньшей мере один индий-галоген-алкоксид общей формулы InX(OR)2 с R=алкилный и/или алкоксиалкильный остаток и X=F, Cl, Br или I и по меньшей мере один растворитель или дисперсионную среду, в последовательности пунктов от a) до d) в безводной атмосфере
a) наносится на подложку,
b) нанесенная на подложку композиция облучается электромагнитным излучением с длиной волны ≤360 нм и
c) при необходимости сушится и затем
d) термически преобразуется в слой, содержащий оксид индия.
При жидкофазном способе получения слоев, содержащих оксид индия, согласно изобретению из безводного раствора речь идет о способе, включающем по меньшей мере одну стадию способа, при которой покрываемая подложка покрывается жидким безводным раствором, содержащим по меньшей мере один индий-галоген-алкоксид, облучается электромагнитным излучением, далее при необходимости сушится и затем термически преобразуется. При этом процессе речь особенно не идет о процессе ионного напыления, химического осаждения из газовой фазы или золь-гель-процессе. Под жидкими композициями согласно настоящему изобретению следует понимать такие, которые при SATP-условиях ("Standard Ambient Temperature and Pressure", стандартные температура и давление окружающей среды; T=25°C и p=1013 гПа) и при нанесении на покрываемую подложку существуют в жидком состоянии. При этом под безводным раствором или безводной композицией здесь и в дальнейшем следует понимать раствор или композицию, которая имеет не более 500 ч./млн H2O.
Далее, для достижения особенно хороших результатов способ согласно изобретению особенно предпочтительно можно проводить в безводной атмосфере, т.е. в атмосфере с содержанием воды максимум 500 ч./млн.
Под продуктом способа согласно изобретению, слоем, содержащим оксид индия, следует понимать слой, содержащий металл или полуметалл, который имеет атомы или ионы индия, которые преимущественно представлены в окисленной форме. При необходимости содержащий оксид индия слой может также иметь еще доли азота (из реакции), углерода (особенно карбена), галогена и/или алкоксида по причине неполного превращения или неполноценного удаления образующихся побочных продуктов. Слой, содержащий оксид индия, может быть при этом чистым слоем оксида индия, т.е. при непринятии во внимание возможных долей азота, углерода (особенно карбена), алкоксида или галогена могут существовать главным образом из существующих в окисленной форме атомов или ионов индия или иметь еще соразмерно доле участия дополнительные металлы, полуметаллы или неметаллы, которые сами могут быть представлены в элементарной или окисленной форме. Для получения чистых слоев оксида индия по способу согласно изобретению должны были бы применяться только индий-галоген-алкоксиды, предпочтительно только один индий-галоген-алкоксид. В противоположность этому для получения следует применять также другие металлы, полуметаллы и/или неметаллы имеющихся слоев наряду с индий-галоген-алкоксидами также предшественники этих элементов в степени окисления 0 (для получения слоев, содержащих дополнительные металлы в нейтральной форме) или кислородсодержащие прекурсоры, содержащие элементы в положительной степени окисления (такие как, например, другие оксиды металлов или галогеналкоксиды металлов).
Кроме того, неожиданным образом было установлено, что прежнее предположение, что галогенсодержащие прекурсоры неизбежно приводят к образованию ущербных слоев, не всегда соответствует действительности. Так, в случае способа согласно изобретению, при котором жидкая композиция-прекурсор наносится на подложку и покрывающая пленка перед термическим превращением обрабатывается сначала УФ-излучением, в случае применения хлордиалкоксидов индия вместо алкоксидов индия получаются даже лучшие покрытия, так как последние имеют лучшие электрические свойства, особенно более высокую подвижность в поле. Кроме того, в случае применения галогендиалкоксидов индия вместо алкоксидов индия неожиданно могут быть получены аморфные слои. По сравнению со слоем из отдельных нанокристаллов аморфные слои имеют преимущество большей гомогенности, что дает о себе знать также в лучших электрических свойствах, особенно подвижностях в электрическом поле.
При этом под алкильными или алкоксиалкильными остатками R индий-галоген-алкоксидов предпочтительно следует понимать C1-C15-алкильные или алкоксиалкильные группы, т.е. алкильные или алкоксиалкильные группы с в целом 1-15 атомами углерода. Предпочтительно речь идет об алкильном или алкоксиалкильном остатке R, выбранном из -СН3, -СН2СН3, -CH2CH2OCH3, -СН(СН3)2 или -С(СН3)3.
Индий-галоген-алкоксид может иметь идентичные или различные остатки R. Однако для способа согласно изобретению предпочтительно применяются индий-галоген-алкоксиды, которые имеют одинаковый алкильный или алкоксиалкильный остаток R.
Принципиально в индий-галоген-алкоксиде могут применяться все галогены. Однако наиболее предпочтительно хорошие результаты достигаются, если применяются индий-хлор-алкоксиды.
Лучшие результаты достигаются, если примененный индий-галоген-алкоксид является InCl(OMe)2, InCl(OCH2CH2OCH3), InCl(OEt)2, InCl(OiPr)2 или InCl(OtBu)2.
Индий-галоген-алкоксид InX(OR)2 применяется предпочтительно с содержанием 0,1-10% масс., особенно предпочтительно 0,5-6% масс., наиболее предпочтительно 1-5% масс. в пересчете на общую массу композиции.
Композиция (A), включающая индий-галоген-алкоксид, может обнаруживать его растворенным, т.е. или диссоциированным в комплексе с молекулами растворителя на молекулярной поверхности, или диспергированным в жидкой фазе.
Способ согласно изобретению пригоден особенно хорошо для получения слоев In2O3 с высоким качеством и хорошими свойствами в том случае, когда применяются только прекурсоры, содержащие индий. Особенно хорошие слои получаются, если единственным использованным прекурсором является индий-галоген-алкоксид.
Однако наряду с индий-галоген-алкоксидом композиция может иметь также еще другие прекурсоры, предпочтительно алкоксиды и галоген-алкоксиды других элементов в растворенной или диспергированной форме. Особенно предпочтительными являются алкоксиды и галоген-алкоксиды B, Al, Ga, Ge Sn, Pb, P, Zn и Sb. Наиболее предпочтительно применяемые алкоксиды и галоген-алкоксиды являются соединениями Ga(OiPr)3, Ga(OtBu)3, Zn(OMe)2, Sn(OtBu)4. Соответственно, посредством применения этих соединений могут быть получены слои, содержащие оксид индия, которые, кроме того, имеют элементы B, Al, Ga, Ge Sn, Pb, P, Zn и Sb или их оксиды.
Кроме того, композиция имеет по меньшей мере один растворитель или дисперсионную среду. Таким образом, композиция может иметь также два или более растворителей или дисперсионных сред. Однако для получения особенно хороших слоев, содержащих оксид индия, в композиции должен был быть только один растворитель или дисперсионная среда.
Предпочтительно применяемыми растворителями или дисперсионными средами являются апротонные и слабо протонные растворители или дисперсионные среды, т.е. таковые, выбранные из группы апротонных неполярных растворителей/дисперсионных сред, т.е. алканов, замещенных алканов, алкенов, алкинов, ароматических соединений без или с алифатическими или ароматическими заместителями, галогенированных углеводородов, тетраметилсилана, из группы апротонных полярных растворителей/дисперсионных сред, т.е. эфиров, ароматических эфиров, замещенных эфиров, сложных эфиров или ангидридов кислот, кетонов, третичных аминов, нитрометана, ДМФ (диметиформамид), ДМСО (диметилсульфоксид) или пропиленкарбоната, и слабо протонных растворителей/дисперсионных сред, т.е. спиртов, первичных и вторичных аминов и формамида. Особенно предпочтительно применяемыми растворителями или дисперсионными средами являются спирты, а также толуол, ксилол, анизол, мезитилен, н-гексан, н-гептан, трис-(3,6-диоксагептил)амин (TDA), 2-аминометилтетрагидрофуран, фенетол, 4-метиланизол, 3-метиланизол, метилбензоат, бутилацетат, этиллактат, метоксиэтанол, бутоксиэтанол, N-метил-2-пирролидон (NMP), тетралин, этилбензоат и диэтиловый эфир. Наиболее предпочтительными растворителями или дисперсионными средами являются метанол, этанол, изопропанол, тетрагидрофурфуриловый спирт, трет-бутанол, бутилацетат, этиллактат, метоксиэтанол и толуол, а также их смеси.
Растворитель или дисперсионная среда предпочтительно применяется с содержанием от 99,9 до 90% масс. в пересчете на общую массу композиции.
Для достижения особенно хорошей возможности печати композиция, использованная в случае способа согласно изобретению, предпочтительно имеет вязкость от 1 мПа·с до 10 Па·с, особенно 1 мПа·с - 100 мПа·с, определенную в соответствии с DIN 53019, часть 1 -2, и измеренную при 20°C. Соответствующие вязкости могут быть заданы посредством добавления полимеров, производных целлюлозы или, например, SiO2, коммерчески доступным под фирменным/торговым наименованием Aerosil, особенно благодаря РММА, поливиниловому спирту, уретановому или полиакрилатному загустителю.
В случае подложки, которая применяется в способе согласно изобретению, речь идет предпочтительно о подложке, состоящей из стекла, кремния, оксида кремния, оксида металла или переходного металла, металла или полимерного материала, особенно PI, PEN, PEEK, PC или PET.
Способ согласно изобретению особенно предпочтительно является способом покрытия, выбранным из способов печати (особенно флексографии/глубокой печати, струйной печати - наиболее предпочтительно непрерывной, термической или пьезоструйной печати, офсетной печати, цифровой офсетной печати и трафаретной печати), распылительных способов, способов вращательного покрытия ("Spin-coating"), способов покрытия погружением ("Dip-coating"), и способом, выбранным из покрытия путем создания мениска, щелевого покрытия, Slot-Die-покрытия и наливного покрытия. Наиболее предпочтительно способ согласно изобретению является способом печати. В качестве способа печати особенно пригоден струйный способ и способ жидкого тонирования (такой как, например, HP Indigo), так как эти способы особенно хорошо годятся для структурированного нанесения печатного материала.
После нанесения безводной композиции на подложку последняя облучается электромагнитным излучением с длиной волны ≤360 нм. Особенно предпочтительно осуществляется облучение светом с длиной волны от 150 до 300 нм.
Далее, после покрытия и перед превращением покрытая подложка предпочтительно высушивается. Соответствующие приемы и условия для этого известны специалисту. Сушка отличается от преобразования тем, что при ней при температурах, которые по сути еще не вызывают превращения материала, растворитель или дисперсионная среда удаляется. Если сушка происходит термическим путем, температура составляет не более 120°C.
Завершающее преобразование с образованием слоя, содержащего оксид индия, происходит термическим путем. Завершающее преобразование предпочтительно происходит благодаря температурам менее 500°C и больше 120°C. Однако особенно хорошие результаты могут быть достигнуты, если для превращения применяют температуры от 150°C до 400°C. Способы достижения этих температур основываются предпочтительно на использовании печей, горячего воздуха, нагревательных пластин, ИК-излучателей и электронных пушек.
При этом обычно применяется время превращения от нескольких секунд до нескольких часов.
Кроме того, термическому превращению может содействовать то, что перед, в течение или после термической обработки происходит облучение УФ-, ИК- или видимым излучением или покрытая подложка обрабатывается воздухом или кислородом.
Далее, качество слоя, полученного способом согласно изобретению, может быть дополнительно улучшено благодаря следующей за стадией превращения комбинированной температурной и газовой обработке (Н2 или O2), плазменной обработке (Ar-, N2, O2 или Н2-плазма), лазерной обработке (длинами волн в УФ-, видимом или ИК-диапазоне) или обработке озоном.
Процесс покрытия может повторяться для увеличения толщины. При этом процесс покрытия может происходить таким образом, что после каждого единичного нанесения облучают электромагнитным излучением и затем преобразуют или происходит несколько нанесений, непосредственно за которыми соответственно следует электромагнитное облучение, с единичной термической стадией превращения после последнего нанесения.
Кроме того, объектами изобретения являются получаемые способом согласно изобретению слои, содержащие оксид индия. При этом особенно хорошие свойства имеют получаемые способом согласно изобретению слои, содержащие оксид индия, которые являются чистыми слоями оксида индия. Как было изложено ранее, при их получении применяются только прекурсоры, содержащие индий, предпочтительно только индий-галоген-алкоксиды, особенно предпочтительно только один индий-галоген-алкоксид.
Получаемые способом согласно изобретению слои, содержащие оксид индия, предпочтительно пригодны для получения проводниковых или полупроводниковых слоев для электронных структурных элементов, особенно для изготовления транзисторов (особенно тонкопленочных транзисторов), диодов, сенсоров или солнечных элементов.
Следующий пример должен раскрыть предмет настоящего изобретения более детально.
Пример
На легированную кремниевую подложку с длиной кромки около 15 мм и с покрытием из оксида кремния толщиной около 200 нм и штыревой структурой из ITO/Gold наносили 100 мкл 2,5%-ного по массе раствора InCl(OMe)2 в этаноле. Затем осуществляется нанесение покрытия методом центрифугирования при 2000 оборотах в минуту (5 секунд). Непосредственно после этого процесса покрытия покрытая подложка в течение 5 минут облучается возникающим от ртутной лампы УФ-излучением в диапазоне длин волн 150-300 нм. Затем один час подложка нагревается на нагревательной пластине при температуре 350°C. После превращения можно в перчаточном боксе определить значение подвижности в поле µFET=5 см2/B·c при 30 VDS.
Сравнительный пример (алкоксид индия в качестве прекурсора)
На легированную кремниевую подложку с длиной кромки около 15 мм и с покрытием из оксида кремния толщиной около 200 нм и штыревой структурой из ITO/Gold наносили 100 мкл 2,5%-ного по массе раствора In(OiPr)3 в этаноле. Затем осуществляется нанесение покрытия методом центрифугирования при 2000 оборотах в минуту (5 секунд). Непосредственно после этого процесса покрытия покрытая подложка в течение 5 минут облучается возникающим от ртутной лампы УФ-излучением в диапазоне длин волн 150-300 нм. Затем один час подложка нагревается на нагревательной пластине при температуре 350°C. После превращения можно в перчаточном боксе определить значение подвижности в поле µFET=2,2 см2/B·c при 30 VDS.
Сравнительный пример (без УФ-излучения)
На легированную кремниевую подложку с длиной кромки около 15 мм и с покрытием из оксида кремния толщиной около 200 нм и штыревой структурой из ITO/Gold наносили 100 мкл 2,5%-ного по массе раствора InCl(OMe)2 в этаноле. Затем осуществляется нанесение покрытия методом центрифугирования при 2000 оборотах в минуту (5 секунд). Покрытая подложка нагревается один час на нагревательной пластине при температуре 350°C. После превращения можно в перчаточном боксе определить значение подвижности в поле µFET=1,7 см2/B·c при 30 VDS.

Claims (16)

1. Жидкофазный способ получения слоев, содержащих оксид индия, из безводного раствора, отличающийся тем, что безводную композицию, содержащую по меньшей мере один индий-галоген-алкоксид общей формулы InX(OR)2 с R=алкильный и/или алкоксиалкильный остаток и X=F, Cl, Br или I и по меньшей мере один растворитель или дисперсионную среду, в последовательности пунктов от a) до d) в безводной атмосфере
a) наносят на подложку,
b) нанесенную на подложку композицию облучают электромагнитным излучением с длиной волны ≤360 нм,
c) при необходимости сушат и затем
d) термически преобразовывают в слой, содержащий оксид индия.
2. Способ по п.1, отличающийся тем, что алкильные или алкоксиалкильные остатки по меньшей мере одного индий-галоген-алкоксида являются C1-C15-алкокси- или алкоксиалкильными группами.
3. Способ по п.2, отличающийся тем, что индий-галоген-алкоксид представляет собой InCl(OMe)2, InCl(OCH2CH2OCH3)2, InCl(OEt)2, InCl(OiPr)2 или InCl(OtBu)2.
4. Способ по п.1, отличающийся тем, что безводная композиция наряду с индий-галоген-алкоксидом имеет еще другие прекурсоры, предпочтительно алкоксиды и галоген-алкоксиды других элементов, особенно предпочтительно алкоксиды и галоген-алкоксиды B, Al, Ga, Ge Sn, Pb, P, Zn и Sb, растворенные или диспергированные.
5. Способ по п.1, отличающийся тем, что индий-галоген-алкоксид InX(OR)2 применяют с содержанием от 0,1 до 10% мас. в пересчете на общую массу композиции.
6. Способ по п.1, отличающийся тем, что растворитель или дисперсионная среда является апротонным или слабо протонным растворителем или дисперсионной средой.
7. Способ по п.6, отличающийся тем, что по меньшей мере один растворитель или дисперсионная среда является метанолом, этанолом, изопропанолом, тетрагидрофурфуриловым спиртом, трет-бутанолом, бутилацетатом, метоксиэтанолом или толуолом.
8. Способ по п.1, отличающийся тем, что по меньшей мере один растворитель или дисперсионная среда представлен/а с содержанием от 90 до 99,9% мас. в пересчете на общую массу композиции.
9. Способ по п.1, отличающийся тем, что композиция имеет вязкость от 1 мПа·с до 10 Па·с.
10. Способ по п.1, отличающийся тем, что подложка состоит из стекла, кремния, диоксида кремния, оксида металла или переходного металла, металла или полимерного материала.
11. Способ по п.1, отличающийся тем, что нанесение безводной композиции на подложку осуществляют способом печати, способом распыления, способом центрифугирования, способом погружения или способом, выбранным из группы, состоящей из нанесения покрытия путем создания мениска, щелевого покрытия, нанесения покрытия с помощью щелевой экструзионной головки и наливного покрытия.
12. Способ по п.11, отличающийся тем, что нанесение осуществляют способом струйной печати, выбранным из непрерывной, термической и пьезоструйной печати.
13. Способ по п.1, отличающийся тем, что облучение безводной композиции происходит электромагнитным излучением с длиной волны 150-300 нм.
14. Способ по п.1, отличающийся тем, что превращение осуществляют термически посредством температур выше 150°C.
15. Способ по одному из пп.1-14, отличающийся тем, что перед, в течение или после термической обработки происходит облучение УФ-, ИК- или видимым излучением.
16. Применение по меньшей мере одного слоя, содержащего оксид индия, получаемого способом по одному из пп.1-15, в качестве проводникового или полупроводникового слоев для электронных структурных элементов, в частности в качестве проводникового или полупроводникового слоев для транзисторов, диодов, сенсоров или солнечных элементов.
RU2012130174/02A 2009-12-18 2010-11-25 Способ получения слоев, содержащих оксид индия, полученные этим способом слои, содержащие оксид индия, и их применение RU2567142C9 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009054997A DE102009054997B3 (de) 2009-12-18 2009-12-18 Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
DE102009054997.8 2009-12-18
PCT/EP2010/068185 WO2011073005A2 (de) 2009-12-18 2010-11-25 Verfahren zur herstellung von indiumoxid-haltigen schichten, nach dem verfahren hergestellte indiumoxid-haltige schichten und ihre verwendung

Publications (3)

Publication Number Publication Date
RU2012130174A RU2012130174A (ru) 2014-01-27
RU2567142C2 true RU2567142C2 (ru) 2015-11-10
RU2567142C9 RU2567142C9 (ru) 2016-10-27

Family

ID=43927323

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012130174/02A RU2567142C9 (ru) 2009-12-18 2010-11-25 Способ получения слоев, содержащих оксид индия, полученные этим способом слои, содержащие оксид индия, и их применение

Country Status (9)

Country Link
US (1) US8841164B2 (ru)
EP (1) EP2513355B1 (ru)
JP (1) JP5864434B2 (ru)
KR (1) KR101719853B1 (ru)
CN (1) CN102652187B (ru)
DE (1) DE102009054997B3 (ru)
RU (1) RU2567142C9 (ru)
TW (1) TWI509102B (ru)
WO (1) WO2011073005A2 (ru)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018431A1 (de) * 2007-04-19 2008-10-30 Evonik Degussa Gmbh Pyrogenes Zinkoxid enthaltender Verbund von Schichten und diesen Verbund aufweisender Feldeffekttransistor
DE102008058040A1 (de) * 2008-11-18 2010-05-27 Evonik Degussa Gmbh Formulierungen enthaltend ein Gemisch von ZnO-Cubanen und sie einsetzendes Verfahren zur Herstellung halbleitender ZnO-Schichten
DE102009028802B3 (de) 2009-08-21 2011-03-24 Evonik Degussa Gmbh Verfahren zur Herstellung Metalloxid-haltiger Schichten, nach dem Verfahren herstellbare Metalloxid-haltige Schicht und deren Verwendung
DE102009028801B3 (de) 2009-08-21 2011-04-14 Evonik Degussa Gmbh Verfahren zur Herstellung Indiumoxid-haltiger Schichten, nach dem Verfahren herstellbare Indiumoxid-haltige Schicht und deren Verwendung
DE102010031895A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010031592A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010043668B4 (de) * 2010-11-10 2012-06-21 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
JP5871263B2 (ja) * 2011-06-14 2016-03-01 富士フイルム株式会社 非晶質酸化物薄膜の製造方法
DE102011084145A1 (de) 2011-10-07 2013-04-11 Evonik Degussa Gmbh Verfahren zur Herstellung von hochperformanten und elektrisch stabilen, halbleitenden Metalloxidschichten, nach dem Verfahren hergestellte Schichten und deren Verwendung
US9698386B2 (en) 2012-04-13 2017-07-04 Oti Lumionics Inc. Functionalization of a substrate
US8853070B2 (en) * 2012-04-13 2014-10-07 Oti Lumionics Inc. Functionalization of a substrate
WO2013157715A1 (ko) * 2012-04-16 2013-10-24 전자부품연구원 저온 공정을 이용한 산화물 박막 제조방법, 산화물 박막 및 그 전자소자
DE102012209918A1 (de) * 2012-06-13 2013-12-19 Evonik Industries Ag Verfahren zur Herstellung Indiumoxid-haltiger Schichten
DE102013212017A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Verfahren zur Herstellung von Indiumalkoxid-Verbindungen, die nach dem Verfahren herstellbaren Indiumalkoxid-Verbindungen und ihre Verwendung
DE102013212018A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Metalloxid-Prekursoren, sie enthaltende Beschichtungszusammensetzungen, und ihre Verwendung
DE102013212019A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Formulierungen zur Herstellung Indiumoxid-haltiger Schichten, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102014202718A1 (de) 2014-02-14 2015-08-20 Evonik Degussa Gmbh Beschichtungszusammensetzung, Verfahren zu ihrer Herstellung und ihre Verwendung
EP3009402A1 (de) * 2014-10-15 2016-04-20 Justus-Liebig-Universität Gießen Verfahren zur Herstellung von gemischten Metallhalogenid-Alkoxiden und Metalloxid-Nanopartikeln
EP3350115A1 (en) 2015-09-14 2018-07-25 University College Cork Semi-metal rectifying junction
JP6828293B2 (ja) 2015-09-15 2021-02-10 株式会社リコー n型酸化物半導体膜形成用塗布液、n型酸化物半導体膜の製造方法、及び電界効果型トランジスタの製造方法
CN105836792B (zh) * 2016-05-27 2017-08-25 洛阳瑞德材料技术服务有限公司 一种纳米氧化铟的生产方法
JP2019057698A (ja) * 2017-09-22 2019-04-11 株式会社Screenホールディングス 薄膜形成方法および薄膜形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237081A (en) * 1990-03-16 1993-08-17 Eastman Kodak Company Preparation of indium alkoxides soluble in organic solvents
RU2118402C1 (ru) * 1994-05-17 1998-08-27 Виктор Васильевич Дроботенко Способ получения металлооксидных покрытий (его варианты)
DE102007013181A1 (de) * 2007-03-20 2008-09-25 Evonik Degussa Gmbh Transparente, elektrisch leitfähige Schicht, ein Verfahren zur Herstellung der Schicht sowie die Verwendung

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198607A (ja) 1983-04-27 1984-11-10 三菱マテリアル株式会社 保護膜を備えた透明導電膜
JPS59198606A (ja) * 1983-04-27 1984-11-10 三菱マテリアル株式会社 透明導電膜形成用組成物
US4681959A (en) 1985-04-22 1987-07-21 Stauffer Chemical Company Preparation of insoluble metal alkoxides
JPH01115010A (ja) 1987-10-28 1989-05-08 Central Glass Co Ltd 透明導電性膜用組成物およびその膜の形成方法
JPH02113033A (ja) * 1988-10-21 1990-04-25 Central Glass Co Ltd 静電防止処理を施された非金属材料およびこれらの処理方法
JPH02145459A (ja) * 1988-11-28 1990-06-04 Central Glass Co Ltd 複写機用ガラスおよびその製造法
JPH09157855A (ja) * 1995-12-06 1997-06-17 Kansai Shin Gijutsu Kenkyusho:Kk 金属酸化物薄膜の形成方法
JPH11106935A (ja) * 1997-09-30 1999-04-20 Fuji Photo Film Co Ltd 金属酸化物薄膜の製造方法及び金属酸化物薄膜
JP2000016812A (ja) * 1998-07-02 2000-01-18 Kansai Shingijutsu Kenkyusho:Kk 金属酸化物膜の製造方法
JP4264145B2 (ja) * 1998-07-08 2009-05-13 株式会社Kri In2O3−SnO2前駆体塗布液の製造方法
JP4030243B2 (ja) * 1999-12-20 2008-01-09 日本電気株式会社 強誘電体薄膜形成用溶液及び強誘電体薄膜形成方法
JP4073146B2 (ja) 2000-03-17 2008-04-09 株式会社高純度化学研究所 ガリウムアルコキシドの精製方法
JP2005272189A (ja) 2004-03-24 2005-10-06 Japan Science & Technology Agency 紫外光照射による酸化物半導体薄膜の作製法
JP2008500151A (ja) * 2004-05-28 2008-01-10 独立行政法人科学技術振興機構 パターン膜形成方法、装置と材料および製品
JP4767616B2 (ja) * 2005-07-29 2011-09-07 富士フイルム株式会社 半導体デバイスの製造方法及び半導体デバイス
JP5249240B2 (ja) 2006-12-29 2013-07-31 スリーエム イノベイティブ プロパティズ カンパニー 金属アルコキシド含有フィルムの硬化方法
DE102007018431A1 (de) 2007-04-19 2008-10-30 Evonik Degussa Gmbh Pyrogenes Zinkoxid enthaltender Verbund von Schichten und diesen Verbund aufweisender Feldeffekttransistor
GB2454019B (en) 2007-10-27 2011-11-09 Multivalent Ltd Improvements in or relating to synthesis of gallium and indium alkoxides
DE102008058040A1 (de) 2008-11-18 2010-05-27 Evonik Degussa Gmbh Formulierungen enthaltend ein Gemisch von ZnO-Cubanen und sie einsetzendes Verfahren zur Herstellung halbleitender ZnO-Schichten
DE102009009338A1 (de) 2009-02-17 2010-08-26 Evonik Degussa Gmbh Indiumalkoxid-haltige Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102009009337A1 (de) 2009-02-17 2010-08-19 Evonik Degussa Gmbh Verfahren zur Herstellung halbleitender Indiumoxid-Schichten, nach dem Verfahren hergestellte Indiumoxid-Schichten und deren Verwendung
DE102009050703B3 (de) 2009-10-26 2011-04-21 Evonik Goldschmidt Gmbh Verfahren zur Selbstassemblierung elektrischer, elektronischer oder mikromechanischer Bauelemente auf einem Substrat und damit hergestelltes Erzeugnis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237081A (en) * 1990-03-16 1993-08-17 Eastman Kodak Company Preparation of indium alkoxides soluble in organic solvents
RU2118402C1 (ru) * 1994-05-17 1998-08-27 Виктор Васильевич Дроботенко Способ получения металлооксидных покрытий (его варианты)
DE102007013181A1 (de) * 2007-03-20 2008-09-25 Evonik Degussa Gmbh Transparente, elektrisch leitfähige Schicht, ein Verfahren zur Herstellung der Schicht sowie die Verwendung

Also Published As

Publication number Publication date
US20130122647A1 (en) 2013-05-16
EP2513355B1 (de) 2017-08-23
JP5864434B2 (ja) 2016-02-17
KR101719853B1 (ko) 2017-04-04
TWI509102B (zh) 2015-11-21
CN102652187B (zh) 2016-03-30
EP2513355A2 (de) 2012-10-24
RU2567142C9 (ru) 2016-10-27
TW201137170A (en) 2011-11-01
WO2011073005A3 (de) 2011-09-01
KR20120095422A (ko) 2012-08-28
WO2011073005A2 (de) 2011-06-23
US8841164B2 (en) 2014-09-23
DE102009054997B3 (de) 2011-06-01
JP2013514246A (ja) 2013-04-25
RU2012130174A (ru) 2014-01-27
CN102652187A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
RU2567142C2 (ru) Способ получения слоев, содержащих оксид индия, полученные этим способом слои, содержащие оксид индия, и их применение
US8859332B2 (en) Process for producing indium oxide-containing layers
JP5877832B2 (ja) 酸化インジウム含有層を製造するためのインジウムオキソアルコキシド、その製造方法及びその使用
TWI485284B (zh) 用以製造含有金屬氧化物之層的方法
US8546594B2 (en) Indium oxoalkoxides for producing coatings containing indium oxide
KR101662980B1 (ko) 산화 인듐을 함유하는 층의 제조 방법
JP2015522509A (ja) 酸化インジウム含有層の製造法
RU2659030C2 (ru) Составы для получения содержащих оксид индия слоев, способы получения указанных слоев и их применение

Legal Events

Date Code Title Description
TH4A Reissue of patent specification
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 31-2015

MM4A The patent is invalid due to non-payment of fees

Effective date: 20201126