WO2005015580A1 - R-t-b系焼結磁石および希土類合金 - Google Patents

R-t-b系焼結磁石および希土類合金 Download PDF

Info

Publication number
WO2005015580A1
WO2005015580A1 PCT/JP2004/011743 JP2004011743W WO2005015580A1 WO 2005015580 A1 WO2005015580 A1 WO 2005015580A1 JP 2004011743 W JP2004011743 W JP 2004011743W WO 2005015580 A1 WO2005015580 A1 WO 2005015580A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rare earth
less
sintered magnet
phase
Prior art date
Application number
PCT/JP2004/011743
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Tomizawa
Yutaka Matsuura
Original Assignee
Neomax Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co., Ltd. filed Critical Neomax Co., Ltd.
Priority to EP04771704.6A priority Critical patent/EP1662516B1/en
Priority to JP2005513043A priority patent/JP4605013B2/ja
Priority to US10/567,502 priority patent/US7534311B2/en
Publication of WO2005015580A1 publication Critical patent/WO2005015580A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to an RTB sintered magnet and a rare earth alloy as a raw material thereof.
  • R-T-B-based sintered magnets also called "neodymium. Iron-boron-based sintered magnets"
  • neodymium. Iron-boron-based sintered magnets which are typical high-performance permanent magnets, have excellent magnetic properties and can be used in various motors. It is used for a variety of purposes, such as Yakuchi Yue.
  • R- T-B based sintered magnet is mainly R 2 F e 14 B type crystal structure made of a compound having a main phase (R 2 F e 14 B compound phase), R-rich phase, and B Ritsuchi phase It is composed of
  • the basic composition of an R—T-B sintered magnet is described, for example, in US Pat. No. 4,770,723 and US Pat. No. 4,792,368. Has been described.
  • R-T-B sintered magnets have the highest maximum magnetic energy product among various magnets, but further improvement in performance, especially improvement in residual magnetic flux density, is desired. For example, increasing the residual magnetic flux density by 1% is of high commercial value.
  • JP-A-61-295535 and JP-A-2002-57571 have added a boride-generating element such as Ti or Zr to the particles.
  • a technique for suppressing abnormal grain growth by precipitating boride in the field is disclosed. According to the methods described in JP-A-61-295355 and JP-A-2002-57571, it is possible to prevent the crystal grain size from becoming excessively large. That is, it is possible to increase the sintering density while suppressing a decrease in coercive force.
  • the present invention has been made in view of the above points, and an object of the present invention is to suppress a decrease in coercive force and to improve a residual magnetic flux density by suppressing a decrease in a volume ratio of a main phase. It is to provide R—T—B sintered magnets.
  • the main phase of the rare earth sintered magnet of the present invention is R 2 T! 4
  • a rare earth sintered magnet containing a B-type compound phase wherein a small amount of R (Nd, Pr, Tb, and Dy) in the range of 27% by mass or more and 32% by mass or less is selected.
  • At least one kind of rare earth element which always includes at least one of Nd and Pr) and T (F e or F e) in the range of 60% by mass to 73% by mass.
  • a mixture of Co and Co) and Q B or a mixture of B and C within the range of 0.85% by mass or more and 0.98% by mass or less.
  • Is converted to B. Zr not less than 0% by mass and 0.3% by mass or less, and 2.0% by mass or less of additive elements M (A1, Cu, Ga, In and S and at least one element selected from the group consisting of n) and unavoidable impurities.
  • it is substantially free of the Q accumulation phase.
  • the additional element includes Ga, and includes Ga in a range of 0.01% by mass or more and 0.08% by mass or less.
  • the composition contains 0.90% by mass or more of Q. In one embodiment, the squareness ratio (Hk / HcJ) in the demagnetization curve is 0.9 or more.
  • the rare earth alloy of the present invention is a raw alloy for a rare earth sintered magnet whose main phase contains an R 2 T 14 B type compound phase, and has an R (N at least one rare earth element selected from the group consisting of d, Pr, Tb, and Dy, and necessarily includes at least one of Nd and Pr); T (Fe or a mixture of Fe and Co) within the range of 0.8% by mass or less and 0.9% by mass or less (B or A mixture of B and C), Zr of more than 0% by mass and 0.3% by mass or less, and additional elements of 2.0% by mass or less (A and Cu, Ga, In and Sn) At least one element selected from the group) and unavoidable impurities.
  • it is substantially free of the Q accumulation phase.
  • the additional element includes Ga, and includes Ga in a range of 0.01% by mass or more and 0.08% by mass or less.
  • abnormal grain growth can be suppressed without generating a boride phase, so that a reduction in coercive force and an increase in residual magnetic flux density of an RTB-based sintering can be suppressed.
  • a magnet is obtained.
  • FIG. 1 is a diagram showing demagnetization curves of samples 1 to 6.
  • FIG. 2 is a graph showing the relationship between the sintering temperature and the magnetic properties of Samples 1 and 4.
  • FIG. 3 is a photograph showing the result of observing the metallographic structure obtained by sintering Sample 1 at 1800 ° C. with a polarizing microscope.
  • FIG. 4 is a photograph showing the result of observing the metal structure obtained by sintering Sample 1 at 110 ° C. with a polarizing microscope.
  • FIG. 5 is a photograph showing the result of observing the metallographic structure obtained by sintering Sample 1 at 112 ° C. with a polarizing microscope.
  • FIG. 6 is a photograph showing the result of observing the metallographic structure obtained by sintering Sample 4 at 1080 ° C. with a polarizing microscope.
  • FIG. 7 is a photograph showing the result of observing the metallographic structure obtained by sintering the sample 4 at 110 ° C. with a polarizing microscope.
  • FIG. 8 is a photograph showing the result of observing the metal structure obtained by sintering Sample 4 at 112 ° C. with a polarizing microscope.
  • composition images (N d (upper right in the figure), B (lower left in the figure), and additional element T i (lower right in the figure)).
  • Fig. 10 shows the backscattered electron image (BEI: upper left in each figure), composition image (N d (upper right in the figure), B (lower left in the figure), and additive element V of the sintered magnet of sample 3 by EPMA. (Lower right in the figure)).
  • Fig. 11 shows the backscattered electron image (BEI: upper left in each figure), composition image (N d (upper right in the figure), B (lower left in the figure), and additive element Z of the sintered magnet of sample 4 by EPMA. r (lower right in the figure)).
  • Figure 12 shows the backscattered electron image (BEI: upper left in each figure), composition image (N d (upper right in the figure), B (lower left in the figure), and additional elements of the sintered magnet of sample 5 by EPMA. N b (lower right in the figure)).
  • Fig. 13 shows the backscattered electron image (BEI: upper left in each figure), composition image (N d (upper right in the figure), B (lower left in the figure) of the sintered magnet of sample 6 and the added elements Mo (lower right in the figure)).
  • Fig. 14 shows the backscattered electron image (BEI: upper left in each figure), composition image (N d (upper right in the figure), B (lower left in the figure), and additional elements of the sintered magnet of the comparative sample. Zr (lower right in the figure)).
  • Fig. 15 is a graph showing the results of sorting the magnetic properties of Samples 7 to 20 with respect to the B content. The horizontal axis is the B content, and the vertical axis is the residual magnetic flux density B r on the upper side and lower on the vertical axis. The side is the coercive force H c J.
  • FIG. 16 is a graph showing the relationship between the Zr content and the magnetic properties under the two conditions of the sintering temperature of 160 ° C. and 180 ° C. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present inventor has found that a boride phase is formed by adding 0.3% by mass or less of Zr to an R 2 T 14 B-based rare earth sintered magnet having a B content of 0.98% by mass or less. It has been found that abnormal grain growth can be suppressed without causing the present invention to occur.
  • the R 2 T 14 B-based rare earth sintered magnet according to the embodiment of the present invention includes a rare earth element R (Nd, Pr, Tb, and Dy in the range of 27 mass% or more and 32 mass% or less. At least one rare earth element selected from the group, which must include at least one of Nd and Pr); T (Fe or a mixture of Fe and Co) in the range of 0% to 73% by mass and B in the range of 0.85% to 0.98% by mass And Zr of not less than 0% by mass and 0.3% by mass or less, and 2.0% by mass or less of an additional element M (at least one selected from the group consisting of A and Cu, Ga, In and Sn).
  • R is a rare earth element and is selected from at least one of Nd, Pr, Dy, and Tb. However, R always includes either Nd or Pr. Preferably, a combination of rare earth elements represented by Nd-Dy, Nd-Tb, Nd-Pr_Dy, or Nd-Pr-Tb is used. Of the rare earth elements, Dy and Tb are particularly effective in improving coercive force. Further, R need not be a pure element, and may contain impurities unavoidable in production as long as it is industrially available. If the content is less than 27% by mass, high magnetic properties, particularly high coercive force cannot be obtained, and if it exceeds 32% by mass, the residual magnetic flux density is reduced. Therefore, the content should be 27% by mass or more and 32% by mass or less.
  • T always includes Fe, and a part thereof, preferably 50% or less, can be replaced by Co. Further, a small amount of transition metal elements other than Fe and Co can be contained. Co is effective in improving the temperature characteristics and corrosion resistance, and is usually used in combination of 10% by mass or less of Co and the balance Fe. When the content is less than 60% by mass, the residual magnetic flux density decreases, and when the content exceeds 73% by mass, the coercive force decreases. Therefore, the content is set to 60% by mass to 73% by mass.
  • Zr is an essential element of the present invention. As described below with reference to experimental examples, Zr exerts a specific effect. Zr is the main phase rare earth By displacing the solid solution to reduce the crystal growth rate, abnormal grain growth is suppressed. That is, as described in JP-A-61-295355 and JP-A-2002-757517, in order to suppress abnormal grain growth, boride is used. The present inventors have found for the first time that abnormal grain growth can be suppressed without precipitating boride, contrary to the conventional technical common sense that the above-mentioned is necessary. The addition of Zr eliminates the need for a boride phase, which causes a reduction in residual magnetic flux density.
  • the main phase having a tetragonal R 2 T 14 B type crystal structure occupies 90% or more of the magnet volume, and the B rich phase (Q integrated phase: for example, RL e Fe 4 B) ( Phase 4 ) is obtained.
  • substantially not included means that the magnet structure was observed in 90% or more of the Q-aggregated tissues in 90% or more as a result of observing at least 10 randomly selected parts using EPMA.
  • Q accumulation phase is not recognized means that the condition (acceleration voltage: EPMA (EPM 1610) manufactured by Shimadzu Corporation) is used. 15 kV, beam diameter: 1 m, current value: 30 nA (Faraday). X-ray fluorescence image of boron (B) (B- ⁇ ) with spectral crystal: LSA 200) When the observation area is 100 / mX 100 m, the area where the bright spots are concentrated (that is, the part attributed to the accumulated phase) is less than 5% of the entire visual field.
  • the Zr content exceeds 0.3% by mass, the residual magnetic flux density decreases, so the content should be 0.3% by mass or less.
  • the B content is set to 0.98% by mass or less in order to suppress the formation of the boride phase.
  • Part of B can be replaced with C.
  • Q in calculating the content of Q (% by mass), C in which a part of B is substituted may be converted to B on the basis of the number of atoms. .
  • the additional element M is at least one of Al, Cu, Ga, In and Sn. The addition amount is preferably 2.0% by mass or less.
  • the residual magnetic flux density decreases.
  • Ga may exert a special effect.
  • a soft magnetic R 2 Ti 7 compound is generated, and the coercive force and the residual magnetic flux density may decrease.
  • the formation of a soft magnetic phase is suppressed, and a rare earth sintered magnet having a high coercive force and a high residual magnetic flux density in a wide range of the B content can be obtained.
  • the present invention is particularly effective when B is set to 0.98% by mass or less in order to suppress the formation of Zr boride.
  • the effect of the addition of Ga is remarkable when the B (Q) content is 0.95% by mass or less, and when the B (Q) content is 0.90% by mass or more. It is remarkable. If the content of Ga is less than 0.01% by mass, the above effects may not be obtained, and the management by analysis becomes difficult. On the other hand, if the Ga content exceeds 0.08% by mass, the residual magnetic flux density Br may decrease, which is not preferable. In the present invention, unavoidable impurities other than the above elements can be allowed. For example, Mn and Cr mixed from the raw material of Fe, A 1 and Si mixed from Fe-B (fueroboron), and H, N and ⁇ mixed inevitably in the manufacturing process.
  • oxygen 0.5% by mass or less
  • nitrogen 0.5% by mass or less
  • the main phase ratio can be increased, and the residual magnetic flux density Br can be increased.
  • the RTB-based sintered magnet of the embodiment according to the present invention can be manufactured by a known method.
  • it can be manufactured by the following method.
  • a melt of a master alloy having a predetermined composition is prepared by, for example, a high-frequency melting method, and the melt is cooled and solidified to prepare an alloy (master alloy).
  • the composition of the master alloy is adjusted so that the rare-earth sintered magnet has the above-described composition.
  • the production of an alloy (master alloy) can be performed by using a known general method.
  • a rapid cooling method such as a strip casting method is suitably used.
  • the strip casting method for example, alloy pieces having a thickness of about 0.1 mm to 5 mm can be obtained.
  • the centrifugal manufacturing method can be used. good.
  • an alloy may be produced using a direct reduction diffusion method.
  • the same effect can be obtained when a solidified alloy obtained by a method other than the quenching method is used as a master alloy.However, compared to a quenching method such as a strip casting method, biased prayers are more likely to occur, and Zr boride precipitates in the alloy structure.
  • the sintered magnet produced from such a solidified alloy tends to have a lower main phase volume ratio than the case using a quenched alloy, and as a result, the residual magnetic flux density Br may be reduced.
  • the obtained alloy is ground to a mean particle size of 1 to 10 m by a known method.
  • the powder of such an alloy can be suitably produced by performing two types of pulverization, a coarse pulverization step and a fine pulverization step.
  • Coarse pulverization can be performed by a hydrogen storage pulverization method or a mechanical pulverization method using a disk mill or the like. Further, the fine pulverization can be performed by a mechanical pulverization method such as a jet mill pulverization method and a pole mill attritor.
  • the finely ground powder obtained by the above-mentioned pulverization is molded into molded articles of various shapes using a known molding technique.
  • the molding is generally performed by a compression molding method in a magnetic field, but may be performed by a method of performing a hydrostatic molding or a molding in a rubber mold after pulse orientation.
  • Liquid lubricants such as fatty acid esters and solid lubricants such as zinc stearate before fine grinding to improve the efficiency of powder supply during molding, the uniformity of molding density, and the releasability during molding. And may be added to Z or the powder after pulverization.
  • the addition amount is preferably 0.01 to 5 parts by weight based on 100 parts by weight of the alloy powder.
  • the molded body can be sintered by a known method.
  • the sintering temperature is preferably 10000 to 1180 ° C, and the sintering time is preferably about 1 to 6 hours.
  • the alloy of the embodiment according to the present invention is sintered at a higher temperature by adding Zr. In the past, considering temperature variations, etc. Then, it was difficult to adopt it for mass production. For example, a sintering temperature of 110 ° C. or more can be adopted.
  • the sintered body after sintering is subjected to heat treatment (aging treatment) as necessary.
  • the heat treatment conditions are preferably, for example, a temperature of 400 ° C. to 600 ° C. and a time of about 1 to 8 hours.
  • Magnets (samples 1 to 6) of each composition shown in Table 1 were prepared by the following procedure.
  • the composition shown in Table 1 is the analysis value of the obtained sintered magnet. different.
  • the composition was analyzed by a known method using an ICP manufactured by Shimadzu Corporation and a gas analyzer manufactured by Horiba, Ltd.
  • Fe is represented as the balance, but the balance includes Fe and a small amount of unavoidable impurities. The same applies to Table 3 described later.
  • a melt of a mother alloy having a predetermined composition was prepared, and an alloy piece having a thickness of about 0.2 to 0.4 mm was produced by using a strip casting method.
  • the obtained alloy piece was placed in a hydrogen atmosphere at room temperature and an absolute pressure of 0.2 MPa.
  • the hydrogen-absorbed alloy was kept in a vacuum at about 600 ° C. for 3 hours, and then cooled to room temperature.
  • the resulting alloy is broken by hydrogen embrittlement, but is crushed by sieving to obtain a coarse powder with a particle size of 425 m or less. And finely pulverized in a nitrogen gas atmosphere.
  • the average particle size of the obtained powder was in the range of 3.2 to 3.5 ⁇ m by FSSS measurement for all samples.
  • a compact was obtained by press-molding the obtained powder.
  • molding was performed at a pressure of 196 MPa while applying a perpendicular magnetic field of about 1 T (tesla).
  • the obtained molded body was sintered at various temperature conditions for about 2 hours to obtain a sintered body.
  • the obtained sintered body was subjected to aging treatment at 550 for 2 hours in an Ar atmosphere, and each was used as a sintered magnet sample, and the magnetic properties were evaluated. After thermal demagnetization in an inert atmosphere, metallographic observation and chemical analysis were performed.
  • Figure 1 shows the demagnetization curves of each sample.
  • the sintering conditions for the sample used here were 1.1 120 ° C for 2 hours.
  • H k of the squareness ratio (H kZH c J) used here as an index of squareness indicates the value of the external magnetic field when the magnetization becomes 90% of the residual magnetic flux density Br.
  • FIGS. 3 to 8 show the results of observing the metallographic structures of Samples 1 and 4 sintered at different temperatures using a polarizing microscope.
  • FIGS. 3 to 5 show that Sample 1 was sintered at 1800 ° C (:, 110 ° C and 1120 ° C
  • FIGS. 6 to 8 show that Sample 4 was The results are shown for the case of sintering at 0 ° C, 110 ° C and 1120 ° C.
  • Figs. 9 to 13 show the backscattered electron images (BEI: upper left in each figure) of the sintered magnets (sintering temperature: 1400 ° C) of Samples 2 to 6 (sintering temperature: 1400 ° C), respectively, and their compositions.
  • the images (Nd (upper right in the figure), B (lower left in the figure), and added element M (lower right in the figure)) are shown.
  • FIG. 14 shows that R (Nd: 20.3% by mass, Pr: 6.0% by mass, Dy: 5.0% by mass): 31.3% by mass, Co: 0.90 mass%, A1: 0.20 mass%, Cu: 0.10 mass%, Zr: 0.07 mass%, B: 0.99 mass%, Rest: The results of observing the sintered magnet having the composition of Fe and inevitable impurities using EPMA are shown. As can be seen from Fig. 14, the Zr-rich and B-rich phases are formed in this sintered magnet with a high B content.
  • Magnets having the compositions shown in Table 3 were produced in the same manner as in Experimental Example 1. However, here, the oxygen concentration in the atmosphere gas in the pulverization process was controlled to 50 ppm or less in order to reduce the amount of oxygen contained in the sintered magnet.
  • Table 4 shows the results of evaluation of the magnets obtained by sintering the samples 7 to 20 thus obtained at various sintering temperatures. Each item shown in Table 4 was evaluated in the same manner as in Experimental Example 1.
  • Presence of accumulation phase indicates no accumulation phase
  • X indicates accumulation phase
  • * indicates mixture with B accumulation phase
  • X indicates abnormal grain growth
  • Table 4 abnormal grains Growth occurs independently of the presence of the B and Zr accumulation phases.
  • the addition of Zr suppresses abnormal grain growth regardless of the presence or absence of the Zr accumulation phase.
  • the sintered density is 7.46 to 7.49 Mgm- 3 for any of the samples when sintered at 120 ° C, and the true density is about 7.55 Mgm— On the other hand, sintering was slightly insufficient.
  • the sintering temperature is in the range of 140 ° C to 180 ° C, the sintering density of any of the samples reaches 7.54 to 7.57 Mgm- 3 . From this, when the sintering temperature is 120 ° C., sintering is insufficient, and there is a problem that the residual magnetic flux density is low.
  • samples 7 to 11 to which Zr is not added are preferable to use.
  • the sintering temperature has only one condition of 104 ° C. Although the squareness ratio of Sample 7 is 0.9 or more, it is not preferable because the values of Hk and HcJ are small. In contrast, for samples 12 to 20 to which Zr was added, even at the sintering temperature of 180 ° C, the occurrence of abnormal grain growth and the decrease in the squareness ratio were suppressed.
  • the temperature range extends from 140 ° C to 1800 ° C to the higher temperature side. Therefore, Samples 12 to 20 can be manufactured more industrially and more stably than Samples 7 to 11.
  • FIG. Fig. 15 is a graph showing the results of arranging the magnetic properties of Samples 7 to 20 with respect to the B content.
  • the horizontal axis is the B content
  • the vertical axis is the residual magnetic flux density Br on the upper side and the lower side on the lower side.
  • the coercive force is He J.
  • the peak of the residual magnetic flux density of Samples 7 to 11 containing no Zr has a B content near 0.96% by mass. This means that if the B content exceeds about 0.96 mass%, it does not contribute to magnetism.
  • the value of coercive force is higher than that of samples 7 to 11, but when the B content is less than about 0.96% by mass, the residual magnetic flux density is lower than that of samples 7 to 16. 1 Decrease as well as 1.
  • the residual magnetic flux density decreases when the B content exceeds about 0.96% by mass.
  • the samples 7 to 11 containing no Zr show a decrease. The amount of decrease also increases. This is because the boride phase is precipitated comprising Z r that when the B in the sample present in excess.
  • Z r B 2, Z r- N d _ B or Z r _ F e- B containing Z r are examples of the boride phase is precipitated comprising Z r that when the B in the sample present in excess.
  • the addition of Zr indirectly improves magnetic properties by suppressing abnormal grain growth, but has no effect of directly improving magnetic properties. Rather, the B content is 0.98% by mass. It can be seen that when the composition range exceeds, the residual magnetic flux density is greatly reduced.
  • Fig. 15 shows the results when the B content was 0.90 mass% or more. If the B content was 0.85 mass% or more, the Zr addition effect and the Ga The effect is recognized. Of course, as exemplified, the B content is preferably 0.90% by mass or more and 0.98% by mass or less.
  • FIG. 16 is a graph showing the relationship between the Zr content and the magnetic properties under the two conditions of the sintering temperature of 160 ° C. and 180 ° C.
  • the horizontal axis is the Zr content
  • the vertical axis is H k (the value of the external magnetic field when the magnetization becomes 90% of the residual magnetic flux density B r), the coercive force He J and the residual magnetic flux density in order from the top. B r.
  • the present invention it is possible to obtain an RTB based sintered magnet in which a decrease in coercive force is suppressed and a residual magnetic flux density is improved. Since the rare earth sintered magnet of the present invention has a wide sintering temperature margin, it can be manufactured industrially stably.
  • the rare-earth sintered magnet according to the present invention is particularly suitably used for various motors and applications where high performance needs are high, such as Actuary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本発明の希土類焼結磁石は、主相がR2T14B型化合物相を含み、27質量%以上32質量%以下の範囲内のR(Nd、Pr、TbおよびDyからなる群から選択される少なくとも1種の希土類元素であって、NdまたはPrの少なくとも一方を必ず含む)と、60質量%以上73質量%以下の範囲内のT(Fe、または、FeとCoとの混合物)と、0.85質量%以上0.98質量%以下の範囲内のQ(B、または、BとCとの混合物であり、質量%の計算においては原子数基準でBに換算される。)と、0質量%超0.3質量%以下のZrと、2.0質量%以下の添加元素M(Al、Cu、Ga、InおよびSnからなる群から選択される少なくとも1種の元素)と、不可避不純物とを含む。

Description

明 細 書
R— T一 B系焼結磁石および希土類合金 技術分野
本発明は、 R— T一 B系焼結磁石およびその原料となる希土類合 金に関する。 背景技術
高性能永久磁石として代表的な R— T一 B系焼結磁石 ( 「ネオジ ム 。鉄 · ボロン系焼結磁石」 と呼ばれることもある。 ) は、 優れた 磁気特性を有することから、 各種モータ、 ァクチユエ一夕など様々 な用途に使用されている。
R— T— B系焼結磁石は、 主に R2 F e 14B型結晶構造を有する 化合物からなる主相 (R2 F e 14B化合物相) 、 Rリッチ相、 およ び Bリツチ相から構成されている。 R— T一 B系焼結磁石の基本的 な組成は、 例えば、 米国特許第 4, 7 7 0 , 7 2 3号明細書および 米国特許第 4, 7 9 2 , 3 6 8号明細書に記載されている。 R— T 一 B系焼結磁石は種々の磁石の中で最も高い最大磁気エネルギー積 を有するものの、 さらなる高性能化、 特に、 残留磁束密度の向上が 望まれている。 例えば、 残留磁束密度を 1 %向上できるだけでもェ 業的な価値は高い。 米国特許第 4, 7 7 0 , 7 2 3号および米国特 許第 4, 7 9 2 , 3 6 8号の開示内容の全てを参考のために本明細 書に援用する。 焼結磁石の残留磁束密度を高めるためには、 焼結磁石の密度 ( 「焼結密度」 ということがある。 ) を真密度に近づけることが必 要である。 そこで、 R_T— B系焼結磁石の密度を向上するために. 焼結温度を高くする、 あるいは、 焼結時間を長くすると、 焼結密度 は上昇するものの、 結晶粒が粗大になり、 保磁力が低下するという 問題が生じる。 特に、 局所的に巨大な結晶粒 (主相) が形成される 「異常粒成長」 が起こると、 減磁曲線における角形比 (HkZH c J ) が低下し、 実用上支障が生じる。
すなわち、 R— T一 B系焼結磁石の保磁力を犠牲にすることなく 焼結密度を高めることは困難であり、 また、 性能のバランスが取れ る焼結条件が見つかったとしても、 そのマ一ジンは狭く、 性能の優 れた R— T一 B系焼結磁石を工業的に安定に製造することは非常に 困難であった。
特開昭 6 1— 2 9 5 3 5 5号公報および特開 2 0 0 2— 7 5 7 1 7号公報には、 T iや Z rなどの硼化物を生成する元素を添加し、 粒界に硼化物を析出させることによって、 異常粒成長を抑制する技 術が開示されている。 特開昭 6 1— 2 9 5 3 5 5号公報および特開 2 0 0 2 - 7 5 7 1 7号公報に記載されている方法によると、 結晶 粒径が過大になるのを抑制しつつ、 すなわち保磁力の低下を抑制し つつ、 焼結密度を高めることができる。
しかしながら、 上記特開昭 6 1— 2 9 5 3 5 5号公報および特開 2 0 0 2 - 7 5 7 1 7号公報に記載されている方法によると、 焼結 磁石中に、 磁力を有しない硼化物相 (Bリッチ相) が存在するため に、 磁性をつかさどる主相 (R2T14B型化合物相) の体積比率が 低下する結果、 残留磁束密度が低下する。 発明の開示
本発明はかかる諸点に鑑みてなされたものであり、 本発明の目的 は、 保磁力の低下を抑制し、 且つ、 主相の体積比率の低下を抑制す ることによって残留磁束密度を向上させた R— T— B系焼結磁石を 提供することにある。
本発明の希土類焼結磁石は、 主相が R 2 T! 4 B型化合物相を含む 希土類焼結磁石であって、 2 7質量%以上 3 2質量%以下の範囲内 の R (N d、 P r、 T bおよび D yからなる群から選択される少な くとも 1種の希土類元素であって、 N dまたは P rの少なくとも一 方を必ず含む) と、 6 0質量%以上 7 3質量%以下の範囲内の T (F e、 または、 F e と C oとの混合物) と、 0. 8 5質量%以上 0. 9 8質量%以下の範囲内の Q (B、 または、 Bと Cとの混合物 であり、 質量%の計算においては原子数基準で Bに換算される。 ) と、 0質量%超0. 3質量%以下の Z rと、 2. 0質量%以下の添 加元素 M (A 1、 C u、 G a、 I nおよび S nからなる群から選択 される少なくとも 1種の元素) と、 不可避不純物とを含む。
ある実施形態において、 Qの集積相を実質的に有しない。
ある実施形態において、 前記添加元素は G aを含み、 0. 0 1質 量%以上 0. 0 8質量%以下の範囲内の G aを含む。
ある実施形態において、 0. 9 5質量%以下の Qを含む。
ある実施形態において、 0. 9 0質量%以上の Qを含む。 ある実施形態において、 減磁曲線における角形比 (H k/H c J ) が 0. 9以上である。
本発明の希土類合金は、 主相が R2T14B型化合物相を含む希土 類焼結磁石用の原料合金であって、 2 7質量%以上 3 2質量%以下 の範囲内の R (N d、 P r、 T bおよび D yからなる群から選択さ れる少なくとも 1種の希土類元素であって、 N dまたは P rの少な くとも一方を必ず含む) と、 6 0質量%以上 7 3質量%以下の範囲 内の T (F e、 または、 F eと C oとの混合物) と、 0. 8 5質 量%以上 0. 9 8質量%以下の範囲内の Q (B、 または、 Bと Cと の混合物) と、 0質量%超 0. 3質量%以下の Z r と、 2. 0質 量%以下の添加元素 (A し C u、 G a、 I nおよび S nからなる 群から選択される少なくとも 1種の元素) と、 不可避不純物とを含 む。
ある実施形態において、 Qの集積相を実質的に有しない。
ある実施形態において、 前記添加元素は G aを含み、 0. 0 1質 量%以上 0. 0 8質量%以下の範囲内の G aを含む。
ある実施形態において、 0. 9 5質量%以下の Qを含む。
本発明によると、 硼化物相を生成させることなく、 異常粒成長を 抑制することができるので、 保磁力の低下を抑制し、 且つ、 残留磁 束密度を向上させた R— T— B系焼結磁石が得られる。 図面の簡単な説明
図 1は、 試料 1から 6の減磁曲線を示す図である。 図 2は、 試料 1と試料 4について、 焼結温度と磁気特性との関係 を示すグラフである。
図 3は、 試料 1を 1 0 8 0 °Cで焼結した場合の金属組織を偏光顕 微鏡で観察した結果を示す写真である。
図 4は、 試料 1を 1 1 0 0 °Cで焼結した場合の金属組織を偏光顕 微鏡で観察した結果を示す写真である。
図 5は、 試料 1を 1 1 2 0 °Cで焼結した場合の金属組織を偏光顕 微鏡で観察した結果を示す写真である。
図 6は、 試料 4を 1 0 8 0 °Cで焼結した場合の金属組織を偏光顕 微鏡で観察した結果を示す写真である。
図 7は、 試料 4を 1 1 0 0 °Cで焼結した場合の金属組織を偏光顕 微鏡で観察した結果を示す写真である。
図 8は、 試料 4を 1 1 2 0 °Cで焼結した場合の金属組織を偏光顕 微鏡で観察した結果を示す写真である。
図 9は、 試料 2の焼結磁石の E P M Aによる反射電子像 (B E
I : 各図中の左上) 、 および、 組成像 (N d (図中右上) 、 B (図 中左下) および添加元素 T i (図中右下) ) を示す図である。
図 1 0は、 試料 3の焼結磁石の E P M Aによる反射電子像 (B E I : 各図中の左上) 、 および、 組成像 (N d (図中右上) 、 B (図 中左下) および添加元素 V (図中右下) ) を示す図である。
図 1 1は、 試料 4の焼結磁石の E P M Aによる反射電子像 (B E I : 各図中の左上) 、 および、 組成像 (N d (図中右上) 、 B (図 中左下) および添加元素 Z r (図中右下) ) を示す図である。 図 1 2は、 試料 5の焼結磁石の E PMAによる反射電子像 (B E I : 各図中の左上) 、 および、 組成像 (N d (図中右上) 、 B (図 中左下) および添加元素 N b (図中右下) ) を示す図である。
図 1 3は、 試料 6の焼結磁石の E PMAによる反射電子像 (B E I : 各図中の左上) 、 および、 組成像 (N d (図中右上) 、 B (図 中左下) および添加元素 Mo (図中右下) ) を示す図である。
図 1 4は、 比較試料の焼結磁石の E PMAによる反射電子像 (B E I : 各図中の左上) 、 および、 組成像 (N d (図中右上) 、 B (図中左下) および添加元素 Z r (図中右下) ) を示す図である。 図 1 5は、 試料 7から 2 0の磁気特性を B含有率について整理し た結果を示すグラフであり、 横軸は B含有率であり、 縦軸は、 上側 が残留磁束密度 B r、 下側が保磁力 H c Jである。
図 1 6は、 焼結温度が 1 0 6 0 °Cおよび 1 0 8 0 °Cの 2条件につ いて、 Z r含有率と磁気特性との関係を示すグラフである。 発明を実施するための最良の形態
本発明者は、 B含有率が 0. 9 8質量%以下の R2T14B系希土 類焼結磁石に、 0. 3質量%以下の Z rを添加することによって、 硼化物相を生成させることなく、 異常粒成長を抑制することができ ることを見出し、 本発明を想到するに至った。
本発明の実施形態による R2T14 B系希土類焼結磁石は、 2 7質 量%以上 3 2質量%以下の範囲内の希土類元素 R (N d、 P r、 T bおよび D yからなる群から選択される少なくとも 1種の希土類元 素であって、 N dまたは P rの少なくとも一方を必ず含む) と、 6 0質量%以上 7 3質量%以下の範囲内の T (F e、 または、 F eと C oとの混合物) と、 0. 8 5質量%以上 0. 9 8質量%以下の範 囲内の Bと、 0質量%超0. 3質量%以下の Z rと、 2. 0質量% 以下の添加元素 M (A し C u、 G a、 I nおよび S nからなる群 から選択される少なくとも 1種の元素) と、 不可避不純物とを含む, Rは希土類元素であって、 N d、 P r、 D y、 T bのうち少なく とも 1種から選択される。 ただし、 Rは、 N dまたは P rのいずれ か一方を必ず含む。 好ましくは、 N d— D y、 N d— T b、 N d— P r _D y、 または N d— P r— T bで示される希土類元素の組合 わせを用いる。 希土類元素のうち、 D yや T bは、 特に保磁力の向 上に効果を発揮する。 また、 Rは純元素でなくてもよく、 工業上入 手可能な範囲で、 製造上不可避な不純物を含有するものでも差し支 えない。 含有率は、 2 7質量%未満では高磁気特性、 特に高保磁力 が得られず、 3 2質量%を超えると残留磁束密度が低下するため、 2 7質量%以上 3 2質量%以下とする。
Tは、 F eを必ず含み、 その一部、 好ましくは 5 0 %以下を C o で置換することができる。 また、 F eや C o以外の少量の遷移金属 元素を含有することができる。 C oは温度特性の向上、 耐食性の向 上に有効であり、 通常は、 1 0質量%以下の C oおよび残部 F eの 組合わせで用いる。 含有率は、 6 0質量%未満では残留磁束密度が 低下し、 7 3質量%を超えると保磁力の低下を来たすので、 6 0質 量%以上 7 3質量%以下とする。
Z rは、 本発明の必須元素である。 以下に実験例を示して説明す るように、 Z rは特有の効果を発揮する。 Z rは主相の希土類サイ トを置換して固溶し、 結晶成長速度を低下させることによって、 異 常粒成長を抑制する。 すなわち、 特開昭 6 1— 2 9 5 3 5 5号公報 および特開 2 0 0 2— 7 5 7 1 7号公報に記載されているように、 異常粒成長を抑制するためには硼化物が必要であるという従来の技 術常識に反し、 硼化物を析出させなくても異常粒成長を抑制できる. ということを本発明者が初めて知見した。 Z rを添加することによ つて、 残留磁束密度を低下させる要因となる硼化物相を必要とせず. 従来の組成では異常粒成長が起こるような温度および Zまたは時間 で焼結することが可能となり、 微細組織を維持したままで焼結密度 を高めることができる。 本発明の実施形態によると、 正方晶 R2T 14B型結晶構造を有する主相が磁石体積の 9 0 %以上を占め、 か つ Bリツチ相 (Q集積相 : 例えば R L ェ F e 4 B 4相) を実質的に 含まない組織が得られる。
ここで、 「実質的に含まない」 とは、 磁石の組織を、 無作為に選 択した 1 0以上の部分について E PMAを用いて観察した結果、 9 0 %以上の部分において、 Q集積組織が認められないことを意味し. また、 「Q集積相が認められない」 とは、 E PMA (例えば島津製 作所製 E PMA (E PM 1 6 1 0) を用いて条件 (加速電圧: 1 5 k V、 ビーム径 : 1 m、 電流値 : 3 0 n A (ファラデ一力ップ) . 分光結晶 : L S A 2 0 0) で硼素 (B) の蛍光 X線像 ( B— Κ α ) を観察した際に、 1 0 0 /mX 1 0 0 mの視野において、 輝点が 集中している部分 (すなわち集積相と帰属される部分) の総面積が 視野全体の 5 %未満の場合を言うものとする。 ただし、 Z r含有率が 0. 3質量%を超えると、 残留磁束密度が 低下するので、 その含有率は 0. 3質量%以下とする。 また、 過剰 の Bが存在すると硼化物相が形成されるので、 硼化物相の形成を抑 制するために Bの含有率を 0. 9 8質量%以下とする。 なお、 Bの 一部を Cに置換することができる。 B、 または、 Bと Cとの混合物 を Qとしてあらわすと、 Qの含有率 (質量%) の計算においては、 Bの一部を置換した Cを原子数基準で Bに換算して求めればよい。 添加元素 Mは、 A l 、 C u、 G a、 I nおよび S nのうちの少な くとも 1種の元素である。 添加量は 2. 0質量%以下が好ましい。
2. 0質量%を超えると残留磁束密度が低下するためである。 添加元素の中でも G aは特有の効果を発揮する場合がある。 後に 実験例を示して説明するように、 B (Q) の含有率が低くなると軟 磁性の R 2T i 7化合物が生成され、 保磁力および残留磁束密度が低 下することがある。 このような組成範囲において G aを極微量添加 すると、 軟磁性相の生成が抑制され、 B含有率の広い範囲で保磁力 および残留磁束密度が高い希土類焼結磁石が得られる。 本発明は、 Z r硼化物の生成を抑制するために Bを 0. 9 8質量%以下とする 場合に特に有効である。
G aの添加による効果は、 B (Q) の含有率が 0. 9 5質量%以 下の場合に顕著であり、 また、 B (Q) の含有率が 0. 9 0質量% 以上の場合に顕著である。 なお、 G a含有率が 0. 0 1質量%未満 では上記の効果が得られないことがあり、 また、 分析による管理が 困難となる。 一方、 G a含有率が 0. 0 8質量%を超えると、 残留 磁束密度 B rの低下を招く場合があるため好ましくない。 本発明では、 上記元素以外に不可避的不純物を許容することがで きる。 例えば、 F eの原料から混入する M n、 C rや、 F e— B (フエロボロン) から混入する A 1 、 S iや、 製造工程上不可避的 に混入する H、 Nおよび〇などである。
また、 焼結磁石においては、 酸素 : 0 . 5質量%以下、 窒素: 0 ,
2質量%以下、 水素: 0 . 0 1質量%以下であることが好ましい。 このように酸素、 窒素、 および水素濃度の上限を制限することによ り、 主相比率を高めることができ、 残留磁束密度 B rを高めること ができる。
本発明による実施形態の R - T一 B系焼結磁石は公知の方法で製 造され得る。 例えば以下の方法で製造することができる。
まず、 所定の組成を有する母合金の溶湯を例えば高周波溶解法で 作製し、 この溶湯を冷却 ·凝固して合金(母合金) を作製する。 母 合金の組成は、 希土類焼結磁石が上記の組成となるように調整する, 合金 (母合金) の製造は、 公知の一般的な方法を採用して行うこと ができる。 各種の合金製造方法の中でも、 ストリップキャスト法な どの急冷法が好適に用いられる。 ストリツプキャスト法によれば、 例えば厚さ 0 . 1 m m〜 5 m m程度の合金铸片を得ることができる < ストリップキャスト法などの急冷法の代わりに、 遠心铸造法を採 用しても良い。 また、 溶解 ·合金化の工程に代えて、 直接還元拡散 法を用いて合金を作製しても良い。 急冷法以外の方法で得られた凝 固合金を母合金として用いた場合にも同じ効果を得ることが出来る < しかしながら、 ストリップキャスト法のような急冷法に比べると、 偏祈が生じ易く、 そのため合金組織中に Z r硼化物等が析出するこ
0 とがあり、 Z rを効率的に添加することが難しい。 また、 Z r硼化 物等が一旦析出すると、 熱処理によって消失させることが困難であ り、 焼結後も残存する。 従って、 このような凝固合金から作製した 焼結磁石は、 急冷合金を用いた場合に比べ、 主相体積比率が低くな り易く、 その結果として残留磁束密度 B rが小さくなることがある, 得られた合金を公知の方法によって平均粒径 1〜 1 0 mに粉砕 する。 このような合金の粉末は、 粗粉砕工程と微粉砕工程の 2種類 の粉砕を行うことによって好適に作製され得る。 粗粉砕は、 水素吸 蔵粉砕法や、 ディスクミルなどを用いた機械的粉砕法によって行う ことができる。 また、 微粉碎は、 ジェッ トミル粉砕法、 ポールミル. ァトライターなどの機械的粉砕法によって行うことができる。
上記の粉砕によって得られた微粉碎粉は、 公知の成形技術を用い て様々な形状の成形体に成形される。 成形は、 磁場中圧縮成形法を 用いて行うことが一般的であるが、 パルス配向した後静水圧成形や ゴムモールド内で成形する方法を用いて行っても良い。
成形時の給粉の能率、 成形密度の均一化、 成形時の離型性などを 向上させるために、 脂肪酸エステルなどの液状潤滑剤ゃステアリン 酸亜鉛などの固体状潤滑剤を微粉碎前の粉末および Zまたは微粉碎 後の粉末に添加してもよい。 添加量は、 合金粉末 1 0 0重量部に対 して、 0 . 0 1重量部〜 5重量部が好ましい。
成形体は、 公知の方法によって焼結することができる。 焼結温度 は 1 0 0 0 〜 1 1 8 0 °C、 焼結時間は 1〜 6時間程度が好ましい, 本発明による実施形態の合金は、 Z rの添加により従来よりも高い 温度で焼結することができるので、 従来は温度ばらつきなどを考慮 すると量産には採用することが困難であった、 例えば、 1 1 0 0 °C 以上の焼結温度を採用することができる。 焼結後の焼結体には、 必 要に応じて熱処理 (時効処理) を施す。 熱処理条件は、 例えば、 温 度 4 0 0 °C〜 6 0 0 :、 時間 1〜 8時間程度が好ましい。
以下、 実験例を示して本発明を更に詳細に説明する。
(実験例 1 )
表 1に示す各組成の磁石 (試料 1〜 6 ) を以下の手順で作製した, なお、 表 1に示した組成は、 得られた焼結磁石の分析値であり、 母 合金の組成とは異なる。 組成分析は、 島津製作所製 I C Pおよび堀 場製作所製ガス分析装置を用いて公知の方法で行った。
なお、 表 1において F eを残部として表したが、 残部は F eと微' 量の不可避不純物とを含む。 後述する表 3においても同じ。
本実験例の試料における Bの含有量は、 いずれの試料についても- R量および T量に対する化学量論量にほぼ一致する。 また、 添加元 素 Mを無視して各相の体積比率を計算すると、 主相 (N d 2 F e 14 B化合物相) : 94. 4 %、 Rリッチ相 : 2. 5 %、 Bリッチ相 : 0. 1 %、 R酸化物相 (N d 23) : 3. 0 %となる。
所定の組成の母合金の溶湯を調製し、 ストリツプキャスト法を用 いて、 厚さが 0. 2から 0. 4mm程度の合金鎳片を作製した。 得られた合金铸片を常温で絶対圧力 0. 2 MP aの水素雰囲気で
2時間保持し、 合金に水素を吸蔵させた。
水素吸蔵した合金を真空中にて約 6 0 0 °Cで 3時間保持した後、 室温まで冷却した。 得られた合金は水素脆化により崩壊しているが、 これをふるいに 掛けることによって解碎し、 粒径が 42 5 m以下の粗粉末を得た, 得られた粗粉末をジエツ トミル粉砕装置を用いて、 窒素ガス雰囲 気中で微粉砕した。 得られた粉末の平均粒径は、 いずれの試料につ いても、 F S S S測定で 3. 2 ^m以上 3. 5 ^m以下の範囲であ つ 7こ。
得られた粉末をプレス成形することによって、 成形体を得た。 こ こでは、 約 1 T (テスラ) の直角磁界を印加しながら、 1 9 6 MP aの圧力で成形した。
得られた成形体を種々の温度条件で約 2時間焼結することによつ て、 焼結体を得た。
得られた焼結体を A r雰囲気中、 5 5 0 で 2時間の時効処理を 施したものを、 それぞれ焼結磁石の試料とし、 磁気特性を評価した, さらに、 4 0 0 °Cにて不活性雰囲気で熱消磁した後、 金属組織観 察および化学分析を行った。
3 [表 1 ]
(質量%)
Figure imgf000016_0001
図 1に各試料の減磁曲線を示す。 ここで用いた試料の焼結条件は. 1 1 2 0 °C、 2時間である。
図 1から明らかなように、 添加元素 Mを含まない試料 1の角形性 は著しく悪い。 これは、 以下に説明するように、 試料 1にとつて、 1 1 2 0 °Cは焼結温度として高すぎるために、 異常粒成長が起こつ たためである。 添加元素 Mとして、 T i 、 V、 N bおよび M oを添 加した試料 2 、 3 、 5および 6は、 試料 1よりも良好な角形性を有 しているものの、 Z rを添加した試料 4には及ばない。 試料 4の減 磁曲線の角形性は非常に良好である。 この結果から、 Z rが特異な 効果を発揮していることがわかる。 次に、 図 2を参照しながら、 試料 1 と試料 4について、 焼結温度 と磁気特性との関係を説明する。 図 2は、 横軸に焼結温度をとり、 縦軸に、 上から順に、 角形比 (H k/H c J ) 、 保磁力 H e J、 お よび残留磁束密度 B rをとつたグラフである。 角形性の指標として ここで用いた角形比 (H kZH c J ) の H kは、 磁化が残留磁束密 度 B rの 9 0 %となるときの外部磁界の値を示す。 図 2に示したグ ラフから、 Z rを添加した試料 4 (図中△) は添加元素を含まない 試料 1に比べ、 良好な磁気特性が得られる焼結温度範囲の上限が約 2 0°C上昇していることがわかる。 その結果、 焼結温度を 1 1 2 0 °C ( 1 3 9 3 K) としても、 角形比は 0. 9以上あり、 非常に良 好な角形性を有している。
次に、 表 2を参照しながら、 焼結温度、 角形性および異常粒成長 の関係を説明する。 なお、 表 2中の粒径欄の〇は異常粒成長が無い ことを示し、 Xは異常粒成長が有ることを示している。 表 2から分 かるように、 添加元素を含まない試料 1は既に 1 1 0 0 °Cで異常粒 成長が見られるとともに角形比 (H k/H c J ) の値も低いのに対 し、 Z rを添加した試料 4では 1 1 2 0 でも異常粒成長は認めら れず、 且つ、 角形比も 0. 9以上の高い値を有している。 また、 試 料 2、 3、 5および 6の結果からわかるように、 他の添加元素 (T i、 V、 N bおよび M o) も l l l O までは、 異常粒成長を抑制 する効果を有し、 高い角形比を維持できるものの、 1 1 2 0 °Cの結 果をみると明らかなように、 その効果は、 Z rには及ばない。 [表 2 ]
Figure imgf000018_0001
粒径 : 〇は異常粒成長無し、 Xは異常粒成長有り 次に、 異なる温度で焼結した試料 1および試料 4の金属組織を偏 光顕微鏡で観察した結果を図 3から図 8に示す。 図 3から図 5は、 試料 1を 1 0 8 0 ° (:、 1 1 0 0 °Cおよび 1 1 2 0 °Cで焼結した場合, 図 6から図 8は、 試料 4を 1 0 8 0 °C、 1 1 0 0 ぉょび 1 1 2 0 °Cで焼結した場合の観察結果を示している。
試料 1では、 図 3からわかるように、 1 0 8 0ででは異常粒成長 はみられず、 微細な結晶粒からなる良好な金属組織が形成されてい る。 これに対し、 焼結温度が 1 1 0 0 °Cの場合、 図 4からわかるよ うに、 既に異常粒成長によって生成された巨大な組織が観察されて いる。 焼結温度が 1 1 2 0 °Cの図 5では、 さらに多くの巨大組織が 観察されている。
一方、 Z rを添加した試料 4では、 図 6から図 8からわかるよう に、 異常粒成長が抑制されており、 図 8に示す焼結温度が 1 1 2 0 °Cの場合でも、 実質的に巨大組織は認められない。 次に、 図 9から図 1 3にそれぞれ試料 2から 6の焼結磁石 (焼結 温度 1 0 4 0 °C) の E P MAによる反射電子像 (B E I : 各図中の 左上) 、 および、 組成像 (N d (図中右上) 、 B (図中左下) およ び添加元素 M (図中右下) ) を示す。 いずれの試料も Bの含有率が 0. 9 5質量%と低いため、 Bの集積相 (偏析) は認められず、 硼 化物が形成されていないことが分かる。 また、 添加量が 0. 1質 量%の添加元素 M (T i、 V、 N bおよび Mo) の集積相も認めら れない。 なお、 原子量が比較的小さい T i については若干の偏析が 認められる。
上記の結果から分かるように、 Bの含有量が少なく、 且つ、 添加 元素 Mの添加量が微量であれば、 硼化物が析出しないことがわかる, さらに重要なことは、 異常粒成長を抑制するためには硼化物が必要 であるという従来の技術常識に反し、 硼化物を析出させなくても異 常粒成長を抑制できる、 ということがわかったことである。
なお、 比較のために、 図 1 4に、 R (N d : 2 0. 3質量%、 P r : 6. 0質量%、 D y : 5. 0質量%) : 3 1. 3質量%、 C o : 0. 9 0質量%、 A 1 : 0. 2 0質量%、 C u : 0. 1 0質 量%、 Z r : 0. 0 7質量%、 B : 0. 9 9質量%、 残部: F eお よび不可避不純物の組成を有する焼結磁石を E P M Aを用いて観察 した結果を示す。 図 1 4からわかるように、 Bの含有率が高いこの 焼結磁石には、 Z rの集積相および Bの集積相が形成されている。
このように、 本発明によると、 B含有量が少ない組成に Z rを添 加することによって、 硼化物相を生成させることなく、 異常粒成長 を抑制することができる。 従って、 保磁力の低下を抑制し、 且つ、 主相の体積比率の低下を抑制することによって残留磁束密度を向上 させた R— T一 B系焼結磁石を得ることができる。
(実験例 2 )
表 3に示す組成の磁石を実験例 1 と同様の方法で作製した。 ただ し、 ここでは焼結磁石中に含まれる酸素量を低減するために、 微粉 砕工程における雰囲気ガス中の酸素濃度を 5 0 p p m以下に管理し た。 このようにして得られた試料 7〜 2 0を種々の焼結温度で焼結 することによって得られた磁石を評価した結果を表 4に示す。 表 4 に示す各項目の評価は実験例 1 と同様の方法で行った。
8 6 T
Figure imgf000021_0001
[ ε拏]
£ LU0/ 00Zdr/13d 08SST0/S00Z OAV [表 4 ]
Figure imgf000022_0001
集積相有無 : 〇は集積相無し、 Xは集積相有り、 *は B集積相と混在 粒径: 〇は異常粒成長無し、 Xは異常粒成長有り 表 4の結果からわかるように、 異常粒成長は、 B集積相や Z r集 積相の有無とは無関係に発生する。 また、 Z rの添加により、 Z r の集積相の有無とは無関係に異常粒成長が抑制されていることがわ かる。 焼結密度は、 1 0 2 0 °Cで焼結した場合は、 いずれの試料につい ても 7. 4 6〜 7. 4 9 Mgm— 3であり、 真密度 : 約 7. 5 5 M gm— 3に対し、 やや焼結不足である。 これに対し、 焼結温度が 1 0 4 0 °C〜 1 0 8 0 の場合、 いずれの試料についても、 焼結密度 は 7. 5 4〜 7. 5 7 M gm— 3に達している。 このことから、 焼 結温度が 1 0 2 0 °Cでは焼結不足であり、 残留磁束密度が低いこと が問題となる。
従って、 残留磁束密度の低下が問題とならない焼結密度を確保し つつ、 異常粒成長や角形比の低下を抑制するためには、 Z rを添加 していない試料 7から 1 1については、 好ましい焼結温度は 1 0 4 0 °Cの一条件しかないことになる。 なお、 試料 7の角形比は 0. 9 以上あるが、 H kおよび H c Jの値が小さいため好ましくない。 こ れに対し、 Z rを添加した試料 1 2〜 2 0については、 1 0 8 0 °C の焼結温度においても異常粒成長の発生や角形比の低下が抑制され ,ており、 焼結温度範囲は 1 0 4 0 °C〜 1 0 8 0 °Cと高温側に拡大し ている。 従って、 試料 1 2〜 2 0は、 試料 7〜 1 1よりも、 工業的 に安定に製造することができる。
次に、 図 1 5を参照しながら、 B含有率と磁気特性との関係を説 明する。 図 1 5は試料 7から 2 0の磁気特性を B含有率について整 理した結果を示すグラフであり、 横軸は B含有率であり、 縦軸は、 上側が残留磁束密度 B r、 下側が保磁力 H e Jである。
図 1 5からわかるように、 Z rを含まない試料 7から 1 1の残留 磁束密度のピークは、 B含有率が 0. 9 6質量%付近にある。 これ は、 B含有率が約 0. 9 6質量%を超えると、 磁性に寄与しない B
2 リッチ相 (N dし X F e 4B 4化合物相) が増加するためである。 なお、 保磁力は Bリッチ相の影響を受けないので、 B含有率が約 0. 9 6質量%を超えても低下しない。
一方、 B含有率が約 0. 9 6質量%よりも少ないと、 Bリッチ相 は生成せず、 N d 2 F e i 7相が析出する。 この N d 2 F e 17相は軟 磁性相 (主相は硬磁性相) であるため、 N d 2 F e i 7相が析出する と保磁力が急激に低下し、 また、 N d 2 F e 17相の析出によって主 相の体積分率が低下するので残留磁束密度も低下する。
Z rを含む試料 1 2〜 1 6では、 保磁力の値は試料 7〜 1 1より も高いものの、 B含有率が約 0. 9 6質量%よりも小さいと残留磁 束密度は試料 7〜 1 1と同様に低下する。 また、 残留磁束密度は、 B含有率が約 0. 9 6質量%を超えると低下し、 特に、 B含有率が 0. 9 8質量%を超えると Z rを含まない試料 7〜 1 1よりも低下 量が大きくなる。 これは、 Z rを含む試料で Bが過剰に存在すると. Z r B 2、 Z r— N d _ Bまたは Z r _ F e— Bという Z rを含む 硼化物相が析出するためである。 すなわち、 Z rの添加は、 異常粒 成長を抑制することによって間接的に磁気特性を改善するが、 磁気 特性を直接的に向上する効果はなく、 むしろ、 B含有率が 0. 9 8 質量%を超える組成範囲では、 残留磁束密度を大幅に低下させるこ とがわかる。
Z r添加に加えて、 G aを極微量 ( 0. 0 4質量%) 添加した試 料 1 7〜 2 0では、 B含有率が 0. 9 6質量%よりも小さい組成範 囲における残留磁束密度の低下や保磁力の低下が解消され、 残留磁 束密度が最大となる B含有率の範囲が低含有率側に大幅に拡大し、 焼結温度範囲も広く且つ磁気特性に優れた焼結磁石が得られる。 Z r添加に加えて G aをさらに添加することによって得られるこの効 果は、 B含有率が 0. 9 5質量%以下において顕著である。
なお、 図 1 5には B含有率が 0. 9 0質量%以上の結果を示して いるが、 B含有率が 0. 8 5質量%以上あれば、 Z r添加効果およ び G a添加効果は認められる。 勿論、 例示したように、 B含有率が 0. 9 0質量%以上で 0. 9 8質量%以下であることが好ましい。
(実験例 3 )
実験例 1 と同様の方法で、 N d : 2 2. 0質量%、 P r : 6. 2 質量%、 D y : 2. 0質量%、 C o : 1. 8質量%、 C u : 0. 1 0質量%、 B : 0. 9 4質量%、 G a 0. 0 5質量%、 Z r : X ( 0〜4) 質量%、 残部: F eおよび不可避不純物の組成を有する 焼結磁石を、 種々の焼結温度で作製し、 磁気特性を評価した。 なお, 実験例 3で作製した焼結磁石の酸素含有率は 0. 3 8〜 0. 4 1質 量%の範囲であった。
図 1 6は、 焼結温度が 1 0 6 0 °Cおよび 1 0 8 0 °Cの 2条件につ いて、 Z r含有率と磁気特性との関係を示すグラフである。 横軸は Z r含有率で、 縦軸は上から順に、 H k (磁化が残留磁束密度 B r の 9 0 %となるときの外部磁界の値) 、 保磁力 H e Jおよび残留磁 束密度 B rである。
図 1 6からわかるように、 Z r含有率が 0. 0 1質量%という極 微量であっても、 焼結温度が高い場合の保磁力 H c Jを改善する効 果が認められる。 一方、 Z r含有率が 0. 3質量%を越えると残留 磁化の低下が顕著となるので、 Z r含有率は 0. 3質量%以下に調 整することが好ましいことが分かる。 産業上の利用可能性
本発明によると、 保磁力の低下を抑制し、 且つ、 残留磁束密度を 向上させた R— T— B系焼結磁石が得られる。 本発明の希土類焼結 磁石は、 焼結温度のマージンが広いので、 工業的に安定に製造する ことができる。 本発明による希土類焼結磁石は、 各種モータ、 ァク チユエ一夕など高性能化のニーズが高い用途に特に好適に用いられ る。

Claims

請 求 の 範 囲
1. 主相が R2T14B型化合物相を含む希土類焼結磁石であつ て、
2 7質量%以上 3 2質量%以下の範囲内の R (N d、 P r、 T b および D yからなる群から選択される少なくとも 1種の希土類元素 であって、 N dまたは P rの少なくとも一方を必ず含む) と、
6 0質量%以上 7 3質量%以下の範囲内の T (F e、 または、 F eと C oとの混合物) と、
0. 8 5質量%以上 0. 9 8質量%以下の範囲内の Q (B、 また は、 Bと Cとの混合物であり、 質量%の計算においては原子数基準 で Bに換算される。 ) と、
0質量%超 0. 3質量%以下の Z rと、
2. 0質量%以下の添加元素 M (A l、 C u、 G a、 I nおよび S nからなる群から選択される少なくとも 1種の元素) と、
不可避不純物と、
を含む、 希土類焼結磁石。
2. Qの集積相を実質的に有しない請求項 1に記載の希土類焼 結磁石。
3. 前記添加元素は G aを含み、 0. 0 1質量%以上0. 0 8 質量%以下の範囲内の G aを含む、 請求項 1または 2に記載の希土 類焼結磁石。
4. 0. 9 5質量%以下の Qを含む、 請求項 3に記載の希土類 焼結磁石。
5. 0. 9 0質量%以上の Qを含む、 請求項 4に記載の希土類 焼結磁石。
6. 減磁曲線における角形比 (H kZH c J ) が 0. 9以上で ' ある、 請求項 1から 5のいずれかに記載の希土類焼結磁石。
7. 主相が R2T14B型化合物相を含む希土類焼結磁石用の原 料合金であって、
2 7質量%以上 3 2質量%以下の範囲内の R (N d、 P r、 T b および D yからなる群から選択される少なくとも 1種の希土類元素 ' であって、 N dまたは P rの少なくとも一方を必ず含む) と、
6 0質量%以上 7 3質量%以下の範囲内の T (F e、 または、 F e と C oとの混合物) と、
0. 8 5質量%以上 0. 9 8質量%以下の範囲内の Q (B、 また は、 Bと Cとの混合物) と、
0質量%超 0. 3質量%以下の Z rと、
2. 0質量%以下の添加元素 (A 1、 C u G a、 I nおよび S nからなる群から選択される少なくとも 1種の元素) と、
不可避不純物と、
を含む、 希土類合金。
8. Qの集積相を実質的に有しない請求項 6に記載の希土類合
9. 前記添加元素は G aを含み、 0. 0 1質量%以上 0. 0 8 質量%以下の範囲内の G aを含む、 請求項 7または 8に記載の希土 類合金。
1 0. 0. 9 5質量%以下の Qを含む、 請求項 9に記載の希土 類合金。
PCT/JP2004/011743 2003-08-12 2004-08-10 R-t-b系焼結磁石および希土類合金 WO2005015580A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04771704.6A EP1662516B1 (en) 2003-08-12 2004-08-10 R-t-b sintered magnet and rare earth alloy
JP2005513043A JP4605013B2 (ja) 2003-08-12 2004-08-10 R−t−b系焼結磁石および希土類合金
US10/567,502 US7534311B2 (en) 2003-08-12 2004-08-10 R-t-b sintered magnet and rare earth alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-292194 2003-08-12
JP2003292194 2003-08-12

Publications (1)

Publication Number Publication Date
WO2005015580A1 true WO2005015580A1 (ja) 2005-02-17

Family

ID=34131705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011743 WO2005015580A1 (ja) 2003-08-12 2004-08-10 R-t-b系焼結磁石および希土類合金

Country Status (5)

Country Link
US (1) US7534311B2 (ja)
EP (1) EP1662516B1 (ja)
JP (1) JP4605013B2 (ja)
CN (1) CN100545959C (ja)
WO (1) WO2005015580A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295140A (ja) * 2005-03-16 2006-10-26 Tdk Corp 希土類永久磁石
JP2006295139A (ja) * 2005-03-16 2006-10-26 Tdk Corp 希土類永久磁石
WO2009004994A1 (ja) 2007-06-29 2009-01-08 Tdk Corporation 希土類磁石
JP2014027268A (ja) * 2012-06-22 2014-02-06 Tdk Corp 焼結磁石
JP2015103681A (ja) * 2013-11-26 2015-06-04 日立金属株式会社 R−t−b系焼結磁石
JP2016509365A (ja) * 2012-12-24 2016-03-24 北京中科三環高技術股▲ふん▼有限公司 NdFeB系焼結磁石及びその製造方法
JP2016127114A (ja) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 希土類磁石の磁気性能の特定方法
JP2016169438A (ja) * 2015-03-13 2016-09-23 昭和電工株式会社 R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008062757A1 (ja) * 2006-11-21 2010-03-04 株式会社アルバック 配向体、成形体及び焼結体の製造方法並びに永久磁石の製造方法
CN101560628B (zh) * 2008-04-17 2012-07-11 北京有色金属研究总院 一种稀土铁合金及其制备工艺
US20110074530A1 (en) * 2009-09-30 2011-03-31 General Electric Company Mixed rare-earth permanent magnet and method of fabrication
JP5572673B2 (ja) 2011-07-08 2014-08-13 昭和電工株式会社 R−t−b系希土類焼結磁石用合金、r−t−b系希土類焼結磁石用合金の製造方法、r−t−b系希土類焼結磁石用合金材料、r−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石の製造方法およびモーター
JP6238444B2 (ja) * 2013-01-07 2017-11-29 昭和電工株式会社 R−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石用合金およびその製造方法
EP3790029A1 (en) 2013-06-17 2021-03-10 Urban Mining Technology Company, LLC Magnet recycling to create nd-fe-b magnets with improved or restored magnetic performance
DE112014003694B4 (de) 2013-08-09 2023-06-29 Tdk Corporation R-T-B-basierter gesinterter Magnet und Rotationsmaschine
KR101543111B1 (ko) * 2013-12-17 2015-08-10 현대자동차주식회사 NdFeB 영구자석 및 그 제조방법
US9336932B1 (en) 2014-08-15 2016-05-10 Urban Mining Company Grain boundary engineering
US10428408B2 (en) * 2015-03-13 2019-10-01 Tdk Corporation R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
CN105513737A (zh) * 2016-01-21 2016-04-20 烟台首钢磁性材料股份有限公司 一种不含重稀土元素烧结钕铁硼磁体的制备方法
CN110942878B (zh) * 2019-12-24 2021-03-26 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN113066625B (zh) * 2021-03-26 2023-04-11 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295355A (ja) 1985-06-21 1986-12-26 Sumitomo Special Metals Co Ltd 永久磁石合金
JPH06220502A (ja) * 1992-06-22 1994-08-09 General Motors Corp <Gm> 溶融紡糸リボンからの細粒化異方性粉末の製造
JPH10289813A (ja) * 1997-04-16 1998-10-27 Hitachi Metals Ltd 希土類磁石
JP2000188213A (ja) * 1998-10-14 2000-07-04 Hitachi Metals Ltd R―t―b系焼結型永久磁石
JP2002075717A (ja) 2000-06-13 2002-03-15 Shin Etsu Chem Co Ltd R−Fe−B系希土類永久磁石材料

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792368A (en) * 1982-08-21 1988-12-20 Sumitomo Special Metals Co., Ltd. Magnetic materials and permanent magnets
CA1316375C (en) * 1982-08-21 1993-04-20 Masato Sagawa Magnetic materials and permanent magnets
DE3786426T2 (de) * 1986-06-12 1993-12-09 Toshiba Kawasaki Kk Dauermagnet und Dauermagnetlegierung.
US5223047A (en) * 1986-07-23 1993-06-29 Hitachi Metals, Ltd. Permanent magnet with good thermal stability
US5228930A (en) * 1989-07-31 1993-07-20 Mitsubishi Materials Corporation Rare earth permanent magnet power, method for producing same and bonded magnet
JP2904571B2 (ja) 1990-10-29 1999-06-14 信越化学工業株式会社 希土類異方性焼結永久磁石の製造方法
US5405455A (en) * 1991-06-04 1995-04-11 Shin-Etsu Chemical Co. Ltd. Rare earth-based permanent magnet
JPH05258928A (ja) * 1992-03-10 1993-10-08 Hitachi Metals Ltd 永久磁石および永久磁石粉末および製造方法
JP3086334B2 (ja) * 1992-06-12 2000-09-11 住友特殊金属株式会社 永久磁石用異方性希土類合金粉末
JP3080275B2 (ja) 1992-09-18 2000-08-21 日立金属株式会社 耐食性および耐熱性に優れたR−Fe−Co−Al−Nb−Ga−B系焼結磁石及びその製造方法
US5472525A (en) * 1993-01-29 1995-12-05 Hitachi Metals, Ltd. Nd-Fe-B system permanent magnet
JP3296507B2 (ja) 1993-02-02 2002-07-02 日立金属株式会社 希土類永久磁石
JP3368294B2 (ja) * 1993-06-25 2003-01-20 住友特殊金属株式会社 永久磁石用異方性希土類合金粉末の製造方法
US5858123A (en) * 1995-07-12 1999-01-12 Hitachi Metals, Ltd. Rare earth permanent magnet and method for producing the same
JP3255344B2 (ja) 1996-04-17 2002-02-12 日立金属株式会社 焼結型永久磁石
JP3255593B2 (ja) 1997-09-30 2002-02-12 日立金属株式会社 熱安定性の良好な焼結型永久磁石の製造方法
CN1169165C (zh) * 1998-10-14 2004-09-29 日立金属株式会社 R-t-b系烧结型永磁体
CN1171248C (zh) * 1999-09-09 2004-10-13 株式会社新王磁材 耐腐蚀的R-Fe-B粘结磁铁,用于模制R-Fe-B粘结磁铁的粉末,以及其制备方法
JP2001297907A (ja) 2000-04-14 2001-10-26 Hitachi Metals Ltd R−t−b系焼結磁石、リング磁石およびボイスコイルモータ
DE60131699T2 (de) * 2000-06-13 2008-11-20 Shin-Etsu Chemical Co., Ltd. Dauermagnetmaterialien auf R-Fe-B-Basis
JP2002038245A (ja) 2000-07-27 2002-02-06 Hitachi Metals Ltd 希土類永久磁石用合金粉末および希土類永久磁石の製造方法
JP4371188B2 (ja) * 2000-08-22 2009-11-25 信越化学工業株式会社 高比電気抵抗性希土類磁石及びその製造方法
JP2002285276A (ja) 2001-03-26 2002-10-03 Hitachi Metals Ltd R−t−b−c系焼結磁石及びその製造方法
US7255751B2 (en) * 2002-09-30 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet
US7311788B2 (en) * 2002-09-30 2007-12-25 Tdk Corporation R-T-B system rare earth permanent magnet
WO2004081954A1 (ja) * 2003-03-12 2004-09-23 Neomax Co., Ltd. R-t-b系焼結磁石およびその製造方法
US7199690B2 (en) * 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
US7255752B2 (en) * 2003-03-28 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295355A (ja) 1985-06-21 1986-12-26 Sumitomo Special Metals Co Ltd 永久磁石合金
JPH06220502A (ja) * 1992-06-22 1994-08-09 General Motors Corp <Gm> 溶融紡糸リボンからの細粒化異方性粉末の製造
JPH10289813A (ja) * 1997-04-16 1998-10-27 Hitachi Metals Ltd 希土類磁石
JP2000188213A (ja) * 1998-10-14 2000-07-04 Hitachi Metals Ltd R―t―b系焼結型永久磁石
JP2002075717A (ja) 2000-06-13 2002-03-15 Shin Etsu Chem Co Ltd R−Fe−B系希土類永久磁石材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1662516A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295140A (ja) * 2005-03-16 2006-10-26 Tdk Corp 希土類永久磁石
JP2006295139A (ja) * 2005-03-16 2006-10-26 Tdk Corp 希土類永久磁石
WO2009004994A1 (ja) 2007-06-29 2009-01-08 Tdk Corporation 希土類磁石
JPWO2009004994A1 (ja) * 2007-06-29 2010-08-26 Tdk株式会社 希土類磁石
US8152936B2 (en) 2007-06-29 2012-04-10 Tdk Corporation Rare earth magnet
JP2013070062A (ja) * 2007-06-29 2013-04-18 Tdk Corp 希土類磁石
JP2014027268A (ja) * 2012-06-22 2014-02-06 Tdk Corp 焼結磁石
JP2016509365A (ja) * 2012-12-24 2016-03-24 北京中科三環高技術股▲ふん▼有限公司 NdFeB系焼結磁石及びその製造方法
JP2015103681A (ja) * 2013-11-26 2015-06-04 日立金属株式会社 R−t−b系焼結磁石
JP2016127114A (ja) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 希土類磁石の磁気性能の特定方法
JP2016169438A (ja) * 2015-03-13 2016-09-23 昭和電工株式会社 R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金

Also Published As

Publication number Publication date
US7534311B2 (en) 2009-05-19
EP1662516A1 (en) 2006-05-31
CN1723511A (zh) 2006-01-18
EP1662516A4 (en) 2009-12-09
CN100545959C (zh) 2009-09-30
US20060201585A1 (en) 2006-09-14
JP4605013B2 (ja) 2011-01-05
JPWO2005015580A1 (ja) 2006-10-05
EP1662516B1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
JP4831253B2 (ja) R−T−Cu−Mn−B系焼結磁石
JP5120710B2 (ja) RL−RH−T−Mn−B系焼結磁石
WO2017018291A1 (ja) R-t-b系焼結磁石の製造方法
JP4605013B2 (ja) R−t−b系焼結磁石および希土類合金
JPWO2005123974A1 (ja) R−Fe−B系希土類永久磁石材料
JPWO2004081954A1 (ja) R−t−b系焼結磁石およびその製造方法
JP6500907B2 (ja) R−t−b系焼結磁石の製造方法
JP5910074B2 (ja) R−T−Zr−B系希土類金属磁石
JP4179973B2 (ja) 焼結磁石の製造方法
JP3715573B2 (ja) 磁石材料及びその製造方法
JP4951703B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
JP6213697B1 (ja) R−t−b系焼結磁石の製造方法
JP4821128B2 (ja) R−Fe−B系希土類永久磁石
JP4895027B2 (ja) R−t−b系焼結磁石及びr−t−b系焼結磁石の製造方法
JP5299737B2 (ja) R−t−b系焼結永久磁石用急冷合金およびそれを用いたr−t−b系焼結永久磁石
JP2024020341A (ja) 異方性希土類焼結磁石及びその製造方法
JP2010219499A (ja) R−t−b系希土類焼結磁石及びその製造方法
JP5743458B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
JP6623998B2 (ja) R−t−b系焼結磁石の製造方法
CN108389674B (zh) R-t-b系烧结磁铁
JP4303937B2 (ja) 永久磁石合金
JP3815983B2 (ja) 希土類磁石およびその製造方法
JPH05182813A (ja) 希土類永久磁石の製造方法
WO2021193334A1 (ja) 異方性希土類焼結磁石及びその製造方法
JPH0475303B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005513043

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048018692

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10567502

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004771704

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004771704

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10567502

Country of ref document: US