WO2005008547A1 - 境界表現データからボリュームデータを生成する方法及びそのプログラム - Google Patents

境界表現データからボリュームデータを生成する方法及びそのプログラム Download PDF

Info

Publication number
WO2005008547A1
WO2005008547A1 PCT/JP2004/010023 JP2004010023W WO2005008547A1 WO 2005008547 A1 WO2005008547 A1 WO 2005008547A1 JP 2004010023 W JP2004010023 W JP 2004010023W WO 2005008547 A1 WO2005008547 A1 WO 2005008547A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
data
boundary
triangle
cells
Prior art date
Application number
PCT/JP2004/010023
Other languages
English (en)
French (fr)
Inventor
Shugo Usami
Kiwamu Kase
Yu-Ichiro Terada
Hiroshi Yagi
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to EP04747489A priority Critical patent/EP1645979A4/en
Priority to US10/595,047 priority patent/US7372460B2/en
Publication of WO2005008547A1 publication Critical patent/WO2005008547A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • the present invention relates to a volume data generation method capable of storing volume data in which shape and physical properties are integrated with a small storage capacity and unifying CAD and simulation. More specifically, the present invention is often used as an input surface shape. To fit triangle patches to cells of a specified size.
  • C_Simulation Coorporative Simulation
  • A-CAM Advanced CAM
  • D_fabrication Deterministic fabrication
  • the object is determined by CSG (Constructive Solid Geometry) or B_rep (Boundary Representation), taking into account the data.
  • the CSG stores the entire object as a set of fine solid models, so the data is heavy and large amounts of data must be handled when implementing simulation means (software, etc.), and large computers must be used.
  • simulation means software, etc.
  • large computers must be used.
  • B-rep since an object is represented by a boundary, the data is light and the amount of data is small, but since there is no direct information on the inside of the boundary surface, it can be directly used for deformation analysis or the like. Had an unsuitable problem.
  • Solid / Surface_CAD (hereinafter referred to as S-CAD) has the following problems.
  • external data composed of boundary data of an object is divided into cubic cells whose boundary planes are orthogonal by octree division, and each of the divided cells is It is divided into an internal cell 13a located inside the object and a boundary cell 13b including a boundary surface.
  • 15 is a cutting point.
  • the present invention by storing various physical property values for each cell, it is possible to store entity data in which shape and physical properties are integrated with a small storage capacity.
  • Physical property information ⁇ History is centrally managed, and a series of processes from design to processing, assembly, testing, evaluation, etc. Data related to the process can be managed with the same data, and CAD and simulation can be integrated.
  • volume CAD a surface that closely resembles a curved surface having high curvature without forming gaps or an undesirably accurate triangle is maintained as a triangular mesh in a volume CAD while maintaining continuity with cells in contact with each other.
  • Cell internal data that can be divided can be formed from external data.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-230054, “Method of storing entity data integrating shape and physical properties”
  • Patent Document 2 Japanese Patent Application No. 2001-370040, "Method and program for converting three-dimensional shape data into cell internal data", not disclosed
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-44528, "Method for Generating Surface Grid of Object"
  • Patent Document 4 Japanese Patent Application No. 2003-131313, “Multimedia Data Identification Method and Program", Unpublished
  • Non-Patent Document 1 ⁇ Kase, Y. Teshima, S. Usami, H. Ohmori, C. Teodo siu, and A. Makinouchi "Volume CAD" International Workshop on
  • Non-Special Noon Document 3 Y. Teshima, S. Usami, and K. Kase, "Enumeration on Cube Cutting, Japan Conference on Discrete and Computational Geometry, 2002, Tokyo, Japan, pp. 87-88,
  • Non-Special Noon Document 4 C.M.Hoffmann, "The Proolems of accuracy and robustness in geometric computation. Computer, 22 (3): pp31-41,
  • Non-Patent Document 5 T. Ju, F. Losasso, S. Shaefer, J. Warren, "Dual Cont pp339—346
  • Non-special language reference 6 WJ Shroeder, ⁇ A Topology Modifying Progressive Decimation Decimation Algoritm ”, Proc. Visuallizatin97, pp205—212, Oct. 1997
  • Patent Document 7 WJ Shroeder, JA Zarge and WE Lorensen, "De cimation of Triangle Meshes", Proc. Siggraph 92, pp65-70, July 1992
  • Non-Patent Document 8 K. J. Renze and J. H. Oliver, Generalized Surface and Volume Decimation for Unstructured Tessellated Domains ", Pro c. VRAIS96, ppl l l-121, Mar 1996
  • Non-Patent Document 9 B. Hamman, A Data Reduction Scheme for Triangulated Surfaces, "CAGD, 11 (2)
  • Patent Document 0 1. Navazo, "Extended Octtree Representation of General Solids with Plane Faces: Model Structure and Algorithms",
  • Non-Patent Document 11 H. Hoppe, T. DeRose, T, Duchamp, J, McDonald, and W. Stuetzle, "Mesh Optimization, Proc .; ggraph93 , Pp. 19 -26, Aug. 1993
  • Non-noon literature 12 H. Hoppe, Progressive Meshes "Proc. Siggraph96 p P99-108, Aug 1996
  • Non-Patent Document 14 M. Garland and PS HEckbert," Surface Simplificat ion Using Quadric Error Metrics, ⁇ Proc. SIGGRAPH 97, pp. 209 —216, Aug. 1997.
  • Patent Document 5 C. M. Hoffmann. The problems of accuracy and robustness in geometric computation. Computer, 22 (3): 31-41, 19 89.
  • Non-patent text 6 K. Sughihara and M. Iri.A solid modeling system f ree from topological inconsistency.Journal of Information Processing, 12: 380-393, 1989.
  • Non-Patent Document 17 A. Kela. Hierarchical octree approximations for boundary representation— based geometric models, Computer— Aided Desi gn, 21 (6): 355-362, 1989.
  • Non-Patent Document 18 1.Navazo, D. Ayala and P. Brunet.A geometric modeller based on the exact octtree representation of polyhedra, Computer Graphics Forum (Eurographics '86 Proc.): 591—104, 1986.
  • Non-noon literature 19 W. Lorensen and H. Cline. H. Marching cubes: hi resolution 3D surface construction algorithm.
  • Non-Patent Document 20 1.Navazo, D. Ayala, and P. Brunet “A Geometric Modeller Based on the Exact Octtree Representation of Polyhedra", Computer Graphics Forum 5 pp91-104, 1986
  • Non-Patent Document 21 T. Hama, M. Asakawa, M. Takamura, A. Makino ucni, C. Teodosiu, ⁇ A stable and fast new contact search algorit hm for FEM simulation of metal forming process, (to appear)
  • the shape representation using cells and triangular patches adapted to the cells and the method of generating the data proposed in Patent Document 1 and Patent Document 1 are performed in the following three steps: (Step 1) User Calculation of intersection of cell space defined by and triangular patch as input shape (calculation of cell cutting point).
  • Step 2 Generate a closed loop formed by connecting cell cutting points on the cell surface for each cell.
  • the numbers are determined in order from the one that is uniquely determined based on the number of cell cutting points in the cell and the relationship with adjacent cells.
  • Step 3 Triangulate the inside of the closed loop generated in each cell based on the difference from the input shape.
  • this method has the following problems.
  • Step 2 There is a case where the process of (Step 2) is not completed for a shape having the same complexity as the cell size.
  • Step 2 The process of (Step 2) may fail because a non-manifold shape occurs in the process of gradually changing from a shape smaller than the cell size to a shape larger than the cell size.
  • Non-Patent Document 12 there are various derived systems depending on the subdivision parameters and division method, and the criteria for integration. However, these methods are conversion methods that inherit the two-manifold condition and the phase condition of the original shape as they are, and are not suitable for operations such as intentionally simplification of minute shapes.
  • the present invention has been made to solve the above-mentioned problems. That is, the purpose of the present invention is to convert volume data from boundary expression data in volume CAD, which can use the phase information of the triangular patch of the input shape as it is and can simplify the shape as needed.
  • An object of the present invention is to provide a generating method and a program thereof.
  • V—CAD Non-Patent Document 1
  • CAD Non-Patent Document 1
  • a means using a triangular patch is employed.
  • the present invention realizes conversion from a group of triangular patches frequently used as a three-dimensional shape expression method to a group of triangular patches adapted to cells.
  • Step 1 Divide the triangular patch with phase on the cell surface.
  • Step 2 Among the vertices of the triangular patch with topology, those other than those on the cell edge are integrated with other vertices.
  • Step 3 Optimization by approximation processing of parts that violate the conditions of (Step 2) and the V-CAD data structure conditions (the condition of one edge-one cutting point).
  • Step 1 the information of the cell surface used for the division is added to the triangle vertices and used for the integration processing of (Step 2).
  • Step 3 The shapes that require the processing of (Step 3) are classified into the following six types (a, b, c, dl, d2, and d3). Approximation of 'is performed.
  • a triangle patch is connected between adjacent cells at three or more points, including on-surface points. Case that is disgusting.
  • the pattern can be divided into three patterns (dl, d2, d3) according to the state of the triangular patch connected to each cutting point, and processing according to each state is performed. Then, the points on the edge are deleted one by one, and in the last case (d3), the cut points on the edge are deleted using two triangle groups as a set. As a result, processing is continued until the cutting point on the ridge becomes 0 or 1.
  • the relevant cutting point is the interior point of the triangle and is bent at that position.
  • the relevant cutting point is an interior point of the triangular patch and crosses the edge.
  • the cell can be adapted to the required size without changing the Z-phase condition.
  • the present invention it was possible to realize the shape expression and the physical property value expression using the octree and the triangular patches adapted to the octree cell, which were difficult with the conventional methods.
  • the development of a method for adapting cells to triangular patches has made it possible to perform robustness compared to existing Brep data, as well as deformation processing power S, such as the aggregation operation of shapes represented by triangular patches.
  • the phase information of the triangular patch of the input shape can be used as it is, and the shape can be simplified as necessary. Bidirectional link can be realized.
  • FIG. 1 is a schematic diagram of a “method of storing entity data integrating shape and physical properties” in [Patent Document 1].
  • FIG. 2 is a block diagram of an apparatus for executing the method of the present invention.
  • FIG. 3 is a data structure diagram of volume data.
  • FIG. 4 is a flowchart of the method of the present invention.
  • FIG. 5 is a schematic diagram of an isolated polyhedron.
  • FIG. 6 is a schematic diagram of on-plane point connection.
  • FIG. 7 is a schematic view of the same twill connection.
  • FIG. 8 is a schematic diagram of a boundary point.
  • FIG. 9 is a schematic view of a bent shape.
  • FIG. 10 is a schematic view of a penetrating shape.
  • FIG. 11 A and B are schematic diagrams of processing of an isolated polyhedron (triangle patch).
  • FIG. 12 A, B, and C are schematic diagrams of connected patch processing based on points on a surface and the like.
  • FIG. 13 A, B, and C are schematic diagrams of boundary point processing of a plurality of cutting points.
  • FIG. 14 A, B, and C are schematic diagrams of break point processing of a plurality of cutting points.
  • FIG. 15 A, B, C, and D are schematic diagrams of two through-surface treatments at a plurality of cutting points.
  • FIG. 16 is a schematic view of an on-plane cutting point.
  • FIG. 17A is a view showing an actual shape of an industrial product (a mold part of an automobile bumper).
  • FIG. 17B is a view showing an actual shape of an industrial product (a mold part of an automobile bumper).
  • FIG. 17C is a diagram showing the actual shape of the industrial product (the mold part of the bumper of the automobile).
  • FIG. 17D is a view showing the actual shape of the industrial product (the mold part of the bumper of the automobile).
  • FIG. 17E A view showing the shape of an actual industrial product (mold parts of a bumper of an automobile).
  • FIG. 17F A view showing the shape of an actual industrial product (mold parts of an automobile bumper).
  • FIG. 18 A and B are diagrams showing the result of a set operation between simple shapes.
  • each triangle can be managed by a cell, in a case where a structure (a thin hole or a bar, a thin plate or a gap) having a size equal to or less than the size of the cell is used, editing of the phase structure (e.g. Create / delete minute shells).
  • boundary representation using conventional parametric surfaces has become a problem in CAD. Aiming at robustness of geometric operations and speeding up by parallelization, structural analysis and thermal fluid analysis using unified data are performed. It is intended for direct use in simulations such as analysis and comparison with measurement data from objects with various machining and internal structures.
  • FIG. 2 is an apparatus configuration diagram for executing the method of the present invention.
  • the device 10 includes an external data input means 2, an external storage device 3, an internal storage device 4, a central processing unit 5, and an output device 6.
  • the external data input means 2 is, for example, a keyboard and inputs external data composed of boundary expression data of an object.
  • the external storage device 3 is a hard disk, a floppy disk, a magnetic tape, a compact disk, or the like, and stores volume data in which shapes and physical quantities are integrated and a generation program thereof.
  • the internal storage device 4 is, for example, a RAM, a ROM, or the like, and stores operation information.
  • the central processing unit 5 (CPU) intensively processes arithmetic operations, input / output, and the like, and executes programs together with the internal storage device 4.
  • the output device 6 is, for example, a display device and a printer, and outputs the stored volume data and the execution result of the program.
  • the central processing unit 5, the internal storage device 4, and the external storage device 3 cooperate to form a data conversion unit, an association unit, a division arrangement unit, a ridge line integration unit, a state check unit, and a simplification unit, which will be described later. It functions as an allocation means and a labeling means.
  • External data input from the outside includes polygon data representing a polyhedron, tetrahedral or hexahedral elements used in the finite element method, curved surface data used in a three-dimensional CAD or CG tool, or a partial surface of another solid. It can be represented by data represented by information composed of planes and curved surfaces.
  • External data includes, in addition to such data (called S-CAD data), (1) data directly created by human input using V-CAD's own interface (V-interface); (2) Volume data that has internal information such as digitized data of surfaces such as measuring instruments, sensors, and digitizers, and (3) CT scans, MRI, and vota cell data generally used for volume rendering. You may.
  • Solid CAD or Surfac e CAD (S-CAD) data which used to handle conventional B_rep.
  • Data boundary expression data
  • S-CAD Surfac e CAD
  • a solid modeler using an octree [Non-Patent Document 17] and an extended octree (e.g., Extended Octree) [Non-Patent Document 18] and others
  • Some forces, such as the present invention are smaller than the cell, and the structure can be simplified beyond the phase to reduce the structure in the analysis and processing of the wake. There is no mechanism to maintain the two-manifold condition without gaps even if there is a hierarchy difference between adjacent cells in the tree.
  • Kitta Cube which is a data structure of a volume CAD composed of a hierarchical cell such as a bottom cell or an octant cell (Octant) and a group of triangles in the cell [Non-Patent Document 1] 2]
  • Non-Patent Document 3 is presented to control the accuracy and size of triangular patches used in the downstream process, and to perform reverse engineering including not only design but also analysis, manufacturing, and internal structure.
  • This paper proposes a data structure that can be used for, and a method for constructing Kitta Cube while maintaining the topological conditions by basic operations on topological triangular patches.
  • the volume data means Kitta Cube which is a data structure of volume CAD.
  • Patent document 7 [Non-patent document 12] [Non-patent document 19].
  • Reference 10 [Non-patent document 20] [Non-patent document 21].
  • Non-Patent Document 1 an octree tree and a triangular patch managed by each cell are used for shape expression
  • Non-Patent Document 2 an octree tree and a triangular patch managed by each cell are used for shape expression
  • Non-Patent Document 3 the positions of the vertices that make up a triangle patch (hereinafter, the triangle managed by Kitta Cube is referred to as a “cut triangle”) are limited to the vertices or edges of each cell, and the number of vertices on the edges is at most one.
  • the data structure and processing are simplified.
  • the data structure is as shown in Figure 3.
  • the goal of the method of the present invention is also this data structure.
  • a boundary cell as a cell that manages a triangle patch
  • a non-boundary cell that is not related to a triangle patch. Holds the medium value.
  • V—CAD data generation is performed in the following steps.
  • the inside / outside determination of the non-boundary cell is performed, and then the inside / outside determination of the non-boundary cell is performed.
  • an initial value is given to an arbitrary cell, and then the adjacent non-boundary cell is made to have the same medium value.
  • the medium value of the non-boundary cell is set at the vertex shared with the non-boundary cell.
  • a known medium value is added to the diagonal lines of the cells that do not intersect. In the case where the cutting point exists on the cell vertex, the medium value with the larger azimuth occupied by the medium value in the cell is adopted.
  • the phase is held for the triangular patch with phase.
  • Hoppe [Non-Patent Document 11] [Non-Patent Document 12], Shroe der [Non-Patent Document 7], Renze [Non-Patent Document 8], Hamman [Non-Patent Document 9], etc. have been proposed as simplification and the reverse operation.
  • the topological structure is modified while maintaining the dimorphism of the triangular patch. (Hole creation / disappearance / shell separation / integration).
  • Intermediate-Triangle is used as intermediate data.
  • the phased intermediate triangle is composed of hierarchically structured data of phased intermediate edges (Intermediate-Edge) and phased intermediate vertices (Intermediate_Vertex).
  • the phased intermediate vertex is the index data of the cell containing the vertex.
  • the vertices type BODY
  • cell face FACE_YZ, FACE—ZX, FACE—XY,
  • cell vertex EDGE—X, EDGE_Y, EDGE_Z,
  • VERTEX vertex
  • FIG. 4 shows a flowchart of the method of the present invention. Among these steps, an overview of the process and general process steps are described here.
  • the S-CAD data in this figure that is, the boundary expression data, is input to the external storage device 3 or the internal storage device 4 of the computer by the external data input means 2 prior to step 1.
  • Step 1 Mosaic (data conversion)
  • the central processing unit 5, the internal storage device 4, and the external storage device 3 cooperate to execute the data conversion step by the data conversion means. That is, in step 1, the B_rep data is solidified (merging of boundary lines of the surface), and the surface shape is converted into a triangular patch with phase based on this. At this time, in the case where the original B_rep data has poor accuracy and solidification does not work well, the phase cannot be connected well when converting to a triangular patch with phase, and there are cases where holes are made in the triangular patch However, for this, filling is performed by triangulating the polygon where there is a gap with a diameter smaller than the specified threshold.
  • the central processing unit 5, the internal storage device 4, and the external storage device 3 jointly execute the association step by the association means. That is, in step 2, in order to speed up the cutting point calculations due to the cell surface, rough force Ji of association rectangular parallelepiped along a coordinate axis that circumscribes the triangle contains any triangle cell prospect (Bounding Box) This is performed using
  • Step 3 Calculation of intersection and splitting of the twill line (division arrangement)
  • the central processing unit 5, the internal storage device 4, and the external storage device 3 cooperate to execute the division arrangement step by division arrangement means.
  • the central processing unit 5, the internal storage device 4, and the external storage device 3 cooperate to execute the edge integration step by the edge integration means.
  • Kitta Cube uses the following method at the end of edge integration. It is determined whether the following items are satisfied. (Ridge-based point management)
  • the shape around the vertex is approximated by the method described in 4.4 to obtain a shape that can be represented by a triangular patch in the cell.
  • the central processing unit 5, the internal storage device 4, and the external storage device 3 jointly implement the simplification step by the simplification means.
  • the central processing unit 5, the internal storage unit 4, and the external storage unit 3 jointly execute the cell allocation step by the cell allocation unit. That is, in step 6, each triangle and its vertex are allocated to a cell with reference to the index data of the vertex.
  • the data structure of Kitta Cube shown in Fig. 3 is generated.
  • Step 7 Cell Inside / Outside Judgment (Labeling)
  • the central processing unit 5, the internal storage device 4, and the external storage device 3 jointly carry out a labeling step by a labeling means. That is, in step 7, the attribute value of the cell is set using the adjacent relationship between the cells.
  • Step 7 the method described in [Patent Document 4] is applied. That is, there is a space division step (D) for dividing each vertex of each cell into a plurality of spaces partitioned by boundary data.
  • This space division step (D) consists of a non-boundary cell setting step (D1) in which a different space number is set for every non-boundary cell for each space partitioned by the boundary data, and each vertex of the boundary cell is defined by the boundary data.
  • boundary cell setting step (D2) which sets the space numbers of adjacent non-boundary cells that are not partitioned.
  • a vertex that matches the boundary data is set to one of the space numbers of two adjacent non-boundary cells.
  • a non-boundary cell setting step (D1) sets the space numbers of adjacent non-boundary cells that are not partitioned.
  • V_CAD Data volume data
  • the purpose is to divide the triangular patch with phase floating in space by the cell plane so that all triangles are placed inside the cell and on the boundary.
  • each vertex is included from the attribute values up to BODY-VERTEX and their coordinate values, depending on the force and inability of each vertex on any surface.
  • Cell index data is added.
  • the intersection of the intermediate edge with phase and the plane including the cell surface is calculated, and the intersection is registered as a new intermediate vertex with phase. Then, the attribute value and the index data of the cell to which the point belongs described in 4.1 are added in order.
  • Non-Patent Document 12 As shown in [Non-Patent Document 12] and the like, ridge line integration without changing the phase is performed. Also
  • edges are added as conditions under which edges can be merged in order to limit the vertices of triangles to the cell vertices or cell vertices.
  • the internal points are integrated into points with arbitrary attribute values.
  • the on-plane point is integrated with the on-plane point, ridge top point, or cell vertex.
  • the ridge ridge point is integrated with the remaining force, ridge ridge point or cell vertex.
  • a value obtained by putting the attribute value tl on the vertical axis and the attribute value t2 on the horizontal axis of the table is used as a flag. If the conditions in the following table are satisfied, the attribute value t2 is integrated toward the attribute value tl.
  • the priority is determined in order of decreasing volume change according to the value of Quadric Error Metric (QEM) described in [Non-Patent Document 14].
  • QEM Quadric Error Metric
  • the pattern can be divided into three patterns depending on the state of the triangular patch connected to each of the intermediate vertices with phase, and by performing processing according to each state, the points on the ridge can be determined. Eliminate points one by one, and for the last case (d3), remove the topological intermediate vertices on the edge using two triangle groups as a set. As a result, the process continues until the number of topological intermediate vertices on the ridge becomes zero or one.
  • the relevant intermediate vertex with phase is the interior point of the triangular patch, and the penetrating shape crosses the edge (Fig. 10)
  • the processing in the simplification step is branched according to each case.
  • the points on the cell edge / cell surface are changed to on-surface points or in-body points in order to perform edge line integration again.
  • the ID of the surface and the index data are set by looking at the index data in the direction to be integrated in the next step (the vertex in contact with P).
  • the process After performing these processes, if the on-plane points / in-body points remain, or if the process of adding on-surface points or in-vivo points is being performed, the process returns to the edge line integration process.
  • the cell inner surface can be freely configured by preparing cells and triangular patches with topology.
  • the shape operation such as set operation processing is also referred to every cell or only 1P contact neighborhood as pointed out by Kela [Non-Patent Document 17]. Processing can be achieved by simply repeating local operations as much as possible. [0099] Further, for example, a set operation can be performed in the following steps, and much more robust calculation can be performed than a set operation of S-CAD using a NURBS surface.
  • Step 1 Operation between non-boundary cells
  • Step 2 Calculation of non-boundary cell versus boundary cell
  • Table 3 shows the correspondence table.
  • Object Base_Tool.
  • Boundary of the target shape which inherits the information of the boundary cell, either Base or Tool. (Negative) indicates that the inner surface of the boundary cell is inverted and taken over.
  • the triangles intersect / coexist / overlap in the same cell area.
  • the following processing is performed.
  • the merged triangle patches are sequentially connected to the phased triangle patches.
  • V-CAD data created by performing these processes is attached to Figs. 17A-F, 18A and 18B.
  • Figs. 17A-F show actual industrial product shapes (vehicle bumper mold parts).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Generation (AREA)
  • Processing Or Creating Images (AREA)

Abstract

外部データ入力手段により対象物の境界表現データをコンピュータに入力し、データ変換手段により境界表現データを位相付き三角形パッチに変換し、関連付け手段により空間を境界平面が直交する直方体セルに分割しかつどのセルにどの三角形が含まれているかの関連付けを行い、分割配置手段により空間上に浮かんだ位相付き三角形パッチをセル面で分割し、全ての三角形がセルの内部及び境界上に配置される状態とし、稜線統合手段により位相の変更を行わない稜線統合を行い、セル割振手段により頂点の索引データを参考に、各三角形とその頂点をセルに割り振り、ラベリング手段により各セルの属性値を設定する。  

Description

明 細 書
境界表現データからボリュームデータを生成する方法及びそのプログラム 発明の背景
[0001] 発明の技術分野
[0002] 本発明は、形状と物性を統合したボリュームデータを小さい記憶容量で記憶し、 C ADとシミュレーションを一元化することできるボリュームデータ生成方法に係り、更に 詳しくは、入力の表面形状として多用される三角形パッチを指定されたサイズのセル に適合させる方法とそのプログラムに関する。
関連技術の説明
[0003] 先端的な研究開発 '技術開発の現場では、その高度化'複雑化に伴い、膨大な試行 錯誤が不可欠となっており、開発途中でのリスクが高まっている。科学技術立国を目 指す我が国として、これらのリスクを極力排し、開発過程の革新的な高度化'効率化 を図ることが極めて重要である。
[0004] 現在、研究開発 ·技術開発の現場において、 CAD (Computer Aided Design) , CAM (Computer Aided Manufacturingリ、 CAE (Computer Aided Engin eering) , CAT (Computer Aided Testing)など力 S、それぞれ設計、加工、解析 、試験のシミュレーション手段として用いられてレ、る。
[0005] また、本発明によって、連続的なシミュレーションである C_Simulation (Coorporati ve Simulation)、加工プロセスも考慮した A—CAM (Advanced CAM)、究極の 精度が出せる D_fabrication (Deterministic fabrication)なども、これから広く 普及するはずである。
[0006] 上述した従来のシミュレーション手段では、対象物を、 CSG (Constructive Solid Geometryリや B_rep (Boundary Representation)で、ァ一タを目己'慮してレ、 。
[0007] しかし、 CSGでは、対象物全体を微細なソリッドモデルの集合体として記憶するため 、データが重くシミュレーション手段 (ソフトウェア等)を実装する場合、膨大なデータ を扱うこととなり、大型コンピュータを用いた場合でも解析に時間力 Sかかる問題点があ つた。 [0008] また、 B— repでは、対象物を境界で表現するため、データは軽ぐデータ量は小さく なるが、境界面の内部に関する情報が直接的にはないため、そのままでは変形解析 等には適さない問題点があった。
[0009] 更に、これらの従来のデータ記憶手段では、熱'流体解析、固体の大変形解析、これ らの連成解析等でその都度、解析に適したメッシュ等に分割して、有限要素法等を 適用するため、その解析結果を表示等はできる力 CADとシミュレーションを一元化 することが困難であり、設計 ·解析 ·加工 ·組立 ·試験等の各工程を同じデータで管理 することができない問題点があった。
[0010] 言レ、換えれば、現状の Solid/Surf ace_CAD (以下 S—CADと呼ぶ)には、以下の 問題点があった。
(1)デ-タが渡らない、内部での変換操作に弱い (数値誤差と処理方法の問題)。
(2)シミュレーションに直接使えなレ、(内部情報をもっていないのでメッシュを生成し なくてはいけない)。
(3) CAMによる加工の検討ができなレヽ(最終形状し力もってレ、なレ、)。
[0011] また加工においても以下の問題点があった。
(1)加工プロセスの表現ができない(荒加工や工程設計の支援が不十分)。
(2)レーザー加工や超先端加工など新しい加工法に対応できていなレ、(切削しかな レ、、数値精度が足りない)。
(3)加工法自体の選択ができなレゝ(複合体で内部に異なる材料特性を有する)。
[0012] 上述した問題点を解決するために、本発明の発明者等は、「形状と物性を統合した 実体データの記憶方法」を創案し出願した [特許文献 1 ]。
[0013] この発明は、図 1に模式的に示すように、対象物の境界データからなる外部データを 八分木分割により境界平面が直交する立方体のセルに分割し、分割された各セルを 対象物の内側に位置する内部セル 13aと境界面を含む境界セル 13bとに区分するも のである。なおこの図で 15は切断点である。
[0014] この発明により、各セル毎に種々の物性値を記憶することにより、形状と物性を統合 した実体データを小さい記憶容量で記憶することができ、これにより、物体の形状'構 造-物性情報 ·履歴を一元的に管理し、設計から加工、組立、試験、評価など一連の 工程に関わるデータを同じデータで管理することができ、 CADとシミュレーションを一 元ィ匕することできる。
[0015] さらに、本発明の発明者等は、「3次元形状データのセル内部データへの変換方法 及び変換プログラム」を創案し出願した [特許文献 2]。
[0016] この発明により、ボリューム CADにおいて、 P 接するセルとの連続性を保ち、隙間や 精度的に望ましくない三角形を形成することなぐ曲率の大きい曲面にも精度よく近 似した表面を三角形メッシュに分割することができるセル内部データを外部データか ら形成することができる。
[0017] 特許文献 1 :特開 2002—230054号、「形状と物性を統合した実体データの記憶方 法」
特許文献 2:特願 2001—370040号、「3次元形状データのセル内部データへの変 換方法及び変換プログラム」、未公開
特許文献 3:特開 2003 - 44528号公報、「物体の表面格子生成方法」
特許文献 4 :特願 2003— 131313号、「多媒質データの識別方法とそのプログラム」、 未公開
非特許文献 1 : Κ· Kase, Y. Teshima, S. Usami, H. Ohmori, C. Teodo siu, and A. Makinouchi "Volume CAD" International Workshop on
Volume Graphics (VG 03) , 2003, Tokyo. Japan, (to appear) . 非特午文献 2 : Y. Teshima, S. Usami, and K. Kase〃Shape Approxima tion, Cube Cutting and Enumeration", The Institute of Statistica 1 Mathematics, Tokyo, Japan, Abstract pp9.
非特午文献 3 : Y. Teshima, S. Usami, and K. Kase, "Enumeration on Cube Cutting , Japan Conference on Discrete and Computational Geometry , 2002, Tokyo, Japan, pp. 87—88,
非特午文献 4 : C. M. Hoffmann, "The Proolems of accuracy and rob ustness in geometric computation. Computer, 22 (3): pp31— 41 ,
1989
非特許文献 5 : T. Ju, F. Losasso, S. Shaefer, J. Warren, "Dual Cont ouring of Hermite Data", Siggraph2002, Italy, proc. pp339— 346 非特言午文献 6 : W. J. Shroeder, 〃A Topology Modifying Progressive Dec imation Algoritm", Proc. Visuallizatin97, pp205— 212, Oct. 1997 特許文献 7 : W. J. Shroeder, J. A. Zarge and W. E. Lorensen, "De c imation of Triangle Meshes", Proc. Siggraph 92, pp65— 70, July 1992
非特許文献 8 : K. J. Renze and J. H. Oliver, Generalized Surface an d Volume Decimation for Unstructured Tessellated Domains", Pro c. VRAIS96, ppl l l— 121, Mar 1996
非特許文献 9 : B. Hamman, A Data Reduction Scheme for Triangulat ed Surfaces, " CAGD, 11 (2)
^特許文鼠丄 0 : 1. Navazo, "Extended Octtree Representation of Gen eral Solids with Plane Faces : Model Structure and Algorithms",
Computer and Graphics Vol. 13, No. 1, pp5— 16, 1989 非特許文献 11 : H. Hoppe, T. DeRose, T, Duchamp, J, McDonald, and W. Stuetzle, "Mesh Optimization , Proc. ; ggraph93, pp. 19 -26, Aug. 1993
非特午文献 12: H. Hoppe, Progressive Meshes" Proc. Siggraph96 p P99-108, Aug 1996
非特言午文献 13 : P. Lindstrom and G. Turk, "Evaluation of Memoryless
Simplification" IEEE tvcg, 5 (2), pp98— 115, April-June 1999, 非特許文献 14 : M. Garland and P. S. HEckbert, "Surface Simplificat ion Using Quadric Error Metrics, 〃 Proc. SIGGRAPH 97, pp. 20 9—216, Aug. 1997.
特許文鼠丄 5 : C. M. Hoffmann. The problems of accuracy and ro bustness in geometric computation. Computer, 22 (3) : 31—41, 19 89.
非特許文鼠丄 6 : K. Sughihara and M. Iri. A solid modeling system f ree from topological inconsistency. Journal of Information Processi ng, 12 : 380-393, 1989.
非特許文献 17 : A. Kela. Hierarchical octree approximations for boun dary representation— based geometric models, Computer— Aided Desi gn, 21 (6) : 355-362, 1989.
非特許文献 18 : 1. Navazo, D. Ayala and P. Brunet. A geometric modeller based on the exact octtree representation of polyhedra, Computer Graphics Forum (Eurographics '86 Proc. ): 591—104, 19 86.
非特午文献 19 : W. Lorensen and H. Cline. H. Marching cubes: hi gh resolution 3D surface construction algorithm. ACM Computer Graphics (Proc. of ACM SIGGRAPH '87) , 21 (4) : 163— 169, 198 7.
非特許文献 20 : 1. Navazo, D. Ayala, and P. Brunet "A Geometric Modeller Based on the Exact Octtree Representation of Polyhedr a", Computer Graphics Forum 5 pp91—104, 1986
非特許文献 21 : T. Hama, M. Asakawa, M. Takamura, A. Makino ucni, C. Teodosiu, "A stable and fast new contact search algorit hm for FEM simulation of metal forming process , (to appear) [非特許文献 1]や [特許文献 1]で提案されている、セルとセルに適合化する三角形 パッチによる形状表現とそのデータの生成方法は、以下の 3ステップで行っている。 (ステップ 1)ユーザーにより定義されたセル空間と、入力形状としての三角形パッチ の交点計算 (セル切断点の計算)。
(ステップ 2)各セル毎にセル切断点をセル面上で結んでできる閉ループを生成する 。その際は、セル内のセル切断点の個数や隣接セルとの関係を元に、一意に定まる ものから順に決定する。
(ステップ 3)各セルで生成された閉ループ内を、入力形状との差異を元に三角形分 割を行う。 [0019] し力し、この方法には以下の問題点があった。
(1)セルサイズと同程度の複雑さを持つ形状に対し、(ステップ 2)の処理が終了しな いケースがある。
(2)セルサイズより細かい形状から、徐々に大きな形状に変化する途中で、非多様体 形状が発生するため、(ステップ 2)の処理に失敗するケースがある。
(3)セルを階層化することを考慮した場合、(ステップ 2)の処理において隣接関係の 検索が著しく困難である。
[0020] これらの問題点を解決する手段として、入力形状の三角形パッチの位相情報をそ のまま使用し、かつ必要に応じて形状の簡略化を行う手段が必要とされていた。
[0021] なお、三角形パッチをセルのサイズに分割して、セルで管理する方法も [特許文献 3] に提案されている力 この方法においては、三角形パッチはセルに適合しておらず、 セル対三角形パッチが一対一で管理できない方法であり、 V— CADの目的である、 ものつくりにおける上流から下流工程までの一元化したデータ管理には適用し得な レ、。
[0022] また、三角形パッチ単独での処理については、三角形パッチの細分化/統合を行う ことにより、形状表現の詳細化/簡略化を行う方法は既に Hoppe [ l l ]等によって提 案されており [非特許文献 12]、細分化のパラメータや分割方法、ならびに統合時の 判断基準により様々な派生システムが存在している。但し、これらの方法では、元の 形状の二多様体条件および位相条件をそのまま継承する変換方法となっており、微 小な形状を意図的に簡略化するなどの操作には不向きである。 [非特許文献 6, 7, 8 ] 発明の要約
[0023] 本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発 明の目的は、ボリューム CADにおいて、入力形状の三角形パッチの位相情報をその まま使用し、かつ必要に応じて形状の簡略化を行うことができる、境界表現データか らボリュームデータを生成する方法及びそのプログラムを提供することにある。
[0024] V— CAD [非特許文献 1]の形状表現方法として、直方体セルと各セルに適合化した 三角形パッチを利用する手段を採用する。本発明は、三次元の形状表現方法として 多用される三角形パッチ群から、セルに適合化した三角形パッチ群への変換を実現 するものである。
[0025] この課題を達成する手段として、以下の 2つの方法を創案した。
(1)元の三角形パッチ群の位相や二多様体条件を変えることなく三角形パッチの細 分化/統合を行い、セルに適合化させる方法。
(2)セルのサイズ以下の構造にっレ、て、二多様体条件を変えることなく位相構造の 編集を行い、全体形状を近似的に表現する方法。
[0026] これらの方法およびプログラムの開発により、任意の形状データを任意のサイズのセ ルに適合させることができ、設計のみならず解析や製造、リバースエンジニアリング等 、ものつくりの全工程に渡って利用可能なデジタルデータの形態を実現できる。
[0027] また、この形状表現方法の発明に伴い、従来の境界表現形式のデータで記述されて レ、た CADでは実現の困難であった、お互いに接する形状での集合演算なども実現 可能となっている。
[0028] 本発明の方法およびプログラムは大きく分けて次の 3ステップで構成される。
(ステップ 1) 位相付き三角形パッチのセル面での分割。
(ステップ 2) 位相付き三角形パッチの頂点のうち、セル稜線上にあるもの以外を他 の頂点に統合。
(ステップ 3) (ステップ 2)の条件や、 V— CADのデータ構造の条件(ー稜一切断点 の条件)に反する部位の、近似処理による適正化。
[0029] これらのステップの中で、
(ステップ 1)の処理中に、分割に利用したセル面の情報を三角形頂点に付与し、(ス テツプ 2)の統合処理に利用する。
(ステップ 3)の処理が必要な形状は下記 6種類(a, b, c, dl, d2, d3)に分類され、 それぞれに対して、 5種類の処理とその組み合わせを適用することで、形状の近似' 適正化を行う。
(a) セル内で独立した多面体 Z三角形パッチ。
(b) 隣接セル同士で、面上点を含んだ 3点またはそれ以上で三角形パッチがつな がっているケース。
(c) 隣接セル同士で、同一稜上の点を含んだ 3点またはそれ以上の点で三角形パ ツチがつながってレ、るケース。
(d) (c)以外のケースで同一のセル稜上に 2点以上の切断点が残っているケース。
[0030] 更に(d)のケースについては、個々の切断点につながる三角形パッチの状態によ つて、 3つのパターン(dl, d2, d3)に分割でき、それぞれの状態に応じた処理を行う ことで、稜上の点を 1点ずつ消去していき、最後に残る(d3)のケースについては、 2 つの三角形群を一組として、稜上の切断点を消去する。その結果として、稜上の切 断点が 0点または 1点となるまで処理を続ける。
(dl) 該当の切断点が三角形パッチの境界になっているケース。
(d2) 該当の切断点は三角形の内部点となっていて、その位置で折れ曲がつている ケース。
(d3) 該当の切断点は三角形パッチの内部点であり、その稜を横断しているケース
(A) セル内で独立した多面体/三角形パッチの削除。
(B) 細い筒/穴形状の分割。
(C) 微小距離離れた点で強制的に綾線分割。
(D) 2枚の板に穴を開け、筒状に繋げる。
(E) 切断点の属性のふりなおし。
[0031] これらの処理を導入することにより、 CADにおけるセルとセルで管理された三角形 パッチの形状表現にぉレ、て、以下の利点が発生する。
(1)入力となる表面形状データの二多様体条件 Z位相条件を変更することなぐ必 要なサイズのセルに適合化することができる。
(2)指定したセルサイズ以下の微細な形状を、入力した表面形状データの二多様体 条件を変更することなぐ近似 ·簡略化を行うことができる。
(3)入力の三角形パッチデータを準備することで、任意の形状のモデリングを行うこと ができ、また V— CADのデータを再利用して、変形操作や集合演算(Boolean)操作 などの処理を行うこともできる。特に、接している形状同士の集合演算操作は既存の 境界表現 CADでは問題となることの多かった処理である力 これを問題なく実現して いる。
(4)単一階層セルに対する処理に、数点の簡単な処理をカ卩えることで、階層化セル への対応が実現できる。 発明の開示
発明の効果
[0032] 本発明により、これまでの方法では困難であった、八分木と八分木セルに適合化し た三角形パッチによる形状表現、物性値表現を実現することが出来た。また、三角形 パッチへのセル適合化方法の開発により、三角形パッチで表現された形状同士の集 合演算などの変形処理力 S、既存の Brepデータに比べて頑健に行えるようになった。
[0033] 結果として、ボリューム CADにおいて、入力形状の三角形パッチの位相情報をその まま使用し、かつ必要に応じて形状の簡略化を行うことができ、 CAEや CAMなどと C ADによる設計データとの双方向リンクが実現できる。
[0034] 本発明のその他の目的及び有利な特徴は、添付図面を参照した以下の説明から明 らかになろう。 図面の簡単な説明
[0035] [図 1] [特許文献 1]の「形状と物性を統合した実体データの記憶方法」の模式図であ る。
[図 2]本発明の方法を実行するための装置構成図である。
[図 3]ボリュームデータのデータ構造図である。
[図 4]本発明の方法のフロー図である。
[図 5]孤立多面体の模式図である。
[図 6]面上点連結の模式図である。
[図 7]同一綾上連結の模式図である。
[図 8]境界点の模式図である。
[図 9]折れ形状の模式図である。 [図 10]貫通形状の模式図である。
[図 11]A, Bは、孤立した多面体(三角形パッチ)の処理の模式図である。
[図 12]A, B, Cは、面上点等による連結パッチ処理の模式図である。
[図 13]A, B, Cは、一綾複数切断点の境界点処理の模式図である。
[図 14]A, B, Cは、一綾複数切断点の折れ点処理の模式図である。
[図 15]A, B, C, Dは、一綾複数切断点の 2枚の貫通面処理の模式図である。
[図 16]面上切断点の模式図である。
[図 17A]実際の工業製品の形状(自動車のバンパーの金型部品)を表示する図であ る。
[図 17B]実際の工業製品の形状(自動車のバンパーの金型部品)を表示する図であ る。
[図 17C]実際の工業製品の形状(自動車のバンパーの金型部品)を表示する図であ る。
[図 17D]実際の工業製品の形状(自動車のバンパーの金型部品)を表示する図であ る。
[図 17E]実際の工業製品の形状(自動車のバンパーの金型部品)を表示する図であ る。
[図 17F]実際の工業製品の形状(自動車のバンパーの金型部品)を表示する図であ る。
[図 18]A, Bは、簡単な形状同士の集合演算の結果を示す図である。
好ましい実施例の説明
[0036] 以下、本発明の好ましい実施形態を図面を参照して説明する。
[0037] ボタセル (Voxel)や八分木セル(Octant)とセルに適合化された三角形パッチ群 で形状を表現する方法にっレ、て、既にレ、くつかの論文で提案されてレ、る。
[0038] 本発明では境界表現データ(以下、 B— rep.データ)から、位相付き三角形パッチ( Intermediate-Triangle)を経由して、無限平面での切断による交点での稜線分割 (Edge Split)や、セルのインデックス情報を利用した稜線統合 (Edge-Collapse) によりセルに適合化した三角形パッチを生成並びに編集する方法、及びこのようなデ ータを扱うシステムとしてのボリューム CAD (以下 V— CAD)を提案する。
[0039] またその際に、各三角形がセルで管理できることから、セルのサイズ以下の構造(細 い穴や棒、薄い板や隙間)があるケースにおいては、位相構造の編集(穴の消滅や 作成/微小シェルの削除)を伴う形状の近似処理を行う。
[0040] 基本的な処理としてボタセル(単一の大きさのセル)をベースについて説明し、その 後、八分木セルへの拡張を説明する。
[0041] これにより、従来パラメトリック曲面等を用いた境界表現 CADにおいて問題となって レ、た幾何演算の頑健化と並列化による高速化を目指し、統一されたデータを用いて 構造解析や熱流体解析などのシミュレーション、及び様々な加工や内部構造物を持 つ物体からの計測データとの比較における直接利用を目的としている。
[0042] 図 2は、本発明の方法を実行するための装置構成図である。この図に示すように、こ の装置 10は、外部データ入力手段 2、外部記憶装置 3、内部記憶装置 4、中央処理 装置 5および出力装置 6を備える。
[0043] 外部データ入力手段 2は、例えばキーボードであり、対象物の境界表現データからな る外部データを入力する。外部記憶装置 3は、ハードディスク、フロピイーディスク、磁 気テープ、コンパクトディスク等であり、形状と物理量を統合したボリュームデータとそ の生成プログラムを記憶する。内部記憶装置 4は、例えば RAM, ROM等であり、演 算情報を保管する。中央処理装置 5 (CPU)は、演算や入出力等を集中的に処理し 、内部記憶装置 4と共に、プログラムを実行する。出力装置 6は、例えば表示装置とプ リンタであり、記憶したボリュームデータとプログラムの実行結果を出力するようになつ ている。
[0044] 中央処理装置 5、内部記憶装置 4及び外部記憶装置 3は、共同して、後述するデー タ変換手段、関連付け手段、分割配置手段、稜線統合手段、状態チェック手段、簡 略化手段セル割振手段、およびラベリング手段として機能する。
[0045] 外部から入力する外部データは、多面体を表すポリゴンデータ、有限要素法に用い る四面体又は六面体要素、 3次元 CAD又は CGツールに用いる曲面データ、或いは その他の立体の表面を部分的な平面や曲面で構成された情報で表現するデータで める。 [0046] 外部データは、このようなデータ(S-CADデータと呼ぶ)のほかに、 (1)V— CAD独 自のインターフェース(V— interface)により人間の入力により直接作成されたデータ と、(2)測定機やセンサ、デジタイザなどの表面のデジタイズデータや、(3) CTスキヤ ンゃ MRI、および一般的に Volumeレンダリングに用いられているボタセルデータな どの内部情報ももつ Volumeデータであってもよい。
[0047] 1.序論
従来の B_rep.データ(境界表現データ)を扱っていた Solid CAD、または Surfac e CAD (以下 S—CADと総称する)のデータは、非常に小さなデータサイズで様々 な形状を表現することが出来る一方で、面の境界位置での精度などにより、データの 再利用性が大きく低下するなど、その運用に細心の注意を払わなければいけない [ 非特許文献 15] [非特許文献 16]。
[0048] また、 CAEや CAMにおいてはそれら数値誤差に起因する処理の不安定さや収束 計算による処理時間を嫌って、多くの場合三角形パッチやボタセルなどに変換して 利用しているのが現状である。
[0049] また、特に集合演算などの幾何演算を高速化する目的で、八分木を用いたソリッドモ デラ [非特許文献 17]や八分木セルと多面体を対応させた、拡張八分木 (Extended Octree)などの研究 [非特許文献 18]などもある力 本発明のようにセルより小さレ、 構造を後流の解析や加工において抑制する目的で、位相を超えて簡略化したり、八 分木において隣接セル間で階層差が有る場合も隙間なく 2多様体条件を維持する 仕組みは無い。
[0050] 本発明では、ボタセルないしは、八分木セル(Octant)などの階層化セルとセル内の 三角形群で構成するボリューム CADのデータ構造である Kitta Cube [非特許文献 1] [非特許文献 2] [非特許文献 3]を提示し、これにより、下流工程で利用する三角 形パッチの精度やサイズのコントロールを行レ、、設計のみならず、解析や製造、内部 構造も含めたリバースエンジニアリングに利用可能なデータ構造と、位相付き三角形 パッチに対して基本的な操作で位相条件を保ちつつ Kitta Cubeを構築する方法 を提案する。 [0051] さらに、 Kitta Cubeを利用すると、集合演算などがセル単位の局所的な演算処理 のみで行うことが出来るため、 B— rep.データを扱っている S—CADとするのは困難 であった、お互いに接する形状同士の集合演算 [非特許文献 4]も容易に実現してレ、 る。なお、本発明において、ボリュームデータとは、ボリューム CADのデータ構造であ る Kitta Cubeを意味する。
[0052] 2.背景
形状表現の方法として、三角形パッチを利用する方法は、データ構造の簡便性や 計算処理の簡便性'処理速度の点から CG、 CAE, CAM,リバースエンジニアリング などの幅広い分野で利用されている [非特許文献 7] [非特許文献 12] [非特許文献 1 9]。その上で、 CAEや CAMで利用する際の接触判定など局所的な演算を多用す るケースでは、ボタセル等を利用して空間上に浮かぶ三角形を管理する方法も多く 用いられている [非特許文献 10] [非特許文献 20] [非特許文献 21]。
[0053] V— CADにおいては、八分木セルと各セルで管理される三角形パッチを形状表現に 用いている [非特許文献 1] [非特許文献 2] [非特許文献 3]。さらに、三角形パッチ( 以下 Kitta Cubeで管理される三角形を「切断三角形」とする)を構成する頂点の位 置は、各セルの頂点または稜線上に限定し、稜線上の頂点数を高々 1個に限定する ことで、データ構造と処理の簡略化を図っている。
[0054] このようなデータ構造により、三角形パッチの精度やサイズをコントロールすることが 出来るメリットがある一方で、セルのサイズよりも小さい形状に対してどのように処理を 行う力、が課題となっている。その解決手段の一つに Marching Cube (以下 MC) 法 [非特許文献 19]があるが、幅広い表現力 [非特許文献 1]と S— CADの情報をより 直接取り扱える方法として Kitta Cubeを用いた三角形を検討した。
[0055] 3.先行技術
3. 1 V— CADのデータ構造
Kaseらによるボリューム CAD [非特許文献 1]などで提案された V— CADデータは ボタセルによる三角形パッチの管理を主眼に置いていた。データ構造は図 3のように なっており、本発明の方法の目標もこのデータ構造である。
[0056] このデータ構造では、三角形パッチを管理するセルとしての境界セル、及び三角形 パッチとは関連しない非境界セルの 2種類があり、境界セルでは頂点毎、非境界セ ルではセルで 1つの媒質値を保持している。
[0057] 3. 2 V— CADの先行する方法とプログラム
V— CADのデータ生成方法は、以下のステップで行われている。
[0058] (1)ステップ 1 切断点の計算
モザイクィ匕 (Tessellation)した三角形パッチとセルの稜線との交点を計算をし、切 断点を求める。その際に、セル稜上に複数の交点が求まった場合には、代表となる 1 点に統合する。
[0059] (2)ステップ 2 ループの決定と切断三角形の設定
各セルの切断点の配置から、セル内での切断三角形の境界ループを、 舞接するセ ルとの位相関係を利用して順に決定し、幾何形状と比較して切断三角形を設定する
[0060] (3)ステップ 3 セルの内外判定
最初に非境界セルの内外判定を行い、続いて、非境界セルの内外判定を行う。非 境界セルの内外判定は任意のセルに初期値を与えた上で、隣接する非境界セル同 土が同じ媒質値を持つようにする。境界セルの内外判定は、非境界セルと共有して レ、る頂点に非境界セルの媒質値を設定し、それで求まらない頂点については、切断 点を含まないセル稜線、ならびに切断三角形と交差しないセルの対角線を迪つて既 知の媒質値を付加してゆく。なお、切断点がセル頂点上に存在するケースでは、該 当のセル内での媒質値が占める方位角が大きい方の媒質値を採用する。
[0061] これらのステップ 1一 3により、多彩な形状に対する Kitta Cubeの作成が可能であ り、低品質な S—CADのデータの入力に対しても適切な変換が可能である。その一 方で、セルのサイズより小さい構造に対して適切な近似が困難であった。本発明の方 法においてはこの点に対応する処理と、八分木(Octree)構造に対する取扱いの簡 単な処理を検討した。
[0062] そこで、本発明で紹介するように、位相付き三角形パッチに対して、位相を保持する 簡略化およびその逆操作として Hoppe [非特許文献 11] [非特許文献 12]や Shroe der [非特許文献 7]、 Renze [非特許文献 8]、 Hamman [非特許文献 9]等によって 提案された、稜線分割(Edge - Split)処理と稜線統合 (Edge - Collapse)処理によ つて、セルに適合化する方法を開発した。また、後流のシミュレーションや力卩ェにその まま使えるように、セルサイズよりも小さな構造を近似的に表現する目的で、三角形パ ツチの二多様体性を保持しつつ、位相構造の修正(穴の作成'消滅/シェルの分離 •統合)を行える方法を新たに開発した。
[0063] 三角形パッチの位相を変更する再メッシュ化(Remeshing)については、 Ju [非特 許文献 5]や Shroeder [非特許文献 6]が提案している力 Juの方法は、 Hermiteデ ータを作成する必要があるという点、 Shroederの方法は、オイラー演算のうちのリン グほたはループ)の消滅により三角形の簡略化を進めるものであり、小さな穴の除去 には対応していない、という点で、 目的では直接使えない。
[0064] 4.本発明の方法とプログラム
本発明の方法の概要を「あらまし」に、それぞれのステップにおける詳細を 4· 2-4. 4、本方法を利用した集合演算(Boolean)の概要を 4. 5、さらに八分木(Octree)に 拡張する際の変更点を 4· 6示す。
[0065] 4. 1 あらましと中間データ
S— CADデータから V— CADデータを作成する途中で、中間データとして位相付き 中間三角形(Intermediate— Triangle)を利用している。位相付き中間三角形は位 相付き中間稜線(Intermediate-Edge) /位相付き中間頂点(Intermediate_Ver tex)の階層構造のデータで構成され、位相付き中間頂点は、頂点が含まれるセルの 索引データ(Index)と、頂点のタイプ(セル内(BODY)、セル面(FACE_YZ, FA CE—ZX, FACE—XY, )、セル綾(EDGE—X, EDGE_Y, EDGE_Z, )頂点 (VERTEX) )を属性値として保持する。
[0066] このデータ構造を利用して、セル面を含む無限平面と、位相付き中間稜線の交点を 計算して、位相付き中間三角形を細分化し、セルの稜線に合わせて稜線統合を行う ことで、位相付き中間三角形のセル適合化を行う。 [0067] 本発明の方法のフローチャートを図 4に示す。これらのステップの中で、処理の概要 と一般的な処理のステップをここで解説する。この図の S— CAD Data,すなわち境 界表現データは、ステップ 1に先行した予め外部データ入力手段 2によりコンピュータ の外部記憶装置 3又は内部記憶装置 4に入力される。
[0068] (1)ステップ 1:モザイク化(データ変換)
中央処理装置 5、内部記憶装置 4及び外部記憶装置 3が共同して、データ変換手段 により、データ変換ステップを実施する。すなわちステップ 1では、 B_repデータをソリ ッド化(面の境界線のマージ)を行い、これを元に表面形状を位相付き三角形パッチ に変換する。この時、元の B_repデータの精度が悪ぐソリッド化が上手くいかないケ ースでは、位相付き三角形パッチへの変換時に上手く位相をつなぐことができず、三 角形パッチに穴が空くケースが存在するが、これに対しては、指定した閾値以下の直 径の隙間が空いている部分の多角形を三角形分割することで、穴埋めを行っている
[0069] (2)ステップ 2:セルマッピング(関連付け)
中央処理装置 5、内部記憶装置 4及び外部記憶装置 3が共同して、関連付け手段に より、関連付けステップを実施する。すなわちステップ 2では、セル面による切断点計 算を高速化するために、あら力じめどのセルにどの三角形が含まれているかの関連 付けを三角形に外接する座標軸に沿った直方体 (Bounding Box)を用いて行う。
[0070] (3)ステップ 3:交点の計算と綾線分割(分割配置)
中央処理装置 5、内部記憶装置 4及び外部記憶装置 3が共同して、分割配置手段 により、分割配置ステップを実施する。
[0071] (4)ステップ 4 :稜線統合
中央処理装置 5、内部記憶装置 4及び外部記憶装置 3が共同して、稜線統合手段 により、稜線統合ステップを実施する。
[0072] (5)状態チェックステップ
中央処理装置 5、内部記憶装置 4及び外部記憶装置 3が共同して、状態チェック手 段により、状態チェックステップを実施する。このステップでは、データ量と処理時間 の双方を管理するため、 Kitta Cubeでは稜線統合(エッジコラプス)の終了時に以 下の項目を満たしてレ、るかを判定する。 (稜ベースの点管理)
a)セル体内、あるいはセル面上には三角形の頂点を持たない。
b)セル稜上には三角形パッチの頂点は一つのみとする。
c)切断点統合によって位相が変わる現象が発生しない。
[0073] これらの条件を満たさない頂点が見つ力 た場合、その周辺の形状を 4. 4の方法に よって近似処理し、セル内の三角形パッチで表現できる形状とする。
[0074] (6)ステップ 5 :簡略化(Simplify)
中央処理装置 5、内部記憶装置 4及び外部記憶装置 3が共同して、簡略化手段に より、簡略化ステップを実施する。
[0075] (7)ステップ 6:三角形のセル適合(セル割振)
中央処理装置 5、内部記憶装置 4及び外部記憶装置 3が共同して、セル割振手段 により、セル割振ステップを実施する。すなわちステップ 6では、頂点の索引データを 参考に、各三角形とその頂点をセルに割り振る。ここで、図 3に示した Kitta Cubeの データ構造が生成される。
[0076] (8)ステップ 7:セルの内外判定(ラベリング)
中央処理装置 5、内部記憶装置 4及び外部記憶装置 3が共同して、ラベリング手段に より、ラベリングステップを実施する。すなわちステップ 7では、セル同士の隣接関係 などを利用して、セルの属性値を設定する。このステップ 7では、 [特許文献 4]の記 載の方法を適用する。すなわち、各セルの各頂点を境界データで仕切られた複数の 空間に区分する空間区分ステップ (D)を有する。この空間区分ステップ (D)は、境界 データで仕切られた空間毎に異なる空間番号を全ての非境界セルに設定する非境 界セル設定ステップ (D1)と、境界セルの各頂点を境界データで仕切られない隣接 する非境界セルの空間番号に設定する境界セル設定ステップ (D2)と力 なる。また 、境界セル設定ステップ (D2)において、境界データと一致する頂点を隣接する 2つ 非境界セルの空間番号のいずれかに設定する。さらに非境界セル設定ステップ (D1
)は、 X, Υ, Zの 3方向に対して順に繰返し、或いは再帰的な処理により、直方体セ ルの全てを順に走查する。
[0077] ステップ 7でセルの属性値を設定したデータは V_CAD Data (ボリュームデータ)と して、外部記憶装置 3および出力装置 6に出力される。
[0078] 4. 2 交点の計算と綾線分割(エッジスプリット)
空間上に浮かんだ位相付き三角形パッチをセル面で分割し、全ての三角形がセル の内部及び境界上に配置される状態とすることを目的としている。
[0079] 最初に、既存の位相付き中間頂点の初期化処理として、各頂点がいずれかの面上 にある力、否力により、 BODY— VERTEXまでの属性値、ならびに、その座標値から 含まれるセルの索引データを付加しておく。
[0080] その後、セルマッピング情報ならびに、位相付き中間三角形の位相情報を利用して、 位相付き中間稜線とセル面を含む平面との交点計算を行い、その交点を新たな位相 付き中間頂点として登録し、 4. 1に記述した、属性値ならびにその点が属するセルの 索引データを順に付加する。
[0081] 4. 3 稜線統合(エッジコラプス)
このステップでは、 [非特許文献 7] [非特許文献 8] [非特許文献 9] [非特許文献 11
] [非特許文献 12]等に示されるように、位相の変更を行わない稜線統合を行う。また
、位相の保持の他に、三角形の頂点をセルの稜上、またはセル頂点に限定するため に、稜線統合可能な条件として、以下の項目が付加される。
(1)体内点は任意の属性値の点に統合する。
(2)面上点は面上点、稜上点またはセル頂点に統合する。
(3)稜上点はそのまま残す力、稜上点又はセル頂点に統合する。
(4)セル頂点はそのまま残すかセル頂点に統合する。
(5)上記の条件で統合する際には、同一セル内の点にのみ統合する。
[0082] これらの条件を表 1及び表 2に示す。
[表 1] FACE FACE PACE ΈΧΕ EDGE T!TV^?,
VERTEX
_YZ Izx _XY —X _Y 一 Z
ΒΟΟΪ
1 0 0 0 0 0 0 0
FACEJiZ 2 0 0 0 0 0 0
PACE_ZX 1 0 3 0 0 0 0 0
FACE一 ΧΪ 0 0 4 0 0 0 0
EDGE_X 0 3 4 5 0 0 0
EDGE_Y 2 0 4 0 6 0 0
EDQB一 Z 2 3 0 0 0 7 0
表の縦軸に属性値 tl ,横軸に属性値 t2を入れて得られた値をフラグとする。以下 の表にある条件を満足する場合,属性値 t2を属性値 tlへ向かって統合する。
[表 2] flag ooll^se可^ ¾¾ί牛
0
1 牛に可
2 xl = x2
3 yl = v2
4 zl— i2
5 νΐ— γΐかつ ζ1
Figure imgf000021_0001
6 zl =z2かつ xl =x2
7 xl=x2かつ l=y2
8 xl = x2かつ l=y2かつ zl=a2
Int imediate Verte のマ一ジ 2)
上記の統合可能な条件に該当する隣接位相付き中間頂点が複数存在するケース では、 [非特許文献 14]等で記述されている Quadric Error Metric (QEM)の値 によって、体積変化が少ない順に優先順位を設定し、元の幾何形状に近い形に稜 線統合がなされるようにしてレ、る。
[0084] 4. 4 状態チェック
稜線統合の結果、減少した三角形群が、以下の条件を満たしているかどうかを確認 する。
(1)面上点/体内点が残っていない。
(2)索引データと属性値が同一の点が残っていない。
これらの条件を更に詳細に分析すると、以下の条件が存在する。
(a) セル内で独立した孤立多面体 Z三角形パッチ(図 5)
(b) 隣接セル同士で、面上点を含んだ 3点またはそれ以上で三角形パッチがつな がっている面上点連結のケース(図 6)
(c) P 接セル同士で、同一稜上の点を含んだ 3点またはそれ以上の点で三角形パ ツチがつながつている同一稜上連結のケース(図 7)
(d) (c)以外のケースで同一のセル稜上に 2点以上の位相付き中間頂点が残ってい るケース
[0085] 更に(d)のケースについては、個々の位相付き中間頂点につながる三角形パッチの 状態によって、 3つのパターンに分割でき、それぞれの状態に応じた処理を行うこと で、稜上の点を 1点ずつ消去していき、最後に残る(d3)のケースについては、 2つの 三角形群を一組として、稜上の位相付き中間頂点を消去する。その結果として、稜上 の位相付き中間頂点が 0点または 1点となるまで処理を続ける。
(dl) 該当の位相付き中間頂点が三角形パッチの境界になってレ、る境界点のケー ス(図 8)
(d2) 該当の位相付き中間頂点は三角形の内部点となっていて、その位置で折れ 曲がっている折れ形状のケース(図 9)
(d3) 該当の位相付き中間頂点は三角形パッチの内部点であり、その稜を横断して レ、る貫通形状のケース(図 10)
それぞれのケースに応じて、簡略化のステップでの処理を分岐する。
[0086] 4. 5 簡略化
形状の近似については、以下の 5種類の操作とその組み合わせで網羅している。 [0087] (1)セル内で独立した多面体/三角形パッチの削除
同一の索引データを持つ位相付き中間頂点による三角形が多面体 (Hoppeの規 則に従うと基本的に四面体となる力 面上点から他の面上の点への統合が出来ない ことから本方法においては他の多面体も考えられる)を構成しているものを、三角形 の辺が全てセル内の三角形で共有されていることから検索する。
[0088] また、多角形が単独で浮いているものについては、どの辺も他のセルの三角形と共 有していない三角形群を見つけることで、検索する。
[0089] こうして見つかった多面体または多角形に属する全ての三角形、位相付き中間頂点 を削除する。
[0090] (2)細い筒 Z穴形状の分割
図 6や図 7に示すような細い筒型形状や穴形状があるケースでは、表 1,表 2に示す 条件で稜線統合しょうとすると、 Hoppeの条件に反して位相構造が変わってしまう状 況が発生する。
[0091] このようなケースが発生した時に、稜線統合しょうとして失敗した 2点とそれに隣接 する任意の 1点で構成される 3点(すなわち、図では面上の 3点であるが、すべてセル 稜上の点となるケースもある)で構成される三角形を境に形状を分割し、両側の開い た 3辺をそれぞれの三角形で塞ぐ。このとき、分割した三角形の頂点は複製して別々 の要素として扱う。
[0092] (3)微小距離離れた点で強制的に稜線分割(エッジスプリット)
図 13—図 15に示すような、セル稜線上に複数の頂点があるケースに対応する前処 理として行う。対象とする位相付き中間頂点に接続している三角形の辺をリストアップ し、その微小距離離れた位置に位相付き中間頂点を作成して、この点で稜線分割を 行う。
[0093] (4) 2枚の板に穴を開け、筒状に繋げる。
(3)の処理に引きつづいて行うことを前提とする。したがって、対象とするセル稜上 の 2点は、既に近傍の点で稜線分割がされているものとする。
[0094] 対象とするセル稜上にある 2点とその点を利用している三角形を削除する。これにより
、セル稜の周囲に小さな穴が発生する。 続いて、 2枚の穴の間に筒状の三角形パッチを発生させる。その際には各セル毎 に処理を進めることで、 自己干渉の無い三角形パッチを構成する。 (図 15)
[0095] (5) 属性値の変更
各種の近似処理を行った後、再度稜線統合を行うために、セル稜上ゃセル面上に ある点を面上点や体内点に変更する。その際、面上点に変更するケースでは、次の ステップで統合される方向(P 接している頂点)の索引データを見て面の IDと索引デ ータを設定する。
[0096] 以下に、状態チェックの項に対応して、それぞれの処理を記述する。
(a)独立した多面体(三角形パッチ)の処理
処理(1) :図 11A→図 11B
(b) P 接セル同士の接続 (面上点等による連結パッチの処理)
処理(2)の後(5) :図 12A→図 12B→図 12C
(c)隣接セル同士の接続(2)
処理(2)の後(5)
(dl)三角形パッチ境界 (ー稜複数切断点の処理(1)、境界点)
処理(3)の後(5) :図 13A→図 13B→図 13C
(d2)三角形パッチの折れ (ー稜複数切断点の処理(2)、折れ点)
処理(3)の後(5) :図 14A→図 14B→図 14C
(d3)三角形パッチの通過(ー稜複数切断点の処理(3)、 2枚の貫通面)
処理(3)の後(4) :図 15A→図 15B→図 15C→図 15D
[0097] これらの処理を行った後、面上点/体内点が残っている、あるいは面上点や体内 点を追加する処理を実行している場合には、稜線統合の処理に戻る。
[0098] 4. 6 集合演算(Boolean)
本方法を利用することにより、セルと位相付き三角形パッチを準備すれば、自由に セル内面の構成が可能になった。また、境界となる三角形をセルで管理しているため 、集合演算処理などの形状演算についても、 Kela [非特許文献 17]も指摘しているよ うに 1セル毎、あるいは 1P 接近傍のみを参照するだけの局所的な演算を繰り返すだ けで、処理が可能になっている。 [0099] さらに、例えば、以下のステップで集合演算が可能であり、 NURBS曲面を利用した S— CADの集合演算よりもはるかに頑健な計算が可能である。
[0100] (1)ステップ 1 :非境界セル同士の演算
ターゲットとする媒質を含んでレ、るか否かで判断できる。通常のボタセルの Boolean と同じ処理である。
[0101] (2)ステップ 2:非境界セル対境界セルの演算
演算の種類、どちらのセルが境界セルとなっているかにより、処理は分岐するが、ど ちらかのセルの情報がそのまま、あるいは境界面を反転するのみで引き継がれること になる。対応表を表 3に示す。表中の Baseとは、 Boolean演算の基準側のセルを指 し、 Toolとは付け足す、或いは引き算するセルを示す。 (実際には、 Baseと Toolの差 異は Subtractionの時のみ関係する。この場合は Object = Base_Toolと考える)ま た、処理欄の文字について、 Inside :目標とする形状の内側、 Outside:目標とする 形状の外側、 Boundary :目標とする形状の境界であり、 Baseまたは Toolのいずれ か、境界セルの情報をそのまま引き継ぐ。また、(Negative)とは、境界セルのセル内 面を反転して引き継ぐことを示す。
[表 3]
Base Tool
Union Boundai Inside Inside
Boundai Outsk!e Boundat
Inside Boundaiy Inside
Outside Boundaiy Boundaiy
Subtraction Boundaiy Inside Outskfe
Boundaiy Outside Boundaiy
bside Boundaiy Boundary ^e ^tive)
Outside Boundaiy Outside
Intersection Boundaiy Inside Boundaiy
Boundaiy Outside Outside
Inade Boundaiy Boundaiy
Outside Boundary Oitside
Boolean Operation(l)
:のように処理した情報から、境界の三角形を引き継いだ情報を順に接続してゆく (3)ステップ 3 境界セル対境界セル
ここでは、同じセル領域で三角形同士が交差/共存/重複している状態になって いる。これを目標とする形状に編集するために、以下の処理を行う。
(51) 三角形同士の交差計算を行い、三角形パッチの交線部分でそれぞれの三角 形が分割されている状態になるように稜線分割を行う。
(52) 双方の三角形のうち、不要な領域にあるものを削除する。 (表 4)
[表 4] Base Tool
Union InadeTocJ bisideBase
Subtraction Inside Tool Outside Base
Intetsection Outside Tool Outside Tool
Boolean Operation (2)
(53) 三角形同士をマージする。その際、 Subtraction演算の Tool側セルの境界 面は表裏反転してマージする。
(54) 三角形同士が同一平面上に存在しているケースでは、その三角形の表裏方 向により、次のように処理を行う。
(a)同方向:一致してレ、る 2枚の面の片方を残す
(b)反対方向:一致してレ、る 2枚の面を両方削除する
(55)マージした三角形パッチを、順に位相付き三角形パッチに連結してゆく。
[0103]
このように接続した三角形を元に、改めて稜線統合処理以下を行うことで、集合演 算が終了する
[0104] 4. 7 八分木への拡張
ここまで、均質な直方体セルを前提に検討を進めてきたが、八分木化した場合にも 若干の変更点をカ卩えることにより、簡単に同様の処理でセルの適合化が可能である。
[0105] 変更点を以下に記す
(1) 隣接する境界セル間で階層差が存在する場合、サイズの大きい側のセルを"つ なぎセル"とし、下記の条件を緩和する
•共有面上には面上点を許容する
'共有する稜線上には 2個以上の切断点を許容する。 (図 16)
(2) 稜線分割は最も細かいセルに合わせて切断平面群を準備し、各面をセル面と して利用するセルの有無によって、実際の交点計算の是非を決定する。
(3) 稜線統合時には、該当位置でのセルのサイズにより、改めて位相付き中間頂点 の Typeを振りなおす。このとき、索引データは変更する必要がない。
(4) セルの内外判定の際に、セル稜でつながった頂点同士でのセルの内外判定が 出来ない場合、対対角/面対角となる頂点がつなぎセルにおいては単一階層セル にくらべ、より多く存在するため、隣接関係の検索を変更する。
[0106] 上記の変更により、 V— CADデータの階層化セルへの対応を実現している。
[0107] 5. 結果
これらの処理を行って作成された V— CADデータを図 17A— F,図 18A,図 18Bに 添付する。
[0108] 図 17A— Fは実際の工業製品の形状(自動車のバンパーの金型部品)を表示する。
セルのサイズよりも細い穴形状がある部分(図 17C)を抜き出すと、下段図 17Dの様 に、 4. 5で記述した簡略化また、この穴を Kitta Cubeで表現するためには、セルの サイズを一段階小さくする(図 17F)も可能であるが、この場合のデータ量の増大を考 え、図 17Eのように、必要なセルだけを階層化することで、データサイズを抑えながら 必要とする形状表現を可能としている。なお、これらの形状表現間の変換/逆変換も 可能である。
[0109] また、集合演算の結果についても、簡単な形状同士の演算結果を、図 18A,図 18B に記載する。図 18Aはォイジナル、図 18Bは Subtraction後である。ここでは、内接 する 2つの直方体同士の Subtractionを計算してレ、るが、 2つの形状が接する状態 での集合演算は、現在の S— CADでは失敗することが少なくない。そこで、各国の C ADデータ作成の標準(Product Design Quality)では、 "モデリングの小技とし て"形状は必ず明確に交差した状態で集合演算するように推奨されている。これに対 して、 Kitta Cubeを採用したことにより、形状が離散化されていること、セルで管理 されてレ、ること力、ら、接してレ、る形状同士の集合演算も容易に実現してレ、る。
[0110] なお、本発明をレ、くつかの好ましい実施例により説明したが、本発明に包含される権 利範囲は、これらの実施例に限定されないことが理解されよう。反対に、本発明の権 利範囲は、添付の請求の範囲に含まれるすべての改良、修正及び均等物を含むも のである。

Claims

請求の範囲
[1] 外部データ入力手段により対象物の境界表現データをコンピュータに入力し、 データ変換手段により境界表現データを位相付き三角形パッチに変換し、 関連付け手段により空間を境界平面が直交する直方体セルに分割しかつどのセル にどの三角形が含まれているかの関連付けを行い、
分割配置手段により空間上に浮かんだ位相付き三角形パッチをセル面で分割し、 全ての三角形がセルの内部及び境界上に配置される状態とし、
稜線統合手段により位相の変更を行わなレ、稜線統合を行レ、、
セル割振手段により頂点の索引データを参考に、各三角形とその頂点をセルに割 り振り、
ラベリング手段により各セルの属性値を設定する、ことを特徴とする境界表現データ からボリュームデータを生成する方法。
[2] 稜線統合手段による稜線統合の後に、
状態チェック手段により稜線統合の結果、減少した三角形群が、所定の条件を満た してレ、るかどうかをチェックし、
所定の条件を満たしていない場合、簡略化手段により不具合箇所の簡略化を行い、 その後、再度、稜線統合手段による稜線統合を行う、ことを特徴とする請求項 1に記 載の境界表現データからボリュームデータを生成する方法。
[3] ボリュームデータと位相付き三角形パッチを準備し、非境界セル同士、非境界セル対 境界セル、及び境界セル対境界セルの集合演算を接続した三角形を元に行う、こと を特徴とする請求項 1又は 2に記載の境界表現データからボリュームデータを生成す る方法。
[4] 対象物の境界表現データをコンピュータに入力する外部データ入力ステップと、 境界表現データを位相付き三角形パッチに変換するデータ変換ステップと、 空間を境界平面が直交する直方体セルに分割しかつどのセルにどの三角形が含 まれているかの関連付けを行う関連付けステップと、
空間上に浮かんだ位相付き三角形パッチをセル面で分割し、全ての三角形がセル の内部及び境界上に配置される状態とする分割配置: 位相の変更を行わない稜線統合を行う稜線統
頂点の索引データを参考に、各三角形とその頂点をセルに割り振るセル割振ステツ プと、
セルの属性値を設定するラベリングステップと、を有する、ことを特徴とするボリューム データの生成プログラム。
[5] 稜線統合ステップの後に、稜線統合の結果、減少した三角形群が、所定の条件を満 たしているかどうかをチェックする状態チェックステップと、
所定の条件を満たしていない場合、不具合箇所の簡略化を行う簡略化ステップと、を 有し、その後、再度稜線統合ステップを行う、ことを特徴とする請求項 3に記載のボリ ユームデータの生成プログラム。
[6] ボリュームデータと位相付き三角形パッチを準備し、非境界セル同士、非境界セル対 境界セル、及び境界セル対境界セルの集合演算を接続した三角形を元に行う、こと を特徴とする請求項 4又は 5に記載のボリュームデータの生成プログラム。
PCT/JP2004/010023 2003-07-16 2004-07-14 境界表現データからボリュームデータを生成する方法及びそのプログラム WO2005008547A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04747489A EP1645979A4 (en) 2003-07-16 2004-07-14 METHOD AND PROGRAM FOR GENERATING VOLUME DATA FROM LIMITROPHE REPRESENTATION DATA
US10/595,047 US7372460B2 (en) 2003-07-16 2004-07-14 Method and program for generating volume data from boundary representation data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-275055 2003-07-16
JP2003275055A JP4381743B2 (ja) 2003-07-16 2003-07-16 境界表現データからボリュームデータを生成する方法及びそのプログラム

Publications (1)

Publication Number Publication Date
WO2005008547A1 true WO2005008547A1 (ja) 2005-01-27

Family

ID=34074535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010023 WO2005008547A1 (ja) 2003-07-16 2004-07-14 境界表現データからボリュームデータを生成する方法及びそのプログラム

Country Status (5)

Country Link
US (1) US7372460B2 (ja)
EP (1) EP1645979A4 (ja)
JP (1) JP4381743B2 (ja)
CN (1) CN100468418C (ja)
WO (1) WO2005008547A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857949A1 (en) * 2005-03-09 2007-11-21 Riken Boundary surface information creating method and program
WO2012026383A1 (ja) * 2010-08-24 2012-03-01 旭硝子株式会社 計算用データ生成装置、計算用データ生成方法及び計算用データ生成プログラム
CN110796693A (zh) * 2019-09-11 2020-02-14 重庆大学 一种工业ct切片图像直接生成二维有限元模型的方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003067527A1 (ja) * 2002-02-06 2005-06-02 デジタルプロセス株式会社 立体形状表示プログラム、立体形状表示方法、および立体形状表示装置
US7042455B2 (en) * 2003-05-30 2006-05-09 Sand Codex Llc System and method for multiple node display
US7298376B2 (en) 2003-07-28 2007-11-20 Landmark Graphics Corporation System and method for real-time co-rendering of multiple attributes
JP4597766B2 (ja) 2005-05-20 2010-12-15 株式会社日立製作所 解析用メッシュ生成システム
JP4783100B2 (ja) 2005-09-12 2011-09-28 独立行政法人理化学研究所 境界データのセル内形状データへの変換方法とその変換プログラム
US8572523B2 (en) * 2006-07-21 2013-10-29 Synopsys, Inc. Lithography aware leakage analysis
AU2008205061B2 (en) * 2007-01-05 2013-06-06 Landmark Graphics Corporation Systems and methods for visualizing multiple volumetric data sets in real time
JP4845761B2 (ja) * 2007-02-09 2011-12-28 富士通株式会社 3次元モデルの形状簡略化装置及び3次元モデルの形状簡略化プログラム
US7825925B2 (en) * 2007-03-09 2010-11-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for repairing triangulated surface meshes
JP5120926B2 (ja) 2007-07-27 2013-01-16 有限会社テクノドリーム二十一 画像処理装置、画像処理方法およびプログラム
US8253726B1 (en) 2008-01-09 2012-08-28 Spaceclaim Corporation, Inc. Systems and methods for modifying three dimensional geometry using an arbitrary cross-section plane
US8736600B2 (en) * 2008-06-06 2014-05-27 Landmark Graphics Corporation Systems and methods for imaging a three-dimensional volume of geometrically irregular grid data representing a grid volume
JP5241573B2 (ja) * 2009-03-05 2013-07-17 株式会社神戸製鋼所 3次元形状データの穴削除方法
JP5240132B2 (ja) * 2009-09-04 2013-07-17 富士通株式会社 熱流体シミュレーション解析装置
JP5790874B2 (ja) * 2011-05-03 2015-10-07 富士通株式会社 形状変更方法
US8923999B2 (en) * 2011-09-07 2014-12-30 Siemens Product Lifecycle Management Software Inc. Volumetric cut planning
CN103164867A (zh) * 2011-12-09 2013-06-19 金耀有限公司 三维图形数据处理方法和装置
JP5892846B2 (ja) * 2012-04-26 2016-03-23 三菱電機株式会社 加工シミュレーション装置及び方法
DE102012112775A1 (de) * 2012-12-20 2014-07-10 Bayer Technology Services Gmbh Computerimplementiertes Verfahren zum Herstellen eines Produktionsanlagenmodells
EP2829993B1 (en) * 2013-07-25 2020-09-30 Dassault Systèmes Design of a path connecting a first point to a second point in a three-dimensional scene
US20150106065A1 (en) * 2013-10-11 2015-04-16 Livermore Software Technology Corporation Joining Imperfectly-Matching NURBS Patches To Form a Computerized Model Suitable For FEA
EP2933777A1 (en) * 2014-04-17 2015-10-21 amberMind Three dimensional modeling
JP6645508B2 (ja) * 2015-11-04 2020-02-14 富士通株式会社 構造解析方法、及び構造解析プログラム
US10353352B2 (en) * 2017-02-22 2019-07-16 Mitsubishi Electric Research Laboratories, Inc. System and method for distributed machining simulation
MX2019013390A (es) * 2017-05-08 2020-07-29 Physna Inc Sistema y metodos para la evaluacion de modelado 3d.
JP6942007B2 (ja) * 2017-08-25 2021-09-29 国立大学法人 東京大学 画像処理装置、及びプログラム
JP7206705B2 (ja) 2018-08-30 2023-01-18 富士フイルムビジネスイノベーション株式会社 三次元形状データの生成装置、三次元造形装置、及び三次元形状データの生成プログラム
US11288411B2 (en) 2019-01-04 2022-03-29 Ptc Inc. B-rep matching for maintaining associativity across CAD interoperation
CN111324955B (zh) * 2020-02-19 2023-10-10 北京工业大学 一种自由曲面激光切削加工的方法
CN114357593B (zh) * 2022-03-07 2022-06-28 深圳小库科技有限公司 曲面建筑的三角表皮面板模板化方法及装置
CN116049924B (zh) * 2023-03-07 2023-07-04 武汉益模科技股份有限公司 一种基于Cuda的三维零件差异分析方法
CN118468613A (zh) * 2023-12-29 2024-08-09 大连理工大学 一种用于优化六面体网格奇异结构的方法及相关产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757089A (ja) * 1993-08-12 1995-03-03 Toshiba Corp 形状復元装置
JP2002024306A (ja) * 2000-07-05 2002-01-25 Suzuki Motor Corp 解析モデルデータ作成方法及び装置並びに解析モデルデータ作成用プログラムを記録した記録媒体。
WO2002023408A1 (fr) * 2000-09-18 2002-03-21 Hitachi, Ltd. Procede de description de profiles pleins et dispositif associe et systeme d'aide a la conception de profiles pleins les utilisant
JP2002230054A (ja) * 2001-02-01 2002-08-16 Inst Of Physical & Chemical Res 形状と物性を統合した実体データの記憶方法

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2547477C3 (de) 1975-10-23 1981-01-22 Maschinenfabrik Rissen Gmbh, 2000 Hamburg Verfahren und Vorrichtung zum Tiefziehen einer Folie aus thermoplastischem Werkstoff
US4694404A (en) 1984-01-12 1987-09-15 Key Bank N.A. High-speed image generation of complex solid objects using octree encoding
US4665492A (en) 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US4710876A (en) 1985-06-05 1987-12-01 General Electric Company System and method for the display of surface structures contained within the interior region of a solid body
US4729098A (en) 1985-06-05 1988-03-01 General Electric Company System and method employing nonlinear interpolation for the display of surface structures contained within the interior region of a solid body
US4719585A (en) 1985-08-28 1988-01-12 General Electric Company Dividing cubes system and method for the display of surface structures contained within the interior region of a solid body
US5197013A (en) 1987-07-28 1993-03-23 David M. Dundorf Method of forming a carved sign using an axially rotating carving tool
JPH0767576B2 (ja) 1987-11-18 1995-07-26 ファナック株式会社 パンチ取り付け用部品の穴位置定義方法
JP2920195B2 (ja) 1989-03-10 1999-07-19 株式会社日立製作所 形状変換方法及び装置
US5014207A (en) 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
JPH047580A (ja) 1990-04-25 1992-01-10 Casio Comput Co Ltd 磁性粉体搬送装置
JP2597778B2 (ja) 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
US5166876A (en) 1991-01-16 1992-11-24 General Electric Company System and method for detecting internal structures contained within the interior region of a solid object
US5594652A (en) 1991-01-31 1997-01-14 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
US5345490A (en) 1991-06-28 1994-09-06 General Electric Company Method and apparatus for converting computed tomography (CT) data into finite element models
US5510066A (en) 1992-08-14 1996-04-23 Guild Associates, Inc. Method for free-formation of a free-standing, three-dimensional body
US5517602A (en) 1992-12-03 1996-05-14 Hewlett-Packard Company Method and apparatus for generating a topologically consistent visual representation of a three dimensional surface
JPH06315849A (ja) 1993-03-04 1994-11-15 Nikon Corp 研磨加工用プログラムの作成方法及び それを用いた作成装置
JPH06348862A (ja) 1993-06-11 1994-12-22 Toshiba Corp 三次元等値面生成方法
JPH07334541A (ja) 1994-06-08 1995-12-22 Hitachi Ltd 数値解析用要素作成システム
US5594651A (en) 1995-02-14 1997-01-14 St. Ville; James A. Method and apparatus for manufacturing objects having optimized response characteristics
US6136252A (en) 1995-09-27 2000-10-24 3D Systems, Inc. Apparatus for electro-chemical deposition with thermal anneal chamber
JP3150066B2 (ja) 1996-07-16 2001-03-26 有限会社アロアロ・インターナショナル 造形装置および方法
US6075538A (en) 1996-07-25 2000-06-13 Institute Of High Performance Computing Time and space efficient data structure and method and apparatus for using the same for surface rendering
JPH1063873A (ja) 1996-08-23 1998-03-06 Atr Tsushin Syst Kenkyusho:Kk 八分木生成方法
WO1999034336A1 (en) 1997-12-29 1999-07-08 The United States Of America, Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Triangle geometry processing for surface modeling and cartesian grid generation
JP3344558B2 (ja) 1998-02-26 2002-11-11 理化学研究所 通電ドレッシング研削方法及び装置
JP2000182081A (ja) 1998-12-14 2000-06-30 Suzuki Motor Corp 解析モデル作成方法および装置並びに解析モデル作成用プログラム若しくは解析モデルデータを記憶した記憶媒体
JP2000194881A (ja) 1998-12-24 2000-07-14 Suzuki Motor Corp 解析モデルを作成する方法および装置並びに解析モデルデータ作成用プログラム若しくは解析モデルデータを記憶した記憶媒体
US6405095B1 (en) 1999-05-25 2002-06-11 Nanotek Instruments, Inc. Rapid prototyping and tooling system
JP3388203B2 (ja) 1999-05-28 2003-03-17 株式会社半導体先端テクノロジーズ 形状シミュレーション方法、装置および記録媒体
JP2001025023A (ja) 1999-07-09 2001-01-26 Nippon Telegr & Teleph Corp <Ntt> 映像ストリーム配信方法、配信システムならびに該方法のプログラムを記録した記録媒体
JP2001022961A (ja) 1999-07-13 2001-01-26 Ricoh Co Ltd 非一様ボリュームモデルからの同位相面生成方法
US6214279B1 (en) 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms
US6627835B1 (en) 2000-02-02 2003-09-30 Purdue Research Foundation Three dimensional object fabrication techniques
US6639597B1 (en) 2000-02-28 2003-10-28 Mitsubishi Electric Research Laboratories Inc Visibility splatting and image reconstruction for surface elements
WO2001075538A1 (fr) 2000-03-31 2001-10-11 Incs Inc. Dispositif, procede et programme de generation de donnees
US6968075B1 (en) 2000-05-09 2005-11-22 Chang Kurt C System and method for three-dimensional shape and size measurement
US6606528B1 (en) 2000-06-21 2003-08-12 The Boeing Company Method for creating computer-aided design (CAD) solid models from numerically controlled (NC) machine instructions
DE60116804T2 (de) 2000-09-18 2006-08-10 Fuji Photo Film Co., Ltd., Minami-Ashigara System zum Anzeigen von Kunstknochenschablonen
AU2002213266A1 (en) * 2000-10-20 2002-05-06 Duke University Single-shot epi with signal recovery from susceptibility-induced losses
US6471800B2 (en) 2000-11-29 2002-10-29 Nanotek Instruments, Inc. Layer-additive method and apparatus for freeform fabrication of 3-D objects
US20020113331A1 (en) 2000-12-20 2002-08-22 Tan Zhang Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers
GB0117157D0 (en) 2001-07-16 2001-09-05 Imec Inter Uni Micro Electr Extraction, hierarchical representation and flexible compression of surface meshes derived from 3D data
EP1371021A1 (en) 2001-03-12 2003-12-17 Koninklijke Philips Electronics N.V. Generation of a three-dimensional representation from multiple images using octrees
JP4703907B2 (ja) 2001-07-31 2011-06-15 富士重工業株式会社 物体の表面格子生成方法
JP4346021B2 (ja) 2001-08-16 2009-10-14 独立行政法人理化学研究所 V−cadデータを用いたラピッドプロトタイピング方法と装置
JP4264889B2 (ja) 2001-08-16 2009-05-20 独立行政法人理化学研究所 V−cadデータによる金型加工方法および装置
US6504742B1 (en) 2001-10-31 2003-01-07 Hewlett-Packard Company 3-D memory device for large storage capacity
EP1452984A4 (en) 2001-12-04 2013-05-01 Riken METHOD FOR CONVERTING THREE DIMENSIONAL IMAGE DATA TO INTERNAL CELL DATA AND CONVERSION PROGRAM
US7321366B2 (en) 2002-02-28 2008-01-22 Riken Method and program for converting boundary data into cell inner shape data
SE524439C2 (sv) 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
JP4349562B2 (ja) 2003-05-09 2009-10-21 独立行政法人理化学研究所 空間の識別方法とそのプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757089A (ja) * 1993-08-12 1995-03-03 Toshiba Corp 形状復元装置
JP2002024306A (ja) * 2000-07-05 2002-01-25 Suzuki Motor Corp 解析モデルデータ作成方法及び装置並びに解析モデルデータ作成用プログラムを記録した記録媒体。
WO2002023408A1 (fr) * 2000-09-18 2002-03-21 Hitachi, Ltd. Procede de description de profiles pleins et dispositif associe et systeme d'aide a la conception de profiles pleins les utilisant
JP2002230054A (ja) * 2001-02-01 2002-08-16 Inst Of Physical & Chemical Res 形状と物性を統合した実体データの記憶方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KASE K. ET AL: "Volume CAD", INTERNATIONAL WORKSHOP ON VOLUME GRAPHICS 2003, 7 July 2003 (2003-07-07), pages 145 - 150 & 173, XP002981343 *
See also references of EP1645979A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857949A1 (en) * 2005-03-09 2007-11-21 Riken Boundary surface information creating method and program
EP1857949A4 (en) * 2005-03-09 2013-05-01 Riken PROCESS AND PROGRAM FOR PRODUCING BORDER SURFACE INFORMATION
WO2012026383A1 (ja) * 2010-08-24 2012-03-01 旭硝子株式会社 計算用データ生成装置、計算用データ生成方法及び計算用データ生成プログラム
JP5045853B2 (ja) * 2010-08-24 2012-10-10 旭硝子株式会社 計算用データ生成装置、計算用データ生成方法及び計算用データ生成プログラム
CN110796693A (zh) * 2019-09-11 2020-02-14 重庆大学 一种工业ct切片图像直接生成二维有限元模型的方法
CN110796693B (zh) * 2019-09-11 2023-03-21 重庆大学 一种工业ct切片图像直接生成二维有限元模型的方法

Also Published As

Publication number Publication date
CN100468418C (zh) 2009-03-11
CN1849608A (zh) 2006-10-18
US7372460B2 (en) 2008-05-13
EP1645979A1 (en) 2006-04-12
US20070057938A1 (en) 2007-03-15
EP1645979A4 (en) 2011-09-28
JP4381743B2 (ja) 2009-12-09
JP2005038219A (ja) 2005-02-10

Similar Documents

Publication Publication Date Title
WO2005008547A1 (ja) 境界表現データからボリュームデータを生成する方法及びそのプログラム
CN113348459B (zh) 将网格几何结构转换为水密边界表示的方法、系统及介质
JP4783100B2 (ja) 境界データのセル内形状データへの変換方法とその変換プログラム
Gao et al. Feature suppression based CAD mesh model simplification
Samareh Status and future of geometry modeling and grid generation for design and optimization
Marinov et al. Generative design conversion to editable and watertight boundary representation
Wang et al. Restricted trivariate polycube splines for volumetric data modeling
Hoffmann et al. Solid modeling
Arisoy et al. Design and topology optimization of lattice structures using deformable implicit surfaces for additive manufacturing
Masuda et al. A cell-based approach for generating solid objects from orthographic projections
Wang et al. Isogeometric analysis based on geometric reconstruction models
Nguyen et al. Triangular mesh and boundary representation combined approach for 3D CAD lightweight representation for collaborative product development
CN109983509A (zh) 一种使用几何面的即时布尔运算方法
Athanasiadis et al. Object‐oriented three‐dimensional hybrid grid generation
McMorris et al. Octree-advancing front method for generation of unstructured surface and volume meshes
Yau et al. Efficient NC simulation for multi-axis solid machining with a universal APT cutter
Kase et al. Volume cad
Ren et al. Feature conservation and conversion of tri-dexel volumetric models to polyhedral surface models for product prototyping
Samareh Geometry modeling and grid generation for design and optimization
Kase et al. Volume CAD—CW-complexes based approach
Yu et al. Reconstruction algorithm for complex Dexel models based on composite block partition
Su et al. Enhanced Dual Contouring for Continuous Surface Reconstruction: A Novel Method in Real-Time Geometric Visualization for CNC Machining Simulation
Truong Development of a Computer-Aided-Design-Based Geometry and Mesh Movement Algorithm for Three-Dimensional Aerodynamic Shape Optimization
Ito et al. Surface triangulation for non-trimmed surface models
Zhu et al. Finite element mesh editing through cad operations

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480026396.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004747489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007057938

Country of ref document: US

Ref document number: 10595047

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004747489

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10595047

Country of ref document: US