WO2004099870A1 - カメラ - Google Patents

カメラ Download PDF

Info

Publication number
WO2004099870A1
WO2004099870A1 PCT/JP2004/006614 JP2004006614W WO2004099870A1 WO 2004099870 A1 WO2004099870 A1 WO 2004099870A1 JP 2004006614 W JP2004006614 W JP 2004006614W WO 2004099870 A1 WO2004099870 A1 WO 2004099870A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
photographing
camera
reflecting
camera according
Prior art date
Application number
PCT/JP2004/006614
Other languages
English (en)
French (fr)
Inventor
Masao Matsugae
Yoshio Shimazaki
Hiroshi Sato
Atsushi Yamashita
Shinsuke Nobe
Yukio Kunisada
Akihiko Ito
Atsushi Horidan
Kaichi Hayashi
Toshio Imaizumi
Original Assignee
Konica Minolta Opto Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc. filed Critical Konica Minolta Opto Inc.
Publication of WO2004099870A1 publication Critical patent/WO2004099870A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/04Bodies collapsible, foldable or extensible, e.g. book type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera

Definitions

  • the present invention relates to a camera that forms an image of subject light on an image sensor using a photographing lens.
  • subject light is focused on an image sensor such as a CCD by a photographing lens, photoelectrically converted by the image sensor, converted into image signals by performing various image processings, and the image signals are converted to an Ic card or the like.
  • Digital cameras for digital recording are rapidly spreading.
  • the digital camera has a smaller screen size on which the subject light forms an image than a conventional camera using a silver halide film, that is, a film camera.
  • FIG. 1 is a cross-sectional view of the zoom lens barrel during photographing
  • FIG. 2 is a cross-sectional view of the zoom lens mirror during non-photographing.
  • the optical system of the zoom lens shown in FIGS. 1 and 2 includes a first lens unit L1, a second lens unit L2, a third lens unit L3, a low-pass filter 2, and an image sensor 1. .
  • the operation of the lens barrel is omitted, the first lens unit L1 and the second lens unit L2 protrude as shown in Fig. 1 during shooting, but the first lens unit as shown in Fig. 2 during non-shooting.
  • the group L1 and the second lens group L2 recede to the vicinity of the third lens group L3, The lens barrel is collapsed.
  • a low-pass filter is arranged on the side of the imaging lens so that the image plane of the imaging element is parallel to the optical axis of the imaging lens, and the subject is reflected by a reflecting mirror arranged behind the imaging lens during imaging.
  • Patent Document 3 the low-pass filter and the image sensor are moved to the side without using a reflecting mirror. Only the thickness of the low-pass filter and the image sensor can be retracted deeper. However, even in this case, it is difficult to make the thickness of the camera sufficiently thin during non-shooting as described above due to the thickness of the lens. In addition, a very high-precision drive mechanism is required to move the image sensor with respect to the optical axis +. PC leaks 06614
  • the present invention has been made in view of the above-described problems in the background art, and has as its object the purpose of making the lens deeper during non-shooting even when a zoom lens including a large number of lenses is used as a shooting lens.
  • An object of the present invention is to propose a camera that can be significantly collapsed by being collapsed.
  • a camera for forming an image of a subject light on an image sensor by a photographing lens, wherein at least one is arranged between predetermined lenses constituting the photographing lens.
  • a reflecting member having a reflecting surface, in which the subject light reflected by the reflecting surface of the reflecting member is imaged on the image sensor during imaging, while the reflecting member is retracted during non-imaging, and
  • a camera is provided in which the rear end of a lens located on the side of the subject from the reflecting surface is retracted into the space where the reflecting member was sometimes located.
  • the present invention may further have the following sub-aspects.
  • the reflecting member is a reflecting mirror.
  • the reflective member When not taking a picture, the reflective member is turned away from the subject and retracted. ,
  • the reflecting member is a prism, and the prism is retracted in a direction substantially orthogonal to the optical axis of the photographing lens when not photographing.
  • Magnification operation is performed by the lens group of the photographing lens located closer to the subject than the reflecting surface of the reflecting member.
  • the lens group of the photographing lens located closer to the subject than the reflecting surface of the reflecting member has a smaller lens interval in the non-photographing state than in the photographing state.
  • the focusing operation is performed by the lens of the photographing lens located closer to the imaging device than the reflecting surface of the reflecting member, and the focusing driving means for driving the lens to perform the focusing operation is parallel to the lens. And a drive transmission means that moves to
  • the image sensor is arranged in a fixed barrel that holds at least a lens barrel that drives the taking lens.
  • '' At the time of non-shooting, at least a part of the lens barrel for driving the photographing lens is housed in the space between the reflecting member and the lens of the photographing lens located on the image pickup device side of the reflecting surface of the reflecting member. .
  • the angle formed by the optical axis of the lens located closer to the subject than the reflecting surface and the optical axis of the lens located closer to the image sensor than the reflecting surface is narrower than 90 degrees.
  • the taking lens is a zoom lens.
  • the image sensor is located outside the fixed barrel.
  • the shooting lens consists of three lens groups, and two lens groups are arranged on the object side of the reflecting surface of the reflecting member.
  • the image sensor is arranged outside the fixed barrel that holds the lens barrel that drives the taking lens.
  • the camera of the present invention not only the low-pass filter and the image sensor but also a part of the lens group is arranged on the side, so that a zoom lens composed of many lenses Even when used as a photographic lens, the lens group can be retracted deeper when not taking a picture. As a result, the thickness of the camera can be significantly reduced.
  • FIG. 1 is a sectional view of a conventional lens barrel in a protruding state
  • FIG. 2 is a sectional view of a conventional lens barrel in a collapsed state
  • FIG. 3 is a sectional view of a lens barrel according to a first embodiment of the present invention, in a protruding state
  • FIG. 4 is a lens barrel according to a first embodiment of the present invention, showing a new front view of the lens barrel in a collapsed state;
  • FIG. 5 shows a lens barrel according to a second embodiment of the present invention, in which the lens in the protruding state when the angle ⁇ formed by the optical axis O1 and the optical axis O2 is smaller than 90 degrees.
  • FIG. 6 shows a lens barrel according to a second embodiment of the present invention, in which the lens ⁇ in the collapsed state when the angle ⁇ formed between the optical axis Ol and the optical axis O 2 is smaller than 90 degrees.
  • FIG. 7 is a cross-sectional view of a lens barrel according to a third embodiment of the present invention, in which an image pickup device and the like are disposed outside a fixed barrel, in a protruding state,
  • FIG. 8 is a cross-sectional view of a lens barrel according to a third embodiment of the present invention, in which the image pickup device and the like are disposed outside a fixed barrel, in a collapsed state,
  • FIG. 9 is a sectional view of a lens barrel according to a fourth embodiment of the present invention, which is in a protruding state when two reflecting mirrors are used, and
  • FIG. 10 is a sectional view of a lens barrel according to a fourth embodiment of the present invention, which is in a retracted state when two reflecting mirrors are used.
  • FIG. 3 is a cross-sectional view when the lens barrel is extended
  • FIG. 4 is a cross-sectional view when the lens barrel is collapsed.
  • the lens group includes a first lens group L1, a second lens group L2, and a third lens group L3, and forms a zoom lens.
  • the first lens group L1 faces the subject, and a reflecting mirror 3 as a reflecting member is disposed behind the second lens group L2, and the third lens group L3,
  • the low-pass filter 2 and the image sensor 1 are arranged in parallel with the optical axis O1.
  • the image sensor 1 is a solid-state image sensor such as a CCD, and photoelectrically converts the subject light imaged on the light receiving surface and supplies it to a predetermined image processing circuit.
  • the low-pass filter 2 removes unnecessary components having a high spatial frequency in the subject light incident on the image sensor 1. Further, the low-pass filter 2 may be combined with an infrared power filter for removing infrared light.
  • the first lens unit L1 and the second lens unit L2 The angle formed by the optical axis O 1 and the optical axis O 2 of the third lens unit L 3, the low-pass filter 2, and the image sensor 1 is 90 degrees. That is, the reflecting surface 3a of the reflecting mirror 3 is inclined at an angle of 45 degrees with respect to the optical axes O1 and O2.
  • the reflecting mirror 3 is held by a holding member 4 and is configured to be freely rotatable about a support shaft 5.
  • the holding member 4 is urged counterclockwise around the support shaft 5 by a spring (not shown), and comes into contact with a stopper (not shown) at the time of photographing so that the reflecting surface of the reflecting mirror 3 as shown in FIG. 3a remains at 45 degrees.
  • the first lens unit L1 and the second lens unit L2 perform a zooming operation by moving along the direction of the optical axis O1, and the third lens unit L3 moves in the direction of the optical axis O2.
  • the focusing operation is performed by moving along.
  • reference numeral 7 denotes an aperture.
  • Reference numeral 11 denotes a fixed barrel, which is fixed to a camera 'body (not shown).
  • a first rotary drum 12 is arranged inside the fixed drum 11.
  • the first rotary cylinder 12 includes a cam pin 12 a that engages with a cam groove 11 a provided on an inner peripheral wall of the fixed cylinder 11, and a large gear 1 2 for driving the first rotary cylinder 12 to rotate. b on the outer peripheral wall.
  • a first straight barrel 13 is disposed inside the first rotating barrel 12, and the first straight barrel 13 engages with the straight board 14, and the first rotating barrel 12, the first straight barrel 1 3 and the straight running plate 14 are integrally assembled.
  • a long groove is formed in the fixed cylinder 11 in parallel with the optical axis Ol, and a part of the outer periphery of the rectilinear plate 14 is engaged with this long groove. Therefore, even when the first rotary cylinder 12 rotates and moves along the direction of the optical axis O 1, the first linear cylinder 13 performs only the linear movement without rotating by the linear plate 14.
  • the first rotary cylinder 12, the first rectilinear cylinder 13 and the rectilinear plate 14 move integrally.
  • a second rotary cylinder 15 is disposed inside the first rectilinear cylinder 13, and a cam pin 15 a stands upright on an outer peripheral wall of the second rotary cylinder 15.
  • the cam pin 15a is engaged with the cam groove 13a provided in the first straight barrel 13 and protrudes from the outer peripheral wall of the first straight barrel 13 and is provided on the inner circumferential wall of the first rotary barrel 12. Also engaged with the cam groove 12c. Then, the second rotary cylinder 15 is rotated by the rotation of the first rotary cylinder 12, and is advanced and retracted in the optical axis direction by the force groove 13 a of the first linear cylinder 13.
  • a second rectilinear cylinder 16 and a third rectilinear cylinder 17 are arranged inside the second rotary cylinder 15.
  • the straight barrel 16 is formed integrally with a lens frame (not shown) holding the first lens group L1
  • the third straight barrel 17 is integrated with a lens frame (not shown) holding the second lens group L2. Is formed.
  • a cam pin 16a protrudes from the outer peripheral wall of the second rectilinear cylinder 16 and engages with the cam groove 15b provided on the inner peripheral wall of the second rotary cylinder 15 to form an outer peripheral wall of the third rectilinear cylinder 17
  • the cam pin 17a protrudes from and engages with a cam groove 15c provided on the inner peripheral wall of the second rotary cylinder 15.
  • a fourth rectilinear cylinder 18 is physically assembled behind the second rotary cylinder 15.
  • the outer end 18a of the fourth rectilinear barrel 18 engages with a long groove formed in the inner peripheral wall of the first rectilinear barrel 13 in parallel with the optical axis O1, and the fourth rectilinear barrel 18 is It also engages with a long groove formed in the inner peripheral wall of the third rectilinear barrel 17 in parallel with the optical axis O1. Therefore, even if the second rotary cylinder 15 rotates, the fourth rectilinear cylinder 18 does not rotate but follows the second rotary cylinder 15 and performs only the linear movement.
  • the front end of the third rectilinear barrel 17 and the rear end of the second rectilinear barrel 16 are engaged in the direction of the optical axis Ol.
  • the fourth rectilinear cylinder 18 does not rotate, the fourth rectilinear cylinder 18 does not rotate the third rectilinear cylinder 17, and further, the third rectilinear cylinder 17 As a result, the second straight cylinder 16 also does not rotate. Then, the second rectilinear cylinder 16 moves straight according to the trajectory of the cam groove 15b, and the third rotary cylinder 17 moves straight according to the trajectory of the cam groove 15c.
  • the third lens unit L 3 In order to secure a space for disposing the third lens unit L 3, the low-pass filter 2, and the image sensor 1, the fixed barrel 11, the first rotating cylinder 12, the first straight barrel 13, and the straight
  • the central axes of the plate 14, the second rotary cylinder 15, the second rectilinear cylinder 16, the third rectilinear cylinder 17, and the fourth rectilinear cylinder 18 are eccentric with the optical axis O1.
  • Fig. 3 shows the optical system in a wide-angle state, but when the main switch (not shown) provided on the power camera body is operated in order to change the telephoto magnification, the lens barrel motor (not shown)
  • the reduction gear group (not shown) connected by the rotation of the rotation gear rotates, and the terminal gear of this reduction gear group meshes with the large gear 12 b of the first rotation cylinder 12. 1 2 rotates.
  • the first rotary cylinder 12 rotates, the first rotary cylinder 12 moves along the direction of the optical axis Ol while rotating by the cam groove 11 a of the fixed cylinder 11.
  • the first rectilinear cylinder 13 integrally assembled with the first rotary cylinder 12 is not rotated by the rectilinear plate 14 and only moves linearly in the direction of the optical axis O1.
  • the driving force is transmitted to the cam pin 15 a to rotate the second rotary cylinder 15, and the optical axis O 1 direction of the second rotary cylinder 15 with respect to the first rectilinear cylinder 13. Is determined by the cam groove 13 a provided in the first straight barrel 13.
  • the subject light passes through the first lens unit L1 and the second lens unit L2, is reflected at the reflecting surface 3a of the reflector 3 at an angle of 90 degrees, and is reflected by the third lens unit L3 and the lens unit L3.
  • the light passes through the single-pass filter 2 and forms an image on the image sensor 1.
  • the focusing operation is performed by moving the third lens group L3 along the direction of the optical axis O2 by a focus motor (not shown). That is, the ends of a lens frame (not shown) of the third lens unit L3 are engaged with a plurality of shafts provided in parallel with the optical axis O2, and one of the shafts is provided with a male screw and provided on the lens frame. Then, the third lens group L3 is moved along the direction of the optical axis O2 by rotating the shaft by a focus motor.
  • the shaft is provided behind the second lens unit L2 in parallel with the optical axis O1, it is necessary to make the length of the shaft sufficiently long to retract the lens barrel deep.
  • the configuration of the first embodiment of the present invention can make the length of the shaft sufficiently long. Therefore, the amount of inclination of the third lens unit L3 with respect to the optical axis O2 is extremely small, and the lens accuracy is improved.
  • each lens barrel operates in the same manner as the above-mentioned zooming operation, and the fixed barrel 11 and the first straight moving barrel 04 006614
  • Each lens barrel is retracted by the cam grooves of 13 and the second rotary cylinder 15.
  • the fourth rectilinear barrel 18 is provided with an arm 18 b protruding in the direction of the optical axis O 1, and when the fourth rectilinear barrel 18 is retracted, the arm 18 b holds the reflecting mirror 3. Press the tip of member 4. Therefore, the holding member 4 rotates clockwise around the support shaft 5 against the urged panel.
  • the first lens unit L1 and the second lens unit L2 are retracted while reducing the distance between each other, and the reflecting surface 3a of the reflecting mirror 3 as shown in FIG. Is orthogonal to the optical axis O 1.
  • the rear end of the optical system including the first lens unit L1 and the second lens unit L2 located closer to the subject than the reflecting surface 3a is retracted. Will be located.
  • the lens barrel can be retracted deeper than a conventional digital camera
  • the lens barrel motor When changing from the non-photographing state in FIG. 4 to the photographing state in FIG. 3, the lens barrel motor is rotated forward, and the first rotary cylinder 12 is moved in the same manner as when changing from the wide-angle state to the telephoto state. Just rotate it.
  • the reflection member disposed behind the second lens unit L2 is not necessarily limited to the reflection mirror 3 as described above.
  • a prism is disposed, and the non-photographing optical axis O 1 May be configured to extend in a direction substantially orthogonal to.
  • the optical axis O 1 of the first lens unit L 1 and the second lens unit L 2 located closer to the subject than the reflecting surface 3 a of the reflecting mirror 3, and the reflection of the reflecting mirror 3
  • the angle formed by the optical axis O2 of the third lens unit L3 located on the image sensor 1 side with respect to the surface 3a was 90 degrees, but the angle was made smaller than 90 degrees. Is also good.
  • FIGS. 5 and 6 show a second embodiment of the present invention in which the angle formed between the optical axis O 1 and the optical axis O 2 is smaller than 90 degrees. It is.
  • FIG. 5 is a cross-sectional view when the lens barrel is projected
  • FIG. 6 is a cross-sectional view when the lens barrel is retracted.
  • each member is the same as the member shown in FIGS. 3 and 4, and the description of the common member is omitted here.
  • the angle formed by the optical axis O 1 of the first lens unit L 1 and the second lens unit L 2 and the optical axis O 2 of the third lens unit L 3, the aperture filter 2, and the image sensor 1 is as follows: Narrower than degrees Have been. That is, by arranging the third lens unit L3, the low-pass filter 2, and the image sensor 1 at an angle, the end of the third lens unit L3 is closer to the optical axis O1 than in the above-described configuration, and the lens mirror is The thickness of the torso, that is, the thickness of the fixed month 21 can be made thinner. ⁇
  • FIGS. 7 and 8 show a third embodiment of the present invention in which the third lens unit L3, the low-pass filter 2, and the imaging device 1 are arranged outside the fixed barrel.
  • FIG. 7 is a cross-sectional view when the lens barrel is projected
  • FIG. 8 is a cross-sectional view when the lens barrel is retracted.
  • FIGS. 7 and 8 are similar to the members shown in FIGS. 3 and 4, and their operations are the same, so that the description of each member is omitted here. . 7 and 8, the arrangement of the first lens unit L1, the second lens unit L2, and the reflecting mirror 3 is the same as described above, but the third lens unit L3, the low-pass filter 2,
  • the image sensor 1 is arranged outside the fixed body 31. In order to make the subject light reflected on the reflecting surface 3a of the reflecting mirror 3 incident on the third lens unit L3, an opening 31a is provided in a part of the fixed body 31.
  • the opening 31 a must be provided to escape.
  • the fixed cylinder 31, the first rotary cylinder 32, the first linear cylinder 33, the linear plate 34, the second rotary cylinder 35, the second linear cylinder 36, and the third linear cylinder The central axis of the tube 37 can be concentric with the optical axis O 1, and the thickness of each lens barrel including the fixed barrel 31 can be reduced.
  • one reflecting mirror is used, but two reflecting mirrors may be used if necessary.
  • FIGS. 9 and 10 A fourth embodiment using two reflecting mirrors is shown in FIGS. 9 and 10. No. FIG. 9 is a cross-sectional view when the lens barrel is extended, and FIG. 10 is a cross-sectional view when the lens barrel is collapsed.
  • the subject light passes through the first lens unit L1 and the second lens unit L2, is then refracted by the reflecting mirror 3 at an angle of 90 degrees, and is further reflected by the second reflecting unit.
  • the image is refracted by the mirror 6 at an angle of 90 degrees and passes through the third lens unit L3 and the low-pass filter 2 arranged in parallel with the first lens unit Ll and the second lens unit L2. Image into 1.
  • the reflecting mirror 3 is rotated clockwise and the reflecting mirror 6 is rotated counterclockwise to position each reflecting surface so as to be orthogonal to the lens optical axis. .
  • the rear end of the optical system including the first lens unit L1 and the second lens unit L2 is reflected by a reflecting mirror.
  • the space where 3 was located [Retract this, and retract the rear end of the optical system consisting of the image sensor 1, the low-pass filter 2 and the third lens unit L 3 into the space where the reflector 6 was located. This allows for a thin collapsing.
  • the position where a part of the photographing lens and the image sensor are arranged may be any position of up, down, left and right when the camera is viewed from the front.
  • the photographing lens does not necessarily need to be a zoom lens, but may be a single focus lens.

Abstract

 被写体光を撮影レンズにより撮像素子に結像させるカメラであって、撮影レンズを構成する複数のレンズ(L1、L2、L3)中の所定レンズ間に配置され、反射面(3a)を有する少なくとも一つの反射部材(3)を具備し、そこにおいて、撮影時には反射部材(3)の反射面(3a)にて反射した被写体光が撮像素子(1)に結像させられ、一方、非撮影時には反射部材(3)が退避させられると共に、撮影時に反射部材(3)が位置していた空間に反射面(3a)より被写体の側に位置するレンズの後端部が後退させられることを特徴とし、非撮影時に、レンズを固定胴(11)内に深く沈胴させて厚さを著しく薄くしたカメラ。

Description

04 006614
1 明 細 書 カメラ 技術分野
本発明は、被写体光を撮影レンズにより撮像素子に結像させるカメラに関する。 背景技術 - 近年、 被写体光を撮影レンズにより C C D等の撮像素子に結像させ、 撮像素子 により光電変換した後に種々の画像処理を行って画像信号に変換し、 この画像信 号を I cカード等にデジタル記録するデジタルカメラが急速に普及している。 デジタルカメラは、 銀塩フィルムを用いる従来のカメラ、 即ちフィルムカメラ と比較して、 被写体光が結像する画面寸法が小さい。 また、 フィルムカメラに必 要なフィルムを収納したパト口ーネを装填することや、 フィルムを給送すること は、 デジタルカメラには不要である。 このような要因により、 近年はフィルム力 メラと比較してより小型に形成されたデジタルカメラが多数販売されている。 デジタルカメラにおいても、 より多くの撮影条件に対応できるように、 ズーム レンズを備えたものが多数市販されている。 し力 し、 ズームレンズの光学系はレ ンズ枚数が多くて大型化するので、 ズームレンズを備えるとカメラ本体からズー ムレンズが大きく突出してしまって、 非撮影時に携帯性が非常に良くない。
そこで、 フィルムカメラと同様に、 非撮影時にはズームレンズを沈胴させて力 メラの厚みを薄くする構成が採用されている。
このカメラの一例が第 1図及ぴ第 2図に示される。 第 1図は撮影時のズームレ ンズ鏡胴の断面図、 第 2図は非撮影時のズームレンズ鏡月同の断面図である。
第 1図及ぴ第 2図に示されるズームレンズの光学系は、 第 1レンズ群 L l、 第 2レンズ群 L 2、 第 3レンズ群 L 3、 ローパスフィルタ 2及ぴ撮像素子 1から成 る。 鏡胴の作動については省略するが、 撮影時には第 1図に示す如く第 1レンズ 群 L 1及ぴ第 2レンズ群 L 2が突出しているが、 非撮影時には第 2図に示す如く 第 1 レンズ群 L 1及び第 2レンズ群 L 2が第 3レンズ群 L 3の近傍まで後退し、 鏡胴は沈胴している。
しかし、 フィルムカメラの場合には結像面に薄いフィルムがあるのみなので、 ズームレンズをフィルムに接近させて沈胴させれば薄型化が達成できるが、 デジ タルカメラの場合には結像面にはある程度の厚みがあるローパスフィルタ 2や撮 像素子 1が配置されるので、 充分に沈胴させて薄型化することは困難である。 従 つて、 従来のデジタルカメラにおいては、 非撮影時には更に薄型化してポケット 等に収納したいとレ、うユーザーの要望に応えるには未だ充分でなかった。
そこで、 このようなデジタル力メラにおいても薄型化を達成することを目的と した提案が今までにも種々なされている。
例えば、 撮像素子の結像面が撮影レンズの光軸と平行になるようにローパスフ ィルタゃ撮像素子を撮影レンズの側方に配置し、 撮影時には撮影レンズの後方に 配置された反射鏡にて被写体光を 9 0度の角度で反射させて撮像素子に結像させ、 非撮影時には反射鏡を回動させて後退させ、 反射鏡が位置していた空間に撮影レ ンズを後退させるカメラがある。 (特許文献 1 : 日本特許出願公開第平 1 0— 2 0 6 9 6 5号公報および特許文献 2 : 日本特許出願公開第平 1 1— 3 0 5 3 1 2 号公報参照) .
また、非撮影時には、撮像素子を撮影レンズの光軸と直交する方向に «させ、 撮像素子が位置していた空間に撮影レンズを沈胴させる力メラがある。
特許文献 1及び 2に開示されている構成では、 ローパスフィルタや撮像素子の 厚みと反射鏡の厚みとの差分だけはより深く沈胴させることが可能である。 しか し、 撮影レンズにズームレンズを用いた場合にはレンズ枚数が多く、 非撮影時に このように沈胴させたとしてもレンズの厚みのためにカメラの厚さを充分に薄く することは困難である。
また、 日本特許出願公開第平 1 1—4 3 7 1号公報 (特許文献 3 ) に開示され ている構成では、 反射鏡を用いずにローパスフィルタと撮像素子を側方に移動さ せるので、 ローパスフィルタと撮像素子の厚み分だけはより深く沈胴させること が可能である。 し力 し、 この場合でも前述と同様に非撮影時に、 レンズの厚みの ためにカメラの厚さを充分に薄くすることは困難である。 また、 撮像素子を光軸 + に対して揷脱する.ために、 非常に高精度の駆動機構を必要とする。 PC漏賺 06614
発明の開示 .
本発明は上記背景技術における諸問題に鑑みてなされたものであり、 その目的 とするところは、 多数のレンズから構成されるズームレンズを撮影レンズとして 用いた場合でも、 非撮影時にはレンズをより深く沈胴させてカメラの厚さを著し く薄くすることができるカメラを提案することにある。
上記目的を達成するために、 本発明の主なる態様はによれば、 被写体光を撮影 レンズにより撮像素子に結像させるカメラであって、 撮影レンズを構成する所定 のレンズ間に少なくとも一つ配置され、 反射面を有する反射部材を具備し、 そこ において、 撮影時には反射部材の反射面にて反射した被写体光が撮像素子に結像 され、 一方、 非撮影時には反射部材が退避させられると共に、 撮影時に反射部材 が位置していた空間に、 反射面より被写体の側に位置するレンズの後端部が後退 させられることを特徴とするカメラが提供される。
また、 上記目的を達成するために、 本発明は更に以下の副次的態様を有するこ とができる。
a . 反射部材は反射鏡である。
b . 反射部材は、 非撮影時には、 被写体より遠ざかる方向に回動させて退避さ せられる。 、
c 反射部材はプリズムであり、 該プリズムは、 非撮影時には、 撮影レンズの 光軸と略直交する方向に退避させられる。
d . 反射部材の反射面より被写体の側に位置する撮影レンズのレンズ群により 変倍動作が行われる。
e . 反射部材の反射面より被写体の側に位置する撮影レンズのレンズ群は、 非 撮影時の状態では撮影時の状態よりレンズ間隔が狭められている。
f . 反射部材の反射面より撮像素子の側に位置する撮影レンズのレンズにより 合焦動作が行われるとともに、 レンズを駆動して合焦動作を行わせる合焦駆動手 段は、 該レンズと平行に移動する駆動伝達手段を有する。
g . 撮像素子は、 少なくとも撮影レンズを駆動する鏡筒を保持する固定胴の中 に配置されている。 '' . 非撮影時には、 反射部材と、 該反射部材の反射面より前記撮像素子の側に 位置する撮影レンズのレンズとの間の空間に、 少なくとも撮影レンズを駆動する 鏡筒の一部が収納される。
i . 反射面より被写体側に位置するレンズの光軸と、 反射面より前記撮像素子 側に位置するレンズの光軸とが成す角度は 9 0度より狭角にされている。
j . 撮影レンズはズームレンズである。
k . 撮像素子は、 固定胴の外に配置されいる。
1 . 撮影レンズが 3つのレンズ群からなり、 反射部材の反射面より被写体の側 に 2つのレンズ群が配置されている。
m. 撮影レンズを構成する所定のレンズ間に、 各々反射面を有する 2つの反射 部材が配置されており、 しカ も、 これら反射部材の間には撮影部材が位置しない。 n . 撮像素子は、 撮影レンズを駆動する鏡筒を保持する固定胴の外に配置され ている。
上記各態様から明らかなように、 本発明のカメラによれば、 ローパスフィルタ や撮像素子だけでなくレンズ群の一部も側方に配置されるので、 多数のレンズか ら構成されるズームレンズを撮影レンズとして用いた場合でも、 非撮影時にはレ ンズ群を一層深く沈胴させることが可能になる。 これによつて、 カメラの厚さを 著しく薄くすることができる。 図面の簡単な説明
第 1図は、 突出状態における従来のレンズ鏡胴の断面図、
第 2図は、 沈胴状態における従来のレンズ鏡胴の断面図、
第 3図は、 本発明の第 1実施例によるレンズ鏡胴であって、 突出状態における レンズ鏡胴の断面図、
第 4図は、 本発明の第 1実施例によるレンズ鏡胴であって、 沈胴状態における レンズ鏡胴の新面図、
第 5図は、 本発明の第 2実施例によるレンズ鏡胴であって、 光軸 O lと光軸 O 2とが成す角度 αを 9 0度より狭角にした場合の、 突出状態におけるレンズ鏡胴 の断面図、 第 6図は、 本発明の第 2実施例によるレンズ鏡胴であって、 光軸 O lと光軸 O 2とが成す角度 αを 9 0度より狭角にした場合の、 沈胴状態におけるレンズ鏡胴 の断面図、
第 7図は、 本発明の第 3実施例によるレンズ鏡胴であって、 撮像素子等を固定 胴の外に配置した場合の、 突出状態におけるレンズ鏡胴の断面図、
第 8図は、 本発明の第 3実施例によるレンズ鏡胴であって、 撮像素子等を固定 胴の外に配置した場合の、 沈胴状態におけるレンズ鏡胴の断面図、
第 9図は、 本発明の第 4実施例によるレンズ鏡胴であって、 2枚の反射鏡を用 いた場合の、 突出状態におけるレンズ鏡胴の断面図、 そして
第 1 0図は、 本発明の第 4実施例によるレンズ鏡胴であって、 2枚の反射鏡を 用いた場合の、 沈胴状態におけるレンズ鏡胴の断面図である。 発明を実施するための最良の形態
以下、 添付の図面を参照しながら本発明の幾つかの好ましい実施例について説 明する。
先ず、 第 3図及ぴ第 4図を参照して、 本発明の第 1実施例によるカメラにおけ るレンズ鏡胴が詳細に説明される。 第 3図はレンズ鏡胴が突出させられた状態時 の断面図、 第 4図はレンズ鏡胴が沈胴させられた状態時の断面図である。
第 1実施例によるレンズ鏡胴が用いられる光学系において、 レンズ群は第 1レ ンズ群 L l、 第 2レンズ群 L 2及ぴ第 3レンズ群 L 3よりなりズームレンズを構 成している。 第 1レンズ群 L 1は被写体に対向し、 第 2レンズ群 L 2の後方には 反射部材としての反射鏡 3が配置されており、 反射鏡 3の側方には第 3レンズ群 L 3、ローパスフィルタ 2及ぴ撮像素子 1が光軸 O 1に平行して配置されている。 なお、 撮像素子 1は C C D等の固体撮像素子であり、 受光面に結像した被写体 光を光電変換して所定の画像処理回路に供する。
ローパスフィルタ 2は撮像素子 1に入射する被写体光における空間周波数の高 い不要成分を除去する。 また、 ローパスフィルタ 2に、 赤外光を除去する赤外力 ットフィルタ等を組み合わせてもよい。
そして、 第 1実施例においては、 第 1 レンズ群 L 1及ぴ第 2レンズ群 L 2によ る光軸 O 1と、 第 3レンズ群 L 3、 ローパスフィルタ 2及ぴ撮像素子 1による光 軸 O 2とが成す角度は 9 0度である。 即ち、 反射鏡 3の反射面 3 aは光軸 O 1, O 2に対して 4 5度の角度で傾斜している。
反射鏡 3は保持部材 4によって保持され、 支軸 5を中心に任意に回動可能に構 成されている。 また、 保持部材 4は不図示のバネによって支軸 5を中心に反時計 方向に付勢されていて、 撮影時には不図示のストッパーに当接して第 3図に示さ れる如く反射鏡 3の反射面 3 aが 4 5度に傾いた状態を維持している。
また、 第 1レンズ群 L 1及ぴ第 2レンズ群 L 2は光軸 O 1の方向に沿って移動 することによって変倍動作を行い、 第 3レンズ群 L 3は光軸 O 2の方向に沿って 移動することによって合焦動作を行う。 なお、 7は絞りを示している。
次に、 レンズ鏡胴の各鏡筒について説明すると、 1 1は固定胴であり、 不図示 のカメラ'本体に固定される。
固定胴 1 1の内側には第 1回転胴 1 2が配置されている。 第 1回転筒 1 2は、 固定胴 1 1の内周壁に設けたカム溝 1 1 aと係合するカムピン 1 2 aと、 第 1回 転筒 1 2を回転駆動させるための大歯車 1 2 bとを外周壁に有している。
第 1回転筒 1 2の内側には第 1直進筒 1 3が配置され、 第 1直進筒 1 3は直進 板 1 4と係合し、 且つ、 第 1回転筒 1 2、 第 1直進筒 1 3及ぴ直進板 1 4は一体 的に組み立てられている。 固定胴 1 1には光軸 O lと平行に長溝が形成されてい て、 この長溝に直進板 1 4の外周の一部が係合している。 従って、 第 1回転筒 1 2が回転しながら光軸 O 1の方向に沿って移動したときでも、 第 1直進筒 1 3は 直進板 1 4によって回転せずに直進移動のみを行って、 '第 1回転筒 1 2、 第 1直 進筒 1 3及び直進板 1 4は一体の状態で移動する。
第 1直進筒 1 3の内側には第 2回転筒 1 5が配置され、 第 2回転筒 1 5の外周 壁にカムピン 1 5 aが立設している。 カムピン 1 5 aは第 1直進筒 1 3に設けた カム溝 1 3 aと係合すると共に、 第 1直進筒 1 3の外周壁より突出していて、 第 1回転筒 1 2の内周壁に設けたカム溝 1 2 cとも係合している。 そ-して、 第 2回 転筒 1 5は第 1回転筒 1 2の回転によって回転すると共に、 第 1直進筒 1 3の力 ム溝 1 3 aによって光軸方向に進退する。
第 2回転筒 1 5の内側には第 2直進筒 1 6及び第 3直進筒 1 7が配置され、 第 2直進筒 1 6は第 1レンズ群 L 1を保持する不図示の鏡枠と一体的に形成され、 第 3直進筒 1 7は第 2レンズ群 L 2を保持する不図示の鏡枠と一体的に形成され ている。 第 2直進筒 1 6の外周壁にはカムピン 1 6 aが突出していて第 2回転筒 1 5の内周壁に設けたカム溝 1 5 bと係合し、 第 3直進筒 1 7の外周壁にはカム ピン 1 7 aが突出していて第 2回転筒 1 5の内周壁に設けたカム溝 1 5 cと係合 している。
—方、 第 2回転筒 1 5の後部には第 4直進筒 1 8がー体的に組み立てられてい る。 そして、 第 4直進筒 1 8の外端 1 8 aが第 1直進筒 1 3の内周壁に光軸 O 1 と平行に形成された長溝と係合し、 且つ、 第 4直進筒 1 8は第 3直進筒 1 7の内 周壁に光軸 O 1と平行に形成された長溝とも係合している。 従って、 第 2回転筒 1 5が回転移動しても第 4直進筒 1 8は回転せずに第 2回転筒 1 5に追随して直 進移動のみを行う。
また、 第 3直進筒 1 7の先端部と第 2直進筒 1 6の後端部とが光軸 O lの方向 に係合している。
従って、 第 2回転筒 1 5が回転したときにも第 4直進筒 1 8は回転せず、 第 4 直進筒 1 8によって第 3直進筒 1 7も回転せず、 更に第 3直進筒 1 7によって第 2直進筒 1 6も回転しない。 そして、 第 2直進筒 1 6はカム溝 1 5 bの軌跡に応 じて直進移動を行い、 第 3回転筒 1 7はカム溝 1 5 cの軌跡に応じて直進移動を 行う。
なお、 第 3レンズ群 L 3、 ローパスフィルタ 2及ぴ撮像素子 1を配置するスぺ ースを確保するために、 固定胴 1 1、 第 1回転筒 1 2、 第 1直進筒 1 3、 直進板 1 4、 第 2回転筒 1 5、 第 2直進筒 1 6、 第 3直進筒 1 7及び第 4直進筒 1 8の 中心軸は、 光軸 O 1と偏心している。
次に、 レンズ鏡胴の動作を説明する。
第 3図は光学系が広角の状態になっている図であるが、 望遠に変倍するために は力メラ本体に設けた不図示のメインスィツチを作動させると、 不図示の鏡胴モ ータが回転して連結した不図示の減速歯車群が回転し、 この減速歯車群の末端の 歯車が第 1回転筒 1 2の大歯車 1 2 bと歯合しているので、 第 1回転筒 1 2が回 転する。 . 第 1回転筒 1 2が回転すると、 第 1回転筒 1 2は固定胴 1 1のカム溝 1 1 aに よって回転しながら光軸 O lの方向に沿って移動する。 しかし、 第 1回転筒 1 2 と一体に組み立てられている第 1直進筒 1 3は直進板 1 4によって回転すること がなく、 光軸 O 1の方向に直進移動のみを行う。 第 1回転筒 1 2が回転すると、 カムピン 1 5 aに駆動力が伝達されて第 2回転筒 1 5が回転し、 第 2回転筒 1 5 の第 1直進筒 1 3に対する光軸 O 1方向に沿った移動量は第 1直進筒 1 3に設け たカム溝 1 3 aによって決定される。
更に、 第 2回転筒 1 5が回転すると、 第 4直進筒 1 8によって回転が規制され ている第 2直進筒 1 6及ぴ第 3直進筒 1 7は、 各々カムピン 1 6 aとカム溝 1 5 bの係合、 及ぴカムピン 1 7 aとカム溝 1 5 cの係合によって光軸 O 1の方向に 直進移動して、 第 1レンズ群 L 1及ぴ第 2レ^ズ群 L 2は互いの群間距離を変化 させながら光軸 O 1の方向に直進移動し、 光学系は望遠状態に変倍する。
ここで、 被写体光は第 1レンズ群 L 1及び第 2レンズ群 L 2を通過して反射鏡 3の反射面 3 aで 9 0度の角度で反射し、 第 3レンズ群 L 3及ぴロ一パスフィル タ 2を通過して、 撮像素子 1に結像する。
なお、 合焦動作は不図示のフォーカスモータ (合焦駆動手段) によって第 3レ ンズ群 L 3を光軸 O 2の方向に沿って移動させて行う。 即ち、 光軸 O 2と平行に 設けた複数のシャフトに第 3レンズ群 L 3の図示しない鏡枠の端部を係合させ、 そのシャフトの一本に雄ネジを設けて該鏡枠に設けた雌ネジと嵌合させ '(合焦伝 達手段) 、 該シャフトをフォーカスモータによって回転させることにより第 3レ ンズ群 L 3を光軸 O 2の方向に沿って移動させる。
従来は該シャフトを光軸 O 1と平行に第 2レンズ群 L 2の後方に設けていたの で、 レンズ鏡胴を深く沈胴させるためには該シャフトの長さを充分に長くするこ とができなかったが、 本発明の第 1実施例のような構成にすることによって該シ ャフトの長さを充分に長くすることができる。 従って、 光軸 O 2に対する第 3レ ンズ群 L 3の倒れ量が非常に少なくなってレンズ精度が向上する。
非撮影時には、 不図示のメインスィッチをオフにすると、 鏡胴モータが逆転し て、 広角の状態から望遠の状態にするときとは逆方向に第 1回転筒 1 2が回転す る。 すると、 各鏡筒は前述の変倍動作と同様に作動し、 固定胴 1 1、 第 1直進筒 04 006614
9
1 3及び第 2回転筒 1 5のカム溝によって各鏡筒は後退する。 第 4直進筒 1 8に は光軸 O 1の方向に突出した腕部 1 8 bが設けらていて、 第 4直進筒 1 8が後退 すると腕部 1 8 bが反射鏡 3を保持した保持部材 4の先端を押圧する。 従って、 保持部材 4は付勢されているパネに抗して支軸 5を中心に時計方向に回転する。 このとき、 各鏡筒は後退するので、 第 1レンズ群 L 1及ぴ第2レンズ群 L 2は 互いの群間距離を狭めながら後退し、 第 4図の如く反射鏡 3の反射面 3 aが光軸 O 1と直交した状態になる。 そして、 撮影時に反射鏡 3が位置していた空間に、 反射面 3 aより被写体の側に位置し第 1 レンズ群 L 1及ぴ第 2レンズ群 L 2から なる光学系の後端部が後退して位置することになる。
この結果、従来のデジタルカメラよりレンズ鏡胴を深く沈胴させることができ、
+非撮影時により携帯性が向上する薄型のデジタルカメラを実現することができる。
なお、 第 4図の非撮影状態から第 3図の撮影状態にするときは、 鏡胴モータを 正転させて、 広角の状態から望遠の状態にするときと同様に第 1回転筒 1 2を回 転させればよい。
また、 第 2レンズ群 L 2の後方に配置する反射部材としては、 必ずしも前述の 如き反射鏡 3に限定されるものではなく、 例えばプリズムを配置し、 非撮影時に は該プリズムを光軸 O 1と略直交する方向に ¾させるように構成してもよい。 上記第 1実施例のの構成では、 反射鏡 3の反射面 3 aより被写体側に位置する 第 1 レンズ群 L 1及ぴ第 2レンズ群 L 2の光軸 O 1と、 反射鏡 3の反射面 3 aよ り撮像素子 1の側に位置する第 3レンズ群 L 3の光軸 O 2とが成す角度が 9 0度 であったが、 9 0度より狭角になるように構成してもよい。
次に、 光軸 O 1と光軸 O 2とが成す角度が 9 0度より狭角になるように構成さ れた、 本発明の第 2実施例が第 5図及ぴ第 6図に示される。 第 5図はレンズ鏡胴 を突出させた状態時の断面図、 第 6図はレンズ鏡胴を沈胴させた状態時の断面図 である。
第 5図及ぴ第 6図において、 各部材は第 3図及び第 4図に示した部材と同様の 部材であるので、 ここでは共通部材についての説明は省略される。
第 1レンズ群 L 1及ぴ第 2レンズ群 L 2の光軸 O 1と、 第 3レンズ群 L 3、 口 一パスフィルタ 2及び撮像素子 1の光軸 O 2とが成す角度 は ·9 0度より狭角に されている。 即ち、 第 3レンズ群 L 3、 ローパスフィルタ 2及び撮像素子 1を傾 斜させて配置することにより、 第 3レンズ群 L 3の端部が前述の構成より光軸 O 1に接近し、 レンズ鏡胴の太さ、 即ち固定月同 2 1の太さをより細くすることがで ぎる。 ―
前述の第 1および第 2実施例における構成では、 光学系を構成する第 1レンズ 群 L 1から撮像素子 1までの全てを固定筒 1 1, 2 1の中に配置し、 ユニット化 している。 しかし、 ュニット化せずに、 第 3レンズ群 L 3、 ローパスフィルタ 2 及ぴ撮像素子 1を固定胴の外に配置する構成にしてもよい。
次に、 第 3レンズ群 L 3、 ローパスフィルタ 2及び撮像素子 1が固定胴の外に 配置された、 本発明の第 3実施例が第 7図及び第 8図に示される。 第 7図はレン ズ鏡胴を突出させた状態時の断面図、 第 8図はレンズ鏡胴を沈胴させた状態時の 断面図である。
なお、 第 7図及び第 8図における各部材は第 3図及ぴ第 4図に示した部材と類 似していて、 その作用は同一であるので、 各部材の説明はここでは省略される。 第 7図及ぴ第 8図においては、 第 1レンズ群 L l、 第 2レンズ群 L 2及ぴ反射 鏡 3の配置は前述と同一であるが、 第 3レンズ群 L 3、 ローパスフィルタ 2及び 撮像素子 1が固定胴 3 1の外に配置されている。 そして、 反射鏡 3の反射面 3 a で反射した被写体光を第 3レンズ群 L 3に入射させるため、 固定胴 3 1の一部に は開口部 3 1 aが設けられている。
なお、 第 1回転筒 3 2のカムピン 3 2 aが係合する固定胴 3 1のカム溝に関し ては、 開口部 3 1 aを逃げて設けなければならない。 このために、 固定胴 3 1と 第 1回転筒 3 2をヘリコィドによって結合することが望ましい。
このように構成することにより、 固定胴 3 1、 第 1回転筒 3 2、 第 1直進筒 3 3、 直進板 3 4、 第 2回転筒 3 5、 第 2直進筒 3 6及ぴ第 3直進筒 3 7の中心軸 を、 光軸 O 1と同心にすることができ、 固定胴 3 1を始め、 各鏡筒の太さを細く することができる。
更に、 前述の第 1〜第 3実施例で示された構成においては、 1枚の反射鏡が用 ,いられているが、 必要に応じて 2枚の反射鏡を用いてもよい。
2枚の反射鏡が用いられた、 第 4実施例が第 9図及び第 1 0図に示される。 第 9図はレンズ鏡胴を突出させた状態時の断面図、 第 1 0図はレンズ鏡胴を沈胴さ せた状態時の断面図である。
撮影時には第 9図に示される如く、 被写体光は第 1レンズ群 L 1、 第 2レンズ 群 L 2を通過した後、 反射鏡 3によって 9 0度の角度で屈折され、 更に第 2の反 射鏡 6によって 9 0度の角度で屈折され、 第 1レンズ群 L l、 第 2レンズ群 L 2 と平行に配置されている第 3レンズ群 L 3及ぴローパスフィルタ 2を通過して撮 像素子 1に結像する。
非撮影時には第 1 0図に示される如く、 先ず反射鏡 3を時計方向に回転させる と共に、 反射鏡 6を反時計方向に回転させて、 各反射面がレンズ光軸と直交する ように位置させる。 続いて、 第 3図及ぴ第 4図を参照して説明した鏡胴の作動と 同様に、 第 1レンズ群 L 1及ぴ第 2レンズ群 L 2からなる光学系の後端部を反射 鏡 3が位置していた空間【こ後退させると共に、 撮像素子 1、 ローパスフィルタ 2 及ぴ第 3レンズ群 L 3からなる光学系の後端部を反射鏡 6が位置していた空間に 後退させることによって、 薄型の沈胴が可能になる。
なお、 以上の各構成において、 撮影レンズの一部と撮像素子等を配置する位置 は、 カメラを前方から見た場合に、 .上下左右のどの位置であってもよい。 . また、 撮影レンズは必ずしもズームレンズである必要はなく、 単焦点レンズで あってもよい。

Claims

請 求 の 範 囲
1 . 被写体光を撮影レンズにより撮像素子に結像させるカメラであって、 前記撮影レンズを構成する所定のレンズ間に少なくとも一つ配置され、 反射面 を有する反射部材を具備し、
• そこにおいて、 撮影時には前記反射部材の反射面にて反射した被写体光が前記 撮像素子に結像され、一方、非撮影時には前記反射部材が βさせられると共に、 撮影時に前記反射部材が位置していた空間に前記反射面より被写体の側に位置す るレンズの後端部が後退させられることを特徴とするカメラ。
2 . 前記反射部材が反射鏡であることを特徴とする請求項 1に記載の力メラ。
3 . 非撮影時には、 反射面が被写体より遠ざかる方向に前記反射部材を回動 させて退避させることを特徴とする請求項 2に記載のカメラ。 '
4 . 前記反射部材がプリズムであることを特徴とする請求項 1に記載のカメ
5 . 非撮影時には、 前記プリズムを前記撮影レンズの光軸と略直交する方向 に退避させることを特徴とする請求項 4に記載のカメラ。
6 . 前記反射面より被写体の側に位置する前記撮影レンズのレンズ群により 変倍動作が行われることを特徴とする請求項 1に記載のカメラ。
7 . 前記反射面より被写体の側に位置する前記撮影レンズのレンズ群は、 非 撮影時の状態では撮影時の状態よりレンズ間隔が狭められていることを特徴とす る請求項 1に記載のカメラ。
8 . . 前記反射面より前記撮像素子の側に位置する前記撮影レンズのレンズに より合焦動作が行われるこ を特徴とする請求項 1に記載の力メラ。
9 . 前記レンズを駆動して合焦動作を行わせる合焦駆動手段は、 前記レンズ と平行に移動する駆動伝達手段を有することを特徴とする請求項 8に記載のカメ ラ。
1 0 . 前記撮像素子は、 前記撮影レンズを駆動する鏡筒を保持する固定胴の中 に配置されていることを特徴とする請求項 1に記載のカメラ。
1 1 . 非撮影時には、 前記反射鏡と、 前記反射面より前記撮像素子の側に位置 する前記撮影レンズのレンズとの間の空間に、 少なくとも前記撮影レンズを駆動 する鏡筒の一部が収納されること.を特徴とする請求項 1に記載のカメラ。
1 2 . 前記反射面より被写体側に位置するレンズの光軸と、 前記反射面より前 記撮像素子側に位置するレンズの光軸とが成す角度を 9 0度より狭角にしたこと を特徴とする請求項 1に記載のカメラ。
1 3 . 前記撮影レンズがズームレンズであることを特徴とする請求項 1に記載 のカメラ。
1 4. 前記撮影レンズが 3つのレンズ群からなり、 前記反射部材の反射面より 被写体の側に 2つのレンズ群が配置されていることを特徴とする請求項 1に記载 のカメラ。
1 5 . 前記撮影レンズを構成する所定のレンズ間に、 各々反射面を有する 2つの 反射部材が配置されたことを特徴とする請求項 1に記載のカメラ。
1 6 . 前記 2つの反射部材の間には、 撮影部材が位置しないことを特徴とする請 求項 1 5に記載のカメラ。
1 7 . 前記撮像素子は、 前記撮影レンズを駆動する鏡筒を保持する固定胴の外 に配置されていることを特徴とする請求項 1に記載のカメラ。
PCT/JP2004/006614 2003-05-12 2004-05-11 カメラ WO2004099870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003132943A JP2005300562A (ja) 2003-05-12 2003-05-12 カメラ
JP2003-132943 2003-05-12

Publications (1)

Publication Number Publication Date
WO2004099870A1 true WO2004099870A1 (ja) 2004-11-18

Family

ID=33432184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006614 WO2004099870A1 (ja) 2003-05-12 2004-05-11 カメラ

Country Status (2)

Country Link
JP (1) JP2005300562A (ja)
WO (1) WO2004099870A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100388039C (zh) * 2005-03-25 2008-05-14 三星电子株式会社 变焦透镜
WO2022236552A1 (en) * 2021-05-10 2022-11-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module and imaging device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581594B2 (ja) * 2004-09-22 2010-11-17 株式会社ニコン カメラ
JP4649924B2 (ja) * 2004-09-22 2011-03-16 株式会社ニコン カメラ
WO2007052606A1 (ja) * 2005-10-31 2007-05-10 Matsushita Electric Industrial Co., Ltd. カメラ
JP4896885B2 (ja) * 2005-11-04 2012-03-14 パナソニック株式会社 撮像装置およびカメラ
JP4811711B2 (ja) * 2005-11-11 2011-11-09 コニカミノルタオプト株式会社 レンズ鏡胴及び撮像装置
JP4770500B2 (ja) * 2006-02-08 2011-09-14 コニカミノルタオプト株式会社 レンズユニットおよび撮像装置
JP4752540B2 (ja) * 2006-02-27 2011-08-17 コニカミノルタオプト株式会社 レンズユニットおよび撮像装置
US7898745B2 (en) 2006-02-27 2011-03-01 Konica Minolta Opto, Inc. Lens unit and image pickup apparatus
JP2007328070A (ja) * 2006-06-07 2007-12-20 Sharp Corp 撮像装置
JP2008076484A (ja) * 2006-09-19 2008-04-03 Konica Minolta Opto Inc レンズ鏡胴及び撮像装置
JP5511274B2 (ja) * 2008-11-19 2014-06-04 キヤノン株式会社 ズームレンズおよびそれを有するカメラ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281578A (ja) * 1996-02-15 1997-10-31 Casio Comput Co Ltd カメラ装置
JPH11258678A (ja) * 1998-03-11 1999-09-24 Olympus Optical Co Ltd レンズ鏡筒
JPH11305312A (ja) * 1998-04-22 1999-11-05 Ricoh Co Ltd 電子カメラ
JP2002277736A (ja) * 2001-03-21 2002-09-25 Olympus Optical Co Ltd 撮像装置
JP2003057547A (ja) * 2001-08-14 2003-02-26 Canon Inc ズームレンズ及びそれを有する光学機器
JP2003114473A (ja) * 2001-10-02 2003-04-18 Olympus Optical Co Ltd デジタルカメラ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281578A (ja) * 1996-02-15 1997-10-31 Casio Comput Co Ltd カメラ装置
JPH11258678A (ja) * 1998-03-11 1999-09-24 Olympus Optical Co Ltd レンズ鏡筒
JPH11305312A (ja) * 1998-04-22 1999-11-05 Ricoh Co Ltd 電子カメラ
JP2002277736A (ja) * 2001-03-21 2002-09-25 Olympus Optical Co Ltd 撮像装置
JP2003057547A (ja) * 2001-08-14 2003-02-26 Canon Inc ズームレンズ及びそれを有する光学機器
JP2003114473A (ja) * 2001-10-02 2003-04-18 Olympus Optical Co Ltd デジタルカメラ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100388039C (zh) * 2005-03-25 2008-05-14 三星电子株式会社 变焦透镜
WO2022236552A1 (en) * 2021-05-10 2022-11-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module and imaging device

Also Published As

Publication number Publication date
JP2005300562A (ja) 2005-10-27

Similar Documents

Publication Publication Date Title
US8019212B2 (en) Optical module for a photographing apparatus and photographing apparatus having the same
US7625139B2 (en) Image sensing apparatus
US7773871B2 (en) Retractable photographic lens
KR20040093648A (ko) 침동식 렌즈 및 침동식 렌즈의 침동 방법
JP4731110B2 (ja) 携帯機器
WO2004099870A1 (ja) カメラ
US7515195B2 (en) Digital camera with retractable lenses
JP4481611B2 (ja) デジタルカメラ
JPH1032740A (ja) 電子スチルカメラ
JP2008046200A (ja) レンズ鏡胴及び撮像装置
JP3416317B2 (ja) レンズ鏡筒及びそれを用いた光学機器
JP2002107598A (ja) 沈胴式レンズ鏡筒及びこれを用いた光学機器
JP2009192581A (ja) レンズ鏡胴及び撮像装置
JP4141236B2 (ja) レンズ鏡胴、ディジタルカメラおよび撮影装置
CN210867794U (zh) 移动终端
JP2009181102A (ja) レンズ鏡胴及び撮像装置
JP2003344747A (ja) カメラ
JP5875804B2 (ja) レンズ鏡筒および撮像装置
JP4495934B2 (ja) デジタルカメラ
JP2004145029A (ja) 光学ユニット及び撮像装置
JP2004341401A (ja) カメラ
JP2004361657A (ja) デジタルカメラ
JP4474791B2 (ja) 電子カメラ
JP2016130763A (ja) レンズ鏡筒、光学機器、および、撮像装置
JP2004191503A (ja) 沈胴鏡筒を有するカメラ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application