WO2005022142A1 - 生体分子検出素子及びそれを用いた核酸解析方法 - Google Patents

生体分子検出素子及びそれを用いた核酸解析方法 Download PDF

Info

Publication number
WO2005022142A1
WO2005022142A1 PCT/JP2004/012363 JP2004012363W WO2005022142A1 WO 2005022142 A1 WO2005022142 A1 WO 2005022142A1 JP 2004012363 W JP2004012363 W JP 2004012363W WO 2005022142 A1 WO2005022142 A1 WO 2005022142A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
biomolecule
detecting element
immobilized
electrode
Prior art date
Application number
PCT/JP2004/012363
Other languages
English (en)
French (fr)
Inventor
Yuji Miyahara
Toshiya Sakata
Masao Kamahori
Yoshiaki Yazawa
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to US10/563,475 priority Critical patent/US20060141474A1/en
Priority to EP04772319A priority patent/EP1669748A4/en
Publication of WO2005022142A1 publication Critical patent/WO2005022142A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00653Making arrays on substantially continuous surfaces the compounds being bound to electrodes embedded in or on the solid supports

Definitions

  • the present invention relates to a biotechnology, particularly a technology in the field of genetic testing, such as gene diagnosis, DNA sequence analysis, or gene polymorphism analysis, and is particularly suitable for analyzing a plurality of different nucleic acids in parallel with high precision.
  • the present invention relates to a biomolecule detecting element and a nucleic acid analysis method using the element.
  • Non-patent document 1 Nature Biotechnology, vol. 16, (1998) p27, p40
  • the apparatus system can be reduced in size and cost can be reduced as compared with the fluorescence detection method.
  • this method uses the oxidation-reduction reaction on a metal electrode as the basic principle of detection, the presence of an oxidizing substance or a reducing substance (for example, ascorbic acid) in a sample causes a current based on oxidation or reduction. Flow, which hinders gene detection and degrades detection accuracy.
  • an electrode reaction proceeds on the metal electrode with the current measurement. Since the electrode reaction is irreversible and a non-equilibrium reaction, electrode corrosion, gas generation, etc. occur, which degrades the stability of current measurement and degrades detection accuracy, especially when performing repeated measurements.
  • a probe made of a biologically-related substance such as nucleic acid is immobilized on a metal surface electrically connected to the gate of a field-effect transistor, and a complex is formed between the target substance and the metal surface.
  • the change in the surface charge density that occurs at a time is detected using the electric field effect.
  • the introduction of intercalators and the combination of charged particles such as ions and complexes make the surface potential change with a large signal / noise ratio. Can be detected.
  • a biomolecule detecting element includes an insulated gate field effect transistor having a gate electrode embedded in an insulating film, and a probe immobilization formed on the surface of the insulating film and having a biomolecular probe immobilized thereon. And a connection wiring for electrically connecting the gate electrode and the probe-immobilized electrode.
  • the region where the biomolecule probe is immobilized on the probe-immobilized electrode is located at a position away from the position directly above the gate electrode. is there.
  • the probe-immobilized electrode is provided from the position immediately above the gate electrode to the biomolecule probe-immobilized region along the surface of the insulating film, and the connection wiring is connected to the probe-immobilized electrode at a position directly above the gate electrode.
  • Structure Alternatively, a structure may be employed in which the probe-immobilized electrode is provided at a position distant from the position immediately above the gate electrode, and the connection wiring is provided in the insulating film along the film surface.
  • the biomolecular probe can be a nucleic acid, a polynucleotide or a synthetic oligonucleotide.
  • One end of the biomolecular probe is immobilized on the surface of the probe-immobilized electrode, and specifically binds to and reacts with a biological substance in the sample.
  • the detection sensitivity can also be increased by using a biomolecular probe as a single-stranded probe and inserting the intercalator into the double-stranded portion formed by the specific binding of the probe and the complementary strand.
  • the probe-immobilized electrode can be made of gold, platinum, palladium, titanium, chromium, anoremium, polysilicon, tantalum, molybdenum, or a combination of these materials.
  • a transmitting and receiving antenna may be formed in the insulating film.
  • the biomolecule detecting element of the present invention also includes a plurality of insulated gate field-effect transistors each having a gate electrode embedded in a common insulating film, and a biomolecule probe formed on the surface of the insulating film, to which the biomolecule probe is fixed.
  • the region where the biomolecule probe is immobilized on the electrode is located away from the position immediately above the gate electrode.
  • Common Absolute A transmitting / receiving antenna may be formed in the rim.
  • the power supply circuit be configured to convert the electromagnetic wave received by the antenna into electric power and supply the electric power to each unit.
  • the nucleic acid analysis method using the biomolecule detecting element of the present invention comprises a step of immobilizing a single-stranded nucleic acid probe as a biomolecule probe on a probe-immobilized electrode, and a method of preparing a sample solution containing at least one kind of nucleic acid.
  • the biomolecule detecting element of the present invention does not require an expensive laser or a complicated optical detection system. Also, unlike the current detection (amperometric) method, since the surface potential in an equilibrium state is detected, the instability of the signal value due to corrosion of the substrate, generation of gas, disturbance of the Z oxide reducing substance, etc. is a problem. Instead, highly accurate biological substance detection with excellent stability is possible.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a biomolecule detection element (transistor for biomolecule detection) according to the present invention.
  • a gate insulating film 2, a source 3, and a drain 4 are formed on the surface of a silicon substrate 1, and a gate electrode 5 is provided on the surface of the gate insulating film between the source and the drain to manufacture an insulated gate field effect transistor.
  • An insulating film is further formed on the surface of the gate electrode 5 so that the gate electrode 5 is carried in the insulating film 2.
  • a through hole is formed in the insulating film 2, an extraction electrode 6 is formed with a conductive material, and an electrical contact is formed with the gate electrode 5.
  • a floating electrode 7 is formed on the surface of the good insulating film, and an electrical contact is formed with the extraction electrode 6.
  • the DNA probe 8 is immobilized on the surface of the floating electrode 7.
  • the gene transistor thus produced is used by immersing it in the sample solution 10 together with the reference electrode 9.
  • the gate insulating film is made of silicon oxide (SiO 2), silicon nitride (SiN), aluminum oxide (A1
  • tantalum oxide (TaO), etc. alone or in combination.
  • the gate electrode 5 As the material of the gate electrode 5, polysilicon is desired, and the source and drain are formed by ion implantation through a polysilicon gate, which is compatible with the so-called self-alignment process. Since the extraction electrode 6 is used as a wiring, a material having low resistance and good workability such as etching is preferable, and polysilicon, aluminum, molybdenum, or the like can be used as the material. Since the floating electrode 7 is in direct contact with the sample solution, it exhibits a high chemical stability and a stable potential, and a material having a high affinity for the biomaterial is desired for immobilizing the biomaterial. Noble metals such as silver, silver and nodium can be used. By using a floating electrode pattern forming method such as a lift-off method, the extraction electrode and the floating electrode can be formed of the same material such as gold.
  • the place where the DNA probe 8 is immobilized does not need to be limited to the channel between the source and drain of the transistor, and as shown in FIG.
  • the extraction electrode 6 By extending the extraction electrode 6, it can be formed anywhere on the chip. This allows, for example, DNA probes that come into contact with the sample solution.
  • the active area and the transistor area where the electronic circuit is formed can be separated and laid out on the chip, and highly reliable measurement can be performed.
  • a chip for biomolecule detection needs to separate and immobilize different biomolecules, so a chip that is about the size of a slide glass (26 mm x 76 mm) larger than a normal semiconductor chip has been developed.
  • the biomolecule detection transistor of the present invention is preferably designed to be as small as about 5 mm square in order to reduce the cost, but it can also handle chips as large as a slide glass.
  • the DNA probe (biomolecular probe) 8 is a fragment of an oligonucleotide or cDNA, and is usually composed of 300 or less bases. When an oligonucleotide is used, it is desirable that the fragment be a nucleic acid fragment having a base length of 80 or less.
  • one end of the DNA probe is chemically modified with an amino group (NH group), a thiol group (SH group), biotin, or the like. Chemically modified with an amino group
  • the surface of the gate electrode is chemically modified with aminopropyl ethoxysilane, polylysine, etc. to introduce an amino group into the gate surface, and reacted with daltaraldehyde diphenylene diisocyanate (PDC). Immobilize a DNA probe chemically modified with a group on the gate surface.
  • PDC daltaraldehyde diphenylene diisocyanate
  • streptavidin is introduced to the surface of the gate electrode, and the DNA probe is immobilized on the gate surface using the affinity of biotin and streptavidin.
  • a solution containing a DNA probe is dropped or spotted only on the surface of the floating electrode to immobilize the DNA probe.
  • a reference electrode 9 serving as a reference for potential measurement is provided.
  • the reference electrode an electrode obtained by immersing a silver electrode or a silver electrode in an internal solution having a predetermined composition and concentration is usually used.
  • a predetermined voltage can be applied to the reference electrode 9 in order to adjust the operating point by changing the electrical characteristics of the biomolecule detecting transistor.
  • a large number of genes including a target gene to be measured are present in a sample, and When a DNA probe having a base sequence complementary to the target gene is immobilized on the gate of the output transistor, the target gene and the DNA probe hybridize under appropriate reaction conditions, and the target gene is hybridized. And the DNA probe form a complex. Under appropriate conditions of the pH of the buffer solution used for the reaction, the DNA is negatively charged. As a result, the charge density changes near the gate of the FET due to the formation of a complex by hybridization, and the surface potential of the gate changes. This change has the same effect as changing the gate voltage of the FET, and changes the conductivity of the channel. Therefore, it is possible to detect the formation of a complex, that is, the presence of a target gene, as a change in drain current flowing between the source 3 and the drain 4.
  • the procedure of gene analysis using the biomolecule detection transistor of this embodiment is, for example, as follows.
  • the transistor for detecting a biomolecule of the present invention and 0.5 ml of a buffer solution are put into a reaction vessel, and the signal of the transistor is measured. Thereafter, gene analysis is performed according to the following steps (a) to (e).
  • a sample solution containing at least one type of DNA is introduced into the above-mentioned reaction vessel, and hybridization is performed at a predetermined temperature with a single-stranded DNA probe on a conductive electrode.
  • the buffer is introduced into the reaction vessel, and the output value of the insulated gate field effect transistor is measured.
  • steps (b) and (d) can be skipped.
  • FIG. 2 is a schematic diagram showing a gene detection system using the transistor for detecting biomolecules shown in the first embodiment.
  • This system uses a reference transistor 12 in addition to the biomolecule detection transistor 11 shown in FIG. 1, and performs differential measurement using two transistors.
  • a DNA probe 8 having a base sequence complementary to a target gene in a sample is immobilized on the gate surface of the biomolecule detection transistor.
  • a DNA probe 13 having a base sequence different from the complementary base sequence of the target gene is immobilized on the gate surface of the reference transistor.
  • a reference electrode 9 serving as a reference for potential measurement is provided. The surface potential of each of the biomolecule detection transistor and the reference transistor is measured by the drive circuit 14, and the measurement signal is input to the signal processing circuit 16 via the differential measurement circuit 15.
  • biomolecule detection transistor and the reference transistor have the same electrical characteristics, it is desirable to use a pair of transistors integrated on the same substrate.
  • a reference transistor can be used in common, and differential measurement between different biomolecule detection transistors and a common reference transistor is performed.
  • FIG. 3 is a schematic cross-sectional view showing another example of a measurement system using the transistor for detecting biomolecules shown in FIG.
  • the first biomolecule detection transistor 17 is a biomolecule detection transistor for detecting the first target gene
  • the second transistor 18 is the second A transistor for detecting a biomolecule for detecting a gene
  • the third transistor 19 is used as a reference transistor.
  • DNA probes having base sequences complementary to the first and second genes are immobilized on the gate electrodes of the first and second biomolecule detection transistors, respectively.
  • On the surface of the gate electrode of the reference FET a DNA probe having a base sequence different from the base sequence complementary to the first and second genes is immobilized.
  • FIG. 1 is a schematic cross-sectional view showing another example of a measurement system using the transistor for detecting biomolecules shown in FIG.
  • three FETs are integrated, the first biomolecule detection transistor 17 is a biomolecule detection transistor for detecting the first target gene, and the second transistor 18 is the second A transistor for detecting a bio
  • FIG. 3 shows a state in which a sample solution containing only the first gene is introduced into the integrated transistor, hybridized with the target gene, and then subjected to an intercalator. Is shown.
  • the first gene hybridizes only with the DNA probe of the first biomolecule detection transistor 17 to form a double strand.
  • Intercalator 20 reacts and binds only to double-stranded DNA and does not bind to single-stranded DNA. Since the intercalator has an electric charge, only the surface charge density of the first biomolecule detection transistor 17 changes and the output signal of the transistor changes, and the second biomolecule detection transistor 18 changes. Also, since the surface charge density of the reference transistor 19 does not change, the output signal does not change.
  • the differential measurement between the first biomolecule detection transistor 17 and the reference transistor 19 and the differential measurement between the second biomolecule detection transistor 18 and the reference transistor 19 only the former output signal changes. Then, the first target gene is detected.
  • the intercalator ethidium bromide, Hoechst 33258, pico green and the like can be used.
  • alcohol dehydroginase-related genes have single nucleotide polymorphisms (SNPs), and the first and second 17 nucleotide bases having 8 bases before and after the single nucleotide polymorphism site DNA probes were synthesized.
  • SNPs single nucleotide polymorphisms
  • the base sequence is shown below.
  • First DNA probe 5'-CATACACTAAAGTGAAA-3 '(SEQ ID NO: 1)
  • Second DNA probe 5'-CATACACTGAAGTGAAA-3' (SEQ ID NO: 2)
  • the ninth site from the 5 'end is the SNP site, and the base at that site is A for the first DNA probe and G for the second probe.
  • the first and second DNA probes were immobilized on floating electrodes connected to the gates of the first and second transistors, respectively.
  • the 5 'end of the DNA probe was modified with a thiol group.
  • a gold floating electrode was used for the floating electrode connected to the gate of the FET of this example, and the DNA probe was immobilized on the surface of the floating electrode.
  • a 17-mer DNA probe composed entirely of A was synthesized and fixed as a DNA probe having a different sequence from the first and second DNA probes. It has become. Connected to the gate of the reference transistor It is not necessary to immobilize the DNA probe on the floating electrode.
  • the sample is obtained by extracting a human genome from leukocytes in blood, amplifying a 100-base length region including the above SNP site, and introducing it into first and second biomolecule detection transistors and a reference transistor.
  • the hybridization was performed at 45 ° C for 8 hours. After hybridization, unreacted sample was removed by washing with a buffer, and an intercalator was introduced. In the measurement, first, a buffer is introduced into the first and second biomolecule detection transistors and the reference transistor, and the output voltage of each transistor, the differential between the first biomolecule detection transistor and the reference transistor are measured. The output and the differential output of the second biomolecule detection transistor and the reference transistor were measured.
  • the differential outputs of the first biological molecule detecting transistor and the reference transistor after the introduction of the sample solution and after the introduction of the intercalator are each 15 ⁇ OmV and 1 2. OmV. Since DNA is negatively charged in solution, the output of the n-channel FET shifts in the positive direction. On the other hand, since the intercalator is positively charged in the solution, the output of the FET shifts in the negative direction. On the other hand, the differential outputs of the second biomolecule detection transistor and the reference transistor were 1.5 mV and 0.5 mV, respectively, after the introduction of the sample solution and after the introduction of the intercalator, indicating a significant difference.
  • the differential outputs of the second biomolecule detection transistor and the reference transistor were 1.5 mV and 0.5 mV, respectively, after the introduction of the sample solution and after the introduction of the intercalator, indicating a significant difference.
  • the intercalator reacts only with double-stranded DNA and has an opposite charge to the DNA, so it does not respond to single-stranded DNA nonspecifically adsorbed on the floating electrode, and nonspecific adsorption of single-stranded DNA Can be clearly distinguished from signals based on double-stranded DNA due to hybridization.
  • the first biomolecule detection transistor and the reference transistor after the introduction of the sample solution and after the introduction of the intercalator, respectively.
  • the differential outputs are 6.5 mV and 14.8 mV
  • the differential outputs of the second biomolecule detection transistor and the reference transistor are 5.5 mV and 14.5 mV, respectively.
  • the SNP analysis according to the present invention was able to identify three types of samples: a homozygous for Normal / Normal, a homozygous for Mutant / Mutant, and a heterozygous for Normal / Mutant.
  • a homozygous for Normal / Normal a homozygous for Normal / Normal
  • a homozygous for Mutant / Mutant a homozygous for Mutant / Mutant
  • a heterozygous for Normal / Mutant In the case of using an intercalator, it is not necessary to label the sample DNA with a chemical compound.
  • FIG. 4 and FIG. 5 are schematic views showing other configuration examples of the biomolecule detection transistor according to the present invention.
  • This biomolecule detection transistor corresponds to a transistor in which a transmission / reception antenna 21 is incorporated in the gate insulating film 2 of the biomolecule detection transistor shown in FIG.
  • the antenna 21 can be formed at the same time when the gate electrode 5 is formed.
  • the antenna is connected to the element 22 of the transmitting / receiving circuit embedded in the on-chip.
  • an electrode having a structure in which Pt is laminated on Ti as a material of the reference electrode 9 is used, and is formed directly on the substrate.
  • the extraction electrode 6 is extended by being carried in the insulating film 2, and the floating electrode 7 is formed at an end thereof.
  • FIG. 5 shows a plan view of this embodiment.
  • the transistor source 3, drain 4, DNA probes 8 and 13, and antenna 21 can be separated and laid out on the chip, and the exposed surface of the chip is the floating electrode 7, DNA probe 8 13 and only the insulating film 2, and the transistor portion and the antenna portion are protected by the insulating film 2.
  • the signal measured by the biomolecule detection transistor can be transmitted to an external receiver by the antenna to be processed. Since the above antenna has a structure that is supported by the insulating film 2, it is highly reliable because it does not directly come into contact with the sample solution and does not change its characteristics due to corrosion by the solution or adsorption of proteins. Suitable for certain.
  • FIG. 6 shows an example in which the biomolecule detection transistor according to the present embodiment and a chip having a wireless communication function are integrated.
  • a source 3 and a drain 4 of a biomolecule detection transistor are formed on a 1 mm square silicon substrate 1, and a floating electrode 7 and a gate are connected by an extraction electrode 6. Immobilize DNA probe 8 on the floating electrode.
  • An antenna 21, an arithmetic circuit 23, a storage circuit 24, a receiving circuit 25, a transmitting circuit 26, and a power supply circuit 27 are integrated on the silicon substrate. If a target DNA having a complementary sequence is present in the sample, it hybridizes with the DNA probe on the floating electrode 7 to form a double strand. The formation of this double strand is detected by a field effect transistor.
  • the storage circuit 24 stores identification information for distinguishing individual chip substrates, DNA probe sequence information, protein information to be encoded, etc., and stores the above information together with information on the result of the hybridization reaction, as well as an antenna and transmission circuit.
  • Electromagnetic waves sent from the outside of the chip are received by an antenna, converted into power usable by the chip by a receiving circuit and a power supply circuit, and supplied to each element such as a field effect transistor, a transmitting circuit, and a memory circuit for operation.
  • a biomolecule detecting transistor 29 of the present invention and 0.5 ml of a buffer solution are put into a reaction vessel 28, and a signal of the transistor is measured, and the signal is transmitted to an external receiver. Thereafter, gene analysis is performed according to the following steps (a) to (f).
  • a sample solution containing at least one type of DNA is introduced into the above-mentioned reaction vessel, and hybridization is performed at a predetermined temperature with a single-stranded DNA probe on a conductive electrode.
  • the buffer is introduced into the reaction vessel, and the output value of the insulated gate field effect transistor is measured.
  • (f) Transmit the output value to the receiver using the antenna.
  • the difference between the output values of the biomolecule detection transistor obtained by the above two measurements is the signal of the double-stranded DNA formed by hybridization.
  • the signal measurement of the biomolecule detecting transistor is performed between the external transmitting / receiving device 30 and an electromagnetic wave of, for example, 13.56 MHz.
  • the type, type, sequence, etc. of the DNA present in the sample can be analyzed.
  • this chip transmits and receives information and supplies power by wireless communication, wiring between the chip and external circuits is not required, and the chip can be directly inserted into the sample for measurement, making simple measurement possible.
  • a system can be constructed. Note that, depending on the experimental conditions, it is possible to omit the washing steps (b) and (d) and complete all the measurements with the biological molecule detecting transistor immersed in the sample solution.
  • FIG. 1 is a diagram illustrating a biomolecule detection transistor using a field-effect transistor and a floating gate electrode of the present invention.
  • FIG. 2 is a diagram illustrating a gene detection circuit using a transistor for detecting biomolecules according to the present invention.
  • FIG. 3 is a diagram illustrating a system in which a biomolecule detection transistor and an intercalator of the present invention are combined.
  • FIG. 4 is a diagram illustrating integration of a biomolecule detection transistor and an antenna according to the present invention.
  • FIG. 5 is a diagram illustrating a planar arrangement of a biomolecule detection transistor and an antenna according to the present invention.
  • FIG. 6 is a diagram illustrating a system in which a biomolecule detection transistor of the present invention and a wireless communication chip are integrated.
  • FIG. 7 is a diagram illustrating a gene analysis system using the biomolecule detection transistor of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biophysics (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

電界効果トランジスタのゲート電極5に接続されたフローティング電極7の表面にDNAプローブ8を固定化し、ターゲット遺伝子とフローティング電極の表面でハイブリダイゼーションを行わせ、その際に生ずる表面電荷密度の変化を電界効果を利用して検出することにより、低ランニングコスト・低価格システムでかつ高精度の測定が可能なDNAチップ/DNAマイクロアレイシステムを提供する。

Description

明 細 書
生体分子検出素子及びそれを用いた核酸解析方法
技術分野
[0001] 本発明は、遺伝子診断、 DNA配列解析、あるいは遺伝子多型解析など、バイオテ クノロジー、特に遺伝子検査分野の技術に関し、特に複数の異なる核酸を高精度に 並列的に解析するのに適した生体分子検出素子、及びその素子を用いた核酸解析 方法に関する。
背景技術
[0002] ヒトゲノムをはじめ各種生物のゲノム塩基配列の解読が急速に進展し、膨大な塩基 配列情報が蓄積されつつある。今後は生体中における遺伝子の機能を明らかにする ことにより、各種疾病の診断、医薬品の開発、農作物の品種改良など広範囲な分野 で遺伝子関連技術の開発が飛躍的に進むものと思われる。これらの新規分野発展 の基礎となるのが、塩基配列情報にカ卩えて遺伝子の発現及び機能情報である。遺伝 子の機能及び発現解析を大規模に行い、遺伝子検査へ発展させる技術として、 DN Aチップあるいは DNAマイクロアレイ力 SAflfymetrix社、 Nanogen社などで開発されてい る。しかし、現状の DNAチップ/ DNAマイクロアレイの多くは蛍光検出を基本原理 としているので、レーザや複雑な光学系が必要となり、システムが大型化し高価であ る。
[0003] これらの問題を解決する方法として、酸化'還元標識と組み合わせた電流検出方式 の DNAチップがレ、くつか報告されている。 Clinical Micro Sensors社では、分子ワイヤ 一と称する分子の一端を金属電極上に固定化して他端に DNAプローブを結合させ 、ターゲット遺伝子とのハイブリダィゼーシヨンに基づく酸化 ·還元標識と金属電極の 電子の授受を電流変化として検出し、ターゲット遺伝子を検出する方式を開発してい る (Nature Biotechnology, vol. 16, (1998) p27, p40)o
[0004] 非特許文献 1 : Nature Biotechnology, vol. 16, (1998) p27, p40
発明の開示
発明が解決しょうとする課題 [0005] 現状の DNAチップ/ DNAマイクロアレイの多くは蛍光検出を基本原理としている ので、レーザや複雑な光学系が必要となり、システムが大型化し高価である。また、 現在開発されている全ての DNAチップ/ DNAマイクロアレイは、原則として 1回の みの使用で廃棄される。洗浄して繰り返し使用できたとしても、せいぜい 2回から 3回 の使用が限度である。このため多くの試料を用いた解析や、検体の数が多い遺伝子 診断などの分野ではランニングコストが大きな問題となる。特に医療の分野では医療 費抑制の観点力もも、高額な検査が広く普及することは困難である。一方で、医療診 断の分野、すなわち遺伝子診断の分野では高い精度、定量性が求められる。したが つて、コスト低減と高精度化の両方を満足させる技術が求められる。
[0006] 上述の電気化学検出法は、高価なレーザや複雑な光学系を必要としないため、蛍 光検出法に比べて装置システムが小型化され、低価格化が可能と考えられる。しかし ながら、この方法は、金属電極上での酸化'還元反応を検出の基本原理としているた め、試料中に酸化物質あるいは還元物質 (例えばァスコルビン酸)が存在すると、酸 化又は還元に基づく電流が流れ、遺伝子検出の妨害となつて検出精度が劣化する。 また、電流計測に伴い、金属電極上で電極反応が進行する。電極反応は不可逆で 非平衡反応であるため、電極の腐食、ガスの生成などが生じ、電流測定の安定性が 損なわれ特に繰返し測定する場合に検出精度が劣化する。
[0007] 本発明は、低ランニングコスト '低価格システムでかつ高精度の測定が可能な DNA チップ/ DNAマイクロアレイシステムを提供することを目的とする。
課題を解決するための手段
[0008] 本発明では、電界効果トランジスタのゲートと電気的に接続された金属表面に核酸 などの生体関連物質から成るプローブを固定化し、 目的物質とその金属表面で複合 体を形成させ、その際に生ずる表面電荷密度の変化を、電界効果を利用して検出す る。表面電荷密度の変化を大きくするために、生体物質自身が持っている電荷に加 えて、インターカレータの導入やイオンなどの荷電粒子と複合体を組み合わせること により、大きな信号/雑音比で表面電位変化の検出が可能となる。
[0009] また、近年、ワイヤレス通信技術が進歩し、バーコードに相当するタグを集積化した ワイヤレス通信チップが開発されている。このワイヤレス通信チップは、個々のチップ を識別することができるため、流通管理用チップとしての使用が検討されている。この タグ付きワイヤレス通信チップを DNAチップとして用いる場合、ワイヤレス通信で電 力を供給するため、低消費電力である必要がある。電圧計測方式は、電流計測方式 より電力の消費が小さいため、ワイヤレス通信方式 DNAチップに適している。
[0010] 本発明による生体分子検出素子は、絶縁膜中に埋設されたゲート電極を有する絶 縁ゲート電界効果トランジスタと、絶縁膜の表面に形成され、生体分子プローブが固 定化されたプローブ固定化電極と、ゲート電極とプローブ固定化電極とを電気的に 接続する接続配線とを備え、プローブ固定化電極に生体分子プローブが固定化され た領域は、ゲート電極の直上位置から離れた位置にある。
[0011] プローブ固定化電極はゲート電極の直上位置から絶縁膜の膜面に沿って生体分 子プローブ固定化領域まで設けられ、接続配線はゲート電極の直上位置でプローブ 固定化電極と接続されている構造とすることができる。あるいは、プローブ固定化電 極はゲート電極の直上位置から離れた位置に設けられ、接続配線は絶縁膜中に膜 面に沿って設けられている構造とすることもできる。
[0012] 生体分子プローブは核酸、ポリヌクレオチド又は合成オリゴヌクレオチドとすることが できる。生体分子プローブは、一端がプローブ固定化電極の表面に固定化され、試 料中の生体関連物質と特異的に結合'反応する。生体分子プローブを一本鎖プロ一 ブとし、そのプローブと相補鎖との特異結合を、特異結合によって形成された二本鎖 部分にインターカレータを入り込ませることによって検出感度を上げることもできる。プ ローブ固定化電極は金、白金、パラジウム、チタン、クロム、ァノレミニゥム、ポリシリコン 、タンタル、モリブデン、又はこれらの材料を複数組み合わせた材料で作ることができ る。絶縁膜中に送受信用のアンテナを形成してもよい。
[0013] 本発明の生体分子検出素子は、また、共通の絶縁膜中に埋設されたゲート電極を それぞれ有する複数の絶縁ゲート電界効果トランジスタと、絶縁膜の表面に形成され 、生体分子プローブが固定化された複数のプローブ固定化電極と、複数の絶縁グー ト電界効果トランジスタの各ゲート電極と複数のプローブ固定化電極とをそれぞれ電 気的に接続する複数の接続配線とを備え、プローブ固定化電極に生体分子プロ一 ブが固定化された領域は、ゲート電極の直上位置から離れた位置にある。共通の絶 縁膜中に送受信用のアンテナを形成してもよい。また、演算回路、記憶回路、受信回 路、送信回路、電源回路を設けるのが好ましい。その場合、電源回路は、アンテナで 受信した電磁波を電力に変換し、各部に供給する構成をとるのが好ましい。これらは 、いずれも既存の技術で作製可能である。
[0014] 本発明の生体分子検出素子を用いた核酸解析方法は、プローブ固定化電極に生 体分子プローブとして一本鎖核酸プローブを固定化するステップと、少なくとも 1種類 の核酸を含む試料溶液を生体分子検出素子上に導入して、一本鎖核酸プローブと ハイブリダィゼーシヨンを行わせるステップと、洗浄液を素子上に導入して、未反応の 核酸を素子上から除去するステップと、インターカレータ溶液を素子上に導入して、 二本鎖となった核酸と反応させるステップと、洗浄液を素子上に導入して、未反応の インターカレータを素子上から除去するステップと、緩衝液を素子上に導入して、絶 縁ゲート電界効果トランジスタの出力値を測定するステップとを含む。
[0015] 本発明の生体分子検出素子を用いた核酸解析方法は、また、反応容器に、プロ一 ブ固定化電極に生体分子プローブとしてそれぞれ異なる種類の一本鎖核酸プロ一 ブを固定化した複数の生体分子検出素子と緩衝液を入れ、各素子からの信号を外 部受信機で受信するステップと、少なくとも 1種類の核酸を含む試料溶液を反応容器 に導入して、一本鎖核酸プローブとハイブリダィゼーシヨンを行わせるステップと、ィ ンターカレータ溶液を反応容器に導入して、二本鎖となった核酸と反応させるステツ プと、各生体分子検出素子からの信号を外部受信機で受信するステップとを含む。 発明の効果
[0016] 本発明の生体分子検出素子は、高価なレーザや複雑な光学検出系を必要としな レ、。また、電流検出(アンぺロメトリック)方式と異なり、平衡状態での表面電位を検出 するので、基板の腐食やガスの発生、酸化 Z還元物質の妨害などによる信号値の不 安定性は問題とならず、安定性に優れた高精度の生体物質検出が可能となる。 発明を実施するための最良の形態
[0017] 以下、図面を参照して本発明の実施の形態を説明する。以下では、生体分子の例 として DNAを用いて説明する。
[0018] 〔第 1の実施例〕 図 1は、本発明による生体分子検出素子 (生体分子検出用トランジスタ)の構成例 を示す断面模式図である。
[0019] シリコン基板 1の表面にゲート絶縁膜 2、ソース 3、及びドレイン 4を形成し、ソース、 ドレイン間のゲート絶縁膜表面にゲート電極 5を設けて絶縁ゲート電界効果トランジス タを製作する。ゲート電極 5の表面にさらに絶縁膜を形成し、上記ゲート電極 5が絶 縁膜 2の中に坦め込まれた構造とする。絶縁膜 2にスルーホールを形成し、導電性材 料で取り出し電極 6を形成し、上記ゲート電極 5と電気的接触を形成する。さらにグー ト絶縁膜表面にフローティング電極 7を形成し、上記取り出し電極 6と電気的接触を 形成する。フローティング電極 7の表面に DNAプローブ 8を固定化する。こうして製 作された遺伝子トランジスタは、参照電極 9とともに試料溶液 10に浸漬して使用され る。
[0020] ゲート絶縁膜は、酸化シリコン(SiO )、窒化シリコン (SiN)、酸化アルミニウム (A1
2 2
O )、酸化タンタル (Ta O )などの材料を単独または組み合わせて用レ、、通常はトラ
3 2 5
ンジスタ動作を良好に保っため、酸化シリコン(SiO )の上に窒化シリコン(SiN)、酸
2
化アルミニウム (Al O )あるいは酸化タンタル (Ta〇)を積層した二層構造とする。ゲ
2 3 2 5
ート電極 5の材料としてはポリシリコンが望ましぐポリシリコンゲートを通してイオン注 入によるソース、ドレインを形成する、いわゆるセルファラインプロセスとの整合性がよ レ、。取り出し電極 6は、配線として用いるため、低抵抗でエッチングなど加工性の良い 材料が好ましぐその材料としてはポリシリコン、アルミニウム、モリブデンなどを用いる こと力 Sできる。フローティング電極 7は、試料溶液に直接接触するので、化学的安定 性が高ぐ安定な電位を示し、かつ生体材料を固定化するため生体材料との親和性 の高い材料が望ましぐ金、白金、銀、ノ ジウムなどの貴金属を用いることができる。 リフトオフ法などフローティング電極のパターン形成方法を用いることにより、取り出し 電極とフローティング電極を、例えば金のような同じ材料で形成することもできる。
[0021] 本実施例の生体分子検出用トランジスタによると、 DNAプローブ 8を固定化する場 所をトランジスタのソース、ドレイン間のチャネル上に限る必要がなくなり、図 1に示す ようにフローティング電極 7または取り出し電極 6を延長することにより、チップ上の任 意の場所に形成することができる。これにより、例えば試料溶液と接触する DNAプロ ーブ形成領域と、電子回路が形成されるトランジスタ領域を分離してチップ上にレイ アウトすることができ、信頼性の高い測定ができる。通常、生体分子検出用のチップ は異なる生体分子を分離して固定化する必要があるため通常の半導体チップより大 きぐスライドガラス程度の大きさ(26mm X 76mm)のチップも開発されている。本発 明の生体分子検出用トランジスタは低価格化を図るために 5mm角程度と小さく設計 するほうが好ましいが、スライドガラス程度の大きさのチップにも対応することができる
[0022] DNAプローブ(生体分子プローブ) 8は、オリゴヌクレオチドまたは cDNAの断片を 用レ、、通常 300個以下の塩基から構成されている。オリゴヌクレオチドを用いる場合 は、 80個以下の塩基長の核酸断片であることが望ましレ、。 DNAプローブ 8をフロー ティングゲート電極 7の表面に固定化するために、 DNAプローブの一端をァミノ基( NH基)、チオール基(SH基)、ピオチンなどで化学修飾する。ァミノ基で化学修飾し
2
た DNAプローブを用いる場合は、ゲート電極の表面をァミノプロピルエトキシシラン、 ポリリジンなどで化学修飾してゲート表面にアミノ基を導入し、ダルタルアルデヒドゃフ ェニレン ジイソシァネート(PDC)と反応させてァミノ基で化学修飾した DNAプロ一 ブをゲート表面に固定化する。チオール基で化学修飾した DNAプローブをゲート電 極表面に固定化する場合は、ゲート電極に金を用い、チオール基と金との親和性を 利用して DNAプローブを固定化する。また、ピオチンで化学修飾した DNAプローブ を固定化する場合には、ゲート電極表面にストレプトアビジンを導入し、ピオチンとス トレプトアビジンの親和性を利用して、 DNAプローブをゲート表面に固定化する。実 際の固定化に際しては、 DNAプローブを含む溶液をフローティング電極表面にのみ 滴下またはスポットし、 DNAプローブを固定化する。
[0023] 生体分子検出用トランジスタのゲート電極表面で起こる化学反応に基づく電位変化 を安定に測定するために、電位測定の基準となる参照電極 9を設置する。参照電極 は通常、所定組成 ·濃度の内部溶液に銀 Z塩ィヒ銀電極又はかんこう電極を浸漬した 電極が用レ、られる。生体分子検出用トランジスタの電気的特性を変化させて動作点 を調整するために、参照電極 9に所定の電圧を印加することができる。
[0024] 試料中に測定すべきターゲット遺伝子を含む多数の遺伝子が存在し、生体分子検 出用トランジスタのゲート上にターゲット遺伝子と相補的塩基配列を有する DNAプロ ーブが固定化されていると、適切な反応条件のもとでターゲット遺伝子と DNAプロ一 ブがハイブリダィズして、ターゲット遺伝子と DNAプローブが複合体を形成する。反 応に用いるバッファ溶液の pHの適切な条件下では、 DNAは負に帯電している。した 力つて、ハイブリダィズによる複合体形成により FETのゲート近傍で電荷密度が変化 し、ゲートの表面電位が変化する。この変化が FETのゲート電圧変化と同等の作用と なり、チャネルの導電率を変化させる。したがって、ソース 3及びドレイン 4の間を流れ るドレイン電流変化として複合体の形成、すなわちターゲット遺伝子の存在を検出す ること力 Sできる。
[0025] 本実施例の生体分子検出用トランジスタを用いた遺伝子解析の手順は、例えば次 のようになる。
[0026] まず反応容器に本発明の生体分子検出用トランジスタ、及び 0. 5mlの緩衝液を入 れ、トランジスタの信号を計測する。その後、以下の工程(a)—(e)に従って遺伝子解 析を行う。
(a)少なくとも 1種類の DNAを含む試料溶液を上記反応容器に導入して、導電性電 極上の 1本鎖 DNAプローブと所定の温度でハイブリダィゼーシヨンを行わせる。
(b)洗浄液を反応容器に導入して、未反応の DNAを基板上から除去する。
(c)インターカレータ溶液を反応容器に導入して、二本鎖となった DNAと反応させる
(d)洗浄液を反応容器に導入して、未反応のインターカレータを基板上から除去する
(e)緩衝液を反応容器に導入して、絶縁ゲート電界効果トランジスタの出力値を測定 する。
簡便-迅速な測定のためには (b) (d)の工程をスキップすることもできる。
[0027] 〔第 2の実施例〕
図 2は、第 1の実施例に示した生体分子検出用トランジスタを用いた遺伝子検查シ ステムを示す模式図である。このシステムは、図 1に示した生体分子検出用トランジス タ 11の他に参照トランジスタ 12を用レ、、 2つのトランジスタによる差動測定を行う。 [0028] 生体分子検出用トランジスタのゲート表面には試料中のターゲット遺伝子と相補的 な塩基配列を有する DNAプローブ 8が固定化されている。一方、参照トランジスタの ゲート表面にはターゲット遺伝子の相補的な塩基配列とは異なる塩基配列を有する DNAプローブ 13が固定化されている。生体分子検出用トランジスタと参照トランジス タの表面電位を安定に測定するために、電位測定の基準となる参照電極 9を設置す る。生体分子検出用トランジスタと参照トランジスタは駆動回路 14によりそれぞれの 表面電位を計測し、計測信号は差動測定回路 15を介して信号処理回路 16に入力 される。
[0029] このような差動測定を行うことにより、トランジスタの電気的特性の違いによる、周囲 の温度や光の変化による出力値の変化を補償することができ、また試料中の荷電粒 子がゲート上に非特異的に吸着することによる出力値の変化を相殺して、ターゲット 遺伝子と DNAプローブのハイブリダィゼーシヨンによる出力変化のみを精度良く検 出すること力 Sできる。
[0030] 生体分子検出用トランジスタと参照トランジスタは電気的特性がそろっていることが 望ましいので、同じ基板に集積化された一対のトランジスタを用いることが望ましい。 複数の生体分子検出用トランジスタを集積化して複数遺伝子を同時計測する場合、 参照トランジスタを共通に使用することができ、異なる生体分子検出用トランジスタと 共通の参照トランジスタとの差動測定を行う。
[0031] 〔第 3の実施例〕
図 3は、図 1に示した生体分子検出用トランジスタを用いた測定システムの他の例を 示す断面模式図である。この測定システムの場合、 3個の FETが集積化されており、 第 1の生体分子検出用トランジスタ 17は第 1のターゲット遺伝子を検出する生体分子 検出用トランジスタ、第 2のトランジスタ 18は第 2の遺伝子を検出する生体分子検出 用トランジスタ、第 3のトランジスタ 19は参照トランジスタとして用いる。第 1、第 2の生 体分子検出用トランジスタのゲート電極上にはそれぞれ第 1、第 2の遺伝子と相補的 な塩基配列を有する DNAプローブが固定化されている。参照 FETのゲート電極表 面には第 1及び第 2の遺伝子と相補的塩基配列とは異なる塩基配列を有する DNA プローブが固定化されている。 [0032] 図 3は、第 1の遺伝子のみを含有する試料溶液を上記集積化トランジスタに導入し 、ターゲット遺伝子とハイブリダィゼーシヨンを行わせた後、インターカレータを作用さ せたときの状態を示している。第 1の遺伝子は第 1の生体分子検出用トランジスタ 17 の DNAプローブとのみハイブリダィズして二本鎖を形成する。インターカレータ 20は 二本鎖の DNAとのみ反応して結合し、一本鎖の DNAには結合しなレ、。インターカレ ータは電荷を有しているので、第 1の生体分子検出用トランジスタ 17の表面電荷密 度のみが変化してトランジスタの出力信号が変化し、第 2の生体分子検出用トランジ スタ 18及び参照トランジスタ 19の表面電荷密度は変化しないので出力信号が変化 しない。したがって、第 1の生体分子検出用トランジスタ 17と参照トランジスタ 19の差 動測定、及び第 2の生体分子検出用トランジスタ 18と参照トランジスタ 19の差動測定 を行うことにより、前者の出力信号のみが変化して第 1のターゲット遺伝子が検出され る。インターカレータとしてはェチジゥムブロマイド、へキスト 33258 (Hoechst 33258)、 ピコグリーンなどを用いることができる。
[0033] 次に、測定例について説明する。アルコールデヒドロギナーゼ関連遺伝子には一 塩基多型(SNPs)が存在することが知られており、その一塩基多型部位をはさんで 前後 8塩基を有する 17塩基長の第一及び第二の DNAプローブを合成した。その塩 基配列を下に示す。
第 1DNAプローブ: 5'-CATACACTAAAGTGAAA-3' (配列番号 1) 第 2DNAプローブ: 5'-CATACACTGAAGTGAAA-3' (配列番号 2)
[0034] 5'末端から 9番目の部位が SNP部位であり、第 1DNAプローブではその部位の塩 基が A、第 2プローブでは Gとなっている。この第 1及び第 2の DNAプローブをそれぞ れ第 1及び第 2のトランジスタのゲートに接続されたフローティング電極上に固定化し た。 DNAプローブの固定化に当たっては、 DNAプローブの 5'末端をチオール基で 修飾した。一方、本実施例の FETのゲートに接続されたフローティング電極には金の フローティング電極が用いられており、その表面に上記 DNAプローブを固定化した。 参照用トランジスタのゲートに接続されたフローティング電極には第 1、第 2の DNAプ ローブと異なる配列を有する DNAプローブとして、ここでは全て Aから構成される 17 塩基長の DNAプローブを合成し、固定化した。参照用トランジスタのゲートに接続さ れたフローティング電極上には DNAプローブを固定化しなくても良い。
[0035] 試料は血液中の白血球からヒトゲノムを抽出し、上記 SNP部位を含む 100塩基長 の領域を増幅した後、第 1、第 2の生体分子検出用トランジスタ、及び参照トランジス タに導入して、 45°Cで 8時間、ハイブリダィゼーシヨンを行わせた。ハイブリダィゼー シヨン後、緩衝液により洗浄して未反応の試料を除去し、インターカレータを導入した 。測定に当たっては、まず第 1、第 2の生体分子検出用トランジスタ、及び参照トラン ジスタに緩衝液を導入し、それぞれのトランジスタの出力電圧、第 1の生体分子検出 用トランジスタと参照用トランジスタの差動出力、及び第 2の生体分子検出用トランジ スタと参照用トランジスタの差動出力を測定した。その後、試料を導入し、ハイブリダ ィゼーシヨン、洗浄の後、インターカレータとしてへキスト 33258 (Hoechst 33258)を導 入し、それぞれのトランジスタの出力電圧、第 1の生体分子検出用トランジスタと参照 用トランジスタの差動出力、及び第 2の生体分子検出用トランジスタと参照用トランジ スタの差動出力を測定した。こうして、試料及びインターカレータ導入前後の出力電 圧の変化を測定した。
[0036] 測定結果は以下の通りであった。第 1の DNAプローブに対応する塩基配列を有す る試料 (Normal)では、試料溶液導入後及びインターカレータ導入後の第 1の生体分 子検出用トランジスタと参照用トランジスタの差動出力はそれぞれ 15· OmV及び一 1 2. OmVであった。 DNAは溶液中で負に帯電しているので、 nチャネル FETの出力 は正の方向にシフトする。一方、インターカレータは溶液中で正に帯電しているので 、 FETの出力は負方向にシフトする。一方、第 2の生体分子検出用トランジスタと参 照用トランジスタの差動出力は試料溶液導入後及びインターカレータ導入後でそれ ぞれ 1. 5mV及び一 0. 5mVであり、有意な差が得られた。インターカレータはニ本鎖 DNAとのみ反応し、 DNAと電荷が逆であるため、フローティング電極上に非特異的 に吸着した 1本鎖 DNAには応答せず、 1本鎖 DNAの非特異的吸着による信号とノ、 イブリダィゼーシヨンによる二本鎖 DNAに基づく信号を明確に区別することができる
[0037] 第 2の DNAプローブに対応する塩基配列を有する試料(Mutant)では、試料溶液 導入後及びインターカレータ導入後の第 1の生体分子検出用トランジスタと参照用ト ランジスタの差動出力はそれぞれ 2· 3mV及び 0· 7mVであった。一方、第 2の生体 分子検出用トランジスタと参照用トランジスタの差動出力はそれぞれ 11 · OmV及び一 8. OmVであり、やはり有意な差が得られた。
[0038] 第 1と第 2の DNAプローブに対応する塩基配列を半分ずつ有する試料 (ヘテロ)で は試料溶液導入後及びインターカレータ導入後の第 1の生体分子検出用トランジス タと参照用トランジスタの差動出力は 6. 5mV及び一 4. 8mV、第 2の生体分子検出 用トランジスタと参照用トランジスタの差動出力はそれぞれ 5. 5mV及び一 4. 5mVで あり、ほぼ 1対 1の比が得られた。
[0039] 以上より、本発明による SNP解析により、 Normal/Normalのホモ、 Mutant/Mutantの ホモ、 Normal/Mutantのへテロの 3種類の試料を識別することができた。インターカレ ータ使用の場合は、試料 DNAに標識化合物を化学結合して標識する必要がない。
[0040] 〔第 4の実施例〕
図 4及び図 5は、本発明による生体分子検出用トランジスタの他の構成例を示す模 式図である。この生体分子検出用トランジスタは、図 3に示した生体分子検出用トラン ジスタのゲート絶縁膜 2中に、送受信用のアンテナ 21を組み込んだものに相当する。 アンテナ 21はゲート電極 5の形成時に同時に形成することもできる。アンテナはオン チップに埋め込んだ送受信回路の素子 22に接続されている。また、本実施例では参 照電極 9の材料として Tiの上に Ptを積層した構造の電極を用レ、、直接に基板上に形 成されている。
[0041] 本実施例では取り出し電極 6を絶縁膜 2の中に坦め込んで延長し、その端部にフロ 一ティング電極 7を形成してある。図 5に本実施例の平面図を示す。トランジスタのソ ース 3、ドレイン 4、 DNAプローブ 8及び 13、アンテナ 21をそれぞれ分離してチップ 上にレイアウトすることができ、かつチップの表面に露出しているのはフローティング 電極 7、 DNAプローブ 8及び 13、及び絶縁膜 2のみであり、トランジスタ部、アンテナ 部は絶縁膜 2で保護されている構造である。生体分子検出用トランジスタで測定した 信号を上記アンテナにより外部の受信機に送信して信号処理することができる。上記 アンテナは絶縁膜 2に坦め込まれた構造であるため、直接に試料溶液と接触すること がなぐ溶液による腐食や蛋白質の吸着による特性の変化がなぐ信頼性の高い測 定に適している。
[0042] 図 6に、本実施例による生体分子検出用トランジスタとワイヤレス通信機能を担うチ ップを集積化した例を示す。 1mm角のシリコン基板 1に生体分子検出用トランジスタ のソース 3、ドレイン 4を形成し、取り出し電極 6によりフローティング電極 7とゲートを接 続する。フローティング電極上に DNAプローブ 8を固定化する。上記シリコン基板上 にアンテナ 21、演算回路 23、記憶回路 24、受信回路 25、送信回路 26、電源回路 2 7を集積化した構成である。試料中に相補的な配列を有するターゲット DNAが存在 すると、フローティング電極 7上で DNAプローブとハイブリダィズし、二本鎖を形成す る。この二本鎖の形成を電界効果トランジスタで検出する。記憶回路 24には個々の チップ基板を区別する識別情報、 DNAプローブの配列情報、コードする蛋白質情 報などが記憶されており、ノ、イブリダィズ反応の結果の情報とともに上記情報をアン テナ、送信回路により外部の受信装置に送信する。チップ外部から送られる電磁波 をアンテナで受信し、受信回路、電源回路によりチップで使用可能な電力に変換し て電界効果トランジスタ、送信回路、記憶回路などの各素子へ供給して動作させる。
[0043] 本実施例ではハイブリダィズの結果とともに各チップを識別する情報を同時に取得 できるので、図 7に示すように複数のチップを同時に試料中で反応させることができる 。まず反応容器 28に本発明の生体分子検出用トランジスタ 29、及び 0. 5mlの緩衝 液を入れトランジスタの信号を計測して外部受信機にその信号を送信する。その後、 以下の工程(a)— (f)に従って遺伝子解析を行う。
(a)少なくとも 1種類の DNAを含む試料溶液を上記反応容器に導入して、導電性電 極上の 1本鎖 DNAプローブと所定の温度でハイブリダィゼーシヨンを行わせる。
(b)洗浄液を反応容器に導入して、未反応の DNAを基板上から除去する。
(c)インターカレータ溶液を反応容器に導入して、二本鎖となった DNAと反応させる
(d)洗浄液を反応容器に導入して、未反応のインターカレータを基板上から除去する
(e)緩衝液を反応容器に導入して、絶縁ゲート電界効果トランジスタの出力値を測定 する。 (f)出力値をアンテナで受信機に送信する。
[0044] 上記 2回の測定による生体分子検出用トランジスタの出力値の差が、ハイブリダィズ によって形成された二本鎖 DNAの信号である。生体分子検出用トランジスタの信号 計測には外部の送受信装置 30との間で例えば 13. 56MHzの電磁波を用いて行う 。記憶回路の情報を参照することにより、試料中に存在する DNAの種類、型、配列 などを解析することができる。また本チップはワイヤレス通信で情報の送受信や電力 の供給を行っているので、チップと外部回路との配線が不要となり、直接にチップを 試料中に入れて測定することができるため、簡便な測定系を構築することができる。 なお、実験条件によっては、上記洗浄工程 (b) (d)を省略し、試料溶液中に生体分 子検出用トランジスタを浸漬した状態で全ての測定を完了することも可能である。 図面の簡単な説明
[0045] [図 1]本発明の電界効果トランジスタとフローティングゲート電極を用いる生体分子検 出用トランジスタを説明する図。
[図 2]本発明の生体分子検出用トランジスタを用いた遺伝子検出回路を説明する図。
[図 3]本発明の生体分子検出用トランジスタとインターカレータを組み合わせたシステ ムを説明する図。
[図 4]本発明の生体分子検出用トランジスタとアンテナとの集積化を説明する図。
[図 5]本発明の生体分子検出用トランジスタとアンテナとの平面配置を説明する図。
[図 6]本発明の生体分子検出用トランジスタとワイヤレス通信チップとを集積化したシ ステムを説明する図。
[図 7]本発明の生体分子検出用トランジスタを用いた遺伝子解析システムを説明する 図。
符号の説明
[0046] 1…シリコン基板、 2…絶縁膜、 3…ソース、 4…ドレイン、 5…ゲート電極、 6…取り出 し電極、 7…フローティング電極、 8— DNAプローブ、 9…参照電極、 10…試料溶液 、 11…生体分子検出用トランジスタ、 12…参照トランジスタ、 13…参照用 DNAプロ ーブ、 14…トランジスタ駆動回路、 15…差動増幅回路、 16…信号処理回路、 17· · · 第一の生体分子検出用トランジスタ、 18…第二の生体分子検出用トランジスタ、 19 …参照トランジスタ、 20…インターカレータ、 21…アンテナ、 22…送受信回路素子、 23…演算回路、 24…記憶回路、 25…受信回路、 26…送信回路、 27…電源回路、 28…反応容器、 29…生体分子検出用トランジスタチップ、 30…受信装置

Claims

請求の範囲
[1] 絶縁膜中に埋設されたゲート電極を有する絶縁ゲート電界効果トランジスタと、 前記絶縁膜の表面に形成され、生体分子プローブが固定化されたプローブ固定化 電極と、
前記ゲート電極と前記プローブ固定化電極とを電気的に接続する接続配線とを備 前記プローブ固定化電極に生体分子プローブが固定化された領域は、前記ゲート 電極の直上位置力 離れた位置にあることを特徴とする生体分子検出素子。
[2] 請求項 1記載の生体分子検出素子において、前記プローブ固定化電極は前記ゲ ート電極の直上位置から前記絶縁膜の膜面に沿って前記生体分子プローブ固定化 領域まで設けられ、前記接続配線は前記ゲート電極の直上位置で前記プローブ固 定化電極と接続されていることを特徴とする生体分子検出素子。
[3] 請求項 1記載の生体分子検出素子において、前記プローブ固定化電極は前記ゲ ート電極の直上位置から離れた位置に設けられ、前記接続配線は前記絶縁膜中に 膜面に沿って設けられていることを特徴とする生体分子検出素子。
[4] 請求項 1一 3のいずれか 1項記載の生体分子検出素子において、前記生体分子プ ローブは核酸、ポリヌクレオチド又は合成オリゴヌクレオチドであることを特徴とする生 体分子検出素子。
[5] 請求項 1一 4のいずれか 1項記載の生体分子検出素子において、前記プローブ固 定化電極は金、白金、パラジウム、チタン、クロム、ァノレミニゥム、ポリシリコン、タンタ ノレ、モリブデン、又はこれらの材料を複数組み合わせた材料からなることを特徴とす る生体分子検出素子。
[6] 請求項 1一 5のいずれか 1項記載の生体分子検出素子において、前記絶縁膜中に 送受信用のアンテナが形成されていることを特徴とする生体分子検出素子。
[7] 共通の絶縁膜中に坦設されたゲート電極をそれぞれ有する複数の絶縁ゲート電界 効果トランジスタと、
前記絶縁膜の表面に形成され、生体分子プローブが固定化された複数のプローブ 固定化電極と、 前記複数の絶縁ゲート電界効果トランジスタの各ゲート電極と前記複数のプローブ 固定化電極とをそれぞれ電気的に接続する複数の接続配線とを備え、
前記プローブ固定化電極に生体分子プローブが固定化された領域は、前記ゲート 電極の直上位置力 離れた位置にあることを特徴とする生体分子検出素子。
[8] 請求項 7記載の生体分子検出素子において、前記共通の絶縁膜中に送受信用の アンテナが形成されていることを特徴とする生体分子検出素子。
[9] 請求項 6又は 8記載の生体分子検出素子において、演算回路、記憶回路、受信回 路、送信回路、電源回路を備えることを特徴とする生体分子検出素子。
[10] 請求項 9記載の生体分子検出素子において、前記電源回路は、前記アンテナで受 信した電磁波を電力に変換し、各部に供給することを特徴とする生体分子検出素子
[11] 請求項 1一 10のいずれか 1項記載の生体分子検出素子を用いた核酸解析方法で あってヽ
前記プローブ固定化電極に前記生体分子プローブとして一本鎖核酸プローブを固 定化するステップと、
少なくとも 1種類の核酸を含む試料溶液を前記生体分子検出素子上に導入して、 前記一本鎖核酸プローブとハイブリダィゼーシヨンを行わせるステップと、
洗浄液を前記生体分子検出素子上に導入して、未反応の核酸を前記生体分子検 出素子上から除去するステップと、
インターカレータ溶液を前記生体分子検出素子上に導入して、二本鎖となった核 酸と反応させるステップと、
洗浄液を前記生体分子検出素子上に導入して、未反応のインターカレータを前記 生体分子検出素子上から除去するステップと、
緩衝液を前記生体分子検出素子上に導入して、前記絶縁ゲート電界効果トランジ スタの出力値を測定するステップと
を含むことを特徴とする核酸解析方法。
[12] 請求項 10記載の生体分子検出素子を用いた生体分子解析方法であって、
反応容器に、前記プローブ固定化電極に前記生体分子プローブとしてそれぞれ異 なる種類の一本鎖核酸プローブを固定化した複数の生体分子検出素子と緩衝液を 入れ、各生体分子検出素子からの信号を外部受信機で受信するステップと、 少なくとも 1種類の核酸を含む試料溶液を前記反応容器に導入して、前記一本鎖 核酸プローブとハイブリダィゼーシヨンを行わせるステップと、
インターカレータ溶液を前記反応容器に導入して、二本鎖となった核酸と反応させ るステップと、
各生体分子検出素子からの信号を外部受信機で受信するステップと
を含むことを特徴とする核酸解析方法。
PCT/JP2004/012363 2003-08-29 2004-08-27 生体分子検出素子及びそれを用いた核酸解析方法 WO2005022142A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/563,475 US20060141474A1 (en) 2003-08-29 2004-08-27 Biomolecule detecting element and method for analyzing nucleic acid using the same
EP04772319A EP1669748A4 (en) 2003-08-29 2004-08-27 BIOMOLECULE DETECTION ELEMENT AND DNA ANALYSIS METHOD USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003306906A JP2005077210A (ja) 2003-08-29 2003-08-29 生体分子検出素子及びそれを用いた核酸解析方法
JP2003-306906 2003-08-29

Publications (1)

Publication Number Publication Date
WO2005022142A1 true WO2005022142A1 (ja) 2005-03-10

Family

ID=34269409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012363 WO2005022142A1 (ja) 2003-08-29 2004-08-27 生体分子検出素子及びそれを用いた核酸解析方法

Country Status (5)

Country Link
US (1) US20060141474A1 (ja)
EP (1) EP1669748A4 (ja)
JP (1) JP2005077210A (ja)
CN (2) CN100447563C (ja)
WO (1) WO2005022142A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060223170A1 (en) * 2005-03-29 2006-10-05 Masao Kamahori Biomolecule detecting apparatus and biomolecule detecting method employing the same
EP1806414A2 (en) 2006-01-09 2007-07-11 Samsung Electronics Co., Ltd. Fet-based sensor for detecting ionic material, ionic material detecting device using the fet-based sensor, and method of detecting ionic material using the fet-based sensor
JP2007187582A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp バイオチップ、バイオセンサ、及び検査システム
US20070231882A1 (en) * 2006-03-30 2007-10-04 Masao Kamahori Measurement apparatus and element for analysis
EP1850124A2 (en) * 2006-04-26 2007-10-31 Samsung Electronics Co., Ltd. Field effect transistor for detecting ionic material and method of detecting ionic material using the same
EP1952155A2 (en) * 2005-08-19 2008-08-06 Intel Corporation (INTEL) Method and cmos-based device to analyze molecules and nanomaterials based on the electrical readout of specific binding events on functionalized electrodes
US8202409B2 (en) * 2006-11-21 2012-06-19 Hitachi, Ltd. Potentiometric sensor and analytical element
US8247797B2 (en) 2009-12-21 2012-08-21 Samsung Electronics Co., Ltd. Field-effect transistor and sensor based on the same
US20130217587A1 (en) * 2006-12-14 2013-08-22 Life Technologies Corporation High density sensor array without wells
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US9164070B2 (en) 2010-06-30 2015-10-20 Life Technologies Corporation Column adc
US9239313B2 (en) 2010-06-30 2016-01-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9269708B2 (en) 2006-12-14 2016-02-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9852919B2 (en) 2013-01-04 2017-12-26 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9964515B2 (en) 2008-10-22 2018-05-08 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692219B1 (en) 2004-06-25 2010-04-06 University Of Hawaii Ultrasensitive biosensors
JP3874772B2 (ja) * 2004-07-21 2007-01-31 株式会社日立製作所 生体関連物質測定装置及び測定方法
KR100737860B1 (ko) * 2005-01-07 2007-07-12 삼성전자주식회사 무선 안테나를 이용한 바이오결합 검출장치 및 그 방법
WO2006080552A1 (en) * 2005-01-31 2006-08-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method for manufacturing thereof
JP2008536103A (ja) * 2005-03-08 2008-09-04 ナショナル リサーチ カウンシル オブ カナダ 静電的に制御された原子的な規模の導電性デバイス
JP4631027B2 (ja) * 2005-03-29 2011-02-16 独立行政法人産業技術総合研究所 Icタグ搭載型バイオセンサーおよびその包装体
JP4353958B2 (ja) 2005-09-15 2009-10-28 株式会社日立製作所 Dna計測装置、及びdna計測方法
JP4173503B2 (ja) 2005-10-19 2008-10-29 株式会社日立製作所 Rfidシステムおよびrfidシステムの処理方法
GB2432217A (en) * 2005-11-09 2007-05-16 Seiko Epson Corp Application of biosensor chips
KR101195612B1 (ko) * 2006-04-10 2012-10-29 삼성전자주식회사 금층을 포함하는 전계 효과 트랜지스터, 상기 전계 효과 트랜지스터를 포함하는 미세유동장치, 및 상기 전계 효과 트랜지스터 및 미세유동장치를 이용하여 티올기를 포함하는 분석물을 검출하는 방법
JP4936536B2 (ja) * 2006-07-13 2012-05-23 国立大学法人富山大学 定量・定性分析方法
US20080108164A1 (en) * 2006-11-06 2008-05-08 Oleynik Vladislav A Sensor System and Method
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
JP4850854B2 (ja) * 2007-03-22 2012-01-11 信越化学工業株式会社 マイクロアレイ作製用基板の製造方法
JP4512607B2 (ja) 2007-03-22 2010-07-28 信越化学工業株式会社 マイクロアレイ作製用基板の製造方法
KR100923048B1 (ko) 2007-06-11 2009-10-22 김성천 미지의 생체분자와 단일가닥핵산의 결합 프로파일을생성하기 위한 핵산칩, 핵산칩의 제조방법, 및 핵산칩을이용한 미지의 생체분자 분석방법
US8198658B2 (en) * 2007-06-13 2012-06-12 Samsung Electronics Co., Ltd. Device and method for detecting biomolecules using adsorptive medium and field effect transistor
JP4876031B2 (ja) * 2007-06-22 2012-02-15 株式会社日立製作所 分析装置
KR101465961B1 (ko) * 2007-10-09 2014-12-01 삼성전자주식회사 유전자 검출 방법 및 장치
JP4731544B2 (ja) * 2007-12-17 2011-07-27 株式会社日立製作所 生体分子検出装置及びそれを用いた生体分子検出方法
JP5667049B2 (ja) * 2008-06-25 2015-02-12 ライフ テクノロジーズ コーポレーション 大規模なfetアレイを用いて分析物を測定するための方法および装置
TWI351435B (en) * 2008-06-30 2011-11-01 Univ Nat Yunlin Sci & Tech Separative extended gate field effect transistor b
KR101026468B1 (ko) 2008-09-10 2011-04-01 한국전자통신연구원 생분자 검출 장치 및 검출 방법
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
CN102301228A (zh) * 2008-10-22 2011-12-28 生命技术公司 用于生物和化学分析的集成式传感器阵列
US10067129B2 (en) * 2009-05-15 2018-09-04 University Of Florida Research Foundation, Inc. Wireless based marine pathogens detection system
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
EP2440651B1 (en) * 2009-06-10 2019-03-13 Stefan Thalhammer Semiconductor biosensors
US20120001646A1 (en) 2010-06-30 2012-01-05 Life Technologies Corporation Methods and apparatus for testing isfet arrays
CN101915799A (zh) * 2010-07-15 2010-12-15 长沙理工大学 一种用于dna分子检测的延长栅场效应晶体管传感芯片
JP5920687B2 (ja) * 2010-09-17 2016-05-18 国立大学法人 東京大学 Dna塩基配列解析装置およびdna塩基配列解析方法
US8450131B2 (en) 2011-01-11 2013-05-28 Nanohmics, Inc. Imprinted semiconductor multiplex detection array
JPWO2012144631A1 (ja) * 2011-04-20 2014-07-28 国立大学法人 東京医科歯科大学 生体分子検出用電極チップ、及び、生体分子検出方法
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
EP2972279B1 (en) 2013-03-15 2021-10-06 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
JP6154011B2 (ja) * 2013-06-27 2017-06-28 株式会社日立製作所 半導体装置およびその製造方法
US10481126B2 (en) 2014-08-14 2019-11-19 Regents Of The University Of Minnesota Electrolyte-gated transistors for detection of molecules
CN104485334B (zh) * 2014-12-16 2018-02-13 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
US11921112B2 (en) 2014-12-18 2024-03-05 Paragraf Usa Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US11782057B2 (en) 2014-12-18 2023-10-10 Cardea Bio, Inc. Ic with graphene fet sensor array patterned in layers above circuitry formed in a silicon based cmos wafer
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
CN105136893B (zh) * 2015-06-24 2017-11-07 中国科学院宁波材料技术与工程研究所 一种薄膜晶体管生物传感器及其制备方法
JP6496425B2 (ja) * 2015-07-29 2019-04-03 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 分析物検出装置、装置、及び方法
CN108700547A (zh) 2015-12-09 2018-10-23 拉莫特特拉维夫大学有限公司 用于传感的方法和系统
CA3050062A1 (en) * 2016-01-14 2017-07-20 Roswell Biotechnologies, Inc. Molecular sensors and related methods
JP6824527B2 (ja) * 2016-01-19 2021-02-03 国立大学法人 東京医科歯科大学 ウィルスおよび細菌検出バイオセンサ用デバイス、及びバイオセンサ
US11905552B2 (en) 2017-08-04 2024-02-20 Keck Graduate Institute Of Applied Life Sciences Immobilized RNPs for sequence-specific nucleic acid capture and digital detection
US20200319130A1 (en) * 2017-10-18 2020-10-08 Sony Semiconductor Solutions Corporation Electric charge detection sensor and potential measurement system
JP6989443B2 (ja) * 2018-05-25 2022-01-05 日本特殊陶業株式会社 ガスセンサ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US503930A (en) * 1893-08-22 Hinged cover for show-barrels
JPS60202347A (ja) * 1984-03-27 1985-10-12 Sumitomo Electric Ind Ltd 電界効果型半導体センサ
JPS6111652A (ja) * 1984-06-27 1986-01-20 Sumitomo Electric Ind Ltd 電界効果型半導体センサ
JPS62185160A (ja) * 1986-02-10 1987-08-13 Terumo Corp バイオセンサ−
JPS63208753A (ja) * 1987-02-25 1988-08-30 Teijin Ltd 免疫センサ及び免疫検出方法
JPH03502135A (ja) * 1988-08-11 1991-05-16 ハンプ ノルベルト 化学感応性変換器
JP2001511245A (ja) * 1996-04-17 2001-08-07 モトローラ・インコーポレイテッド トランジスタによる分子検出装置および方法
JP2002014072A (ja) * 2000-06-29 2002-01-18 Yamatake Corp 集積化センサ素子及びこれを用いた計測システム
JP2003322633A (ja) * 2002-05-01 2003-11-14 Seiko Epson Corp センサセル、バイオセンサ及びこれらの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4238757A (en) * 1976-03-19 1980-12-09 General Electric Company Field effect transistor for detection of biological reactions
DE3513168A1 (de) * 1985-04-12 1986-10-16 Thomas 8000 München Dandekar Biosensor bestehend aus einem halbleiter auf silizium oder kohlenstoffbasis (elektronischer teil) und nukleinbasen (od. anderen biol. monomeren)
US5776672A (en) * 1990-09-28 1998-07-07 Kabushiki Kaisha Toshiba Gene detection method
US6284459B1 (en) * 1995-04-25 2001-09-04 Discovery Partners International Solid support matrices with memories and combinatorial libraries therefrom
FR2764386B1 (fr) * 1997-06-06 1999-07-16 Commissariat Energie Atomique Support d'electrodes comportant au moins une electrode recouverte par un depot et systeme de lecture de ce support
US6566685B2 (en) * 2000-04-12 2003-05-20 Casio Computer Co., Ltd. Double gate photo sensor array
DE60135775D1 (de) * 2000-12-11 2008-10-23 Harvard College Vorrichtung enthaltend nanosensoren zur ekennung eines analyten und verfahren zu ihrer herstellung
EP1460130B1 (en) * 2001-12-19 2007-03-21 Hitachi High-Technologies Corporation Potentiometric dna microarray, process for producing the same and method of analyzing nucleic acid
CA2492959A1 (en) * 2002-07-19 2004-07-15 Smiths Detection-Pasadena, Inc. Non-specific sensor array detectors
JP4092990B2 (ja) * 2002-09-06 2008-05-28 株式会社日立製作所 生体および化学試料検査装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US503930A (en) * 1893-08-22 Hinged cover for show-barrels
JPS60202347A (ja) * 1984-03-27 1985-10-12 Sumitomo Electric Ind Ltd 電界効果型半導体センサ
JPS6111652A (ja) * 1984-06-27 1986-01-20 Sumitomo Electric Ind Ltd 電界効果型半導体センサ
JPS62185160A (ja) * 1986-02-10 1987-08-13 Terumo Corp バイオセンサ−
JPS63208753A (ja) * 1987-02-25 1988-08-30 Teijin Ltd 免疫センサ及び免疫検出方法
JPH03502135A (ja) * 1988-08-11 1991-05-16 ハンプ ノルベルト 化学感応性変換器
JP2001511245A (ja) * 1996-04-17 2001-08-07 モトローラ・インコーポレイテッド トランジスタによる分子検出装置および方法
JP2002014072A (ja) * 2000-06-29 2002-01-18 Yamatake Corp 集積化センサ素子及びこれを用いた計測システム
JP2003322633A (ja) * 2002-05-01 2003-11-14 Seiko Epson Corp センサセル、バイオセンサ及びこれらの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATSUBE, T.: "Shingata Multi Bio Sensor no Kaihatsu", BIO INDUSTRY, vol. 4, no. 5, 1987, pages 374 - 379, XP002985681 *
See also references of EP1669748A4 *

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060223170A1 (en) * 2005-03-29 2006-10-05 Masao Kamahori Biomolecule detecting apparatus and biomolecule detecting method employing the same
EP1952155A2 (en) * 2005-08-19 2008-08-06 Intel Corporation (INTEL) Method and cmos-based device to analyze molecules and nanomaterials based on the electrical readout of specific binding events on functionalized electrodes
EP1806414A2 (en) 2006-01-09 2007-07-11 Samsung Electronics Co., Ltd. Fet-based sensor for detecting ionic material, ionic material detecting device using the fet-based sensor, and method of detecting ionic material using the fet-based sensor
US8357957B2 (en) 2006-01-09 2013-01-22 Samsung Electronics Co., Ltd. FET-based sensor for detecting ionic material, ionic material detecting device using the FET-based sensor, and method of detecting ionic material using the FET-based sensor
US7859029B2 (en) 2006-01-09 2010-12-28 Samsung Electronics Co., Ltd. FET-based sensor for detecting ionic material, ionic material detecting device using the FET-based sensor, and method of detecting ionic material using the FET-based sensor
EP1806414A3 (en) * 2006-01-09 2008-03-26 Samsung Electronics Co., Ltd. Fet-based sensor for detecting ionic material, ionic material detecting device using the fet-based sensor, and method of detecting ionic material using the fet-based sensor
JP4735833B2 (ja) * 2006-01-13 2011-07-27 セイコーエプソン株式会社 バイオチップ及びバイオセンサ
JP2007187582A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp バイオチップ、バイオセンサ、及び検査システム
US20070231882A1 (en) * 2006-03-30 2007-10-04 Masao Kamahori Measurement apparatus and element for analysis
EP1850124A3 (en) * 2006-04-26 2009-01-21 Samsung Electronics Co., Ltd. Field effect transistor for detecting ionic material and method of detecting ionic material using the same
EP1850124A2 (en) * 2006-04-26 2007-10-31 Samsung Electronics Co., Ltd. Field effect transistor for detecting ionic material and method of detecting ionic material using the same
US8035175B2 (en) 2006-04-26 2011-10-11 Samsung Electronics Co., Ltd. Field effect transistor for detecting ionic material and method of detecting ionic material using the same
US8702933B2 (en) 2006-11-21 2014-04-22 Hitachi, Ltd. Potentiometric sensor and analytical element
US8202409B2 (en) * 2006-11-21 2012-06-19 Hitachi, Ltd. Potentiometric sensor and analytical element
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US9023189B2 (en) * 2006-12-14 2015-05-05 Life Technologies Corporation High density sensor array without wells
US10415079B2 (en) 2006-12-14 2019-09-17 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US10203300B2 (en) 2006-12-14 2019-02-12 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9989489B2 (en) 2006-12-14 2018-06-05 Life Technnologies Corporation Methods for calibrating an array of chemically-sensitive sensors
US20130217587A1 (en) * 2006-12-14 2013-08-22 Life Technologies Corporation High density sensor array without wells
US9269708B2 (en) 2006-12-14 2016-02-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9964515B2 (en) 2008-10-22 2018-05-08 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US8247797B2 (en) 2009-12-21 2012-08-21 Samsung Electronics Co., Ltd. Field-effect transistor and sensor based on the same
US10641729B2 (en) 2010-06-30 2020-05-05 Life Technologies Corporation Column ADC
US9164070B2 (en) 2010-06-30 2015-10-20 Life Technologies Corporation Column adc
US9239313B2 (en) 2010-06-30 2016-01-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9958414B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation Apparatus for measuring analytes including chemical sensor array
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9985624B2 (en) 2012-05-29 2018-05-29 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US10404249B2 (en) 2012-05-29 2019-09-03 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9852919B2 (en) 2013-01-04 2017-12-26 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US10436742B2 (en) 2013-01-08 2019-10-08 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US10422767B2 (en) 2013-03-15 2019-09-24 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US10655175B2 (en) 2013-05-09 2020-05-19 Life Technologies Corporation Windowed sequencing
US11028438B2 (en) 2013-05-09 2021-06-08 Life Technologies Corporation Windowed sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US11536688B2 (en) 2014-12-18 2022-12-27 Life Technologies Corporation High data rate integrated circuit with transmitter configuration

Also Published As

Publication number Publication date
CN1826525A (zh) 2006-08-30
US20060141474A1 (en) 2006-06-29
JP2005077210A (ja) 2005-03-24
EP1669748A4 (en) 2008-12-17
CN101241102B (zh) 2010-12-15
EP1669748A1 (en) 2006-06-14
CN101241102A (zh) 2008-08-13
CN100447563C (zh) 2008-12-31

Similar Documents

Publication Publication Date Title
WO2005022142A1 (ja) 生体分子検出素子及びそれを用いた核酸解析方法
US20220373495A1 (en) Active-electrode integrated biosensor array and methods for use thereof
JP3946701B2 (ja) ポテンシオメトリックdnaマイクロアレイ、その製造方法、及び核酸解析方法
JP3874772B2 (ja) 生体関連物質測定装置及び測定方法
JP4608697B2 (ja) 電界効果デバイスを用いたdna塩基配列解析方法及び塩基配列解析装置
JP3903183B2 (ja) 遺伝子検出電界効果デバイスおよびこれを用いた遺伝子多型解析方法
JP3980030B2 (ja) Dnaマイクロアレイを用いた核酸検出方法及び核酸検出装置
US20100270174A1 (en) Biosensor cell and biosensor array
Ingebrandt et al. Label‐free detection of DNA using field‐effect transistors
EP1843157B1 (en) Method of detecting bio-molecules using field effect transistor without fixing bio-molecules on the gate sensing surface
US20060197118A1 (en) Detection of molecular interactions using a field effect transistor
JP2002195997A (ja) 核酸検出用センサ
Zari et al. Label-free DNA biosensor for electrochemical detection of short DNA sequences related to human papilloma virus
US11280758B2 (en) Single-particle bridge assay for amplification-free electrical detection of ultralow-concentration biomolecules and non-biological molecules
JP4706074B2 (ja) 生体分子固定化用の三脚型機能性界面分子とこれを用いた遺伝子検出デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020868.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006141474

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10563475

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004772319

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004772319

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10563475

Country of ref document: US