WO2005038445A1 - 表面欠陥検査方法及び装置 - Google Patents

表面欠陥検査方法及び装置 Download PDF

Info

Publication number
WO2005038445A1
WO2005038445A1 PCT/JP2004/015466 JP2004015466W WO2005038445A1 WO 2005038445 A1 WO2005038445 A1 WO 2005038445A1 JP 2004015466 W JP2004015466 W JP 2004015466W WO 2005038445 A1 WO2005038445 A1 WO 2005038445A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
irradiation
image
defect
light
Prior art date
Application number
PCT/JP2004/015466
Other languages
English (en)
French (fr)
Inventor
Chie Ishikawa
Makoto Iwata
Mamoru Sakaue
Keisuke Kuroki
Original Assignee
Daihatsu Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004105450A external-priority patent/JP4349960B2/ja
Priority claimed from JP2004105452A external-priority patent/JP4528011B2/ja
Application filed by Daihatsu Motor Co., Ltd. filed Critical Daihatsu Motor Co., Ltd.
Priority to EP04792632A priority Critical patent/EP1677098A4/en
Priority to US10/576,486 priority patent/US7599050B2/en
Publication of WO2005038445A1 publication Critical patent/WO2005038445A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Definitions

  • the present invention relates to a surface defect inspection technique for irradiating a surface to be inspected with irradiation light having a predetermined layout pattern, and imaging and inspecting the surface to be inspected illuminated with the irradiation light.
  • a so-called striped that is, irradiation light that creates light and dark stripes is illuminated on the painted surface, and the painted surface in the illuminated state is captured by an imaging camera.
  • Fig. 17 shows a specific configuration of this type of inspection system.
  • the input staff 204 removes the bumper 1 from the stock station 202 where the plurality of bumpers to be inspected are stocked, and changes the posture while holding the bumper 1 at any time. Attach to robot 22.
  • the robot 22 rotates around the rotation axis 22d shown in FIG. 17 to change the posture of the bumper 1.
  • the system is provided with an illuminating device 220 that illuminates light with a predetermined horizontal stripe pattern.
  • the device 220 is provided so as to surround the movement space in which the bumper 1 changes the posture.
  • the illumination pattern of the illumination light is a stripe-shaped bright / dark pattern parallel to the rotation axis 22d of the bumper 1.
  • a plurality of imaging cameras 4 are provided at predetermined positions of the illumination device 220, and the cameras 4 image the light / dark pattern of the irradiation light reflected on the bumper 1.
  • the imaging result is sent to the analysis side, and the presence or absence of a defect is evaluated.
  • the inspector 201 located on the lower side of the robot 22 performs the holding and posture change by the robot 22. After finishing, remove bumper 1 and go to the post process such as visual inspection.
  • the inspector 201 has obtained evaluation information on the capability of the defect evaluation means, and has information on the spots to be noted in the inspection, and proceeds with the work promptly and reliably.
  • FIG. 18 shows the basic principle of the surface defect inspection having this configuration.
  • the defect area is identified in the captured image by using the fact that a bright stripe portion is dark and a dark stripe portion is imaged brightly. It can be captured as a halftone image of a part and a dark part.
  • a technique using a similar inspection principle is shown in Patent Document 1! / Puru.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-145906 (FIGS. 5, 9 and 15)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-126744 (FIG. 13)
  • an illuminating unit for illuminating the surface to be inspected illuminates the painted surface with an S-striped light and dark pattern.
  • no force is generated in the direction perpendicular (transverse) to the stripe-like light / dark pattern.
  • this Defects are difficult to catch.
  • a feature of a surface defect inspection method which irradiates an inspection surface with irradiation light having a predetermined pattern shape and inspects the inspection surface with a captured image of the inspection surface in an irradiation state.
  • the irradiating light is distributed in a mesh-like manner so that the shape in each mesh is the same, and the irradiating area (the area of the light-emitting portion) on a plane perpendicular to the optical axis is a non-irradiating area (a ⁇ area). Irradiate the irradiation light from the irradiation surface,
  • the inspected surface is inspected based on brightness information of an image area corresponding to a non-irradiated area of the inspected surface in the captured image.
  • the light is distributed in a mesh-like manner, and irradiation light having a dark portion (dark surface) serving as a closed area in the light portion is also irradiated with irradiation power.
  • the surface to be inspected irradiated with the irradiation light is imaged by an imaging device such as a CCD camera, if the surface to be inspected is flat and there are no defects on the surface, the light-and-shade light-dark pattern on the irradiation side is almost unchanged. Reflect. On the other hand, if there is a defect, if the defect is directly below the dark part, etc., the light irradiated from the bright part on the irradiation side will bend the optical path due to the defect, and should originally become a dark part Reflected in the area (non-irradiated area).
  • an independent bright spot can be formed at the approximate center of the mesh, which is a dark portion.
  • this The phenomenon can be used to detect a defect. Since the mesh shape is the same, it is possible to detect a defect that may be located in an arbitrary mesh under substantially the same conditions.
  • this configuration has a high probability of detecting a defect as a bright part appearing in a dark part because the mesh corresponds to the irradiated part and the inside of the mesh corresponds to the non-irradiated part, and the non-irradiated area is selected to be large. And can be.
  • the bright portion is formed in a mesh shape
  • this type of reflected light is transmitted from the entire periphery surrounding the dark portion to a predetermined area of the imaging device having a two-dimensional spread. It is now possible to make light incident on the position pixel, and it has become possible to detect defects in shape, size, and depth, which were difficult in the past.
  • the size of the mesh is set to an average diameter (which is a diameter when the mesh is regarded as a circle) of about 25 mm, the diameter is 0.3 mm, the radius is 0.3 mm, and the depth is 0 mm. .
  • a defect of about 03mm was identified with a conventional CCD camera.
  • the inspected object is usually inspected sequentially while being relatively moved with respect to the surface defect inspection apparatus. Therefore, along with this movement, a defect is detected at any mesh portion. Catch it as a clear defect image and perform reliable detection.
  • Irradiating means for irradiating the inspection surface with irradiation light having a predetermined pattern shape; imaging means for capturing an image of the inspection surface irradiated with the irradiation light; Surface defect inspection apparatus including image processing means for performing image processing of a captured image to be taken,
  • the irradiating means emits, as the irradiating light, an irradiating light from an irradiating surface, wherein the irradiating light is distributed in a mesh shape such that the shape in each mesh is the same, and the irradiating area on a plane perpendicular to the optical axis is smaller than the non-irradiating area.
  • the image processing means may detect a non-irradiation area of the inspection surface.
  • the apparatus can be configured by configuring so that the brightness information of the corresponding image area can be processed.
  • a captured image in a state where a normal inspection surface is irradiated with the irradiation light is defined as a normal captured image, and the brightness of the irradiated area in the normal captured image is set to high brightness and the non-irradiated area is determined.
  • the brightness of the irradiated area in the normal captured image is set to high brightness and the non-irradiated area is determined.
  • the inspection is performed by using an intermediate luminance area, which is an intermediate luminance area between the high luminance and the low luminance, in the captured image as the attention area.
  • the defect image has an intermediate luminance between the high luminance which is the luminance of the irradiated part and the low luminance which is the luminance of the non-irradiated part.
  • the surface defect inspection apparatus that performs such processing sets the captured image in a state where the normal inspection surface is irradiated with the irradiation light as a normal captured image, and sets the brightness of the irradiation area in the normal captured image to high brightness.
  • the image processing means extracts an intermediate luminance area existing in the captured image and being an intermediate luminance area between the high luminance and the low luminance. This can be achieved by a configuration including a luminance region extracting unit.
  • Irradiation light used in the surface defect inspection method of the present invention has a light-emitting side bright portion in a mesh shape on the irradiation surface and a dark portion in the mesh.
  • the surface to be inspected is flat and no distortion occurs in imaging of the mesh, and when the surface to be inspected is curved and distortion occurs in imaging of the mesh, both the imaging images follow. Therefore, the normal portion of the mesh which is substantially unrelated to the defect can be excluded as a continuous bright portion in the image processing.
  • the image processing unit includes a continuous bright region extraction unit that extracts a continuous bright region that is an image region corresponding to the irradiation region of the inspection surface. What is necessary is just to provide an elimination means for excluding the extracted continuous bright area from the attention area.
  • an image area corresponding to a non-irradiation area on the inspection surface is extracted for each closed dark area, and an independent bright area exists in the closed dark area.
  • the independent bright region be a region of interest.
  • the irradiation light forms a mesh shape! /
  • the area within this mesh is recognized as a basically closed dark area, and an independent area within the dark area is recognized. If there is a bright area, it is determined that there is a possibility that an abnormality (defect) exists on the non-inspection surface, and the area is regarded as the attention area. In this case, for example, even if the surface to be inspected is a curved surface and a relatively large deformation occurs in the basic mesh shape, it is effective by utilizing the shape characteristics of the irradiation light. Detects defects.
  • a closed area extracting means for separately extracting a closed dark area which is an image area corresponding to a non-irradiation area on the inspection surface
  • the above-described surface defect inspection method can be executed by using a configuration including an independent bright area extraction means for extracting an independent bright area existing in the extracted closed dark area.
  • the irradiation light is formed by a plurality of light emitting elements distributed in a mesh pattern in the irradiation means.
  • a light emitting element by using a light emitting element, it is possible to reduce the possibility of occurrence of oversight of minute defects due to insufficient luminance, for example, when an indirect irradiation structure is adopted, and to secure sufficient luminance on the irradiation side. Performs reliable and reliable inspections. Further, for example, by changing the distribution of the light emitting elements on the blackboard, it is possible to obtain irradiation light having an arbitrary mesh distribution.
  • a captured image is obtained by adjusting the focus of the imaging device to the irradiation surface (light emitting surface) on the irradiation side. Since a large difference in brightness from the background can be obtained, the image on the image pickup side can be sharpened. An image portion caused by a defect that tends to be a blurred and small image can be easily raised.
  • the irradiation means be formed such that irradiation light is transmitted between narrow slits distributed in a mesh form.
  • a diffuser plate is arranged in front of the light source, and a shielding body for forming a dark portion conforming to the shape of the mesh is arranged in front of the light source. Irradiation light matching the purpose of use can be easily obtained. In addition, the boundaries can be clarified.
  • the mesh size is adjustable.
  • the optical path of the light beam reflected via the defect needs to reach a bright portion forming a mesh.
  • the size of the defect (including the opening area, depth, etc.) and the size of the mesh have a great bearing on whether or not the force that causes reflection is large. Therefore, by making the size of the mesh adjustable, it is possible to select a mesh of a size that can detect a defect of a predetermined size satisfactorily, and perform good detection.
  • a luminance difference between an irradiation area and a non-irradiation area on the inspection surface is adjustable.
  • the surface when the inspection target is a painted surface of an automobile body, the surface may include a portion that can be regarded as substantially flat or a curved surface portion. Therefore, there is a variation in the optical path distance in the irradiation system and the imaging system, and it is not always possible to always secure a sufficient amount of light required for detecting a defect in a good state.
  • the amount of light required for reflection can be selected according to the state of the object to be detected, and highly reliable detection can be performed immediately.
  • the configuration of the defect inspection device is as follows.
  • a plurality of light emitting elements arranged in a predetermined layout pattern, an imaging camera for imaging a surface to be inspected illuminated by irradiation light of the light emitting elements, and an output unit for outputting imaging information of the imaging camera are provided.
  • the imaging camera is arranged so as to receive the irradiation light of each of the light emitting elements reflected from the surface to be inspected.
  • the reflection principle of the irradiation light is used as the inspection principle.
  • the illumination unit is provided with a flat surface having a predetermined shape inside.
  • Adopt a continuous layout pattern of light emitting elements arranged so as to leave.
  • the painted surface is flat
  • the layout pattern of the light emitting elements in the lighting unit is hexagonal
  • the optical axis of the irradiation light and the optical axis of the imaging camera are directed in the normal direction of the painted surface. If there is no defect on the painted surface, the image will be a hexagonal light-dark pattern.
  • a luminance region is formed as an isolated point on the dark surface formed inside the hexagon due to the defect as shown in FIG. Therefore, an image resulting from this defect can be reliably captured by the imaging camera.
  • the imaging camera by arranging the imaging camera on the dark surface, it is possible to make the optical axis direction of the irradiation light coincide with the optical axis direction of the imaging side, and so-called imaging inspection in an epi-illumination state becomes possible. .
  • a configuration that includes a defect evaluation unit that evaluates the output signal of the output unit and detects a defect on the surface to be inspected, automatic analysis is performed using an analysis technology established as an image processing technology. The defect location can be evaluated and determined.
  • the layout pattern force is preferably a repetitive layout pattern that is repeated in a predetermined direction.
  • image processing for image pickup can be repeatedly performed on the same basis in units of a layout pattern portion of a light emitting element and a dark surface provided therein. it can.
  • the same inspected surface can be inspected repeatedly, and sufficient information can be provided to improve the reliability of the inspected surface. Can be obtained.
  • a transport mechanism for transporting the inspection surface relative to the plurality of light emitting elements and the imaging camera is provided, and a repeating direction of the layout pattern is the relative transport direction.
  • the inspection surface may be inspected in a state where the inspection surface is automatically moved, and a specific inspection surface is sequentially and repeatedly imaged by repeating a predetermined layout pattern.
  • a specific inspection surface is sequentially and repeatedly imaged by repeating a predetermined layout pattern.
  • a light emitting surface (irradiation surface) of the plurality of light emitting elements and an imaging surface of the imaging camera are in the same plane.
  • the brightness of the image in the captured image, the position of the image portion, and the like are greatly affected by the positional relationship of the inspected surface with respect to the light emitting surface and the imaging surface.
  • the optical system for inspection can be obtained.
  • the configuration can be substantially specified, and the reliability of the test can be established from this point.
  • the illumination unit when configured by combining a plurality of layout patterns in which light-emitting elements are continuously arranged so as to leave a plane of a predetermined shape inside, the illumination unit can be obtained through an imaging power camera.
  • the illumination unit There are many light-emitting elements in the image of the inspected surface, and the light-emitting images of the light-emitting elements arranged continuously are intermittent depending on the shape of the inspected surface. As a result, there is a possibility that a problem that it is difficult to distinguish the defect from the defect may occur.
  • the surface defect inspection apparatus is configured by combining a plurality of layout patterns in which light emitting elements are continuously arranged so as to leave a predetermined surface inside.
  • An illumination unit an imaging camera for imaging the surface to be inspected illuminated by light emitted by the illumination unit, and a defect evaluation unit for evaluating an output signal of the imaging camera to detect a defect on the surface to be inspected.
  • An isolated point extraction unit configured to determine an isolated protruding luminance area in the light and dark image of the inspection target surface generated as the output signal strength as a defect candidate; A defect to exclude the defect candidate included in the area showing the light emission image of the light emitting element It has a candidate selection section.
  • the defect By moving the surface to be inspected relatively to the imaging camera or the illuminating unit, the defect necessarily goes out of the irradiation point of the light emitting element group and comes to a position facing the dark surface.
  • the area of the continuous emission image as the detected protruding luminance area may be set as the area not subject to the defect determination.
  • the output signal power from the imaging camera that compensates for such fluctuations is used as a reference when generating the bright and dark images.
  • a processing unit is provided. Applying a luminance adjustment to the acquired captured image in advance so as to match the luminance level of the emission image obtained on the reference surface to be inspected leads to an improvement in the accuracy of subsequent defect determination.
  • the surface to be inspected is smaller than the field of view of the imaging camera! /
  • a force that causes an object (such as a background) other than the surface to be inspected to enter the acquired image Since the position information of the image area can be predicted in advance or grasped by a well-known background selection algorithm, in the present invention, the projection luminance excluded from the defect candidates described above is used. It has also been proposed to mask an income image with an area obtained by adding an unnecessary image area such as a background to a peripheral area including the area as an area not subject to defect determination.
  • the surface defect inspection apparatus 100 of the present application is employed in the inspection system 200 shown in FIG. 1 corresponding to FIG. 17, and FIG. 1 shows the entire configuration of the inspection system 200, and FIGS. 4 shows the configuration of the imaging unit 300 of the surface defect inspection apparatus 100, and FIG. 5 shows the configuration of an evaluation system for imaging information.
  • This inspection system 200 is also aimed at, for example, inspecting the surface defects of the pump 11 as described in the section of the prior art.
  • the surface defect inspection apparatus 100 is disposed below the stock station 202 and above the visual inspection station 203 in the system 200.
  • the surface defect inspection apparatus 100 has a unique configuration.
  • the imaging unit 300 is provided.
  • the imaging unit 300 performs a copying operation following the outer shape of the bumper 1, thereby enabling inspection to be performed with much higher accuracy and reliability than before.
  • the moving path of the bumper 1 to be inspected by the transfer robot 2 is a linear moving path.
  • a bumper 1 to be inspected is transported from the upper right side to the lower left side in the figure. As shown, the inspection is performed with a pair of bumpers 1 as one unit. Therefore, along this transport direction, the stock station 202, the surface defect inspection device 100, and the visual inspection station Chillon 203 is provided!
  • the transfer of the bumper 1 from the stock station 202 to the transfer robot (an example of a transfer mechanism) 2 is performed by the input member 204, and the visual inspection is performed by the inspector 201, as in the related art.
  • the input member 204 takes out the pair of bumpers 1 from the stock station 202 at any time and attaches them to the bumper support 2a of the transfer robot 2.
  • the transfer robot 2 moves the transfer path to the lower side while holding the bumper 1. At this time, the posture of the bumper 1 does not change, but only translates along the transport path.
  • the above-described imaging unit 300 moves with a change in attitude so as to follow the surface shape of the bumper 1. As will be described later, the moving mode is to maintain the illumination unit 3 of the imaging unit 300 parallel to the inspection surface and maintain the optical axis of the imaging camera 4 in the normal direction of the inspection surface. The distance to 300 is fixed.
  • the plurality of imaging cameras 4 provided in the imaging unit 300 capture an image of the light and dark pattern of the irradiation light reflected on the bumper 1.
  • the imaging result is sent to the defect evaluation unit 6 serving as a defect evaluation unit on the analysis side, and the presence or absence of a defect is evaluated.
  • the inspector 201 located on the lower side of the transport inspects the sent bumper 1 visually. At this time, as shown in FIG.
  • the information is information of a place to be noticed in the inspection from the inspection result projector 15, and the visual inspection can be proceeded particularly around the place.
  • FIG. 4 shows a plan view (a), a front view (b), and a plan view detail of the imaging unit 300 in (c).
  • the imaging unit 300 basically has a unit frame 300a having a substantially rectangular parallelepiped shape, and the unit frame 300a is provided at both ends in the longitudinal direction (the L1 direction in FIG. 4A) of the unit frame 300a. It is provided with a swing support frame portion 300b extending in the vertical direction.
  • the upper end face of the unit frame 300a has the shape shown in FIG.
  • the lighting section 3 has a large number of light emitting elements 30 arranged in a hexagonal shape in a repeating layout.
  • lens surfaces 4a that is, imaging units of the imaging camera 4 are provided at predetermined uniform intervals.
  • the example shown in the figure shows an example in which ten imaging cameras 4 are provided.
  • a DC power supply 300c for the imaging camera 4 and the light emitting element 30 is provided inside the unit frame 300a.
  • the above-described imaging unit 300 is configured such that the unit 300 is supported by a pair of left and right support shafts 300d provided at the tip of the swing support frame portion 300b.
  • the support shaft 300d is configured to be rotatable around its axis and to be movable in the vertical direction and the front-rear direction with respect to the device frame 100a of the surface defect inspection device 100.
  • FIG. 2 is a view of the apparatus frame 100a as viewed from the front direction orthogonal to the transport path. In FIG. 2, the transport robot 2 also moves to the left with the right-hand force.
  • FIG. 3 is a drawing of the apparatus frame 100a viewed from the entry side (that is, the side) of the transfer robot 2.
  • the device frame 100a is configured as a gate-like structure in a side view and a rectangular structure in a front view.
  • the apparatus frame 100a is provided with a traveling frame 100b movable in the left-right direction (a direction along the transport direction) when viewed from the front and an up-down moving frame 100c movable in the up-down direction.
  • the elevating frame 100c is configured to be vertically movable along a rail rc provided on the traveling frame 100b. This vertical movement is performed by a lifting / lowering motor Mc provided at the center of the traveling frame 100b.
  • the movement in the transport direction of the traveling frame 100b transmits a traveling drive from the traveling motor Mb provided in the apparatus frame 100a to the traveling frame 100b from the rail rb that enables the traveling frame 100b to travel. This is performed by the drive transmission mechanism.
  • the swing support frame 300b is provided at the tip of the swing support frame 300b.
  • a rotation motor Md and a gear transmission mechanism G for reducing the rotation of the rotation motor Md and transmitting the rotation to the support shaft are provided, and the imaging unit 300 is rotated by the rotation of the rotation motor Md.
  • the swing posture can be adjusted.
  • a laser sensor 400 for detecting the position and the inclination (the inclination shown in FIG. 2) of the surface portion of the bumper 1 to be inspected by the imaging unit 300 at present is provided (see FIG. 1). ).
  • the information from the laser sensor 400 is sent to the host computer 14 which also has a function as an imitation and control device.
  • the computer 14 corrects the control information based on detection information from the laser sensor 400, which generates a control command based on the shape information of the bumper 1 and the transfer position information of the transfer robot 2,
  • the control information is sent to each of the above-described lifting motor Mc, traveling motor Mb, and rotation motor Md, and the imaging unit 300 is automatically controlled so as to take an appropriate positional relationship with respect to the surface to be inspected.
  • the appropriate positional relationship is such that the optical axis of the imaging camera 4 is the normal direction of the surface to be inspected, and the illumination surface (light emitting surface 3a) is parallel to the surface to be inspected.
  • FIG. 2 schematically shows the position and orientation of the imaging unit 300 with respect to two different inspected surfaces.
  • the main system of the imaging inspection is to apply irradiation light to the painted surface of the bumper 1, which is the inspection surface, as described above.
  • the controller 5 is positioned as a lower computer with respect to the host computer 14 and is connected to the output unit 10 of the image processing controller 5 itself.
  • a monitor 12 and a printer 13 are provided as output devices.
  • the image processing controller 5 includes illumination for controlling the illumination unit 3, an imaging control unit 9, and an imaging camera. It has an image input unit 7 that takes in the output signal from 4 as digital image data (hereinafter simply referred to as an input image) and develops it in a memory 8 and a defect evaluation unit 6 that performs defect evaluation using the input image. .
  • the image processing controller 5 is connected to the host computer 14 via the communication unit 11 so that data can be transmitted.
  • the host computer 14 stores information on the bumper 1 to be inspected and operation information on the transfer robot 2 as a transfer device, which are downloaded to the image processing controller 5 as necessary.
  • the defect information of the painted surface is also uploaded from the image processing controller 5 to the host computer 14 and stored there.
  • an inspection result projector 15 and a printer controlled by a terminal connected to the host computer 14 via a network are provided in the visual inspection station, and defects transmitted from the image processing controller 5 via the host computer 14 are output. It is configured to instruct an inspector of a defect position or the like via the inspection result projector 15 based on the information.
  • the imaging unit 300 includes the light emitting surface 3a of the illumination unit 3 and the lens surface of the imaging camera 4.
  • the illuminating unit 3 includes a large number of light-emitting elements (LED elements are used in this embodiment, and hence will be referred to as LED elements hereinafter) 30 in a mesh that leaves a hexagonal space. It has a configuration in which it is arranged (while pinching between adjacent LED elements 30) so that it is a layout pattern in a ring shape (ring shape) and the force is repeated in the hexagonal layout pattern.
  • the space left by the LED elements 30 arranged in a hexagonal mesh is referred to herein as a dark surface 31, which is a black or dark plate surface.
  • the lens surface 4a of the imaging camera 4 is located on the surface 31 which is uniformly distributed on the central axis. Then, a plurality of imaging cameras 4 are incorporated in the illumination unit 3. In use, the focus of the imaging camera 4 is set on the light emitting surface 3a of the irradiation unit 3 instead of the painted surface.
  • the image processing controller 5 uses the CPU as a core member, and constructs a functional unit for performing various operations of the surface defect inspection apparatus 100 with hardware or software or both.
  • the defect evaluation unit 6 functions as an image processing unit, and converts an input image developed in the memory 8 into a form suitable for defect detection.
  • a defect determination unit 60B that finds a defect on the surface to be inspected using the preprocessed input image.
  • the preprocessing unit 60A includes a luminance adjustment unit 61 that performs luminance adjustment on the input image and a binarization processing unit 62 that performs binarization processing on the luminance-adjusted input image.
  • the luminance adjustment unit 61 of this embodiment is not limited to the gamma adjustment.
  • the luminance level of the luminescence image included in the input image can be obtained from the normal inspection surface, which serves as a reference for each paint color or each paint surface. It is configured to also perform luminance adjustment on a pixel area basis so as to reach the luminance level of the image.
  • the binarization processing section 62 determines the binarization threshold value by a statistical method from the grayscale histogram of the input image, or the binarization threshold determination section 62a for the input image for noise cancellation.
  • An image feature extraction unit 62b that applies a smoothing filter and applies an edge enhancement filter such as a Sobel filter to enhance the contour of the emission image or defect image is provided.
  • the input image emphasized by the image feature extraction unit 62b using the threshold value is converted into a binary threshold image.
  • FIG. 7 shows an example of an input image that has been binarized by the binarizing unit 62.
  • the high-luminance area is a light-emitting image that is continuously arranged in a hexagonal layout pattern in which the white areas are displayed in white. Painted areas facing the dark surface 31 are displayed as dark areas, and paint defects that may be present are displayed as white independent areas that float in the dark area due to diffuse reflection from the surrounding area. Is done.
  • the defect detection is performed in a region where the luminance is prominent (white region in this embodiment) in the binary image and is continuous in a predetermined pattern.
  • You have to find a point! / Image processing algorithms for searching for continuous pixels having a predetermined level of luminance value (density value) and for searching for isolated areas are well known. Can be used.
  • the LED element originally appears as a continuously connected line due to fluctuations in the reflection characteristics with respect to the irradiation light due to the shape of the painted surface, etc.
  • the defect determination unit 60B is substantially composed of a program so as to appropriately avoid such erroneous detection.
  • the defect determination unit 60B includes a defect candidate extraction unit 63 that detects a non-consecutive independent pixel region composed of a predetermined number of pixels as an isolated point and sets the defect candidate as a defect candidate,
  • the defect candidate selection unit (which excludes the defect candidates included in the area showing the emission image of the selected LED element 30 (the means for extracting this area is the continuous bright area extraction means)).
  • 64 and the defect candidate selection unit 64 integrates the defect candidate excluded image area such as the isolated point area and the background which are excluded, and performs the mask processing as a non-defect determination target area.
  • An image mask generation unit 65 for performing labeling processing for assigning different labels (numbers) to different defect candidate areas in order to identify a plurality of defect candidate areas located outside the image mask; Defect candidates An area calculation unit 67 for calculating the area of the area, and a defect determination unit 68 for determining a defect candidate as a true defect based on the area information from the area calculation unit 67 and writing the defect candidate in a defect map are provided.
  • the closed region extracting means referred to in the present application and the independent bright region extracting means corresponding thereto are configured.
  • the defect candidate selection unit 64 determines whether the defect candidates extracted by the defect candidate extraction unit 63 have been extracted as the defect candidates a predetermined number of times from the images sequentially transmitted from the imaging camera 4 in order to select the defect candidates.
  • the defect candidate time-series determination unit 64a which prevents a suddenly generated bright area from being recognized as a defect candidate by checking, and the defect candidate (isolated point) extracted from FIG.
  • a non-continuous portion search section 64b is provided which is positioned on an extension of the light emission image, and checks whether or not the light emission image is broken, thereby preventing a discontinuity of the light emission image from being recognized as a defect candidate.
  • the search for the non-continuous portion of the luminescence image uses a shape feature extraction algorithm or the like that extracts a dark region located in an extended region at the end of the continuous luminescence image pixel while continuing the luminescence image pixels.
  • the isolated point existing in the discontinuous area is excluded from the defect candidate power.
  • the frame images sequentially transmitted from the imaging camera 4 via the image input unit 7 are stored in a memory.
  • the brightness (density value) of the captured input image is adjusted by the brightness adjustment unit 61 (# 02).
  • the feature amount of the input image is required, and the feature amount is obtained by dividing the input image into a predetermined number of sections, and using the maximum value of the average density value calculated for each section as the feature amount. preferable.
  • This feature value can be used for adjusting the lens aperture of the imaging camera 4 in determining the next binary threshold value.
  • the binary threshold value is determined by the binary threshold value determining unit 62a (# 03), and after the image feature extracting unit 62b performs smoothing and edge enhancement on the image (# 04), the input is performed.
  • the image is
  • the image is binarized to form a binarized image (# 05).
  • an isolated bright pixel area having a number of pixels within a predetermined number is extracted as a defect candidate by the defect candidate extraction unit 63 ( # 06).
  • the defect candidate belonging to an isolated point that is instantaneously and locally generated by disturbance light or the like is also excluded from the defect candidate power by the defect candidate time series determination unit 64a (# 07), and further extracted.
  • the defect candidate belonging to the isolated point located in the discontinuous region of the luminescence image also excludes the defect candidate power by the luminescence image discontinuous portion search unit 64b (# 08).
  • the peripheral region including the discontinuous region of the luminescence image found by the luminescence image discontinuous portion search unit 64b is formed by the shape information of the bumper 1 as the object to be inspected transmitted from the host computer 14 or the transfer robot 2 Mask processing is performed by the image mask generation unit 65 as an unnecessary pixel area together with a background area other than the painted surface as the surface to be determined determined based on the transport position information (# 09).
  • the transport position information obtained from the host computer 14 may be different from the actual position. Therefore, the displacement of the bumper 1 in real time is checked using a laser sensor or the like. , The position of the image mask has been corrected (# 10). [0102] After the selection of the defect candidates and the removal of the background image in this manner, the remaining defect candidates (isolated points) are labeled (# 11), and the area of the isolated points to which each label is assigned is determined. The operation (# 12), which is set in advance !, satisfies the area condition (whether or not the force has an area larger than the threshold), and only the isolated point is determined as a true defect (# 13), and its coordinates are determined. Write the position and size into the defect map (# 14).
  • the procedure of defect evaluation of the painted surface by the defect evaluation means 6 is completed as described above.
  • the visual processing station 203 executes the image processing controller 5 via the host computer 14 at the visual inspection station 203.
  • Defect matching is performed using a defect map provided with an ID that matches the ID of the bumper carried into the visual inspection station 203 from among the defect maps sent from the company.
  • the defect information based on such a defect map may be output as paper by a printer 13 connected to the output unit 10 of the surface defect inspection apparatus 100, and the output paper may be attached to the bumper 1.
  • the illumination unit 3 is configured by the LED element group continuously arranged in a hexagonal mesh.
  • the mesh may have a shape other than the hexagon, and may emit light.
  • the element 30 may be other than the LED element.
  • the illumination unit of the surface defect inspection apparatus is configured as follows.
  • a large number of light-emitting elements are arranged so as to form a plane inside.However, this structure is adopted to allow the scattered light from the back-side force to pass through a mesh-shaped slit to form a structure. Also Good.
  • a diffusion plate 113 is provided on the front part of an illumination box 112 in which a plurality of fluorescent tubes 111 are disposed, and a slit and a slit are provided in front of the diffusion plate 113.
  • a slit plate 114 for forming an inner surface is disposed to constitute a lighting unit suitable for the purpose of the present application.
  • FIG. (A) shows an example in which the square is a square
  • (b) shows an example in which the square is an oblong oval
  • (c) shows the zigzag arrangement of the triangle described in (a). It was done.
  • (d) shows that the ⁇ plane is a triangular shape having a relatively small area.
  • the structure shown in (a) is preferable when the reflection of a defect occurs substantially in the horizontal direction and the vertical direction.
  • the structure shown in (b) is preferably adopted when the surface to be inspected has a curved surface and a dark surface extending in the vertical direction is formed on the imaging side.
  • the structure shown in (c) is effective when the formation of defects tends to be continuously formed in the vertical direction.
  • the structure shown in FIG. Continuous defects can be detected. Further, in the case of (d), relatively small defects are easily detected.
  • a hexagonal layout pattern is shown as the layout pattern of the light-emitting elements.
  • An out pattern is preferable, and the example shown in FIG. 12 is an octagon.
  • defect extraction may be performed based on the force ternary shading processing performed through the binary shading processing.
  • FIG. 15 shows a state of the image processing in the ternary dagger.
  • Figure 15 shows the original image (a), the image after ternarization (b), and the image after exclusion (c).
  • white portions indicate portions CI and C3 having luminance
  • shaded portions C2 indicate defective portions.
  • the halftone portion in (a) is indicated by a shadow portion
  • the point of interest is indicated by a shadow portion C3.
  • the captured image is composed of a portion C1 of high luminance K1 corresponding to a bright portion on the illumination side and a portion C2 of low luminance K2 corresponding to a dark portion.
  • the ring-shaped intermediate luminance area which is actually a relatively narrow area, can be erased (shown by c), and as a result, only the part corresponding to the defect is obtained. Can be left.
  • the surface to be inspected is a curved surface described as a flat surface
  • pattern arrangement is performed so that the dark surface shape on the imaging side is a preferable shape for predetermined detection. Is preferred.
  • FIG. 16 shows this example.
  • FIG. 16 (b) shows that, when the ring-shaped irradiation light is irradiated and the surface to be inspected has a central axis in the horizontal direction of the paper surface, an oval eyeglass-shaped ring is formed which is packed in the vertical direction of the image. Show that.
  • the irradiation light on the irradiation surface corresponding to the curved shape of the surface to be inspected has a mesh shape in which the shape of the mesh in the captured image is a circle or a regular polygon. Is preferably set.
  • the mesh distribution is set to be vertically long in consideration of the shrinkage.
  • the area of the dark portion corresponding to the inside of the mesh in the portion recognized as a continuous bright portion can be secured to a predetermined area or more, and the defect exists.
  • an area of intermediate luminance is formed in the mesh due to the influence of the presence, it is possible to form the area as an independent area, and it is possible to perform good detection by applying the method of the present invention. Wear.
  • the light emitting surface of the light emitting element and the imaging surface of the imaging camera are located on the same plane. However, both surfaces are located at different positions depending on the distance of the surface force to be inspected. You may.
  • a surface defect detection device capable of reliably detecting minute paint defects was obtained.
  • FIG. 1 is a diagram showing a schematic configuration of an inspection system employing a surface defect inspection device according to the present invention.
  • FIG. 2 is a diagram showing a schematic overall configuration of a surface defect inspection device according to the present invention.
  • FIG. 3 is a diagram showing a schematic overall configuration of a surface defect inspection apparatus according to the present invention.
  • FIG. 5 is a diagram showing a control and information processing system of an imaging unit of the surface defect inspection device according to the present invention.
  • FIG. 6 is a functional block diagram showing a configuration of defect evaluation means mounted on the surface defect inspection device.
  • FIG. 7 is an explanatory diagram illustrating a binarized input image
  • FIG. 8 is an explanatory view for explaining an isolated point present at a break in a light emission image
  • FIG. 9 is a flowchart showing a procedure of defect evaluation of a surface to be inspected by defect evaluation means.
  • FIG. 10 Another embodiment in which a lighting unit is constituted by a fluorescent tube and a diffusion plate
  • FIG. 13 A diagram showing a problem when the arrangement of the light emitting elements shown in FIG. 12 is adopted.
  • FIG. 14 A diagram showing an example of the arrangement of light emitting elements, as compared to the example shown in FIG. 11.
  • FIG. 15 Explanatory diagram showing a situation of defect extraction when performing ternarization processing.
  • FIG. 17 is an explanatory diagram of a preferable arrangement of light emitting elements in the case of a curved surface.
  • FIG. 17 is a diagram showing a configuration of a conventional bumper inspection system
  • LED element Light emitting element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 被検査面に所定のパターン形状の照射光を照射し、被照射状態にある前記被検査面の撮像画像により前記被検査面を検査するに、照射光として、各網目内の形状が同一となるように網目状に分布されるとともに、光軸に垂直な平面における照射面積が非照射面積より小さい照射光を照射面より照射し、撮像画像における、被検査面の非照射領域に対応する画像領域の明暗情報に基づいて、被検査面を検査し、網目内に形成される暗面に対してその内に生じる中間輝度の明点を欠陥候補点として抽出する。

Description

明 細 書
表面欠陥検査方法及び装置
技術分野
[0001] 本発明は、所定のレイアウトパターンの照射光を被検査面に照射し、照射光を照明 された被検査面を撮像して検査を行う表面欠陥検査技術に関する。
背景技術
[0002] この種の表面欠陥検査の代表例として、自動車ボディ(具体的にはバンパー)の塗 装面の検査に使用される技術を挙げることができる。このような表面欠陥検査では、 被検査面としての塗装面上に存する凹凸や傷等が、その検査対象となる。
発光面でパターンを成す照射光を使用する検査技術として、所謂、ストライプ状、 即ち、横縞模様の明暗を作り出している照射光を塗装面に照明して、照明状態にあ る塗装面を撮像カメラにより撮像し、得られる撮像画像を用いて表面検査を行う技術 がある。
[0003] この種の検査システムの具体的構成を図 17に示した。
図 17に示す欠陥検査システムにあっては、検査対象となる複数のバンパーがストツ クされたストックステーション 202から、投入員 204が随時、バンパー 1を取り出し、ノ ンパー 1を保持して姿勢変更するロボット 22に取り付ける。
[0004] ロボット 22はバンパー 1を保持したまま、図 17に示す回転軸 22d周りに回転させ、 バンパー 1を姿勢変更する。この姿勢変更に対応して、システムには所定の横縞バタ 一ンで光を照明する照明装置 220が備えられている。図示する例にあっては、バン パー 1が姿勢変更を行う移動空間を囲むように、この装置 220が設けられている。照 射光の照明パターンは、バンパー 1の回転軸 22dに平行なストライプ状の明暗パター ンである。
[0005] 照明装置 220の所定箇所には、複数の撮像カメラ 4が設けられており、これらカメラ 4によりバンパー 1に写り込んだ照射光の明暗パターンが撮像される。撮像結果は、 解析側へ送られ、欠陥の有無等の評価が行われる。
[0006] ロボット 22より下手側に位置する検査員 201は、ロボット 22による保持 ·姿勢変更を 終了した後、バンパー 1を取り外し、目視検査等の後工程におくる。
[0007] この時、検査員 201は欠陥評価手段力 の評価情報を得ており、検査において注 目すべき箇所の情報をえており、迅速確実に作業を進める。
[0008] この構成の表面欠陥検査の基本原理を示したのが、図 18である。
同図に示すように、塗装面を所定方向(例えば R方向)に移動させていった場合に 、塗装面上にある凹凸面といった欠陥の画像部分が、前記移動方向 Rに直交する方 向(例えば図 18における紙面表裏方向)の座標を変えることなぐその方向座標 (R 座標)を変えながら撮像されることを利用して、欠陥の検出を行うことができる。
[0009] 即ち、欠陥領域は撮像画像にお!、て、明のストライプ部位では暗ぐ暗のストライプ 部位では明るく撮像されることを利用して欠陥を識別することから、欠陥は、ストライプ の明部分及び暗部分の中間階調画像として捕らえることができる。同様の検査原理 を使用する技術が特許文献 1に示されて!/ヽる。
[0010] さらに、表面の周期的な凹凸である「ゆず肌」と呼ばれる欠陥を検出しょうとするた めに、照射光である明暗ストライプの境界線の撮像画像上でのゆらぎにより塗装厚み の斑を見出そうとするものがある(特許文献 2参照)。
[0011] この検査手法では、被検査面を移動させる必要はないが、概して、塗装面の比較的 広い範囲に渡ってストライプの境界線画像に位置ずれを起こさせるような乱れが発生 している塗装面が検出対象となる。
[0012] 特許文献 1 :日本国特開平 8— 145906号公報(図 5、図 9及び図 15)
特許文献 2:日本国特開平 9— 126744号公報(図 13)
発明の開示
発明が解決しょうとする課題
[0013] 特許文献 1及び 2のような従来の表面欠陥検査では、被検査面を照明する照明部 力 Sストライプ状の明暗パターンを塗装面に照明するので、表面検査に用いる照射光 の回り込みは、ストライプ状の明暗パターンと直交 (横断)する方向でし力発生しない 結果、被検査面に、このストライプパターンのストライプ方向(ストライプの延長方向 と同方向)に欠陥が存在した場合において、この種の欠陥が捕らえにくい。 [0014] さらにこの技術では、実質上、凸状欠陥し力抽出できず、写り込み箇所について明 喑差を得難く二値価処理で誤検出が出やすい。また、意匠ライン及びその近傍の欠 陥が捉えにくい。
[0015] さらに、図 17, 18に示すように、検査に使用する照射光の照明光軸と、撮像カメラ の撮像光軸とが交差するために、撮像カメラに取り込める光量の点で充分でなく改善 の余地がある。
また、このような検査系においては光学的な複雑さから、欠陥評価側の処理も複雑 にならざるを得ない。同時に、照射系、撮像系の位置関係を厳密なものとする必要が 生じる。
[0016] 本発明の目的は、照射系と撮像系との構成が最も合理的かつシンプルであり、信 頼性の高い検査を行うことが可能な表面欠陥検査技術を得ることにある。
課題を解決するための手段
[0017] 本願に係る、被検査面に所定のパターン形状の照射光を照射し、被照射状態にあ る前記被検査面の撮像画像により前記被検査面を検査する表面欠陥検査方法の特 徴は、
前記照射光として、各網目内の形状が同一となるように網目状に分布されるとともに 、光軸に垂直な平面における照射面積 (発光する部分の面積)が非照射面積 (喑領 域となって!/、る部分の面積)より小さ!、照射光を照射面から照射し、
前記撮像画像における、前記被検査面の非照射領域に対応する画像領域の明暗 情報に基づ 、て、前記被検査面を検査することである。
[0018] この方法にあっては、明部分が網目状に分布され、その明部分の中に閉領域とな る暗部分 (暗面)が存在する照射光を照射面力も照射する。
この照射光が照射された被検査面を、 CCDカメラ等の撮像装置で撮像すると、被 検査面が平面で、その面上に欠陥が無い場合は、照射側の網目状の明暗パターン がほぼそのまま映り込む。これに対して欠陥が存在する場合は、欠陥が暗部分の直 下等にある場合、照射側の明部分から照射された光が、欠陥で光路を曲げられて、 本来、暗部分となるべき領域 (非照射領域)に映り込む。
[0019] 結果、暗部分である網目内の概略中央に独立明点が形成できる。本願では、この 現象を利用して、欠陥を検出することが可能となる。そして、網目内形状が同一とさ れていることで、任意の網目内に位置する可能性がある欠陥をほぼ同等な条件で検 出することが可能となる。
さらに、この構成は、網目が照射部に網目内が非照射部に対応し、非照射面積が 大きく選択されていることで、暗部分に現れる明部として、欠陥を検出する確率を高 いものとできる。
[0020] また、本願にあっては、明部分が網目状に形成されているため、暗部分を囲む全周 から、この種の映り込み光を、二次元的な広がりを有する撮像装置の所定位置画素 に入光させることが可能となり、従来、困難であった、形状、大きさ、深さの欠陥を検 出できるようになった。
発明者らの検討では、網目の大きさを平均直径 (網目を円と見なした場合の直径で ある)を 25mm程度にする場合、平面視概略丸で、半径 0. 3mm、深さが 0. 03mm 程度の欠陥を、通用の CCDカメラで識別できた。
また、検査に際して、被検査体を、通常、表面欠陥検査装置に対して、相対移動を させながら順次検査して行くこととなるため、この移動に伴って、いずれかの網目部で 、欠陥を明確な欠陥画像として捕らえて、確実な検出を行える。
[0021] さらに、明部分と暗部分の境界線は網状を成すため、「ゆず肌」等の欠陥の検出に 際して、従来型のストライプが有した検出の様に特定の方向性を有するという問題を 解消できる。
[0022] このような表面欠陥検査方法を使用する、
被検査面に所定のパターン形状の照射光を照射する照射手段と、前記照射光が 照射された被照射状態にある前記被検査面の撮像画像を撮像する撮像手段と、前 記撮像手段により得られる撮像画像を画像処理する画像処理手段とを備えた表面欠 陥検査装置としては、
前記照射手段が、前記照射光として、各網目内の形状が同一となるように網目状に 分布されるとともに、光軸に垂直な平面における照射面積が非照射面積より小さい照 射光を照射面から照射し、
前記画像処理手段が、前記画像処理において、前記被検査面の非照射領域に対 応する画像領域の明暗情報を処理可能に構成することで、装置を構成することがで きる。
[0023] さて、上記方法において、正常な被検査面に前記照射光を照射した状態における 撮像画像を正常撮像画像とし、前記正常撮像画像における照射領域の輝度を高輝 度と、前記非照射領域の輝度を低輝度とする場合に、
撮像画像内に存し、前記高輝度と低輝度との中間輝度の領域である中間輝度領 域を注目領域として検査を行うことが好ま U、。
[0024] 上述のように、本願では、主に、欠陥の存在に起因して、明暗パターンの明部分か らの光の映り込みを利用して欠陥の検出を行うことが可能となるため、その欠陥画像 は、照射部分の輝度である高輝度と、非照射部分の輝度である低輝度との中間輝度 となる。
従って、高輝度部及び低輝度部を除くことで、欠陥の存在の確率が高い領域を容 易に抽出することができ、簡単な画像処理で、迅速に目的の欠陥によると考えられる 画像領域を抽出できる。
[0025] このような処理を実行する表面欠陥検査装置は、正常な被検査面に前記照射光を 照射した状態における撮像画像を正常撮像画像とし、前記正常撮像画像における 照射領域の輝度を高輝度と、前記非照射領域の輝度を低輝度とする場合に、前記 画像処理手段が、撮像画像内に存し、前記高輝度と低輝度との中間輝度の領域で ある中間輝度領域を抽出する中間輝度領域抽出手段を備えた構成で達成できる。
[0026] さて、本願の表面欠陥検査方法で使用する照射光は、その照射面において、発光 側である明部が網目状をなし、その網目内が暗部とされている、従って、このパター ンは、被検査面が平面であり網目の撮像にゆがみを発生しない場合、被検査面が曲 面であり網目の撮像にゆがみを発生する場合、共に、撮像画像でも踏襲される。従つ て、欠陥とは実質的に関係のない網目の正常部分は、画像処理において、連続する 明部として注目領域力 排除することが可能となる。
[0027] 即ち、前記被検査面の照射領域に対応する画像領域を、連続する明領域として抽 出するとともに、この連続する明領域を注目領域から排除することで、容易に欠陥に 対応する画像であるらしい領域を抽出することができる。 [0028] このような表面欠陥検査方法を実行するには、前記画像処理手段に、 前記被検査面の照射領域に対応する画像領域である連続した明領域を抽出する 連続明領域抽出手段と、抽出された前記連続した明領域を注目領域から排除する 排除手段を備えておけばよい。
[0029] さらに、上記表面欠陥検査方法において、前記被検査面の非照射領域に対応する 画像領域を、閉じた暗領域毎に抽出するとともに、前記閉じた暗領域内に独立の明 領域が存在する場合に、前記独立の明領域を注目領域とすることが好ましい。
[0030] この方法では、照射光が網目状を成して!/、ることに注目して、この網目内の領域を 基本的に閉を成す暗領域として認識し、この暗領域内に独立の明領域が存在する 場合は、非検査面に異常 (欠陥)が存在する可能性があるとして、注目領域とする。 この場合は、例えば、被検査面が曲面となっており、基本となる網目形状に比較的 大幅な変形が発生する場合にあっても、照射光が有する形状的特徴を利用して、有 効な欠陥検出を実行できる。
[0031] この表面欠陥検査方法を使用する表面欠陥検査装置を構成する場合には、
先に説明した画像処理手段が、
被検査面の非照射領域に対応する画像領域である閉じた暗領域を各別に抽出す る閉喑領域抽出手段と、
抽出された閉じた暗領域内に存する独立の明領域を抽出する独立明領域抽出手 段とを備える構成とすることで、上述の表面欠陥検査方法を実行できる。
[0032] さらに、照射手段において前記照射光が、網目状に分布された複数の発光素子に より形成されることが好ましい。
この場合は、発光素子を使用することで、間接照射構造を取る場合等、輝度不足 に伴う微小欠陥の見逃し等が発生する可能性を低減でき、充分な照射側での輝度を 確保して、確実で信頼性の高い検査を行える。また、例えば、黒板上における発光 素子の分布の変更で、任意の網目状分布を有する照射光を得ることが可能となる。
[0033] さらに、後にも示すように、本願にあっては、撮像装置の焦点を照射側の照射面( 発光面)に合わせて撮像画像を得るが、この場合に、発光素子の発光部とその背景 との輝度差を大きく取れるため、撮像側の画像をよりシャープなものとでき、一般に、 ぼけた、小さな画像となりやすい欠陥起因の画像部位を容易に浮き立たせることがで きる。
[0034] 一方、照射手段において照射光が、網目状に分布された幅狭のスリット間を透過し て形成されることも好ましい。この場合は、従来、行われてきたように、光源の前に拡 散板を、さらに前に網目内の形状に合わせた暗部分を形成するための遮蔽体を分 配配置することで、本願の使用目的に合致した照射光を容易に得ることができる。さ らに、その境界線も明確とできる。
[0035] さらに、これまで説明してきた技術において、前記網目の大きさを調節可能に構成 されていることが好ましい。
[0036] 本願のように、欠陥による映り込み光を利用する場合は、撮像側からみれば、欠陥 を介して反射された光線の光路が、網目を成す明部分に届く必要があり、検出対象 の欠陥の大きさ(開口面積、深さ等を含む)と、網目の大きさに、映り込みが発生する 力どうかが大きく関係する。従って、網目の大きさを調節可能にすることにより、所定 の大きさの欠陥に対して検出が良好に行える大きさの網目を選択して、良好に検出 を行える。
[0037] さらに、前記被検査面の照射領域と非照射領域との輝度差を調節可能に構成され ていることが好ましい。
[0038] 例えば、検査対象が自動車ボディの塗装面である場合、その面としては、ほぼ平面 とみなせる部位があったり、曲面部があったりする。従って、照射系、撮像系における 光路距離にはばらつきがあり、欠陥の検出に必要となる光量を常に良好な状態で確 保できるとは限らない。
しかしながら、前記輝度差を調節可能にしておくと、映り込みに必要な光量を被検 出対象の状態に応じて選択しやすぐ信頼性の高い検出を行える。
[0039] 以上の説明にあっては、照射光の形成方法を問うものではな 、が、現行の技術で は、本願のような比較的複雑なパターンを成す照射光を形成するには、製造技術上 、多数の発光素子を所定のレイアウトパターンに分布させて構成することが最も現実 的である。
従って、このような構成を採る場合における、本願の目的を達成するための表面欠 陥検査装置の構成は、以下のようにする。
[0040] 所定のレイアウトパターンで配置された複数の発光素子と、前記発光素子の照射 光によって照明された被検査面を撮像する撮像カメラと、前記撮像カメラの撮像情報 を出力する出力部を備えた表面欠陥検査装置の本発明に係る特徴構成は、 前記レイアウトパターンが前記発光素子を内側に所定形状の喑面を残すように連 続的に配置させたものであり、少なくとも 1つの前記暗面に前記撮像カメラが前記被 検査面から反射される前記各発光素子の照射光を受光するように配置されて!、るこ ととする。
[0041] この欠陥表面欠陥検査装置にお!、ても、その検査原理として、照射光の映り込みを 利用するが、この検査原理を利用する場合、照明部に、内側に所定形状の喑面を残 すように配置された発光素子の連続的なレイアウトパターンを採用する。
[0042] このようにすると、例えば、塗装面が平面で、照明部における発光素子のレイアウト パターンが六角形で、塗装面の法線方向に照射光の光軸および撮像カメラの光軸 が向けられている場合、塗装面に欠陥がなければ撮像は六角形の明暗パターンとな る。し力しながら、欠陥がある場合、この欠陥により六角の内部に形成された暗面に 輝度領域が、図 7に示すように孤立点として形成される。従って、この欠陥起因の像 を撮像カメラで確実に撮像することができる。
[0043] しかも、暗面に撮像カメラを配置することで、照射光の光軸方向と撮像側の光軸方 向を一致させることが可能となり、所謂、落射状態での撮像検査が可能となる。
[0044] そして、前記出力部力もの出力信号を評価して前記被検査面における欠陥を検知 する欠陥評価部を備える構成としておくと、画像処理技術として確立された解析技術 を利用して、自動的に欠陥箇所を評価、割り出しできる。
[0045] さて、前記レイアウトパターン力 所定方向にお!、て繰り返される繰り返しレイアウト パターンであることが好まし 、。
[0046] このような繰り返しパターンとすることで、例えば、発光素子のレイアウトパターン部 位とその内部に設けられる暗面とを単位として、撮像に対する画像処理を、同一の基 準で繰り返し行うことができる。また、被検査面が移動している場合、同一の被検査面 部位を繰り返して検査でき、当該被検査面部位にっ 、て信頼性を高める十分な情報 を得ることができる。
[0047] さらに、前記被検査面を前記複数の発光素子及び前記撮像カメラに対して相対搬 送移動する搬送機構を備え、前記レイアウトパターンの繰り返し方向が前記相対搬 送方向であることが好ましい。
この種の表面欠陥検査にあっては、被検査面が自動的に移動する状態で検査され る場合もあり、所定のレイアウトパターンの繰り返しで、順次、特定の被検査面を繰り 返して撮像し、撮像情報を得ることで、信頼性の高い検査を行える。
[0048] さらに、前記複数の発光素子の発光面 (照射面)と、前記撮像カメラの撮像面が同 一平面内にあることが好ましい。
この種の検査にあっては、撮像画像における画像の明るさ、さら〖こは、その画像部 位の位置等は、発光面と撮像面とに対する被検査面の位置関係に大きく影響される 。その点、発光面と撮像面とを同一平面上に位置させることで、これらが一体化した 撮像ユニットを容易に構築でき、この同一平面から被検査面までの距離の調節だけ で、検査における光学構成を実質上特定することが可能となり、検査の信頼性をこの 点からも確立できる。
[0049] 以上、説明してきたように、照明部を、内側に所定形状の喑面を残すように発光素 子を連続的に配置させたレイアウトパターンを複数組み合わせて構成すると、撮像力 メラを通じて得られた被検査面の画像に多くの発光素子の発光像が存在することに なり、その際被検査面の形状等の条件により、連続して配置されている発光素子の 発光像が断続してしまって、欠陥との区別が難しくなるという問題が生じる虞がある。
[0050] この課題を解決するため、本発明による表面欠陥検査装置は、内側に所定形状の 喑面を残すように発光素子を連続的に配置させたレイアウトパターンを複数組み合 わせて構成された照明部と、前記照明部による照射光によって照明された被検査面 を撮像する撮像カメラと、前記撮像カメラの出力信号を評価して前記被検査面にお ける欠陥を検知する欠陥評価手段とから構成され、前記欠陥評価手段が、前記出力 信号力 生成された前記被検査面の明暗画像における孤立した突出輝度領域を欠 陥候補と判定する孤立点抽出部と、前記明暗画像における前記連続配置された発 光素子の発光像を示す領域に含まれる前記欠陥候補を欠陥候補力 除外する欠陥 候補選別部を備える。
[0051] この構成では、実質、網目(代表的にはリング)状に連続配置された発光素子群の 照射ポイントの内側に、つまり暗面に対向する被検査面に存在している欠陥に対して 、その欠陥の全周方向から照射光の一部があたることになり、欠陥像が暗い喑面像 の中に明るく浮き上がることになつて、明暗画像における孤立した突出輝度領域とし て欠陥候補を検知することが可能となるとともに、連続して配置されている発光素子 の発光像が断続部分がやはり孤立した突出輝度領域 (孤立点とも称する)として検知 されることに対しては、所定パターンでの連続発光像の延長線上に存在する孤立点 を欠陥候補カゝら除外することで、欠陥誤検出は低減される。
[0052] 被検査面を撮像カメラや照明部に対して相対的に移動させることにより、欠陥は必 ず発光素子群の照射ポイントを外れて暗面に対向する位置にくるので、所定パター ンで検知される突出輝度領域としての連続発光像の領域を欠陥判定対象外領域とし ても差し支えない。
[0053] 多くの発光素子を連続的に配置した照明部を用いていることから、その発光素子の 照射光の被検査面での反射光が撮像カメラで捉えられ、撮像カメラカゝら出力される画 像に発光像として生じることになるが、この発光像の輝度値は検査条件、特に被検査 面の状況によって変動することになる。
[0054] 本発明では、この発光像の輝度値が欠陥判定の重要なリファレンスとなるので、そ のような変動を補償すベぐ撮像カメラからの出力信号力 前記明暗画像を生成する 際に基準となる正常な被検査面力 得られる前記連続配置された発光素子の発光 像の輝度レベルに実際の検査時の連続する発光像領域の輝度レベルが実質的に 一致するように画像処理を行う前処理部が備えられると好都合である。取得された撮 像画像に対して予め基準となる被検査面に対して得られる発光像の輝度レベルに合 わせるような輝度調整を施すことは、その後の欠陥判定の精度向上に結びつく。
[0055] 被検査面が撮像カメラの撮影視野に比べて小さ!/、場合などにぉ ヽて被検査面以 外の被写体 (背景など)が取得画像内に入り込むことになる力 このような不要画像領 域の位置情報は予め予測できたり、良く知られた背景選択アルゴリズムで把握したり することが可能であるので、本発明では、前述した欠陥候補から除外される突出輝度 領域を含むその周辺領域に背景などの不要画像領域を加えて統合した領域を欠陥 判定対象外領域として所得画像に対してマスク処理することも提案されている。 本発明によるその他の特徴及び利点は、以下図面を用いた実施形態の説明により 明らかになるだろう。
発明の効果
[0056] 例えば、自動車ボディーの塗装面において、従来は検出することが困難であった 欠陥を確実に検出することができるようになった。
発明を実施するための最良の形態
[0057] 以下、本願の表面欠陥検査装置 100に関して説明する。
本願の表面欠陥検査装置 100は、図 17に対応した図 1に示す検査システム 200に 採用されるものであり、図 1は、検査システム 200の全体構成を、図 2、 3は表面欠陥 検査装置 100の全体構成を、図 4は表面欠陥検査装置 100の撮像ユニット 300の構 成を、図 5は撮像情報の評価系の構成を示したものである。
[0058] この検査システム 200もまた、先に従来技術の項で説明したように、例えば、パンパ 一 1の表面欠陥検査を目的とするものである。表面欠陥検査装置 100は、このシステ ム 200において、ストックステーション 202の下手側、目視検查ステーション 203の上 手側に配設されており、この表面欠陥検査装置 100には、本願独特の構成を有する 撮像ユニット 300が備えられて 、る。
[0059] この撮像ユニット 300はバンパー 1の外形形状に倣って倣い動作することで、検査 を従来より格段に高い精度かつ信頼性で行うことを可能としている。
以下、検査システム 200の構成、表面欠陥検査装置 100における撮像ユニット 300 の倣 、構成、撮像画像の処理の順に詳細に説明する。
[0060] 〔検査システム〕
図 1に示すように、本願に係る検査システム 200では、検査対象であるバンパー 1の 搬送ロボット 2による移動経路が直線移動経路とされている。
図 1において、検査対象のバンパー 1は、図上、右上側から左下側へ搬送される。 図示するように、検査は一対のバンパー 1を一単位として行われる。従って、この搬送 方向に沿って、ストックステーション 202、表面欠陥検査装置 100、目視検査ステー シヨン 203が設けられて!/、る。
ストックステーション 202から搬送ロボット(搬送機構の一例) 2へのバンパー 1の移 動が投入員 204により行われ、検査員 201によって目視検査が行われる点に関して は、従来通りである。
[0061] 作業の流れに沿って説明すると、ストックステーション 202から投入員 204が随時一 対のバンパー 1を取り出し、搬送ロボット 2のバンパー支持部 2aに取り付ける。
[0062] 搬送ロボット 2は、バンパー 1を保持したまま、搬送経路を下手側に移動する。このと きバンパー 1の姿勢変更は起こらず、搬送経路に沿って並進移動するのみである。 バンパー 1が表面欠陥検査装置 100内に入ると、バンパー 1の表面形状に倣うように 、前述の撮像ユニット 300が姿勢変更を伴って移動する。その移動形態は後述する ように、撮像ユニット 300の照明部 3を検査面に平行に、且つ撮像カメラ 4の光軸を検 查面の法線方向に維持するもので、被検査面と撮像ユニット 300との間の距離を一 定とするものである。
[0063] そして、撮像ユニット 300に備えられる複数の撮像カメラ 4によりバンパー 1に写り込 んだ照射光の明暗パターンが撮像される。撮像結果は、解析側である欠陥評価手段 を成す欠陥評価部 6へ送られ、欠陥の有無等の評価が行われる。
[0064] 搬送下手側に位置する検査員 201は、送られてくるバンパー 1を目視検査するので あるが、図 1に示されるように、この時、検査員 201は欠陥評価部 6からの評価情報を 検査結果プロジェクタ 15より、検査において注目すべき箇所情報としており、特にそ の箇所等を中心に目視検査を進めることができる。
[0065] 〔表面欠陥検査装置における撮像ユニットの倣い構成〕
a 撮像ユニット 300
図 4に、撮像ユニット 300の平面図(a)、正面図(b)、平面視の詳細を (c)に示した。 同図に示すように、撮像ユニット 300は基本的には概略直方体形状を有したユニット フレーム 300aと、このユニットフレーム 300aの長手方向(図 4 (a)における L1方向) の両端にユニットフレーム 300aから上下方向に延びる揺動支持フレーム部 300bを 備えて構成されている。
[0066] 同図にも示されるように、前記ユニットフレーム 300aの上側端面は、本願にいう照 明部 3として構成されており、この照明部 3には多数の発光素子 30が六角形状を単 位として繰り返しレイアウトで配設されて 、る。
[0067] さらに、この照明部 3の幅方向中央には、所定均等間隔で撮像カメラ 4のレンズ面 4 a (即ち撮像部)が備えられている。図示する例にはあっては、 10個の撮像カメラ 4を 備えた例を示している。図 4 (b)に示すように、ユニットフレーム 300aの内部には、撮 像カメラ 4および発光素子 30用の DC電源 300cが設けられている。
[0068] b 倣い構造
上述の撮像ユニット 300は、前記揺動支持フレーム部 300bの先端に設けられて ヽ る左右一対の支持軸 300dでユニット 300が支持されるように構成されて 、る。この支 持軸 300dは、その軸心周りの回転が可能とされるとともに、表面欠陥検査装置 100 の装置フレーム 100aに対して、その上下方向およびその前後方向で移動可能に構 成されている。
[0069] 図 2は、前記装置フレーム 100aを搬送経路に直交する正面方向力も見た図面であ り、同図において、搬送ロボット 2は右側力も左方向に移動する。
図 3は、前記装置フレーム 100aを搬送ロボット 2の侵入側(即ち側面)から見た図面 である。
[0070] 図 2に示すように、装置フレーム 100aは、その側面視が門型で、その正面視で方 形の構造体として構成されて ヽる。
この装置フレーム 100aに対して、その正面視の左右方向(搬送方向に沿う方向)に 移動可能な走行フレーム 100bと、上下方向に移動可能な上下移動フレーム 100cと が備えられている。
[0071] この昇降フレーム 100cは前記走行フレーム 100bに設けられるレール rcに沿って 上下方向に移動可能に構成されている。この上下方向移動は走行フレーム 100bに 中央部位に設けられる昇降モータ Mcによって実行される。
[0072] 前記走行フレーム 100bの搬送方向移動は、この走行フレーム 100bの走行を可能 とするレール rb、及び装置フレーム 100aに備えられた走行モータ Mbからの走行フ レーム 100bへの走行駆動を伝達する駆動伝達機構によって実行される。
[0073] さらに、図 3に示されるように、前記揺動支持フレーム部 300bの先端に設けられて いる左右一対の支持軸 300dに対しては、回転モータ Mdと、この回転モータ Mdの 回転を減速して前記支持軸に伝達するギヤ伝達機構 Gとを備え、回転モータ Mdの 回転により撮像ユニット 300の揺動姿勢の調整を実行可能に構成されている。
[0074] さて、現時点で撮像ユニット 300で検査対象とするバンパー 1の表面部位の位置お よび傾き(図 2で示される傾き)を検出するためのレーザーセンサ 400が備えられてい る(図 1参照)。
このレーザーセンサ 400からの情報は、倣!、制御装置としての機能をも有するホス トコンピュータ 14に送られる。
[0075] このコンピュータ 14では、バンパー 1の形状情報、搬送ロボット 2の搬送位置情報に 基づいて制御指令が生成されるのである力 前記レーザーセンサ 400からの検出情 報により制御情報を補正して、前述の昇降モータ Mc、走行モータ Mb、回転モータ Mdの各モータに制御情報を送り、撮像ユニット 300が、被検査面に対して適切な位 置関係をとるように自動制御される。
[0076] この適切な位置関係とは、図 2に示すように、撮像カメラ 4の光軸が被検査面の法 線方向とされ、照明面 (発光面 3a)が被検査面に対して平行で、照明面 (発光面 3a) および撮像面 (即ちレンズ面 4a)が共に、被検査面カゝら所定の距離にある関係をいう 。図 2では、異なった 2つの被検査面に対する撮像ユニット 300の位置および姿勢を 模式的に示している。
[0077] 〔撮像画像の処理〕
本願に係る表面欠陥検査装置 1にあっては、図 4、 5に示すように、撮像検査の主 要な系統は、上述のように、照射光を被検査面であるバンパー 1の塗装面に照明す る照明部 3と、この照明部 3で照明された被検査面を撮像する撮像カメラ 4と、この撮 像カメラ 4からの出力信号を用いた被検査面における欠陥の存在の評価やその評価 欠陥の出力を行う画像処理コントローラ 5から構成される。
[0078] 図 4、 5〖こ示すよう〖こ、このコントローラ 5は、上述のホストコンピュータ 14に対する下 位コンピュータとして位置されるものであり、この画像処理コントローラ 5自体の出力部 10に接続される出力機器としてのモニタ 12やプリンタ 13とを備えている。
[0079] 画像処理コントローラ 5には、照明部 3の制御を行う照明 ·撮像制御部 9、撮像カメラ 4からの出力信号を取り込んでデジタル画像データ(以下単に入力画像と称する)と してメモリ 8に展開する画像入力部 7、入力画像を用いて欠陥評価を行う欠陥評価部 6を有している。
[0080] さらに画像処理コントローラ 5は、通信部 11を介してホストコンピュータ 14にデータ 伝送可能に接続されて 、る。
このホストコンピュータ 14には必要に応じて画像処理コントローラ 5にダウンロードさ れる検査対象となるバンパー 1の情報や搬送装置である搬送ロボット 2の動作情報が 蓄積され、さらに、画像処理コントローラ 5で生成された塗装面の欠陥情報も画像処 理コントローラ 5からホストコンピュータ 14にアップロードされ、そこに蓄積される。
[0081] また、ホストコンピュータ 14にネットワーク接続された端末によって制御される検査 結果プロジェクタ 15やプリンタなどが目視検査ステーションに備えられ、画像処理コ ントローラ 5からホストコンピュータ 14を介して送られてくる欠陥情報に基づいて、検 查結果プロジェクタ 15を介して欠陥位置などを検査員に指示するように構成されて いる。
[0082] 上述のように撮像ユニット 300は、照明部 3の発光面 3a及び撮像カメラ 4のレンズ面
(撮像面に相当) 4aは、搬送ロボット 2によって搬送されるバンパー 1の被検査面に対 向して、その照明面 3a及び撮像面 4aの法線と被検査面の法線とがー致するように、 さらに離間距離が一定となるように追従制御される。
[0083] 図 4に示すように、照明部 3は多数の発光素子 (この実施形態では LED素子を用い るので以後 LED素子と称することにする) 30を、 6角形のスペースを残すような網目 状 (リング状)のレイアウトパターンで、し力もこの 6角形レイアウトパターンを繰り返す ように連続的に(隣接する LED素子 30との間をつめながら)配置した構成を有してい る。 6角形網目状に配置された LED素子 30によって残されたスペースは、ここでは暗 面 31と呼ばれ、黒もしくは暗色のプレート面である。
[0084] 網目状に配置された LED素子 30によって多くの暗面 31が現出している力 その内 の中央軸上に均等分散して位置する喑面 31に撮像カメラ 4のレンズ面 4aが位置され て、複数の撮像カメラ 4が照明部 3に組み込まれた構成とされている。使用に際して は、撮像カメラ 4の焦点は、塗装面ではなく照射部 3の発光面 3aに合わせる。 [0085] 画像処理コントローラ 5は、 CPUを中核部材として、この表面欠陥検査装置 100の 種々の動作を行うための機能部をノヽードウエア又はソフトウェアあるいはその両方で 構築している。
[0086] 図 6に示されているように、本発明に特に関係する機能部として、欠陥評価部 6は画 像処理手段として働き、メモリ 8に展開された入力画像を欠陥検出に適した形態に変 換する前処理部 60Aと、前処理された入力画像を用いて被検査面上の欠陥を見つ け出す欠陥決定部 60Bに分けることができる。
[0087] 前処理部 60Aは、入力画像に対する輝度調整を行う輝度調整部 61と輝度調整さ れた入力画像を 2値化処理する 2値化処理部 62からなる。この実施形態の輝度調整 部 61は、ガンマ調整だけではなぐ入力画像に含まれている発光像の輝度レベルが 塗装色や塗装面毎の基準となる正常な被検査面から得られる LED素子の発光像の 輝度レベルに達するように画素領域単位の輝度調整も行うように構成されて 、る。
[0088] また、 2値化処理部 62は、入力画像の濃淡ヒストグラムから統計的手法で 2値化閾 値を決定する 2値ィ匕閾値決定部 62aやノイズ消しのために入力画像に対して平滑ィ匕 フィルタをかけるとともに発光像や欠陥像の輪郭を強調するために Sobelフィルタな どのエッジ強調フィルタをかける画像特徴抽出部 62bを備え、 2値化閾値決定部 62a によって決定された 2値ィ匕閾値を用いて画像特徴抽出部 62bで強調された入力画像 を 2値ィ匕画像にする。
[0089] 2値ィ匕処理部 62によって 2値ィ匕された入力画像の一例が図 7に示されている。この 2値ィ匕明暗画像においては、輝度の高い領域は白く表示されている力 6角形レイァ ゥトパターンで連続配置された発光像である LED素子群は敷き詰められた 6角形状 の連続して繋がった白い輪郭線として表示され、暗面 31に対向する塗装面領域は 暗領域として表示され、場合によっては存在する塗装欠陥はその周囲からの照射光 による乱反射により暗領域に浮かぶ白い独立した領域として表示される。
[0090] このことから、欠陥検出は、 2値ィ匕画像において、輝度が突出している領域 (この実 施形態では白い領域)であって所定のパターンで連続して 、な 、領域、つまり孤立 点を探し出せばよ!/、ことになる。所定レベルの輝度値 (濃度値)を有しながら連続する 画素を探したり、孤立した領域を探したりする画像処理アルゴリズム自体は良く知ら れたものを用いることができる。
[0091] し力しながら、被検査面ここでは塗装面の形状による照射光に対する反射特性の 変動等によって、図 8に拡大して示すように、本来は連続して繋がった線として現れる LED素子 30の発光像に途切れが生じ、その途切れた部分が欠陥として誤検出され る可能性がある。このような誤検出を適切に回避するように欠陥決定部 60Bは実質的 にはプログラムで構成されて 、る。
[0092] つまり、この欠陥決定部 60Bは、所定数以内の画素数力 構成される非連続の独 立した画素領域を孤立点として検出して欠陥候補とする欠陥候補抽出部 63と、連続 配置された LED素子 30の発光像を示す領域 (この領域を抽出する手段が連続明領 域抽出手段である。 )に含まれる欠陥候補を欠陥候補カゝら除外する欠陥候補選別部 (この除外処理を行うのが排除手段である。)64と、この欠陥候補選別部 64で欠陥候 補力 除外された孤立点領域及び背景などの不要画像領域を統合して欠陥判定対 象外領域としてマスク処理する画像マスク生成部 65と、画像マスク外に位置する複 数の欠陥候補領域を識別するために異なる欠陥候補領域には異なるラベル (番号) を割り当てるラベリング処理を行うラベル設定部 66と、各ラベリングされた欠陥候補領 域の面積を演算する面積演算部 67と、この面積演算部 67からの面積情報に基づい て欠陥候補を真の欠陥と判定して欠陥マップに書き込む欠陥判定部 68を備えてい る。このようにして、結果的に、本願にいう閉喑領域抽出手段と、これに対する独立明 領域抽出手段が構成されている。
[0093] 欠陥候補選別部 64は、欠陥候補抽出部 63で抽出された欠陥候補を選別するため に、撮像カメラ 4から順次送られてくる画像カゝら所定回数欠陥候補として抽出されて いるかどうかをチェックすることで突発的に生じる明領域を欠陥候補として認識するこ とを防止する欠陥候補時系列判定部 64aと、図 8からよく理解できるように抽出された 欠陥候補 (孤立点)が連続して 、る発光像の延長線上に位置して 、るからどうかをチ ックすることで発光像の途切れ部を欠陥候補として認識することを防止する発光像 非連続部探索部 64bを備えて 、る。
[0094] この発光像非連続部の探索は、連続する発光像画素を迪つていきながらその途切 れ端の延長線領域に位置する暗領域を抽出する形状特徴抽出アルゴリズム等を用 いて行うことが可能であり、この途切れ領域に存在する孤立点は欠陥候補力 除外さ れる。
[0095] このように構成された欠陥評価手段 6による塗装面の欠陥評価の手順を図 9のフロ 一チャートを用いて以下に説明する。
[0096] まず、撮像カメラ 4から画像入力部 7を介して順次送られてくるフレーム画像をメモリ
8に取り込む(# 01)。取り込まれた入力画像は、輝度調整部 61によって輝度 (濃度 値)調整される(# 02)。その際入力画像の特徴量が必要となるが、その特徴量は入 力画像を所定の区画数で区画し、各区画毎に演算された濃度平均値の最大値を特 徴量とすることが好ましい。
[0097] この特徴量は次の 2値ィ匕閾値の決定は撮像カメラ 4のレンズ開口度の調整にも利 用できる。 2値ィ匕閾値決定部 62aで 2値ィ匕閾値が決定されるとともに(# 03)、画像特 徴抽出部 62bで画像の平滑ィ匕及びエッジ強調を行った後 ( # 04)、この入力画像は
2値化処理されて 2値化画像となる( # 05)。
[0098] 2値化された入力画像から、陥候補抽出部 63によって、所定数以内 (画像解像度 等から予め決定される)の画素数力 なる孤立した明画素領域が欠陥候補として抽 出される(# 06)。
[0099] 抽出された欠陥候補のうち外乱光等により瞬時的かつ局地的に生じる孤立点に属 する欠陥候補は欠陥候補時系列判定部 64aによって欠陥候補力も除外され(# 07) 、さらに抽出された欠陥候補のうち発光像の途切れ領域に位置する孤立点に属する 欠陥候補は発光像非連続部探索部 64bによって欠陥候補力も除外される ( # 08)。
[0100] 発光像非連続部探索部 64bによって見つけ出された発光像の途切れ領域を含む その周辺領域は、ホストコンピュータ 14から伝送される被検査物としてのバンパー 1 の形状情報や搬送ロボット 2による搬送位置情報に基づいて決定される被検査面とし ての塗装面以外の背景領域とともに不要画素領域として画像マスク生成部 65によつ てマスク処理される ( # 09)。
[0101] なおこの実施形態では、ホストコンピュータ 14から得られる搬送位置情報は、実際 の位置とは異なる可能があるので、レーザーセンサなどを用いてリアルタイムでのバ ンパー 1の位置ずれをチェックして、その画像マスクの位置を修正している ( # 10)。 [0102] このようにして欠陥候補の選別や背景画像の除去を終えた後、残されている欠陥 候補 (孤立点)をラベリングし(# 11)、各ラベルを割り当てられた孤立点の面積を演 算し( # 12)、予め設定されて!、る面積条件(閾値以上の面積をもつ力どうか)を満た して 、る孤立点だけが真の欠陥として判定し(# 13)、その座標位置及びサイズなど を欠陥マップに書き込む(# 14)。
[0103] 〔後処理〕
以上で欠陥評価手段 6による塗装面の欠陥評価の手順は終了するが、この手順を 通じて塗装面の検査が終わると、目視検査ステーション 203において、ホストコンビュ ータ 14を介して画像処理コントローラ 5から送られてきた欠陥マップのうち、目視検査 ステーション 203に搬入されたバンパーの IDに一致する IDを付与されている欠陥マ ップを用いて、欠陥照合が行われる。
[0104] その際、検査員による照合作業を容易にするため、該当する欠陥マップに基づい て欠陥箇所を指摘するように検査結果プロジェクタ 15を動作させると好都合である。 もちろん、そのような欠陥マップに基づく欠陥情報を表面欠陥検査装置 100の出力 部 10に接続されたプリンタ 13によって紙出力し、この出力用紙をバンパー 1に貼り付 けてもよい。
[0105] 上述した実施形態では、照明部 3が 6角形の網目状に連続配置された LED素子群 で構成されていたが、その網目状形態は 6角形以外を採用してもよいし、発光素子 3 0として LED素子以外を採用してもょ 、。
[0106] 〔別実施形態〕
以下、本願の別実施の形態について説明する。
1.上記の実施の形態にあっては、自動車ボディ (特にバンパー)の塗装面の検査を 行う例を示したが、検査対象としては任意の表面欠陥を有する被検査面を対象とで きる。この種の例としては、プレス形成品の表面検査等がある。
[0107] 2.上記の実施の形態では、本願に係る表面欠陥検査装置においてその照明部を 構成するに、
多数の発光素子を内部に喑面を形成するように配置したが、この構造を採用するこ となぐ背面側力ゝらの散乱光を網目状に形成されたスリットを通過させて、構成しても よい。
この構成例を図 10に示した。同図に示す例にあっては、複数の蛍光管 111が内部 に配設される照明箱 112に対して、その前面部位に拡散板 113を設けるとともに、こ の拡散板 113の前にスリット及びその内部の喑面を形成するためのスリット板 114を 配設して、本願の目的に適合した照明部を構成している。
[0108] 3.これまで説明して来た例にあっては、喑面は全て円としてきたが、図 11に示すよう に様々に構成できる。(a)は喑面を正方形とした例を、(b)は喑面を横長の楕円とし た例を、(c)は(a)に記載のものに対して、喑面を千鳥状に配置したものである。 一方 (d)は喑面を比較的小面積の三角形状としたものである。
(a)に示す構造は、欠陥の映り込みが実質的に左右方向と上下方向で発生する場 合に好ましい。一方、(b)に示す構造は、被検査面が曲面をしており、撮像側で上下 方向に伸びた暗面が形成される場合に、採用することが好ましい。(c)に示す構造は 、欠陥の形成が上下方向に連続して形成される傾向がある場合に有効であり、千鳥 配置された上下 2段の方形の暗面のいずれかで、上下方向に連続した欠陥を検出 できる。さらに、(d)の場合は、比較的小さな欠陥を検出しやすい。
[0109] 4.先に示した実施の形態では、発光素子のレイアウトパターンとして 6角形のレイァ ゥトパターンを示した力 暗面の中心に均等な光量を確保するとも目的からは、円に 近 、レーアウトパターンが好ましく、図 12に示す例は 8角形としたものである。
また、この例にあっては、図 13に示すように、被検査面の移動方向である左右方向 において、 sで示すように発光素子が重なる配置部が存在し、この構成を採用すると 、経路 Aにあっては、欠陥検出上、経路 Bと比較して問題が発生することがある。そこ で、この場合は図 14に示すように、発光素子のレイアウトパターンの何れの部位 si、 s2も、被検査面の移動方向(経路 C, D)に対して、重なる部位がないことが好ましい
[0110] 5.上記の実施の形態にあっては、欠陥抽出を 2値ィ匕処理を介して行った力 3値ィ匕 処理に基づ 、ておこなってもよ 、。
3値ィ匕における画像処理の状態を図 15に示した。
図 15は原画像 (a)、 3値化処理後の画像 (b)、排除処理後の画像 (c)をそれぞれ 示すものであり、(a)では、白い部分は輝度を有する部分 CI, C3を、影をつけた部 分 C2は喑 、欠陥部位を示して 、る。(b)では (a)における中間階調の部分を影部で 、(c)では、注目点を影部 C3で示している。
これらの画像は、左上端部から 2行 2列目にある暗面に対応する塗装部位に欠陥 がある場合を示して 、る。他の部位は正常な状態を示して 、る。
[0111] 撮像画像には、 (a)に示すように、照明側の明部分に対応する高輝度 K1の部分 C 1と、暗部分に対応する低輝度 K2の部分 C2とから成立する。
そして、その中間輝度 K3の部分を取ると、(b)に示すように、リング状の中間輝度 K 3の部分 C4と、欠陥による中間輝度 K3の部分 C3が抽出できる。
そして、これに対して膨張'収縮処理を施すことで、実際には比較的狭い領域であ るリング状の中間輝度領域を消去でき(cに示す)、結果的に欠陥に対応した部位の みを残すことができる。
[0112] 6.上記の実施の形態にあっては、被検査面は平面として説明した力 曲面の場合 は、撮像側で暗面形状が所定の検出に好ましい形状となるようにパターン配置するこ とが好ましい。図 16は、この例を示している。
先にも示したように、被検査面が曲面の場合、網目が特定の方向でゆがむ等の現 象が発生する。図 16 (b)は、リング状の照射光を照射した場合に、被検査面が紙面 横方向に中心軸を有する場合に、画像上下方向で詰まった楕円の眼鏡状リングが 形成されて 、ることを示して 、る。
[0113] この種の歪みの発生は、リング状の明領域内に、独立の明領域を形成させて、それ を抽出して欠陥画像を得るとする、本願手法上の障害となる。
従って、前記被検査面が曲面である場合に、前記撮像画像における前記網目の形 状が円もしくは正多角形状となる網目形状に、前記被検査面の曲面形状に対応した 前記照射面における照射光の網目状分布を設定することが好ましい。
例えば、図 16 (c)に示すように、画像上下方向の収縮が発生する曲面を対象とす る場合、この収縮を見込んで、網目分布を縦長のものとしておく。
このようにしておくと、撮像画像においては、連続した明部として認識される部位内 の、網目内部に対応する暗部の面積を所定面積以上、確保することができ、欠陥存 在の影響により、中間輝度の領域が網目内に形成される場合も、その形成が独立領 域となるようにすることが可能となり、本願手法を適用して、良好に検出を行うことがで きる。
[0114] 上記の実施形態にあっては、検査システム 200を構成するに、ストックステーション 202、本願に係る表面欠陥検査装置 100、目視検査ステーション 203の順に、配置 する例を示したが、このシステムを所定の表面加工 (塗装、プレス成形等)を伴った製 造 ·検査システムとする場合、ストックステーション、塗装等を実行する加工処理部、 表面欠陥検査装置、目視検査ステーションの順に、各工程部を配置することとなる。
[0115] 上記の実施形態にあっては、発光素子の発光面と、撮像カメラの撮像面とを同一 平面上に位置させたが、被検査面力 の離間距離で両面が異なった位置にあっても よい。
産業上の利用可能性
[0116] 微小な塗装欠陥を確実に検出できる表面欠陥検出装置を得られた。
図面の簡単な説明
[0117] [図 1]本発明に係る表面欠陥検査装置を採用する検査システムの概略構成を示す図 [図 2]本発明に係る表面欠陥検査装置の概略全体構成を示す図
[図 3]本発明に係る表面欠陥検査装置の概略全体構成を示す図
圆 4]本発明に係る表面欠陥検査装置の撮像ユニットを示す図
[図 5]本発明に係る表面欠陥検査装置の撮像ユニットの制御 ·情報処理系を示す図 [図 6]表面欠陥検査装置に実装されている欠陥評価手段の構成を示す機能ブロック 図
[図 7]2値化された入力画像を説明する説明図
[図 8]発光像の途切れ部に存在する孤立点を説明する説明図
[図 9]欠陥評価手段による被検査面の欠陥評価の手順を示すフローチャート
[図 10]蛍光管と拡散板とにより照明部を構成して別実施の形態
[図 11]暗面の別構成を示す例
[図 12]照明部を別の発光素子の配置で構成した例
[図 13]図 12に示す発光素子の配置を採用した場合の問題点を示す図 [図 14]図 11に示す例に対して、好ま 、発光素子の配置例を示す図 [図 15]3値化処理を行う場合の欠陥抽出の状況を示す説明図 圆 16]被検査面が曲面の場合の好ましい発光素子の配置の説明図 [図 17]従来型のバンパー検査システムの構成を示す図
圆 18]ストライプ状の照射光を示す検査原理の説明図
符号の説明
3 : 照明部
4 : 撮像カメラ
5 : 画像処理コントローラ
6 : 欠陥評価部 (手段)
30: 発光素子 (LED素子)
31: 暗面
60A:前処理部
60B:欠陥決定部
61: 輝度調整部
62: 2値化処理部
63: 欠陥候補 (孤立点)抽出部
64: 欠陥候補選別部
65: 画像マスク生成部
66: ラベル設定部
67: 面積演算部
68: 欠陥判定部

Claims

請求の範囲
[1] 被検査面に所定のパターン形状の照射光を照射し、被照射状態にある前記被検 查面の撮像画像により前記被検査面を検査する表面欠陥検査方法であって、 前記照射光として、各網目内の形状が同一となるように網目状に分布されるとともに 、光軸に垂直な平面における照射面積が非照射面積より小さい照射光を照射面より 照射し、
前記撮像画像における、前記被検査面の非照射領域に対応する画像領域の明暗 情報に基づ!/、て、前記被検査面を検査する表面欠陥検査方法。
[2] 正常な被検査面に前記照射光を照射した状態における撮像画像を正常撮像画像 とし、前記正常撮像画像における照射領域の輝度を高輝度と、非照射領域の輝度を 低輝度とする場合に、
撮像画像内に存し、前記高輝度と低輝度との中間輝度の領域である中間輝度領 域を注目領域とする請求項 1記載の表面欠陥検査方法。
[3] 前記被検査面の照射領域に対応する画像領域を、連続する明領域として抽出する とともに、前記連続する明領域を注目領域力 排除する請求項 1項記載の表面欠陥 検査方法。
[4] 前記被検査面の非照射領域に対応する画像領域を、閉じた暗領域として抽出する とともに、前記閉じた暗領域内に独立の明領域が存在する場合に、前記独立の明領 域を注目領域とする請求項 1記載の表面欠陥検査方法。
[5] 前記被検査面が曲面である場合に、前記撮像画像における前記網目の形状が円 もしくは正多角形状となる網目形状に、前記被検査面の曲面形状に対応した前記照 射面における照射光の網目状分布を設定する請求項 1一 4のいずれ力 1項記載の表 面欠陥検査方法。
[6] 被検査面に所定のパターン形状の照射光を照射する照射手段と、前記照射光が 照射された被照射状態にある前記被検査面の撮像画像を撮像する撮像手段と、前 記撮像手段により得られる撮像画像を画像処理する画像処理手段とを備えた表面欠 陥検査装置であって、
前記照射手段は、前記照射光として、各網目内の形状が同一となるように網目状に 分布されるとともに、光軸に垂直な平面における照射面積が非照射面積より小さい照 射光を照射面より照射し、
前記画像処理手段は、前記画像処理において、前記被検査面の非照射領域に対 応する画像領域の明暗情報を処理可能に構成されている表面欠陥検査装置。
[7] 前記画像処理手段が、
正常な被検査面に前記照射光を照射した状態における撮像画像を正常撮像画像 とし、前記正常撮像画像における照射領域の輝度を高輝度と、非照射領域の輝度を 低輝度とする場合に、
撮像画像内に存し、前記高輝度と低輝度との中間輝度の領域である中間輝度領 域を抽出する中間輝度領域抽出手段を備えた請求項 6記載の表面欠陥検査装置。
[8] 前記照射手段において前記照射光が、網目状に分布された複数の発光素子によ り形成される請求項 6記載の表面欠陥検査装置。
[9] 前記照射手段において前記照射光が、網目状に分布された幅狭のスリット間を透 過して形成される請求項 6記載の表面欠陥検査装置。
[10] 前記照射手段において、
前記被検査面の曲面形状に対応して、前記撮像画像における前記網目の形状が 円もしくは正多角形状となる網目形状に、前記照射面における照射光の網目状分布 を設定されている請求項 6— 9のいずれか 1項記載の表面欠陥検査装置。
[11] 所定のレイアウトパターンで配置された複数の発光素子と、前記発光素子の照射 光によって照明された被検査面を撮像する撮像カメラと、前記撮像カメラの撮像情報 を出力する出力部を備えた表面欠陥検査装置であって、
前記レイアウトパターンが前記発光素子を内側に所定形状の喑面を残すように連 続的に配置させたものであり、少なくとも 1つの前記暗面に前記撮像カメラが前記被 検査面から反射される前記各発光素子の照射光を受光するように配置されて!、る表 面欠陥検査装置。
[12] 前記出力部からの出力信号を評価して前記被検査面における欠陥を検知する欠 陥評価部を備えた請求項 11記載の表面欠陥検査装置。
[13] 前記レイアウトパターン力 所定方向にお!、て繰り返される繰り返しレイアウトパター ンである請求項 11又は 12記載の表面欠陥検査装置。
[14] 前記被検査面を前記複数の発光素子及び前記撮像カメラに対して相対搬送移動 する搬送機構を備え、
前記レイアウトパターンの繰り返し方向が前記相対搬送方向である請求項 11又は 1
2記載の表面欠陥検査装置。
[15] 前記複数の発光素子の発光面と、前記撮像カメラの撮像面が同一平面内にある請 求項 11又は 12記載の表面欠陥検査装置。
[16] 前記撮像カメラの出力信号を評価して前記被検査面における欠陥を検知する欠陥 評価手段とから構成され、
前記欠陥評価手段が、前記出力信号から生成された前記被検査面の明暗画像に おける孤立した突出輝度領域を欠陥候補と判定する孤立点抽出部と、前記明暗画 像における前記連続配置された発光素子の発光像を示す領域に含まれる前記欠陥 候補を欠陥候補力 除外する欠陥候補選別部を備えていることを特徴とする請求項
11記載の表面欠陥検査装置。
[17] 前記出力信号から前記明暗画像を生成する際に基準となる正常な被検査面から 得られる前記連続配置された発光素子の発光像の輝度レベルに、実際の検査時の 連続する発光像領域の輝度レベルが一致するように画像処理を行う前処理部が備 えられていることを特徴とする請求項 16に記載の表面欠陥検査装置。
[18] 欠陥候補から除外された前記突出輝度領域を含むその周辺領域及び背景などの 不要画像領域が統合されて欠陥判定対象外領域としてマスク処理されることを特徴 とする請求項 17に記載の表面欠陥検査装置。
PCT/JP2004/015466 2003-10-21 2004-10-20 表面欠陥検査方法及び装置 WO2005038445A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04792632A EP1677098A4 (en) 2003-10-21 2004-10-20 DEVICE AND METHOD FOR INSPECTING DEFECTS IN A SURFACE
US10/576,486 US7599050B2 (en) 2003-10-21 2004-10-20 Surface defect inspecting method and device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003360584 2003-10-21
JP2003-360584 2003-10-21
JP2004105450A JP4349960B2 (ja) 2004-03-31 2004-03-31 表面欠陥検査装置
JP2004105451 2004-03-31
JP2004-105451 2004-03-31
JP2004-105452 2004-03-31
JP2004-105450 2004-03-31
JP2004105452A JP4528011B2 (ja) 2003-10-21 2004-03-31 被検査面の検査方法及び装置

Publications (1)

Publication Number Publication Date
WO2005038445A1 true WO2005038445A1 (ja) 2005-04-28

Family

ID=34468470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015466 WO2005038445A1 (ja) 2003-10-21 2004-10-20 表面欠陥検査方法及び装置

Country Status (4)

Country Link
US (1) US7599050B2 (ja)
EP (1) EP1677098A4 (ja)
KR (1) KR100742003B1 (ja)
WO (1) WO2005038445A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666273B1 (ja) * 2010-05-18 2011-04-06 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
CN110189670A (zh) * 2019-06-24 2019-08-30 珠海格力智能装备有限公司 一种led显示屏幕缺陷检测方法
CN116993722A (zh) * 2023-09-26 2023-11-03 山东奥斯登房车有限公司 一种拖挂式房车车身缺陷视觉检测方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010267B1 (ko) * 2008-08-25 2011-01-24 주식회사 이제이텍 교량 점검용 로봇제어방법
DE102008064562A1 (de) * 2008-12-29 2010-07-08 Carl Zeiss Oim Gmbh Vorrichtung zum optischen Inspizieren einer zumindest teilweise glänzenden Oberfläche an einem Gegenstand
DE102009021733A1 (de) * 2009-05-12 2010-12-30 Carl Zeiss Oim Gmbh Vorrichtung und Verfahren zum optischen Inspizieren eines Gegenstandes
CN103630550B (zh) * 2012-08-27 2017-02-08 珠海格力电器股份有限公司 网状结构的网孔洁净度检测装置
WO2014083695A1 (ja) * 2012-11-30 2014-06-05 株式会社安川電機 ロボットシステム
DE102013109915B4 (de) * 2013-09-10 2015-04-02 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zur Überprüfung eines Inspektionssystems zur Erkennung von Oberflächendefekten
WO2015080941A1 (en) 2013-11-26 2015-06-04 3M Innovative Properties Company Devices and methods for assessment of surfaces
DE102015008409A1 (de) * 2015-07-02 2017-01-05 Eisenmann Se Anlage zur optischen Überprüfung von Oberflächenbereichen von Gegenständen
CN105423940B (zh) * 2015-12-25 2017-12-26 同济大学 一种地铁隧道结构断面变形快速检测装置
KR101660481B1 (ko) * 2016-01-29 2016-09-27 최봉석 압축링의 전후면 판별을 위한 비젼 검사방법 및 장치
JP2017181291A (ja) 2016-03-30 2017-10-05 富士通株式会社 距離測定装置、距離測定方法及びプログラム
BR102016028266A2 (pt) 2016-12-01 2018-06-19 Autaza Tecnologia Ltda - Epp Método e sistema para a inspeção automática de qualidade de materiais
US10899138B2 (en) * 2017-01-11 2021-01-26 Applied Vision Corporation Container inspection system controlling printheads to correct for detected ink thickness errors
WO2020061736A1 (zh) * 2018-09-25 2020-04-02 西安诺瓦电子科技有限公司 显示设备故障检测方法、设备、系统及计算机可读介质
CN109990979B (zh) * 2019-04-11 2021-12-03 业成科技(成都)有限公司 检测治具及检测系统
CN110146507B (zh) * 2019-04-30 2024-01-26 杭州晶耐科光电技术有限公司 汽车漆面表面外观缺陷检测系统及方法
BR102020024851A2 (pt) * 2020-12-04 2022-06-21 Autaza Tecnologia Ltda - Epp Métodos e sistemas para a inspeção de qualidade de materiais e de superfícies tridimensionais em ambiente virtual

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242019A (ja) * 1993-02-19 1994-09-02 Kanto Auto Works Ltd 画像信号による塗面検査方法及び装置
JP2000136917A (ja) * 1998-10-30 2000-05-16 Moritex Corp 成形品の表面観察方法及びこれに用いる照明装置
JP2000321037A (ja) * 1999-05-14 2000-11-24 Nissan Motor Co Ltd 表面欠陥定量評価方法及び装置
JP2001059717A (ja) * 1999-08-25 2001-03-06 Toyota Motor Corp 表面欠陥検査方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976383A (en) * 1975-02-28 1976-08-24 The Bendix Corporation Visual method of locating faults in printed circuit boards
DE2808359C3 (de) * 1978-02-27 1980-09-04 Erwin Sick Gmbh Optik-Elektronik, 7808 Waldkirch Suchgerät für Löcher in Bahnen
DE3712513A1 (de) 1987-04-13 1988-11-03 Roth Electric Gmbh Verfahren und vorrichtung zur erkennung von oberflaechenfehlern
JPH0288947A (ja) 1988-09-27 1990-03-29 Toyota Central Res & Dev Lab Inc 検査用照明装置
JPH0643119A (ja) 1992-07-27 1994-02-18 Nippon Steel Corp 鋼片のピンホール検出方法
JP3127758B2 (ja) 1994-09-19 2001-01-29 日産自動車株式会社 被検査面の欠陥検査方法およびその装置
JPH08128916A (ja) 1994-10-31 1996-05-21 Mitsubishi Electric Corp 油漏れ検出装置
JP3178644B2 (ja) * 1995-02-10 2001-06-25 セントラル硝子株式会社 透明板状体の欠点検出方法
JP3412366B2 (ja) 1995-11-06 2003-06-03 日産自動車株式会社 塗膜平滑性検査装置
JP3204443B2 (ja) 1996-06-26 2001-09-04 日産自動車株式会社 表面欠陥検査装置
US6034766A (en) * 1997-03-05 2000-03-07 Asahi Kogaku Kogyo Kabushiki Kaisha Optical member inspection apparatus
JP3870494B2 (ja) 1997-06-30 2007-01-17 スズキ株式会社 表面欠陥検査装置
US5963328A (en) * 1997-08-28 1999-10-05 Nissan Motor Co., Ltd. Surface inspecting apparatus
JP3890844B2 (ja) 2000-01-26 2007-03-07 松下電工株式会社 外観検査方法
JP4239350B2 (ja) * 2000-03-13 2009-03-18 株式会社ニコン 荷電粒子ビーム装置
JP2002318201A (ja) 2001-04-20 2002-10-31 Hitachi Eng Co Ltd 異物検出装置及びシステム
JP2005127738A (ja) 2003-10-21 2005-05-19 Daihatsu Motor Co Ltd 塗装面の検査光照射装置
JP4322230B2 (ja) 2005-06-08 2009-08-26 ダイハツ工業株式会社 表面欠陥検査装置及び表面欠陥検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242019A (ja) * 1993-02-19 1994-09-02 Kanto Auto Works Ltd 画像信号による塗面検査方法及び装置
JP2000136917A (ja) * 1998-10-30 2000-05-16 Moritex Corp 成形品の表面観察方法及びこれに用いる照明装置
JP2000321037A (ja) * 1999-05-14 2000-11-24 Nissan Motor Co Ltd 表面欠陥定量評価方法及び装置
JP2001059717A (ja) * 1999-08-25 2001-03-06 Toyota Motor Corp 表面欠陥検査方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666273B1 (ja) * 2010-05-18 2011-04-06 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
WO2011145168A1 (ja) * 2010-05-18 2011-11-24 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
CN102918353A (zh) * 2010-05-18 2013-02-06 新日铁住金株式会社 板材的平坦度测量方法及采用该方法的钢板的制造方法
US9003846B2 (en) 2010-05-18 2015-04-14 Nippon Steel & Sumitomo Metal Corporation Method for measuring flatness of sheet material and method for manufacturing steel sheet using the same
CN110189670A (zh) * 2019-06-24 2019-08-30 珠海格力智能装备有限公司 一种led显示屏幕缺陷检测方法
CN116993722A (zh) * 2023-09-26 2023-11-03 山东奥斯登房车有限公司 一种拖挂式房车车身缺陷视觉检测方法
CN116993722B (zh) * 2023-09-26 2023-12-08 山东奥斯登房车有限公司 一种拖挂式房车车身缺陷视觉检测方法

Also Published As

Publication number Publication date
US20070206182A1 (en) 2007-09-06
EP1677098A1 (en) 2006-07-05
KR100742003B1 (ko) 2007-07-23
US7599050B2 (en) 2009-10-06
KR20060070580A (ko) 2006-06-23
EP1677098A4 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
WO2005038445A1 (ja) 表面欠陥検査方法及び装置
JP3311135B2 (ja) 検査範囲認識方法
JP4322230B2 (ja) 表面欠陥検査装置及び表面欠陥検査方法
US6304323B1 (en) Method for detecting defect in bottle
WO2020110667A1 (ja) 表面欠陥検出方法、表面欠陥検出装置、鋼材の製造方法、鋼材の品質管理方法、鋼材の製造設備、表面欠陥判定モデルの生成方法、及び表面欠陥判定モデル
CN110736751B (zh) 一种表面缺陷检测方法及装置
CN110231352B (zh) 图像检查装置、图像检查方法以及图像检查记录介质
JP2007316019A (ja) 表面欠陥検査装置
JP4318579B2 (ja) 表面欠陥検査装置
JP4633245B2 (ja) 表面検査装置及び表面検査方法
JP7119034B2 (ja) 表面検査方法、表面検査装置、および表面検査システム
JP4349960B2 (ja) 表面欠陥検査装置
JP4315899B2 (ja) 表面検査方法及び表面検査装置
JP4017585B2 (ja) 塗装面の検査装置
JP4371883B2 (ja) 検査用照明光源ユニットとこの光源ユニットを用いた表面欠陥検査装置
JP2005315841A (ja) 表面欠陥検査装置
JP5360467B2 (ja) 欠陥検査装置
JP4528011B2 (ja) 被検査面の検査方法及び装置
JP4967132B2 (ja) 対象物表面の欠陥検査方法
JP4389761B2 (ja) はんだ検査方法およびその方法を用いた基板検査装置
JPH1010053A (ja) 表面欠陥検査装置
JP2955686B2 (ja) 表面欠陥検査装置
JP7248201B2 (ja) 解析装置、検査システム、および学習装置
JP3100448B2 (ja) 表面状態検査装置
KR100905155B1 (ko) 얼룩 검사방법, 얼룩 검사장치 및 기록매체

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031046.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792632

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067008567

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067008567

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792632

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10576486

Country of ref document: US

Ref document number: 2007206182

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10576486

Country of ref document: US