WO2005026234A1 - Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung - Google Patents

Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung Download PDF

Info

Publication number
WO2005026234A1
WO2005026234A1 PCT/EP2004/009874 EP2004009874W WO2005026234A1 WO 2005026234 A1 WO2005026234 A1 WO 2005026234A1 EP 2004009874 W EP2004009874 W EP 2004009874W WO 2005026234 A1 WO2005026234 A1 WO 2005026234A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
highly
groups
functional
aliphatic
Prior art date
Application number
PCT/EP2004/009874
Other languages
English (en)
French (fr)
Inventor
Bernd Bruchmann
Jean-Francois Stumbe
Joelle BÉDAT
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US10/571,691 priority Critical patent/US7521521B2/en
Priority to JP2006525725A priority patent/JP4413226B2/ja
Priority to CA002536751A priority patent/CA2536751A1/en
Priority to KR1020127014428A priority patent/KR101263138B1/ko
Priority to BRPI0414243-8A priority patent/BRPI0414243A/pt
Priority to EP04764825A priority patent/EP1664154B1/de
Priority to MXPA06002360A priority patent/MXPA06002360A/es
Priority to AT04764825T priority patent/ATE432307T1/de
Priority to DE502004009535T priority patent/DE502004009535D1/de
Priority to KR1020067005126A priority patent/KR101178959B1/ko
Publication of WO2005026234A1 publication Critical patent/WO2005026234A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/005Dendritic macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • C08G64/0216Aliphatic polycarbonates saturated containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/005Dendritic macromolecules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates

Definitions

  • the present invention relates to highly functional highly or hyperbranched polycarbonates based on dialkyl or diaryl carbonates or phosgene, diphosgene or triphosgene and aliphatic aliphatic / aromatic and aromatic di- or polyols, a process for their preparation and their use for the production of printing inks.
  • the highly functional highly branched or hyperbranched polycarbonates according to the invention can i.a. technically advantageously used as adhesion promoters, thixotropic agents or as building blocks for the production of polyaddition or polycondensation polymers, for example paints, coatings, adhesives, sealants, cast elastomers or foams.
  • Polycarbonates are usually obtained from the reaction of alcohols or phenols with phosgene or from the transesterification of alcohols or phenols with dialkyl or diaryl carbonates.
  • aromatic polycarbonates which are made from bisphenols, for example, aliphatic polycarbonates have so far played a subordinate role in terms of market volume. See also Becker / Braun, Kunststoff-Handbuch Vol. 3/1, polycarbonates, polyacetals, polyester, cellulose esters, Carl-Hanser-Verlag, Kunststoff 992, pages 118-119, and "Ullmann 's Encyclopedia of Industrial Chemistr", 6th Edition, 2000 Electronic Release, published by Wiley-VCH.
  • aromatic or aliphatic polycarbonates described in the literature are generally linear or have a low degree of branching.
  • No. 3,305,605 describes the use of solid linear aliphatic polycarbonates with a molecular weight above 15,000 Da as plasticizers for polyvinyl polymers.
  • Linear aliphatic polycarbonates are also preferably used for the production of thermoplastic materials, for example for polyesters or for polyurethane or polyurea urethane elastomers, see also EP 364052, EP 292772, EP 1018504 or DE 10130882. Characteristic of these linear polycarbonates is general their high inherent viscosity.
  • EP-A 896 013 discloses crosslinked polycarbonates which can be obtained by reacting mixtures of diols and polyols having at least 3 OH groups with organic carbonates, phosgenes or derivatives thereof. At least 40% of the diol is preferably used. The document contains no information as to how one can also produce uncrosslinked, hyperbranched polycarbonates based on the starting materials mentioned.
  • Hyperbranched polycarbonates can also be produced according to WO 98/50453. According to the process described there, triols are in turn reacted with carbonylbisimidazole. Imidazolides initially form, which then react intermolecularly to the polycarbonates. According to the method mentioned, the polycarbonates are obtained as a colorless or pale yellow, rubber-like product.
  • the hyperbranched products are either high-melting or rubber-like, which significantly limits later processability.
  • Imidazole liberated during the reaction has to be removed from the reaction mixture in a complex manner.
  • the reaction products always contain terminal imidazolide groups. These groups are unstable and have to be taken through a subsequent step, e.g. be converted into hydroxyl groups.
  • Carbonyldiimidazole is a comparatively expensive chemical that greatly increases the cost of feed.
  • the invention was therefore based on the object of using a technically simple and inexpensive process to prepare aromatic, preferably aromatic / aliphatic and particularly preferably aliphatic, highly functional and highly branched polycarbonates.
  • represent whose structures can be easily adapted to the requirements of the application and which, due to their defined structure, can combine advantageous properties such as high functionality, high reactivity, low viscosity and good solubility, and a process for the preparation of these highly functional high or hyperbranched polycarbonates.
  • the object was achieved according to the invention by reacting dialkyl or diaryl carbonates with di- or polyfunctional aliphatic or aromatic alcohols.
  • phosgene, diphosgene or triphosgene are used instead of the carbonates as the starting material.
  • the invention thus relates to a process for producing highly functional, highly branched or hyperbranched polycarbonates, at least comprising the steps:
  • condensation products (K) b) intermolecular conversion of the condensation products (K) to a highly functional, highly branched or hyperbranched polycarbonate, the quantitative ratio of the OH groups to the phosgenes or the carbonates in the reaction mixture being chosen such that the condensation products (K) either have an average Carbonate or carbamoyl chloride group and more have as one OH group or one OH group and more than one carbonate or carbamoyl chloride group.
  • the invention further relates to the highly functional, highly branched or hyperbranched polycarbonates produced by this process.
  • hyperbranched polycarbonates are understood to mean uncrosslinked macromolecules with hydroxyl and carbonate or carbamoyl chloride groups, which are structurally and molecularly nonuniform.
  • they can be based on a central molecule analogous to dendrimers, but with a non-uniform chain length of the branches.
  • they can also be linear, with functional side groups, or, as a combination of the two extremes, they can have linear and branched parts of the molecule.
  • dendrimeric and hyperbranched polymers see also P.J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 and H. Frey et al., Chem. Eur. J. 2000, 6, No. 14, 2499.
  • hypobranched is understood to mean that the degree of branching (DB), that is to say the average number of dendritic linkages plus average number of end groups per molecule, is 10 to 99.9%, preferably 20 to 99 %, particularly preferably 20-95%.
  • DB degree of branching
  • dendrimer means that the degree of branching is 99.9-100%.
  • the invention further relates to the use of the highly functional, highly branched polycarbonates according to the invention as adhesion promoters, thixotropic agents or as building blocks for the production of polyaddition or polycondensation polymers, for example paints, coatings, adhesives, sealants, cast elastomers or foams.
  • Phosgene, diphosgene or triphosgene can be used as the starting material, but organic carbonates (A) are preferably used.
  • the radicals R of the organic carbonates (A) of the general formula RO [(CO) O] n R used as the starting material are each independently a straight-chain or branched aliphatic, aromatic / aliphatic or aromatic hydrocarbon radical with 1 to 20 carbon atoms. Atoms.
  • the two radicals R can also be connected to one another to form a ring. It is preferably an aliphatic hydrocarbon residue and particularly preferred added to a straight-chain or branched alkyl radical having 1 to 5 carbon atoms, or to a substituted or unsubstituted phenyl radical.
  • the carbonates can preferably be simple carbonates of the general formula RO (CO) OR, i.e. in this case n stands for 1.
  • n is an integer between 1 and 5, preferably between 1 and 3.
  • Dialkyl or diaryl carbonates can be prepared, for example, from the reaction of aliphatic, araiiphatic or aromatic alcohols, preferably monoalcohols with phosgene. Furthermore, they can also be produced via oxidative carbonylation of the alcohols or phenols by means of CO in the presence of noble metals, oxygen or NO x .
  • aliphatic, araiiphatic or aromatic alcohols preferably monoalcohols with phosgene.
  • they can also be produced via oxidative carbonylation of the alcohols or phenols by means of CO in the presence of noble metals, oxygen or NO x .
  • For methods of producing diaryl or dialkyl carbonates see also "Ullmann's Encyclopedia of Industrial Chemistry", 6th Edition, 2000 Electronic Release, Verlag Wiley-VCH.
  • suitable carbonates include aliphatic, aromatic / aliphatic or aromatic carbonates such as ethylene carbonate, 1, 2- or 1, 3-propylene carbonate, diphenyl carbonate, ditolyl carbonate, dixylyl carbonate, dinaphthyl carbonate, ethylphenyl carbonate, dibenzyl carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate carbonate, diisobutyl carbonate, dipentyl carbonate, dihexyl carbonate, dicyclohexyl carbonate, diheptyl carbonate, dioctyl carbonate, didecyl carbonate or didodecyl carbonate.
  • aliphatic, aromatic / aliphatic or aromatic carbonates such as ethylene carbonate, 1, 2- or 1, 3-propylene carbonate, diphenyl carbonate, ditolyl carbonate, dixylyl carbonate, dinaphthyl carbonate, ethy
  • Examples of carbonates in which n is greater than 1 include dialkyl carbonates such as di (tert-butyl) dicarbonate or dialkyl tricarbonates such as di (tert-butyl) tricarbonate.
  • Aliphatic carbonates are preferably used, in particular those in which the radicals comprise 1 to 5 carbon atoms, such as, for example, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate or diisobutyl carbonate or diphenyl carbonate as aromatic carbonate.
  • the organic carbonates are reacted with at least one aliphatic or aromatic alcohol (B) which has at least 3 OH groups or mixtures of two or more different alcohols.
  • Examples of compounds with at least three OH groups include glycerol, trimethylolmethane, trimethylolethane, trimethylolpropane, 1,2,4-butanetriol, tris (hydroxymethyl) amine, tris (hydroxyethyl) amine, tris (hydroxypropyl) amine, pentaerythritol, Diglycerin, triglycerol, polyglycerols, bis (tri-methylolpropane), tris (hydroxymethyl) isocyanurate, tris (hydroxyethyl) isocyanurate, phloroglucinol, trihydroxytoluene, trihydroxydimethylbenzene, phloroglucide, hexahydroxybenzene, 1, 3.5 , 1-tris (4'-hydroxy- phenyl) methane, 1,1,1-tris (4'-hydroxyphenyl) ethane, sugars such as, for example, glucose, sugar derivatives, trifunctional or higher-functional poly
  • polyfunctional alcohols can also be used in a mixture with difunctional alcohols (B " ), provided that the average OH functionality of all alcohols used is greater than 2.
  • suitable compounds with two OH groups include ethylene glycol, diethylene glycol, triethylene glycol , 1,2- and 1,3-propanediol, dipropylene glycol, tripropylene glycol, neopentyl glycol, 1,2-, 1,3- and 1,4-butanediol, 1,2-, 1,3- and 1,5-pentanediol, Hexanediol, cyclopentanediol, cyclohexanediol, cyclohexanedimethanol, bis (4-hydroxycyclohexyl) methane, bis (4-hydroxycyclohexyl) ethane, 2,2-bis (4-hydroxycyclohexyl) propane, 1,1 'bis (4-hydroxyphenyl ) -3,3-5-tri- methylcyclohexan
  • the diols are used to fine-tune the properties of the polycarbonate. If difunctional alcohols are used, the ratio of difunctional alcohols (B ') to the at least trifunctional alcohols (B) is determined by the person skilled in the art depending on the desired properties of the polycarbonate. As a rule, the amount of the alcohol (s) (B ') is 0 to 39.9 mol% based on the total amount of all alcohols (B) and (B') together. The amount is preferably 0 to 35 mol%, particularly preferably 0 to 25 mol% and very particularly preferably 0 to 10 mol%.
  • reaction of phosgene, diphosgene or triphosgene with the alcohol or alcohol mixture generally takes place with the elimination of hydrogen chloride
  • reaction of the carbonates with the alcohol or alcohol mixture to give the highly functional highly branched polycarbonate according to the invention takes place with the elimination of the monofunctional alcohol or phenol from the carbonate molecule.
  • the highly functional, highly branched polycarbonates formed by the process according to the invention are terminated with hydroxyl groups and / or with carbonate groups or carbamoyl chloride groups after the reaction, that is to say without further modification. They dissolve well in various solvents, for example in water, alcohols such as methanol, ethanol, butanol, alcohol / water mixtures, ac clay, 2-butanone, ethyl acetate, butyl acetate, methoxypropylacetate, methoxyethyl acetate, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene carbonate or propylene carbonate.
  • alcohols such as methanol, ethanol, butanol, alcohol / water mixtures, ac clay, 2-butanone, ethyl acetate, butyl acetate, methoxypropylacetate, methoxyethyl acetate, tetrahydrofur
  • a highly functional polycarbonate is to be understood as a product which, in addition to the carbonate groups which form the polymer structure, furthermore has at least three, preferably at least six, more preferably at least ten functional groups at the end or at the side.
  • the functional groups are carbonate groups or carbamoyl chloride groups and / or OH groups.
  • there is no upper limit on the number of terminal or pendant functional groups but products with a very large number of functional groups may have undesirable properties, such as high viscosity or poor solubility.
  • the highly functional polycarbonates of the present invention mostly have no more than 500 terminal or pendant functional groups, preferably no more than 100 terminal or pendant functional groups.
  • condensation product (K) the resultant simplest condensation product
  • the reactive group which results as a single group is generally referred to below as the "focal group”.
  • the production of the condensation product (K) from a carbonate and a trihydric alcohol with a conversion ratio of 1: 1 results in an average Molecule of the type XY 2 , illustrated by the general formula 2.
  • the focal group here is a carbonate group.
  • condensation product (K) is prepared from a carbonate and a tetravalent alcohol, likewise with the conversion ratio 1: 1, an average molecule of the type XY 3 results, illustrated by the general formula 3.
  • the focal group here is a carbonate group.
  • R has the meaning defined at the outset and R 1 represents an aliphatic or aromatic radical.
  • condensation product (K) can also be prepared, for example, from a carbonate and a trihydric alcohol, illustrated by the general formula 4, the conversion ratio being 2: 1 molar.
  • the result is an average molecule of the type X 2 Y, the focal group here is an OH group.
  • R and R 1 have the same meaning as in formulas 1 to 3.
  • difunctional compounds for example a dicarbonate or a diol
  • this causes the chains to be lengthened, as illustrated, for example, in general formula 5.
  • An average molecule of type XY 2 results again, focal group is a carbonate group.
  • R 2 represents an aliphatic or aromatic radical
  • R and R 1 are defined as described above.
  • condensation products can also be used for the synthesis.
  • several alcohols or several carbonates can be used.
  • mixtures of different condensation products of different structures can be obtained. This is illustrated by the example of the implementation of a carbonate with a trihydric alcohol. If the starting products are used in a ratio of 1: 1, as shown in (II), a molecule XY 2 is obtained . If the starting products are used in a ratio of 2.1, as shown in (IV), a molecule X 2 Y is obtained. With a ratio between 1: 1 and 2: 1, a mixture of molecules XY 2 and X 2 Y is obtained.
  • the simple condensation products (K) described by way of example in the formulas 1-5 preferably react intermolecularly to form highly functional polycondensation products, hereinafter referred to as polycondensation products (P).
  • the reaction to give the condensate (K) and the polycondensation product (P) is usually carried out at a temperature from 0 to 300 C C, preferably 0 to 250 C C, particularly preferably at 60 to 200 ° C and most preferably from 60 to 160 ° C in substance or in solution.
  • all solvents can be used which are inert to the respective starting materials.
  • Organic solvents such as decane, dodecane, benzene, toluene, chlorobenzene, xylene, dimethylformamide, dimethylacetamide or solvent naphtha are preferably used.
  • the condensation reaction is carried out in bulk.
  • the monofunctional alcohol liberated in the reaction or the phenol ROH can be removed from the reaction equilibrium in order to accelerate the reaction, for example by distillation, if appropriate under reduced pressure.
  • distillation it is regularly advisable to use carbonates which, in the course of the reaction, release alcohols or phenols ROH with a boiling point of less than 140 ° C. at the present pressure.
  • Suitable catalysts are compounds which catalyze esterification or transesterification reactions, for example alkali metal hydroxides, alkali metal carbonates, alkali hydrogen carbonates, preferably sodium, potassium or cesium, tertiary amines, guanidines, ammonium compounds, phosphonium compounds, aluminum, tin, zinc, titanium, zirconium or bismuth organic compounds, furthermore so-called double metal cyanide (DMC) catalysts, such as described for example in DE 10138216 or in DE 10147712.
  • DMC double metal cyanide
  • the catalyst is generally added in an amount of from 50 to 10,000, preferably from 100 to 5000, ppm by weight, based on the amount of the alcohol or alcohol mixture used.
  • the intermolecular polycondensation reaction both by adding the suitable catalyst and by selecting a suitable temperature.
  • the average molecular weight of the polymer (P) can be set via the composition of the starting components and via the residence time.
  • condensation products (K) or the polycondensation products (P), which were produced at elevated temperature, are usually stable over a longer period at room temperature.
  • condensation products (K) Due to the nature of the condensation products (K), it is possible that the condensation reaction can result in polycondensation products (P) with different structures that have branches but no crosslinks.
  • the polycondensation products (P) ideally have either a carbonate or carbamoyl chloride group as the focal group and more than two OH groups, or else an OH group as the focal group and more than two carbonate or carbamoyl chloride groups.
  • the number of reactive groups results from the nature of the condensation products (K) used and the degree of polycondensation.
  • a condensation product (K) according to general formula 2 can react by triple intermolecular condensation to give two different polycondensation products (P), which are represented in general formulas 6 and 7.
  • R and R 1 are as defined above.
  • the temperature can be reduced to a range in which the reaction comes to a standstill and the product (K) or the polycondensation product (P) is stable in storage.
  • the catalyst can be deactivated, in the case of basic catalysts, for example by adding an acidic component, for example a Lewis acid or an organic or inorganic protonic acid.
  • an acidic component for example a Lewis acid or an organic or inorganic protonic acid.
  • a product with groups reactive toward the focal group of (P) can be added to the product (P) to terminate the reaction become.
  • a mono-, di- or polyamine can be added to a carbonate group as a focal group.
  • the product (P) can be added, for example, to a mono-, di- or polyisocyanate, a compound containing epoxy groups or an acid derivative which is reactive with OH groups.
  • the highly functional polycarbonates according to the invention are usually produced in a pressure range from 0.1 mbar to 20 bar, preferably at 1 mbar to 5 bar, in reactors or reactor cascades that are operated in batch mode, semi-continuously or continuously.
  • the products according to the invention can be processed further without further purification after production.
  • the product is stripped, i.e. freed from low molecular weight, volatile compounds.
  • the catalyst can optionally be deactivated and the low molecular weight volatile constituents, for example monoalcohols, phenols, carbonates, hydrogen chloride or volatile oligomeric or cyclic compounds, by distillation, if appropriate with introduction of a gas, preferably nitrogen, carbon dioxide or air, if appropriate with reduced Pressure to be removed.
  • the polycarbonates according to the invention can contain further functional groups in addition to the functional groups already obtained by the reaction.
  • the functionalization can take place during the molecular weight build-up or also subsequently, i.e. after the actual polycondensation has ended.
  • Such effects can be achieved, for example, by adding compounds during polycondensation which, in addition to hydroxyl groups, carbonate groups or carbamoyl chloride groups, contain further functional groups or functional elements, such as mercapto groups, primary, secondary or tertiary amino groups, ether groups, carboxylic acid groups or their derivatives, sulfonic acid groups or their derivatives , Phosphonic acid groups or their derivatives, silane groups, siloxane groups, aryl groups or long-chain alkyl groups.
  • further functional groups or functional elements such as mercapto groups, primary, secondary or tertiary amino groups, ether groups, carboxylic acid groups or their derivatives, sulfonic acid groups or their derivatives , Phosphonic acid groups or their derivatives, silane groups, siloxane groups, aryl groups or long-chain alkyl groups.
  • carbamate groups for example ethanolamine, propanolamine, isopropanolamine, 2- (butylamino) ethanol, 2- (cyclohexylamino) ethanol, 2-amino-1-butanol, 2- (2'-amino-ethoxy) ethanol or higher alkoxylation products of ammonia, 4-hydroxypiperidine, 1-hydroxyethylpiperazine, diethanolamine, dipropanolamine, diisopropanolamine, tris (hydroxymethyl) aminomethane, tris (hydroxyethyl) aminomethane, ethylenediamine, propylenediamine, hexamethylenediamine or isophoronediamine.
  • carbamate groups for example ethanolamine, propanolamine, isopropanolamine, 2- (butylamino) ethanol, 2- (cyclohexylamino) ethanol, 2-amino-1-butanol, 2- (2'-amino-ethoxy) ethanol or higher
  • mercaptoethanol can be used for the modification with mercapto groups.
  • Tertiary amino groups can be generated, for example, by incorporating triethanolamin, tripropanolamine, N-methyldiethanolamine, N-methyldipropanolamine or N, N-dimethylethanolamine.
  • ether groups can be generated by the condensation of di- or higher-functional polyetherols.
  • Ester groups can be produced by adding dicarboxylic acids, tricarboxylic acids, dicarboxylic esters, such as dimethyl terephthalate or tricarboxylic esters.
  • Long-chain alkyl residues can be introduced by reaction with long-chain alkanols or alkanediols. The reaction with alkyl or aryl diisocyanates generates alkyl, aryl and urethane groups containing polycarbonates, the addition of primary or secondary amines leads to the introduction of urethane or urea groups.
  • a subsequent functionalization can be obtained by the highly functional, highly or hyperbranched polycarbonate obtained in an additional process step (step c)) with a suitable functionalizing reagent which reacts with the OH and / or carbonate or carbamoyl chloride groups of the polycarbonate can implement.
  • Highly functional, highly or hyperbranched polycarbonates containing hydroxyl groups can be modified, for example, by adding molecules containing acid groups or isocyanate groups.
  • polycarbonates containing acid groups can be obtained by reaction with compounds containing anhydride groups.
  • Highly functional polycarbonates containing hydroxyl groups can also be converted into highly functional polycarbonate polyether polyols by reaction with alkylene oxides, for example ethylene oxide, propylene oxide or butylene oxide.
  • alkylene oxides for example ethylene oxide, propylene oxide or butylene oxide.
  • a great advantage of the method according to the invention is its economy. Both the conversion to a condensation product (K) or polycondensation product (P) and the reaction of (K) or (P) to polycarbonates with other functional groups or elements can take place in one reaction device, which is technically and economically advantageous.
  • the highly functional, highly branched or hyperbranched polycarbonates obtained by the process according to the invention can be used, for example, as adhesion promoters, thixotropic agents or as building blocks for the production of polyaddition or polycondensation polymers, for example as components for the production of lacquers, coatings, adhesives, sealants, Cast elastomers or foams. They are particularly suitable for the production of printing inks, such as flexographic, deep, offset or screen printing inks, and for the production of printing varnishes.
  • the polycarbonates according to the invention are particularly suitable for the production of low-viscosity printing inks, such as flexographic or gravure printing inks, for packaging printing. They can be used in printing inks for various purposes, but in particular as binders, possibly also in a mixture with other binders.
  • the polycarbonates according to the invention are formulated with suitable solvents, colorants, optionally further binders and additives typical of printing inks.
  • suitable solvents colorants
  • optionally further binders and additives typical of printing inks.
  • WO 02/36695 and WO 02/26697 in particular to the statements in WO 02/36695, page 10, line 19 to page 15, line 14 and WO 02 / 36697, page 7, line 14 to page 10, line 18 as well as the examples given in the said documents.
  • Printing inks which contain the polycarbonates according to the invention have a particularly good, hitherto unknown adhesion to the substrates, in particular to metal and / or polymer films.
  • the printing inks are therefore also particularly suitable for producing laminates from two or more polymer and / or metal foils, in which one foil is printed with one or more layers of a printing ink and a second foil is laminated onto the printed layer.
  • Composites of this type are used, for example, for the production of packaging.
  • the polyfunctional alcohol or the alcohol mixture, the carbonate, and possibly other monomers, and catalyst 250 ppm based on the mass of alcohol
  • the polyfunctional alcohol or the alcohol mixture, the carbonate, and possibly other monomers, and catalyst 250 ppm based on the mass of alcohol
  • the temperature of the reaction mixture decreased due to the onset of evaporative cooling of the monoalcohol released.
  • the reflux condenser was then exchanged for a descending condenser, optionally (based on **), based on the equivalent amount of catalyst, one equivalent of phosphoric acid was added, the monoalcohol was distilled off and the temperature of the reaction mixture was slowly increased to 160 ° C. In the test marked ***, the pressure was additionally reduced to 8 mbar.
  • the distilled alcohol was collected in a cooled round-bottomed flask, weighed, and the conversion was thus determined as a percentage compared to the theoretically possible full conversion (see Table 1).
  • reaction products were then analyzed by gel permeation chromatography, eluent was dimethylacetamide, and polymethyl methacrylate (PMMA) was used as the standard.
  • PMMA polymethyl methacrylate
  • TMP trimethylolpropane
  • PO propylene oxide
  • CHD 1,4-cyclohexanediol
  • THEA tris (hydroxyethyl) amine
  • CHDM 1,4-cyclohexanedimethanol
  • TDME dimethyl terephthalate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • a viscosity measurement was 90% in butyl acetate
  • b viscosity measurement was 90% in ethyl acetate
  • nb not determined
  • the quality of the printing inks according to the invention was determined on the basis of the adhesive strength on various substrates.
  • Measuring method tesa strength
  • Test procedure "Tesafestmaschine" serves to determine the adhesion of an ink film on the substrate.
  • the ink which has been thinned to the printing viscosity, is printed on the prescribed printing material or applied with a 6 ⁇ m squeegee.
  • a tape of tape (tape with a width of 19 mm (Article BDF 4104, Beiersdorf AG) is attached to the ink film, pressed evenly and torn off after 10 seconds. This process is repeated 4 times with a new tape at the same place on the test object.
  • Each strip of tape is glued to white paper one after the other, or black paper for white colors, and is checked immediately after the color is applied.
  • the surface of the test object is visually checked for damage.
  • the grading is from 1 (very bad) to 5 (very good).
  • Table 2 Stencfard binders compared to polymer from Example 5 (Table 1)
  • printed polymer films for example polyamide, polyethylene or polypropylene films
  • other film types such as metal films or else plastic films
  • Important application properties of laminates of this type for use as composite packaging are, in addition to the strength of the composite in normal storage, the strength of the composite under more stringent conditions, for example when heating or sterilizing.
  • the quality of the printing inks according to the invention was assessed by determining the bond strength. Bond strength refers to the determination of the bond between two films or metal foils connected by lamination or extrusion. Measuring and testing devices;
  • At least 2 strips (width: 15mm) of the material to be tested must be cut lengthways and crossways to the film web.
  • the ends of the punched strips can be dipped in an appropriate solvent (e.g. 2-butanone) until the materials separate. Then the pattern must be carefully dried again.
  • an appropriate solvent e.g. 2-butanone
  • the delaminated ends of the test specimens are clamped in the tensile tester.
  • the less stretchable film should be placed in the upper clamp.
  • the end of the pattern should be held at right angles to the direction of pull, which ensures a constant pull.
  • the take-off speed is 100 mm / min, the take-off angle of the separated films to the non-separated complex is 90 °.
  • the bond value is read as the mean value, specified in N / 15mm.
  • the ink, thinned to the printing viscosity, is printed on the specified printing material polyamide (emblem 1500) or applied with a 6 ⁇ m squeegee.
  • the polyethylene laminating film is coated with the adhesive-hardener mixture Morfree A415 (adhesive) and C90 (hardener, Rohm & Haas), weight mixing ratio 100:40, so that a film thickness of approximately 6 ⁇ m (corresponds to approximately 2 , 5 g / m 2 ) results. Both foils are then pressed in such a way that the printing ink and the adhesive come into contact. After pressing, the composite films are stored at 60 ° C for 5 days.
  • the following recipes (parts by weight) were chosen for the examples:
  • pigment heliogen blue D 7080 (BASF AG) 15.0 binder (polyvinyl butyral) 3.0 additive (polyethylenimine, BASF AG) 69.0 ethanol
  • Example 30 Compound values for the laminate made of polyamide and polyethylene:

Abstract

Hochfunktionelle hoch- oder hyperverzweigte Polycarbonate auf Basis von Dialkyl- oder Diarylcarbonaten oder Phosgen, Diphosgen oder Triphosgen und aliphatischen und aromatischen Di- oder Polyolen, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Druckfarben.

Description

Hochfunktionelle, hoch- oder hyperverzweigte Polycarbonate sowie deren Herstellung und Verwendung
Beschreibung
Die vorliegende Erfindung betrifft hochfunktionelle hoch- oder hyperverzweigte Polycarbonate auf Basis von Dialkyl- oder Diarylcarbonaten oder Phosgen, Diphosgen oder Triphosgen und aliphatischen aliphatisch/aromatischen und aromatischen Di- oder Po- lyolen, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Druckfarben.
Die erfindungsgemäßen hochfunktionellen hoch- oder hyperverzweigten Polycarbonate können u.a. als Haftvermittler, Thixotropiermittel oder als Bausteine zur Herstellung von Polyadditions- oder Polykondensationspolymeren, zum Beispiel von Lacken, Über- Zügen, Klebstoffen, Dichtmassen, Giesselastomeren oder Schaumstoffen technisch vorteilhaft eingesetzt werden.
Polycarbonate werden üblicherweise aus der Reaktion von Alkoholen oder Phenolen mit Phosgen oder aus der Umesterung von Alkoholen oder Phenolen mit Dialkyl- oder Diarylcarbonaten erhalten. Technisch bedeutend sind aromatische Polycarbonate, die zum Beispiel aus Bisphenolen hergestellt werden, aliphatische Polycarbonate spielen vom Marktvolumen her gesehen bisher eine untergeordnete Rolle. Siehe dazu auch Becker/Braun, Kunststoff-Handbuch Bd. 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl-Hanser-Verlag, München 992, Seiten 118 - 119, und „Ullmann's Encyclopedia of Industrial Chemistr ", 6th Edition, 2000 Electronic Release, Verlag Wiley-VCH.
Die in der Literatur beschriebenen aromatischen oder aliphatischen Polycarbonate sind in der Regel linear oder aber mit einem geringen Verzweigungsgrad aufgebaut.
So beschreibt die US 3,305,605 die Verwendung fester linearer aliphatischer Polycarbonate mit einer Molmasse oberhalb 15000 Da als Weichmacher für Polyvinylpolyme- re.
Die US 4,255,301 beschreibt lineare cycloaliphatische Polycarbonate als Lichtstabilisatoren für Polyester.
Lineare aliphatische Polycarbonate werden weiterhin bevorzugt zur Herstellung thermoplastischer Kunststoffe, zum Beispiel für Polyester oder für Polyurethan- oder Poly- harnstoffurethan-Elastomere, verwendet, siehe dazu auch EP 364052, EP 292772, EP 1018504 oder DE 10130882. Kennzeichnend für diese linearen Polycarbonate ist allgemein deren hohe Eigenviskosität. EP-A 896 013 offenbart vernetzte Polycarbonate, welche durch Umsetzung von Gemischen aus Diolen und Polyolen mit mindestens 3 OH-Gruppen mit organischen Car- bonaten, Phosgenen oder Derivaten davon erhältlich sind. Bevorzugt werden mindestens 40 % des Diols eingesetzt. Die Schrift enthält keinerlei Hinweise darauf, wie man ausgehend von den genannten Ausgangsprodukten auch unvernetzte, hyperverzweigte Polycarbonate herstellen könnte.
Definiert aufgebaute, hochfunktionelle Polycarbonate sind erst seit kurzer Zeit bekannt.
S. P. Rannard und N. J. Davis, J. Am. Chem. Soc. 2000, 122, 11729, beschreiben die Herstellung von perfekt verzweigten dendrimeren Polycarbonaten durch Reaktion von Carbonylbisimidazol als Phosgen-analoger Verbindung mit Bis-hydroxyethylamino-2- propanol. Synthesen zu perfekten Dendrimeren sind vielstufig, daher kostenintensiv und für die Übertragung in einen industriellen Maßstab eher ungeeignet.
D.H. Bolton und K. L. Wooley, Macromolecules 1997, 30, 1890, beschreiben die Herstellung von hochmolekularen, sehr starren hyperverzweigten aromatischen Polycarbonaten durch Umsetzung von 1,1,1-Tris(4'-hydroxyphenyl)ethan mit Carbonylbisimidazol.
Hyperverzweigte Polycarbonate lassen sich auch gemäß WO 98/50453 herstellen. Nach dem dort beschriebenen Verfahren werden Triole wiederum mit Carbonylbisimidazol umgesetzt. Es entstehen zunächst Imidazolide, die dann intermolekular zu den Polycarbonaten weiterreagieren. Nach der genannten Methode fallen die Polycarbona- te als farblose oder blassgelbe gummiartige Produkts an.
Die genannten Synthesen zu hoch- oder hyperverzweigten Polycarbonaten weisen folgende Nachteile auf:
a) die hyperverzweigten Produkte sind entweder hochschmelzend oder aber gummiartig, dadurch wird eine spätere Verarbeitbarkeit deutlich eingeschränkt. b) während der Reaktion freiwerdendes Imidazol muß aufwändig aus dem Reaktionsgemisch entfernt werden. c) die Reaktionsprodukte enthalten immer terminale Imidazolid-Gruppen. Diese Gruppen sind labil und müssen über einen Folgeschritt z.B. in Hydroxylgruppen umgewandelt werden. d) Carbonyldiimidazol ist eine vergleichsweise teure Chemikalie, die die Einsatzstoffkosten stark erhöht.
Der Erfindung lag daher die Aufgabe zugrunde, mittels eines technisch einfachen und preiswerten Verfahrens aromatische, bevorzugt aromatisch/aliphatische und besonders bevorzugt aliphatische, hochfunktionelle und hochverzweigte Polycarbonate bereitzu- stellen, deren Strukturen sich leicht an die Erfordernisse der Anwendung anpassen lassen und die aufgrund ihres definierten Aufbaus vorteilhafte Eigenschaften, wie hohe Funktionalität, hohe Reaktivität, geringe Viskosität und gute Löslichkeit, in sich vereinen können, sowie ein Verfahren zur Herstellung dieser hochfunktionellen hoch- oder hyperverzweigten Polycarbonate.
Die Aufgabe konnte erfindungsgemäß gelöst werden, indem Dialkyl- oder Diarylcarbo- nate mit di- oder mehrfunktionellen aliphatischen oder aromatischen Alkoholen umgesetzt wurden.
In einer alternativen Ausführungsform der Erfindung werden Phosgen, Diphosgen oder Triphosgen anstelle der Carbonate als Ausgangsmaterial eingesetzt.
Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von hochfunktionel- len, hoch- oder hyperverzweigten Polycarbonaten, mindestens umfassend die Schritte:
a) Herstellung eines oder mehrerer Kondensationsprodukte (K) durch aa) Umsetzung mindestens eines organischen Carbonats (A) der allgemeinen Formel RO[(CO)O]nR mit mindestens einem aliphatischen, alipha- tisch/aromatischen oder aromatischen Alkohol (B), welcher mindestens 3 OH-Gruppen aufweist, unter Eliminierung von Alkoholen ROH, wobei es sich bei R jeweils unabhängig voreinander um einen geradkettigen oder verzweigten aliphatischen, aromatisch/aliphatiεchen oder aromatischen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen handelt, und wobei die Reste R auch unter Bildung eines Ringes miteinander verbunden sein können, und n eine ganze Zahl zwischen 1 und 5 darstellt oder ab) Umsetzung von Phosgen, Diphosgen oder Triphosgen mit dem besagten aliphatischen oder aromatischen Alkohol (B) unter Eliminierung von Chlorwasserstoff, sowie
b) intermolekulare Umsetzung der Kondensationsprodukte (K) zu einem hochfunktionellen, hoch- oder hyperverzweigten Polycarbonat, wobei das Mengenverhältnis der OH-Gruppen zu den Phosgenen oder den Car- bonaten im Reaktionsgemisch so gewählt wird, dass die Kondensationsprodukte (K) im Mittel entweder eine Carbonat- oder Carbamoylchloridgruppe und mehr als eine OH-Gruppe oder eine OH-Gruppe und mehr als eine Carbonat- oder Carbamoylchioridgruppe aufweisen.
Gegenstand der Erfindung sind weiterhin die nach diesem Verfahren hergestellten hochfunktionellen, hoch- oder hyperverzweigten Polycarbonate.
Unter hyperverzweigten Polycarbonaten werden im Rahmen dieser Erfindung unver- netzte Makromoleküle mit Hydroxyl- und Carbonat- oder Carbamoylchloridgruppen verstanden, die sowohl strukturell als auch molekular uneinheitlich sind. Sie können auf der einen Seite ausgehend von einem Zentralmolekül analog zu Dendrimeren, jedoch mit uneinheitlicher Kettenlänge der Äste aufgebaut sein. Sie können auf der anderen Seite auch linear, mit funktioneilen Seitengruppen, aufgebaut sein oder aber, als Kombination der beiden Extreme, lineare und verzweigte Molekülteile aufweisen. Zur Definition von dendrimeren und hyperverzweigten Polymeren siehe auch P.J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und H. Frey et al., Chem. Eur. J. 2000, 6, No. 14, 2499.
Unter „hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad (Degree of Branching, DB), dass heißt die mittlere Anzahl dendritischer Verknüpfungen plus mittlere Anzahl der Endgruppen pro Mole- kül, 10 bis 99.9 %, bevorzugt 20 bis 99 %, besonders bevorzugt 20 - 95 % beträgt. Unter „dendrimer" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, daß der Verzweigungsgrad 99,9 - 100% beträgt. Zur Definition des „Degree of Branching" siehe H. Frey et al., Acta Polym. 1997, 48, 30.
Gegenstand der Erfindung ist ferner die Verwendung der erfindui ysgemäßen hochfunktionellen hochverzweigten Polycarbonate als Haftvermittler, Thixotropiermittel oder als Bausteine zur Herstellung von Polyadditions- oder Polykondensationspolymeren, zum Beispiel von Lacken, Überzügen, Klebstoffen, Dichtmassen, Giesselastomeren oder Schaumstoffen.
Zu der Erfindung ist um Einzelnen das Folgende auszuführen:
Als Ausgangsmaterial kann Phosgen, Diphosgen oder Triphosgen eingesetzt werden, vorzugsweise werden jedoch organische Carbonate (A) verwendet.
Bei den Resten R der als Ausgangsmaterial eingesetzten organischen Carbonate (A) der allgemeinen Formel RO[(CO)O]nR handelt es sich jeweils unabhängig voneinander um einen geradkettigen oder verzweigten aliphatischen, aromatisch/aliphatischen oder aromatischen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen handelt. Die beiden Reste R können auch unter Bildung eines Ringes miteinander verbunden sein. Bevorzugt handelt es sich um einen aliphatischen Kohlenwasserstoffrest und besonders bevor- zugt um einen geradkettigen oder verzweigten Alkylrest mit 1 bis 5 C-Atomen, oder um einen substituierten oder unsubstituierten Phenylrest.
Bei den Carbonaten kann es sich bevorzugt um einfache Carbonate der allgemeinen Formel RO(CO)OR handeln, d.h. in diesem Falle steht n für 1.
Generell handelt es sich bei n um eine ganze Zahl zwischen 1 und 5, bevorzugt zwischen 1 und 3.
Dialkyl- oder Diarylcarbonate können zum Beispiel hergestellt werden aus der Reaktion von aliphatischen, araiiphatischen oder aromatischen Alkoholen, vorzugsweise Mono- alkoholen mit Phosgen. Weiterhin können sie auch über oxidative Carbonylierung der Alkohole oder Phenole mittels CO in Gegenwart von Edelmetallen, Sauerstoff oder NOx hergestellt werden. Zu Herstellmethoden von Diaryl- oder Dialkylcarbonaten siehe auch „Ullmann's Encyclopedia of Industrial Chemistry", 6th Edition, 2000 Electronic Release, Verlag Wiley-VCH.
Beispiele geeigneter Carbonate umfassen aliphatische, aromatisch/aiiphatische oder aromatische Carbonate wie Ethylencarbonat, 1 ,2- oder 1 ,3-Propylencarbonat, Diphe- nylcarbonat, Ditolylcarbonat, Dixylylcarbonat, Dinaphthylcarbonat, Ethylphenylcarbo- nat, Dibenzylcarbonat, Dimethylcarbonat, Diethylcarbonat, Dipropylcarbonat, Dibutyl- carbonat, Diisobutylcarbonat, Dipentylcarbonat, Dihexylcarbonat, Dicyclohexylcarbo- nat, Diheptylcarbonat, Dioctylcarbonat, Didecylacarbonat oder Didodecylcarbonat.
Beispiele für Carbonate, bei denen n größer als 1 ist, umfassen Dialky icarbonate, wie Di(tert.butyl)dicarbonat oder Dialkyltricarbonate wie Di(tert.butyl)tricarbonat.
Bevorzugt werden aliphatische Carbonate eingesetzt, insbesondere solche, bei denen die Reste 1 bis 5 C-Atome umfassen, wie zum Beispiel Dimethylcarbonat, Diethylcar- bonat, Dipropylcarbonat, Dibutylcarbonat oder Diisobutylcarbonat oder Diphenylcarbo- nat als aromatisches Carbonat.
Die organischen Carbonate werden mit mindestens einem aliphatischen oder aromatischen Alkohol (B), welcher mindestens 3 OH-Gruppen aufweist oder Gemischen zwei- er oder mehrerer verschiedener Alkohole umgesetzt.
Beispiele für Verbindungen mit mindestens drei OH-Gruppen umfassen Glycerin, Tri- methylolmethan, Trimethylolethan, Trimethylolpropan, 1,2,4-Butantriol, Tris(hydroxy- methyl)amin, Tris(hydroxyethyl)amin, Tris(hydroxypropyl)amin, Pentaerythrit, Diglyce- rin, Triglycerin, Polyglycerine, Bis(tri-methylolpropan), Tris(hydroxymethyl)isocyanurat, Tris(hydroxyethyl)isocyanurat, Phloroglucinol, Trihydroxytoluol, Trihydroxydimethylben- zol, Phloroglucide, Hexahydroxybenzol, 1 ,3,5-Benzoltrimethanol, 1,1 ,1-Tris(4'-hydroxy- phenyl)methan, 1,1,1-Tris(4'-hydroxyphenyl)ethan, Zucker, wie zum Beispiel Glucose, Zuckerderivate, tri- oder höherfunktionelle Polyetherole auf Basis tri- oder höherfunkti- oneller Alkohole und Ethylenoxid, Propylenoxid oder Butylenoxid oder deren Gemischen, oder Polyesterole. Dabei sind Glycerin, Trimethylolethan, Trimethylolpropan, 1 ,2,4-Butantriol, Pentaerythrit, sowie deren Polyetherole auf Basis von Ethylenoxid oder Propylenoxid besonders bevorzugt.
Diese mehrfunktionellen Alkohole können auch in Mischung mit difunktionellen Alkoholen (B") eingesetzt werden, mit der Maßgabe, dass die mittlere OH-Funktionalität aller eingesetzten Alkohole zusammen größer als 2 ist. Beispiele geeigneter Verbindungen mit zwei OH-Gruppen umfassen Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,2- und 1 ,3-Propandiol, Dipropylenglykol, Tripropylenglykol, Neopentylglykol, 1,2-, 1,3- und 1 ,4-ButandioI, 1,2-, 1 ,3- und 1 ,5-Pentandiol, Hexandiol, Cyclopentandiol, Cyclohexan- diol, Cyclohexandimethanol, Bis(4-Hydroxycyclohexyl)methan, Bis(4-Hydroxycyclo- hexyl)ethan, 2,2- Bis(4-Hydroxycyclohexyl)propan, 1,1 '-Bis(4-Hydroxyphenyl)-3,3-5-tri- methylcyclohexan, Resorcin, Hydrochinon, 4,4'-Dihydroxydiphenyl, Bis-(4-Hydroxy- phenyl)sulfid, Bis(4-Hydroxyphenyl)sulfon, Bis(hydroxymethyl)benzol, Bis(Hydroxy- methyl)toluol, Bis(p-hydroxyphenyl)methan, Bis(p-hydroxyphenyl)ethan, 2,2-Bis(p-hy- droxyphenyl)propan, 1 ,1-Bis(p-hydroxyphenyl)cyclohexan, Dihydroxybenzophenon, difunktionelle Polyetherpolyole auf Basis Ethylenoxid, Propylenoxid, Butylenoxid oder deren Gemische, Polytetrahydrofuran, Polycaprolacton oder Polyesterole auf Basis von Diolen und Dicarbonsäuren.
Die Diole dienen zur Feineinstellung der Eigenschaften des Polycarbonates. Falls di- funktioneile Alkohole eingesetzt werden, wird das Verhältnis von difunktioneiien Alkoholen (B') zu den mindestens trifunktionellen Alkoholen (B) vom Fachmann je nach den gewünschten Eigenschaften des Polycarbonates festgelegt. Im Regelfalle beträgt die Menge des oder der Alkohole (B') 0 bis 39,9 mol % bezüglich der Gesamtmenge aller Alkohole (B) und (B') zusammen. Bevorzugt beträgt die Menge 0 bis 35 mol %, beson- ders bevorzugt 0 bis 25 mol % und ganz besonders bevorzugt 0 bis 10 mol %.
Die Reaktion von Phosgen, Diphosgen oder Triphosgen mit dem Alkohol oder Alkoholgemisch erfolgt in der Regel unter Eliminierung von Chlorwasserstoff, die Reaktion der Carbonate mit dem Alkohol oder Alkoholgemisch zum erfindungsgemäßen hochfunkti- onellen hochverzweigten Polycarbonat erfolgt unter Eliminierung des monofunktionel- len Alkohols oder Phenols aus dem Carbonat-Molekül.
Die nach dem erfindungsgemäßen Verfahren gebildeten hochfunktionellen hochverzweigten Polycarbonate sind nach der Reaktion, also ohne weitere Modifikation, mit Hydroxylgruppen und/oder mit Carbonatgruppen beziehungsweise Carbamoylchlo- ridgruppen terminiert. Sie lösen sich gut in verschiedenen Lösemitteln, zum Beispiel in Wasser, Alkoholen, wie Methanol, Ethanol, Butanol, Alkohol/Wasser-Mischungen, Ace- ton, 2-Butanon, Essigester, Butylacetat, Methoxypropylacetat, Methoxyethylacetat, Tetrahydrofuran, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Ethylen- carbonat oder Propylencarbonat.
Unter einem hochfunktionelien Polycarbonat ist im Rahmen dieser Erfindung ein Produkt zu verstehen, das neben den Carbonatgruppen, die das Polymergerüst bilden, end- oder seitenständig weiterhin mindestens drei, bevorzugt mindestens sechs, mehr bevorzugt mindestens zehn funktionelle Gruppen aufweist. Bei den funktioneilen Gruppen handelt es sich um Carbonatgruppen beziehungsweise Carbamoylchloridgruppen und/oder um OH-Gruppen. Die Anzahl der end- oder seitenständigen funktionelien Gruppen ist prinzipiell nach oben nicht beschränkt, jedoch können Produkte mit sehr hoher Anzahl funktioneller Gruppen unerwünschte Eigenschaften, wie beispielsweise hohe Viskosität oder schlechte Löslichkeit, aufweisen. Die hochfunktionelien Polycarbonate der vorliegenden Erfindung weisen zumeist nicht mehr als 500 end- oder sei- tenständige funktionelle Gruppen, bevorzugt nicht mehr als 100 end oder seitenständige funktionelle Gruppen auf.
Bei der Herstellung der hochfunktionelien Polycarbonate ist es notwendig, das Verhältnis von den OH-Gruppen enthaltenden Verbindungen zu Phosgen oder Carbonat so einzustellen, dass das resultierende einfachste Kondensationsprodukt (im Weiteren Kondensationsprodukt (K) genannt) im Mittel entweder eine Carbonat- oder Carba- moylchloridgruppe und mehr als eine OH-Gruppe oder eine OH-Gruppe und mehr als eine Carbonat- oder Carbamoylchloridgruppe enthält.
Die einfachste Struktur des Kondensationsproduktes (K), dargestellt am Beispiel: der Umsetzung eines Carbonats (A) mit einem Di- oder Polyalkohol (B) ergibt dabei die Anordnung XYm oder YmX, wobei X eine Carbonatgruppe, Y eine Hydroxyl-Gruppe und m in der Regel eine ganze Zahl zwischen 1 und 6, vorzugsweise zwischen 1 und 4, besonders bevorzugt zwischen 1 und 3 darstellt. Die reaktive Gruppe, die dabei als einzelne Gruppe resultiert, wird im folgenden generell „fokale Gruppe" genannt.
Liegt beispielsweise bei der Herstellung des einfachsten Kondensationsproduktes (K) aus einem Carbonat und einem zweiwertigen Alkohol das Umsetzungsverhältnis bei 1:1, so resultiert im Mittel ein Molekül des Typs XY, veranschaulicht durch die ailge- meine Formel 1.
Figure imgf000008_0001
Bei der Herstellung des Kondensationsproduktes (K) aus einem Carbonat und einem dreiwertigen Alkohol bei einem Umsetzungsverhältnis von 1 : 1 resultiert im Mittel ein Molekül des Typs XY2, veranschaulicht durch die allgemeine Formel 2. Fokale Gruppe ist hier eine Carbonatgruppe.
Figure imgf000009_0001
Bei der Herstellung des Kondensationsproduktes (K) aus einem Carbonat und einem vierwertigen Alkohol ebenfalls mit dem Umsetzungsverhältnis 1 : 1 resultiert im Mittel ein Molekül des Typs XY3, veranschaulicht durch die allgemeine Formel 3. Fokale Gruppe ist hier eine Carbonatgruppe.
Figure imgf000009_0002
In den Formeln 1 bis 3 hat R die eingangs definierte Bedeutung und R1steht für einen aliphatischen oder aromatischen Rest.
Weiterhin kann die Herstellung des Kondensationsprodukts (K) zum Beispiel auch aus einem Carbonat und einem dreiwertigen Alkohol, veranschaulicht durch die allgemeine Formel 4, erfolgen, wobei das Umsetzungsverhältnis bei molar 2:1 liegt. Hier resultiert im Mittel ein Molekül des Typs X2Y, fokale Gruppe ist hier eine OH-Gruppe. In der Formel 4 haben R und R1 die gleiche Bedeutung wie in den Formeln 1 bis 3.
Figure imgf000009_0003
Werden zu den Komponenten zusätzlich difunktionelle Verbindungen, z.B ein Dicarbo- nat oder ein Diol gegeben, so bewirkt dies eine Verlängerung der Ketten, wie beispielsweise in der allgemeinen Formel 5 veranschaulicht. Es resultiert wieder im Mittel ein Molekül des Typs XY2, fokale Gruppe ist eine Carbonatgruppe.
Figure imgf000010_0001
In Formel 5 bedeutet R2 einen aliphatischen oder aromatischen Rest, R und R1 sind wie vorstehend beschrieben definiert.
Es können auch mehrere Kondensationsprodukte (K) zur Synthese eingesetzt werden. Hierbei können einerseits mehrere Alkohole beziehungsweise mehrere Carbonate eingesetzt werden. Weiterhin lassen sich durch die Wahl des Verhältnisses der eingesetzten Alkohole und der Carbonate bzw. der Phosgene Mischungen verschiedener Kondensationsprodukte unterschiedlicher Struktur erhalten. Dies sei am Beispiel der Umsetzung eines Carbonates mit einem dreiwertigen Alkohol beispielhaft erläutert. Setzt man die Ausgangsprodukte im Verhältnis 1:1 ein, wie in (II) dargestellt, so erhält man ein Molekül XY2. Setzt man die Ausgangsprodukte im Verhältnis 2.1 ein, wie in (IV) dargestellt, so erhält man ein Molekül X2Y. Bei einem Verhältnis zwischen 1:1 und 2:1 erhält man eine Mischung von Molekülen XY2 und X2Y.
Die beispielhaft in den Formeln 1 - 5 beschriebenen einfachen Kondensationsprodukte (K) reagieren erfindungsgemäß bevorzugt intermolekular unter Bildung von hochfunktionelien Polykondensationsprodukten, im folgenden Polykondensationsprodukte (P) genannt. Die Umsetzung zum Kondensationsprodukt (K) und zum Polykondensations- produkt (P) erfolgt üblicherweise bei einer Temperatur von 0 bis 300 CC, bevorzugt 0 bis 250CC, besonders bevorzugt bei 60 bis 200°C und ganz besonders bevorzugt bei 60 bis 160°C in Substanz oder in Lösung. Dabei können allgemein alle Lösungsmittel verwendet werden, die gegenüber den jeweiligen Edukten inert sind. Bevorzugt verwendet werden organische Lösungsmittel, wie zum Beispiel Decan, Dodecan, Benzol, Toluol, Chlorbenzol, Xylol, Dimethylformamid, Dimethylacetamid oder Solventnaphtha.
In einer bevorzugten Ausführungsform wird die Kondensationsreaktion in Substanz durchgeführt. Der bei der Reaktion freiwerdende monofunktionelle Alkohol oder das Phenol ROH kann zur Beschleunigung der Reaktion aus dem Reaktionsgleichgewicht entfernt werden, zum Beispiel destillativ, gegebenenfalls bei vermindertem Druck.
Falls Abdestillieren vorgesehen ist, ist es regelmäßig empfehlenwert, solche Carbonate einzusetzen, welche bei der Umsetzung Alkohole oder Phenole ROH mit einem Siedepunkt von weniger als 140°C bei dem vorliegenden Druck freisetzen.
Zur Beschleunigung der Reaktion können auch Katalysatoren oder Katalysatorgemische zugegeben werden. Geeignete Katalysatoren sind Verbindungen, die Vereste- rungs- oder Umesterungsreaktionen katalysieren, zum Beispiel Alkalihydroxide, Alkali- carbonate, Alkalihydrogencarbonate, vorzugsweise des Natriums, Kaliums oder Cäsiums, tertiäre Amine, Guanidine, Ammoniumverbindungen, Phosphoniumverbindungen, Aluminium-, Zinn-, Zink, Titan-, Zirkon- oder Wismut-organische Verbindungen, weiterhin sogenannte Doppelmetallcyanid (DMC)-Katalysatoren, wie zum Beispiel in der DE 10138216 oder in der DE 10147712 beschrieben.
Vorzugsweise werden Kaliumhydroxid, Kaliumcarbonat, Kaliumhydrogencarbonat, Dia- zabicyclooctan (DABCO), Diazabicyclononen (DBN), Diazabicycloundecen (DBU), Imi- dazole, wie Imidazol, 1-Methylimidazol oder 1,2-DimethyIimidazol, Titan-tetrabutylat, Titantetraisopropylat, Dibutylzinnoxid, Dibutylzinn-dilaurat, Zinndioctoat, Zirkonacetyla- cetonat oder Gemische davon eingesetzt.
Die Zugabe des Katalysators erfolgt im allgemeinen in einer Menge von 50 bis 10000, bevorzugt von 100 bis 5000 Gew. ppm bezogen auf die Menge des eingesetzten Alko- hols oder Alkoholgemisches.
Ferner ist es auch möglich, sowohl durch Zugabe des geeigneten Katalysators, als auch durch Wahl einer geeigneten Temperatur die intermolekulare Polykondensations- reaktion zu steuern. Weiterhin lässt sich über die Zusammensetzung der Ausgangs- komponenten und über die Verweilzeit das mittlere Molekulargewicht des Polymeren (P) einstellen.
Die Kondensationsprodukte (K) bzw. die Polykondensationsprodukte (P), die bei erhöhter Temperatur hergestellt wurden, sind bei Raumtemperatur üblicherweise über einen längeren Zeitraum stabil.
Aufgrund der Beschaffenheit der Kondensationsprodukte (K) ist es möglich, daß aus der Kondensationsreaktion Polykondensationsprodukte (P) mit unterschiedlichen Strukturen resultieren können, die Verzweigungen, aber keine Vernetzungen aufwei- sen. Ferner weisen die Polykondensationsprodukte (P) im Idealfall entweder eine Carbonat- oder Carbamoylchloridgruppe als fokale Gruppe und mehr als zwei OH- Gruppen oder aber eine OH-Gruppe als fokale Gruppe und mehr als zwei Carbonat- oder Carbamoylchloridgruppen auf. Die Anzahl der reaktiven Gruppen ergibt sich dabei aus der Beschaffenheit der eingesetzten Kondensationsprodukte (K) und dem Poly- kondensationsgrad.
Beispielsweise kann ein Kondensationsprodukt (K) gemäß der allgemeinen Formel 2 durch dreifache intermolekulare Kondensation zu zwei verschiedenen Polykondensati- onsprodukten (P), die in den allgemeinen Formeln 6 und 7 wiedergegeben werden, reagieren.
Figure imgf000012_0001
Figure imgf000012_0002
In Formel 6 und 7 sind R und R1 wie vorstehend definiert.
Zum Abbruch der intermolekularen Polykondensationsreaktion gibt es verschiedene Möglichkeiten. Beispielsweise kann die Temperatur auf einen Bereich abgesenkt werden, in dem die Reaktion zum Stillstand kommt und das Produkt (K) oder das Polykondensationsprodukt (P) lagerstabil ist.
Weiterhin kann man den Katalysator desaktivieren, bei basischen Katalysatoren zum Beispiel durch Zugabe einer sauren Komponente, zum Beispiel einer Lewis-Säure oder einer organischen oder anorganischen Protonensäure.
In einerweiteren Ausführungsform kann, sobald aufgrund der intermolekularen Reakti- on des Kondensationsproduktes (K) ein Polykondensationsprodukt (P) mit gewünschten Polykondensationsgrad vorliegt, dem Produkt (P) zum Abbruch der Reaktion ein Produkt mit gegenüber der fokalen Gruppe von (P) reaktiven Gruppen zugesetzt werden. So kann bei einer Carbonatgruppe als fokaler Gruppe zum Beispiel ein Mono-, Dioder Polyamin zugegeben werden. Bei einer Hydroxylgruppe als fokaler Gruppe kann dem Produkt (P) beispielsweise ein Mono-, Di- oder Polyisocyanat, eine Epoxydgrup- pen enthaltende Verbindung oder ein mit OH-Gruppen reaktives Säurederivat zugegeben werden.
Die Herstellung der erfindungsgemäßen hochfunktionelien Polycarbonate erfolgt zu- meist in einem Druckbereich von 0,1 mbar bis 20 bar, bevorzugt bei 1 mbar bis 5 bar, in Reaktoren oder Reaktorkaskaden, die im Batchbetrieb, halbkontinuierlich oder kontinuierlich betrieben werden.
Durch die vorgenannte Einstellung der Reaktionsbedingungen und gegebenenfalls durch die Wahl des geeigneten Lösemittels können die erfindungsgemäßen Produkte nach der Herstellung ohne weitere Reinigung weiterverarbeitet werden.
In einerweiteren bevorzugten Ausführungsform wird das Produkt gestrippt, dass heißt von niedermolekularen, flüchtigen Verbindungen befreit. Dazu kann nach Erreichen des gewünschten Umsatzgrades der Katalysator optional desaktiviert und die niedermolekularen flüchtigen Bestandteile, zum Beispiel Monoalkohole, Phenole, Carbonate, Chlorwasserstoff oder leichtflüchtige oligomere oder cyclische Verbindungen destillativ, gegebenenfalls unter Einleitung eines Gases, vorzugsweise Stickstoff, Kohlendioxid oder Luft, gegebenenfalls bei vermindertem Druck, entfernt werden.
In einerweiteren bevorzugten Ausführungsform können die erfindungsgemäßen Polycarbonate neben den bereits durch die Reaktion erhaltenden funktionellen Gruppen weitere funktionelle Gruppen erhalten. Die Funktionalisierung kann dabei während des Molekulargewichtsaufbaus oder auch nachträglich, d.h. nach Beendigung der eigentli- chen Polykondensation erfolgen.
Gibt man vor oder während des Molekulargewichtsaufbaus Komponenten zu, die neben Hydroxyl- oder Carbonatgruppen weitere funktionelle Gruppen oder funktionelle Elemente besitzen, so erhält man ein Polycarbonat-Polymer mit statistisch verteilten von den Carbonat-, Carbamoylchiorid oder Hydroxylgruppen verschiedenen Funktionalitäten.
Derartige Effekte lassen sich zum Beispiel durch Zusatz von Verbindungen während der Polykondensation erzielen, die neben Hydroxylgruppen, Carbonatgruppen oder Carbamoylchloridgruppen weitere funktionelle Gruppen oder funktionelle Elemente, wie Mercaptogruppen, primäre, sekundäre oder tertiäre Aminogruppen, Ethergruppen, Carbonsäuregruppen oder deren Derivate, Sulfonsäuregruppen oder deren Derivate, Phosphonsäuregruppen oder deren Derivate, Silangruppen, Siloxangruppen, Arylreste oder langkettige Alkylreste tragen. Zur Modifikation mittels Carbamat-Gruppen lassen sich beispielsweise Ethanolamin, Propanolamin, Isopropanolamin, 2-(Butylamino)- ethanol, 2-(Cyclohexylamino)ethanol, 2-Amino-1-butanol, 2-(2'-Amino-ethoxy)ethanol oder höhere Alkoxylierungsprodukte des Ammoniaks, 4-Hydroxy-piperidin, 1-Hydroxy- ethylpiperazin, Diethanolamin, Dipropanolamin, Diisopropanol-amin, Tris(hydroxy- methyl)aminomethan,Tris(hydroxyethyl)aminomethan, Ethylendiamin, Propylendiamin, Hexamethylendiamin oder Isophorondiamin verwenden. Für die Modifikation mit Mercaptogruppen lässt sich zum Beispiel Mercaptoethanol einsetzten. Tertiäre Aminogruppen lassen sich zum Beispiel durch Einbau von Triethano- lamin, Tripropanolamin, N-Methyldiethanolamin, N-Methyldipropanolamin oder N,N-Di- methylethanolamin erzeugen. Ethergruppen können zum Beispiel durch Einkondensa- tion von di- oder höherfunktionellen Polyetherolen generiert werden. Durch Zugabe von Dicarbonsäuren, Tricarbonsäuren, Dicarbonsäureestern, wie bespielsweise Tereph- thalsäuredimethylester oder Tricarbonsäureestern lassen sich Estergruppen erzeugen. Durch Reaktion mit langkettigen Alkanolen oder Alkandiolen lassen sich langkettige Alkylreste einbringen. Die Reaktion mit Alkyl- oder Aryldiisocyanaten generiert Alkyl-, Aryl- und Urethangruppen aufweisende Polycarbonate, die Zugabe von primären oder sekundären Aminen führt zur Einbringung von Urethan- oder Harnstoffgruppen.
Eine nachträgliche Funktionalisierung kann man erhalten, indem das erhaltene hochfunktionelle, hoch- oder hyperverzweigte Polycarbonat in einem zusätzlichen Verfah- rensschritt (Schritt c)) mit einem geeigneten Funktionalisierungsreagenz, welches mit den OH- und/oder Carbonat- oder Carbamoylchlorid-Gruppen des Polycarbonates reagieren kann, umsetzt.
Hydroxylgruppen enthaltende hochfunktionelle, hoch oder hyperverzweigte Polycarbo- nate können zum Beispiel durch Zugabe von Säuregruppen- oder Isocyanatgruppen enthaltenden Molekülen modifiziert werden. Beispielsweise lassen sich Säuregruppen enthaltende Polycarbonate durch Umsetzung mit Anhydridgruppen enthaltenden Verbindungen erhalten.
Weiterhin können Hydroxylgruppen enthaltende hochfunktionelle Polycarbonate auch durch Umsetzung mit Alkylenoxiden, zum Beispiel Ethylenoxid, Propylenoxid oder Butylenoxid, in hochfunktionelle Polycarbonat-Polyetherpolyole überführt werden.
Ein großer Vorteil des erfindungsgemäßen Verfahren liegt in seiner Wirtschaftlichkeit. Sowohl die Umsetzung zu einem Kondensationsprodukt (K) oder Polykondensations- produkt (P) als auch die Reaktion von (K) oder (P) zu Polycarbonaten mit anderen funktioneilen Gruppen oder Elementen kann in einer Reaktionsvorrichtung erfolgen, was technisch und wirtschaftlich vorteilhaft ist.
Die gemäß dem erfindungsgemäßen Verfahren erhaltenen hochfunktionelien, hoch- oder hyperverzweigten Polycarbonate können beispielsweise als Haftvermittler, Thixo- tropiermittel oder als Bausteine zur Herstellung von Polyadditions- oder Polykondensa- tionspolymeren verwendet werden, beispielweise als Komponenten zur Herstellung von Lacken, Überzügen, Klebstoffen, Dichtmassen, Gießelastomeren oder Schaumstoffen. Sie eignen sich insbesondere zur Herstellung von Druckfarben, wie Flexo-, Tief-, Offset- oder Siebduckfarben sowie zur Herstellung von Drucklacken. Insbesondere sind die erfindungsgemäßen Polycarbonate zur Herstellung von dünnflüssigen Druckfarben, wie Flexo- oder Tiefdruckfarben für den Verpackungsdruck geeignet. Sie können zu verschiedenen Zwecken in Druckfarben eingesetzt werden, aber insbesondere als Bindemittel, ggf. auch im Gemisch mit anderen Bindemitteln.
Die erfindungsgemäßen Polycarbonate werden zu diesem Zweck mit geeigneten Lösemitteln, Farbmitteln, optional weiteren Bindemitteln sowie druckfarbentypischen Zu- satzstoffen formuliert. Zu weiteren Einzelheiten zur Formulierung und Herstellung von Druckfarben mit hyperverzweigten Polymeren wird ausdrücklich auf WO 02/36695 sowie WO 02/26697 verwiesen, insbesondere auf die Ausführungen in WO 02/36695, Seite 10, Zeile 19 bis Seite 15, Zeile 14 sowie WO 02/36697, Seite 7, Zeile 14 bis Seite 10, Zeile 18 sowie die in den besagten Schriften aufgeführten Beispiele.
Druckfarben, welche die erfindungsgemäßen Polycarbonate enthalten, weisen eine besonders gute, bislang nicht bekannte, Haftung auf den Substraten, insbesondere auf Metall- und/oder Polymerfolien auf.
Die Druckfarben eignen sich daher auch ganz besonders zur Herstellung von Laminaten aus zwei oder mehreren Polymer- und/oder Metallfolien, bei denen eine Folie mit einer oder mehreren Schichten einer Druckfarbe bedruckt und auf die gedruckte Schicht eine zweite Folie aufkaschiert wird. Derartige Verbünde werden beispielsweise zur Herstellung von Verpackungen eingesetzt.
Die vorliegende Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden.
Allgemeine Arbeitsvorschrift:
Der mehrfunktionelle Alkohol oder die Alkoholmischung, das Carbonat, sowie gege- benfalls andere Monomere, und Katalysator (250 ppm bezogen auf Masse Alkohol) wurden nach den Ansatzmengen gemäß Tabelle 1 in einem Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler und Innenthermometer vorgelegt, die Mischung auf 120°C, bei den mit * gekennzeichneten Versuchen auf 140°C erwärmt, und 2 h bei dieser Temperatur gerührt. Mit fortschreitender Reaktionsdauer reduzierte sich dabei die Temperatur des Reaktionsgemisches bedingt durch die einsetzende Siedekühlung des freigesetzten Monoalkohols. Nun wurde der Rückflusskühler gegen einen absteigenden Kühler getauscht, optional (gekennzeichnet durch **) bezogen auf die Äquiva- lentmenge Katalysator ein Äquivalent Phosphorsäure zugegeben, der Monoalkohol abdestilliert und die Temperatur des Reaktionsgemisches langsam bis auf 160°C erhöht. Bei dem mit *** gekennzeichneten Versuch wurde zusätzlich der Druck auf 8 mbar verringert.
Der abdestillierte Alkohol wurde in einem gekühlten Rundkolben gesammelt, ausgewo- gen und der Umsatz so gegenüber dem theoretisch möglichen Vollumsatz prozentual ermittelt (siehe Tabelle 1).
Die Reaktionsprodukte wurden anschließend per Gelpermeationschromatographie analysiert, Laufmittel war Dimethylacetamid, als Standard wurde Polymethylmethacry- lat (PMMA) verwendet.
Tabelle 1 : Einsatzstoffe und Endprodukte
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000020_0001
Figure imgf000020_0002
Glyc = Glycerin EO = Ethylenoxid TMP = Trimethylolpropan PO = Propylenoxid CHD = 1,4-Cyclohexandiol THEA = Tris(hydroxyethyl)amin CHDM = 1 ,4-Cyclohexandimethanol TDME = Terephthalsäuredimethylester THEIC = Tris(N-2-hydroxyethyl)isocyanurat Bisphenol A = 2,2-Bis(p-hydroxyphenyl)propan DMC = Dimethylcarbonat DPC - Diphenylcarbonat DEC = Diethylcarbonat a = Viskositätsmessung erfolgte 90%ig in Butylacetat b = Viskositätsmessung erfolgte 90%ig in Ethylacetat n.b. = nicht bestimmt
Druckfarben mit den erfindungsgemäßen hoch- oder hyperverzweigten Polycarbonaten
Die Qualität der erfindungsgemäßen Druckfarben wurde anhand der Haftfestigkeit auf verschiedenen Bedruckstoffen bestimmt.
Messmethode Tesafestigkeit
Das Prüfverfahren „Tesafestigkeit" dient zur Bestimmung der Haftung eines Druckfarbenfilms auf dem Bedruckstoff.
Herstellen αfer Proben
Figure imgf000021_0002
Figure imgf000021_0003
Die auf Druckviskosität verdünnte Farbe wird dem vorgeschriebenen Bedruckstoff angedruckt oder mit einem 6 μm-Rakel aufgezogen.
Durchführung der Prüfung
Figure imgf000021_0004
Figure imgf000021_0005
Ein Tesabandstreifen (Klebeband mit 19 mm Breite (Artikel BDF 4104, Beiersdorf AG) wird auf den Druckfarbenfilm aufgeklebt, gleichmäßig angedrückt und nach 10 Sekun- den wieder abgerissen. Dieser Vorgang wird auf derselben Stelle des Prüflings jeweils mit einem neuen Tesabandstreifen 4 mal wiederholt. Jeder Tesastreifen wird nacheinander auf ein weißes Papier, bei weißen Farben auf Schwarzpapier aufgeklebt. Prüfung erfolgt sofort nach Applikation der Farbe.
Auswertung
Figure imgf000021_0007
Figure imgf000021_0006
Figure imgf000021_0001
Es erfolgt eine visuelle Prüfung der Oberfläche des Prüflings auf Beschädigung. Die Benotung erfolgt von 1 (sehr schlecht) bis 5 (sehr gut).
Für die Beispiele wurden folgende Rezepturen (Gew. Teile) gewählt:
Rezeptur 1 (erfindungsgemäß)
70,0 Pigment Präparation (BASF Drucksysteme) 8,0 Nitrocellulose (Wolf) 1 ,0 Oleamid (Croda) 0,5 PE-Wachse (BASF AG) 2,0 Dibutylphthalat (Brenntag) 12,5 Ethanol 6,0 Polymer aus Beispiel 4 (Tabelle 1), 75%ig gelöst in Ethanol
Tabelle 2: Stencfard-Bindemittel im Vergleich zu Polymer aus Beispiel 5 (Tabelle 1)
Figure imgf000022_0001
Bestimmung der Verbundfestigkeit von Laminaten:
Zur Herstellung von Verbundverpackungen werden bedruckte Polymesfolien, beispielsweise Polyamid-, Polyethylen- oder Polypropylenfolien, mit andern Folientypen, wie beispielsweise Metallfolien oder aber auch Kunstofffolien, durch Laminierung verbunden. Wichtige Anwendungseigenschaften derartiger Laminate für den Einsatz als Verbundverpackung sind neben der Festigkeit des Verbundes bei normaler Lagerung auch die Festigkeit des Verbundes unter verschärften Bedingungen, wie beispielsweise beim Erhitzen oder Sterilisieren. Die Qualität der erfindungsgemäßen Druckfarben wurde durch Bestimmung der Verbundfestigkeit beurteilt. Unter Verbundfestigkeit versteht man die Bestimmung der Verbundhaftung zwischen zwei durch Kaschierung oder Extrusion verbundenen Filmen oder Metallfolien. Mess- und Prüfgeräte;
Zugfestigkeitsprüfgerät Fa. Zwick Stanzwerkzeug (Breite: 15mm) Herstellung der Proben:
Vom zu testenden Material müssen mindestens je 2 Streifen (Breite: 15mm) längs und quer zur Folienbahn zugeschnitten werden. Zur Trennung des Verbundes werden die Enden der ausgestanzten Streifen können in entsprechendes Lösungsmittel (z.B. 2-Bu- tanon) getaucht werden, bis sich die Materialien voneinander lösen. Danach muß das Muster wieder sorgfältig getrocknet werden.
Durchführung cfer Prüfung:
Die delaminierten Enden der Prüflinge werden in den Zugfestigkeitsprüfer eingespannt. Der weniger dehnfähige Film sollte in die obere Klemme eingelegt werden. Beim Anlauf der Maschine sollte das Ende des Musters im rechten Winkel zur Zugrichtung gehalten werden, wodurch ein konstanter Zug gewährleistet wird. Die Abzugsge- schwindigkeit beträgt 100 mm/min, der Abzugswinkel der getrennten Filme zum nichtgetrennten Komplex beträgt 90°.
Auswertung:
Abgelesen wird der Verbundwert als Mittelwert, Angabe in N / 15mm.
Herstellung der Proben:
Die auf Druckviskosität verdünnte Farbe wird auf dem vorgeschriebenen Bedruckstoff Polyamid (Emblem 1500) angedruckt oder mit einem 6 μm-Rakel aufgezogen. Parallel dazu wird die Polyethylen-Kaschierfolie mit der Kleber-Härter-Mischung Morfree A415 (Kleber) und C90 (Härter, Rohm & Haas), Gewichts-Mischungsverhältnis 100:40, so beschichtet, dass eine Filmdicke von etwa 6 μm (entspricht etwa 2,5 g / m2) resultiert. Beide Folien werden anschließend so verpresst, dass die Druckfarbe und der Kleber in Kontakt kommen. Nach dem Verpressen werden die Verbundfolien 5 Tage bei 60°C gelagert. Es wurden folgende Rezepturen (Gew. Teile) für die Beispiele gewählt:
Standard-Rezeptur B (Vergleich):
13,0 Pigment Heliogen Blau D 7080 (BASF AG) 15,0 Bindemittel (Polyvinylbutyral) 3,0 Additiv (Polyethyienimin, BASF AG) 69,0 Ethanol
Rezeptur 1 (erfindungsgemäß)
70,0 Pigment Präparation (BASF Drucksysteme) 8,0 Nitrocellulose (Wolf) 1,0 Oleamid (Croda) 0,5 PE-Wachse (BASF AG) 2,0 Dibutylphthalat (Brenntag) 12,5 Ethanol 6,0 Polymer aus Beispiel 4 (Tabelle 1 ), 75%ig gelöst in Ethanol
Beispiel 30: Verbundwerte für das Laminat aus Polyamid und Polyethylen:
Verbundwert (N/15mm):
Standard-System B (Vergleich): 4,19
Rezeptur 1 (erfindungsgemäß) 8,90

Claims

Patentansprüche
1. Verfahren zur Herstellung von hochfunktionelien, hoch- oder hyperverzweigten Polycarbonaten, umfassend mindestens die folgenden Schritte: a) Herstellung eines oder mehrerer Kondensationsprodukte (K) durch aa) Umsetzung mindestens eines organischen Carbonats (A) der allgemeinen Formel RO[(CO)O]nR mit mindestens einem aliphatischen, aromatisch/aliphatischen oder aromatischen Alkohol (B), welcher mindestens 3 OH-Gruppen aufweist, unter Eliminierung von Alkoholen ROH, wobei es sich bei R jeweils unabhängig voneinander um einen geradkettigen oder verzweigten aliphatischen, aromatisch/aliphatischen oder aromatischen Kohlenwasserstoff rest mit 1 bis 20 C-Atomen handelt, und wobei die Reste R auch unter Bildung eines Ringes miteinander verbunden sein können, und n eine ganze Zahl zwischen 1 und 5 darstellt oder ab) Umsetzung von Phosgen, Diphosgen oder Triphosgen mit dem besagten aliphatischen, aliphatisch/aromatischen oder aromatischen Alkohol (B) unter Eliminierung von Chlorwasserstoff, sowie b) intermolekulare Umsetzung der Kondensationsprodukte (K) zu einem hochfunktionelien, hoch- oder hyperverzweigten Polycarbonat, wobei das Mengenverhältnis der OH-Gruppen zu den Phosgenen oder den Carbonaten im Reaktionsgemisch so gewählt wird, dass die Kondensationsprodukte (K) im Mittel entweder eine Carbonat- oder Carbamoylchlo- ridgruppe und mehr als eine OH-Gruppe oder eine OH-Gruppe und mehr als eine Carbonat- oder Carbamoylchloridgruppe aufweisen.
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Reaktionsgemisch zusätzlich mindestens einen zwei OH-Gruppen aufweisenden aliphatischen oder aromatischen Alkohol (B') umfasst, mit der Maßgabe, dass die mittlere OH-Funktionalität aller eingesetzten Alkohole zusammen größer als 2 ist.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei R um einen geradkettigen oder verzweigten Alkylrest mit 1 bis 5 C-Atomen handelt.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei n um eine ganze Zahl von 1 bis 3 handelt.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei dem organischen Carbonat (A) um mindestens eines ausgewählt aus der Gruppe von Dimethylcarbonat, Diethylcarbonat, Dipropylcarbonat, Dibutyl- carbonat, Diisobutylcarbonat, Ethylencarbonat, Propylencarbonat, Diphenylcar- bonat oder Di(t-butyl)tricarbonat handelt.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich den mindestens 3 OH-Gruppen aufweisenden Alkoholen (B) um mindes- tens einen ausgewählt aus der Gruppe von Glycerin, Trimethylolethan, Trimethy- lolpropan, 1 ,2,4-Butantriol, Pentaerythrit, sowie deren Polyetherolen auf Basis von Ethylenoxid und/oder Propylenoxid handelt.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man Chlorwasserstoff oder die gebildeten Alkohole ROH aus dem Reaktionsgemisch entfernt.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man die Reaktion unter vermindertem Druck durchführt.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man die Reaktion in Gegenwart mindestens eines geeigneten Katalysators durchführt.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man das erhaltene hochfunktionelle, hoch- oder hyperverzweigte Polycarbonat in einem zusätzlichen Verfahrensschritt (Schritt c)) mit einem geeigneten Funktio- nalisierungsreagenz, welches mit den OH- und/oder Carbonat-oder Carba- moylchlorid-Gruppen des Polycarbonates reagieren kann, umsetzt.
11. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man das hochfunktionelle, hoch- oder hyperverzweigte Polycarbonat modifiziert, indem man Schritt b) bei Anwesenheit zusätzlicher Verbindungen durchführt, die neben OH-Gruppen, Carbonat- oder Carbamoylchloridgruppen noch weitere funktionale Gruppen oder funktionale Elemente aufweisen.
12. Hochfunktionelle, hoch- oder hyperverzweigte, mindestens 3 funktionelle Gruppen aufweisende Polycarbonate erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 11.
13. Hochfunktionelle, hoch- oder hyperverzweigte Polycarbonate gemäß Anspruch 11 , dadurch gekennzeichnet, dass sie mindestens 10 funktionelle Gruppen aufweisen.
14. Verwendung von hochfunktionelien, hoch- oder hyperverzweigten Polycarbonaten gemäß Ansprüchen 12 oder 13 als Haftvermittler, Thixotropiermittel und als Bausteine zur Herstellung von Polyadditions- oder Polykon ensationspolymeren.
15. Verwendung von hochfunktionelien, hoch- oder hyperverzweigten Polycarbonaten gemäß Ansprüchen 12 oder 13 zur Herstellung von Lacken, Überzügen, Klebstoffen, Dichtmassen, Giesselastomeren oder Schaumstoffen.
16. Verwendung von hochfunktionelien, hoch- oder hyperverzweigten Polycarbonaten gemäß Ansprüchen 12 oder 13 zur Herstellung von Druckfarben oder Drucklacken.
17. Verwendung gemäß Anspruch 16, dadurch gekennzeichnet, dass es sich bei den Druckfarben um Verpackungsdruckfarben handelt.
PCT/EP2004/009874 2003-09-12 2004-09-04 Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung WO2005026234A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10/571,691 US7521521B2 (en) 2003-09-12 2004-09-04 Highly functional highly branched or hyperbranched polycarbonates and the production and use hereof
JP2006525725A JP4413226B2 (ja) 2003-09-12 2004-09-04 高分岐型または超分岐型の高官能性ポリカルボナート、その製造方法および使用方法
CA002536751A CA2536751A1 (en) 2003-09-12 2004-09-04 Highly functional, highly branched or hyperbranched polycarbonates and the production and use hereof
KR1020127014428A KR101263138B1 (ko) 2003-09-12 2004-09-04 고작용성의, 고분지형 또는 과분지형 폴리카르보네이트, 이의 제법 및 용도
BRPI0414243-8A BRPI0414243A (pt) 2003-09-12 2004-09-04 processo para preparação de policarbonato altamente ou hiper-ramificado com alta funcionalidade, policarbonato altamente ou hiper-ramificado com alta funcionalidade, e, uso do mesmo
EP04764825A EP1664154B1 (de) 2003-09-12 2004-09-04 Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung
MXPA06002360A MXPA06002360A (es) 2003-09-12 2004-09-04 Policarbonatos altamente ramificados o hiperramificados, de alta funcionalidad y la produccion y uso de los mismos.
AT04764825T ATE432307T1 (de) 2003-09-12 2004-09-04 Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung
DE502004009535T DE502004009535D1 (de) 2003-09-12 2004-09-04 Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung
KR1020067005126A KR101178959B1 (ko) 2003-09-12 2004-09-04 고작용성의, 고분지형 또는 과분지형 폴리카르보네이트,이의 제법 및 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10342523.3 2003-09-12
DE10342523 2003-09-12

Publications (1)

Publication Number Publication Date
WO2005026234A1 true WO2005026234A1 (de) 2005-03-24

Family

ID=34305760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009874 WO2005026234A1 (de) 2003-09-12 2004-09-04 Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung

Country Status (12)

Country Link
US (1) US7521521B2 (de)
EP (1) EP1664154B1 (de)
JP (1) JP4413226B2 (de)
KR (2) KR101263138B1 (de)
CN (1) CN100381479C (de)
AT (1) ATE432307T1 (de)
BR (1) BRPI0414243A (de)
CA (1) CA2536751A1 (de)
DE (1) DE502004009535D1 (de)
ES (1) ES2325210T3 (de)
MX (1) MXPA06002360A (de)
WO (1) WO2005026234A1 (de)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089940A1 (de) * 2005-02-25 2006-08-31 Basf Aktiengesellschaft Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung
WO2007134736A2 (de) * 2006-05-19 2007-11-29 Basf Coatings Ag Pulverlacke mit hochfunktionellen, hoch- oder hyperverzweigten polycarbonaten
WO2008009516A2 (de) * 2006-07-20 2008-01-24 Basf Se Wasserbasislacke mit hochfunktionellen, hoch- oder hyperverzweigten polycarbonaten
WO2008071801A1 (de) * 2006-12-15 2008-06-19 Basf Se Polymerdispersionen, die hochverzweigte polycarbonate enthalten
JP2008544007A (ja) * 2005-06-14 2008-12-04 ビーエーエスエフ ソシエタス・ヨーロピア ポリエステル層を有する多成分成形体
DE102008002704A1 (de) 2007-07-02 2009-01-08 Basf Se Verfahren zur Verbesserung der Haftung von Verbundstoffen, bestehend aus geschäumten Polyurethan und massiven Materialien
JP2009503135A (ja) * 2005-07-22 2009-01-29 ビーエーエスエフ ソシエタス・ヨーロピア ポリエステルエラストマーを有する流動性ポリエステル
JP2009537682A (ja) * 2006-05-23 2009-10-29 ビーエーエスエフ ソシエタス・ヨーロピア 顔料用分散剤としての超枝分かれしたポリカーボネートの使用
JP2009544782A (ja) * 2006-07-26 2009-12-17 ビーエーエスエフ ソシエタス・ヨーロピア 多官能性超分岐ポリカーボネート、並びにその製造及び使用
WO2010145993A2 (de) 2009-06-15 2010-12-23 Basf Se Mikrokapseln mit hochverzweigten polymeren als vernetzer
CN101228234B (zh) * 2005-07-22 2011-05-25 巴斯福股份公司 纤维和pet液体容器
WO2011064187A1 (de) 2009-11-26 2011-06-03 Basf Se Verwendung von hochverzweigten polycarbonaten in kosmetischen und dermatologischen formulierungen
WO2011089078A1 (de) 2010-01-20 2011-07-28 Basf Se Verfahren zur herstellung einer wässrigen polymerisatdispersion
WO2011101395A1 (de) 2010-02-18 2011-08-25 Basf Se Polymerdispersion, die ein hochverzweigtes polycarbonat mit ungesättigten fettsäuregruppen enthält
WO2011141266A1 (de) 2010-04-15 2011-11-17 Basf Se Verfahren zur herstellung von flammgeschützten polyurethan-schaumstoffen
WO2011144726A1 (de) 2010-05-21 2011-11-24 Basf Se Polymeres flammschutzmittel
EP2390275A1 (de) 2010-05-27 2011-11-30 Basf Se Ölaufnehmende Polyurethanschwämme mit guten mechanischen Eigenschaften
CN102304308A (zh) * 2011-04-27 2012-01-04 铜陵金泰化工实业有限责任公司 一种以碳酸二甲酯为溶剂的油墨及其制备方法
US8309646B2 (en) 2007-11-19 2012-11-13 Basf Se Use of highly-branched polymers for producing polymer dispersions with improved freeze/thaw stability
US8399554B2 (en) 2007-11-19 2013-03-19 Basf Se Use of highly branched polymers in polymer dispersions for gloss colours
US8530567B2 (en) 2010-02-18 2013-09-10 Basf Se Polymer dispersion which comprises a highly branched polycarbonate having unsaturated fatty acid groups
US8642670B2 (en) 2008-03-14 2014-02-04 Basf Se Coarse-cell polyurethane elastomers
WO2014044529A1 (en) 2012-09-20 2014-03-27 Basf Se Hyperbranched phosphoric acid esters
US8722796B2 (en) 2010-01-20 2014-05-13 Basf Se Process for preparing an aqueous polymer dispersion
WO2015027535A1 (zh) * 2013-08-30 2015-03-05 万华化学集团股份有限公司 一种连续两相界面光气法制备支化聚碳酸酯的方法
US9023908B2 (en) 2010-05-27 2015-05-05 Basf Se Oil-absorbent polyurethane sponges with good mechanical properties
WO2018065571A1 (de) 2016-10-07 2018-04-12 Basf Se Verfahren zur herstellung von wässrigen dispersionen
US10377914B2 (en) 2013-08-22 2019-08-13 Basf Se Method for producing emulsion polymerisates
WO2022018213A1 (en) 2020-07-23 2022-01-27 Basf Se Application of the ring-opening of uretdiones at low temperature and ambient atmosphere

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004051214A1 (de) * 2004-10-20 2006-05-04 Basf Ag Fließfähige Polyoxymethylene
DE102005033147A1 (de) * 2005-07-13 2007-01-25 Basf Ag Fließfähige Thermoplaste mit Halogenflammschutz
EP2102248A1 (de) * 2006-12-15 2009-09-23 Basf Se Herstellung von polymerdispersionen in gegenwart von organischen polymerteilchen
CN101220143B (zh) * 2007-12-07 2010-06-02 山东大学 一种具有热可逆凝胶聚醚碳酸酯的制备方法
JP5589266B2 (ja) * 2008-06-09 2014-09-17 宇部興産株式会社 ポリ(アルキレンカーボネート)化合物の製造方法
US20110123473A1 (en) * 2009-11-26 2011-05-26 Basf Se Use of highly-branched polycarbonates in cosmetic and dermatological formulations
WO2013017417A1 (de) 2011-07-29 2013-02-07 Basf Se Polymeres flammschutzmittel
EP2739664A1 (de) * 2011-08-05 2014-06-11 Basf Se Assoziative verdickungsmittel auf der basis von hyperverzweigten polymeren
US9701788B2 (en) * 2012-08-10 2017-07-11 Mitsubishi Gas Chemical Company, Inc. Method for producing branched aromatic polycarbonate resin
KR101491119B1 (ko) 2012-09-28 2015-02-10 부산대학교 산학협력단 폴리카보네이트의 제조방법
KR20140075516A (ko) * 2012-12-11 2014-06-19 제일모직주식회사 고분지형 폴리카보네이트 수지 및 그 제조방법
CN109415502B (zh) * 2016-07-08 2021-10-08 国立大学法人东京农工大学 脂肪族聚碳酸酯以及含有该聚碳酸酯的粘合剂树脂组合物
BR112019005292A2 (pt) 2016-09-21 2019-09-03 Nextcure Inc anticorpos para siglec-15 e métodos de uso dos mesmos.
KR101837674B1 (ko) * 2016-09-29 2018-03-12 롯데케미칼 주식회사 생분해성 고분자 수지 조성물 및 이의 성형품
US10053533B1 (en) 2017-04-13 2018-08-21 Presidium Usa, Inc. Oligomeric polyol compositions
CN107151316B (zh) * 2017-06-20 2019-04-19 西北工业大学 能发射明亮荧光的羰基封端的超支化聚碳酸酯及制备方法
CN115651149A (zh) * 2018-01-17 2023-01-31 Ube株式会社 高支化聚碳酸酯多元醇组合物
CN112955482A (zh) 2018-10-23 2021-06-11 美国主席团有限公司 多元醇组合物
US10954346B2 (en) 2018-12-27 2021-03-23 Industrial Technology Research Institute Resin and ink
CN112210334A (zh) * 2020-10-16 2021-01-12 初殿德 一种环保led封装胶及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2010777A1 (fr) * 1968-06-12 1970-02-20 Bayer Ag Polycarbonates aliphatiques ramifies
US4533729A (en) * 1983-11-14 1985-08-06 Eastman Kodak Company Process for the preparation of polycarbonate polyols
DE3418092A1 (de) * 1984-05-16 1985-11-21 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von cyclischen kohlensaeureestern

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305605A (en) * 1964-02-04 1967-02-21 Union Carbide Corp Compositions containing polycarbonate plasticizers
JPS53138446A (en) * 1977-05-10 1978-12-02 Adeka Argus Chem Co Ltd Resin composition
DE3717060A1 (de) * 1987-05-21 1988-12-01 Bayer Ag Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe
IT1227136B (it) 1988-10-14 1991-03-19 Enichem Sintesi Policarbonati copoliesteri dioli, procedimento per la loro produzione e loro impiego.
US5597887A (en) * 1994-10-20 1997-01-28 General Electric Company Branched polycarbonate preforms, blow moldable polycarbonate and method for making
KR100354801B1 (ko) * 1995-02-03 2003-02-17 이데미쓰세끼유가가꾸가부시끼가이샤 폴리카보네이트의제조방법
TW333638B (en) * 1996-04-30 1998-06-11 Phythm Watch Co Ltd Disk type music box and information disk therefor, and a mechanical clock equipped with such disk type music box
GB2324797A (en) 1997-05-02 1998-11-04 Courtaulds Coatings Hyperbranched polymers
DE19727709A1 (de) * 1997-06-30 1999-01-07 Bayer Ag Verfahren zur Herstellung von verzweigten Polycarbonaten
EP0896013A1 (de) * 1997-08-06 1999-02-10 Shimadzu Corporation Vernetztes Polycarbonatharz und Polymilchsäurezusammensetzung, die dieses Polycarbonatharz enthält
JPH1160717A (ja) * 1997-08-26 1999-03-05 Idemitsu Petrochem Co Ltd 分岐状ポリカーボネート樹脂及びその製造方法
DE69817969T2 (de) * 1997-10-20 2004-07-22 General Electric Co. Polyphenole als Verzweigungsmittel für Polycarbonate
US6100307A (en) * 1998-03-17 2000-08-08 Shell Oil Company Compositions of polycondensed branched polyester polymers and aromatic polycarbonates, and the closed cell polymer foams made therefrom
DE19900554A1 (de) 1999-01-09 2000-07-13 Bayer Ag Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen aus Dimethylcarbonat und aliphatischen Diolen
CA2321348A1 (en) 2000-09-27 2002-03-27 Blaise Magloire N'zemba Aromatic derivatives with hiv integrase inhibitory properties
SK5132003A3 (en) * 2000-10-31 2003-09-11 Basf Ag Use of hyperbranched polyurethanes for producing printing inks
WO2002062870A1 (fr) * 2001-02-06 2002-08-15 Mitsubishi Chemical Corporation Polycarbonate aromatique ramifie et procede de production de celui-ci
DE10130882A1 (de) * 2001-06-27 2003-01-16 Bayer Ag Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen
DE10138216A1 (de) * 2001-08-03 2003-02-20 Bayer Ag Aliphatische Polycarbonathomo- und -copolymere durch DMC-Katalyse
DE10147712A1 (de) 2001-09-27 2003-04-17 Basf Ag Verfahren zur Herstellung aliphatischer Polycarbonate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2010777A1 (fr) * 1968-06-12 1970-02-20 Bayer Ag Polycarbonates aliphatiques ramifies
US4533729A (en) * 1983-11-14 1985-08-06 Eastman Kodak Company Process for the preparation of polycarbonate polyols
DE3418092A1 (de) * 1984-05-16 1985-11-21 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von cyclischen kohlensaeureestern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BOLTON D H ET AL: "SYNTHESIS AND CHARACTERIZATION OF HYPERBRANCHED POLYCARBONATES", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY. EASTON, US, vol. 30, no. 7, 7 April 1997 (1997-04-07), pages 1890 - 1896, XP000684813, ISSN: 0024-9297 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649074B2 (en) 2005-02-25 2010-01-19 Basf Aktiengesellschaft High-functionality highly branched or hyperbranched polycarbonates and their preparation and use
WO2006089940A1 (de) * 2005-02-25 2006-08-31 Basf Aktiengesellschaft Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung
EP2204424A1 (de) * 2005-02-25 2010-07-07 Basf Se Hochfunktionelle, Hoch- oder Hyperverzweigte Polycarbonate sowie deren Herstellung und Verwendung
JP2008544007A (ja) * 2005-06-14 2008-12-04 ビーエーエスエフ ソシエタス・ヨーロピア ポリエステル層を有する多成分成形体
US8445107B2 (en) * 2005-06-14 2013-05-21 Basf Se Multicomponent molding with polyester layers
JP2009503135A (ja) * 2005-07-22 2009-01-29 ビーエーエスエフ ソシエタス・ヨーロピア ポリエステルエラストマーを有する流動性ポリエステル
CN101228234B (zh) * 2005-07-22 2011-05-25 巴斯福股份公司 纤维和pet液体容器
WO2007134736A3 (de) * 2006-05-19 2008-01-31 Basf Coatings Ag Pulverlacke mit hochfunktionellen, hoch- oder hyperverzweigten polycarbonaten
WO2007134736A2 (de) * 2006-05-19 2007-11-29 Basf Coatings Ag Pulverlacke mit hochfunktionellen, hoch- oder hyperverzweigten polycarbonaten
JP2009537682A (ja) * 2006-05-23 2009-10-29 ビーエーエスエフ ソシエタス・ヨーロピア 顔料用分散剤としての超枝分かれしたポリカーボネートの使用
JP2009543909A (ja) * 2006-07-20 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア 高官能性、高分岐または超分岐ポリカーボネートを含む水性塗料
WO2008009516A2 (de) * 2006-07-20 2008-01-24 Basf Se Wasserbasislacke mit hochfunktionellen, hoch- oder hyperverzweigten polycarbonaten
WO2008009516A3 (de) * 2006-07-20 2008-03-20 Basf Ag Wasserbasislacke mit hochfunktionellen, hoch- oder hyperverzweigten polycarbonaten
JP2009544782A (ja) * 2006-07-26 2009-12-17 ビーエーエスエフ ソシエタス・ヨーロピア 多官能性超分岐ポリカーボネート、並びにその製造及び使用
CN102585193A (zh) * 2006-07-26 2012-07-18 巴斯夫欧洲公司 高官能度的超支化聚碳酸酯及其制备方法和用途
US8314178B2 (en) 2006-12-15 2012-11-20 Basf Se Polymer dispersions containing highly branched polycarbonates
WO2008071801A1 (de) * 2006-12-15 2008-06-19 Basf Se Polymerdispersionen, die hochverzweigte polycarbonate enthalten
DE102008002704A1 (de) 2007-07-02 2009-01-08 Basf Se Verfahren zur Verbesserung der Haftung von Verbundstoffen, bestehend aus geschäumten Polyurethan und massiven Materialien
US8309646B2 (en) 2007-11-19 2012-11-13 Basf Se Use of highly-branched polymers for producing polymer dispersions with improved freeze/thaw stability
US8399554B2 (en) 2007-11-19 2013-03-19 Basf Se Use of highly branched polymers in polymer dispersions for gloss colours
US8642670B2 (en) 2008-03-14 2014-02-04 Basf Se Coarse-cell polyurethane elastomers
WO2010145993A2 (de) 2009-06-15 2010-12-23 Basf Se Mikrokapseln mit hochverzweigten polymeren als vernetzer
WO2011064187A1 (de) 2009-11-26 2011-06-03 Basf Se Verwendung von hochverzweigten polycarbonaten in kosmetischen und dermatologischen formulierungen
US8722796B2 (en) 2010-01-20 2014-05-13 Basf Se Process for preparing an aqueous polymer dispersion
WO2011089078A1 (de) 2010-01-20 2011-07-28 Basf Se Verfahren zur herstellung einer wässrigen polymerisatdispersion
US8530567B2 (en) 2010-02-18 2013-09-10 Basf Se Polymer dispersion which comprises a highly branched polycarbonate having unsaturated fatty acid groups
WO2011101395A1 (de) 2010-02-18 2011-08-25 Basf Se Polymerdispersion, die ein hochverzweigtes polycarbonat mit ungesättigten fettsäuregruppen enthält
WO2011141266A1 (de) 2010-04-15 2011-11-17 Basf Se Verfahren zur herstellung von flammgeschützten polyurethan-schaumstoffen
EP2395039A1 (de) 2010-05-21 2011-12-14 Basf Se Polymeres Flammschutzmittel
WO2011144726A1 (de) 2010-05-21 2011-11-24 Basf Se Polymeres flammschutzmittel
US9023908B2 (en) 2010-05-27 2015-05-05 Basf Se Oil-absorbent polyurethane sponges with good mechanical properties
WO2011147724A1 (de) 2010-05-27 2011-12-01 Basf Se Ölaufnehmende polyurethanschwämme mit guten mechanischen eigenschaften
EP2390275A1 (de) 2010-05-27 2011-11-30 Basf Se Ölaufnehmende Polyurethanschwämme mit guten mechanischen Eigenschaften
CN102304308A (zh) * 2011-04-27 2012-01-04 铜陵金泰化工实业有限责任公司 一种以碳酸二甲酯为溶剂的油墨及其制备方法
US10023690B2 (en) 2012-09-20 2018-07-17 Basf Se Hyperbranched phosphoric acid esters
WO2014044529A1 (en) 2012-09-20 2014-03-27 Basf Se Hyperbranched phosphoric acid esters
US10377914B2 (en) 2013-08-22 2019-08-13 Basf Se Method for producing emulsion polymerisates
WO2015027535A1 (zh) * 2013-08-30 2015-03-05 万华化学集团股份有限公司 一种连续两相界面光气法制备支化聚碳酸酯的方法
US9683078B2 (en) 2013-08-30 2017-06-20 Wanhua Chemical Group Co., Ltd. Method for preparing branched polycarbonate with continuous two-phase interface phosgene method
WO2018065571A1 (de) 2016-10-07 2018-04-12 Basf Se Verfahren zur herstellung von wässrigen dispersionen
US11427728B2 (en) 2016-10-07 2022-08-30 Basf Se Method for producing aqueous dispersions
WO2022018213A1 (en) 2020-07-23 2022-01-27 Basf Se Application of the ring-opening of uretdiones at low temperature and ambient atmosphere

Also Published As

Publication number Publication date
KR101178959B1 (ko) 2012-08-31
CN100381479C (zh) 2008-04-16
JP2007505178A (ja) 2007-03-08
KR20120081232A (ko) 2012-07-18
EP1664154B1 (de) 2009-05-27
ES2325210T3 (es) 2009-08-28
DE502004009535D1 (de) 2009-07-09
EP1664154A1 (de) 2006-06-07
CN1849358A (zh) 2006-10-18
BRPI0414243A (pt) 2006-11-07
JP4413226B2 (ja) 2010-02-10
KR101263138B1 (ko) 2013-05-15
US20070037957A1 (en) 2007-02-15
CA2536751A1 (en) 2005-03-24
MXPA06002360A (es) 2006-06-20
ATE432307T1 (de) 2009-06-15
KR20060133964A (ko) 2006-12-27
US7521521B2 (en) 2009-04-21

Similar Documents

Publication Publication Date Title
EP1664154B1 (de) Hochfunktionelle, hoch- oder hyperverzweigte polycarbonate sowie deren herstellung und verwendung
EP1856220B1 (de) Verwendung von hochfunktionellen, hoch- oder hyperverzweigten polycarbonaten
EP1851288B1 (de) Hochverzweigte polycarbonate als demulgatoren zum spalten von rohölemulsionen
EP2027214B1 (de) Verwendung von hyperverzweigten polycarbonaten als dispergiermittel für pigmente
JP2007505178A5 (de)
EP2297230A1 (de) Polyhydroxyfunktionelle polysiloxane zur erhöhung der oberflächenenergie von thermoplasten, verfahren zu ihrer herstellung und ihre verwendung
EP2245082A1 (de) Hochfunktionelle polyetherole sowie deren herstellung und verwendung
EP2205436B1 (de) Verfahren zur herstellung eines polycarbonat-schichtverbundes
EP1771513B1 (de) Kontinuierliches verfahren zur herstellung von polyalkylenarylaten mit hyperverzweigten polyestern und/oder polycarbonaten
DE2423191A1 (de) Schichtgefuege aus glas und/oder kunststoff
DE2712435A1 (de) Verfahren zur herstellung von kohlensaeurearylestern von ueber carbonat- gruppen-verlaengerten polyesterdiolen
DE2842273C3 (de) Phthalsäureanhydrid-, Isocyanatuitd epoxymodifizierte Esterdiolalkoxylate und deren Verwendung
EP3562648B1 (de) Lagenweises fertigungsverfahren für einen gegenstand mit unterschiedlichem lagenmaterial
EP1663941A1 (de) Zwischenprodukt bestehend aus einer mischung von organischen carbonaten und carbamaten und ein verfahren zu seiner herstellung
EP3555172B1 (de) Verfahren zur herstellung von (cyclo)aliphatischen polycarbonatpolyolen mit niedriger reaktivität
DE102005004857A1 (de) Fließfähiges PVC
EP0000510B1 (de) Carbonatgruppen enthaltende Polyester
EP3168248A1 (de) Härtungsverfahren für polyurethane
DE102023114630A1 (de) Umesterungskatalysatoren, herstellungsverfahren von polycarbonatdiolen, und polycarbonatdiole
DE2551324A1 (de) Polyhalogenierte aromatische verbindungen und polymerisate davon
DE102006021855A1 (de) Hyperverzweigter Polyester, Verfahren zu seiner Herstellung sowie seine Verwendung
DE102004043990A1 (de) Verfahren zur Herstellung von Kohlensäureestern
DE1169132B (de) Verfahren zur Herstellung von acyclischen linearen Polyacetalen
DE2045443B2 (de) Verfahren zur Herstellung von Polycarbonaten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025651.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004764825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/002360

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006525725

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007037957

Country of ref document: US

Ref document number: 1020067005126

Country of ref document: KR

Ref document number: 10571691

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1245/CHENP/2006

Country of ref document: IN

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004764825

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2536751

Country of ref document: CA

ENP Entry into the national phase

Ref document number: PI0414243

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 1020067005126

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10571691

Country of ref document: US