WO2005020455A1 - 通信システムの質問器 - Google Patents

通信システムの質問器 Download PDF

Info

Publication number
WO2005020455A1
WO2005020455A1 PCT/JP2004/011354 JP2004011354W WO2005020455A1 WO 2005020455 A1 WO2005020455 A1 WO 2005020455A1 JP 2004011354 W JP2004011354 W JP 2004011354W WO 2005020455 A1 WO2005020455 A1 WO 2005020455A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
frequency
interrogator
main carrier
Prior art date
Application number
PCT/JP2004/011354
Other languages
English (en)
French (fr)
Inventor
Takuya Nagai
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Publication of WO2005020455A1 publication Critical patent/WO2005020455A1/ja
Priority to US11/346,183 priority Critical patent/US7786923B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J1/00Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general
    • H03J1/0008Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general using a central processing unit, e.g. a microprocessor

Definitions

  • the present invention provides a communication system in which an interrogator power main carrier is transmitted, and a transponder that receives the main carrier returns a reflected wave obtained by performing a predetermined modulation on the main carrier to the interrogator. Regarding Tham's interrogator.
  • Patent Document 1 Patent No. 3105825
  • a signal related to modulation by the transponder that is, an information signal to be transmitted is extremely small. Therefore, in the related art, when the communication distance is relatively long or when a plurality of reflected waves of the transponder power are used. In the case where the signals are mixed, the signal related to the modulation by the transponder cannot always be suitably detected.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an interrogator of a communication system capable of suitably detecting a signal related to modulation by a transponder. .
  • the gist of the present invention is to provide a main carrier
  • the interrogator of the communication system in which the transponder receiving the main carrier returns a reflected wave obtained by performing a predetermined modulation on the main carrier to the interrogator, and transmits the main carrier.
  • a receiving unit for receiving the reflected wave, and multiplying the received signal received by the receiving unit by the first local oscillator signal generated by the first local oscillator to obtain an intermediate frequency.
  • a first frequency converter for generating a signal, and an intermediate frequency signal generated by the first frequency converter or an intermediate signal that is a signal converted from the first frequency converter, the second local oscillator signal generated by the second local oscillator.
  • a second frequency converter for generating a demodulated signal by multiplying the second frequency converter, and a phase controller for controlling the phase of a second local oscillation signal generated by the second local oscillator. It is an feature.
  • the transmitting unit for transmitting the main carrier, the receiving unit for receiving the reflected wave, and the received signal received by the receiving unit are transmitted to the first local oscillator by the first local oscillator.
  • a first frequency conversion unit that generates an intermediate frequency signal by multiplying the generated first local oscillation signal, and an intermediate frequency signal generated by the first frequency conversion unit or an intermediate signal that is a signal converted therefrom;
  • a second frequency converter for generating a demodulated signal by multiplying the second local oscillator signal generated by the second local oscillator, and controlling a phase of the second local oscillator signal generated by the second local oscillator
  • a phase controller for example, controlling the second local oscillation signal to a signal in phase with the target wave, controlling the second local oscillation signal to be a signal orthogonal to the interference wave, and so on.
  • the phase control unit controls a phase of a second local oscillator signal generated by the second local oscillator so that a signal-to-noise ratio of the demodulated signal is increased. It is. With this configuration, it is possible to remove an interference wave included in the demodulated signal, and to extract a signal related to the modulation having a large signal-to-noise ratio.
  • the phase control unit maximizes a signal-to-noise ratio of the demodulated signal.
  • the phase of the second local oscillator signal generated by the second local oscillator is controlled.
  • an analog digital converter is provided between the first frequency conversion unit and the second frequency conversion unit, and the second frequency conversion unit generates the demodulated signal by digital processing. Is what you do. This facilitates the phase control of the second local oscillation signal by the phase control unit.
  • the phase control unit is configured to determine a frequency and a phase of a second local oscillation signal generated by the second local oscillator based on a predetermined periodic function for one cycle. Is controlled. In this way, the load S on the phase control unit can be reduced.
  • the phase control unit controls the second local oscillator so that at least one of a predetermined frequency and a predetermined phase becomes one of a plurality of second local oscillation signals different from each other. It controls the generated second local oscillation signal. By doing so, the load on the phase control unit can be reduced as much as possible.
  • the phase control unit is configured to determine a frequency and a phase of a second local oscillation signal generated by the second local oscillator based on a periodic function for one cycle calculated in advance. Is controlled.
  • data to be stored in a storage device or the like in advance can be relatively small.
  • the phase control unit controls the second local oscillator so that at least one of a frequency and a phase calculated in advance becomes one of a plurality of second local oscillation signals different from each other. It controls the generated second local oscillation signal.
  • the load on the phase control unit can be reduced as much as possible, and the data to be stored in the storage device or the like in advance can be relatively small.
  • a plurality of the second frequency converters are provided, and each of the plurality of second frequency converters uses a second local oscillation signal having at least one of a different frequency and a different phase.
  • a second local oscillation signal having at least one of a different frequency and a different phase.
  • a plurality of the second frequency converters are provided in the same number as the number of communication channels, and each of the plurality of second frequency converters uses a second local oscillation signal having at least one of a different frequency and a different phase. And generating the demodulated signal related to communication in the communication channel.
  • the number of the second frequency conversion units is increased or decreased according to the number of the transponders to be communicated with the number of communication channels being maximized.
  • the load on the interrogator can be reduced by preparing a necessary and sufficient number of the second frequency conversion units by digital processing.
  • the apparatus further includes the same number of the second frequency conversion units as the periodic functions.
  • the phase control can be simplified and the demodulation process can be simplified by selecting a signal whose signal-to-noise ratio is equal to or more than a specified value in each of the necessary and sufficient number of the second frequency converters. Can be speeded up.
  • the second frequency conversion section generates the demodulated signal by IQ quadrature demodulation
  • the phase control section controls the phase control section so that a Q-phase signal is minimized. It controls the phase of the second local oscillation signal generated by the second local oscillator.
  • the I-phase modulation is performed under the condition that the main carrier component is not included. Since one of the Q phases becomes zero when one of them becomes zero, the signal is controlled by controlling the phase of the second local oscillation signal so that the Q phase signal becomes minimum. It is possible to extract a signal related to the modulation having the largest possible noise-to-noise ratio.
  • the sampling frequency of the analog-to-digital converter is determined to be four times or more the frequency of the intermediate frequency signal.
  • the main carrier of the intermediate frequency signal or the intermediate signal is provided in the second frequency conversion section.
  • the transmission component can be more suitably suppressed.
  • the sampling frequency of the analog-to-digital converter is determined according to the frequency of the main carrier component of the intermediate frequency signal. For example, if the sampling frequency is set to be 0.8 times the intermediate frequency, a relatively inexpensive analog-to-digital converter is used to set the sampling frequency to 0.8 times the main carrier component of the intermediate frequency signal. Undersampling can be performed to convert the frequency of the received signal so that the carrier frequency becomes 0.2 times the intermediate frequency.
  • the transmission unit includes a main carrier oscillating unit that generates the main carrier, and a distribution unit that divides the main carrier generated by the main carrier oscillating unit into a transmission signal and a cancellation signal.
  • a transmission signal amplifying unit that amplifies the transmission signal distributed by the distributor, and a transmission antenna that transmits the transmission signal, wherein the reception unit receives the reflected wave,
  • a cancel signal amplitude adjuster for adjusting the amplitude of the cancel signal distributed by the distributor, a cancel signal phase adjuster for adjusting the phase of the cancel signal, and the cancel signal amplitude adjuster and the cancel signal phase adjuster.
  • a combiner for combining and outputting a cancel signal whose amplitude and phase have been adjusted and a reflected wave received by the receiving antenna, and Cell signal amplitude adjustment part and the cancel signal phase adjustment unit is for output of the multiplexer is to adjust the amplitude and phase of the previous SL cancel signal so as to decrease.
  • a transmission / reception antenna for transmitting the main carrier and receiving the reflected wave
  • the transmission unit includes a main carrier oscillation unit for generating the main carrier, and a main carrier oscillation unit for the main carrier.
  • a splitter that splits the main carrier generated by the splitter into a transmission signal and a cancel signal, a transmission signal amplifier that amplifies the transmission signal split by the splitter, and a transmission that is amplified by the transmission signal amplifier.
  • a transmission / reception separator for transmitting a signal to the transmission / reception antenna and transmitting a reflected wave received by the transmission / reception antenna to the reception unit, wherein the reception unit cancels the signals distributed by the distributor.
  • a cancel signal amplitude adjuster that adjusts the signal amplitude
  • a cancel signal phase adjuster that adjusts the phase of the cancel signal
  • a canceler whose amplitude and phase are adjusted by the cancel signal amplitude adjuster and the cancel signal phase adjuster.
  • the amplitude and phase of the cancel signal are adjusted so as to be as follows. With this configuration, the transmission and reception of the main carrier and the reception of the reflected wave can be performed by the transmission / reception antenna, so that the interrogator can be downsized.
  • the apparatus further comprises: a main carrier oscillating section for generating the main carrier; and a reference frequency oscillator for generating a predetermined reference frequency, wherein the main carrier oscillating section and the first low-power oscillator include: Generating the main carrier and the first local oscillation signal based on the reference frequency generated by the reference frequency oscillator.
  • the reference frequency is shared for the main carrier and the first local oscillation signal, so that the frequency of the intermediate frequency signal hardly fluctuates.
  • a reference frequency oscillator having relatively high accuracy, it is possible to obtain a main carrier and an intermediate frequency signal having high frequency accuracy corresponding to the reference frequency oscillator, thereby improving the accuracy of demodulation processing.
  • a main carrier oscillating section for generating the main carrier, a main carrier generated by the main carrier oscillating section, and a first local oscillator generated by the first local oscillator.
  • Signal mixer for synthesizing the cancellation signal by multiplying the cancellation signal, a cancel signal amplitude adjustment unit for adjusting the amplitude of the cancellation signal synthesized by the cancellation signal mixer, and a cancellation signal position for adjusting the phase of the cancellation signal.
  • a multiplexing unit that combines and outputs a phase adjustment unit, a cancellation signal whose amplitude and phase have been adjusted by the cancellation signal amplitude adjustment unit and the cancellation signal phase adjustment unit, and an intermediate frequency signal generated by the first frequency conversion unit.
  • a canceling signal amplitude adjusting unit and a canceling signal phase adjusting unit wherein the output of the multiplexer is small. And adjusts the amplitude and phase of the cancellation signal in Kunar so.
  • a frequency divider that divides the cancel signal synthesized by the cancel signal mixer into a frequency of 0.2 times to generate a frequency-divided signal, and the frequency divider generate the frequency-divided signal.
  • a clock signal mixer that generates a clock signal by multiplying the frequency-divided signal and the cancel signal synthesized by the cancel signal mixer, and converts the clock signal generated by the clock signal mixer into the analog-to-digital converter It is used as a clock for With this configuration, by generating a sampling signal for the analog-to-digital converter based on the main carrier, an error due to a shift between the main carrier and the sampling cycle is less likely to occur.
  • a main carrier oscillating section for generating the main carrier, a main carrier generated by the main carrier oscillating section, and a first local oscillator generated by the first local oscillator.
  • an intermediate frequency signal mixer for synthesizing the intermediate frequency signal by multiplying the intermediate frequency signal by the signal and a frequency divider for generating a frequency-divided signal by dividing the intermediate frequency signal synthesized by the intermediate frequency signal mixer.
  • a clock signal mixer for generating a clock signal by multiplying the frequency-divided signal generated by the mixer and the intermediate frequency signal synthesized by the intermediate frequency signal mixer, and the clock signal generated by the clock signal mixer Is used as a clock for the analog-to-digital converter.
  • the frequency divider divides the intermediate frequency signal to a frequency of 0.2 times to generate a divided signal.
  • the clock signal of the analog-to-digital converter based on the main carrier.
  • FIG. 1 is a diagram illustrating a configuration of a communication system to which the present invention is suitably applied.
  • FIG. 2 is a diagram showing a relationship between a main carrier and a reflected wave used in the communication system of FIG. 1.
  • FIG. 3 is a diagram illustrating an electrical configuration of the interrogator according to the first embodiment.
  • FIG. 4 is a functional block diagram for explaining a control function of a controller provided in the interrogator of FIG. 3.
  • FIG. 5 is a block diagram illustrating a configuration of a transponder of FIG. 1.
  • FIG. 6 is a diagram showing a state of a signal in each section of the transponder in FIG. 5, showing an information signal relating to modulation.
  • FIG. 7 is a diagram showing a state of a signal in each part of the transponder in FIG. 5, and shows an information signal relating to modulation.
  • FIG. 8 is a diagram showing a state of a signal in each part of the transponder in FIG. 5, showing a subcarrier.
  • FIG. 9 is a diagram showing a state of a signal in each part of the transponder in FIG. 5, showing a subcarrier.
  • FIG. 10 is a diagram showing a state of a signal in each part of the transponder of FIG. 5, and shows a frequency arrangement of subcarriers at a certain point in time.
  • FIG. 11 is a diagram showing a state of a signal in each part of the transponder in FIG. 5, and showing a frequency arrangement of a reflected wave at a certain time.
  • FIG. 12 is a diagram showing a state of a signal in each section of the interrogator in FIG. 4, showing a signal input to the first frequency conversion section.
  • FIG. 13 is a diagram showing a state of a signal in each section of the interrogator of FIG. 4, showing a signal output from a first frequency conversion section.
  • FIG. 14 is a diagram showing a state of a signal in each unit of the interrogator in FIG. 4, showing a signal output from the analog digital converter.
  • FIG. 15 is a diagram showing a state of a signal in each section of the interrogator in FIG. 4, showing a signal output from a second frequency conversion section.
  • FIG. 16 is a diagram showing a state of a signal in each section of the interrogator in FIG. 4, showing a subcarrier signal corresponding to the information signal in FIG. 7;
  • FIG. 17 is a diagram showing a state of a signal in each section of the interrogator in FIG. 4, showing a subcarrier signal corresponding to the information signal in FIG. 9;
  • FIG. 18 is a flowchart illustrating a main part of a phase control operation of a second local signal by the controller in FIG. 4.
  • FIG. 19 is a diagram illustrating an electrical configuration of an interrogator according to a second embodiment.
  • FIG. 20 is a diagram illustrating a periodic function table provided in the interrogator of FIG. 19, showing a cosine wave table.
  • FIG. 21 is a diagram exemplifying a periodic function table provided in the interrogator of FIG. 19, showing a sine wave table.
  • FIG. 22 is a flowchart illustrating a main part of a phase control operation of a second local oscillation signal by the controller in FIG. 19.
  • FIG. 23 is a diagram illustrating an electrical configuration of an interrogator according to a third embodiment.
  • FIG. 24 is a functional block diagram illustrating a control function of a controller provided in the interrogator of FIG. 23.
  • FIG. 25 A comparison is made between the received signal input to the first frequency converter after being multiplied by the cancel signal by the multiplexer in FIG. 23 and the received signal input directly to the first frequency converter from the receiving antenna.
  • FIG. 26 is a flowchart illustrating a main part of a cancel signal control operation by the controller in FIG. 23.
  • FIG. 27 is a diagram illustrating an electrical configuration of an interrogator according to a fourth embodiment.
  • FIG. 28 is a diagram illustrating an electrical configuration of an interrogator according to a fifth embodiment.
  • FIG. 29 is a diagram illustrating an electrical configuration of an interrogator according to a sixth embodiment.
  • FIG. 30 is a functional block diagram illustrating a control function of a controller provided in the interrogator of FIG. 29.
  • FIG. 31 is a flowchart illustrating a main part of a cancel signal control operation by the controller in FIG. 30.
  • FIG. 32 is a diagram illustrating the electrical configuration of an interrogator according to a seventh embodiment.
  • Receiving antenna (receiving unit) : 1st local oscillator: 1st mixer (1st frequency converter): Analog to digital converter: 2nd local oscillator: 2nd mixer (2nd frequency converter) 64: Phase controller
  • Cancel signal amplitude adjuster Cancel signal phase adjuster: multiplexer
  • FIG. 1 is a diagram illustrating a configuration of a communication system 10 to which the present invention is suitably applied.
  • the communication system 10 includes an interrogator 12 according to the first embodiment of the present invention and a plurality (four in FIG. 1) of transponders 14a, 14b, 14c, and 14d (hereinafter, unless otherwise distinguished, simply respond to each other).
  • the main carrier F is transmitted from the interrogator 12, the main carrier is transmitted.
  • the reflected wave F is returned from the transponder 14c, and the reflected wave F is returned from the transponder 14d.
  • the main carrier F is modulated by the sub-carrier (sub-carrier) signal f primary-modulated by the predetermined information signal (data).
  • reflected waves F For the other transponders 14b to 14d, the reflected waves F, F, and F (hereinafter, simply referred to as reflected waves F unless otherwise specified)
  • FIG. 2 is a diagram showing a relationship between a main carrier and a reflected wave used in the communication system 10. is there.
  • the frequency of the subcarrier signal in the transponders 14 is preferably frequency-hopped in a different manner for each transponder 14.
  • sideband signals of F ⁇ fF ⁇ fF ⁇ fF ⁇ fF are generated, as shown in FIG. C scl c sc2 cl sc3 cl sc4
  • the order is switched randomly. That is, the reflected waves F 1 to F from the transponders 14a to 14d are frequency hopping based on pseudo-random symbols, and rl r4
  • FIG. 3 is a diagram illustrating the electrical configuration of the interrogator 12. As shown in FIG. 3, the interrogator 12 includes a transmitting unit 16 for transmitting the main carrier F, and a reflected wave F.
  • a receiving antenna 18 functioning as a receiving unit for receiving cl rl through F, and its receiving antenna r4
  • a first mixer 22 functioning as a first frequency conversion unit for generating an intermediate frequency signal IF by multiplying the received signal RF received by the first local oscillator 20 with the first local oscillation signal LOl generated by the first local oscillator 20. If necessary, an intermediate frequency signal IF which is provided between the first mixer 22 and the second mixer 28 and is an analog signal generated by the first mixer 22 is converted into an intermediate signal IS which is a digital signal.
  • the second local oscillator 26 converts the analog-to-digital converter 24 and the intermediate frequency signal IF generated by the first mixer 22 or the intermediate signal IS digitally converted by the analog-to-digital converter 24 into digital signals.
  • a second mixer 28 that functions as a second frequency conversion unit that generates a demodulated signal DF by multiplying the generated second local oscillation signal L02 by a second local oscillator.
  • a phase control unit 30 for controlling the phase of the second station oscillation signal L_rei_2 which is generated by the motor 26, and a controller 32 for controlling the operation of the interrogator 12 is configured to include.
  • the transmitting unit 16 includes a main carrier oscillating unit 34 for generating the main carrier F, and a main carrier cl.
  • An amplifier 36 functioning as a signal amplifier and a transmitting antenna 38 for transmitting the main carrier F amplified by the amplifier 36 are provided.
  • the controller 32 includes a CPU, a R ⁇ M, a RAM, and the like. 4 is a so-called microcomputer that performs signal processing according to a program stored in a ROM in advance while utilizing functions, and FIG. 4 is a functional block diagram illustrating control functions of the controller 32.
  • the transmission circuit control means 40 shown in FIG. 4 controls the operation of the main carrier oscillating section 34 so as to generate a main carrier F having a frequency of about 915 MHz, for example.
  • the signal processing means 42 converts, for example, the demodulated signal DF generated by the second frequency converter, that is, the second mixer 28, into a time sequence to extract a subcarrier signal, and then, based on the subcarrier signal, Processing such as detecting a signal related to modulation by 14 is performed.
  • the phase control means 44 adjusts the phase of the second local oscillation signal L02 generated by the second local oscillation circuit, that is, the second local oscillator 26, for example, to the main carrier component of the intermediate frequency signal IF or the intermediate signal IS.
  • the phase is controlled via the phase control unit 30 so that the phase becomes the same as the phase.
  • the signal-to-noise ratio S / N of the demodulated signal DF input to the controller 32 is increased, more preferably, the second signal-to-noise ratio S / N is maximized.
  • the signal-to-noise ratio S / N is an example of a ratio between a desired frequency signal and other specific frequencies.
  • the signal-to-interference ratio is calculated using the signal-to-interference ratio S / I as an index.
  • the phase may be controlled so as to increase S / I.
  • the second mixer 28 preferably performs IQ quadrature demodulation, that is, after converting an input signal into a complex signal of an I (In-phase) phase and a Q (Quadrature- phase) phase having phases different from each other by 90 °.
  • the demodulation processing using the I-phase and Q-phase complex signals generates the demodulated signal DF, and the phase control means 44 controls the Q-phase signal so that the signal becomes minimum to zero. It controls the phase of the second local oscillation signal L ⁇ 2.
  • the transponder 14 performs binary modulation, etc.
  • IQ quadrature demodulation one of the I phase and the Q phase is ideally zero, provided that the main carrier component is not included.
  • the phase of the second local oscillation signal L02 is controlled so that the signal of the Q phase becomes minimum, so that the signal-to-noise ratio SZN is minimized. It is possible to extract a large signal related to the modulation.
  • FIG. 5 is a block diagram illustrating the configuration of the transponder 14.
  • the transponder 14 includes a modem 48 connected to an antenna 46, a digital circuit 50, Is provided.
  • the digital circuit section 50 includes a controller 52 for controlling the operation of the transponder 14, a subcarrier oscillating section 54 for generating a subcarrier, and a subcarrier generated by the subcarrier oscillating section 54 for controlling the controller 52.
  • a subcarrier modulation unit 56 that modulates (primary modulation) with phase modulation (PSK) or the like based on an information signal input via the subcarrier modulation unit.
  • the subcarrier modulated by the subcarrier modulator 56 is input to the modulator / demodulator 48.
  • the main carrier F received from the interrogator 12 is modulated (secondary modulation) by the sub-carrier input to the modulator / demodulator 48, and the above-mentioned ⁇ cl rf
  • FIG. 6 to FIG. 17 are diagrams showing the states of signals in the respective units of the interrogator 12 and the responder 14.
  • a main carrier F having a frequency of about 915 MHz is generated by the main carrier oscillating section 34 and power-amplified by the amplifier 36.
  • the subcarrier is phase-modulated by the subcarrier modulating unit 56 based on, for example, a signal shown in FIG. 6 and becomes, for example, a subcarrier f shown in FIG. It is applied to the modem 48.
  • the sub-carrier wave generation sc2 is applied to the modem 48.
  • the sub-carrier generated by the oscillator 54 is phase-modulated by the sub-carrier modulator 56 based on, for example, the signal shown in FIG. 8 and converted into, for example, the sub-carrier f shown in FIG. 9, and then applied to the modem 48. Is done.
  • the sub-carriers f 1 and f 2 at some point, for example, sc2 se s
  • the frequency arrangement shown in FIG. 10 is obtained, and the main carrier F received from the interrogator 12 is modulated by the sub-carriers f and f in the modem 48, for example, sc2 sc3 cl
  • the interrogator 12 cl sc2 cl sc3 receiving the reflected waves F + f, F + f from the transponder 14
  • FIG. 12 shows a signal input to the first frequency converter, that is, the first mixer 22, and
  • FIG. FIG. 3 is a diagram showing a signal which is frequency-converted and output by the first mixer 22.
  • a first signal having a frequency of about 904 MHz generated by the first local oscillator 20 is added to a reception signal RF having a frequency of about 915 MHz received by the receiving antenna 18.
  • the generated signal L ⁇ l is multiplied to generate an intermediate frequency signal IF having a frequency of about 10.48 MHz.
  • FIG. 14 is a diagram showing an intermediate signal IS output from the analog-to-digital converter 24.
  • the sampling frequency fs of the analog-to-digital converter 24 is preferably 0.8 times the frequency of the main carrier component of the intermediate frequency signal IF, that is, about 8.4 MHz. It is determined to be.
  • an intermediate signal IS having a frequency of about 0.2 times the frequency of the main carrier component of the intermediate frequency signal IF, that is, about 2.1 MHz is generated. Be born.
  • the sampling frequency fs may be set to be four times or more the frequency of the intermediate frequency signal IF. More preferably, the periodic function table can be made as simple as possible by setting the sampling frequency fs to an integral multiple of the intermediate frequency signal IF.
  • FIG. 15 is a diagram showing a demodulated signal DF output from the second frequency converter, that is, the second mixer 28. As shown in this figure, the reflected waves F
  • a demodulated signal DF in which a plurality of subcarrier signals (communication channels) are mixed is demodulated.
  • the demodulated signal DF is separated for each subcarrier signal by the controller 32 by, for example, filtering processing by Fourier transform, and then the separated signal is converted to a time series by inverse Fourier transform. For example, it is extracted as a modulated subcarrier signal as shown in FIG. 16 corresponding to FIG. Then, the same information signal as the original signal shown in FIG. 6 is detected from the subcarrier signal. Or, as shown in Figure 17 corresponding to Figure 9. After being extracted as such a modulated sub-carrier signal, the same information signal as the original signal shown in FIG. 8 is detected.
  • FIG. 18 is a flowchart for explaining a main part of the phase control operation of the second local signal L ⁇ 2 by the controller 32, which is repeatedly executed with a very short cycle time of about several msec to several tens msec. is there.
  • step (hereinafter, step is omitted) SA 1 the second local oscillation signal, that is, the second local oscillator 26, generates the second local oscillation signal L ⁇ 2.
  • SA2 the signal level of the demodulated signal DF output from the second mixer 28 is measured.
  • SA3 the signal-to-noise ratio SZN is estimated from the signal level of the demodulated signal DF measured in SA2.
  • the phase control unit 30 controls the second local oscillator 26 so that the signal generation timing of the second local oscillation signal L ⁇ 2 is delayed by one clock. The phase of the two-station signal L02 is controlled.
  • the signal level of the demodulated signal DF output from the second mixer 28 is measured as in SA2.
  • SA6 similarly to SA3, the signal level force signal-to-noise ratio S / N of the demodulated signal DF measured in SA5 is estimated.
  • SA7 it is determined whether the signal-to-noise ratio S / N that is the current estimated value is smaller than the signal-to-noise ratio S / N that is the previous estimated value. If the determination of SA7 is affirmative, the force at which the processing of SA4 and below is executed again. If the determination of SA7 is denied, the processing of SA5 and below is executed again.
  • SA2, SA3, SA5, SA6, and SA7 correspond to the reception signal processing means 42.
  • the transmitting unit 16 for transmitting the main carrier F As described above, according to the first embodiment, the transmitting unit 16 for transmitting the main carrier F
  • a receiving antenna 18 functioning as a receiving unit for receiving the reflected wave F
  • the first local oscillator 20 multiplies the received signal RF received by the receiving antenna 18 by the first local oscillator signal LOl generated by the first local oscillator 20 to generate an intermediate frequency signal IF.
  • the phase of the second local oscillation signal L02 is controlled to be the same as the phase of the main carrier component of the intermediate frequency signal IF or the intermediate signal IS, the signal-to-noise ratio is improved. It is possible to extract a signal related to the modulation having a large ratio SZN. That is, it is possible to provide the interrogator 12 of the communication system 10 that can suitably detect a signal related to modulation by the transponder 14.
  • the signal related to modulation can be appropriately detected.
  • the communication range can be expanded as much as possible.
  • a signal related to modulation by the transponder 14 can be suitably detected even when the transponder 14 is moving.
  • phase control unit 30 controls the position of the second local oscillation signal L ⁇ 2 generated by the second local oscillator 26 so that the signal-to-noise ratio S / N of the demodulated signal DF increases. Since the phase is controlled, noise and interference included in the demodulated signal DF can be removed, and a signal related to the modulation having a large signal-to-noise ratio S / N can be extracted.
  • phase control unit 30 controls the second local oscillator signal L ⁇ 2 generated by the second local oscillator 26 so that the signal-to-noise ratio S / N of the demodulated signal DF is maximized. Since the phase is controlled, an interference wave included in the demodulated signal DF can be removed, and a signal related to the modulation having a signal-to-noise ratio S / N as large as possible can be extracted.
  • an analog-to-digital converter 24 is provided between the first mixer 22 and the second mixer 28, and the second mixer 28 generates the demodulated signal DF by digital processing.
  • the phase control of the second local oscillation signal L02 by the phase control unit 30 is facilitated.
  • the second mixer 28 generates the demodulated signal DF by IQ quadrature demodulation, and the phase control unit 30 controls the second local oscillator so that the Q-phase signal is minimized. Since it controls the phase of the second local oscillation signal L02 generated by the A signal related to the modulation having a signal-to-noise ratio S / N as large as possible can be extracted.
  • the sampling frequency fs of the analog-to-digital converter 24 is determined so as to be four times or more the frequency of the intermediate frequency signal IF.
  • the phase of the signal IF or the intermediate signal IS can be accurately grasped, and a signal related to the modulation having a signal-to-noise ratio SZN as large as possible can be extracted.
  • sampling frequency fs of the analog-to-digital converter 24 is determined to be 0.8 times the frequency of the main carrier component of the intermediate frequency signal IF, a relatively inexpensive analog A digital converter 24 can be used, and a signal received at a position of 0.2 times the frequency is generated by undersampling at 0.8 times the frequency of the main carrier component of the intermediate frequency signal IF. be able to.
  • FIG. 19 is a diagram illustrating an electrical configuration of an interrogator 60 according to a second embodiment of the present invention.
  • the interrogator 60 prepares intermediate signals IS, which are digital signals output from the analog-to-digital converter 24, by the number of communication channels, and at least one of the frequency and the phase is different in each.
  • the same number of second mixers 28a, 28b, 28c as the number of communication channels functioning as a second frequency conversion unit for generating the demodulated signal DF for communication in each communication channel by the second local signal L ⁇ 2
  • a phase control unit 64 that generates a second local oscillation signal L ⁇ 2, which is a digital signal, based on a predetermined periodic function for one cycle, and supplies the signal to each second mixer 28. ing. That is, in the interrogator 60, the phase control unit 64 also functions as a second local oscillator that generates the second local oscillator signal L02.
  • the phase conversion unit 64 preferably generates a cosine wave table 66 as shown in FIG. 20 or a sine wave table 68 as shown in FIG. It is provided in a storage device or the like.
  • is a value indicating a sampling cycle with 360 ° as one cycle
  • (1 ⁇ is a value corresponding to a phase difference from the main carrier component of the intermediate signal IS.
  • Both the cosine wave table 66 and the sine wave table 68 set the sampling frequency fs to four times the frequency of the intermediate signal IS, sampled four times during one cycle, and shifted the phase difference de by 15 ° for comparison.
  • the phase control unit 64 generates the second local oscillation signal L ⁇ 2 based on a cosine wave or a sine wave corresponding to any phase difference de in the periodic function table.
  • the main carrier F generated by the main carrier oscillator 34 also has a cosine or sine wave.
  • the second local oscillation signal L ⁇ 2 having the same phase as the phase of the main carrier component of the intermediate signal IS can be generated, and the signal-to-noise ratio can be reduced. It is possible to extract a signal related to the modulation having an S / N as large as possible.
  • the period function table is not necessarily stored in the storage device in advance, but may be calculated by the controller 32 or the like as needed. 20 and 21 show tables for generating the simplest cosine wave and sine wave, but preferably, a plurality of second local oscillation signals L02 and L02 having different frequencies and / or phases. Is used.
  • the controller 32 of the interrogator 60 includes the above-described control functions shown in FIG. 4, that is, the transmission circuit control means 40, the reception signal processing means 42, and the phase control means 44.
  • the phase control means 44 generates a second local oscillation signal based on a cosine wave or a sine wave corresponding to any of the phase differences d ⁇ ⁇ in the period function table. L02 is generated by the phase control unit 64.
  • the second local oscillator signal L d2 corresponding to each phase difference d ⁇ is supplied to each second mixer 28 while sequentially changing the phase difference d ⁇ , and the signal-to-noise ratio SZN of the demodulated signal DF is Is selected as large or as large as possible.
  • the frequency of the second local oscillation signal L ⁇ 2 generated by the phase control unit 64 is controlled as necessary.
  • the frequency hopping in which the subcarrier is changed by the plurality of responders 14 is performed. Then, the reflected wave F of the entire band thus frequency-hopped is received by the interrogator 60.
  • the interrogators 60 of the second embodiment have the same number as the number of communication channels for generating the demodulated signal DF related to communication in each communication channel by the second localization signal L ⁇ 2 having at least one of different frequencies and phases. Since the second mixer 28 is provided and the second local oscillator signal L02 supplied to the plurality of second mixers 28 is controlled by the phase control unit 64 to be optimum, the plurality of second mixers 28 are provided. When the reflected wave F from the transponder 14 is mixed
  • the signal-to-noise ratio S / N is as large as possible
  • the signal relating to the key can be extracted.
  • FIG. 22 is a flowchart for explaining a main part of the phase control operation of the second station signal L ⁇ 2 using the sine wave table 68 of FIG. 21 by the controller 32, and is about several msec to several tens msec. Is repeatedly executed with an extremely short cycle time.
  • the phase difference d ⁇ of the sine wave table 68 is set to an initial value, that is, 0 °.
  • SB2 the signal level of the demodulated signal DF output from the second mixer 28 is measured.
  • SB3 the signal-to-noise ratio S / N is estimated from the signal level of the demodulated signal DF measured in SB2.
  • SB4 corresponding to the phase control means 44, the phase difference de of the sine wave table 68 is changed by + 15 °.
  • SB5 the signal level of the demodulated signal DF output from the second mixer 28 is measured as in SB2.
  • SB6 the signal-to-noise ratio S / N is estimated from the signal level of the demodulated signal DF measured in SB5 as in SB3.
  • SB7 it is determined whether or not the signal-to-noise ratio S / N, which is the current estimated value, is smaller than the signal-to-noise ratio SZN, which is the previous estimated value. If the determination of SB7 is affirmative, the processing below SB4 is executed again, but if the determination of SB7 is denied, The processing of SB5 and below is executed again.
  • SB2, SB3, SB5, SB6, and SB7 correspond to the reception signal processing means 42.
  • the plurality of second mixers 28 functioning as the second frequency conversion unit are provided, and each of the plurality of second mixers 28 has at least a frequency and a phase. Since one of them is for generating the demodulated signal DF using the different second local oscillation signal L02, the interrogator 12 and the interrogator 12 respectively respond to the reflected waves F from the plurality of transponders 14.
  • the demodulation signal DF can be generated in accordance with the distance from the transponder 14 or the like.
  • demodulation processing can be performed for each of these subcarriers at the same time, so even when reflected waves F from a plurality of transponders 14 are mixed. Modulation by those transponders 14
  • the same number of second mixers 28 as the number of communication channels are provided, and the plurality of second mixers 28 are provided.
  • the demodulation signal DF related to communication in each communication channel is generated by the second local oscillation signal L02 having at least one of a frequency and a phase different from each other, so that the same number of channels as the maximum number of communication is established.
  • the communication band can be used to the maximum.
  • phase control unit 64 controls the frequency and phase of the second local oscillation signal L ⁇ 2 based on a period function for one predetermined period, the predetermined period By calculating the second local oscillation signal L02 using the function, the load S on the phase control unit 64 can be reduced.
  • the phase control unit 64 generates any one of the second local oscillation signals L ⁇ 2 of the plurality of second local oscillation signals L02 having at least one of a predetermined frequency and a different phase. Therefore, the load on the phase control unit 64 can be reduced as much as possible by using the predetermined second local oscillation signal L ⁇ 2.
  • phase control unit 64 controls the frequency and phase of the second local oscillation signal L ⁇ 2 based on a period function for one period calculated in advance, the phase control unit 64 By calculating the second local oscillation signal L02 by repeatedly using the function, the load on the phase control unit 64 can be reduced, and the data to be stored in a storage device or the like in advance can be reduced. It is relatively small.
  • the phase control unit 64 generates any one of the second local oscillation signals L ⁇ 2 of the plurality of second local oscillation signals L02 that are different in at least one of the frequency and the phase calculated in advance. Therefore, the load on the phase control unit 64 can be reduced as much as possible by repeatedly using the second local oscillation signal L ⁇ 2 calculated in advance, and the data to be held in the storage device or the like in advance is reduced. Relatively small.
  • the number of the second frequency conversion units may be increased or decreased according to the number of transponders 14. Since digital processing is used, the number of parallel processes can be easily changed, and by preparing only the number required for communication, the efficiency of demodulation can be increased.
  • the second frequency converters are prepared by the same number as the number of phases determined in the sine wave table 68 and the like, and each output power signal-to-noise ratio S / N of the second frequency converter has a specified value. By selecting the above, the efficiency of demodulation processing can be increased as much as possible.
  • FIG. 23 is a diagram illustrating an electrical configuration of an interrogator 70 according to a third embodiment of the present invention.
  • the interrogator 70 includes a distributor 72 that distributes the main carrier F generated by the main carrier oscillator 34 to a transmission signal and a cancel signal CS, and a corresponding part.
  • the multiplexer 78 is configured to include a cancel signal CS whose amplitude and phase have been adjusted by the adjusting unit 76 and a reflected wave F received by the receiving antenna 18 and output the combined signal. So
  • the combined signal output from the multiplexer 78 is input to the first frequency converter, that is, the first mixer 22.
  • the intermediate signal IS output from the analog-to-digital converter 24 is supplied to the controller 32 via a third mixer 84 and a low-pass filter 86.
  • the main carrier oscillating unit 34, the distributor 72, the amplifier 36, and the transmitting unit 38 to the transmitting unit 80 transmit the receiving antenna 18, the cancel signal amplitude adjustment.
  • the receiving unit 82 is composed of the unit 74, the cancel signal phase adjusting unit 76, and the multiplexer 78.
  • FIG. 24 is a functional block diagram for explaining the control function of the controller 32 provided in the interrogator 70.
  • the cancel circuit control means 88 shown in FIG. 24 adjusts the amplitude and phase of the cancel signal CS via the cancel signal amplitude adjuster 74 and cancel signal phase adjuster 76 so that the output of the multiplexer 78 is reduced. adjust. That is, the main carrier component of the reflected wave F received by the receiving antenna 18 is canceled.
  • the main carrier component of the reflected wave F before the frequency conversion by the first frequency conversion unit, that is, the first mixer 22 is performed.
  • the amplitude and phase of the cancel signal CS are set such that the intermediate signal IS or its main carrier component supplied to the controller 32 via the third mixer 84 and the low-pass filter 86 is as small as possible. adjust.
  • FIG. 25 shows that the received signal (cancellation circuit off) directly input from the receiving antenna 18 to the first mixer 22 is multiplied by the cancel signal CS by the multiplexer 78, and then the first mixer 22 is multiplied.
  • 7 is a graph showing a comparison with a reception signal (cancellation circuit ON) input to the IGBT.
  • the SCR Signal Carrier Ratio
  • the relative proportion of the subcarrier component related to the modulation by the transponder 14 can be increased by that amount, and the response which is extremely small compared to the main carrier F Signals related to modulation by the modulator 14 can be easily extracted cl
  • FIG. 26 is a flowchart for explaining a main part of the cancel signal control operation by the controller 32, which is repeatedly executed with a very short cycle time of about several msec to several tens msec.
  • the gain level of the cancel signal amplitude adjustment unit 74 is set to the minimum value.
  • the phase amount of the cancel signal phase adjuster 76 is set to 0 °.
  • SC3 the analog-to-digital converter 24
  • +1 is added to the gain level of the cancel signal amplitude adjustment unit 74
  • SC5 the signal level of the intermediate signal IS is measured again.
  • SC6 it is determined whether or not the signal level which is the current measured value is lower than the signal level which is the previous measured value. If the determination at SC6 is affirmative, the processing after SC4 is executed again.
  • SC10 it is determined whether or not the signal level which is the current measurement value is smaller than the signal level which is the previous measurement value. If the determination of SC10 is affirmative, the force at which the processing of SC8 and below is executed again is rejected. If the determination of SC10 is denied, the amount of phase of the cancel signal After being reduced by 1 °, the processing below SC4 is executed again.
  • SC1 to SC11 correspond to the cancel circuit control means 88.
  • the transmitting section 80 generates the main carrier F.
  • a main carrier oscillating unit 34 for distributing the main carrier F generated by the main carrier oscillating unit 34 into a transmission signal and a cancel signal CS.
  • An amplifier 36 that functions as a transmission signal amplifying unit that amplifies the distributed transmission signal, and a transmission antenna 38 that transmits the transmission signal, is provided.
  • a cancel signal amplitude adjuster 74 for adjusting the amplitude of the cancel signal CS distributed by the distributor 72
  • a cancel signal phase adjuster 76 for adjusting the phase of the cancel signal CS
  • a multiplexer 78 that combines the cancel signal CS whose amplitude and phase has been adjusted by the cancel signal amplitude adjuster 74 and the cancel signal phase adjuster 76 and the reflected wave F received by the receiving antenna 18 and outputs the combined signal.
  • the cancel signal amplitude adjuster 74 and the cancel signal phase adjuster 76 adjust the amplitude and phase of the cancel signal CS so that the output of the multiplexer 78 is reduced.
  • the first mixer 22 functioning as a frequency conversion unit By suppressing the main carrier component of the reflected wave F prior to frequency conversion, signal
  • a signal related to the modulation having a sound ratio S / N as large as possible can be extracted.
  • FIG. 27 is a diagram illustrating an electrical configuration of an interrogator 90 according to a fourth embodiment of the present invention.
  • the interrogator 90 transmits the main carrier F as an alternative to the receiving antenna 18 and the transmitting antenna 38 in the interrogator 70 of the third embodiment described above.
  • the transmitting and receiving antenna 92 for receiving the reflected wave F and the amplifier 36 amplify the reflected wave F.
  • a transmission / reception separator 94 for transmitting the received transmission signal to the transmission / reception antenna 92 and supplying the reflected wave F received by the transmission / reception antenna 92 to the multiplexer 78.
  • the main carrier oscillating section 34, distributor 72, amplifier 36, transmitting / receiving antenna 92, and transmitting / receiving separator 94 to transmitting section 96 transmit the cancel signal amplitude adjusting section 74, cancel signal phase adjusting section 76,
  • a receiving unit 98 is composed of the multiplexer 78 and the transmitting / receiving antenna 92, respectively.
  • the main carrier F is transmitted and the reflection
  • An amplifier 36 functioning as a transmission signal amplifying unit for amplifying the transmission signal distributed by 2; a transmission signal amplified by the amplifier 36 being transmitted to the transmission / reception antenna 92; and a reflection received by the transmission / reception antenna 92. Transmit wave F to receiver 98
  • a transmission / reception separator 94 is provided.
  • the reception unit 98 adjusts the phase of the cancellation signal CS and the cancellation signal amplitude adjustment unit 74 that adjusts the amplitude of the cancellation signal CS distributed by the distributor 72.
  • a cancel signal phase adjuster 76, the cancel signal CS whose amplitude and phase have been adjusted by the cancel signal amplitude adjuster 74 and the cancel signal phase adjuster 76, and the reflected wave F received by the transmitting / receiving antenna 92 are combined.
  • the interrogator 90 is set to a small cl rf
  • FIG. 28 is a diagram illustrating an electrical configuration of an interrogator 100 according to a fifth embodiment of the present invention.
  • the interrogator 100 includes a reference frequency oscillator 102 that generates a predetermined reference frequency, and a signal generated by the reference frequency oscillator 102 is a PLL (Phase Locked) signal.
  • the signal is supplied to the main carrier oscillator 34 via a loop 104 and to the first local oscillator 20 via a PLL 106.
  • the main carrier oscillator 34 and the first local oscillator 20 are supplied to the reference frequency oscillator 102 by the reference frequency oscillator 102.
  • the frequency generated by the predetermined frequency oscillator generally varies depending on factors such as temperature, but according to the fifth embodiment, the main carrier F and the first station oscillate.
  • the frequency shift is less likely to occur, and the generation of unnecessary low frequency signals can be suppressed.
  • FIG. 29 is a diagram illustrating an electrical configuration of an interrogator 110 according to a sixth embodiment of the present invention.
  • the interrogator 110 includes a main carrier F generated by the main carrier oscillator 34 and a first station generated by the first local oscillator 20.
  • a second cancel signal mixer 112 that synthesizes the second cancel signal CS2 by multiplying the generated signal L ⁇ l and a second cancel signal mixer 112 that adjusts the amplitude of the second cancel signal CS2 synthesized by the second cancel signal mixer 112
  • a second combiner 118 that combines and outputs the second cancel signal CS2 whose amplitude and phase have been adjusted and the intermediate frequency signal IF generated by the first frequency converter, that is, the first mixer 22 is output. , Is provided.
  • the synthesized signal output from the second multiplexer 118 is converted into a digital signal by the analog-to-digital converter 24 and input to the band division filter 62 and the second frequency conversion unit.
  • FIG. 30 is a functional block diagram illustrating a control function of the controller 32 provided in the interrogator 110.
  • the second cancel circuit control means 120 shown in FIG. Adjust the amplitude and phase of the second cancel signal CS2. That is, by controlling the amplitude and phase of the second cancel signal CS2 so as to cancel the main carrier component of the intermediate frequency signal IF generated by the first mixer 22, prior to the frequency conversion by the second frequency conversion unit.
  • the main carrier component of the intermediate frequency signal IF is made as small as possible.
  • the amplitude of the second cancellation signal CS2 is set such that the intermediate signal IS or its main carrier component input to the controller 32 via the third mixer 84 and the low-pass filter 86 is as small as possible. And adjust the phase.
  • FIG. 31 is a flowchart for explaining a main part of the second cancel signal control operation by the controller 32, which is repeatedly executed with a very short cycle time of about several msec to several tens msec.
  • the gain level of the second cancel signal amplitude adjustment unit 114 is set to a minimum value.
  • the phase amount of the second cancel signal phase adjuster 116 is set to 0 °.
  • the signal level of the intermediate signal IS supplied from the analog-to-digital converter 24 via the third mixer 84 and the low-pass filter 86 is measured.
  • +1 is added to the gain level of the second cancel signal amplitude adjustment unit 114, and then in SD5, the signal level of the intermediate signal IS is measured again.
  • SD6 it is determined whether or not the signal level which is the current measured value is lower than the signal level which is the previous measured value.
  • the second cancel signal phase adjuster After the phase amount of 116 is increased by 1 °, the signal level of the intermediate signal IS is measured again at SD9.
  • SD10 it is determined whether or not the signal level which is the current measurement value is smaller than the signal level which is the previous measurement value. If the determination of SD10 is affirmative, the force at which the processing below SD8 is executed again If the determination of SD10 is denied, the phase amount of the second cancel signal phase adjustment unit 116 is set to 1 in SD11. ° After being reduced, the processing after SD4 is executed again.
  • SD1 to SD11 correspond to the second cancel circuit control means 120.
  • a second cancel signal mixer 112 for multiplying the first local signal LOl generated by the oscillator 20 to synthesize a second cancel signal CS2; and a second cancel signal mixer 112 for synthesizing the second cancel signal mixer 112.
  • a second cancel signal amplitude adjuster 114 for adjusting the amplitude of the cancel signal CS2, a second cancel signal phase adjuster 116 for adjusting the phase of the second cancel signal CS2, the second cancel signal amplitude adjuster 114,
  • the second cancellation signal CS2, the amplitude and phase of which is adjusted by the second cancellation signal phase adjustment unit 116, and the first frequency conversion unit, that is, the intermediate frequency signal IF generated by the first mixer 22, are combined and output.
  • a second multiplexer 118, and the second cancel signal amplitude adjuster 114 and the second cancel signal phase adjuster 116 are configured to reduce the output of the second multiplexer 118. Since the amplitude and the phase of the second cancel signal CS2 are adjusted, the main carrier component of the intermediate frequency signal IF or the intermediate signal IS converted therefrom is suppressed prior to the frequency conversion by the second frequency conversion unit. This makes it possible to extract a signal related to the modulation having a signal-to-noise ratio S / N as large as possible.
  • FIG. 32 is a diagram illustrating an electrical configuration of an interrogator 130 according to a seventh embodiment of the present invention.
  • the interrogator 130 divides the frequency of the second cancel signal CS2 synthesized by the second cancel signal mixer 112 to 0.2 times the frequency to generate a frequency-divided signal SS.
  • a clock signal mixer 134 that generates a clock signal CL by multiplying the clock signal CL by multiplying the second cancel signal CS2 synthesized by the Janssel signal mixer 112, and the clock signal CL generated by the clock signal mixer 134.
  • the sampling signal of the analog-to-digital converter 24 is generated based on the main carrier F.
  • the analog-to-digital converter 24 is provided between the first frequency converter and the second frequency converter, and the frequency conversion in the second frequency converter is performed by digital processing.
  • the analog-to-digital converter 24 is not necessarily provided, and may perform the frequency conversion in the second frequency converter by analog processing.
  • an analog-to-digital converter 24 may be provided between the receiving antenna 18 and the first frequency converter, and may perform frequency conversion in the first frequency converter by digital processing.
  • the first local oscillator 20, the first mixer 22, the second local oscillator 26, the second mixer 28, the phase control unit 30, the main carrier oscillation unit 34, and the amplifier 36 may be replaced by the control function of the controller 32.
  • the modulation of the main carrier F cl is not performed in the transmission unit 16 or the like of the interrogator 12, but the main carrier F is replaced with the ID of the interrogator 12 as necessary.
  • the signal may be transmitted from the transmission antenna 38 or the like after being modulated by ASK modulation or the like based on information such as a predetermined hopping timing and a hopping pattern.
  • the sub-carrier modulating section 56 of the transponder 14 converts the sub-carrier generated by the sub-carrier oscillating section 54 into phase modulation (PSK) based on a predetermined information signal.
  • PSK phase modulation
  • the primary modulation is performed in the above, the modulation may be performed by, for example, frequency modulation (FSK) or the like, and is appropriately set according to the mode of the communication system 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Near-Field Transmission Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 応答器による変調に関する信号を好適に検出できる通信システムの質問器を提供する。  受信信号RFに第1ローカルオシレータ(20)により発生させられた第1局発信号LO1を掛け合わせて中間周波数信号IFを生成する第1ミキサ(22)と、その中間周波数信号IFに第2ローカルオシレータ(26)により発生させられた第2局発信号LO2を掛け合わせて復調信号DFを生成する第2ミキサ(28)と、その第2ローカルオシレータ(26)により発生させられる第2局発信号LO2の位相を制御する位相制御部(30)とを、備えたものであることから、第2局発信号LO2の位相を前記中間周波数信号IFの主搬送波成分の位相と同相になるように制御すること等により、信号対雑音比S/Nの可及的に大きな前記変調に関する信号を取り出すことができる。

Description

明 細 書
通信システムの質問器
技術分野
[0001] 本発明は、質問器力 主搬送波を送信して、その主搬送波を受信した応答器がそ の主搬送波に対して所定の変調を行った反射波をその質問器に返信する通信シス テムの質問器に関する。
^景技術
[0002] 質問器から主搬送波を送信して、その主搬送波を受信した応答器がその主搬送波 に対して所定の変調を行った反射波をその質問器に返信する通信システムが知られ ている。例えば、特許文献 1に記載された自動利得制御回路は、前記応答器による 変調に関する信号を高精度に検出するために斯かる通信システムに適用される。す なわち、この自動利得制御回路は、応答器の移動や妨害波等の影響で入力受信電 界が希望電界より大きくずれた場合に、その差分の利得を一度に調整した後、もう一 方のレベル検出'判定回路により微調整を行うことで、高精度且つ俊敏な利得制御 の実現を意図したものである。
特許文献 1 :特許第 3105825号公報
[0003] しかし、前記応答器による変調に関する信号すなわち伝送される情報信号は極め て小さなものであるため、従来の技術では、通信距離が比較的長い場合や複数の前 記応答器力 の反射波が混在する場合等においては、前記応答器による変調に関 する信号を必ずしも好適には検出できなかった。
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、 応答器による変調に関する信号を好適に検出できる通信システムの質問器を提供す ることにある。
課題を解決するための手段
[0005] 斯かる目的を達成するために、本発明の要旨とするところは、質問器から主搬送波 を送信して、その主搬送波を受信した応答器がその主搬送波に対して所定の変調を 行った反射波をその質問器に返信する通信システムのその質問器であって、前記主 搬送波を送信するための送信部と、前記反射波を受信するための受信部と、その受 信部により受信された受信信号に第 1ローカルオシレータにより発生させられた第 1 局発信号を掛け合わせて中間周波数信号を生成する第 1周波数変換部と、その第 1 周波数変換部により生成された中間周波数信号若しくはそれから変換された信号で ある中間信号に第 2ローカルオシレータにより発生させられた第 2局発信号を掛け合 わせて復調信号を生成する第 2周波数変換部と、その第 2ローカルオシレータにより 発生させられる第 2局発信号の位相を制御する位相制御部とを、備えたことを特徴と するものである。
発明の効果
[0006] このようにすれば、前記主搬送波を送信するための送信部と、前記反射波を受信 するための受信部と、その受信部により受信された受信信号に第 1ローカルオシレー タにより発生させられた第 1局発信号を掛け合わせて中間周波数信号を生成する第 1周波数変換部と、その第 1周波数変換部により生成された中間周波数信号若しくは それから変換された信号である中間信号に第 2ローカルオシレータにより発生させら れた第 2局発信号を掛け合わせて復調信号を生成する第 2周波数変換部と、その第 2ローカルオシレータにより発生させられる第 2局発信号の位相を制御する位相制御 部とを、備えたものであることから、例えば、前記第 2局発信号を目的波と同相の信号 に制御したり、妨害波と直交した信号となるように制御したり、それらの制御を同時に 行うこと等により、主搬送波成分や妨害波成分を小さくすることができ、信号対雑音比 の大きな前記変調に関する信号を取り出すことができる。すなわち、応答器による変 調に関する信号を好適に検出できる通信システムの質問器を提供することができる。
[0007] ここで、好適には、前記位相制御部は、前記復調信号の信号対雑音比が大きくな るように前記第 2ローカルオシレータにより発生させられる第 2局発信号の位相を制御 するものである。このようにすれば、前記復調信号に含まれる妨害波を除去すること 力 Sでき、信号対雑音比の大きな前記変調に関する信号を取り出すことができる。
[0008] また、好適には、前記位相制御部は、前記復調信号の信号対雑音比が最大となる ように前記第 2ローカルオシレータにより発生させられる第 2局発信号の位相を制御 するものである。このようにすれば、前記復調信号に含まれる妨害波を除去すること 力 Sでき、信号対雑音比の可及的に大きな前記変調に関する信号を取り出すことがで きる。
[0009] また、好適には、前記第 1周波数変換部と第 2周波数変換部との間にアナログデジ タル変換器を備え、その第 2周波数変換部は、デジタル処理により前記復調信号の 生成を行うものである。このようにすれば、前記位相制御部による前記第 2局発信号 の位相制御が容易になる。
[0010] また、好適には、前記位相制御部は、予め定められた一周期分の周期関数に基づ レ、て前記第 2ローカルオシレータにより発生させられる第 2局発信号の周波数及び位 相を制御するものである。このようにすれば、前記位相制御部における負荷を軽減す ること力 Sできる。
[0011] また、好適には、前記位相制御部は、予め定められた周波数及び位相の少なくとも 一方が異なる複数の第 2局発信号のうち何れかの値となるように前記第 2ローカルォ シレータにより発生させられる第 2局発信号を制御するものである。このようにすれば 、前記位相制御部における負荷を可及的に軽減することができる。
[0012] また、好適には、前記位相制御部は、予め算出される一周期分の周期関数に基づ レ、て前記第 2ローカルオシレータにより発生させられる第 2局発信号の周波数及び位 相を制御するものである。このようにすれば、前記位相制御部における負荷を軽減す ること力 Sできることに加え、予め記憶装置等に保持すべきデータが比較的小さくて済 む。
[0013] また、好適には、前記位相制御部は、予め算出される周波数及び位相の少なくとも 一方が異なる複数の第 2局発信号のうち何れかの値となるように前記第 2ローカルォ シレータにより発生させられる第 2局発信号を制御するものである。このようにすれば 、前記位相制御部における負荷を可及的に軽減することができることに加え、予め記 憶装置等に保持すべきデータが比較的小さくて済む。
[0014] また、好適には、複数の前記第 2周波数変換部を備え、それら複数の第 2周波数変 換部それぞれにおいて周波数及び位相の少なくとも一方が異なる第 2局発信号によ り前記復調信号の生成を行うものである。このようにすれば、複数の前記応答器から の反射波に対して、前記質問器とそれぞれの応答器との距離等に合わせて前記復 調信号の生成を行うことができる。
[0015] また、好適には、通信チャンネル数と同数の前記第 2周波数変換部を備え、それら 複数の第 2周波数変換部それぞれにおいて周波数及び位相の少なくとも一方が異 なる第 2局発信号により各通信チャンネルにおける通信に関する前記復調信号の生 成を行うものである。このようにすれば、通信が成り立つ最大数であるチャンネル数と 同数の前記第 2周波数変換部を備えていることで、通信帯域を最大限に利用できる
[0016] また、好適には、通信チャンネル数を最大として通信対象となる前記応答器の数に 応じて前記第 2周波数変換部の数を増減するものである。このようにすれば、デジタ ル処理により必要にして十分な数の前記第 2周波数変換部を用意することで、前記 質問器の負荷を低減することができる。
[0017] また、好適には、前記周期関数と同数の前記第 2周波数変換部を備えたものである 。このようにすれば、必要にして十分な数の前記第 2周波数変換部それぞれにおい て、信号対雑音比が規定値以上とされる信号を選択することで、位相制御を簡略化 できると共に復調処理を高速化できる。
[0018] また、好適には、前記第 2周波数変換部は、 IQ直交復調により前記復調信号の生 成を行うものであり、前記位相制御部は、 Q相の信号が最小となるように前記第 2ロー カルオシレータにより発生させられる第 2局発信号の位相を制御するものである。この ようにすれば、例えば、前記応答器が 2値の変調を行っている場合等には、 IQ直交 復調において、主搬送波成分が含まれないことを条件として、理想的には I相若しく は Q相の何れか一方が零となったときに他方の信号が最大となることから、 Q相の信 号が最小となるように前記第 2局発信号の位相を制御することにより、信号対雑音比 の可及的に大きな前記変調に関する信号を取り出すことができる。
[0019] また、好適には、前記アナログデジタル変換器のサンプリング周波数は、前記中間 周波数信号の周波数の 4倍以上となるように定められるものである。このようにすれば 、前記第 2周波数変換部において、前記中間周波数信号若しくは中間信号の主搬 送波成分をより好適に抑圧できる。
[0020] また、好適には、前記アナログデジタル変換器のサンプリング周波数は、前記中間 周波数信号の主搬送波成分の周波数に応じて定められるものである。例えば、前記 サンプリング周波数を前記中間周波数の 0. 8倍となるようにすれば、比較的安価な アナログデジタル変換器を使用して、前記中間周波数信号の主搬送波成分の 0. 8 倍の周波数でアンダーサンプリングし、キャリア周波数を前記中間周波数の 0. 2倍の 周波数となるように受信した信号の周波数を変換することができる。
[0021] また、好適には、前記送信部は、前記主搬送波を発生させる主搬送波発振部と、そ の主搬送波発振部により発生させられた主搬送波を送信信号とキャンセル信号とに 分配する分配器と、その分配器により分配された送信信号を増幅する送信信号増幅 部と、その送信信号を送信する送信アンテナとを、備え、前記受信部は、前記反射波 を受信する受信アンテナと、前記分配器により分配されたキャンセル信号の振幅を調 整するキャンセル信号振幅調整部と、そのキャンセル信号の位相を調整するキャン セル信号位相調整部と、前記キャンセル信号振幅調整部及びキャンセル信号位相 調整部により振幅及び位相が調整されたキャンセル信号と前記受信アンテナにより 受信された反射波とを合成して出力する合波器とを、備え、前記キャンセル信号振幅 調整部及びキャンセル信号位相調整部は、前記合波器の出力が小さくなるように前 記キャンセル信号の振幅及び位相を調整するものである。このようにすれば、前記第 1周波数変換部による周波数変換に先んじて前記反射波の主搬送波成分を抑圧す ることで、信号対雑音比又は信号対妨害波比の可及的に大きな前記変調に関する 信号を取り出すことができる。
[0022] また、好適には、前記主搬送波を送信すると共に、前記反射波を受信する送受信 アンテナを備え、前記送信部は、前記主搬送波を発生させる主搬送波発振部と、そ の主搬送波発振部により発生させられた主搬送波を送信信号とキャンセル信号とに 分配する分配器と、その分配器により分配された送信信号を増幅する送信信号増幅 部と、その送信信号増幅部により増幅された送信信号を前記送受信アンテナへ伝達 させると共に、その送受信アンテナにより受信された反射波を前記受信部へ伝達さ せる送受分離器とを、備え、前記受信部は、前記分配器により分配されたキャンセル 信号の振幅を調整するキャンセル信号振幅調整部と、そのキャンセル信号の位相を 調整するキャンセル信号位相調整部と、前記キャンセル信号振幅調整部及びキャン セル信号位相調整部により振幅及び位相が調整されたキャンセル信号と前記送受 信アンテナにより受信された反射波とを合成して出力する合波器とを、備え、前記キ ヤンセル信号振幅調整部及びキャンセル信号位相調整部は、前記合波器の出力が 小さくなるように前記キャンセル信号の振幅及び位相を調整するものである。このよう にすれば、前記送受信アンテナにより前記主搬送波の送信及び前記反射波の受信 が可能であることから、前記質問器を小型化することができる。
[0023] また、好適には、前記主搬送波を発生させる主搬送波発振部と、所定の基準周波 数を発生させる基準周波数発振器とを、備え、前記主搬送波発振部及び第 1ロー力 ルオシレータは、前記基準周波数発振器により発生させられた基準周波数に基づい て前記主搬送波及び第 1局発信号を発生させるものである。このようにすれば、前記 主搬送波及び第 1局発信号に関して基準周波数を共通化することで、中間周波数信 号の周波数の変動が起こり難くなる。また、比較的高い精度を有する基準周波数発 振器を用いることで、それに応じた高い周波数精度の主搬送波や中間周波数信号を 得ることができ、復調処理の精度を高めることができる。
[0024] また、好適には、前記主搬送波を発生させる主搬送波発振部と、その主搬送波発 振部により発生させられた主搬送波と前記第 1ローカルオシレータにより発生させら れた第 1局発信号とを掛け合わせてキャンセル信号を合成するキャンセル信号ミキサ と、そのキャンセル信号ミキサにより合成されたキャンセル信号の振幅を調整するキヤ ンセル信号振幅調整部と、そのキャンセル信号の位相を調整するキャンセル信号位 相調整部と、前記キャンセル信号振幅調整部及びキャンセル信号位相調整部により 振幅及び位相が調整されたキャンセル信号と前記第 1周波数変換部により生成され た中間周波数信号とを合成して出力する合波器とを、備え、前記キャンセル信号振 幅調整部及びキャンセル信号位相調整部は、前記合波器の出力が小さくなるように 前記キャンセル信号の振幅及び位相を調整するものである。このようにすれば、前記 第 2周波数変換部による周波数変換に先んじて前記中間周波数信号若しくはそれか ら変換された中間信号の主搬送波成分を抑圧することで、信号対雑音比の可及的 に大きな前記変調に関する信号を取り出すことができる。
[0025] また、好適には、前記キャンセル信号ミキサにより合成されたキャンセル信号を 0. 2 倍の周波数に分周して分周信号を生成する分周器と、その分周器により生成された 分周信号と前記キャンセル信号ミキサにより合成されたキャンセル信号とを掛け合わ せてクロック信号を生成するクロック信号ミキサとを、備え、そのクロック信号ミキサによ り生成されたクロック信号を前記アナログデジタル変換器のクロックとして用レ、るもの である。このようにすれば、前記主搬送波に基づいて前記アナログデジタル変換器の サンプリング信号を生成することで、その主搬送波とサンプリング周期とのずれによる 誤差が発生し難くなる。
[0026] また、好適には、前記主搬送波を発生させる主搬送波発振部と、その主搬送波発 振部により発生させられた主搬送波と前記第 1ローカルオシレータにより発生させら れた第 1局発信号とを掛け合わせて中間周波信号を合成する中間周波信号ミキサと 、その中間周波信号ミキサにより合成された中間周波信号を分周して分周信号を生 成する分周器と、その分周器により生成された分周信号と前記中間周波信号ミキサ により合成された中間周波信号とを掛け合わせてクロック信号を生成するクロック信 号ミキサとを、備え、そのクロック信号ミキサにより生成されたクロック信号を前記アナ ログデジタル変換器のクロックとして用いるものである。このようにすれば、前記主搬 送波に基づいて前記アナログデジタル変換器のクロック信号を生成することで、その 主搬送波とサンプリング周期とのずれによる誤差が発生し難くなる。
[0027] また、好適には、前記分周器は中間周波数信号を 0. 2倍の周波数に分周して分周 信号を生成するものである。このようにすれば、前記主搬送波に基づいて好適に前 記アナログデジタル変換器のクロック信号を生成することができる。
図面の簡単な説明
[0028] [図 1]本発明が好適に適用される通信システムの構成を説明する図である。
[図 2]図 1の通信システムで使用される主搬送波と反射波との関係を示す図である。
[図 3]第 1実施例の質問器の電気的構成を説明する図である。
[図 4]図 3の質問器に備えられたコントローラの制御機能を説明する機能ブロック線図 である。 [図 5]図 1の応答器の構成を説明するブロック線図である。
[図 6]図 5の応答器の各部における信号の状態を示す図であり、変調に関する情報 信号を示している。
[図 7]図 5の応答器の各部における信号の状態を示す図であり、変調に関する情報 信号を示している。
[図 8]図 5の応答器の各部における信号の状態を示す図であり、副搬送波を示してレ、 る。
[図 9]図 5の応答器の各部における信号の状態を示す図であり、副搬送波を示してレ、 る。
[図 10]図 5の応答器の各部における信号の状態を示す図であり、ある時点における 副搬送波の周波数配置を示している。
[図 11]図 5の応答器の各部における信号の状態を示す図であり、ある時点における 反射波の周波数配置を示している。
[図 12]図 4の質問器の各部における信号の状態を示す図であり、第 1周波数変換部 に入力される信号を示してレ、る。
[図 13]図 4の質問器の各部における信号の状態を示す図であり、第 1周波数変換部 力 出力される信号を示している。
[図 14]図 4の質問器の各部における信号の状態を示す図であり、アナログデジタノレ 変換器から出力される信号を示している。
[図 15]図 4の質問器の各部における信号の状態を示す図であり、第 2周波数変換部 力 出力される信号を示している。
[図 16]図 4の質問器の各部における信号の状態を示す図であり、図 7の情報信号に 対応する副搬送波信号を示してレヽる。
[図 17]図 4の質問器の各部における信号の状態を示す図であり、図 9の情報信号に 対応する副搬送波信号を示してレヽる。
[図 18]図 4のコントローラによる第 2局発信号の位相制御作動の要部を説明するフロ 一チャートである。
[図 19]第 2実施例の質問器の電気的構成を説明する図である。 [図 20]図 19の質問器に備えられた周期関数テーブルを例示する図であり、余弦波テ 一ブルを示している。
[図 21]図 19の質問器に備えられた周期関数テーブルを例示する図であり、正弦波テ 一ブルを示している。
[図 22]図 19のコントローラによる第 2局発信号の位相制御作動の要部を説明するフ ローチャートである。
[図 23]第 3実施例の質問器の電気的構成を説明する図である。
[図 24]図 23の質問器に備えられたコントローラの制御機能を説明する機能ブロック線 図である。
[図 25]図 23の合波器によりキャンセル信号を掛け合わされた後に第 1周波数変換部 に入力される受信信号と、受信アンテナから第 1周波数変換部に直接入力される受 信信号とを比較して示すグラフである。
[図 26]図 23のコントローラによるキャンセル信号制御作動の要部を説明するフローチ ヤートである。
[図 27]第 4実施例の質問器の電気的構成を説明する図である。
[図 28]第 5実施例の質問器の電気的構成を説明する図である。
[図 29]第 6実施例の質問器の電気的構成を説明する図である。
[図 30]図 29の質問器に備えられたコントローラの制御機能を説明する機能ブロック線 図である。
[図 31]図 30のコントローラによるキャンセル信号制御作動の要部を説明するフローチ ヤートである。
[図 32]第 7実施例の質問器の電気的構成を説明する図である。
符号の説明
10 :通信システム
12、 60、 70、 90、 100、 110、 130 :質問器
14a, 14b、 14c、 14d :応答器
16、 80、 96 :送信部
18 :受信アンテナ (受信部) :第 1ローカルオシレータ :第 1ミキサ (第 1周波数変換部) :アナログデジタル変換器 :第 2ローカルオシレータ :第 2ミキサ(第 2周波数変換部) 、 64 :位相制御部
:コントローラ
:主搬送波発振部
:増幅器 (送信信号増幅部):送信アンテナ
:送信回路制御手段
:受信信号処理手段
:位相制御手段
:アンテナ
:変復調器
:デジタル回路部
:コントローラ
:副搬送波発振部
:副搬送波変調部
:帯域分割フィルタ
:余弦波テーブル
:正弦波テーブル
:分配器
:キャンセル信号振幅調整部 :キャンセル信号位相調整部:合波器
、 98 :受信部
:第 3ミキサ 86 :ローパスフィノレタ
88:キャンセル回路制御手段
92 :送受信アンテナ
94 :送受分離器
102 :基準周波数発振器
104、 106 : PLL
112 :第 2キャンセル信号ミキサ
114 :第 2キャンセル信号振幅調整部
116 :第 2キャンセル信号位相調整部
118 :第 2合波器
120:第 2キャンセル回路制御手段
132 :分周器
134 :クロック信号ミキサ
発明を実施するための最良の形態
[0030] 以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明する。
実施例 1
[0031] 図 1は、本発明が好適に適用される通信システム 10の構成を説明する図である。こ の通信システム 10は、本発明の第 1実施例である質問器 12と、複数(図 1では 4体) の応答器 14a、 14b、 14c、 14d (以下、特に区別しない場合には単に応答器 14と称 する)とから構成されており、その質問器 12から主搬送波 F が送信されると、その主
cl
搬送波 F を受信した上記応答器 14aから反射波 F 応答器 14bから反射波 F
r2 、応答器 14cから反射波 F 、応答器 14dから反射波 F がそれぞれ返信される。
r3 r4
すなわち、上記応答器 14aでは、所定の情報信号 (データ)により 1次変調された副 搬送波(サブキャリア)信号 f により上記主搬送波 F 力 ¾次変調されて反射波 F
scl c丄 rl が生成されて前記質問器 12に返信される。また、他の応答器 14b乃至 14dについて も同様に反射波 F 、 F 、 F (以下、特に区別しない場合には単に反射波 F と称す
r2 3 r4 rf る)が生成されて前記質問器 12に返信される。
[0032] 図 2は、上記通信システム 10で使用される主搬送波と反射波との関係を示す図で ある。上記応答器 14における副搬送波信号の周波数は、好適には、各応答器 14毎 に異なる態様で周波数ホッピングされる。例えば、上記応答器 14a乃至 14dにおいて F ±f F ±f F ±f F ±f の側波帯信号が発生させられるが、図 c scl c sc2 cl sc3 cl sc4
2に示すように、タイミング Tlでは周波数の低い方から F 土 f F ±f F ±f
cl scl cl sc2 cl s F 土 f の順番だったもの力 タイミング T2 T3 T4と時間が変化するに従つ c3 cl sc4
てランダムに順番が入れ替わる。すなわち、上記応答器 14a乃至 14dからの反射波 F 乃至 F は、擬似ランダム記号に基づいて周波数ホッピングしており、互いに衝突す rl r4
る確率が非常に小さいため、それらの反射波 F 乃至 F に含まれる変調に関する信 rl r4
号をそれぞれ独立して取り出すことができる。
[0033] 図 3は、前記質問器 12の電気的構成を説明する図である。この図 3に示すように、 前記質問器 12は、前記主搬送波 F を送信するための送信部 16と、前記反射波 F
cl rl 乃至 F を受信するための受信部として機能する受信アンテナ 18と、その受信アンテ r4
ナ 18により受信された受信信号 RFに第 1ローカルオシレータ 20により発生させられ た第 1局発信号 LOlを掛け合わせて中間周波数信号 IFを生成する第 1周波数変換 部として機能する第 1ミキサ 22と、必要に応じてその第 1ミキサ 22と第 2ミキサ 28との 間に設けられてその第 1ミキサ 22により生成されたアナログ信号である中間周波数信 号 IFをデジタル信号である中間信号 ISに変換するアナログデジタル変換器 24と、上 記第 1ミキサ 22により生成される中間周波数信号 IF若しくは上記アナログデジタル変 換器 24によりそれ力 デジタル変換された信号である中間信号 ISに第 2ローカルォ シレータ 26により発生させられた第 2局発信号 L02を掛け合わせて復調信号 DFを 生成する第 2周波数変換部として機能する第 2ミキサ 28と、その第 2ローカルオシレ ータ 26により発生させられる第 2局発信号 L〇2の位相を制御する位相制御部 30と、 前記質問器 12の作動を制御するコントローラ 32とを、備えて構成されている。また、 上記送信部 16は、前記主搬送波 F を発生させる主搬送波発振部 34と、その主搬 cl
送波発振部 34により発生させられた主搬送波 F (送信信号)を電力増幅する送信 cl
信号増幅部として機能する増幅器 36と、その増幅器 36により増幅された主搬送波 F を送信する送信アンテナ 38とを、備えている。
[00341 上記コントローラ 32は、 CPU, R〇M、及び RAM等から成り、 RAMの一時記憶機 能を利用しつつ ROMに予め記憶されたプログラムに従って信号処理を行う所謂マイ クロコンピュータであり、図 4は、そのコントローラ 32の制御機能を説明する機能ブロッ ク線図である。この図 4に示す送信回路制御手段 40は、例えば、周波数 915MHz程 度の主搬送波 F を発生させるように前記主搬送波発振部 34の作動を制御する。受
cl
信信号処理手段 42は、例えば、第 2周波数変換部すなわち前記第 2ミキサ 28により 生成された復調信号 DFを時間系列に変換して副搬送波信号を取り出した後、その 副搬送波信号から前記応答器 14による変調に関する信号を検出する等の処理を行 う。位相制御手段 44は、第 2局発信号発振部すなわち前記第 2ローカルオシレータ 2 6により発生させられる第 2局発信号 L02の位相を、例えば、前記中間周波数信号 I F若しくは中間信号 ISの主搬送波成分の位相と同相になるように前記位相制御部 30 を介して制御する。好適には、上記コントローラ 32に入力される復調信号 DFの信号 対雑音比 S/Nが大きくなるように、更に好適には、その信号対雑音比 S/Nが最大 となるようにその第 2局発信号 L〇2の位相を制御する。なお、この信号対雑音比 S/ Nは、所望の周波数信号とそれ以外の特定周波数との比の一例であり、例えば、信 号対妨害波比 S/Iを指標としてその信号対妨害波比 S/Iが大きくなるように位相を 制御してもよい。
[0035] 前記第 2ミキサ 28は、好適には、 IQ直交復調すなわち入力信号を互いに位相が 9 0° 異なる I (In- phase)相及び Q (Quadrature- phase)相の複素信号に変換した後、そ れら I相及び Q相の複素信号を用いた復調処理により上記復調信号 DFの生成を行う ものであり、上記位相制御手段 44は、その Q相の信号が最小乃至零となるように上 記第 2局発信号 L〇2の位相を制御するものである。前記応答器 14が 2値の変調を行 つている場合等には、 IQ直交復調において、主搬送波成分が含まれないことを条件 として、理想的には I相若しくは Q相の何れか一方が零となったときに他方の信号が 最大となることから、 Q相の信号が最小となるように前記第 2局発信号 L02の位相を 制御することにより、信号対雑音比 SZNの可及的に大きな前記変調に関する信号 を取り出すことができるのである。
[0036] 図 5は、前記応答器 14の構成を説明するブロック線図である。この図 5に示すように 、前記応答器 14は、アンテナ 46に接続された変復調器 48と、デジタル回路部 50と を、備えて構成されている。そのデジタル回路部 50は、前記応答器 14の作動を制御 するコントローラ 52と、副搬送波を発生させる副搬送波発振部 54と、その副搬送波 発振部 54により発生させられた副搬送波を上記コントローラ 52を介して入力される 情報信号に基づレ、て位相変調 (PSK)等で変調(1次変調)する副搬送波変調部 56 とを、備えている。その副搬送波変調部 56により変調された副搬送波は、上記変復 調器 48に入力される。そして、その変復調器 48に入力された副搬送波により前記質 問器 12から受信された主搬送波 F が変調(2次変調)され、反射波 F として上記ァ cl rf
ンテナ 46から送信される。
[0037] 続いて、以上のように構成された前記通信システム 10の通信動作を説明する。図 6 乃至図 17は、前記質問器 12及び応答器 14の各部における信号の状態を示す図で ある。先ず、前記質問器 12において、前記主搬送波発振部 34により周波数 915M Hz程度の主搬送波 F が発生させられ、前記増幅器 36により電力増幅された後、前 cl
記送信アンテナ 38から送信される。
[0038] 次に、前記質問器 12からの主搬送波 F を受信した前記応答器 14において、前記 cl
副搬送波発振部 54により副搬送波が発生させられ、その副搬送波が前記副搬送波 変調部 56により例えば図 6に示す信号に基づいて位相変調され、例えば図 7に示す 副搬送波 f とされた後、前記変復調器 48に印加される。或いは、前記副搬送波発 sc2
振部 54により発生させられた副搬送波が前記副搬送波変調部 56により例えば図 8 に示す信号に基づいて位相変調され、例えば図 9に示す副搬送波 f とされた後、 前記変復調器 48に印加される。上記副搬送波 f 、f は、ある時点において例え sc2 se s
ば図 10に示す周波数配置となっており、前記変復調器 48においてそれらの副搬送 波 f 、f により前記質問器 12から受信された主搬送波 F が変調されて、例えば sc2 sc3 cl
図 11に示すスペクトラムを有する反射波 F +f 、F +f が前記アンテナ 46か cl sc2 cl sc
ら返信される。なお、この図 11においては F に対して上側の側波帯のみを示し、下 cl
側の側波帯は省略してレ、る c
[0039] 次に、前記応答器 14からの反射波 F +f 、 F +f を受信した前記質問器 12 cl sc2 cl sc3
において、前記第 1ミキサ 22及び第 2ミキサ 28によりへテロダイン検波が行われる。 図 12は、第 1周波数変換部すなわち前記第 1ミキサ 22に入力される信号を、図 13は 、その第 1ミキサ 22により周波数変換されて出力される信号をそれぞれ示す図である 。これらの図に示すように、前記第 1ミキサ 22において、前記受信アンテナ 18により 受信された周波数 915MHz程度の受信信号 RFに、前記第 1ローカルオシレータ 20 により発生させられた周波数 904MHz程度の第 1局発信号 L〇lが掛け合わされて、 周波数 10. 48MHz程度の中間周波数信号 IFが生成される。
[0040] 次に、前記アナログデジタル変換器 24において、前記第 1ミキサ 22により生成され たアナログ信号である中間周波数信号 IFがデジタル信号である中間信号 ISに変換 される。図 14は、前記アナログデジタル変換器 24から出力される中間信号 ISを示す 図である。この図に示すように、前記アナログデジタル変換器 24のサンプリング周波 数 fsは、好適には、前記中間周波数信号 IFの主搬送波成分の周波数の 0. 8倍すな わち周波数 8. 4MHz程度となるように定められる。斯かるサンプリング周波数 fsでァ ンダーサンプリングが行われることで、図 14に示すように、前記中間周波数信号 IFの 主搬送波成分の周波数の 0. 2倍すなわち周波数 2. 1MHz程度の中間信号 ISが発 生させられる。また、好適には、上記サンプリング周波数 fsは、前記中間周波数信号 I Fの周波数の 4倍以上となるように定められてもよレ、。更に好適には、前記サンプリン グ周波数 fsを前記中間周波数信号 IFの整数倍とすることで、周期関数テーブルを可 及的に簡単なものとすることができる。
[0041] 次に、前記第 2ミキサ 28において、前記アナログデジタル変換器 24によりデジタル 変換された中間信号 ISに、前記第 2ローカルオシレータ 26により発生させられた周 波数 2. 1MHz程度の第 2局発信号 L〇2が掛け合わされて、復調信号 DFが生成さ れる。図 15は、第 2周波数変換部すなわち前記第 2ミキサ 28から出力される復調信 号 DFを示す図である。この図に示すように、複数の応答器 14からの反射波 Fすな
rf わち複数の副搬送波信号 (通信チャンネル)が混在する復調信号 DFが復調される。 この復調信号 DFは、前記コントローラ 32により、例えば、フーリエ変換によるフィルタ リング処理等により各副搬送波信号毎に分離された後、その分離された信号が逆フ 一リエ変換により時間系列に変換されて、例えば、図 7に対応する図 16に示すような 変調された副搬送波信号として取り出される。そして、その副搬送波信号から図 6に 示すもとの信号と同じ情報信号が検出される。或いは、図 9に対応する図 17に示すよ うな変調された副搬送波信号として取り出された後、その副搬送波信号力 図 8に示 すもとの信号と同じ情報信号が検出される。
[0042] 前記第 2ミキサ 28による復調信号 DFの生成に際しては、前記位相制御部 30によ る第 2局発信号 L〇2の位相制御が行われる。図 18は、前記コントローラ 32による第 2 局発信号 L〇2の位相制御作動の要部を説明するフローチャートであり、数 msec乃 至数十 msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
[0043] 先ず、ステップ(以下、ステップを省略する) SA1において、第 2局発信号発振部す なわち前記第 2ローカルオシレータ 26により第 2局発信号 L〇2が発生させられる。次 に、 SA2において、前記第 2ミキサ 28から出力される復調信号 DFの信号レベルが測 定される。次に、 SA3において、 SA2にて測定された復調信号 DFの信号レベルか ら信号対雑音比 SZNが推定される。次に、前記位相制御手段 44に対応する SA4 において、前記第 2ローカルオシレータ 26による第 2局発信号 L〇2の信号発生タイミ ングが 1クロック遅らせられるように、前記位相制御部 30によりその第 2局発信号 L02 の位相が制御される。次に、 SA5において、 SA2と同様に前記第 2ミキサ 28から出 力される復調信号 DFの信号レベルが測定される。次に、 SA6において、 SA3と同様 に SA5にて測定された復調信号 DFの信号レベル力 信号対雑音比 S/Nが推定さ れる。次に、 SA7において、前回の推定値である信号対雑音比 S/Nよりも今回の推 定値である信号対雑音比 S/Nの方が小さいか否かが判断される。この SA7の判断 が肯定される場合には、 SA4以下の処理が再び実行される力 SA7の判断が否定 される場合には、 SA5以下の処理が再び実行される。以上の制御において、 SA2、 SA3、 SA5、 SA6、及び SA7が前記受信信号処理手段 42に対応する。
[0044] このように、本第 1実施例によれば、前記主搬送波 F を送信するための送信部 16
cl
と、前記反射波 F を受信するための受信部として機能する受信アンテナ 18と、その
rf
受信アンテナ 18により受信された受信信号 RFに前記第 1ローカルオシレータ 20によ り発生させられた第 1局発信号 LOlを掛け合わせて中間周波数信号 IFを生成する 第 1周波数変換部として機能する前記第 1ミキサ 22と、その第 1ミキサ 22により生成さ れた中間周波数信号 IF若しくはそれ力 変換された信号である中間信号 ISに前記 第 2ローカルオシレータ 26により発生させられた第 2局発信号 L02を掛け合わせて 復調信号 DFを生成する第 2周波数変換部として機能する前記第 2ミキサ 28と、その 第 2ローカルオシレータ 26により発生させられる第 2局発信号 L〇2の位相を制御す る位相制御部 30とを、備えたものであることから、前記第 2局発信号 L02の位相を前 記中間周波数信号 IF若しくは中間信号 ISの主搬送波成分の位相と同相になるよう に制御することで、信号対雑音比 SZNの大きな前記変調に関する信号を取り出すこ と力 Sできる。すなわち、応答器 14による変調に関する信号を好適に検出できる通信 システム 10の質問器 12を提供することができる。
[0045] また、前記応答器 14による変調に関する信号の検出性能が向上することにより、通 信距離が比較的長い場合であってもその変調に関する信号を好適に検出できること から、前記通信システム 10の通信範囲を可及的に拡大することができる。また、前記 第 2局発信号 L〇2の位相を逐次最適値に更新することで、前記応答器 14が移動中 である場合にもその応答器 14による変調に関する信号を好適に検出できる。
[0046] また、前記位相制御部 30は、前記復調信号 DFの信号対雑音比 S/Nが大きくな るように前記第 2ローカルオシレータ 26により発生させられる第 2局発信号 L〇2の位 相を制御するものであるため、前記復調信号 DFに含まれる雑音及び妨害波を除去 することができ、信号対雑音比 S/Nの大きな前記変調に関する信号を取り出すこと ができる。
[0047] また、前記位相制御部 30は、前記復調信号 DFの信号対雑音比 S/Nが最大とな るように前記第 2ローカルオシレータ 26により発生させられる第 2局発信号 L〇2の位 相を制御するものであるため、前記復調信号 DFに含まれる妨害波を除去することが でき、信号対雑音比 S/Nの可及的に大きな前記変調に関する信号を取り出すこと ができる。
[0048] また、前記第 1ミキサ 22と第 2ミキサ 28との間にアナログデジタル変換器 24を備え、 その第 2ミキサ 28は、デジタル処理により前記復調信号 DFの生成を行うものである ため、前記位相制御部 30による前記第 2局発信号 L02の位相制御が容易になる。
[0049] また、前記第 2ミキサ 28は、 IQ直交復調により前記復調信号 DFの生成を行うもの であり、前記位相制御部 30は、 Q相の信号が最小となるように前記第 2ローカルオシ レータ 26により発生させられる第 2局発信号 L02の位相を制御するものであるため、 信号対雑音比 S/Nの可及的に大きな前記変調に関する信号を取り出すことができ る。
[0050] また、前記アナログデジタル変換器 24のサンプリング周波数 fsは、前記中間周波 数信号 IFの周波数の 4倍以上となるように定められるものであるため、前記第 2ミキサ 28において、前記中間周波数信号 IF若しくは中間信号 ISの位相を正確に把握する ことができ、信号対雑音比 SZNの可及的に大きな前記変調に関する信号を取り出 すことができる。
[0051] また、前記アナログデジタル変換器 24のサンプリング周波数 fsは、前記中間周波 数信号 IFの主搬送波成分の周波数の 0. 8倍となるように定められるものであるため、 比較的安価なアナログデジタル変換器 24を使用することができ、前記中間周波数信 号 IFの主搬送波成分の 0. 8倍の周波数でアンダーサンプリングすることで、 0. 2倍 の周波数の位置に受信した信号を発生させることができる。
実施例 2
[0052] 続いて、本発明の第 2実施例を図面に基づいて詳細に説明する。なお、以下の説 明及び図面に関して、前述した実施例と重複する部分に関しては同一の符号を付し てその説明を省略する。
[0053] 図 19は、本発明の第 2実施例である質問器 60の電気的構成を説明する図である。
この図 19に示すように、上記質問器 60は、前記アナログデジタル変換器 24から出力 されたデジタル信号である中間信号 ISを通信チャンネル数分だけ用意し、それぞれ において周波数及び位相の少なくとも一方が異なる第 2局発信号 L〇2により各通信 チャンネルにおける通信に関する前記復調信号 DFの生成を行う第 2周波数変換部 として機能する通信チャンネル数と同数の第 2ミキサ 28a、 28b, 28c, · · ·と、予め定 められた一周期分の周期関数に基づいてデジタル信号である第 2局発信号 L〇2を 発生させて各第 2ミキサ 28に供給する位相制御部 64とを、備えて構成されている。 すなわち、この質問器 60においては、上記位相制御部 64が第 2局発信号 L02を発 生させる第 2ローカルオシレータとしても機能する。
[0054] 上記位相変換部 64は、好適には、上記一周期分の周期関数として、図 20に示す ような余弦波テーブル 66或いは図 21に示すような正弦波テーブル 68を予め所定の 記憶装置等に備えている。これらの図における Θは、 360° を一周期としてサンプリ ング周期を示す値であり、(1 Θは、前記中間信号 ISの主搬送波成分との位相差に対 応する値である。すなわち、上記余弦波テーブル 66及び正弦波テーブル 68は、何 れもサンプリング周波数 f sを前記中間信号 ISの周波数の 4倍とし、一周期の間に 4回 サンプリングを行い、 15° ずつ位相差 d eをずらして比較するためのテーブルである 。上記位相制御部 64は、上記周期関数テーブルにおける何れかの位相差 d eに対 応する余弦波或いは正弦波に基づいて第 2局発信号 L〇2を発生させる。一般的に、 前記主搬送波発振部 34により発生させられる主搬送波 F もまた余弦波或いは正弦
cl
波であることから、好適な位相差 d Θを選択することにより前記中間信号 ISの主搬送 波成分の位相と同相の第 2局発信号 L〇2を発生させることができ、信号対雑音比 S /Nの可及的に大きな前記変調に関する信号を取り出すことができる。なお、この周 期関数テーブルは必ずしも予め記憶装置に記憶されたものでなくともよぐ必要に応 じて前記コントローラ 32等により算出されるものであっても構わない。また、図 20及び 図 21は、最も単純な余弦波及び正弦波を発生させるためのテーブルを示しているが 、好適には、周波数及び位相の少なくとも一方が異なる複数の第 2局発信号 L02そ のものを表す周期関数が用いられる。
[0055] 前記質問器 60のコントローラ 32は、前述した図 4に示す制御機能すなわち送信回 路制御手段 40、受信信号処理処理手段 42、及び位相制御手段 44を備えている。 本第 2実施例において、この位相制御手段 44は、各第 2ミキサ 28に関して、上記周 期関数テーブルにおける何れかの位相差 d Θに対応する余弦波或いは正弦波に基 づく第 2局発信号 L02を、前記位相制御部 64により発生させる。好適には、位相差 d Θを逐次変化させつつそれぞれの位相差 d Θに対応する第 2局発信号 L〇2を各第 2 ミキサ 28に供給し、前記復調信号 DFの信号対雑音比 SZNを可及的に大きく乃至 は最大とする位相差 d Θを選択する。また、必要に応じて前記位相制御部 64により 発生させられる第 2局発信号 L〇2の周波数を制御する。
[0056] 前述のように、前記通信システム 10における周波数ホッピングでは、複数の前記応 答器 14により副搬送波が変化させられる周波数ホッピングが行われる。そして、その ように周波数ホッピングさせられた全帯域の反射波 F がその質問器 60により受信さ
rf れることから、通信範囲内に存在する全ての前記応答器 14からの返信信号が何れ 力の通信チャンネルから出力される。従って、これらの出力信号を前記応答器 14毎 に時間系列に再構築することで、複数の前記応答器 14からの返信信号を同時に検 出すること力 Sできる。このため、好適には、周波数ホップする毎に前記応答器 14から その応答器 14を識別するための ID等が送信される。
[0057] 前記通信システム 10の通信範囲内に複数の前記応答器 14が存在する場合には、 それらの応答器 14がそれぞれ個別に移動していることが考えられる。本第 2実施例 の質問器 60は、それぞれにおいて周波数及び位相の少なくとも一方が異なる第 2局 発信号 L〇2により各通信チャンネルにおける通信に関する前記復調信号 DFの生成 を行う通信チャンネル数と同数の第 2ミキサ 28を備えており、前記位相制御部 64によ りそれら複数の第 2ミキサ 28に供給される第 2局発信号 L02それぞれが最適となるよ うに制御されることから、複数の前記応答器 14からの反射波 F が混在する場合であ
rf
つてもそれぞれの反射波 F について信号対雑音比 S/Nの可及的に大きな前記変
rf
調に関する信号を取り出すことができるのである。
[0058] 図 22は、前記コントローラ 32による図 21の正弦波テーブル 68を用いた第 2局発信 号 L〇2の位相制御作動の要部を説明するフローチャートであり、数 msec乃至数十 msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
[0059] 先ず、 SB1において、前記正弦波テーブル 68の位相差 d Θが初期値すなわち 0° に設定される。次に、 SB2において、前記第 2ミキサ 28から出力される復調信号 DF の信号レベルが測定される。次に、 SB3において、 SB2にて測定された復調信号 D Fの信号レベルから信号対雑音比 S/Nが推定される。次に、前記位相制御手段 44 に対応する SB4において、前記正弦波テーブル 68の位相差 d eが + 15° 変化させ られる。次に、 SB5において、 SB2と同様に前記第 2ミキサ 28から出力される復調信 号 DFの信号レベルが測定される。次に、 SB6において、 SB3と同様に SB5にて測 定された復調信号 DFの信号レベルから信号対雑音比 S/Nが推定される。次に、 S B7において、前回の推定値である信号対雑音比 SZNよりも今回の推定値である信 号対雑音比 S/Nの方が小さレ、か否かが判断される。この SB7の判断が肯定される 場合には、 SB4以下の処理が再び実行されるが、 SB7の判断が否定される場合に は、 SB5以下の処理が再び実行される。以上の制御において、 SB2、 SB3、 SB5、 S B6、及び SB7が前記受信信号処理手段 42に対応する。
[0060] このように、本第 2実施例によれば、第 2周波数変換部として機能する複数の第 2ミ キサ 28を備え、それら複数の第 2ミキサ 28それぞれにおいて周波数及び位相の少な くとも一方が異なる第 2局発信号 L02により前記復調信号 DFの生成を行うものであ るため、複数の前記応答器 14からの反射波 F に対して、前記質問器 12とそれぞれ
rf
の前記応答器 14との距離等に合わせて前記復調信号 DFの生成を行うことができる 。とりわけ、副搬送波が周波数ホッピングさせられる前記通信システム 10において、 それら各副搬送波毎の復調処理を同時に行うことができることから、複数の前記応答 器 14からの反射波 F が混在する場合であってもそれらの応答器 14による変調に関
rf
する信号を好適に検出できる。
[0061] また、通信チャンネル数と同数の前記第 2ミキサ 28を備え、それら複数の第 2ミキサ
28それぞれにおいて周波数及び位相の少なくとも一方が異なる第 2局発信号 L02 により各通信チャンネルにおける通信に関する前記復調信号 DFの生成を行うもので あるため、通信が成り立つ最大数であるチャンネル数と同数の前記第 2ミキサ 28を備 えていることで、通信帯域を最大限に利用できる。
[0062] また、前記位相制御部 64は、予め定められた一周期分の周期関数に基づいて第 2 局発信号 L〇2の周波数及び位相を制御するものであるため、予め定められた周期 関数を用いて第 2局発信号 L02を算出することでその位相制御部 64における負荷 を軽減すること力 Sできる。
[0063] また、前記位相制御部 64は、予め定められた周波数及び位相の少なくとも一方が 異なる複数の第 2局発信号 L02のうち何れかの第 2局発信号 L〇2を発生させるもの であるため、予め定められた第 2局発信号 L〇2を用いることでその位相制御部 64に おける負荷を可及的に軽減することができる。
[0064] また、前記位相制御部 64は、予め算出される一周期分の周期関数に基づいて第 2 局発信号 L〇2の周波数及び位相を制御するものであるため、予め算出された周期 関数を繰り返し用いて第 2局発信号 L02を算出することでその位相制御部 64におけ る負荷を軽減することができることに加え、予め記憶装置等に保持すべきデータが比 較的小さくて済む。
[0065] また、前記位相制御部 64は、予め算出される周波数及び位相の少なくとも一方が 異なる複数の第 2局発信号 L02のうち何れかの第 2局発信号 L〇2を発生させるもの であるため、予め算出された第 2局発信号 L〇2を繰り返し用いることでその位相制御 部 64における負荷を可及的に軽減することができることに加え、予め記憶装置等に 保持すべきデータが比較的小さくて済む。
[0066] また、前記通信チャンネル数より通信対象となる応答器 14が少ない場合には、その 応答器 14の数に応じて前記第 2周波数変換部の数を増減させてもよい。デジタル処 理を用いていることから並列処理数は容易に変更でき、通信に必要な数だけ用意す ることで、復調処理の効率を高めることができる。好適には、前記正弦波テーブル 68 等に定められた位相数と同数だけ前記第 2周波数変換部を用意し、その第 2周波数 変換部の各出力力 信号対雑音比 S/Nが規定の値以上のものを選ぶことで、復調 処理の効率を可及的に高めることができる。 実施例 3
[0067] 続いて、本発明の第 3実施例を図面に基づいて詳細に説明する。
[0068] 図 23は、本発明の第 3実施例である質問器 70の電気的構成を説明する図である。
この図 23に示すように、上記質問器 70は、前記主搬送波発振部 34により発生させら れた主搬送波 F を送信信号とキャンセル信号 CSとに分配する分配器 72と、その分
cl
配器 72により分配されたキャンセル信号 CSの振幅を調整するキャンセル信号振幅 調整部 74と、そのキャンセル信号 CSの位相を調整するキャンセル信号位相調整部 76と、上記キャンセル信号振幅調整部 74及びキャンセル信号位相調整部 76により 振幅及び位相が調整されたキャンセル信号 CSと前記受信アンテナ 18により受信さ れた反射波 F とを合成して出力する合波器 78とを、備えて構成されたものである。そ
rf
の合波器 78から出力された合成信号は、第 1周波数変換部すなわち前記第 1ミキサ 22に入力される。また、前記アナログデジタル変換器 24から出力された中間信号 IS が第 3ミキサ 84及びローパスフィルタ 86を経由して前記コントローラ 32に供給される 。なお、上記質問器 70では、前記主搬送波発振部 34、分配器 72、増幅器 36、及び 送信アンテナ 38から送信部 80が、前記受信アンテナ 18、キャンセル信号振幅調整 部 74、キャンセル信号位相調整部 76、及び合波器 78から受信部 82がそれぞれ構 成されている。
[0069] 図 24は、上記質問器 70に備えられたコントローラ 32の制御機能を説明する機能ブ ロック線図である。この図 24に示すキャンセル回路制御手段 88は、上記合波器 78の 出力が小さくなるように上記キャンセル信号振幅調整部 74及びキャンセル信号位相 調整部 76を介して上記キャンセル信号 CSの振幅及び位相を調整する。すなわち、 前記受信アンテナ 18により受信された反射波 F の主搬送波成分を打ち消すように
rf
上記キャンセル信号 CSの振幅及び位相を制御することで、第 1周波数変換部すな わち前記第 1ミキサ 22による周波数変換に先んじてその反射波 F の主搬送波成分
rf
を可及的に小さくする。好適には、上記第 3ミキサ 84及びローパスフィルタ 86を経由 して前記コントローラ 32に供給される中間信号 IS若しくはその主搬送波成分が可及 的に小さくなるように上記キャンセル信号 CSの振幅及び位相を調整する。
[0070] 図 25は、前記受信アンテナ 18から前記第 1ミキサ 22に直接入力される受信信号( キャンセル回路オフ)と、前記合波器 78によりキャンセル信号 CSを掛け合わされた 後に前記第 1ミキサ 22に入力される受信信号 (キャンセル回路オン)とを比較して示 すグラフである。この図 25に示すように、本第 3実施例の構成によれば、キャンセル 回路を有しない構成に比べて前記第 1ミキサ 22に入力される受信信号の SCR ( Signal Carrier Ratio :主搬送波成分と副搬送波成分との差)を 15dB程度小さくするこ とができる。すなわち、そのように主搬送波成分を抑圧することで、前記応答器 14に よる変調に関する副搬送波成分の相対割合をその分だけ大きくすることができ、主搬 送波 F に比べて極めて小さい前記応答器 14による変調に関する信号が取り出し易 cl
くなるのである。
[0071] 図 26は、前記コントローラ 32によるキャンセル信号制御作動の要部を説明するフロ 一チャートであり、数 msec乃至数十 msec程度の極めて短いサイクルタイムで繰り返 し実行されるものである。
[0072] 先ず、 SC1において、前記キャンセル信号振幅調整部 74のゲインレベルが最小値 に設定される。次に、 SC2において、前記キャンセル信号位相調整部 76の位相量が 0° に設定される。次に、 SC3において、前記アナログデジタル変換器 24から前記 第 3ミキサ 84及びローパスフィルタ 86を介して供給される中間信号 ISの信号レベル が測定される。次に、 SC4において、前記キャンセル信号振幅調整部 74のゲインレ ベルに + 1が加算された後、 SC5において、前記中間信号 ISの信号レベルが再測 定される。次に、 SC6において、前回の測定値である信号レベルよりも今回の測定値 である信号レベルの方が小さいか否かが判断される。この SC6の判断が肯定される 場合には、 SC4以下の処理が再び実行されるが、 SC6の判断が否定される場合に は、 SC7において、前記キャンセル信号振幅調整部 74のゲインレベルに— 1が加算 された後、 SC8において、前記キャンセル信号位相調整部 76の位相量が 1° 増加さ せられた後、 SC9において、前記中間信号 ISの信号レベルが再測定される。次に、 SC10において、前回の測定値である信号レベルよりも今回の測定値である信号レ ベルの方が小さいか否かが判断される。この SC10の判断が肯定される場合には、 S C8以下の処理が再び実行される力 SC10の判断が否定される場合には、 SC11に おいて、前記キャンセル信号位相調整部 76の位相量が 1° 減少させられた後、 SC4 以下の処理が再び実行される。以上の制御において、 SC1乃至 SC11が前記キャン セル回路制御手段 88に対応する。
このように、本第 3実施例によれば、前記送信部 80は、前記主搬送波 F を発生さ
cl
せる主搬送波発振部 34と、その主搬送波発振部 34により発生させられた主搬送波 F を送信信号とキャンセル信号 CSとに分配する分配器 72と、その分配器 72により cl
分配された送信信号を増幅する送信信号増幅部として機能する増幅器 36と、その送 信信号を送信する送信アンテナ 38とを、備え、前記受信部 82は、前記反射波 F を
rf 受信する受信アンテナ 18と、前記分配器 72により分配されたキャンセル信号 CSの 振幅を調整するキャンセル信号振幅調整部 74と、そのキャンセル信号 CSの位相を 調整するキャンセル信号位相調整部 76と、前記キャンセル信号振幅調整部 74及び キャンセル信号位相調整部 76により振幅及び位相が調整されたキャンセル信号 CS と前記受信アンテナ 18により受信された反射波 F とを合成して出力する合波器 78と
rf
を、備え、前記キャンセル信号振幅調整部 74及びキャンセル信号位相調整部 76は 、前記合波器 78の出力が小さくなるように前記キャンセル信号 CSの振幅及び位相を 調整するものであるため、第 1周波数変換部として機能する前記第 1ミキサ 22による 周波数変換に先んじて前記反射波 F の主搬送波成分を抑圧することで、信号対雑
rf
音比 S/Nの可及的に大きな前記変調に関する信号を取り出すことができる。
実施例 4
[0074] 続いて、本発明の第 4実施例を図面に基づいて詳細に説明する。
[0075] 図 27は、本発明の第 4実施例である質問器 90の電気的構成を説明する図である。
この図 27に示すように、上記質問器 90は、前述した第 3実施例の質問器 70における 受信アンテナ 18及び送信アンテナ 38の代替として、前記主搬送波 F を送信すると
cl
共に、前記反射波 F を受信する送受信アンテナ 92と、前記増幅器 36により増幅さ
rf
れた送信信号をその送受信アンテナ 92へ伝達させると共に、その送受信アンテナ 9 2により受信された反射波 Fを前記合波器 78に供給する送受分離器 94とを、備えて
rf
構成されている。この質問器 90では、前記主搬送波発振部 34、分配器 72、増幅器 36、送受信アンテナ 92、及び送受分離器 94から送信部 96が、前記キャンセル信号 振幅調整部 74、キャンセル信号位相調整部 76、合波器 78、及び送受信アンテナ 9 2から受信部 98がそれぞれ構成されてレ、る。
[0076] このように、本第 4実施例によれば、前記主搬送波 F を送信すると共に、前記反射
cl
波 Fを受信する送受信アンテナ 92を備え、前記送信部 96は、前記主搬送波 F を rf cl 発生させる主搬送波発振部 34と、その主搬送波発振部 34により発生させられた主 搬送波 F を送信信号とキャンセル信号 CSとに分配する分配器 72と、その分配器 7
cl
2により分配された送信信号を増幅する送信信号増幅部として機能する増幅器 36と 、その増幅器 36により増幅された送信信号を前記送受信アンテナ 92へ伝達させると 共に、その送受信アンテナ 92により受信された反射波 F を受信部 98へ伝達させる
rf
送受分離器 94とを、備え、その受信部 98は、前記分配器 72により分配されたキャン セル信号 CSの振幅を調整するキャンセル信号振幅調整部 74と、そのキャンセル信 号 CSの位相を調整するキャンセル信号位相調整部 76と、前記キャンセル信号振幅 調整部 74及びキャンセル信号位相調整部 76により振幅及び位相が調整されたキヤ ンセル信号 CSと前記送受信アンテナ 92により受信された反射波 F とを合成して出
rf
力する合波器 78とを、備え、前記キャンセル信号振幅調整部 74及びキャンセル信号 位相調整部 76は、前記合波器 78の出力が小さくなるように前記キャンセル信号 CS の振幅及び位相を調整するものであるため、前記送受信アンテナ 92により前記主搬 送波 F の送信及び前記反射波 F の受信が可能であることから、前記質問器 90を小 cl rf
型ィ匕すること力 sできる。
実施例 5
[0077] 続いて、本発明の第 5実施例を図面に基づいて詳細に説明する。
[0078] 図 28は、本発明の第 5実施例である質問器 100の電気的構成を説明する図である 。この図 28に示すように、上記質問器 100は、所定の基準周波数を発生させる基準 周波数発振器 102を備えて構成されており、その基準周波数発振器 102により発生 させられた信号は、 PLL (Phase Locked Loop) 104を介して前記主搬送波発振部 34 に、 PLL106を介して前記第 1ローカルオシレータ 20にそれぞれ供給され、それら主 搬送波発振部 34及び第 1ローカルオシレータ 20は、上記基準周波数発振器 102に より発生させられた基準周波数に基づいて前記主搬送波 F 及び第 1局発信号 L〇l
cl
を発生させる。所定の周波数発振器により発生させられる周波数は、一般に温度等 の因子により変動するが、本第 5実施例によれば、前記主搬送波 F 及び第 1局発信
cl
号 L〇lに関して基準周波数を共通化することで、周波数のずれが起こり難くなり、不 要な低周波信号の発生を抑圧することができる。
実施例 6
[0079] 続いて、本発明の第 6実施例を図面に基づいて詳細に説明する。
[0080] 図 29は、本発明の第 6実施例である質問器 110の電気的構成を説明する図である 。この図 29に示すように、上記質問器 110は、前記主搬送波発振部 34により発生さ せられた主搬送波 F と前記第 1ローカルオシレータ 20により発生させられた第 1局
cl
発信号 L〇lとを掛け合わせて第 2キャンセル信号 CS2を合成する第 2キャンセル信 号ミキサ 112と、その第 2キャンセル信号ミキサ 112により合成された第 2キャンセル 信号 CS2の振幅を調整する第 2キャンセル信号振幅調整部 114と、その第 2キャンセ ル信号 CS2の位相を調整する第 2キャンセル信号位相調整部 116と、上記第 2キヤ ンセル信号振幅調整部 114及び第 2キャンセル信号位相調整部 116により振幅及び 位相が調整された第 2キャンセル信号 CS2と第 1周波数変換部すなわち前記第 1ミキ サ 22により生成された中間周波数信号 IFとを合成して出力する第 2合波器 118とを 、備えて構成されている。その第 2合波器 118から出力された合成信号は、前記アナ ログデジタル変換器 24によりデジタル信号に変換されて前記帯域分割フィルタ 62延 レ、ては第 2周波数変換部に入力される。
[0081] 図 30は、上記質問器 110に備えられたコントローラ 32の制御機能を説明する機能 ブロック線図である。この図 30に示す第 2キャンセル回路制御手段 120は、上記第 2 合波器 118の出力が小さくなるように上記第 2キャンセル信号振幅調整部 114及び 第 2キャンセル信号位相調整部 116を介して上記第 2キャンセル信号 CS 2の振幅及 び位相を調整する。すなわち、前記第 1ミキサ 22により生成される中間周波数信号 I Fの主搬送波成分を打ち消すように上記第 2キャンセル信号 CS2の振幅及び位相を 制御することで、第 2周波数変換部による周波数変換に先んじてその中間周波数信 号 IFの主搬送波成分を可及的に小さくする。好適には、前記第 3ミキサ 84及びロー パスフィルタ 86を経由して前記コントローラ 32に入力される中間信号 IS若しくはその 主搬送波成分が可及的に小さくなるように上記第 2キャンセル信号 CS2の振幅及び 位相を調整する。
[0082] 図 31は、前記コントローラ 32による第 2キャンセル信号制御作動の要部を説明する フローチャートであり、数 msec乃至数十 msec程度の極めて短いサイクルタイムで繰 り返し実行されるものである。
[0083] 先ず、 SD1において、前記第 2キャンセル信号振幅調整部 114のゲインレベルが 最小値に設定される。次に、 SD2において、前記第 2キャンセル信号位相調整部 11 6の位相量が 0° に設定される。次に、 SD3において、前記アナログデジタル変換器 24から前記第 3ミキサ 84及びローパスフィルタ 86を介して供給される中間信号 ISの 信号レベルが測定される。次に、 SD4において、前記第 2キャンセル信号振幅調整 部 114のゲインレベルに + 1が加算された後、 SD5において、前記中間信号 ISの信 号レベルが再測定される。次に、 SD6において、前回の測定値である信号レベルより も今回の測定値である信号レベルの方が小さいか否かが判断される。この SD6の半 IJ 断が肯定される場合には、 SD4以下の処理が再び実行される力 SD6の判断が否 定される場合には、 SD7において、前記第 2キャンセル信号振幅調整部 114のゲイ ンレベルに一 1が加算された後、 SD8において、前記第 2キャンセル信号位相調整部 116の位相量が 1° 増加させられた後、 SD9において、前記中間信号 ISの信号レべ ルが再測定される。次に、 SD10において、前回の測定値である信号レベルよりも今 回の測定値である信号レベルの方が小さいか否かが判断される。この SD10の判断 が肯定される場合には、 SD8以下の処理が再び実行される力 SD10の判断が否定 される場合には、 SD11において、前記第 2キャンセル信号位相調整部 116の位相 量が 1° 減少させられた後、 SD4以下の処理が再び実行される。以上の制御におい て、 SD1乃至 SD11が前記第 2キャンセル回路制御手段 120に対応する。
[0084] このように、本第 6実施例によれば、前記主搬送波 F を発生させる主搬送波発振
cl
部 34と、その主搬送波発振部 34により発生させられた主搬送波 F と前記第 1ロー力
cl
ルオシレータ 20により発生させられた第 1局発信号 LOlとを掛け合わせて第 2キャン セル信号 CS2を合成する第 2キャンセル信号ミキサ 112と、その第 2キャンセル信号ミ キサ 112により合成された第 2キャンセル信号 CS2の振幅を調整する第 2キャンセル 信号振幅調整部 114と、その第 2キャンセル信号 CS2の位相を調整する第 2キャンセ ル信号位相調整部 116と、前記第 2キャンセル信号振幅調整部 114及び第 2キャン セル信号位相調整部 116により振幅及び位相が調整された第 2キャンセル信号 CS2 と第 1周波数変換部すなわち前記第 1ミキサ 22により生成された中間周波数信号 IF とを合成して出力する第 2合波器 118とを、備え、前記第 2キャンセル信号振幅調整 部 114及び第 2キャンセル信号位相調整部 116は、前記第 2合波器 118の出力が小 さくなるように前記第 2キャンセル信号 CS2の振幅及び位相を調整するものであるた め、前記第 2周波数変換部による周波数変換に先んじて中間周波数信号 IF若しくは それから変換された中間信号 ISの主搬送波成分を抑圧することで、信号対雑音比 S /Nの可及的に大きな前記変調に関する信号を取り出すことができる。
実施例 7
[0085] 続いて、本発明の第 7実施例を図面に基づいて詳細に説明する。
[0086] 図 32は、本発明の第 7実施例である質問器 130の電気的構成を説明する図である 。この図 32に示すように、上記質問器 130は、前記第 2キャンセル信号ミキサ 112に より合成された第 2キャンセル信号 CS2を 0. 2倍の周波数に分周して分周信号 SSを 生成する分周器 132と、その分周器 132により生成された分周信号 SSと前記第 2キ ヤンセル信号ミキサ 112により合成された第 2キャンセル信号 CS2とを掛け合わせて クロック信号 CLを生成するクロック信号ミキサ 134とを、備えて構成されており、上記 クロック信号ミキサ 134により生成されたクロック信号 CLを前記アナログデジタル変換 器 24のクロックとして用レ、るものである。このように、本第 7実施例によれば、前記主 搬送波 F に基づレ、て前記アナログデジタル変換器 24のサンプリング信号を生成す
cl
ることで、その主搬送波 F とサンプリング周期とのずれによる誤差が発生し難くなる。
cl
[0087] 以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれ らに限定されるものではなぐ更に別の態様においても実施される。
[0088] 例えば、前述の実施例では、第 1周波数変換部と第 2周波数変換部との間にアナ口 グデジタル変換器 24を備え、デジタル処理によりその第 2周波数変換部における周 波数変換を行う態様の質問器 12等について説明したが、このアナログデジタル変換 器 24は必ずしも備えられていなくともよぐアナログ処理により前記第 2周波数変換部 における周波数変換を行うものであってもよい。また、前記受信アンテナ 18と第 1周 波数変換部との間にアナログデジタル変換器 24を備え、デジタル処理によりその第 1周波数変換部における周波数変換を行うものであつても構わなレ、。
[0089] また、前述の実施例では、前記第 1ローカルオシレータ 20、第 1ミキサ 22、第 2ロー カルオシレータ 26、第 2ミキサ 28、位相制御部 30、主搬送波発振部 34、及び増幅 器 36等の装置が備えられてレ、たが、それらの装置のうち一部乃至は全部が前記コン トローラ 32の制御機能に置き換えられても構わない。
[0090] また、前述の実施例では、前記質問器 12の送信部 16等においては主搬送波 F cl の変調は行われていないが、必要に応じてその主搬送波 F をその質問器 12の ID cl
や、所定のホッピングタイミング 'ホッピングパターン等の情報に基づいて ASK変調 等により変調した後に前記送信アンテナ 38等から送信するものであっても構わない。
[0091] また、前述の実施例では、前記応答器 14の副搬送波変調部 56は、前記副搬送波 発振部 54により発生させられた副搬送波を所定の情報信号に基づいて位相変調 (P SK)で 1次変調するものであつたが、例えば、周波数変調(FSK)等により変調するも のであってもよく、前記通信システム 10の態様に応じて適宜設定される。
[0092] その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において、 種々の変更が加えられて実施されるものである c

Claims

請求の範囲
[1] 質問器力 主搬送波を送信して、該主搬送波を受信した応答器が該主搬送波に 対して所定の変調を行った反射波を該質問器に返信する通信システムの該質問器 であって、
前記主搬送波を送信するための送信部と、
前記反射波を受信するための受信部と、
該受信部により受信された受信信号に第 1ローカルオシレータにより発生させられ た第 1局発信号を掛け合わせて中間周波数信号を生成する第 1周波数変換部と、 該第 1周波数変換部により生成された中間周波数信号若しくはそれから変換された 信号である中間信号に第 2ローカルオシレータにより発生させられた第 2局発信号を 掛け合わせて復調信号を生成する第 2周波数変換部と、
該第 2ローカルオシレータにより発生させられる第 2局発信号の位相を制御する位 相制御部と
を、備えたことを特徴とする通信システムの質問器。
[2] 前記位相制御部は、前記復調信号の信号対雑音比が大きくなるように前記第 2口 一カルオシレータにより発生させられる第 2局発信号の位相を制御するものである請 求項 1の通信システムの質問器。
[3] 前記位相制御部は、前記復調信号の信号対雑音比が最大となるように前記第 2口 一カルオシレータにより発生させられる第 2局発信号の位相を制御するものである請 求項 1の通信システムの質問器。
[4] 前記第 1周波数変換部と第 2周波数変換部との間にアナログデジタル変換器を備 え、該第 2周波数変換部は、デジタル処理により前記復調信号の生成を行うものであ る請求項 1から 3の何れかの通信システムの質問器。
[5] 前記位相制御部は、予め定められた一周期分の周期関数に基づいて前記第 2口 一カルオシレータにより発生させられる第 2局発信号の周波数及び位相を制御するも のである請求項 1から 4の何れかの通信システムの質問器。
[6] 前記位相制御部は、予め定められた周波数及び位相の少なくとも一方が異なる複 数の第 2局発信号のうち何れかの値となるように前記第 2ローカルオシレータにより発 生させられる第 2局発信号を制御するものである請求項 5の通信システムの質問器。
[7] 前記位相制御部は、予め算出される一周期分の周期関数に基づいて前記第 2ロー カルオシレータにより発生させられる第 2局発信号の周波数及び位相を制御するもの である請求項 4の通信システムの質問器。
[8] 前記位相制御部は、予め算出される周波数及び位相の少なくとも一方が異なる複 数の第 2局発信号のうち何れかの値となるように前記第 2ローカルオシレータにより発 生させられる第 2局発信号を制御するものである請求項 7の通信システムの質問器。
[9] 複数の前記第 2周波数変換部を備え、それら複数の第 2周波数変換部それぞれに おいて周波数及び位相の少なくとも一方が異なる第 2局発信号により前記復調信号 の生成を行うものである請求項 1から 8の何れかの通信システムの質問器。
[10] 通信チャンネル数と同数の前記第 2周波数変換部を備え、それら複数の第 2周波 数変換部それぞれにおいて周波数及び位相の少なくとも一方が異なる第 2局発信号 により各通信チャンネルにおける通信に関する前記復調信号の生成を行うものであ る請求項 1から 9の何れかの通信システムの質問器。
[11] 通信チャンネル数を最大として通信対象となる前記応答器の数に応じて前記第 2 周波数変換部の数を増減するものである請求項 1から 10の何れかの通信システムの 質問器。
[12] 前記周期関数と同数の前記第 2周波数変換部を備えたものである請求項 5から 11 の何れかの通信システムの質問器。
[13] 前記第 2周波数変換部は、 IQ直交復調により前記復調信号の生成を行うものであ り、前記位相制御部は、 Q相の信号が最小となるように前記第 2ローカルオシレータ により発生させられる第 2局発信号の位相を制御するものである請求項 1から 12の何 れかの通信システムの質問器。
[14] 前記アナログデジタル変換器のサンプリング周波数は、前記中間周波数信号の周 波数の 4倍以上となるように定められるものである請求項 4から 13の何れかの通信シ ステムの質問器。
[15] 前記アナログデジタル変換器のサンプリング周波数は、前記中間周波数信号の主 搬送波成分の周波数に応じて定められるものである請求項 4から 13の何れかの通信 )質問器。
[16] 前記送信部は、
前記主搬送波を発生させる主搬送波発振部と、
該主搬送波発振部により発生させられた主搬送波を送信信号とキャンセル信号と に分配する分配器と、
該分配器により分配された送信信号を増幅する送信信号増幅部と、
該送信信号を送信する送信アンテナと
を、備え、
前記受信部は、
前記反射波を受信する受信アンテナと、
前記分配器により分配されたキャンセル信号の振幅を調整するキャンセル信号振 幅調整部と、
該キャンセル信号の位相を調整するキャンセル信号位相調整部と、
前記キャンセル信号振幅調整部及びキャンセル信号位相調整部により振幅及び位 相が調整されたキャンセル信号と前記受信アンテナにより受信された反射波とを合成 して出力する合波器と
を、備え、
前記キャンセル信号振幅調整部及びキャンセル信号位相調整部は、前記合波器 の出力が小さくなるように前記キャンセル信号の振幅及び位相を調整するものである 請求項 1から 15の何れかの通信システムの質問器。
[17] 前記主搬送波を送信すると共に、前記反射波を受信する送受信アンテナを備え、 前記送信部は、
前記主搬送波を発生させる主搬送波発振部と、
該主搬送波発振部により発生させられた主搬送波を送信信号とキャンセル信号と に分配する分配器と、
該分配器により分配された送信信号を増幅する送信信号増幅部と、
該送信信号増幅部により増幅された送信信号を前記送受信アンテナへ伝達させる と共に、該送受信アンテナにより受信された反射波を前記受信部へ伝達させる送受 分離器と
を、備え、
前記受信部は、
前記分配器により分配されたキャンセル信号の振幅を調整するキャンセル信号振 幅調整部と、
該キャンセル信号の位相を調整するキャンセル信号位相調整部と、
前記キャンセル信号振幅調整部及びキャンセル信号位相調整部により振幅及び位 相が調整されたキャンセル信号と前記送受信アンテナにより受信された反射波とを合 成して出力する合波器と
を、備え、
前記キャンセル信号振幅調整部及びキャンセル信号位相調整部は、前記合波器 の出力が小さくなるように前記キャンセル信号の振幅及び位相を調整するものである 請求項 1から 15の何れかの通信システムの質問器。
[18] 前記主搬送波を発生させる主搬送波発振部と、
所定の基準周波数を発生させる基準周波数発振器と
を、備え、
前記主搬送波発振部及び第 1ローカルオシレータは、前記基準周波数発振器によ り発生させられた基準周波数に基づいて前記主搬送波及び第 1局発信号を発生さ せるものである請求項 1から 17の何れかの通信システムの質問器。
[19] 前記主搬送波を発生させる主搬送波発振部と、
該主搬送波発振部により発生させられた主搬送波と前記第 1ローカルオシレータに より発生させられた第 1局発信号とを掛け合わせてキャンセル信号を合成するキャン セル信号ミキサと、
該キャンセル信号ミキサにより合成されたキャンセル信号の振幅を調整するキャン セル信号振幅調整部と、
該キャンセル信号の位相を調整するキャンセル信号位相調整部と、
前記キャンセル信号振幅調整部及びキャンセル信号位相調整部により振幅及び位 相が調整されたキャンセル信号と前記第 1周波数変換部により生成された中間周波 数信号とを合成して出力する合波器と
を、備え、
前記キャンセル信号振幅調整部及びキャンセル信号位相調整部は、前記合波器 の出力が小さくなるように前記キャンセル信号の振幅及び位相を調整するものである 請求項 1から 18の何れかの通信システムの質問器。
[20] 前記主搬送波を発生させる主搬送波発振部と、
該主搬送波発振部により発生させられた主搬送波と前記第 1ローカルオシレータに より発生させられた第 1局発信号とを掛け合わせて中間周波信号を合成する中間周 波信号ミキサと、
該中間周波信号ミキサにより合成された中間周波信号を分周して分周信号を生成 する分周器と、
該分周器により生成された分周信号と前記中間周波信号ミキサにより合成された中 間周波信号とを掛け合わせてクロック信号を生成するクロック信号ミキサと
を、備え、
該クロック信号ミキサにより生成されたクロック信号を前記アナログデジタル変換器 のクロックとして用レ、るものである請求項 1から 19の何れかの通信システムの質問器。
[21] 前記分周器は中間周波数信号を 0. 2倍の周波数に分周して分周信号を生成する ものである請求項 20の通信システムの質問器。
PCT/JP2004/011354 2003-08-20 2004-08-06 通信システムの質問器 WO2005020455A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/346,183 US7786923B2 (en) 2003-08-20 2006-02-03 Interrogator of communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-296853 2003-08-20
JP2003296853A JP4254419B2 (ja) 2003-08-20 2003-08-20 通信システムの質問器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/346,183 Continuation-In-Part US7786923B2 (en) 2003-08-20 2006-02-03 Interrogator of communication system

Publications (1)

Publication Number Publication Date
WO2005020455A1 true WO2005020455A1 (ja) 2005-03-03

Family

ID=34213599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011354 WO2005020455A1 (ja) 2003-08-20 2004-08-06 通信システムの質問器

Country Status (3)

Country Link
US (1) US7786923B2 (ja)
JP (1) JP4254419B2 (ja)
WO (1) WO2005020455A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600114B2 (ja) * 2005-03-28 2010-12-15 ブラザー工業株式会社 無線タグ通信装置
JP2007103584A (ja) * 2005-10-03 2007-04-19 Ricoh Co Ltd トランジスタ素子、表示装置およびこれらの製造方法
US20080079547A1 (en) * 2006-09-29 2008-04-03 Sensormatic Electronics Corporation Radio frequency identification reader having a signal canceller and method thereof
JP5316979B2 (ja) * 2007-05-31 2013-10-16 株式会社ユピテル 子機の個別移動監視装置
JP5109492B2 (ja) * 2007-06-18 2012-12-26 株式会社豊田中央研究所 レーダ装置
JP2009145300A (ja) * 2007-12-18 2009-07-02 Omron Corp 距離測定方法、距離測定装置、非接触ic媒体、距離測定システム、および距離測定プログラム
US9094113B2 (en) * 2013-03-15 2015-07-28 Qualcomm Incorporated Apparatus and method for reducing phase noise in near field communication device signaling
US20160028445A1 (en) * 2014-07-28 2016-01-28 Qualcomm Incorporated Mitigating over-coupling in close proximity nfc devices
US9378353B2 (en) * 2014-08-07 2016-06-28 Verizon Patent And Licensing Inc. Methods and systems for determining a user identity by analysis of reflected radio frequency signals received by an antenna array
JP6652760B2 (ja) * 2015-10-30 2020-02-26 国立大学法人京都大学 通信方法及び通信機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231314A (ja) * 1993-02-01 1994-08-19 Sony Corp Icカードシステム及びicカード
JPH08136648A (ja) * 1994-11-07 1996-05-31 Fuji Electric Co Ltd 移動体識別システム
JP2000286749A (ja) * 1999-03-30 2000-10-13 Nec Eng Ltd 移動体識別受信装置
JP2002208979A (ja) * 2001-01-11 2002-07-26 Hitachi Kokusai Electric Inc 制御方法及びそれを使った無線機
JP2003209589A (ja) * 2002-01-17 2003-07-25 Oki Electric Ind Co Ltd デジタル搬送波再生回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267042A (ja) 1987-04-24 1988-11-04 Matsushita Electric Works Ltd 同期2相psk検波方式
ZA95605B (en) * 1994-04-28 1995-12-20 Qualcomm Inc Method and apparatus for automatic gain control and dc offset cancellation in quadrature receiver
US5784686A (en) * 1996-12-31 1998-07-21 Lucent Technologies Inc. IQ combiner technology in modulated backscatter system
JP3105825B2 (ja) 1997-06-19 2000-11-06 埼玉日本電気株式会社 自動利得制御回路
US6208062B1 (en) * 1997-08-18 2001-03-27 X-Cyte, Inc. Surface acoustic wave transponder configuration
US6501807B1 (en) * 1998-02-06 2002-12-31 Intermec Ip Corp. Data recovery system for radio frequency identification interrogator
US6122329A (en) * 1998-02-06 2000-09-19 Intermec Ip Corp. Radio frequency identification interrogator signal processing system for reading moving transponders
US6192222B1 (en) * 1998-09-03 2001-02-20 Micron Technology, Inc. Backscatter communication systems, interrogators, methods of communicating in a backscatter system, and backscatter communication methods
JP3398910B2 (ja) 1998-10-02 2003-04-21 日本電信電話株式会社 イメージ除去型受信機
JP2002057590A (ja) 2000-08-09 2002-02-22 Toyo Commun Equip Co Ltd 受信機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231314A (ja) * 1993-02-01 1994-08-19 Sony Corp Icカードシステム及びicカード
JPH08136648A (ja) * 1994-11-07 1996-05-31 Fuji Electric Co Ltd 移動体識別システム
JP2000286749A (ja) * 1999-03-30 2000-10-13 Nec Eng Ltd 移動体識別受信装置
JP2002208979A (ja) * 2001-01-11 2002-07-26 Hitachi Kokusai Electric Inc 制御方法及びそれを使った無線機
JP2003209589A (ja) * 2002-01-17 2003-07-25 Oki Electric Ind Co Ltd デジタル搬送波再生回路

Also Published As

Publication number Publication date
US20060208939A1 (en) 2006-09-21
JP2005072728A (ja) 2005-03-17
US7786923B2 (en) 2010-08-31
JP4254419B2 (ja) 2009-04-15

Similar Documents

Publication Publication Date Title
AU2013271243B2 (en) Satellite navigation signal and generation method, generation device, receiving method and receiving device therefor
RU2628529C2 (ru) Способ и устройство генерирования двухчастотного сигнала с постоянной огибающей, содержащего четыре расширяющих сигнала, и способ и устройство приема такого сигнала
CN101453226B (zh) 本振泄漏消除装置及方法
US7786923B2 (en) Interrogator of communication system
WO2005076489A1 (ja) 無線タグ通信装置
US20140153461A1 (en) Envelope Tracker Driven Transmit Beamforming
JP4466391B2 (ja) 無線タグ通信装置
CN1972136A (zh) 无线收发器、解调变方法以及信号传输方法
US20090117870A1 (en) Receiver
KR100446405B1 (ko) 국부 발진 신호 공급 방법 및 그 회로
US5661757A (en) Radio-card communication system
WO2006103834A1 (ja) 無線タグ通信装置
JP4431884B2 (ja) 無線タグ通信システムの質問器
US10292099B2 (en) Transmission apparatus, reception apparatus, communication system, transmission method, and reception method
JP4062035B2 (ja) 通信システムの質問器
JP2001103015A (ja) ミリ波無線双方向伝送方法およびミリ波無線双方向伝送装置
KR100772459B1 (ko) Rfid 태그 판독 방법 및 이를 이용한 rfid 태그리더
WO2006085360A1 (ja) 到来方向推定装置
KR20010086533A (ko) 수신경로의 간섭신호 제거장치
JP2596274B2 (ja) 受信信号電力警報回路
JP2008278024A (ja) 無線タグリーダ
JP2005269404A (ja) 無線通信装置
KR20110043414A (ko) 신호 송신 장치 및 방법
JP2001094464A (ja) 移動体通信システムの質問器
JPH0974406A (ja) 送信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11346183

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11346183

Country of ref document: US