WO2005050671A2 - Ion conductive random copolymers - Google Patents
Ion conductive random copolymers Download PDFInfo
- Publication number
- WO2005050671A2 WO2005050671A2 PCT/US2004/037815 US2004037815W WO2005050671A2 WO 2005050671 A2 WO2005050671 A2 WO 2005050671A2 US 2004037815 W US2004037815 W US 2004037815W WO 2005050671 A2 WO2005050671 A2 WO 2005050671A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- polymer
- water
- toluene
- boiled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- ALSOEDSCHIYYMU-UHFFFAOYSA-N CC(C)(C)c(cc1)ccc1S(c(cc1)ccc1SC(C=C1)=CCC1(C)Sc1ccc(C(C)(C)C(C)(C)c(ccc(S(c(cc2)cc([S](C)(O)(=O)=O)c2Sc(cc2)ccc2Sc(cc2)ccc2SC(C)(C)C)(=O)=O)c2)c2S(O)(=O)=O)cc1)(=O)=O Chemical compound CC(C)(C)c(cc1)ccc1S(c(cc1)ccc1SC(C=C1)=CCC1(C)Sc1ccc(C(C)(C)C(C)(C)c(ccc(S(c(cc2)cc([S](C)(O)(=O)=O)c2Sc(cc2)ccc2Sc(cc2)ccc2SC(C)(C)C)(=O)=O)c2)c2S(O)(=O)=O)cc1)(=O)=O ALSOEDSCHIYYMU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F228/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2/00—Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/10—Polythioethers from sulfur or sulfur-containing compounds and aldehydes or ketones
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/881—Electrolytic membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
- H01M8/1011—Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2371/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
- C08J2371/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08J2371/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08J2371/12—Polyphenylene oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/497—Ionic conductivity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04197—Preventing means for fuel crossover
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- This invention relates to ion conductive random copolymers that are useful in forming polymer electrolyte membranes used in fuel cells.
- Fuel cells have been projected as promising power sources for portable electronic devices, electric vehicles, and other applications due mainly to their non-polluting nature.
- the polymer electrolyte membrane based fuel cell technology such as direct methanol fuel cells (DMFCs) has attracted much interest thanks to their high power density and high energy conversion efficiency.
- MEA membrane-electrode assembly
- PEM proton conducting polymer electrolyte membrane
- CCM catalyst coated member
- electrodes i.e., an anode and a cathode
- Proton-conducting membranes for DMFCs are known, such as Nafion® from the E.I. Dupont De Nemours and Company or analogous products from Dow Chemicals. These perfluorinated hydrocarbon sulfonate ionomer products, however, have serious limitations when used in DMFCs. Nafion® loses conductivity when the operation temperature of the fuel cell is over 80°C. Moreover, Nafion® has a very high methanol crossover rate, which impedes its applications in DMFCs.
- U.S. Patent No. 5,773,480, assigned to Ballard Power System describes a partially fluorinated proton conducting membrane from ⁇ , ⁇ , ⁇ -trifluorostyrene.
- This membrane is its high cost of manufacturing due to the complex synthetic processes for monomer ⁇ , ⁇ , ⁇ -trifluorostyrene and the poor sulfonation ability of poly ( ⁇ , ⁇ , ⁇ - trifluorostyrene).
- Another disadvantage of this membrane is that it is very brittle, thus has to be incorporated into a supporting matrix.
- the need for a good membrane for fuel cell operation requires balancing of various properties of the membrane. Such properties included proton conductivity, methanol- resistance, chemical stability and methanol crossover, fast start up of DMFCs, and durability to cell performance.
- the dimension changes of the membrane also put a stress on the bonding of the membrane- electrode assembly (MEA). Often this results in delamination of the membrane from the electrode after excessive swelling of the membrane. Therefore, maintaining the dimensional stability over a wide temperature range and avoiding excessive membrane swelling are important for DMFC applications.
- the invention provides sulfonated random copolymer compositions which can be used to fabricate polymer electrolyte membranes (PEM's), catalyst coated membrane (CCM's) and membrane electrode assemblies (MEAs) which are useful in fuel cells.
- PEM's polymer electrolyte membranes
- CCM's catalyst coated membrane
- MEAs membrane electrode assemblies
- the invention includes three classes of random ion conductive copolymers.
- Such random polymers are of the following formulas:
- R is a single bond, a cycloaliphatic of the formula C n H 2n-2 ; ,
- a, b, c and d are mole fractions of the monomer present in the copolymer where each are independently, from 0.01 to 1;
- Q is an ion conducting group comprising -SO 3 X, -COOX -PO 3 X or -SO 2 -NH-SO 2 R f , where R f is a prefluoronated hydrocarbon having 1-20 carbon atoms; and wherein X is a cation or a proton.
- Rl or R2 are independently a single bond, a cycloaliphatic of the formula C n H 2n-
- R3 is aryl ketone, aryl sulfone, aryl nitrile, and substituted aryl nitrile;
- a, b, c and d are mole fractions of the monomer present in the copolymer where each are independently, from 0.01 to 1;
- Q is an ion conducting group comprising -SO 3 X, -COOX -PO 3 X or -SO2-NH-SO 2 Rf, and wherein X is a cation or a hydrogen atom.
- comonomers are used to make the ion conductive copolymer, where at least one comonomer is ion conducting.
- a specific embodiment is set forth in Formula III.
- Ar 3 and Ar 6 are the same or different from each other and are:
- the ion conductive group comprises -SO3H, -COOH, -HPO3H or -SO2NH-SO2- RF where RF is a perfluorinated hydrocarbon having 1-20 carbon atoms and said ion conducting group are pendant to the copolymer backbone;
- At least one of X 2 , X , X 5 and/or X 6 is S.
- X ⁇ and/or X 4 is -S(O) 2 -.
- X ⁇ and/or X 4 is -C(O)-.
- X] is -S(O) 2 - and is -C(O)-.
- a 3 and A 6 are different.
- a particularly preferred embodiment is Formula IV: Formula IV
- FIG. 1 demonstrates the performance of DMAc containing PEM's made of the copolymers of Example 20, Example 17 and Example 22 as compared between 50 and 100% relative humidity.
- the invention provides random copolymers that are ion conductive.
- One use of such polymeric material is in the formation of polymer electrolyte membranes (PEMs), catalyst coated membrane (CCM) and membrane electrode assemblies (MCA's), which may be used in fuel DMFCs fuel cells.
- PEMs polymer electrolyte membranes
- CCM catalyst coated membrane
- MCA's membrane electrode assemblies
- random ion conductive copolymers can be made having the following formula:
- R is a bond, a cycloaliphatic of the formula
- Q is an ion conducting group comprising -SO 3 X, -COOX -PO 3 X or -SO 2 -NH-SO 2 Rf where R f is a perfluorinated hydrocarbon of 1-20 carbon atoms and where X is a cation or probe.
- a, b, c and d are mole fractions of each of the monomers present in the copolymer where each are independently, from 0.01 to about 1.
- R is isopropylidene, cyclohexylidene, 11.4 diphenylene di-isopropylene.
- a is from about 0.10 to about 1.00
- b is from about 0.05 to about 0.85
- c is from about 0 to about 0.90
- d is from about 0.15 to about 0.95.
- a is from about 0.20 to about 0.9
- b is from about 0.10 to about 0.45
- c is from about 0 to about 0.80 and d is from about 0.55 to about 0.90.
- the invention pertains to random ion conductive copolymers and proton exchange membranes having the formula:
- Ri or R 2 is a single bond, a cycloaliphatic of the formula C n H 2n-2 ,
- R3 is aryl ketone, aryl sulfone, aryl nitrile, and substituted aryl nitrile.
- a, b, c and d are mole fractions of the monomer present in the copolymer where each are independently, from 0.01 to 1;
- Q is an ion conducting group comprising -SO 3 X, -COOX -PO 3 X or -SO 2 -NH-SO 2 R f , where R f is a prefluoronated hydrocarbon having 1-20 carbon atoms; and wherein X is a cation or a proton.
- a, b, c and d are mole fractions for each monomer present in the copolymer, each independently from 0.01 to about 1 and X is a cation or a hydrogen atom.
- Rl is cyclohexydyl, and R2 is fluorenyl.
- a is from about 0.10 to about 1.00
- b is from about 0.05 to about 0.85
- c is from about 0 to about 0.90
- d is from about 0.15 to about 0.95.
- a is from about 0.20 to about 1.00
- b is from about 0.10 to about 0.45
- c is from about 0 to about 0.80 and d is from about 0.55 to about 0.90.
- a particularly preferred random copolymer is:
- n and m are mole fractions and, n plus m equals 1,
- n is between 0.1 and 0.5, more preferably between 0.2 and 0.4 and most preferably between 0.25 and 0.35, m is 1 minus n, and k is between 40 and 200 more preferably between 50 and 100.
- n 0.3 and m is 0.7 and has the formula:
- k is between 40 and 200.
- Ion conductive polymers can also be represented by Formula III:
- Ar 3 and Ar 6 are the same or different from each other and are
- Polymer membranes may be fabricated by solution casting of the ion conductive copolymer.
- the polymer membrane may be fabricated by solution casting the ion conducting polymer the blend of the acid and basic polymer.
- the membrane thickness be between 1 to 10 mils, more preferably between 2 and 6 mils, most preferably between 3 and 4 mils.
- a membrane is permeable to protons if the proton flux is greater than approximately 0.005 S/cm, more preferably greater than 0.01 S/cm, most preferably greater than 0.02 S/cm.
- a membrane is substantially impermeable to methanol if the methanol transport across a membrane having a given thickness is less than the transfer of methanol across a Nafion membrane of the same thickness.
- the permeability of methanol is preferably 50% less than that of a Nafion membrane, more preferably 75% less and most preferably greater than 80% less as compared to the National membrane.
- a CCM comprises a PEM where at least one side and preferably both of the opposing sides of the PEM are partially or completely coated with catalyst layers.
- the catalyst is preferable a layer made of catalyst and iono er.
- Preferred catalysts are Pt and Pt-Ru.
- Preferred ionomers include Nafion and other ion conductive polymers.
- anode and cathode catalysts are applied onto the membrane by well established standard techniques.
- platinum/ruthenium catalyst is typically used on the anode side while platinum catalyst is applied on the cathode side and platinum is applied on the cathode side.
- Catalysts may be optionally supported on carbon.
- the catalyst is initially dispersed in a small amount of water (about lOOmg of catalyst in 1 g of water). To this dispersion a 5% Nafion solution in water/alcohol is added (0.25-0.75 g). The resulting dispersion may be directly painted onto the polymer membrane. Alternatively, isopropanol (1-3 g) is added and the dispersion is directly sprayed onto the membrane.
- the catalyst may also be applied onto the membrane by decal transfer, as described in the open literature (Electrochimica Acta, 40: 297 (1995)).
- an MEA refers to an ion conducting polymer membrane made from a CCM according to the invention in combination with anode and cathode electrodes positioned to be in electrical contact with the catalyst layer of the CCM.
- the electrodes are in electrical contact with a membrane, either directly or indirectly, when they are capable of completing an electrical circuit which includes the polymer membrane and a load to which, a electric current is supplied.
- a first catalyst is electrocatalytically associated with the anode side of the membrane so as to facilitate the oxidation of organic fuel. Such oxidation generally results in the formation of protons, electrons, carbon dioxide and water. Since the membrane is substantially impermeable to organic fuels such as methanol, as well as carbon dioxide, such components remain on the anodic side of the membrane. Electrons formed from the electrocatalytic reaction are transmitted from the cathode to the load and then to the anode.
- Balancing this direct electron current is the transfer of an equivalent number of protons across the membrane to the anodic compartment.
- There an electrocatalytic reduction of oxygen in the presence of the transmitted protons occurs to form water.
- air is the source of oxygen.
- oxygen-enriched air is used.
- the membrane electrode assembly is generally used to divide a fuel cell into anodic and cathodic compartments.
- an organic fuel such as methanol is added to the anodic compartment while an oxidant such as oxygen or ambient air is allowed to enter the cathodic compartment.
- a number of cells can be combined to achieve appropriate voltage and power output.
- Such applications include electrical power sources for residential, industrial, commercial power systems and for use in locomotive power such as in automobiles.
- Other uses to which the invention finds particular use includes the use of fuel cells in portable electronic devices such as cell phones and other telecommunication devices, video and audio consumer electronics equipment, computer laptops, computer notebooks, personal digital assistants and other computing devices, GPS devices and the like.
- the fuel cells may be stacked to increase voltage and current capacity for use in high power applications such as industrial and residential services or used to provide locomotion to vehicles.
- Such fuel cell structures include those disclosed in U.S. Patent Nos. 6,416,895, 6,413,664, 6,106,964, 5,840,438, 5,773,160, 5,750,281, 5,547,776, 5,527,363, 5,521,018, 5,514,487, 5,482,680, 5,432,021, 5,382,478, 5,300,370, 5,252,410 and 5,230,966.
- Such CCM and MEM's are generally useful in fuel cells such as those disclosed in U.S. Patent Nos. 5,945,231, 5,773,162, 5,992,008, 5,723,229, 6,057,051, 5,976,725, 5,789,093, 4,612,261, 4,407,905, 4,629,664, 4,562,123, 4,789,917, 4,446,210, 4,390,603, 6,110,613, 6,020,083, 5,480,735, 4,851,377, 4,420,544, 5,759,712, 5,807,412, 5,670,266, 5,916,699, 5,693,434, 5,688,613, 5,688,614, each of which is expressly incorporated herein by reference.
- the invention relates to methods for the preparation of the ion conducting (e.g., sulfonate) random copolymers that are useful as polymer electrolyte membranes.
- the methods to prepare the include combining a first monomer having at least one ion conducting group such as a sulfonate group with a second comonomer.
- the first monomer should have at least two leaving groups and the second comonomer should have at least two groups that can displace at least one leaving group of the first monomer.
- a third comonomer is included that has at least two leaving groups, such that at least one of the displacing groups of the second comonomer can displace at least one of the leaving groups of the third comonomer.
- the process further includes the step of combining a fourth comonomer having at least two displacing groups that can react with the leaving groups of either the first comonomer or the third comonomer.
- leaving group is intended to include those functional moieties that can be displaced by a nucleophilic moiety found, typically, in another monomer. Leaving groups are well recognized in the art and include, for example, halides (chloride, fluoride, iodide, bromide), tosyl, mesyl, etc. In certain embodiments, the monomer has at least two leaving groups, which are "para" to each other with respect to the aromatic monomer to which they are attached.
- displacing group is intended to include those functional moieties that can act typically as nucleophiles, thereby displacing a leaving group from a suitable monomer. The result is that the monomer to which the displacing group is attached becomes attached, generally covalently, to the monomer to which the leaving group was associated with.
- An example of this is the displacement of fluoride groups from aromatic monomers by phenoxide or alkoxide ions associated with aromatic monomers.
- reaction mixture was precipitated with acetone or methanol to obtain the crude product, then washed with hot water four times.
- the dry polymer was dissolved in DMAC for 20%) coating solution.
- the obtained 2mil thick membrane was soaked in 1.5M H 2 SO 4 for 16hr (overnight) and then rinsed in DI water for several times until no H2SO4 residue was detected.
- the polymer membrane was swollen in water at room temperature and the polymer membrane conductivity was measured by AC impedance.
- the polymer membrane was swollen in an 8M methanol aqueous mixture at 80 °C for 24 hours to measure the dimensional stability.
- Methanol crossover was measured in 8M MeOH using H-Cell, and the permeation rate was obtained by gas chroniatography analysis.
- the membrane conductivity 0.021S/cm, Swelling at 80C, 8M: 620% by area
- reaction mixture was precipitated with acetone or methanol to get the crude product, then washed with hot water four times.
- the dry polymer was dissolved in DMAC for 20% coating solution.
- the obtained 2mil thick membrane was soaked in 1.5M H 2 SO for 16hr (overnight) and then rinsed in DI water for several times until no H2SO4 residue was detected.
- the membrane conductivity 0.027 S/cm.
- reaction mixture was precipitated with acetone or methanol to get the crude product, then washed with hot water four times.
- the dry polymer was dissolved in DMAC for 20% coating solution.
- the obtained 2mil thick membrane was soaked in 1.5M H 2 SO for 16hr (overnight) and then rinsed in DI water for several times until no H2SO4 residue was detected.
- the membrane conductivity O.020S/cm.
- the reaction mixture was precipitated with acetone or methanol to get the crude product, then washed with hot water four times.
- the dry polymer was dissolved in DMAC for 20%) coating solution.
- the obtained 2mil thick membrane was soaked in 1.5M H 2 SO for 16hr (overnight) and then rinsed in DI water for several times until no H 2 SO 4 residue was detected.
- the membrane conductivity 0.021 S/cm.
- reaction mixture was precipitated with acetone or methanol to get the crude product, then washed with hot water four times.
- the dry polymer was dissolved in DMAC for 20% coating solution.
- the obtained 2mil thick membrane was soaked in 1.5M H 2 SO 4 for 16hr (overnight) and then rinsed in DI water for several times until no F ⁇ 2SO residue was detected.
- the membrane conductivity 0.017S/cm, Swelling at 80C, 8M: 120% by area
- This example discloses a random copolymer based on 4,4'-
- This example discloses a random copolymer based on 4,4'-
- This example discloses a random copolymer based on 4,4'-
- the membrane conductivity 0.030 S/cm, Swelling at 80C, 8M: 92 %> by area
- the membrane conductivity 0.033S/cm, 8M-MeOH Cross-over : 4.3 x 10 "7 cm 2 /sec.
- This polymer has an inherent viscosity of 0.60 dl/g in DMAc (0.25 g/dl). It's one-day swelling in 8M Methanol at 80°C was 142%>, cross-over in 8 M methanol was 0.009 mg.mil/cc.min.cm 2 (boiled), conductivity was 0.013 S/cm (non-boiled) and 0.041 S/cm (boiled).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: bis(4-fluorophenyl)sulfone (BisS, 22.88 g, 0.090 mol), 3,3'- disulfonated-4,4'-difluorobenzophone (SbisK, 25.34 g, 0.060 mol), BisZ (40.25 g, 0.15 mol), and anliydrous potassium carbonate (26.95 g, 0.19 mol), 270 mL of DMSO and 135 mL of Toluene.
- This polymer has an inherent viscosity of 0.67 dl/g in DMAc (0.25 g/dl).
- This polymer was synthesized in a similar way a described in example 1, using the following compositions: BisK (10.69 g, 0.049 mol), 2,6-difluorobenzonitrile (5.86 g, 0.042 mol), 3,3'-disulfonated-4,4'-difluorobenzophone (SBisK, 20.69 g, 0.049 mol), BisZ (37.57 g, 0.14 mol), and anhydrous potassium carbonate (25.15 g, 0.18 mol), 270 mL of DMSO and 135 mL of toluene.
- This polymer has an inherent viscosity of 0.86 dl/g in DMAc (0.25 g/dl).
- This polymer was synthesized in a similar way as described in example 1 , using following compositions: 4,4'-difluorobenzophone (BisK, 14.18 g, 0.065 mol), 3,3'- disulfonated-4,4'-difluorobenzophone ((SBisK, 14.78 g, 0.035 mol), 9,9-bis(4- hydroxyphenyl)fluorene (35.04 g, 0.10 mol), anhydrous potassium carbonate (17.97 g, 0.13 mol), anhydrous DMSO (180 mL) and freshly distilled toluene (90 mL).
- 4,4'-difluorobenzophone (BisK, 14.18 g, 0.065 mol)
- 3,3'- disulfonated-4,4'-difluorobenzophone (SBisK, 14.78 g, 0.035 mol)
- 9,9-bis(4- hydroxyphenyl)fluorene 35.04
- This polymer has an inherent viscosity of 0.88 dl/g in DMAc (0.25 g/dl). Its one-day swelling in 8 M methanol at 80°C was 26%, cross-over in 8 M methanol was 0.013 9 mg.mil/cc.min.cm (non-boiled) and 0.016 mg.mil/cc.min.cm (boiled), conductivity was 0.010 S/cm (non-boiled) and 0.019 S/cm (boiled).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4'-difluorobenzophone (BisK, 19.64 g, 0.09 mol), 3,3'- disulfonated-4,4'-difluorobenzophone (SBisK, 25.34 g, 0.06 mol), 9,9-bis(4- hydroxyphenyl)fluorene (52.56 g, 0.15 mol), and anhydrous potassium carbonate (26.95 g, 0.19 mol), 270 mL of DMSO and 135 mL of toluene.
- This polymer has an inherent viscosity of 0.77 dl/g in DMAc (0.25 g/dl).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4'-difluorobenzophone (BisK, 18.33 g, 0.084 mol), 3,3'- disulfonated-4,4'-difluorobenzophone (SBisK, 23.65 g, 0.056 mol), l,l-bis(4- hydroxyphenyl)cyclohexane (BisZ, 18.78 g, 0.070 mol), 9,9-bis(4- hydroxyphenyl)fluorene (FL, 24.53 g, 0.070 mol), and anhydrous potassium carbonate (25.15 g, 0.18 mol), 250 mL of DMSO and 125 mL of toluene.
- This polymer has an inherent viscosity of 0.97 dl/g in DMAc (0.25 g/dl). Its one-day swelling in 8 M methanol at 80°C was 54%>, cross-over in 8 M methanol was 0.015 mg.mil/cc.min.cm (non-boiled) and 0.O25 mg.mil/cc.min.cm 2 (boiled), conductivity was 0.018 S/cm (non- boiled) and 0.042 S/cm (boiled).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4'-difluorobenzophone (BisK, 21.27 g, 0.0975 mol), 3,3'- disulfonated-4,4'-difluorobenzophone (SBisK, 22.17 g, 0.0525 mol), 9,9-bis(4- hydroxyphenyl)fluorene (FL, 26.28 g, 0.075 mol), 4,4'-dihydroxydiphenyl ether (O, 15.16 g, 0.075 mol), and anhydrous potassium carbonate (26.95 g, 0.19 mol), 270 mL of DMSO and 135 mL of toluene.
- This polymer has an inherent viscosity of 1.21 dl/g in DMAc (0.25 g/dl). Its one-day swelling in 8 M methanol at 80°C was 50%>, cross-over in 8 M methanol was O.023 mg.mil/cc.min.cm 2 (non-boiled), conductivity was 0.030 S/cm (non-boiled) and 0.O39 S/cm (boiled).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4'-difluorobenzophone (BisK, 21.27 g, 0.0975 mol), 3,3'- disulfonated-4,4'-difluorobenzophone (SBisK, 22.17 g, 0.0525 mol), BisZ (20.12 g, 0.075 mol), 4,4'-dihydroxydiphenyl ether (O, 15.16 g, 0.075 mol), and anhydrous potassium carbonate (26.95 g, 0.19 mol), 270 mL of DMSO and 135 mL of toluene.
- This polymer has an inherent viscosity of 1.61 dl/g in DMAc (0.25 g/dl). Its one-day swelling in 8 M methanol at 80°C was 111%, cross-over in 8 M methanol was 0.019 mg.mil/cc.min.cm 2 (non-boiled), conductivity was 0.026 S/cm (non-boiled) and 0.057 S/cm (boiled).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4'-difluorobenzophone (BisK, 19.64 g, 0.09 mol), 3,3'- disulfonated-4,4'-difluorobenzophone (SBisK, 25.34 g, 0.06 mol), 9,9-bis(4- hydroxyphenyl)fluorene (26.28 g, 0.075 mol), 4,4'-dihydroxydiphenyl ether (15.16 g, 0.075 mol), and anliydrous potassium carbonate (26.95 g, 0.19 mol), 270 mL of DMSO and 135 mL of toluene.
- This polymer has an inherent viscosity of 1.50 dl/g in DMAc (0.25 g/dl). Its one-day swelling in 8 M methanol at 80°C was 72%, cross-over in 8 M methanol was 0.023 mg.mil/cc.min.cm 2 (non-boiled), conductivity was 0.026 S/cm (non- boiled) and 0.056 S/cm (boiled).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: 4,4'-difluorobenzophone (BisK, 21.27 g, 0.0975 mol), 3,3'- disulfonated-4,4'-difluorobenzophone (SBisK, 22.17 g, 0.0525 mol), 4,4'- (Hexafluoroisopropylidene)-diphenol (25.21 g, 0.075 mol), 4,4'-hydroxyphenyl ether (15.16 g, 0.075 mol), and anhydrous potassium carbonate (26.95 g, 0.19 mol), 270 mL of DMSO and 135 mL of toluene.
- This polymer has an inherent viscosity of 1.10 dl/g in DMAc (0.25 g/dl). Its one-day swelling in 8 M methanol at 80°C was 232%), cross-over in 8 M methanol was 0.020 mg.mil/cc.min.cm 2 (non-boiled) and 0.079 mg.mil/cc.min.cm 2 (boiled), conductivity was 0.024 S/cm (non-boiled) and 0.061 S/cm (boiled).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: BisK (17.02 g, 0.078 mol), 3,3'-disulfonated-4,4'- difluorobenzophone ((SBisK, 17.73 g, 0.042 mol),2,5-dihydroxy-4'-methylbi ⁇ henol (MB, 24.03 g, 0.12 mol), and anhydrous potassium carbonate (21.56 g, 0.156 mol), 216 mL of DMSO and 108 mL of toluene.
- This polymer has an inherent viscosity of 1.07 dl/g in DMAc (0.25 g/dl).
- This polymer was synthesized in a similar way as described in example 1 , using following compositions: BisK (9.93 g, 0.046 mol), 3,3'-disulfonated-4,4'- difluorobenzophone (SBisK, 10.34 g, 0.024 mol), 4,4'-dihydroxytetraphenylmethane (24.67 g, 0.050 mol), and anhydrous potassium carbonate (12.57 g, 0.091 mol), 126 mL of DMSO and 63 mL of toluene.
- This polymer has an inherent viscosity of 1.01 dl/g in DMAc (0.25 g/dl).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: BisK (19.85 g), 3,3 '-disulfonated-4,4' -difluorobenzophone (SBisK, 16.47), 9,9-bis(4-hydroxyphenyl)fluorene (22.77 g), Bis Z (17.44 g) and anhydrous potassium carbonate (23.36 g), 240 mL of DMSO and 120 mL of toluene.
- This polymer has an inherent viscosity of 0.74 dl/g in DMAc (0.25 g/dl).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: BisK (19.85 g), 3,3'-disulfonated-4,4'-difluorobenzophone (SBisK, 16.47), 9,9-bis(4-hydroxyphenyl)fluorene (11.39 g), Bis Z (26.16 g) and anhydrous potassium carbonate (23.36 g), 240 mL of DMSO and 120 mL of toluene. This polymer has an inherent viscosity of 0.63 dl/g in DMAc (0.25 g/dl).
- This polymer was synthesized in a similar way as described in example 1, using following compositions: BisK (19.85 g), 3,3'-disulfonated-4,4'-difluorobenzophone (SBisK, 16.47), 9,9-bis(4-hydroxyphenyl)fluorene (34.16 g), Bis Z (8.72 g) and anhydrous potassium carbonate (23.36 g), 240 mL of DMSO and 120 mL of toluene.
- This polymer has an inherent viscosity of 1.05 dl/g in DMAc (0.25 g/dl).
- This random copolymer was synthesized in a similar way as described in example 1 : BisK (14.18 g), S-BisK (14.78 g), BisAF (33.62 g), and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20%> solid concentration).
- This polymer has an inherent viscosity of 1.82 dl/g in DMAc (0.25 g/dl). IEC is 1.23 meq/g.
- This random copolymer was synthesized in a similar way as described in example 1 : BisK (13.09 g), S-BisK (16.89 g), BisAF (33.62 g), and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20%> solid concentration).
- This polymer has an inherent viscosity of 1.18 dl/g in DMAc (0.25 g/dl). IEC is 1.38 meq/g.
- This random copolymer was synthesized in a similar way as described in example 1 : BisK (12.0 g), S-BisK (19.0 g), BisAF (33.62 g), and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20%> solid concentration). This polymer has an inherent viscosity of 1.18 dl/g in DMAc (0.25 g/dl). IEC is 1.38 meq/g. Conductivity: 0.045 S/cm (0.088 S/cm, boiled in water lhr), swelling by area in boiled water 1 hr: 73%, water-uptake after boiling the membrane in water 1 hr : 85%>
- This random copolymer was synthesized in a similar way as described in example 1 : BisK (13.09 g), S-BisK (16.89 g), biphenol (18.62 g), and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20%o solid concentration).
- IEC is 1.87 meq/g.
- Conductivity 0.045 S/cm (0.071 S/cm, boiled in water lhr)
- the membrane became mechanically weak (tears easily) after boiling in water, so swelling and water-uptake data were not obtained properly.
- This random copolymer was synthesized in a similar way as described in example 1 : BisK (12.87 g), S-BisK (17.31 g), biphenol (9.81 g), BisAF (16.81 g), and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20% solid concentration).
- This polymer has an inherent "viscosity of 1.30 dl/g in DMAc (0.25 g/dl). IEC is 1.62 meq/g. Conductivity: 0.045 S/cm (0.090 S/cm, boiled in water lhr), swelling by area in boiled water 1 hr: 41%, water-uptake after boiling the membrane in water 1 hr : 65%)
- This random copolymer was synthesized in a similar way as described in example 1 : BisK (11.35 g), S-BisK (20.27 g), biphenol (11.17 g), BisAF (13.45 g), and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20%) solid concentration).
- This polymer has an inherent viscosity of 1.29 dl/g in DMAc (0.25 g/dl).
- IEC is 1.92 meq/g.
- This random copolymer was synthesized in a similar way as described in example 1 : BisK (12.87 g), S-BisK (17.31 g), BisFL (7.01 g), BisAF (26.90 g), and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20%) solid concentration).
- This polymer has an inherent viscosity of 1.13 dl/g in DMAc (0.25 g/dl). IEC is 1.41 meq/g.
- This random copolymer was synthesized in a similar way as described in example 1 : BisSO 2 (15.51 g), S-BisK (16.47 g), BisFL (7.01 g), BisAF (26.90 g), and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20%) solid concentration).
- This polymer has an inherent viscosity of 1.07 dl/g in DMAc (0.25 g/dl). IEC is 1.30 meq/g.
- This random copolymer was synthesized in a similar way as described in example 1 : BisK (13.09 g), S-BisK (16.89 g), BisZ (13.42 g), BisAF (16.81 g) and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20%) solid concentration).
- This polymer has an inherent viscosity of 1.14 dl/g in DMAc (0.25 g/dl). IEC is 1.47 meq/g.
- This random copolymer was synthesized in a similar way as described in example 1 : BisK (13.09 g), S-BisK (16.89 g), BisZ (5.37 g), BisAF (26.90 g) and anhydrous potassium carbonate (16.59 g) were dissolved in a mixture of DMSO and Toluene (about 20%) solid concentration).
- This polymer has an inherent viscosity of 1.08 dl/g in DMAc (0.25 g/dl). IEC is 1.42 meq/g. Conductivity: 0.027 S/cm (0.077 S/cm, boiled in water lhr), swelling by area in boiled water 1 hr: 44%>, water-uptake after boiling the membrane in water 1 hr : 55%)
- the mixture was heated to toluene flux with stirring, keeping the temperature at 140°C for 4h, then increase temperature to 175°C for 6h.
- the reaction mixture was filtered and precipitates from methanol to get the rude product, then washed by hot water four times.
- the mixture was heated to toluene flux with stirring, keeping the temperature at 140°C for 4h, then increase temperature to 175°C for 6h.
- the reaction mixture was filtered and precipitates from methanol to get the mde product, then washed by hot water four times.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Polyethers (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Inert Electrodes (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| HK07107801.7A HK1103550B (en) | 2003-11-13 | 2004-11-12 | Ion conductive random copolymers |
| AU2004292201A AU2004292201A1 (en) | 2003-11-13 | 2004-11-12 | Ion conductive random copolymers |
| JP2006539905A JP2007513472A (ja) | 2003-11-13 | 2004-11-12 | イオン伝導性ランダムコポリマー |
| CA002546052A CA2546052A1 (en) | 2003-11-13 | 2004-11-12 | Ion conductive random copolymers |
| EP04810836A EP1704174A4 (en) | 2003-11-13 | 2004-11-12 | ION-LEADING STATISTICAL COPOLYMERS |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US52026603P | 2003-11-13 | 2003-11-13 | |
| US60/520,266 | 2003-11-13 | ||
| US54529304P | 2004-02-17 | 2004-02-17 | |
| US60/545,293 | 2004-02-17 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2005050671A2 true WO2005050671A2 (en) | 2005-06-02 |
| WO2005050671A3 WO2005050671A3 (en) | 2005-08-18 |
Family
ID=34623127
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/037815 Ceased WO2005050671A2 (en) | 2003-11-13 | 2004-11-12 | Ion conductive random copolymers |
| PCT/US2004/037805 Ceased WO2005049696A1 (en) | 2003-11-13 | 2004-11-12 | Ion conductive copolymers containing one or more hydrophobic oligomers |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/037805 Ceased WO2005049696A1 (en) | 2003-11-13 | 2004-11-12 | Ion conductive copolymers containing one or more hydrophobic oligomers |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US7507771B2 (enExample) |
| EP (2) | EP1687357A4 (enExample) |
| JP (2) | JP2007517923A (enExample) |
| KR (2) | KR20060133990A (enExample) |
| AU (2) | AU2004291876A1 (enExample) |
| CA (2) | CA2546015A1 (enExample) |
| SG (2) | SG149021A1 (enExample) |
| WO (2) | WO2005050671A2 (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007003568A1 (de) * | 2005-06-30 | 2007-01-11 | Basf Aktiengesellschaft | Wässrige formulierungen enthaltend säuregruppen tragende polyaromatische verbindungen |
| CN1317058C (zh) * | 2005-06-16 | 2007-05-23 | 上海交通大学 | 磺化聚芳醚砜嵌段磺化聚丁二烯质子交换膜及其制备方法 |
| US8049032B2 (en) | 2005-10-12 | 2011-11-01 | Samsung Sdi Co., Ltd. | Solid acid, polymer electrolyte membrane including the same, and fuel cell using the polymer electrolyte membrane |
| US8057952B2 (en) | 2006-02-25 | 2011-11-15 | Samsung Sdi Co., Ltd. | Polymer electrolyte membrane, method of manufacturing the same and fuel cell including the polymer electrolyte membrane |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4742664B2 (ja) * | 2004-05-07 | 2011-08-10 | 東レ株式会社 | イオン性基を有するポリマー、高分子電解質材料および高分子電解質型燃料電池 |
| JP5028736B2 (ja) * | 2004-09-02 | 2012-09-19 | 東レ株式会社 | 高分子電解質材、ならびにそれを用いた高分子電解質膜、膜電極複合体および高分子電解質型燃料電池 |
| US20060069236A1 (en) * | 2004-09-27 | 2006-03-30 | General Electric Company | Polyethersulfone compositions with high heat and good impact resistance |
| KR100657740B1 (ko) * | 2004-12-22 | 2006-12-14 | 주식회사 엘지화학 | 브랜치된 술폰화 멀티 블록 공중합체 및 이를 이용한전해질막 |
| US20060275638A1 (en) * | 2005-05-24 | 2006-12-07 | Polyfuel, Inc. | Ion conductive copolymers containing ion-conducting oligomers |
| JP2007002016A (ja) * | 2005-06-21 | 2007-01-11 | Toyobo Co Ltd | スルホン酸基含有ポリアリーレンエーテル系化合物およびその用途、スルホン酸基含有ポリアリーレンエーテル系化合物の製造方法 |
| US7517604B2 (en) * | 2005-09-19 | 2009-04-14 | 3M Innovative Properties Company | Fuel cell electrolyte membrane with acidic polymer |
| KR100718108B1 (ko) * | 2005-10-07 | 2007-05-14 | 삼성에스디아이 주식회사 | 고분자 전해질막, 그 제조방법 및 이를 이용한 연료전지 |
| JP5059339B2 (ja) * | 2006-04-25 | 2012-10-24 | 本田技研工業株式会社 | 固体高分子型燃料電池用膜−電極構造体 |
| US8058319B2 (en) * | 2006-06-01 | 2011-11-15 | E.I. Du Pont De Nemours And Company | Process to prepare fluoropolymer dispersions and membranes |
| GB2459554A (en) * | 2006-09-05 | 2009-11-04 | Sumitomo Chemical Co | Polymer,polyelectrolyte and fuel cell employing the same |
| JP4967873B2 (ja) * | 2007-07-13 | 2012-07-04 | ソニー株式会社 | 撮像装置 |
| JP2011084728A (ja) * | 2009-09-17 | 2011-04-28 | Kaneka Corp | 高分子電解質およびその利用 |
| JP5181004B2 (ja) * | 2010-08-27 | 2013-04-10 | Jsr株式会社 | スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途 |
| KR102148507B1 (ko) * | 2017-07-26 | 2020-08-26 | 주식회사 엘지화학 | 리튬 전극 및 이의 제조방법 |
| HRP20230889T1 (hr) | 2019-07-22 | 2023-11-10 | Evonik Operations Gmbh | Polimerna anionsko vodljiva membrana |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SG73410A1 (en) * | 1992-06-13 | 2000-06-20 | Hoechst Ag | Polymer electrolyte membrane and process for the production thereof |
| JPH0680799A (ja) * | 1992-08-28 | 1994-03-22 | Asahi Glass Co Ltd | 耐蝕性陰イオン交換膜 |
| JP3953939B2 (ja) * | 1993-06-04 | 2007-08-08 | 昭和電工株式会社 | 新規導電性重合体 |
| US5468574A (en) | 1994-05-23 | 1995-11-21 | Dais Corporation | Fuel cell incorporating novel ion-conducting membrane |
| JP3724064B2 (ja) * | 1996-06-28 | 2005-12-07 | 住友化学株式会社 | 燃料電池用高分子電解質及び燃料電池 |
| DE19817376A1 (de) * | 1998-04-18 | 1999-10-21 | Univ Stuttgart Lehrstuhl Und I | Säure-Base-Polymerblends und ihre Verwendung in Membranprozessen |
| IL139052A0 (en) * | 1998-04-18 | 2001-11-25 | Uni Stuttgart Lehrstuhl Und I | Acid-base polymer blends and their use in membrane processes |
| US6586561B1 (en) | 1999-02-18 | 2003-07-01 | Case Western Reserve University | Rigid rod ion conducting copolymers |
| JP4802354B2 (ja) | 1999-12-27 | 2011-10-26 | 住友化学株式会社 | 高分子電解質およびその製造方法 |
| EP1126537B1 (en) | 2000-02-15 | 2010-12-15 | Asahi Glass Company Ltd. | Block polymer, process for producing a polymer, and polymer electrolyte fuel cell |
| DE10007272B4 (de) | 2000-02-17 | 2005-04-07 | Membrana Gmbh | Blockcopolymere mit sulfonierten Polyethersulfoneinheiten |
| KR100370399B1 (ko) | 2000-06-30 | 2003-01-29 | 삼성전자 주식회사 | 트리플루오로스티렌과 치환된 비닐 화합물을 기초로 한부분불소화된 공중합체 및 이로부터 형성된 이온 전도성고분자막 |
| JP4808834B2 (ja) | 2000-08-04 | 2011-11-02 | 東洋鋼鈑株式会社 | 電池ケース用表面処理鋼板 |
| US20020127474A1 (en) * | 2001-01-09 | 2002-09-12 | E.C.R.-Electro-Chemical Research Ltd. | Proton-selective conducting membranes |
| JP3956661B2 (ja) | 2001-03-30 | 2007-08-08 | Jsr株式会社 | ハロゲン化芳香族化合物、該化合物の重合体、及び該重合体からなるプロトン伝導膜 |
| JP3599041B2 (ja) * | 2001-05-08 | 2004-12-08 | 宇部興産株式会社 | 固体高分子型燃料電池用高分子電解質及び燃料電池 |
| JP2004529472A (ja) | 2001-05-15 | 2004-09-24 | バラード パワー システムズ インコーポレイティド | 改善されたイオン伝導性を有するイオン交換物質 |
| KR100403754B1 (ko) | 2001-06-19 | 2003-10-30 | 송민규 | 연료전지용 복합 고분자 전해질 막, 이의 제조방법 및이를 포함하는 연료전지 |
| DE10149716A1 (de) | 2001-09-28 | 2003-04-30 | Inst Polymerforschung Dresden | Polymere Brennstoffzellen-Membran und Verfahren zu ihrer Herstellung |
| DE10149035A1 (de) * | 2001-10-05 | 2003-04-24 | Fraunhofer Ges Forschung | Verfahren zur Sulfonierung von aromatischen Polymeren, Polyelektrolyte sowie deren Verwendung |
| JP4408599B2 (ja) | 2001-11-16 | 2010-02-03 | 東洋紡績株式会社 | スルホン酸基含有芳香族ポリアリーレンエーテル化合物および高分子電解質膜 |
| DE60200877T2 (de) | 2001-11-22 | 2005-08-11 | Tosoh Corp., Shinnanyo | Polyarylenethersulfone enthaltend Sulfoalkoxy-Gruppen, Prozess zur Herstellung sowie deren Verwendung in Polymerelektrolytmembranen |
| ATE490568T1 (de) | 2001-11-29 | 2010-12-15 | Ube Industries | Polymerelektrolytzusammensetzung |
| US7202001B2 (en) | 2002-05-13 | 2007-04-10 | Polyfuel, Inc. | Sulfonated copolymer |
| WO2004042839A2 (en) | 2002-05-13 | 2004-05-21 | Polyfuel, Inc. | Ion conductive block copolymers |
| US20040096731A1 (en) | 2002-11-18 | 2004-05-20 | Honda Motor Co., Ltd | Electrode structure for polymer electrolyte fuel cell and method for manufacturing the same |
| US7211203B2 (en) * | 2003-02-04 | 2007-05-01 | Honda Motor Co., Ltd. | Polymer electrolyte, proton conductive membrane and membrane-electrode assembly |
-
2004
- 2004-11-12 CA CA002546015A patent/CA2546015A1/en not_active Abandoned
- 2004-11-12 WO PCT/US2004/037815 patent/WO2005050671A2/en not_active Ceased
- 2004-11-12 WO PCT/US2004/037805 patent/WO2005049696A1/en not_active Ceased
- 2004-11-12 JP JP2006539902A patent/JP2007517923A/ja active Pending
- 2004-11-12 CA CA002546052A patent/CA2546052A1/en not_active Abandoned
- 2004-11-12 AU AU2004291876A patent/AU2004291876A1/en not_active Abandoned
- 2004-11-12 EP EP04810828A patent/EP1687357A4/en not_active Withdrawn
- 2004-11-12 US US10/988,187 patent/US7507771B2/en not_active Expired - Fee Related
- 2004-11-12 SG SG200809210-8A patent/SG149021A1/en unknown
- 2004-11-12 EP EP04810836A patent/EP1704174A4/en not_active Withdrawn
- 2004-11-12 JP JP2006539905A patent/JP2007513472A/ja active Pending
- 2004-11-12 KR KR1020067011393A patent/KR20060133990A/ko not_active Ceased
- 2004-11-12 AU AU2004292201A patent/AU2004292201A1/en not_active Abandoned
- 2004-11-12 SG SG200900230-4A patent/SG149827A1/en unknown
- 2004-11-12 KR KR1020067011528A patent/KR100907759B1/ko not_active Expired - Fee Related
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1317058C (zh) * | 2005-06-16 | 2007-05-23 | 上海交通大学 | 磺化聚芳醚砜嵌段磺化聚丁二烯质子交换膜及其制备方法 |
| WO2007003568A1 (de) * | 2005-06-30 | 2007-01-11 | Basf Aktiengesellschaft | Wässrige formulierungen enthaltend säuregruppen tragende polyaromatische verbindungen |
| US7776957B2 (en) | 2005-06-30 | 2010-08-17 | Basf Aktiengesellschaft | Aqueous formulations containing polyaromatic compounds with acid groups |
| US8049032B2 (en) | 2005-10-12 | 2011-11-01 | Samsung Sdi Co., Ltd. | Solid acid, polymer electrolyte membrane including the same, and fuel cell using the polymer electrolyte membrane |
| CN102702036A (zh) * | 2005-10-12 | 2012-10-03 | 三星Sdi株式会社 | 固体酸、包含它的聚合物电解质膜和使用该膜的燃料电池 |
| US8653297B2 (en) | 2005-10-12 | 2014-02-18 | Samsung Sdi Co., Ltd. | Solid acid, polymer electrolyte membrane including the same, and fuel cell using the polymer electrolyte membrane |
| US8057952B2 (en) | 2006-02-25 | 2011-11-15 | Samsung Sdi Co., Ltd. | Polymer electrolyte membrane, method of manufacturing the same and fuel cell including the polymer electrolyte membrane |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2005049696A1 (en) | 2005-06-02 |
| SG149827A1 (en) | 2009-02-27 |
| AU2004292201A1 (en) | 2005-06-02 |
| KR20060133990A (ko) | 2006-12-27 |
| CA2546015A1 (en) | 2005-06-02 |
| JP2007517923A (ja) | 2007-07-05 |
| US20050282919A1 (en) | 2005-12-22 |
| CA2546052A1 (en) | 2005-06-02 |
| WO2005050671A3 (en) | 2005-08-18 |
| HK1103550A1 (zh) | 2007-12-21 |
| KR20070017305A (ko) | 2007-02-09 |
| EP1687357A1 (en) | 2006-08-09 |
| EP1704174A2 (en) | 2006-09-27 |
| AU2004291876A1 (en) | 2005-06-02 |
| US7507771B2 (en) | 2009-03-24 |
| EP1687357A4 (en) | 2007-01-17 |
| KR100907759B1 (ko) | 2009-07-15 |
| EP1704174A4 (en) | 2007-05-30 |
| SG149021A1 (en) | 2009-01-29 |
| JP2007513472A (ja) | 2007-05-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2003237849B2 (en) | Sulfonated copolymer | |
| EP1518290A2 (en) | Ion conductive block copolymers | |
| WO2005050671A2 (en) | Ion conductive random copolymers | |
| US7504461B2 (en) | Ion-conductive copolymers containing one or more ion-conducting oligomers | |
| KR20080018181A (ko) | 이온-전도성 올리고머를 함유하는 이온 전도성 코폴리머 | |
| US7354679B2 (en) | Ion conductive random copolymers | |
| KR100977234B1 (ko) | 술폰화된 공중합체 | |
| CA2607966A1 (en) | Ion-conducting polymers containing pendant ion conducting groups | |
| US20060280988A1 (en) | Cross-linked ion-conductive copolymer | |
| US7572535B2 (en) | Ion conductive copolymers containing one or more hydrophobic oligomers | |
| US20060280990A1 (en) | Polymer blend comprising ion-conducting copolymer and non-ionic polymer | |
| MXPA06005344A (es) | Copolimeros aleatorios conductivos de iones | |
| MXPA06005345A (es) | Copolimeros conductores de iones que contienen uno o mas oligomeros hidrofobicos |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2546052 Country of ref document: CA Ref document number: 2006539905 Country of ref document: JP Ref document number: PA/a/2006/005344 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 566/MUMNP/2006 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 547324 Country of ref document: NZ |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004292201 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020067011393 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004810836 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2004292201 Country of ref document: AU Date of ref document: 20041112 Kind code of ref document: A |
|
| WWP | Wipo information: published in national office |
Ref document number: 2004292201 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 200480040156.7 Country of ref document: CN |
|
| WWP | Wipo information: published in national office |
Ref document number: 2004810836 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020067011393 Country of ref document: KR |