WO2005050762A1 - 非水系電解液電池電極用バインダー組成物およびその利用 - Google Patents

非水系電解液電池電極用バインダー組成物およびその利用 Download PDF

Info

Publication number
WO2005050762A1
WO2005050762A1 PCT/JP2004/017512 JP2004017512W WO2005050762A1 WO 2005050762 A1 WO2005050762 A1 WO 2005050762A1 JP 2004017512 W JP2004017512 W JP 2004017512W WO 2005050762 A1 WO2005050762 A1 WO 2005050762A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
polymer
binder composition
vinylphenol
binder
Prior art date
Application number
PCT/JP2004/017512
Other languages
English (en)
French (fr)
Inventor
Mitsuyasu Sakuma
Nobuo Ahiko
Mayumi Sugahara
Masaomi Yoshida
Aisaku Nagai
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to JP2005515686A priority Critical patent/JP4931420B2/ja
Priority to KR1020067009753A priority patent/KR101159923B1/ko
Publication of WO2005050762A1 publication Critical patent/WO2005050762A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Binder composition for non-aqueous electrolyte battery electrode and use thereof is a binder composition for non-aqueous electrolyte battery electrode and use thereof
  • the present invention relates to a binder for an electrode used for manufacturing a nonaqueous electrolyte battery, particularly a lithium ion battery, an electrode mixture using the same, an electrode structure and a nonaqueous electrolyte battery using the same.
  • Non-aqueous secondary batteries using lithium are used as power sources for small electronic devices mainly used in homes such as mobile phones, personal computers, and video camcorders, as batteries that can obtain more energy with less volume and weight. I have been. Due to its further excellent energy density, non-aqueous secondary batteries using lithium have begun to be used as mobile energy sources for automobiles and satellites.
  • an electrode structure for a lithium ion battery is composed of a powdered electrode material (including a positive electrode or negative electrode active material and an optional conductive agent) and an electrode mixture comprising a binder dispersed in an appropriate solvent or dispersion medium. It has a structure in which the slurry is applied on the current collector in a state of being volatilized, the solvent is volatilized, and the electrode mixture layer is held, and the binder is a vinylidene fluoride polymer, polybutadiene or styrene. Monobutadiene polymers and the like are mainly used.
  • a major object of the present invention is to provide a binder composition for an electrode of a non-aqueous electrolyte battery that achieves both an adhesive effect and battery performance with a small amount of addition while maintaining the required high capacity of the non-aqueous electrolyte battery.
  • An object of the present invention is to provide an object, an electrode and a nonaqueous electrolyte battery using the same.
  • the present invention solves the above-mentioned problem, and is a binder for a positive electrode and a Z or a negative electrode of a nonaqueous electrolyte battery including a positive electrode capable of inserting and extracting lithium, and a negative electrode,
  • An object of the present invention is to provide a binder composition for a non-aqueous electrolyte battery electrode containing a bulfenol-based polymer.
  • the present invention further provides an electrode mixture comprising the above-described electrode binder composition and an electrode active material; an electrode structure in which an electrode mixture layer is formed on a current collector; Another object of the present invention is to provide a non-aqueous electrolyte battery including one of them.
  • the binder composition achieves both the adhesive effect and the battery performance with a small amount of addition while maintaining the required high capacity of the nonaqueous electrolyte battery, but a polymer having a phenol structure is not clear.
  • a polymer having a phenol structure By being selectively present on the electrode active material surface and in the vicinity thereof, it functions as an antioxidant that efficiently captures metal ions and radicals generated by decomposition of the electrolytic solution, and has the effect of covering the active material surface with the polymer itself. It is considered that both suppress the loss of battery capacity (irreversible capacity) due to decomposition of the electrolyte near the active material surface.
  • it has a large number of hydroxyl groups and thus has polarity, which is also effective for the adhesion between the electrode mixture and the current collector.
  • the vinylphenol-based polymer as a main component of the binder composition for a nonaqueous electrolyte battery electrode of the present invention means a polymer containing at least vinylphenol as a polymerized unit, a homopolymer of a vinyl phenol, units of polymerized bi two Rufuwenoru at least 5 mol% or more, preferably 3 0 mol% or more, more preferably 5 0 mole 0 /. It contains a copolymer of vinyl phenol and other monomers contained in the above ratio.
  • Examples of other monomers include styrene, acrylic acid, and methacrylic acid; ethyl acrylate, hexafluorobutynole acrylate, pentafluoropropyl acrylate, pentadecafluorooctyl acrylate, and the like.
  • Maleic acid esters such as formic acid, maleic acid, dimethyl maleate, ethinole maleate, ethinole maleate, n-butyl maleate and 2-ethylhexyl maleate; fumaric acid, ethyl fumarate, fumarate Fumaric acid esters such as getyl acid, di-n-
  • Examples of preferred vinyl phenol-based polymers include polyvinyl phenol, vinyl phenol 'styrene copolymer, vinyl phenol' methacrylic ester copolymer, vinyl / refenomonoacrylate acrylic ester copolymer, and bromine. Polyvinyl phenol and the like.
  • the vinyl phenolic thread polymer has a weight average molecular weight of 500 to 1, 000, 0000, preferably 1, 000 to 500, as measured by gel permeation chromatography in terms of polystyrene. , 0000, more preferably 1, 000 to 100, 000.
  • the vinylphenol-based polymer alone or in combination with another polymer constitutes the binder composition of the present invention.
  • the other polymer a solution-forming type or a dispersion-forming type polymer which has been conventionally used as a binder for a non-aqueous electrolyte battery electrode is used, and specific examples thereof include a vinylidene fluoride polymer.
  • Tetrafluoroethylene polymer polybutadiene, styrene-butadiene copolymer, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl acetate-vinyl alcohol copolymer
  • Polymers polyacrylic acid and its salts, polyethylene oxide, methinoresolesolose, hydroxyxetinoresenorelose and force / repo Cellulose such as xylmethylcellulose and polyvinylpyrrolidone are used.
  • an epoxy resin in combination.
  • aqueous dispersion-forming polymer a styrene-butadiene copolymer and a tetrafluoroethylene-based polymer are also preferably used.
  • vinylidene fluoride in addition to vinylidene fluoride homopolymer, vinylidene fluoride, a hydrocarbon monomer such as ethylene and propylene, or vinylidene fluoride ⁇ ⁇ , trifluorene ethylene, Fluorinated monomers other than vinylidene fluoride such as triflenole mouth, ethylene, tetraf / n-fluoroethylene, hexafluoropropylene, f / n-fluoroanolekyl vinyl ether, etc.
  • the monomer containing a carboxyl group examples include unsaturated monobasic acids such as acrylic acid and crotonic acid, unsaturated dibasic acids such as maleic acid and citraconic acid, and maleic acid which is a monoalkynoleestenolate thereof.
  • monomethinole ester monoethyl maleate / ester, monomethyl citraconic acid, monoethyl citraconic acid, and the like.
  • glycidyl group-containing monomer include aryl glycidyl ether, methallyl glycidyl ether, glycidyl crotonate, glycidyl acrylate and the like.
  • monomer having a hydroxyl group include, for example, hydroxyxetinole acrylate, hydroxyxetinole methacrylate, and hydroxypropyl acrylate.
  • vinylidene fluoride polymers can be obtained by known methods such as suspension polymerization, emulsion polymerization, and solution polymerization. Furthermore, a functional group such as a carboxyl group, a glycidyl group, a hydroxyl group, a sulfonic acid group, or a polar group may be added to the vinylidene fluoride polymer.
  • a vinylidene fluoride polymer is heated or dehydrofluorinated with a base or the like to form a double bond in the polymer, and maleic acid
  • an acid such as malonic acid or propionic acid
  • an oxidizing agent such as hydrogen peroxide or sodium hypochlorite
  • a sulfonic acid group for example, a vinylidene fluoride polymer is dissolved in a solvent such as chloroform, or fine particles of about 0.1 to 500 ⁇ are dissolved in a solvent such as water.
  • the molecular weight of a vinylidene fluoride polymer is based on the intrinsic viscosity (the logarithmic viscosity at 30 ° C of a solution of 4 g of resin dissolved in 1 liter of N, N-dimethylformamide). , 1.0 to 20 dl / g, preferably 1.2 to 15 d1 / g.
  • the binder composition of the present invention contains a bulfenol polymer as a main component, but when used in combination with another polymer, the proportion of the binder composition in the binder composition is not necessarily required to be large, and for example, 0.1% by weight or more, preferably 0.5 to 30% by weight 0 /. , More preferably preferably used in 1 to 2 0 weight 0/0, the range of. This is because the effect of the vinylphenol-based polymer as an antioxidant is exhibited in a relatively small amount, and the effect of imparting a functional group can be reduced by adding a functional group to another polymer.
  • a bielphenol-based polymer can be used in combination with a polymer of a monomer having a functional group such as the carboxyl group or glycidyl group, or a polymer having another functional group such as an epoxy resin.
  • the binder composition of the present invention is usually dissolved in a solvent of another polymer such as a vinylphenol-based polymer and a vinylidene fluoride-based polymer added as necessary, or is dissolved in water or the like.
  • a solvent of another polymer such as a vinylphenol-based polymer and a vinylidene fluoride-based polymer added as necessary, or is dissolved in water or the like.
  • the solvent is preferably a polar organic solvent, such as N-methyl-2-pyrrolidone, N, N-dimethylform.
  • Examples include amide, N, N-dimethylacetamide, N, N-dimethylsulfoxide, hexamethylphosphonamide, triethyl phosphate, acetone and the like.
  • the vinylphenol-based polymer is soluble in these polar organic solvents having a dissolving power for the vinylidene fluoride-based polymer, and is a solution-based binder together with the vinylidene fluoride-based polymer and other binder-use polymers. Suitable for forming the composition.
  • a water-dispersed emulsion such as a styrene-butadiene-based polymer
  • a water-dispersed emulsion or an aqueous solution of a bulfenol-based polymer prepared by emulsion polymerization together with the active material.
  • the slurry may be mixed with an aqueous dispersion emulsion such as the styrene-butadiene polymer to form a slurry.
  • Formula L i MY 2 (M is C o, N i, F e , Mn, C r, at least the transition metal V such kind: Y is a chalcogen element such as 0, S) complex metal chalcogen represented by
  • powdered carbonaceous materials such as natural graphite, artificial graphite, coke, activated carbon, phenolic resin, and carbonized calcination of pitch, etc .
  • silicon such as Si, SiO, Si Sn, etc.
  • silicon compounds S n, a metal or alloy such as C u 6 S n 5, G e O of the metal oxide, G e 0 2, SOS n0 2, P b O, P b O 2 , etc., or a composite of these Metal oxides and the like are used.
  • the binder composition is used in an amount of 0.1 to 100 parts by weight based on 100 parts by weight of an electrode (positive electrode or negative electrode) active material and an optional conductive additive (these are generally referred to as “powder electrode materials”). It is preferable to use 30 parts by weight, particularly 0.5 to 20 parts by weight.
  • the binder composition is used by dissolving it in an organic solvent or dispersing it in an aqueous dispersion medium in advance, the binder composition is used in an amount of 0.1 to 30 parts by weight per 100 parts by weight of the solvent or the dispersion medium. In particular, it is preferable to use 1 to 20 parts by weight.
  • a device used for mixing a mixture comprising a binder composition, a powdered electrode material, a solvent or a dispersion medium, a homogenizer or a multi-axis planetary dispersing mixer / kneader or an emulsifier can be used. It is not limited.
  • the mixture slurry or paste prepared by the above method is uniformly dispersed and mixed with the powdered electrode material and the binder composition, and is applied to the current collector with good applicability.
  • the coating method may be a known method, and among them, the doctor-blade method is preferably used.
  • the solvent of the mixture on the current collector is dried at, for example, 50 to 170 ° C., and a pressing step is performed as necessary to form an electrode structure for a non-aqueous secondary battery or the like.
  • the binder composition and the electrode mixture of the present invention are used for forming at least one of the positive electrode and the negative electrode, but if any one of them is preferably used for forming the negative electrode. This is because the powdered electrode material constituting the negative electrode requires a binder having higher adhesiveness, and the binder composition of the present invention is particularly suitable.
  • the polymer slurry is dehydrated and washed with water.After the dehydration, the polymer slurry is dried at 80 ° C for 20 hours, and the yield is 89%, and the inherent viscosity is 1.1 d 1 ng of vinylidene fluoride polymer A ( (Vinylidene fluoride copolymer).
  • the polymer slurry is dehydrated, washed with water and dehydrated, and then dried at 80 ° C for 20 hours. The yield is 91%, and the intrinsic viscosity is 1.1 d1 Zg. (Polyvinylidene fluoride) was obtained.
  • Polyparavinyl phenol as binder (“Markalinker S-2P” manufactured by Maruzen Petrochemical Co., Ltd .; weight average molecular weight 5000) 0.4 parts by weight and vinylidene fluoride polymer A 3.6 96 parts by weight of a massive artificial graphite powder having an average particle diameter of 20 m and 67 parts by weight of N-methylpyrrolidone (NMP) are mixed with respect to parts by weight, and the first negative electrode mixture composition of the present invention is mixed. A was prepared. The resulting mixture is applied evenly on a copper foil with a thickness of 8 ⁇ to a thickness of about 100 ⁇ (150 g / m 2 ) after drying, and dried at 130 ° C for 25 minutes. Thus, a negative electrode structure A was obtained.
  • NMP N-methylpyrrolidone
  • the negative electrode structure A applied to the current collector and dried was used as a sample, and the peel strength of the electrode mixture layer from the current collector was measured by a 180 ° peel test in accordance with JISK 6854. / mm.
  • a 1.3 mol Z solution was prepared by mixing a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and ethyl carbonate (DEC) in a weight ratio of 3: 5: 2.
  • the electrolytic solution to which Li PF 6 was added at the ratio of the title was poured into the outer container, and a stainless steel lid having a thickness of 0.2 mm was covered and fixed to the outer container, and the content was sealed to a diameter of 20 mm and a thickness of 1 mm.
  • a 6-mm coin battery A was prepared.
  • Battery A was charged at a constant current of 0.2 mA to 4.2 V, and charged at a constant voltage until the current value attenuated to 50 ⁇ A. Thereafter, the battery was discharged to 3.0 V at a constant current of 0.2 mA.
  • Example 2 The procedure was performed in the same manner as in Example 1 except that the type (molecular weight) and amount of polyparavinylphenol used as a binder in the production of the negative electrode and the type of the vinylidene fluoride polymer were changed as shown in Table 1. A negative electrode structure and then a battery were obtained, and the performance was evaluated.
  • polybutyl alcohol (“Poval 107”, manufactured by Kuraray Co., Ltd.) was used as a binder instead of polyparavinylphenol, but it did not dissolve in NMP and the electrode could not be prepared.
  • the peel strength of the negative electrode structure was 1.0 gZmm, the irreversible capacity of the battery E during the first charge / discharge was 34 mAh / g, and the Coulomb efficiency was 91%.
  • Example 1 was repeated except that polyparabulfenol (“S—2P”), epoxy resin (EP), and vinylidene fluoride-based polymer A were blended as binders in the ratios shown in Table 3 in the preparation of the negative electrode.
  • S—2P polyparabulfenol
  • EP epoxy resin
  • vinylidene fluoride-based polymer A were blended as binders in the ratios shown in Table 3 in the preparation of the negative electrode.
  • a negative electrode structure and a battery were obtained in the same manner as in 1, and the performance was evaluated.
  • EP Bisulfur A-type eho.
  • Xyresin "I Picote 828" (Japan Iho, manufactured by Xylene Corporation)
  • the vinylphenol-based polymer is contained in the electrode binder composition used in the nonaqueous electrolyte battery including the positive electrode and the negative electrode capable of inserting and extracting lithium.
  • Incorporation of coalescing reduces the irreversible capacity of nonaqueous electrolyte solution 1 and increases Coulomb efficiency, while increasing, but not decreasing, the adhesive strength between the electrode mixture layer and the current collector It turns out that is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

電極用バインダー組成物中にビニルフェノール系重合体を含有させる。これにより、非水電解液電池の必要な高容量性を維持しつつ、少ない添加量でも接着効果と電池性能を両立させる非水電解液電池の電極用バインダー組成物、ならびにこれを用いる電極および非水電解液電池を提供することができる。

Description

非水系電解液電池電極用バインダー組成物およびその利用 技術分野
本発明は 、 非水系電解液電池、 特にリチウムイオン電池製造に用いられる電極用 バインダー、 それを用いた電極合剤、 電極構造体およびそれを用いた非水電解液電 池に関する 明
背景技術
近年電子技術の発展はめざましく、 各種の機器が小型軽量化されてきている。 こ 書
の電子機器の小型軽量化と相まって、 その電源となる電池の小型軽量化の要望も非 常に大きくなってきている。 少ない容積及び重量でより大きなエネルギーを得るこ とが出来る電池として、 リチウムを用いた非水系二次電池が、 主として携帯電話や パーソナルコンピュータ、 ビデオカムコーダなどの家庭で用いられる小型電子機器 の電源として用いられてきた。 さらにエネルギー密度が優れるためリチウムを用い た非水系二次電池が自動車や衛星等の移動体エネルギー源として使用され始めてい る。
リチウムイオン電池用電極構造体は、 一般に粉末電極材料 (正極または負極活物 質および必要に応じて用いられる導電剤を含む) と、 バインダーからなる電極合剤 が適当な溶剤または分散媒中に分散されたスラリ一状態で集電体上に塗布され、 溶 剤を揮散して、 電極合剤層として保持された構造を有し、 バインダーにはフッ化ビ 二リデン系重合体、 ポリブタジェン系あるいはスチレン一ブタジエン系重合体等が、 主として用いられている。 他方、 これら非水電解液電池の繰り返し使用中における 電極合剤層中のバインダーの劣化を防止するために酸化防止剤を添加することも提 案されている (特開平 1 1— 7 3 9 6 4号公報) 、 電極作製時に酸化防止剤が揮 発したり、 酸化防止剤の添加により接着性能が低下するなど、 効果の発現が不十分 であった。
しかしながら、 機器の小型軽量化と電池持続時間の増長という市場の要求は、 リ チウムイオン電池に更なる高容量化を課し、 従来に比較し、 電池内部では電極を詰 め込むなどして体積当たりの容量増加させるため、 バインダ一添加量の更なる低下 が求められている。 しかし、 バインダー添加量が少なくなると接着性が劣り、 活物質表面がバインダ 一で被覆されない部分が多くなり充 .放電時の不可逆容量が増えてしまうとレ、う問 題があった。 . 発明の開示
• したがって、 本発明の主要な課題は、 非水電解液電池の必要な高容量性を維持し つつ、 少ない添加量でも接着効果と電池性能を両立させる非水電解液電池の電極用 バインダ一組成物、 ならびにこれを用いる電極および非水電解液電池を提供するこ とにある。
本発明は、 上記の課題を解决するものであって、 リチウムを吸蔵 ·放出可能な正 極と、 負極とを備えた非水電解液電池の正極および Zまたは負極用のバインダ一で あって、 ビュルフエノール系重合体を含有する非水電解液電池電極用バインダ一組 成物を提供するものである。
' 本発明は、 更に上記電極用バインダー組成物と電極活物質とからなる電極合剤; 集電体上に電極合剤層を形成した電極構造体;該電極構造体を正極および負極の少 なくとも一方として含む非水電解液電池を提供するものである。
上記バインダー組成物が、 非水電解液電池の必要な高容量性を維持しつつ、 少な い添加量でも接着効果と電池性能を両立させる理由は必ずしも明らかでないが、 フ ェノール構造を有する重合体が電極活物質表面およびその近傍に選択的に存在する ことで、 金属イオンや電解液分解で生成するラジカルを効率よく捕捉する酸化防止 剤的な働きと、 重合体そのものによる活物質表面の被覆効果の両方が、 電解液の活 物質表面近傍での分解による電池容量のロス (不可逆容量) を抑制していると考え られる。 さらに、 ヒ ドロキシル基を多数含有するため極性を有し、 電極合剤と集電 体の接着性にも効果があると解される。 発明を実施するための最良の形態
本発明の非水電解液電池電極用バインダ一組成物の主要な成分としてのビニルフ エノ一ル系重合体とは、 少なくともビニルフエノールを重合された単位として含む 重合体を意味するものであって、 ビニルフエノールの単独重合体と、 重合されたビ 二ルフヱノールの単位を少なくとも 1 5モル%以上、 好ましくは 3 0モル%以上、 さらに好ましくは 5 0モル0/。以上の割合で含むビニルフエノールと他のモノマーと の共重合体を含むものである。 他のモノマーの例としては、 スチレン、 アクリル酸、 メタクリル酸; アク リル酸 ェチル、 アク リル酸へキサフルォロブチノレ、 アク リル酸ペンタフルォロプロピル、 ァクリル酸ペンタデカフルォロォクチル等のァクリル酸エステル類; メタク リル酸 n—ブチル、 メタク リル酸ベンジル、 メタクリル酸 2—ジメチルアミノエチル、 メ タクリル酸トリフルォロェチル、 メタクリル酸へキサフルォロイソプロピル、 メタ クリル酸ヘプタフルォロブチル、 メタクリル酸ォクタフルォロペンチル等、 更には メタクリル酸ヒ ドロキシェチル等のメタクリル酸ヒ ドロキシアルキル類を含むメタ クリル酸エステル類; アタ リルァミ ド、 メタタ リルァミ ド、 アク リロニトリル、 メ タクリロ二トリル等の他のアクリル系単量体類 ;無水マレイン酸、 マレイン酸、 マ レイン酸ジメチル、 マレイ ン酸ェチノレ、 マレイ ン酸ジェチノレ、 マレイン酸 n—ブチ ル、 マレイン酸 2—ェチルへキシル等のマレイン酸エステル類; フマル酸、 フマル 酸ェチル、 フマル酸ジェチル、 フマル酸ジ一 n—ブチル等のフマル酸エステル類; マレイミ ド、 フエニルマレイミ ド等のマレイミ ド類; N—イミダゾール、 1—ビニ ルイミダゾー < /レ, 4 -ビニルイミダゾーノレ等のィミダゾーノレ類 ; N—ビニノレピロリ ドン等が挙げられる。 これらビニルフエノール系重合体は、 更にフッ素、 臭素、 塩 素等のハロゲン基、 追加の t ドロキシ基、 ヒ ドロキシメチル基、 スルホン酸基等の 追加の置換基を有するものであってもよい。 好ましいビニルフヱノール系重合体の 例と しては、 ポリ ビニルフヱノール、 ビニルフエノール ' スチレン共重合体、 ビニ ルフエノール ' メタァクリル酸エステル系共重合体、 ビ二/レフエノ一ノレ ' アクリル 酸エステル系共重合体、 臭素化ポリ ビニルフエノール等が挙げられる。
ビニルフエノール糸重合体は、 ゲルパーミエーションクロマトグラフィ一による ポリスチレン換算で測定された重量平均分子量が 5 0 0〜1 , 0 0 0, 0 0 0、 好 ましくは 1 , 0 0 0〜 5 0 0, 0 0 0、 更に好ましくは 1 , 0 0 0〜 1 0 0, 0 0 0のものが用いられる。
ビニルフエノール系重合体は、 単独で、 または他の重合体との組合せで、 本発明 のバインダー組成物を構成する。 他の重合体としては、 従来より非水電解液電池電 極用バインダーとして用いられている、 溶液形成型あるいは分散液形成型の重合体 が用いられ、 その具体例としてはフッ化ビニリデン系重合体、 テトラフルォロェチ レン系重合体、 ポリブタジエン、 スチレン一ブタジエン共重合体、 ポリ ビニルアル コール、 エチレン—酢酸ビニル共重合体、 エチレン一ビ-ルアルコール共重合体、 エチレン—酢酸ビニルービニルアルコール共重合体、 ポリアクリル酸およびその塩、 ポリエチレンォキシド、 メチノレセゾレロース、 ヒ ドロキシェチノレセノレロースや力/レポ キシメチルセルロース等のセルロース類、 ポリ ビニルピロリ.ドン等が用いられる。 特に溶液形成型のフッ化ビニリデン系重合体と組合せて使用することが好ましい。 またエポキシ樹脂を併用することも好ましい。 また水分散液形成型の重合体の好適 例として、 スチレン一ブタジエン共重合体、 テトラフルォロエチレン系重合体も好 ましく用いられる。
ここでフッ化ビニリデン系重合体には、 フッ化ビニリデンの単独重合体に加えて、 フッ化ビニリデンと、 エチレン、 プロピレン等の炭化水素系単量体、 またはフッ化 ビニ Λ^、 トリフノレオ口エチレン、 トリフノレオ口クロ口エチレン、 テトラフノレォロェ チレン、 へキサフルォロプロピレン、 フノレオロアノレキルビニルエーテノレ等のフッ化 ビニリデン以外の含フッ素単量体 (好ましくはフッ化ビニリデンとの合計量の 2 0 重量%以下) および Ζまたはカルボキシル基、 グリシジル基、 ヒ ドロキシル基等の 官能基を有する単量体 (好ましくはフッ化ビ二リデン等の他の単量体との合計量の 5重量%以下、 特に 0 . 1〜3重量%) と、 の共重合体が含まれる。 カルボキシル 基を含有する単量体としては、 例えば、 アク リル酸、 クロ トン酸等の不飽和一塩基 酸、 マレイン酸、 シトラコン酸等の不飽和二塩基酸、 もしくはそれらのモノアルキ ノレエステノレであるマレイン酸モノメチノレエステル、 マレイン酸モノェチ/レエステル、 シトラコン酸モノメチルエステル、 シトラコン酸モノェチルエステル等がある。 ま た、 グリシジル基を含有する単量体としては、 例えば、 ァリルグリシジルエーテル、 メタァリルグリシジルェ一テル、 クロ トン酸グリシジルエステル、 ァリル酢酸グリ シジルエステル等がある。 ヒ ドロキシル基を有する単量体としては、 たとえば、 ァ クリル酸ヒ ドロキシェチノレ、 メタクリノレ酸ヒ ドロキシェチノレ、 ァクリノレ酸ヒ ドロキ シプロピル等がある。 これらフッ化ビニリデン系重合体は、 懸濁重合、 乳化重合、 溶液重合等の公知の方法により得られる。 更に、' 上記フッ化ビニリデン系重合体に、 カルボキシル基、 グリシジル基、 ヒ ドロキシル基、 スルホン酸基等の官能基や極性 基を付加しても構わない。 カルボキシル基、 グリシジル基、 ヒ ドロキシル基を導入 する方法としては、 例えば、 フッ化ビニリデン系重合体を加熱あるいは塩基等で脱 フッ化水素して高分子鎮中に二重結合を生成させ、 マレイン酸、 マロン酸、 プロピ オン酸等の酸を添加するか、 または過酸化水素、 次亜塩素酸ナトリ ゥム等の酸化剤 を添加する方法がある。 スルホン酸基を導入する方法としては、 例えば、 フッ化ビ 二リデン系重合体をクロ口ホルム等の溶媒に溶解するか、 0 . 1〜 5 0 0 μ ιη程度 の微粒子を水等の溶媒に分散し、 クロロスルホン酸、 発煙硫酸等のスルホン化剤を 添加する方法がある。 フッ化ビニリデン系重合体の分子量は、 目安としてインへレント粘度 (樹脂 4 g を 1 リツ トルの N、 N—ジメチルホルムアミ ドに溶解させた溶液の 3 0 °Cにおける 対数粘度をいう) において、 1 . 0〜2 0 d l / g、 好ましくは 1 · 2〜 1 5 d 1 / gであるものが好適に用いられる。
本発明のバインダー組成物は、 ビュルフエノール系重合体を主要成分とするもの であるが、 他の重合体と組合せて用いる場合、 そのバインダー組成物に占める割合 は必ずしも多量である必要はなく、 例えば 0 . 1重量%以上、 好ましくは 0 . 5〜 3 0重量0 /。、 更に好ましくは 1〜2 0重量0 /0、 の範囲で好適に用いられる。 ビニル フエノール系重合体の持つ酸化防止剤的効果は、 比較的少量で発揮され、 またその 官能基付与効果は、 他の重合体に官能基を持たせることにより軽減可能だからであ る。
またビエルフエノール系重合体と、 上記カルボキシル基、 グリシジル基等の官能 基を有する単量体の重合体、 あるいはエポキシ樹脂等の他の官能基を有する重合体 と併用することもできる。
本発明のバインダー組成物は、 通常、 バインダー組成物を構成するビニルフヱノ ール系重合体および必要に応じて加えられるフッ化ビニリデン系重合体等の他の重 合体の溶剤に溶解しあるいは水等の分散媒に分散させ、 更に正極または負極活物質 ならびに必要に応じて添加される導電補助剤等の助剤を分散させて、 スラリ一状な いしペース ト状の電極合剤を形成して、 電極の製造に用いられる。 例えばフッ化ビ 二リデン系重合体とビュルフエノール系重合体を組合せて用いる場合、 溶剤として は、 好ましくは極性を有する有機溶媒であり、 例えば N—メチルー 2 _ピロリ ドン、 N , N—ジメチルホルムアミ ド、 N , N—ジメチルァセトアミ ド、 N , N—ジメチ ルスルホキシド、 へキサメチルホスホアミ ド、 トリェチルホスフェイ ト、 アセトン などが挙げられる。 なおビニルフエノール系重合体は、 フッ化ビニリデン系重合体 に対して溶解能を有するこれら極性有機溶媒に可溶性であり、 フッ化ビニリデン系 重合体や他のバインダ一用重合体とともに溶液系のバインダ一組成物を形成するの に適している。 さらに、 スチレン一ブタジエン系重合体等の水分散系ェマルジヨン とともに用いる場合には、 ビュルフエノール系重合体の、 乳化重合で調製した水分 散系ェマルジョンあるいはアル力リ性水溶液を用意し、 活物質等とともに前記スチ レン一ブタジエン系重合体等の水分散系ェマルジョンと混合してスラリ一化すれば よい。
本発明において、 リチウムイオン二次電他用の活物質としては、 正極の場合は、 一般式 L i MY2 (Mは C o, N i , F e, Mn, C r, V等の遷移金属の少なく とも一種: Yは 0、 S等のカルコゲン元素) で表される複合金属カルコゲン化合物、 負極の場合は、 天然黒鉛、 人造黒鉛、 コークス、 活性炭、 フエノール樹脂やピッチ 等を焼成炭化したもの等の粉末状炭素質材料、 S i , S i O, S i S n等の珪素や 珪素化合物、 S n, C u 6 S n 5等の金属または合金類、 金属酸化物系の G e O, G e 02, S O S n02, P b O, P b O 2等あるいはこれらの複合金属酸化物等が 用いられる。
バインダー組成物は、 電極 (正極または負極) 活物質および必要に応じて添加す る導電助剤 (これらを包括的に 「粉末電極材料」 と称する) 1 00重量部に対して、 0. 1〜30重量部、 特に 0. 5〜 20重量部の割合で使用することが好ましい。 また、 予めバインダ一組成物を有機溶剤に溶かしてあるいは水性分散媒に分散さ せて使用する場合には、 溶剤または分散媒 1 00重量部あたり、 バインダー組成物 が 0. 1〜30重量部、 特に 1〜20重量部となる割合で使用することが好ましレ、。 バインダー組成物、 粉末電極材料、 溶媒あるいは分散媒からなる合剤を混合する のに用いられる装置としては、 ホモジナイザーや多軸遊星方式の分散 .混合 ·混練 機や乳化機が使用できるが、 これらに限定されるものではない。
上記の方法にて調製された合剤スラリーないしペース トは、 粉末電極材料、 バイ ンダ一組成物が均一に分散 ·混合され、 良好な塗布性で集電体に塗布される。 塗布 の方法は公知の方法でよく、 なかでもドクタ一ブレード法が好ましく用いられる。 集電体上の合剤は、 例えば 50〜1 70°Cで溶媒が乾燥され、 必要に応じてプレス 工程を経て、 非水系二次電他用の電極構造体が形成される。
本発明のバインダー組成物および電極合剤は、 正極および負極の少なく とも一方 の形成に用いられるが、 いずれか一方ということであれば負極形成に用いることが 好ましい。 これは、 負極を構成する粉末電極材料が、 より接着性の高いバインダー を要求し、 本発明のバインダー組成物が特に適するからである。
[実施例]
以下、 実施例および比較例により本発明を更に具体的に説明する。
(フッ化ビニリデン系重合体 Aの製造)
内容積 2リ ッ トルのオートクレーブに、 イオン交換水 1 075 g、 メチルセル口 ース 0. 4 g、 フッ化ビニリデン単量体 (VD F) 398 g、 マレイン酸モノメチ ルエステル (MMM) 2 g、 ジイソプロピルパーォキシジカーボネート 2. 5 g、 酢酸ェチル 5 gの各量を仕込み、 28°Cで 27時間懸濁重合を行った。 重合終了後、 重合体スラ リーを脱水、 水洗 .脱水後、 80°Cで 20時間乾燥し、 収率 8 9 %で、 ィンヘレント粘度が 1. 1 d 1ノ gのフッ化ビニリデン重合体 A (フッ化ビニリデン共重合体) を得た。
(フッ化ビニリデン系重合体 Bの製造)
内容積 2リ ッ トルのオートクレーブに、 イオン交換水 1075 g、 メチノレセル口 ース 0. 4 g、 フッ化ビニリデン単量体 (VDF) 400 g、 ジイソプロピルパー ォキシジカーボネート 2. 5 g、 酢酸ェチル 5 gの各量を仕込み、 26°Cで 20時 間懸濁重合を行った。
重合終了後、 重合体スラリーを脱水、 水洗 ·脱水後、 80°Cで 20時間乾燥し、 収率 91 %で、 インへレント粘度が 1. 1 d 1 Zgのフッ化ビニリデン系重合体 B (ポリフッ化ビニリデン) を得た。
<実施例 1 >
(負極の作製)
バインダーとしての、 ポリパラビニルフヱノール (丸善石油化学 (株) 製 「マル カリンカ一 S— 2 P」 ;重量平均分子量 5000) 0. 4重量部およびフッ化ビニ リデン系重合体 A 3. 6重量部に対して、 平均粒子径 20 mの塊状人造黒鉛粉末 9 6重量部と、 N—メチルピロリ ドン (NMP) 67重量部とを混合して本発明のぺ 一ス ト状負極合剤組成物 Aを調製した。 得られた合剤を厚さ 8 μπιの銅箔上に、 乾燥 後の膜厚が約 100 μιη (1 50 g/m2) になるように均一に塗布し、 1 30°Cで 25分間乾燥して、 負極構造体 Aを得た。
(電極構造体における電極合剤層の剥離強度測定方法)
集電体に塗布、 乾燥した負極構造体 Aを試料とし、 電極合剤層の集電体からの剥 離強度を J I S K 6854に準拠して 1 80° 剥離試験により測定したところ、 5. 7 g f /mmであった。
(電池の作製)
得られた負極構造体 Aを直径 1 5 mmの円形に切り抜き、 対極として厚さ 0. 8 mmのリチウム金属箔を直径 14 mmの円形に切り抜き、 直径 1 9mm、 厚さ 25 mの円形のポリプロピレン製微多孔膜からなるセパレ一タを介して、 互いに面を対 向させて、 ポリプロピレン製パッキングを配置したステンレス鋼製の外装容器中 (直径 20mm、 高さ 1. 4mm、 ステンレス鋼厚さ 0. 2 mm) に収納した。 ェ チレン力一ボネート (EC) 、 ェチルメチルカーボネート (EMC) およびジェチ ルカーボネート (DEC) を重量比 3 : 5 : 2で混合した溶液に 1. 3m o l Zリ ットルの割合で L i P F 6を添加した電解液を外装容器に注入し、 厚さ 0. 2mm のステンレス製蓋を外装容器に被せ固定して、 内容物を封止した直径 20mm、 厚 さ 1. 6 mmのコイン型電池 Aを作製した。
(充放電試験)
上記の電池 Aを 0. 2mAの定電流で 4. 2 Vまで充電し、 定電圧で電流値が 5 0 μ Aまで減衰するまで充電した。 その後、 0. 2 m Aの定電流で 3. 0Vまで放 電した。 電池 Aの放電容量は 360 niA hZ g (黒鉛) 、 不可逆容量は 24mAh /g (黒鉛) 、 初回の充放電サイクルにおけるクーロン効率 (=放電容量 Z充電容 量 X 1 00) は 94%だった。
測定結果およびバインダー組成の概要を、 以下の実施例、 比較例の結果とともに 後記表 1 (〜表 3) にまとめて示す。
く実施例 2〜 6 >
負極の作製においてバインダ一として用いる、 ポリパラビニルフエノールの種類 (分子量) および添加量ならびにフッ化ビニリデン系重合体の種類を表 1に示すよ うに変えた他は、 実施例 1と同様に行い、 負極構造体、 次いで電池をそれぞれ得て、 性能を評価した。
<比較例 1および 2 >
実施例 1および 6における負極の作製において、 ポリパラビニルフエノール ( 「S_ 2 P」 ) を除き、 フッ化ビニリデン系重合体 Aまたは Bの、 それぞれ 3. 6重量部を 4重量部にした他は、 実施例 1および 6と、 それぞれ同様に行い、 負極 構造体および電池を得て、 性能評価を行つた。
<実施例 7〜9 >
負極の作製においてポリパラビュルフヱノール ( 「S— 2 P」 ) 0. 4重量部を 表 2にそれぞれ示すビニルフエノール系重合体 0. 2重量部に変え、 フッ化ビニリ デン系重合体 A量を 3. 8重量部に変えた以外は、 実施例 1と同様に行い、 負極構 造体および電池をそれぞれ得て、 性能評価を行った。
<比較例 3 >
負極の作製において、 バインダーとして、 ポリパラビニルフエノールの代わりに ポリビュルアルコール ( 「ポバール 107」 、 クラレ (株) 製) を使用したが N MPに溶解せず、 電極は作製できなかった。
<比較例 4 >
負極の作製で、 ポリパラビニルフエノール ( 「S_ 2 P」 ) の代わりに、 ォクタ デシル一 3— (3, 5—ジ一 t e r t—ブチノレー 4ーヒ ドロキシフエニル) プロピ ォネート (フエノール系酸化防止剤 : 「 I R G AN〇 X 1 0 7 6」 、 チバ ' スぺシ ャルティ一 · ケミカルズ社製 分子量 5 3 0. 9) を 0. 4 gを使用した他は、 実 施例 1 と同様に行い、 負極構造体および電池を得て、 性能評価を行った。
負極構造体の剥離強度は 1. 0 gZmm、 電池 Eの初回充放電時の不可逆容量は 34mAh/g、 クーロン効率は 9 1 %だった。
(実施例 1 0〜 1 2および比較例 5 )
負極の作製で、 バインダーと してポリパラビュルフエノール ( 「S— 2 P」 ) と エポキシ榭脂 (E P) およびフッ化ビニリデン系重合体 Aをそれぞれ表 3の比率で 配合した他は、 実施例 1 と同様に行い、 負極構造体および電池を得て、 性能評価を 行った。
上記実施例および比較例に用いたバインダ一組成物の概要および評価結果をまと めて、 以下の表 1から 3に示す (なお、 バインダー (ポリパラビニルフエノール、 フッ化ビニリデン系重合体およびエポキシ樹脂等) の合計添加量 (乾燥合剤中) は いずれも 4. 0重量0 /0である。 ) 。
1]
Figure imgf000010_0001
= (放電容量バ放電容量 +不可逆容量 )) X 100 [ft 2 ]
Figure imgf000011_0001
*
BR:ホ。リハ。ラビ::ルフ I ル臭化物(「リンカ- MB j、丸善石油化学 (株)製)
ΗΜ:Λ°ラビニルフエノ-ル-ヒド□キシメチル共重合体(Γリンカ- CHMJ、丸善石油化学 (株)製)
ST:Aラビニルフエノ-ル-スチレン共重合体(Γリンカ- CSF70J、丸善石油化学 (株)製)
[表 3 ]
Figure imgf000011_0002
EP:ビスフ^-ル A型エホ。キシ樹脂:「Iピコ-ト 828」 (日本 Iホ。キシレシ'ン (株)製)
産業上の利用可能性
上記表 1〜 3の結果からわかるように、 本発明に従い、 リチウムを吸蔵 ·放出可 能な正極と負極とを備えた非水電解液電池において用いる電極用バインダ一組成物 中にビニルフエノール系重合体を含有させることにより、 電極合剤層と集電体との 接着強度を低下させることなく、 むしろ増大させつつ、 非水電解液電¾1の不可逆容 量を低減し、 クーロン効率を増大させることが可能なことがわかる。

Claims

請 求 の 範 囲
1 . リチウムを吸蔵 ·放出可能な正極と、 負極とを備えた非水電解液電池の正極お よび Zまたは負極用のパインダ一であって、 ビニルフエノール系重合体を含有す る非水電解液電池電極用バインダー組成物。
2 . ビニルフエノール系重合体と他の重合体との重合体混合物を含有する請求項 1 に記載の電極用バインダ一組成物。
3 . 他の重合体が溶液形成型の重合体である請求項 2に記載の電極用バインダー組 成物。
4 . 他の重合体がフッ化ビ二リデン系重合体である請求項 3に記載の電極用バイン ダー組成物。
5 . フッ化ビニリデン系重合体がカルボキシル基、 グリシジル基およびヒ ドロキシ ル基から選ばれた官能基を有するフッ化ビニリデン共重合体である請求項 4に記 載の電極用バインダ一組成物。
6 . 更にエポキシ系樹脂を含有する請求項 3〜 5のいずれかに記載の電極用パイン ダー組成物。
7 . 他の重合体が水分媒液形成型の重合体である請求項 2に記載の電極用バインダ 一組成物。
8 . ビニルフエノール系重合体が重合体混合物の 0 . 5〜3 0重量%の量で用いら れる請求項 2〜 7のいずれかに記載の電極用バインダ一組成物。
9 . 上記ビニルフエノール系重合体が、 ポリ ビニルフエノール、 ビュルフエノー ル ' スチレン共重合体、 ビニルフエノール ' メタク リル酸ヒ ドロキシアルキル系 共重合体を含むビュルフエノール ' メタクリル酸エステル系共重合体、 ビニルフ ェノール . アタリル酸エステル系共重合体、 臭素化ポリ ビュルフエノールのうち 少なくとも 1種を含む請求項 1〜 8のいずれかに記載の電極用バインダ一組成物。 0 . 請求項 1〜 9のいずれかに記載の非水電解液電池の電極用パインダ一組成物 と、 電極活物質とからなる電極合剤。 1 . 集電体上に請求項 1 0に記載の電極合剤層を有する電極構造体。 2 . 請求項 1 1に記載の電極構造体を正極および負極の少なく とも一方として含 む非水電解液電池。
PCT/JP2004/017512 2003-11-21 2004-11-18 非水系電解液電池電極用バインダー組成物およびその利用 WO2005050762A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005515686A JP4931420B2 (ja) 2003-11-21 2004-11-18 非水系電解液電池電極用バインダー組成物およびその利用
KR1020067009753A KR101159923B1 (ko) 2003-11-21 2004-11-18 비수계 전해액 전지 전극용 결합제 조성물 및 그의 이용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-391748 2003-11-21
JP2003391748 2003-11-21

Publications (1)

Publication Number Publication Date
WO2005050762A1 true WO2005050762A1 (ja) 2005-06-02

Family

ID=34616419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017512 WO2005050762A1 (ja) 2003-11-21 2004-11-18 非水系電解液電池電極用バインダー組成物およびその利用

Country Status (5)

Country Link
JP (1) JP4931420B2 (ja)
KR (1) KR101159923B1 (ja)
CN (1) CN100454619C (ja)
TW (1) TW200518375A (ja)
WO (1) WO2005050762A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120786A1 (ja) * 2007-03-30 2008-10-09 Zeon Corporation 二次電池電極用バインダー、二次電池電極および二次電池
WO2009107778A1 (ja) * 2008-02-29 2009-09-03 日本ゼオン株式会社 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
JP2010177062A (ja) * 2009-01-30 2010-08-12 Hitachi Ltd リチウム二次電池
EP2477259A1 (en) * 2011-01-17 2012-07-18 Samsung Electronics Co., Ltd. Negative electrode, negative active material, method of preparing the negative electrode, and lithium battery including the negative electrode
WO2013191239A1 (ja) * 2012-06-20 2013-12-27 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
EP2983186A4 (en) * 2013-04-01 2016-11-02 Korea Mach & Materials Inst ELECTRODE COMPOSITION FOR SUPERCONDENSOR, CURED PRODUCT THEREOF, ELECTRODE COMPRISING SAID CURED PRODUCT, CAPACITOR COMPRISING SAID ELECTRODE, AND MANUFACTURING METHOD FOR SAID SUPERCONDENSOR
JP2018077946A (ja) * 2016-11-07 2018-05-17 株式会社リコー 二次電池用電極及び二次電池
EP3555939A4 (en) * 2016-12-13 2020-06-03 Henkel AG & Co. KGaA IMPROVED LI ION SECONDARY BATTERY AND LI CAPACITOR ELECTRODE COMPOSITIONS
WO2022045315A1 (ja) * 2020-08-31 2022-03-03 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068215A1 (ja) * 2009-12-03 2011-06-09 日本ゼオン株式会社 電気化学素子用バインダー粒子
CN110061187B (zh) * 2013-12-26 2022-03-15 日本瑞翁株式会社 锂离子二次电池负极用粘合剂组合物、负极用浆料组合物、负极以及锂离子二次电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172452A (ja) * 1992-12-02 1994-06-21 Kureha Chem Ind Co Ltd フッ化ビニリデン系共重合体
JPH11250937A (ja) * 1998-02-27 1999-09-17 Fuji Film Celltec Kk 非水電解液二次電池
JP2005032632A (ja) * 2003-07-08 2005-02-03 Hitachi Maxell Ltd 非水二次電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179438C (zh) * 1996-12-16 2004-12-08 大金工业株式会社 非水电解液二次电池用粘合剂和使用该粘合剂的电池电极合剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172452A (ja) * 1992-12-02 1994-06-21 Kureha Chem Ind Co Ltd フッ化ビニリデン系共重合体
JPH11250937A (ja) * 1998-02-27 1999-09-17 Fuji Film Celltec Kk 非水電解液二次電池
JP2005032632A (ja) * 2003-07-08 2005-02-03 Hitachi Maxell Ltd 非水二次電池の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120786A1 (ja) * 2007-03-30 2008-10-09 Zeon Corporation 二次電池電極用バインダー、二次電池電極および二次電池
JP5387404B2 (ja) * 2007-03-30 2014-01-15 日本ゼオン株式会社 二次電池電極用バインダー、二次電池電極および二次電池
JP5381974B2 (ja) * 2008-02-29 2014-01-08 日本ゼオン株式会社 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
WO2009107778A1 (ja) * 2008-02-29 2009-09-03 日本ゼオン株式会社 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
JPWO2009107778A1 (ja) * 2008-02-29 2011-07-07 日本ゼオン株式会社 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
US8426062B2 (en) 2008-02-29 2013-04-23 Zeon Corporation Binder composition for nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte secondary battery
JP2010177062A (ja) * 2009-01-30 2010-08-12 Hitachi Ltd リチウム二次電池
US9276253B2 (en) 2011-01-17 2016-03-01 Samsung Electronics Co., Ltd. Negative electrode with fluorinated acrylate polymer coating layer, and lithium battery
EP2477259A1 (en) * 2011-01-17 2012-07-18 Samsung Electronics Co., Ltd. Negative electrode, negative active material, method of preparing the negative electrode, and lithium battery including the negative electrode
WO2013191239A1 (ja) * 2012-06-20 2013-12-27 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
EP2983186A4 (en) * 2013-04-01 2016-11-02 Korea Mach & Materials Inst ELECTRODE COMPOSITION FOR SUPERCONDENSOR, CURED PRODUCT THEREOF, ELECTRODE COMPRISING SAID CURED PRODUCT, CAPACITOR COMPRISING SAID ELECTRODE, AND MANUFACTURING METHOD FOR SAID SUPERCONDENSOR
JP2018077946A (ja) * 2016-11-07 2018-05-17 株式会社リコー 二次電池用電極及び二次電池
EP3555939A4 (en) * 2016-12-13 2020-06-03 Henkel AG & Co. KGaA IMPROVED LI ION SECONDARY BATTERY AND LI CAPACITOR ELECTRODE COMPOSITIONS
US11791468B2 (en) 2016-12-13 2023-10-17 Henkel Ag & Co. Kgaa Secondary Li ion battery and Li capacitor electrode compositions
WO2022045315A1 (ja) * 2020-08-31 2022-03-03 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池

Also Published As

Publication number Publication date
TWI346408B (ja) 2011-08-01
CN100454619C (zh) 2009-01-21
CN1883069A (zh) 2006-12-20
JPWO2005050762A1 (ja) 2007-06-14
JP4931420B2 (ja) 2012-05-16
KR20060099527A (ko) 2006-09-19
KR101159923B1 (ko) 2012-06-25
TW200518375A (en) 2005-06-01

Similar Documents

Publication Publication Date Title
JP4851092B2 (ja) 非水電解液電池の電極用バインダー組成物およびその利用
JP4361241B2 (ja) 非水系二次電池電極用バインダー組成物、電極合剤組成物、電極および二次電池
JP5625917B2 (ja) リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
JP4335215B2 (ja) 分散剤が化学結合された電極用複合バインダー重合体
KR101311583B1 (ko) 중합체 조성물, 이차 전지 전극용 페이스트 및 이차 전지 전극
JP5382120B2 (ja) リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
KR20150135207A (ko) 축전 디바이스용 결합제 조성물
KR20140116075A (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
JP6020209B2 (ja) 二次電池負極用スラリー組成物の製造方法
JP5428126B2 (ja) 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、これを用いた非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
JP2005310747A (ja) 非水系電気化学素子電極形成用バインダー、電極合剤、電極構造体および電気化学素子
JP6695349B2 (ja) 導電率の改善されたLiイオン電池の電極
JP7160696B2 (ja) 非水電解質二次電池用電極
WO2010098434A1 (ja) リチウムイオン二次電池用電極
WO2005050762A1 (ja) 非水系電解液電池電極用バインダー組成物およびその利用
JP2014063676A (ja) 二次電池正極用水系バインダー液、およびこれを用いてなる二次電池正極用水系ペースト、二次電池正極、二次電池
JP2002246029A (ja) 結着剤組成物
JP2002056896A (ja) 非水電解質電池
JP2008311217A (ja) 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、これを用いた非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
JP6863288B2 (ja) リチウムイオン二次電池用電極
JPH09199132A (ja) 電極およびそれを使用した二次電池
JP6909288B2 (ja) 正極用組成物
JP2008270142A (ja) 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、この樹脂組成物を用いた非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
JP2007299738A (ja) 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物及びこれを用いた非水電解液系エネルギーデバイス用電極並びに非水電解液系エネルギーデバイス
JP3637351B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034062.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515686

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020067009753

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067009753

Country of ref document: KR

122 Ep: pct application non-entry in european phase