WO2007052606A1 - カメラ - Google Patents

カメラ Download PDF

Info

Publication number
WO2007052606A1
WO2007052606A1 PCT/JP2006/321655 JP2006321655W WO2007052606A1 WO 2007052606 A1 WO2007052606 A1 WO 2007052606A1 JP 2006321655 W JP2006321655 W JP 2006321655W WO 2007052606 A1 WO2007052606 A1 WO 2007052606A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis direction
lens
optical axis
group
lens group
Prior art date
Application number
PCT/JP2006/321655
Other languages
English (en)
French (fr)
Inventor
Hideyuki Hashi
Keiji Sakamoto
Takayuki Hayashi
Eiichi Nagaoka
Kenichi Hayashi
Daisuke Ito
Kazuhiko Ishimaru
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007542727A priority Critical patent/JPWO2007052606A1/ja
Priority to US12/092,193 priority patent/US7782549B2/en
Priority to CN2006800383784A priority patent/CN101288026B/zh
Publication of WO2007052606A1 publication Critical patent/WO2007052606A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • the present invention relates to a camera, and more particularly to a camera including a bending optical system.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal
  • Digital cameras that use an image sensor such as a sensor to convert an optical image into an electrical signal and digitally record the electrical signal are widely used.
  • an image sensor such as a sensor to convert an optical image into an electrical signal and digitally record the electrical signal
  • high performance is also required for a lens barrel that forms an optical image on such an image sensor just by increasing the number of pixels of a CCD or CMOS sensor.
  • a lens barrel equipped with a zoom lens system with higher magnification there is a need for a lens barrel equipped with a zoom lens system with higher magnification.
  • Patent Document 1 discloses a bending optical system that bends an optical path using a reflecting mirror.
  • the lens barrel disclosed in Patent Document 1 includes a first lens group and a second lens group in order from the subject side on the subject side of the reflecting mirror, and the reflecting mirror on the imaging element side of the reflecting mirror.
  • a third lens group and a fourth lens group are provided in order of lateral force.
  • the first lens group is fixed.
  • the second lens group and the third lens group are movable in the optical axis direction, and constitute a zoom lens system in cooperation with each other.
  • the fourth lens group is a lens for force adjustment.
  • Patent Document 2 discloses a bending optical system that bends an optical path using a prism.
  • the lens barrel disclosed in Patent Document 2 includes a lens group on the subject side of the prism.
  • the lens group can move in the optical axis direction between the use position and the storage position It is.
  • the prism is movable so as to secure the storage space.
  • Patent Document 3 discloses a configuration of a lens group used in a bending optical system.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-258678
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-169236
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-102089
  • an object of the present invention is to provide a camera that achieves both a high-magnification zoom lens system and a reduction in the size of the apparatus.
  • a camera as a first invention includes a first lens group, a bending means, at least one lens frame, a second lens group, an imaging means, a lens barrel, and a casing.
  • the first lens group takes in a light beam incident along the first optical axis.
  • the bending means bends the light beam incident along the first optical axis in a direction along the second optical axis that intersects the first optical axis.
  • the lens frame holds the first lens group and relatively moves the first lens group and the bending means in the direction along the first optical axis.
  • the second lens group takes in the light beam bent by the bending means.
  • the imaging means receives the light beam that has passed through the second lens group.
  • the lens barrel movably supports the lens frame, and a bending means, a second lens group, and an imaging means are arranged.
  • the casing holds the lens barrel.
  • the phrase “along the second optical axis” means, for example, parallel to the second optical axis.
  • the bending means includes, for example, a member having a reflecting surface, and more specifically, may include a prism, a mirror, and the like.
  • the imaging means may be, for example, a CCD or CMOS that receives light electrically, but is not limited thereto, and may be a film or the like.
  • the relative position between the first lens group and the bending means is changed by the lens frame.
  • the relative position along the optical path between the first lens group and the imaging means is changed by the lens frame.
  • the optical path length to the first lens group force imaging means can be increased by the lens frame, so that a high-magnification zoom lens system can be configured.
  • the camera of the present invention employs a bending optical system. For this reason, an optical system having the same optical path length can be configured more compactly than a camera that does not employ a bending optical system.
  • the camera of the present invention when imaging is performed so that the vertical direction of the subject is aligned with the vertical direction of the captured subject image (hereinafter, such imaging is referred to as a normal imaging state). ),
  • the direction along the second optical axis coincides with the horizontal direction.
  • the camera of the present invention in the normal imaging state, it is possible to perform imaging by making the longitudinal direction of the camera coincide with the horizontal direction. It is possible to provide a camera having a smaller vertical dimension in a normal imaging state than a camera that performs the above.
  • a camera as a second invention includes a first lens group, a bending means, at least one lens frame, a second lens group, an imaging means, a lens barrel, and a casing.
  • the first lens group takes in a light beam incident along the first optical axis.
  • the bending means bends the light beam incident along the first optical axis in a direction along the second optical axis that intersects the first optical axis.
  • the lens frame holds the first lens group and the first lens in the direction along the first optical axis.
  • the needle group and the bending means are moved relative to each other.
  • the second lens group takes in the light beam bent by the bending means.
  • the imaging means receives the light beam that has passed through the second lens group.
  • the lens barrel movably supports the lens frame, and a bending means, a second lens group, and an imaging means are arranged.
  • the casing holds the lens barrel and is provided with visual recognition means for visually recognizing an image captured by the imaging means.
  • the direction along the second optical axis and the long side direction of the visual recognition means are substantially parallel.
  • the bending means includes, for example, a member having a reflecting surface, and more specifically, may include a prism, a mirror, and the like.
  • the imaging means may be, for example, a CCD or CMOS that receives light electrically, but is not limited thereto, and may be a film or the like.
  • the visual recognition means is, for example, an optical or electronic viewfinder.
  • the relative position between the first lens group and the bending means is changed by the lens frame.
  • the relative position along the optical path between the first lens group and the imaging means is changed by the lens frame.
  • the optical path length to the first lens group force imaging means can be increased by the lens frame, so that a high-magnification zoom lens system can be configured.
  • the camera of the present invention employs a bending optical system. For this reason, an optical system having the same optical path length can be configured more compactly than a camera that does not employ a bending optical system.
  • the long side direction of the visual recognition means and the direction along the second optical axis are substantially parallel.
  • the dimension in the direction perpendicular to the first optical axis and the second optical axis can be made smaller than the dimension in the direction along the second optical axis. For this reason, even in a casing that holds such a lens barrel, the direction along the second optical axis is often the longitudinal direction of the casing.
  • the second optical axis is a visual recognition means. As compared with a camera substantially parallel to the short side direction, the size of the camera in the short side direction of the visual recognition means can be reduced.
  • a camera according to a third invention is the first or second invention, and a plurality of lens frames are provided.
  • the camera of the present invention includes a plurality of lens frames, for example, arranged in multiple stages. Therefore, the lens frame can increase the optical path length from the first lens group force to the image pickup means, so that a zoom lens system with a high magnification can be configured.
  • a camera according to a fourth invention is any one of the first to third inventions, wherein a gripping means for gripping is provided on the imaging means side in the direction along the second optical axis of the casing. ing.
  • the gripping means is provided on the imaging means side in the direction along the second optical axis. Therefore, it is possible to ensure the distance between the lens frame that holds the first lens group and the gripping means. As a result, it is possible to prevent force on the first lens group during photographing.
  • a camera according to a fifth aspect of the present invention is any one of the first to fourth aspects, wherein the lens frame protrudes toward the subject side from the subject side surface of the casing when the subject is imaged.
  • the lens frame protrudes toward the subject side from the subject side surface of the casing when imaging the subject. For this reason, it is possible to prevent the first lens group from being caught during photographing.
  • a camera according to a sixth invention is any one of the first to fifth inventions, further comprising image blur correction means for holding the second lens group movably in a direction perpendicular to the second optical axis. I have.
  • the camera of the present invention comprises image blur correction means while enabling the size of the camera in a direction orthogonal to the first optical axis and the second optical axis (for example, the short side direction of the visual recognition means) to be reduced. Therefore, higher quality imaging can be performed.
  • a camera according to a seventh invention is any one of the first to sixth inventions, wherein the bending means reflects a light beam incident along the first optical axis in a direction along the second optical axis. Make the reflective surface And the relative position with respect to the imaging means is fixed.
  • the relative position between the bending means and the imaging means is fixed, and it becomes possible to obtain more accurate optical performance.
  • the camera according to an eighth invention is any one of the first to seventh inventions, wherein the lens barrel has dimensions in the direction along the first optical axis, the first optical axis and the second optical axis. It is smaller than the dimension in the direction perpendicular to the optical axis.
  • the camera of the present invention it is possible to provide a camera in which the thickness in the direction along the first optical axis is thin.
  • FIG. 3 is a perspective view schematically showing the configuration of the main body.
  • FIG. 10 is an exploded perspective view of the first group frame unit.
  • FIG. 12 is an exploded perspective view of the second group frame unit.
  • FIG. 16 is a perspective view showing an assembled state of the third group frame unit and the base unit.
  • FIG. 26 is an explanatory diagram for explaining the operation of the lens barrel.
  • FIG. 27 is an explanatory diagram for explaining the positional relationship between the second group frame unit and the third group frame unit.
  • FIG. 28 is an explanatory diagram for explaining the positional relationship between the second group frame unit and the third group frame unit.
  • FIG. 29 is an explanatory diagram for explaining the positional relationship between the second group frame unit and the third group frame unit.
  • FIG. 30 is a front view and a perspective view showing the appearance and configuration of a digital camera as a modification.
  • the digital camera of the present invention employs a bending optical system in the optical system and
  • the lens barrel is formed so as to be extended in multiple stages. This makes it possible to achieve both a high-power zoom lens system and a compact device.
  • FIGS. 1-10 A digital camera according to a first embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 is a perspective view showing an appearance of the digital camera 1 according to the first embodiment of the present invention.
  • the digital camera 1 includes an imaging device 2 and a main body 3.
  • the imaging device 2 has a bending optical system that guides the light beam incident along the first optical axis A1 to the imaging device by bending the light beam in the direction along the second optical axis A2 orthogonal to the first optical axis A1. I have.
  • the main body 3 houses the imaging device 2 and controls the imaging device 2 and the like.
  • the configuration of the main body 3 will be described.
  • the six surfaces of the digital camera 1 are defined as follows.
  • the side facing the subject is the front side, and the opposite side is the back side.
  • Vertical direction of the subject and a rectangular image captured by the digital camera 1 (generally, the vertical direction of the aspect ratio (ratio of long side to short side) is 3: 2, 4: 3, 16: 9, etc.)
  • the surface facing upward in the vertical direction is the top surface, and the opposite surface is the bottom surface.
  • the surface on the left side of the subject side force is the left side
  • the opposite side is the right side.
  • FIG. 1 is a perspective view showing the front, top and left sides.
  • each constituent member arranged in the digital camera 1 connecting only the six surfaces of the digital camera 1 are defined in the same manner. In other words, the above definition is applied to the six surfaces of each constituent member arranged in the digital camera 1.
  • a three-dimensional orthogonal coordinate system (right-handed system) having a Y axis parallel to the first optical axis A1 and an X axis parallel to the second optical axis A2 is defined.
  • the first optical axis A The direction toward the front side along 1 is the Y-axis positive direction, and the direction from the right side to the left side along the second optical axis A2 is the X-axis positive direction.
  • the direction toward the bottom surface side force and the top surface side along the orthogonal axis orthogonal to the first optical axis A1 and the second optical axis A2 is the Z axis positive direction.
  • FIG. 2 is a perspective view showing the external appearance of the back surface, top surface, and right side surface of the digital camera 1.
  • FIGS. 3A to 3C are perspective views schematically showing the configuration of the main body 3.
  • Fig. 3 (a) is a perspective view showing the configuration of the members arranged on the Y axis direction positive side (front side), and Fig. 3 (b) is arranged on the Z axis direction negative side (bottom side).
  • FIG. 3 (c) is a perspective view showing a configuration of a member arranged on the Y axis direction negative side (back side).
  • the main body 3 includes an exterior part 11 and a grip part 12 that form a casing for housing the imaging device 2, a strobe 15 disposed on the surface of the exterior part 11, and a release button 16. , Operation dial 17 and image display unit 18, main capacitor 20, sub-board 21, battery 22, main board 23, and memory card 24, which are arranged inside the casing composed of exterior part 11 and grip part 12 Consists mainly of.
  • the exterior part 11 is a substantially rectangular parallelepiped housing that is long in the direction of the second optical axis A2, and on the positive side in the X-axis direction is a grip part for the photographer to hold during shooting.
  • 12 is arranged so as to protrude from the exterior part 11 in the Y-axis direction.
  • the exterior portion 11 and the grip portion 12 constitute a substantially L-shaped hollow casing.
  • a fixed frame 52 (see FIG. 9) of the imaging device 2 described later projects a part of the cylindrical part 125 (see FIG. 10) to the Y axis direction positive side.
  • a strobe 15 is disposed on the front surface of the exterior part 11.
  • the flash unit 15 flashes as necessary to illuminate the subject and assists exposure when the subject is dark.
  • a release button 16 and an operation dial 17 are arranged on the grip 12 side of the upper surface of the exterior part 11. Release button 16 is used when Z is Pressed toward the negative side in the axial direction.
  • the operation dial 17 is used for various settings such as shooting operation settings.
  • an image display unit 18 is provided on the back surface of the exterior unit 11 as a visual recognition means for allowing a photographer to visually recognize an image photographed by the imaging device 2.
  • the image display unit 18 has, for example, a rectangular outer shape with aspect ratios (ratio of long side to short side) of 3: 2, 4: 3, 16: 9, and the long side direction is It is provided so as to be substantially parallel to the direction along the second optical axis A2 (X-axis direction).
  • 1 and 2 show only main members arranged on the surface of the exterior portion 11, and members other than those described may be provided.
  • the imaging device 2 that is long in the second optical axis A2 direction (positive side in the X-axis direction) It is arranged along the longitudinal direction of 11.
  • the imaging device 2 is arranged in the main body 3 with the first group frame unit 41 holding the first lens group G1 facing the subject set to the X axis direction negative side. As a result, the X-axis direction distance from the first lens group G1 to the grip portion 12 is secured.
  • a strobe 15, a main capacitor 20, and a sub board 21 are disposed on the positive side in the Z-axis direction of the imaging device 2.
  • the main capacitor 20 gives flash energy to the strobe 15 by charging from a battery 22 described later.
  • the sub board 21 transforms electric power from a battery 22 (to be described later) as necessary, and controls the strobe 15.
  • a battery 22 is disposed as a power source for operating the digital camera 1.
  • the main substrate 23 is disposed on the Y axis direction negative side of the imaging device 2.
  • an image processing circuit for processing an image signal from the imaging device 2, a control circuit for controlling the imaging device 2, and the like are mounted on the main board 23 .
  • a memory card 24 is arranged on the negative side of the battery 22 in the Y-axis direction. The memory card 24 records the image signal from the imaging device 2.
  • the imaging device 2 is formed such that its Z-axis direction width (Wz) is larger than its Y-axis direction width (Wy). ⁇ 3: About the imaging device>
  • the configuration of the imaging device 2 mounted on the digital camera 1 will be described with reference to FIG.
  • FIG. 4 is an assembled perspective view of the imaging device 2.
  • 4 (a) is a perspective view showing the front, top and left sides of the imaging device 2
  • FIG. 4 (b) is a perspective view showing the front, top and right sides of the imaging device 2.
  • FIG. 4 (a) is a perspective view showing the front, top and left sides of the imaging device 2
  • FIG. 4 (b) is a perspective view showing the front, top and right sides of the imaging device 2.
  • the imaging device 2 includes a lens barrel 31 having an optical system 35, a motor unit 32 having a zoom motor 36 for driving the lens barrel 31, and a CCD 37 as an imaging means for receiving a light beam that has passed through the lens barrel 31.
  • the CCD unit 33 has power and is also configured.
  • the lens barrel 31 is characterized in that it has a multistage retractable lens frame that can be extended and retracted in multiple stages in the direction of the first optical axis A1, and optically, It is characterized in that it has an optical system 35 constituting a bending optical system.
  • the optical system 35 includes five groups of twelve optical elements (lenses and prisms) that realize high-power zoom (for example, optical zoom of about 6 to 12 times) exceeding optical 3 times zoom.
  • the motor unit 32 includes, for example, a zoom motor 36 such as a DC motor, a flexible printed circuit board (FPC) (not shown) that electrically connects the zoom motor 36 to the main board 23 (see FIG. 3), a zoom motor It is mainly composed of a photosensor (not shown) provided to measure the position of the lens in the lens barrel 31 from the origin through measurement of the motor rotation number 36.
  • the zoom motor 36 drives the lens barrel 31 and moves the optical system 35 between the wide-angle end and the telephoto end.
  • the optical system 35 provided in the lens barrel 31 operates as a zoom lens system that changes the imaging magnification of the light beam in the CCD 37.
  • the photosensor operates as follows.
  • the photosensors are a pair of transmission type photosensors that are provided to enter from outside the motor box (gear bot).
  • a photosensor has a U-shaped outer shape, and a pair of light-emitting elements and light-receiving elements are provided at opposite ends. Yes.
  • a gear directly connected to the zoom motor 36 passes between the light emitting element and the light receiving element, and by measuring the number of times the gear blocks between the light emitting element and the light receiving element per unit time. The rotation speed of the zoom motor can be measured without contact.
  • the CCD unit 33 receives the light beam that has passed through the lens barrel 31 and converts it into an electrical signal, the CCD sheet metal 38 for fixing the CCD 37 to the lens barrel 31, and the CCD 37 on the main substrate 23 ( It is mainly composed of FPC (not shown) that is electrically connected to (see Fig. 3).
  • FIG. 5 to 8 show the configuration of the optical system 35 provided in the lens barrel 31.
  • FIG. 5 to 6 show the arrangement of the optical system 35 when the optical system 35 is located at the wide angle end.
  • 7 to 8 show the arrangement of the optical system 35 when the optical system 35 is located at the telephoto end.
  • 5 and 7 show the arrangement of the optical system 35 viewed from the same viewpoint as FIG. 6 and 8 are cross-sectional views in a plane including the optical axis of the optical system 35 shown in FIGS.
  • the optical system 35 includes, in order from the subject side, the first lens group Gl, the second lens group G2, the exposure adjustment member St (see FIG. 6 or FIG. 8), and the third lens group. Consists of G3, 4th lens group G4, 5th lens group G5 and IR filter F1 (see Fig. 6 or 8). Luminous power incident from 1st lens group G1 Each lens group G1 to G5 and IR It is configured to pass through the filter F1 and be guided to the CCD 37. Each lens group G1 to G5 constitutes a zoom lens system by changing the distance between the respective lens groups.
  • the first lens group G1 is a lens group having a positive power as a whole.
  • the first lens L1, the second lens L2, and the third lens are arranged in order from the subject side on the first optical axis A1. With lens L3.
  • the first lens L1 is a concave meniscus lens having a convex surface facing the subject.
  • the second lens L2 is a plano-convex lens having a convex surface facing the subject.
  • the third lens L3 is convex on the subject side Is a convex meniscus lens.
  • the second lens group G2 is a lens group having a negative power as a whole, and a fourth lens L4 disposed on the first optical axis A1 and a light beam incident along the first optical axis A1.
  • the fourth lens L4 is a concave meniscus lens having a convex surface facing the subject.
  • the prism L5 is a reflecting surface L5a that reflects the light beam incident along the first optical axis A1 in the direction along the second optical axis A2 substantially orthogonal to the first optical axis A1 (see FIG. 6 or FIG. 8). )have.
  • the prism L5, particularly the internal reflection prism is used, but any of a surface reflection prism, an internal reflection mirror, and a surface reflection mirror having the same function may be adopted.
  • the sixth lens L6 is a biconcave lens.
  • the seventh lens L7 is a biconvex lens.
  • the exposure adjustment member St (see FIG. 6 or FIG. 8) is disposed on the second optical axis A2, and is a member such as a diaphragm or a shutter that adjusts the amount of light incident on the CCD 37 along the second optical axis A2. It is.
  • the third lens group G3 is a lens group having a positive power as a whole, and includes an eighth lens L8, a ninth lens L9, and a tenth lens L10.
  • the eighth lens L8 is a plano-convex lens having a convex surface directed toward the prism L5.
  • the ninth lens L9 is a biconvex lens.
  • the tenth lens L10 is a biconcave lens.
  • the fourth lens group G4 is a lens group for focus adjustment, and includes an eleventh lens L11 disposed on the second optical axis A2.
  • the eleventh lens L11 is a convex meniscus lens having a convex surface directed toward the prism L5.
  • the fifth lens group G5 includes a twelfth lens L12 disposed on the second optical axis A2.
  • the twelfth lens L12 is a biconvex lens.
  • the IR filter F1 (see FIG. 6 or FIG. 8) is a filter that cuts invisible light in the infrared region incident on the CCD 37.
  • an optical low-pass filter may be disposed in the second optical axis A2 direction (X-axis direction positive side) of the IR filter F1.
  • the optical low-pass filter is a filter for removing a false color by removing a high spatial frequency component of the light beam incident on the CCD 37.
  • the configuration of the lenses constituting each of the lens groups G1 to G5 is not limited to that described above, and other lens configurations can be employed as long as they have the same optical effects.
  • FIG. 6 shows the arrangement of the lens groups G1 to G5 when the optical system 35 is located at the wide-angle end
  • FIG. 8 shows each lens group G1 when the optical system 35 is located at the telephoto end. Shows the arrangement of ⁇ G5.
  • the first lens group G1 is movable in the direction of the first optical axis A1, and when the optical system 35 is located at the wide-angle end, it is located at the closest position to the second lens group G2 in the movable range (see FIG. 6), when the optical system 35 is located at the telephoto end, it is located at the most distant position with respect to the second lens group G2 within the movable range (see FIG. 8).
  • the second lens group G2 is stationary relative to the CCD 37 during the zooming of the optical system 35 from the wide-angle end to the telephoto end.
  • the third lens group G3 can move in the second optical axis A2 direction together with the exposure adjusting member St.
  • the optical system 35 is located at the remote position (see FIG. 6) and located at the telephoto end, it is located at the closest position to the second lens group G2 within the movable range (see FIG. 8).
  • the fourth lens group G4 is movable in the second optical axis A2 direction.
  • the fourth lens group G4 performs a focus adjustment operation and corrects a shift in the focus adjustment state caused by a change in the imaging magnification due to the movement of the first lens group G1 and the third lens group G3.
  • the fifth lens group G5 and the IR filter F1 are relatively stationary with respect to the CCD 37 during zooming from the wide-angle end to the telephoto end of the optical system 35, as shown in FIGS.
  • Each lens group G1 to G5 operates as described above.
  • the first lens group G1 and the third lens group G3 move in conjunction with each other to change the imaging magnification in the CCD 37.
  • FIG. 9 is an exploded perspective view of the imaging device 2 viewed from the same viewpoint as FIG. 4 (a).
  • the lens barrel 31 includes a first group frame unit 41 that holds the first lens group G1, a base unit 43 to which the second group frame unit 42 that holds the second lens group G2 is fixed, an exposure adjustment member St, and a first lens group G1.
  • the third group frame unit 44 that holds the third lens group G3, the fourth group frame unit 45 that holds the fourth lens group G4, and the master flange unit 46 that holds the fifth lens group G5 are also configured.
  • the first group frame unit 41 includes a first lens group G1 disposed on the first optical axis A1, a first group frame 50 holding the first lens group G1, and the first group frame 50 as the first optical axis A1.
  • Drive frame 51 movably supported in the direction (Y-axis direction), fixed frame 52 movably supporting the drive frame 51 in the first optical axis A1 direction (Y-axis direction), the fixed frame 52 and the base unit It is mainly composed of a drive gear 53 that is disposed so as to be rotatable along the Y-axis direction between the motor 43 and the drive gear 53 for transmitting the drive force of the motor unit 32 to the drive frame 51.
  • the fixed frame 52 is fixed to the second group frame unit 42 that holds the second lens group G2. In this fixing, positioning in the Z-axis direction and the X-axis direction is performed so that the optical axis of the first lens group G1 and the optical axis of the fourth lens L4 of the second lens group G2 match.
  • the base unit 43 includes a base 55 that forms the housing of the lens barrel 31, a cover 56 that forms the housing together with the base 55, covers the front side of the base 55, and a second group frame fixed to the base 55.
  • the third group moving mechanism 57 moves the third group frame unit 44 housed in the housing composed of the unit 42, the base 55 and the cover 56 along the second optical axis A2 direction (X axis direction).
  • the photo sensor 58 that detects the position of the third group frame unit 44 in the X-axis direction and the force are also mainly configured.
  • a motor unit 32 that rotationally drives the drive gear 53 is attached to the negative side of the base unit 43 in the X-axis direction.
  • the driving force of the motor unit 32 is transmitted to the third group moving mechanism 57 via the driving gear 53.
  • a master flange unit 46 that covers the X axis direction positive side of the base unit 43 is fixed to the X axis direction positive side of the base unit 43.
  • the third group frame unit 44 is provided on the second optical axis A2, and includes a shutter unit 60 including an exposure adjustment member St that performs a shutter operation and a diaphragm operation, a third lens group G3, and a third lens group G3. It is mainly composed of an image blur correction mechanism 61 that is held movably in the Y-axis direction and the Z-axis direction, and a third group frame 62 that supports the shutter unit 60 and the image blur correction mechanism 61.
  • the third group frame 62 is fixed to the third group moving mechanism 57 of the base unit 43 and driven in the X-axis direction.
  • the optical axis when the third lens group G3 is positioned at the movable center of the movable range and the optical axes of the sixth lens L6 and the seventh lens L7 of the second lens group G2 are aligned. Positioning in the Y-axis direction and Z-axis direction is performed.
  • the third group frame 62 is slidably fitted to third group guide poles 70 and 71 extending from the master flange unit 46 described later to the X axis direction negative side. As a result, the third group frame unit 44 can move only in the X-axis direction, that is, in the second optical axis A2 direction.
  • the fourth group frame unit 45 mainly includes a fourth lens group G4, a fourth group frame 66 that holds the fourth lens group G4, and a sensor magnet 67 and a coil 68 that are fixed to the fourth group frame 66. .
  • the fourth group frame 66 is slidably fitted to fourth group guide poles 72, 73 extending from the master flange unit 46 described later to the X axis direction negative side.
  • the fourth group frame 66 moves in the Y axis direction and the Z axis direction so that the optical axis of the fourth lens group G4 and the optical axes of the sixth lens L6 and the seventh lens L7 of the second lens group G2 are aligned. And is movable only in the X-axis direction, that is, in the second optical axis A2 direction.
  • the master flange knit 46 includes a fifth lens group G5, a master flange 75 that holds the fifth lens group G5, a third group guide pole 70, 71 that is fixed to the master flange 75 and extends to the negative side in the X-axis direction.
  • And MR sensor 77 that senses the magnetism of sensor magnet 67 and senses the position of fourth group frame boot 45 in the X direction.
  • the master flange 75 is fixed to the positive side of the base 55 in the X-axis direction.
  • the optical axis of the fifth lens group G5 and the sixth lens L6 and the seventh lens L7 of the second lens group G2 Positioned in the Y-axis direction and z-axis direction so that it matches the optical axis.
  • the CCD unit 33 is fixed to the positive side of the master flange unit 46 in the X-axis direction.
  • the detailed configuration of the first group frame unit 41 will be described with reference to FIG.
  • FIG. 10 is an exploded perspective view of the first group frame unit 41.
  • the first group frame unit 41 is a unit that supports the first lens group G1 with a multistage collapsible frame.
  • the first group frame unit 41 includes a first lens group G1, a first group frame 50 holding the first lens group, and a first group DR (design ring) attached to the first group frame 50.
  • a drive frame 51 that movably supports the first group frame 50
  • a fixed frame 52 that movably supports the drive frame 51
  • a drive from the motor unit 32 to the drive frame 51.
  • a driving gear 53 to be connected.
  • the first lens group G1 is fixed to the inner peripheral surface 101 of the first group frame 50 by adhesion or heat caulking. Further, on the inner peripheral surface 101 of the first group frame 50, the first group DR54 is mounted on the Y axis direction positive side of the first lens group G1. This prevents unwanted light from entering the first lens group G1. Further, by attaching the first group DR54, the adhesion mark (adhesion mark) of the first lens group G1 to the first group frame 50 is covered, and the appearance quality is ensured.
  • the first group frame 50 has a cylindrical portion 102, a flange portion 103, cam pins 104a to 104c, extension portions 105a and 105b, and engagement rods 106a and 106b.
  • the cylindrical portion 102 has an annular inner peripheral surface 101 to which the first lens group G1 is attached.
  • the flange portion 103 is formed at the edge on the Y axis direction negative side of the tubular portion 102 and has an outer peripheral surface having a diameter larger than that of the tubular portion 102.
  • the cam pins 104a to 104c are arranged in the circumferential direction at a plurality of circumferential positions on the outer peripheral surface of the flange portion 103 (for example, three positions: for example, at 3 o'clock, 7 o'clock and 11 o'clock as viewed from the Y axis direction positive side). They are provided at a predetermined angle (for example, 120 degrees) and project in the radial direction of the first optical axis A1.
  • the extension parts 105a and 105b are centered on two circumferential points on the Y axis direction negative edge of the flange part 103 (for example, the 1 o'clock position and the 5 o'clock position when viewing the Y axis direction positive side force). Formed with a predetermined circumferential width (eg 30 degrees), It is an arc-shaped member that extends by force toward the Y axis direction negative side.
  • the engaging portions 106a and 106b are formed so as to extend in the radial direction of the first optical axis A1 at the respective distal ends of the extension portions 105a and 105b.
  • the tip portion 107a, 107b is formed with a circumferential width narrower than other portions.
  • the horse ward motion frame 51 includes a cylindrical rod, cam pins l l la to l l lc, and a ring gear 112! /.
  • the cam pins 111 & 111 are arranged at a plurality of locations in the circumferential direction of the outer surface 115 of the cylindrical portion 110 (for example, 3 locations: for example, 1 o'clock, 5 o'clock, 9 o'clock as viewed from the Y axis direction positive side). It is provided at a predetermined angle (for example, 120 degrees) in the circumferential direction, and protrudes in the radial direction of the first optical axis A1.
  • the ring gear 112 has a tooth tip outside at a part of the circumferential edge of the negative portion of the cylindrical portion 110 in the Y-axis direction (for example, a position from 1 o'clock to 5 o'clock when viewed from the positive side in the Y-axis direction). It is formed integrally with the cylindrical portion 110 so as to protrude from the surface 115 in the radial direction of the first optical axis A1.
  • the radius of the virtual circle connecting the tips of the cam pins 11 la to l 11c is formed larger than the radius of the virtual circle connecting the tips of the ring gear 112.
  • the annular inner surface 116 of the cylindrical portion 110 and the ring gear 112 has a radius larger than the radius of the flange portion 103 of the first group frame 50, and is an imaginary connecting the leading ends of the cam pins 104a to 104c of the first group frame 50. It has a radius smaller than the radius of the circle. Therefore, the first group frame 50 can be arranged inside the drive frame 51 by cam-engaging the cam pins 104a to 104c with the cam grooves 118a to 118c formed on the inner side surface 116.
  • annular flange portion 122 extending inward in the radial direction of the first optical axis A1 is formed on the edge portion on the positive side in the Y-axis direction of the cylindrical portion 110.
  • the radius of the inner side surface of the flange portion 122 is formed to be approximately the same as the radius of the outer peripheral surface of the cylindrical portion 102 of the first group frame 50. This prevents unwanted light from entering the lens barrel 31 from the radial gap of the first optical axis A1 between the first group frame 50 and the drive frame 51.
  • the cam grooves 118a to 118c are formed to be separated from each other by a predetermined angle (for example, 120 degrees) in the circumferential direction of the inner side surface 116.
  • Each of the cam grooves 118a to 118c opens at three positions on the negative side in the Y-axis direction of the inner side surface 116 (for example, at 3 o'clock, 7 o'clock and 11 o'clock), and the cam pins 104a to 104c are connected to the cam grooves 118a to 118c.
  • l Has an introduction end for introduction into 18c.
  • each cam groove 118a to 118c are continuous with the introduction grooves 119a to 119c extending from the respective introduction ends to the Y axis direction positive side, and the introduction grooves 119a to l 19c, and are clockwise and Y axis direction positive sides when viewed from the Y axis direction positive side.
  • Inclined grooves 120a to 120c extending toward the bottom.
  • the introduction groove 119a of the cam groove 118a that forms the introduction end on the ring gear 112 side of the inner surface 116 is Y larger than the other introduction grooves 119b and 119c by the width of the ring gear 112 in the Y-axis direction.
  • the axial length is long.
  • the fixed frame 52 has a cylindrical portion 125 and extensions 126a and 126b.
  • Cam grooves 128a to 128c and rectilinear grooves 129a and 129b are formed on the inner surface 127 of the cylindrical portion 125 and the extended portions 126a and 126b.
  • a protrusion 140 protruding in the radial direction of the first optical axis A1 is formed at a predetermined position in the circumferential direction of the outer surface 130 of the cylindrical portion 125 (for example, a position at 2 o'clock when viewed from the Y axis direction positive side).
  • the protrusion 140 pivotally supports the Y axis direction positive end of the drive shaft of the drive gear 53.
  • a drive gear 53 is disposed in the through groove 141 along the Y-axis direction. The tooth tip of the drive gear 53 has entered the inside of the cylindrical portion 125 and meshes with the ring gear 112 of the drive frame 51 disposed inside the fixed frame 52.
  • annular flange portion 142 extending inward in the radial direction of the first optical axis A1 is formed at the edge on the positive side in the Y-axis direction of the cylindrical portion 125.
  • the radius of the inner surface of the flange portion 142 is formed to be approximately the same as the radius of the outer surface 115 of the cylindrical portion 110 of the drive frame 51. This prevents unnecessary light from entering the lens barrel 31 from the radial gap of the first optical axis A1 between the drive frame 51 and the fixed frame 52.
  • a flange 145 that extends outward in the radial direction of the first optical axis A1 is formed at a part in the circumferential direction on the edge of the cylindrical portion 125 on the Y axis direction negative side.
  • fixing portions 145a and 145b are formed on the flange 145.
  • the fixing portion 145a is positioned on a fixing portion 164c of the second group frame unit 42 described later, and is fixed by a screw or the like.
  • the fixing portion 145b is positioned on an arm portion formed integrally with the motor unit 32, and is fixed by a screw or the like.
  • Extension parts 126a and 126b are provided at two locations in the circumferential direction on the negative side of the Y-axis direction of the cylindrical part 125.
  • This is an arc-shaped member formed with a circumferential width of and extending toward the Y axis direction negative side. More specifically, the extension portions 126a and 126b have end portions on the X axis direction positive side at the 12 o'clock position and the 6 o'clock position when viewed from the Y axis direction positive side, respectively, and have a predetermined circumferential direction. It is formed with a width.
  • the predetermined width means that the inner grooves 127 of the extension portions 126a and 126b are formed with introduction grooves 13la and 13lb of force grooves 128a and 128b, which will be described later, and straight grooves 129a and 129b, respectively. It is a sufficient width.
  • a fixed portion 145c extending outward in the radial direction of the first optical axis A1 is formed at the end on the Y axis direction negative side of the extension portion 126a.
  • the fixing portion 145c is positioned on a fixing portion 168b of the second group frame unit 42 described later, and is fixed by a screw or the like.
  • a fixing portion 145d that extends outward in the radial direction of the first optical axis A1 is formed adjacent to the extension 126a at the intermediate portion in the circumferential direction between the extension 126a and the extension 126b.
  • the fixing portion 145d is positioned with respect to the front surface of the motor unit 32 and is fixed by a screw or the like.
  • a fixing portion 145e extending outward in the radial direction of the first optical axis A1 is formed adjacent to the extension portion 126b in the circumferential direction.
  • the fixing portion 145e is positioned with respect to a fixing portion 165d of the second group frame unit 42 described later, and is fixed by a screw or the like.
  • the annular inner surface 127 of the cylindrical portion 125 and the extension portions 126a and 126b has a radius larger than the radius of a virtual circle connecting the tips of the ring gears 112 of the drive frame 51, and the cam pins 11 la to l of the drive frame 51. It has a radius smaller than the radius of the imaginary circle connecting the tips of 1 lc. For this reason, the drive frame 51 can be disposed inside the drive frame 51 by cam-engaging the cam pins ll la to ll lc with cam grooves 128 a to 128 c formed on the inner surface 127. .
  • the cam grooves 128a to 128c are formed to be separated from each other by a predetermined angle (for example, 120 degrees) in the circumferential direction of the inner surface 127.
  • Each cam groove 128a to 128c opens at three positions on the negative side of the inner surface 127 in the Y-axis direction (for example, 1 o'clock, 5 o'clock, 9 o'clock), and the cam pins ll la to ll lc are used as force. It has an introduction end for introduction into the grooves 128a-128c.
  • the cam grooves 128a to 128c are continuous with the introduction grooves 13la to 131c extending from the respective introduction ends to the Y axis direction positive side and the introduction grooves 131a to 131c, and are opposite to each other when viewed from the Y axis direction positive side.
  • Inclined grooves 132a to 132c extending in the clockwise direction and the positive direction in the Y-axis direction are provided.
  • the introduction grooves 131a and 131b are longer in the Y-axis direction than the other introduction grooves 131c by the length of the extension parts 126a and 126b in the Y-axis direction.
  • the rectilinear grooves 129a and 129b engage with the tip portions 107a and 107b of the first group frame 50 to guide the movement of the first group frame 50 in the direction of the first optical axis A1 and to fix the first group frame 50 to the fixed frame 52. Relative rotation with respect to is impossible.
  • the first group frame 50 has the cam pins 104a to 104c that are in the Y axis direction positive side of the introduction grooves 119a to 119c of the drive frame 51. It is arranged inside the drive frame 51 in a state where the cam is engaged with the end of the drive frame 51. Further, the drive frame 51 is arranged on the inner side of the fixed frame 52 in a state where each of the cam pins 111 & ⁇ 111 is cam-engaged with an end of the introduction groove 131 & ⁇ 131 ( :) on the positive side in the axial direction. In addition, the front cams 107a and 107b of the first group frame 50 are engaged with force cams in the vicinity of the Y axis direction negative side ends of the straight grooves 129a and 129b of the fixed frame 52! .
  • each configuration of the first group frame unit 41 is substantially the same as the arrangement state (collapsed state) of the first group frame unit 41 when the imaging device 2 is not used.
  • the drive frame 51 is configured so that most of the cylindrical portion 110 is in a state where each of the cam pins ll la to ll lc is cam-engaged with the end on the Y axis direction positive side of the inclined grooves 132a to 132c of the fixed frame 52. It extends from the cylindrical portion 125 of the fixed frame 52 to the Y axis direction positive side. That is, when the optical system 35 is located at the telephoto end, the first lens group G1 is a cylindrical cam configured between the first group frame 50 and the drive frame 51 as compared with the case where the optical system 35 is located at the wide angle end.
  • the front end portions 107a and 107b of the first group frame 50 are positioned in the vicinity of the end portions on the Y axis direction positive side of the rectilinear grooves 129a and 129b. That is, the first lens group G1 is moved in the direction of the first optical axis A1 by approximately the length of the rectilinear grooves 129a and 129b in the Y-axis direction as compared with the case where the optical system 35 is located at the wide-angle end. .
  • the configuration of the base unit 43 will be described with reference to FIG.
  • FIG. 11 is an exploded perspective view of the base unit 43.
  • the base unit 43 holds a second lens group G2 that bends the light beam incident along the first optical axis A1 in the direction along the second optical axis perpendicular to the first optical axis A1.
  • the base unit 43 is a mechanism for moving the third lens group G3 (see FIGS. 5 to 8) that forms the zoom lens system together with the first lens group G1 in the direction of the second optical axis A2. Is provided.
  • FIG. 11 among the configurations of the base unit 43 described with reference to FIG. 9, the second group frame unit 42, the base 55 that fixedly supports the second group frame unit 42 from the Y axis direction negative side, and the second group frame Three-group movement that is located in the middle of the base 42 and the base 42 and attached to the base 55 Mechanism 57 is illustrated.
  • FIG. 12 is an exploded perspective view of the second group frame unit 42.
  • FIG. 13 is a cross-sectional view of the second group frame unit 42 by a plane including the first optical axis A1 and the second optical axis A2.
  • the second group frame unit 42 supports the second lens group G2, the second group frame 150 that holds the second lens group G2, the second group frame 150, and the support that is attached to the base 55. Part 151.
  • the second group frame 150 includes a fourth lens holding frame 155 that holds the fourth lens L4, a prism holding frame 156 that holds the prism L5, a sixth lens holding frame 157 that holds the sixth lens L6, and a seventh lens.
  • the seventh lens holding frame 158 that holds the lens L7 and the force are also mainly configured.
  • the fourth lens holding frame 155 has a radius that substantially matches the radius of the fourth lens L4, and has an annular inner peripheral surface 155a extending in the Y-axis direction.
  • the fourth lens L4 is disposed by being fitted to the inner peripheral surface 155a, and is fixed by adhesion or the like.
  • a support surface 155b that is orthogonal to the Y axis and supports the fourth lens L4 by force toward the Y axis direction positive side (Fig. 13). Reference) is formed.
  • the fourth lens L4 is disposed so that the negative surface in the Y-axis direction is in contact with the support surface 155b, and is positioned in the Y-axis direction (the first optical axis A1 direction).
  • the prism holding frame 156 is a frame that houses the prism L5 therein and opens in the first optical axis A1 direction and the second optical axis A2 direction.
  • the Y axis direction negative side of the fourth lens holding frame 155 Are integrally formed.
  • the prism holding frame 156 has an inclined surface 156a (see FIG. 13) that is disposed to face the reflecting surface L5a (see FIG. 13) of the prism L5 and tilts 45 degrees downward toward the positive side in the X axis direction.
  • a prism L5 is accommodated in a space formed by the inclined surface 156a and the opposing surfaces 156b and 156c, and is fixed by bonding or the like.
  • the sixth lens holding frame 157 is formed integrally with the prism holding frame 156 on the X axis direction positive side of the prism holding frame 156.
  • the sixth lens holding frame 157 has a radius that substantially matches the radius of the sixth lens L6, and has an annular inner peripheral surface 157a extending in the X-axis direction.
  • the sixth lens L6 is disposed by being fitted to the inner peripheral surface 157a, and is fixed by adhesion or the like.
  • the exit surface L5d of the prism L5 is positioned on the negative side of the inner peripheral surface 157a in the X-axis direction (see FIG. 13).
  • the sixth lens L6 has a negative surface in the X-axis direction on the output surface L5d. It is arranged so that it abuts and is positioned in the X-axis direction (second optical axis A2 direction).
  • the seventh lens holding frame 158 is formed integrally with the sixth lens holding frame 157 on the X axis direction positive side of the sixth lens holding frame 157.
  • the seventh lens holding frame 158 includes a slope 158a that forms part of each side surface of the virtual equilateral triangular prism with the seventh lens L7 as an inscribed circle, and each slope is smooth around the second optical axis A2. And an arcuate surface 158b connected to the.
  • the seventh lens L7 is disposed with its outer peripheral surface in contact with each inclined surface 158a, and is fixed by adhesion.
  • the X-axis direction positive surface of the sixth lens L6 is located (see FIG.
  • the seventh lens L7 is positioned on the X-axis direction negative side.
  • the surface is arranged so as to contact the positive surface of the sixth lens L6 on the X axis direction, and is positioned in the X axis direction (second optical axis A2 direction).
  • An opening member 159 that is a plate-like member having an opening at the center is fixed to the end surface of the seventh lens holding frame 158 on the positive side in the X-axis direction with a screw or the like.
  • the opening member 159 is a member for blocking unnecessary light in the unnecessary direction out of the light emitted from the second group frame unit 42 along the second optical axis A2.
  • the opening member 159 has a circular opening substantially at the center, and is attached to the seventh lens holding frame 158 so that the center of the opening coincides with the second optical axis A2 (see FIG. 13). ). Furthermore, the opening member 159 supports the seventh lens L7 on the X axis direction negative side at the opening edge of the opening.
  • the support portion 151 is formed from an intermediate position in the X-axis direction of the second group frame 150 toward the positive side in the Z-axis direction, and has a first member 163 having a surface facing the positive side in the X-axis direction, and a tip portion of the first member 163 smell
  • a second member 164 extending on the X axis direction positive side
  • a third member 165 formed on the Z axis direction negative side of the second group frame 150 and having a surface facing the X axis direction positive side
  • the X axis direction negative side It is mainly formed from fixed portions 168a and 168b formed at the end portions of the two.
  • the first member 163 has a hole 163a for fitting and fixing the fourth group guide pole 73 (see FIG. 9) on the surface facing the X axis direction positive side.
  • the second member 164 has a hole 164a for fitting and fixing the third group guide pole 71 (see FIG. 9) at substantially the same Y-axis direction position as the hole 163a on the surface facing the positive side in the X-axis direction.
  • the second member 164 forms a fixing portion 164b for fixing the second group frame unit 42 to the base 55 at the end on the positive side in the Z-axis direction, and the first group frame unit 41 is connected to the second group frame unit.
  • -A fixing part 164c for fixing to the base 42 is formed.
  • the fixing portion 164b is positioned with respect to the fixing portion 171a formed on the base 55, and is fixed by a screw or the like.
  • the fixing portion 164c is positioned with respect to the fixing portion 145a formed on the fixing frame 52 of the first group frame unit 41, and is fixed by a screw or the like.
  • the first member 163 is formed from the intermediate position of the second group frame 150 in the X-axis direction toward the Z-axis direction positive side, and the second member is the X-axis at the tip of the first member 163. It is formed toward the positive side. Therefore, the second group frame 150 is more negative in the X-axis direction than the end surface on the positive X-axis direction of the second group frame 150 between the second Z-axis direction positive surface of the second group frame 150 and the second member Z-axis direction negative side surface. On the side, a recessed space 166 is secured. A diaphragm actuator 202 that protrudes to the negative side in the X-axis direction of a shutter nut 60, which will be described later, can enter this recessed space 166. This will be described later with reference to FIGS.
  • the third member 165 is formed so that the force in the vicinity of the end on the Y axis direction negative side of the second group frame 150 is also directed toward the Z axis direction negative side, and on the surface facing the X axis direction positive side, the Z axis direction positive side In this order, a hole 165a (see FIG. 11) for fitting and fixing the fourth group guide pole 72 and a hole 165b for fitting and fixing the third group guide pole 70 are provided. Further, the third member 165 forms a fixing portion 165c for fixing the second group frame unit 42 to the base 55 at the end on the negative side in the Z-axis direction, and the first group frame unit 41 is changed to the second group frame unit 42. A fixing portion 165d for fixing to is formed.
  • the fixing portion 165c is positioned with respect to the fixing portion 171b formed on the base 55, and is fixed by a screw or the like.
  • the fixed part 165d is formed on the fixed frame 52 of the first group frame unit 41. It is positioned with respect to the fixed part 145e formed and fixed by a screw or the like.
  • the third member 165 is formed such that the force in the vicinity of the end on the Y axis direction negative side of the second group frame 150 is also directed toward the Z axis direction negative side. Therefore, a recessed space 167 adjacent to the Z-axis direction negative side of the second group frame 150 is secured on the positive side of the third member 165 in the Y-axis direction.
  • a shutter actuator 203 that protrudes to the negative side in the X-axis direction of a shutter unit 60, which will be described later, can enter the recessed space 167. This will be described later with reference to FIGS.
  • the fixing portion 168a is positioned and fixed with respect to the fixing portion provided on the back side of the motor unit 32.
  • the fixing portion 168b is positioned with respect to the fixing portion 171c formed on the base 55, is fixed by a screw or the like, and fixes the fixing portion 145c of the fixing frame 52.
  • the configuration of the base 55 will be described with reference to FIG.
  • the base 55 is mainly composed of a back surface 170 constituting the back surface of the lens barrel 31, and a side surface 171 extending from the back surface 170 to the Y axis direction positive side.
  • the bearing portion 172 is a cylindrical convex portion protruding to the Y axis direction positive side, and is inserted into a center hole 180a provided at the rotation center of the ring gear 180, and a guide pin that rotatably supports the ring gear 180.
  • 173a and 173b are members projecting to the Y axis direction positive side formed so as to have predetermined intervals in the X axis direction and the Z axis direction, respectively, and are formed along the longitudinal direction of the rod unit 182. Inserted into the guide grooves 183a and 183b, respectively, to guide the movement of the rod unit 182 in the X-axis direction.
  • the restricting portion 174 is a bottomed longitudinal groove extending in the X-axis direction.
  • the end portion 174a, 174b of the groove bottom force of the control portion 174 rising on the Y axis direction positive side is formed, and the drive shaft bearing portion 175 is the Y axis direction negative side of the drive shaft of the drive gear 53 of the first group frame unit 41. The end of is supported.
  • Fixing portions 171 a to 171 c for fixing the second group frame unit 42 to the base 55 are formed on the side surface 171.
  • the fixing portions 171a, 171b, 171c are positioned with respect to the fixing portions 164b, 165c, 168b of the second group frame unit 42, respectively, and are fixed by screws or the like.
  • the configuration of the third group moving mechanism 57 will be described with reference to FIG.
  • the third group moving mechanism 57 is driven by the drive from the motor unit 32 (see FIG. 9), and is a mechanism for moving the third group frame unit 44 in the direction along the second optical axis A2.
  • the third group moving mechanism 57 includes a ring gear 180 for converting the rotational drive transmitted from the motor unit 32 through the drive gear 53 into a drive in the direction along the second optical axis A2, and a third group frame.
  • the ring gear 180 is a plate-like member having teeth formed in an arc shape on the outer periphery so as to mesh with the drive gear 53, and rotates in a predetermined rotation angle range.
  • the ring gear 180 has a center hole 180 a at the center of rotation, and is attached to the base 55 by fitting the center hole 180 a to the bearing portion 172 of the base 55.
  • the ring gear pin 181 is a columnar member having a predetermined length in the Y-axis direction, and the end on the negative side in the Y-axis direction is fixed to the ring gear 180 by caulking or the like.
  • the rod unit 182 is functionally connected to the ring gear 180 by engaging with the ring gear pin 181, and constitutes a slider crank mechanism together with the ring gear 180.
  • FIG. 14 is an exploded perspective view of the rod unit 182.
  • the rod unit 182 includes a rod 183, a crimping node 186 fixed to the rod 183, a panel pin 187 for fixing the crimping panel 186 to the rod 183, and a crimping panel 1 It is mainly composed of a crimp panel control pin 185 that regulates 86 crimping operations.
  • An elastic coupling mechanism that elastically couples the ring gear 180 and the rod unit 182 is constituted by the crimping panel 186, the panel pin 187, and the crimping panel regulation pin 185.
  • the rod 183 is a plate-like member that is long in the X-axis direction.
  • the rod 183 has two guide grooves 183a and 183b extending in the longitudinal direction, a through-hole 183c formed on the X axis direction positive side of the guide groove 183b, and on the X axis direction negative side of the guide grooves 183a and 183b.
  • An engagement hole 183d is formed.
  • guide pins 173a and 173b formed on the base 55 are inserted into the guide grooves 183a and 183b, respectively.
  • the guide groove 183a and the guide groove 183b are formed apart from each other in the Z-axis direction by the same distance as the Z-axis direction distance between the guide pin 173a and the guide pin 173b. As a result, the movement of the rod 183 is restricted only to the translational movement in the X-axis direction.
  • a projection 65 of a third group frame unit 44, which will be described later, is also inserted into the through-hole 183c in the Y axis direction positive side.
  • the protrusion 65 is inserted until its tip protrudes to the Y axis direction negative side of the rod 183.
  • the ring gear pin 181 is also inserted with a negative Y-axis direction force.
  • the engagement hole 183d extends in the Z-axis direction and is continuous with the first engagement hole 183e having an X-axis direction width larger than the diameter of the ring gear pin 181 and the first engagement hole 183e on the positive side in the Z-axis direction.
  • the second engagement hole 183f that is wider in the X-axis direction than the first engagement hole 183e formed in this manner.
  • the crimping screw 186 is a coiled spring 186a and a torsion coil spring composed of two arms 186b and 186c extending from the force of the coining 186a.
  • the pressure-bonding panel 186 is formed so that each arm 186b, 186c can support a load in the direction of the mutual force when elastically deformed so as to wind the coil 186a.
  • the panel pin 187 is a member that is passed through the coil 186 a of the crimping panel 186, and one end of which is fitted into a hole formed in the rod 183 and fixed.
  • the panel pin 186 is fixed to the rod 183.
  • the panel pin 187 is disposed on the negative side in the Z-axis direction of the first engagement hole 183e.
  • the crimping panel regulating pin 185 is a member for maintaining the crimping panel 186 in a predetermined elastic deformation state, and is disposed between the arm part 186b and the arm part 186c, and each arm part 186b, 186c. The force is also received by the other arm 186c, 186b in the direction of pressure.
  • the crimp panel control pin 185 is disposed on the negative side in the Z-axis direction of the first engagement hole 183e. Further, the X-axis direction width of the contact surface of the crimp panel control pin 185 with the crimp panel 186 is wider than the X-axis direction width of the first engagement hole 183e.
  • FIG. 15 is a perspective view mainly showing an assembled state of the rod unit 182.
  • the crimping panel 186 is fixed to the mouth 183 by a pin 187.
  • the crimping panel 186 is elastically deformed, and is fixed with a crimping panel regulating pin 185 interposed between the arm portions 186b and 186c.
  • the arm portion 186b located on the positive side in the X-axis direction contacts the surface on the positive side in the X-axis direction of the crimp panel control pin 185 and faces the negative side in the X-axis with respect to the crimp panel control pin 185.
  • a pressing force in the direction of force is applied.
  • the arm portion 186c located on the negative side in the X-axis direction abuts on the surface on the negative side in the X-axis direction of the crimp panel control pin 185, and the crimping force in the direction toward the positive side of the X-axis with respect to the crimp panel control pin 185 To act.
  • a ring gear pin 181 fixed to the ring gear 180 (see FIG. 11) is provided in the Y-axis direction in the middle of the arm part 186b and arm part 186c of the crimping panel 186. Negative force is also inserted.
  • the rod 183 is driven in the X-axis direction while sliding the hole edge of the engagement hole 183d on the outer periphery of the ring gear pin 181.
  • Guide pins 173a and 173b formed on the base 55 are respectively inserted into the guide grooves 183a and 183b extending in the X-axis direction of the rod 183 from the Y-axis direction negative side force. As a result, the driven rod 183 translates in the X-axis direction.
  • the through hole 183c of the rod 183 is positioned so as to face the positive side in the Y-axis direction of the restricting portion 174 formed in the base 55.
  • a protrusion 65 of a third group frame unit 44 described later is inserted into the through-hole 183c also in the Y-axis direction positive side force.
  • the tip of the protrusion 65 protrudes to the negative side of the rod 183 in the Y-axis direction, and further enters the restricting portion 174.
  • FIG. 16 shows the engagement state of the protrusion 65, the rod 183, and the restricting portion 174 of the third group frame unit 44.
  • the projection is formed on the Y axis direction negative side formed on the third group frame 62 of the third group frame unit 44.
  • the projecting portion 65 to be inserted is inserted into a through hole 183 c formed in the rod 183, and the tip thereof enters the restricting portion 174 of the base 55.
  • the rod 183 can move to the position where the protrusion 65 contacts the end 174a on the positive side in the X-axis direction, and the protrusion 65 contacts the end 174b on the negative side in the X-axis direction. It can be moved to the touching position (see Fig. 11 or Fig. 15).
  • FIG. 17 shows a state where the ring gear pin 181 is inserted into the engagement hole 183d.
  • the X-axis direction width W1 of the first engagement hole 183e of the engagement hole 183d is larger than the diameter d of the ring gear pin 181. Further, the X-axis direction width W2 of the contact surface of the crimp panel control pin 185 with the crimp panel 186 is larger than the X-axis direction width W1 of the first engagement hole 183e. Therefore, in a state where the ring gear pin 181 force is inserted into the first engagement hole 183e, the arm portions 186b and 186c of the crimping panel 186 abut against the abutting surfaces at both ends in the X-axis direction of the crimping panel regulating pin 185. Therefore, when the ring gear pin 181 is positioned in the first engagement hole 183e, the crimping force of the crimp panel 186 does not act on the ring gear pin 181! /.
  • the X axis direction positive side arm 186b is moved to the X axis direction positive side by the ring gear pin 181. Due to the elastic deformation, the arm portion 186b is separated from the contact surface force on the positive side in the X-axis direction of the crimp panel control pin 185. For this reason, the pressure-bonding force of the pressure-bonding panel 186 acts on the X-axis direction negative side contact surface of the pressure-bonding panel regulating pin 185 from the X-axis direction negative side arm 186c. As a result, the rod 183 Through the screw restricting pin 185, a pressing force in the direction of the direction of force is received on the positive side in the X axis direction.
  • the ring gear pin 181 when the ring gear pin 181 is positioned on the X axis direction negative side of the second engagement hole 183f, the X axis direction negative side arm portion 186c is elastically deformed by the ring gear pin 181 to the X axis direction negative side, The arm portion 186c is also separated from the contact surface force on the negative side in the X-axis direction of the crimp panel control pin 185. For this reason, the crimping force of the crimping panel 186 acts on the X axis direction positive contact surface of the crimp panel control pin 185 from the X axis direction positive side arm 186b. As a result, the rod 183 receives a pressing force in the direction of the force on the negative side in the X-axis direction via the pressure-bonding panel restricting pin 185.
  • FIG. 18 shows the rotation angle of the ring gear 180 when the optical system 35 is located at the wide-angle end, and the operation of the elastic coupling mechanism and the operation of the rod 183 in accordance therewith.
  • FIGS. 19 to 21 show the rotation angle of the ring gear 180 and the operation of the elastic coupling mechanism and the operation of the rod 183 when the optical system 35 moves to the telephoto end also at the wide-angle end force.
  • Fig. 20 shows the rotation angle of the ring gear 180 when the optical system 35 is located at the normal position, which is an intermediate position between the wide-angle end and the telephoto end, the operation of the elastic coupling mechanism and the operation of the rod 183. Is shown.
  • FIG. 22 shows the rotation angle of the ring gear 180 when the optical system is located at the telephoto end, and the operation of the elastic coupling mechanism and the operation of the rod 183 in accordance therewith.
  • the ring gear 180 is positioned at the end in the clockwise direction as viewed in the positive Y-axis direction force.
  • the ring gear pin 181 fixed to the ring gear 180 is positioned at the positive end of the movable range in the X-axis direction, and the X-axis direction positive side of the second engagement hole 183f of the rod 183 Is engaged.
  • the crimping panel 186 presses the rod 183 to the X axis direction positive side. Yes.
  • the protrusion 65 of the third group frame unit 44 that is inserted into the rod 183 and engages with the restriction portion 174 of the base 55 is in contact with the end 174a on the positive side in the X-axis direction of the restriction portion 174. Movement to the positive side is restricted. Therefore, when the optical system 35 is located at the wide-angle end, the rod 183 is restricted from moving to the X axis direction positive side and is firmly fixed by being pressed to the X axis direction positive side. Has been.
  • the state in which the optical system 35 is positioned at the wide-angle end is a malfunction of the imaging device 2. It is in the same state as the arrangement state (collapsed state) of the optical system 35 in use. For this reason, the rod 183 can be securely fixed when the imaging device 2 is not used.
  • the ring gear 180 is rotationally driven in the counterclockwise direction with the end force in the clockwise direction as viewed from the positive side force in the Y-axis direction.
  • FIG. 19 shows a case where the ring gear 180 is located near the end in the clockwise direction when viewed from the Y axis direction positive side.
  • FIG. 20 shows a case where the ring gear 180 is located at an intermediate position in the movable range.
  • FIG. 21 shows a case where the ring gear 180 is positioned near the end in the counterclockwise direction with reference to the Y axis direction positive side force.
  • the ring gear pin 181 fixed to the ring gear 180 is moved to the X axis direction negative side while being engaged with the first engagement hole 183e of the rod 183.
  • the crimping force of the crimp panel 186 does not act on the ring gear pin 181.
  • the ring gear 180 rotates counterclockwise while engaging the ring gear pin 181 with the first engagement hole 183e of the mouth 183, thereby causing the rod 183 to move to the negative side in the X-axis direction. Drive with force.
  • the rod 183 Since the rod 183 is driven while the guide grooves 183a and 183b are engaged with the guide pins 173a and 173b formed on the base 55, the rod 183 translates in a direction toward the negative side in the X-axis direction. A protrusion 65 of the third group frame unit 44 is fitted to the rod 183. For this reason, the third group frame unit 44 moves in the X-axis direction negative side as the rod 183 moves.
  • the ring gear 180 is positioned at the end in the counterclockwise direction with reference to the positive force in the Y-axis direction.
  • the ring gear pin 181 fixed to the ring gear 180 is located at the negative end of the movable range in the X-axis direction, and the X-axis direction negative side of the second engagement hole 183f of the rod 183 Is engaged.
  • the crimping panel 186 presses the rod 183 to the X axis direction negative side. .
  • the protrusion 65 of the third group frame unit 44 that is inserted into the rod 183 and engages the restriction portion 174 of the base 55 is in contact with the end portion 174b on the negative side in the X axis direction of the restriction portion 174. Movement to the negative side is restricted. Therefore, when the optical system 35 is located at the telephoto end, the movement of the rod 183 to the negative side in the X axis direction is restricted and the rod 183 is securely fixed by being pressed to the negative side in the X axis direction. Has been.
  • FIG. 23 is an exploded perspective view of the third group frame unit 44.
  • the third group frame unit 44 includes a shutter unit 60 that is provided on the second optical axis A2 and includes an exposure adjustment member St that performs a shutter operation and a diaphragm operation, a third lens group G3, and a third lens group G3. It is mainly configured by an image shake correction mechanism 61 that is held movably in the Y-axis direction and the Z-axis direction, and a third group frame 62 that supports the shutter unit 60 and the image shake correction mechanism 61.
  • the shutter unit 60 is provided on the second optical axis A2 and includes an exposure adjustment member St that is an aperture and a shutter for controlling the exposure amount and exposure time of the CCD 37 (see FIG. 9).
  • a diaphragm actuator 202 that protrudes toward the negative side in the X-axis direction on the positive side in the Z-axis direction of 201, and a protrusion that protrudes toward the negative side in the X-axis direction on the negative side in the Z-axis direction of the main body 201.
  • the shutter actuator 203 is composed mainly of the following.
  • the aperture activator 202 and the shutter activator 203 are spaced apart in the Z-axis direction with the second optical axis A2 in between.
  • the shutter unit 60 is fixed to the third group frame 62 with an image blur correction mechanism 61 described later interposed therebetween.
  • the image blur correction mechanism 61 holds the third lens group G3, and a pitching moving frame 205 that can move in the Z-axis direction (pitching direction) and the Y-axis direction (showing direction) with respect to the third group frame 62, and the pitching
  • the electric board 206 attached to the X axis direction positive side of the moving frame 205, the cap 207 attached to the pitching moving frame 205 from the X axis direction positive side of the electric board 206, and the pitching moving frame 205 moved in the Z axis direction.
  • It is configured mainly with a winging moving frame 208 that can be held in the Y-axis direction with respect to the third group frame 62 and is movable.
  • the pitching moving frame 205 is formed with a cylindrical portion 205c that holds the third lens group G3 at the center, and has a bearing 205a on the Y axis direction positive side and a detent 205b on the Y axis direction negative side.
  • a pitching shaft 205c parallel to the Z-axis direction is inserted into the bearing 205a. Both ends of the pitching shaft 205c are supported by fixed portions 208a of a winging moving frame 208 described later.
  • the detent 205b engages with an engaging portion 208b of a wing moving frame 208, which will be described later, so as to be movable in the Z-axis direction.
  • the electric board 206 includes a coil 206a for driving the third lens group G3 in the Y-axis direction, a coil 206b for driving in the Z-axis direction, and a hall element 206c for detecting the Y-axis direction position of the third lens group G3. And a hall element 206d for detecting the position in the Z-axis direction.
  • the coils 206a and 206b are integrally formed on the electric substrate 206 as a laminated coil, for example.
  • the FPC 206e is attached to the electric board 206 and transmits signals between the coinboards 206a and 206b, the Honore elements 206c and 206c, and the main board 23 (see FIG. 3).
  • the cap 207 is attached to the X axis direction positive side of the third lens group G3, and suppresses the occurrence of flare, ghost, and the like.
  • the cap 207 is attached so as to cover the cylindrical portion 205c of the pitching moving frame 205 with the electric board 206 interposed therebetween.
  • the caming moving frame 208 is a member having a cylindrical portion 205c that holds the third lens group G3 at the center and an opening into which the cap 207 is inserted. Both ends of the pitching shaft 205c are connected to the Y axis direction positive side. On the negative side in the Y-axis direction of the supporting fixed portion 208a to be supported, an engaging portion 208b that engages with the detent 205b of the pitching moving frame 205 is formed. Accordingly, the coining moving frame 208 supports the pitching moving frame 205 so as to be slidable in the Z-axis direction.
  • a bearing 208c is formed on the positive side in the Z-axis direction
  • a rotation stop 208d is formed on the negative side in the Z-axis direction.
  • the bearing shaft 208e parallel to the Y-axis direction is inserted into the bearing 208c. Both ends of the shafting shaft 208e are supported by fixing portions 62a of the third group frame 62 described later.
  • the rotation stopper 208d engages with an engaging portion 62b of the third group frame 62 described later so as to be movable in the Y-axis direction.
  • the winging moving frame 208 can slide in the direction along the winging shaft 208e with respect to the third group frame 62.
  • the third group frame 62 is a member arranged on the positive side in the X-axis direction with respect to the caming movement frame 208.
  • the third group frame 62 On the surface on the negative side in the X-axis direction, the third group frame 62 is formed on the positive side in the Z-axis direction.
  • a fixing portion 62a that supports both ends is formed on the negative side in the Z-axis direction with an engaging portion 62b that engages with a detent 208d of the wing moving frame 208.
  • the third group frame 62 supports the wing moving frame 208 so as to be movable in the Y-axis direction.
  • a yoke 62d is press-fitted and fixed to the fitting portion 62g on the negative side in the Z-axis direction of the third group frame 62.
  • the yoke 62d is a member with a U-shaped cross section perpendicular to the Y-axis, with two poles in the Z-axis direction on the inside. Fix the magnetized magnet 62c.
  • the yoke 62d is fixed so that the coil 206a of the electric board 206 and the magnet 62c face each other in the X-axis direction.
  • an electromagnetic actuator in the pitching direction is configured.
  • a yoke 62f is press-fitted and fixed to the fitting portion 62h on the Y axis direction negative side of the third group frame 62.
  • the yoke 62f is a member having a U-shaped cross section perpendicular to the Z-axis, and a magnet 62e magnetized in two poles in the Y-axis direction is fixed inside.
  • the yoke 62f is fixed so that the coil 206b of the electric board 206 and the magnet 62e face each other in the X-axis direction. Thereby, an electromagnetic actuator in the winging direction is configured.
  • the image blur correction mechanism 61 can drive the third lens group G3 in two directions (Y-axis direction and Z-axis direction) orthogonal to the second optical axis A2 to perform image blur correction. It becomes possible.
  • a protruding portion 65 that protrudes to the Y axis direction negative side is formed on the Y axis direction negative side.
  • the protrusion 65 engages with the through hole 183c of the rod 183 (see FIG. 14).
  • the third group frame 62 is driven from the rod unit 182 in the X-axis direction.
  • the third group frame 62 includes a bearing portion 62i and a bearing portion at the corners on the Y axis direction positive side and the Z axis direction positive side and the Y axis direction negative side and the Z axis direction negative side, respectively. 63 ⁇ 4 is formed.
  • a third group guide pole 71 extending from the master flange unit 46 (see FIG. 9) along the X-axis direction is inserted into the bearing 62i.
  • a third group guide pole 70 extending along the X-axis direction from the master flange unit 46 (see FIG. 9) is inserted into the bearing portion 62j.
  • the third group frame 62 is movable in the X-axis direction along the third group guide poles 70 and 71.
  • the image blur correction mechanism 61 is fixed to the third group frame 62 and the shutter unit 60 is attached from the negative side in the X-axis direction.
  • the third group frame unit 44 is integrally driven in the X-axis direction from the rod unit 182 and is guided in the X-axis direction by the third group guide poles 70 and 71. Move in the direction along the optical axis A2. [4.5: 4 group frame unit]
  • FIG. 24 is an exploded perspective view of the fourth group frame unit 45.
  • 4 group frame unit 45 is the 4th lens group
  • the fourth group frame unit 45 mainly includes a fourth lens group G4, a fourth group frame 66 that holds the fourth lens group G4, and a sensor magnet 67 and a coil 68 that are fixed to the fourth group frame 66. .
  • the fourth group frame 66 has an opening 66a for holding the fourth lens group G4.
  • the fourth lens group G4 is fixed to the opening 66a by adhesion or caulking.
  • the fourth group frame 66 includes a bearing portion 66b, a bearing portion 66c, and a corner portion on the Y axis direction positive side and the Z axis direction positive side, and a corner portion on the Y axis direction negative side and the Z axis direction negative side, respectively. Is formed.
  • the bearing portion 66b is a cylindrical bearing that is long in the X-axis direction, and a fourth group guide pole 73 extending from the master flange unit 46 (see FIG. 9) along the X-axis direction is inserted.
  • a fourth group guide pole 72 extending from the master flange unit 46 (see FIG. 9) along the X-axis direction is inserted into the bearing portion 66c.
  • the fourth group frame 66 can move in the X-axis direction along the fourth group guide poles 73 and 72.
  • a sensor magnet 67 is fixed to the fourth group frame 66 so that its longitudinal direction is along the cylindrical bearing portion 66b.
  • the sensor magnet 67 is multipolarly magnetized in the X-axis direction.
  • Sensor One magnet 67 is arranged opposite to MR sensor 77 (see FIG. 9) of master flange unit 46 in the Y-axis direction.
  • a coil 68 is bonded and fixed to the positive side of the fourth group frame 66 in the X-axis direction.
  • An FPC 68a is connected to the coil 68.
  • the FPC 68a electrically connects the coil 68 and the main board 23 (see FIG. 3).
  • the coil 68 is penetrated by a part of a U-shaped main yoke 76a in a cross section perpendicular to the Z-axis fixed to a master flange unit 46 described later.
  • a magnet 76b is fixed to the other part of the main yoke 76a.
  • the open end on the negative side in the X-axis direction of the main yoke 76a is closed by the side yoke 76c while passing through the coil 68.
  • the magnetic member 76 composed of the main yoke 76a, the magnet 76b and the side yoke 76c, and the coil 68 constitute a voice coil type linear motor.
  • a driving force in the X-axis direction is generated in the coil 68, and the fourth group frame unit 45 that fixes the coil 68 and the coil 68 is driven in the X-axis direction.
  • the fourth group frame unit 45 is driven in the X-axis direction by the voice coil type linear motor, and is guided in the X-axis direction by the fourth group guide poles 73 and 72. Move in the direction along the optical axis A2.
  • the fourth group frame unit 45 may be driven using another motor, for example, a stepping motor.
  • FIG. 25 is an exploded perspective view of the master flange unit 46.
  • the master flange 46 is a member that, together with the base unit 43, constitutes the housing of the lens barrel 31, and is fixed in the X-axis direction of the base 55 by screws or the like.
  • a magnetic member 76 constituting a magnetic circuit is fixed to the master flange unit 46 together with the coil 68 of the fourth group frame unit 45. Specifically, the magnetic member 76 is fixed by press-fitting and fixing a press-fitting protrusion 76d of the main yoke 76a constituting the magnetic member 76 into a fitting portion (not shown) of the master flange unit 46.
  • a magnet 76b is fixed to the inner surface of the main yoke 76a on the Y axis direction negative side by bonding or the like.
  • the coil 68 of the fourth group frame unit 45 is passed through the main yoke 76a, and the side yoke 76c is connected to the open end of the main yoke 76a on the negative side in the X-axis direction when the coil 68 is passed therethrough. It is fixed.
  • an MR sensor 77 On the positive side of the master flange unit 46 in the Y-axis direction, an MR sensor 77 (see Fig. 9) A fitting portion 75f for attachment is formed. A part of the fitting portion 75f has a through portion 75g penetrating the inside of the master flange unit 46.
  • the MR sensor 77 is fixed to the fitting portion 75f, and through the through portion 75g, the sensor magnet 67 (see Fig. 24) of the 4-group frame unit 45 located inside the master flange unit 46 and the Y axis Opposite the direction.
  • An MRPC (not shown) is connected to the MR sensor 77, and is electrically connected to the main board 23 (see FIG. 3) via the FPC.
  • cylindrical guide pole support portions 75b and 75c adjacent to the Z axis direction are formed.
  • the guide pole support portion 75b located on the positive side in the Z-axis direction supports the end portion on the positive side in the X-axis direction of the third group guide pole 71.
  • the guide pole support portion 75c located on the negative side in the Z-axis direction supports the end portion on the positive side in the X-axis direction of the fourth group guide pole 73.
  • cylindrical guide pole support portions 75d and 75e adjacent to the Z-axis direction are formed at the corners of the master flange unit 46 on the Y-axis direction negative side and the Z-axis direction negative side.
  • the guide pole support portion 75d located on the positive side in the Z-axis direction supports the end portion on the positive side in the X-axis direction of the fourth group guide pole 72.
  • the guide pole support portion 75e located on the negative side in the Z-axis direction supports the end portion on the positive side in the X-axis direction of the third group guide pole 70.
  • the end on the negative side in the X-axis direction of each guide pole 70 to 73 is fixed to the second group frame unit 42.
  • FIG. 26 is a cross-sectional view of the lens barrel 31 on a plane including the first optical axis A1 and the second optical axis A2.
  • members that are not located on a plane including the first optical axis A1 and the second optical axis A2 are also shown.
  • a configuration necessary for the explanation is mainly shown.
  • Fig. 26 (a) shows the case where the optical system 35 is located on the wide-angle side
  • Fig. 26 (b) shows the case where the optical system 35 is located at the normal position which is an intermediate position between the wide-angle end and the telephoto end.
  • c) shows the case where the optical system 35 is located at the telephoto end!
  • Drive gear 53 is 1
  • the drive frame 51 of the group frame unit 41 and the ring gear 180 of the base unit 43 are engaged with each other, and the rotational drive of the drive gear 53 causes the drive frame 51 and the ring gear 180 to rotate.
  • the first group frame unit 41 configured as described above operates, and the first lens group G1 held thereby moves to the Y axis direction positive side.
  • the drive is converted into a translational motion of the rod unit 182 in the X axis direction negative side.
  • the protrusion 65 of the third group frame unit 44 is engaged with the rod unit 182. Therefore, together with the rod unit 182, the third group frame unit 44 translates in the negative direction in the X-axis direction.
  • the third group frame unit 44 has a part of the first group frame unit 41 on the positive side in the X-axis direction and Y Arranged to face each other in the axial direction. Specifically, a part of the third group frame unit 44 is arranged so as to face a part on the X axis direction positive side of the fixed frame 52 in the Y axis direction.
  • the third group frame unit 44 is closer to the second group frame unit 42 in the movable range in the X-axis direction. Move to touching position.
  • FIG. 27 is a perspective view showing the positional relationship between the second group frame unit 4 2 and the shutter unit 60 of the third group frame unit 44 when the optical system 35 is located at the wide-angle end.
  • FIG. 28 is a perspective view showing the positional relationship between the second group frame unit 42 and the shutter unit 60 of the third group frame unit 44 when the optical system is located at the telephoto end.
  • FIG. 29 is a plan view showing the positional relationship between the second group frame unit 42 and the shutter unit 60 of the third group frame unit 44 when the optical system is positioned at the telephoto end, as viewed from the Y axis direction positive side.
  • the second group frame unit 42 is formed with a recessed space 166 and a recessed space 167 toward the X axis direction positive side, that is, toward the third group frame unit 44 side.
  • the recessed space 166 and the recessed space 167 are a diaphragm provided to project from the third group frame unit 44 to the negative side in the X-axis direction. It is formed at a position facing each of the actuator 202 for the shutter and the actuator 203 for the shutter in the X-axis direction. Therefore, as shown in FIG. 28, when the optical system 35 is moved to the telephoto side and the shutter unit 60 is moved to the position closest to the second group frame unit 42 side, the diaphragm actuator 202 is fitted in the recessed space 166. The shutter actuator 203 fits into the recess space 167.
  • the diaphragm actuator 202 and the shutter actuator 203 are spaced apart in the Z-axis direction with the second optical axis A2 in between, and the distance between the two group frames It is larger than 150 Z-axis direction width. For this reason, when the shutter unit 60 moves to a position closest to the second group frame unit 42 side, the second group frame 150 fits in the Z-axis direction intermediate portion between the aperture activator 202 and the shutter activator 203.
  • the movable range of the third lens group G3 in the X-axis direction can be increased. That is, the maximum distance in the X-axis direction between the third lens group G3 and the CCD 37 can be increased while the lens barrel 31 is compactly formed in the X-axis direction.
  • the optical system 35 changes the imaging magnification on the CCD 37 (see FIG. 26).
  • the fourth group frame unit 45 corrects the shift in the focus adjustment state caused by the change in the imaging magnification.
  • the correction is performed by driving the fourth group frame unit 45 in the X-axis direction by a voice coil type linear motor composed of the coil 68 of the fourth group frame unit 45 and the magnetic member 76 of the master flange unit 46. Yes (see Figure 24).
  • the motor unit 32 is arranged on the negative side in the X-axis direction of the second group frame unit 42 using a space 195 formed on the negative side in the Y axis direction of the first group frame unit 41. ing.
  • the members constituting the optical system 35 are not arranged, and the members constituting the imaging device 2 can be arranged by effectively using the space that does not affect the optical system 35. It is possible to improve the utilization efficiency.
  • the imaging device 2 can be extended in multiple stages in the direction of the first optical axis A1, and can be retracted. It has a barrel-type first group frame unit 41. Furthermore, a bending optical system is adopted as the optical system 35. Therefore, it is possible to increase the optical path length from the first lens group G1 to the CCD 37 while configuring the imaging device 2 in a compact manner, and it is possible to configure a zoom lens system with a high magnification.
  • the first lens group G1 and the third lens group G3 change the relative positions on the optical path with respect to the CCD 37. Therefore, it is possible to construct a zoom lens system with higher optical performance.
  • the drive frame 51 is rotationally driven around the first optical axis A1 by the zoom motor 36, thereby moving in the direction along the first optical axis A1 with respect to the second group frame unit including the prism L5. Further, the first group frame 50 moves in the direction along the first optical axis A1 with respect to the drive frame 51 by the drive of the drive frame 51.
  • the driving force from the zoom motor 36 is transmitted to the first group frame 50 via the drive frame 51. For this reason, a special motor for driving the first group frame 50 is not necessary, and the imaging apparatus 2 can be configured more simply.
  • the fixed frame 52 of the first group frame unit 41 is directly fixed to the second group frame unit 42 that fixes the prism L5.
  • the fixed frame 52 supports the first group frame 50 and the drive frame 51 so as to be movable in the direction of the first optical axis A1. Therefore, positioning of the first lens group G1 with respect to the prism L5, particularly positioning in the direction orthogonal to the first optical axis A1, can be performed with high accuracy.
  • the drive frame 51 is disposed on the inner peripheral side of the fixed frame 52, and the first group frame 50 is disposed on the inner peripheral side of the drive frame 51.
  • the drive frame 51 is movable in the first optical axis A1 direction while engaging the cam pins ll la to ll lc with the cam grooves 128a to 128c of the fixed frame 52.
  • the first group frame 50 engages the cam pins 104a to 104c with the cam grooves 128a to 128c of the drive frame 51, and further engages the front end portions 107a and 107b with the rectilinear grooves 129a and 129b in the first optical axis Al direction. It is movable.
  • the imaging device 2 since the front end portions 107a and 107b are engaged with the rectilinear grooves 129a and 129b and go straight, the rotation of the first group frame 50 around the first optical axis A1 is prevented. For this reason, the imaging device 2 Therefore, it is possible to more easily configure the imaging device 2 that does not require a rectilinear frame for moving the first group frame 50 straight.
  • the extension portions 126a and 126b are provided only on the X axis direction negative side of the cylindrical portion 125. Therefore, as described with reference to FIG. 26, the third group frame unit 44 can move in the X-axis direction without interfering with the fixed frame 52.
  • the imaging device 2 includes a third group moving mechanism 57 that moves the third group frame unit 44 that holds the third lens group G3 in a direction along the second optical axis A2.
  • the first group frame unit 41 and the third group moving mechanism 57 are functionally connected via a drive gear 53 driven by a zoom motor 36. This eliminates the need for a mechanism for driving the first group frame unit 41 and the third group moving mechanism 57, and allows the imaging apparatus 2 to be configured more simply. This also leads to noise reduction of the imaging device 2. Further, since both the ring gear 112 of the driving frame 51 of the first group frame unit 41 and the ring gear 180 of the third group moving mechanism 57 are driven in combination with the force driving gear 53, the first group frame unit 41 can be easily connected to the first group frame unit 41. The operation with the third group moving mechanism 57 can be linked.
  • the third group moving mechanism 57 is engaged with the ring gear 180 and the ring gear pin 181 that convert the rotation drive from the zoom motor 36 into the drive along the second optical axis A2, and the ring gear pin 181. And a rod unit 182 that moves in a direction along the second optical axis A2. For this reason, the first lens group G1 is moved in the direction along the first optical axis A1, the first group frame unit 41, and the third lens group G3 is moved in the direction along the second optical axis A2.
  • the moving mechanism 57 can be driven by the same driving means.
  • an elastic coupling mechanism that inertialy couples the ring gear 180 and the rod 183 is configured by the crimp panel 186, the panel pin 187, and the crimp panel control pin 185.
  • the elastic coupling mechanism presses the rod 183 toward the X axis direction positive side when the rod 183 is positioned at the end on the X axis direction positive side.
  • the rod 183 is positioned at the end on the negative side in the X-axis direction.
  • the rod 183 is pressed toward the negative side in the X-axis direction.
  • rattling of the rod 183 and the third group frame unit 44 that moves together with the rod 183 can be prevented.
  • One end of the third group guide poles 70 and 71 for guiding the movement of the third group frame unit 44 in the X-axis direction is fixed to the second group frame unit 42 including the second lens group G2. Therefore, the positioning of the third group frame unit 44 with respect to the second group frame unit 42, particularly the positioning in the direction orthogonal to the second optical axis A2, can be performed with high accuracy.
  • a part of the motor unit 32 is disposed in a space opposite to the third group frame unit 44 with the reflection surface L5a of the prism L5 interposed therebetween. Therefore, the members constituting the optical system 35 are not arranged, and it is possible to arrange the members constituting the imaging device 2 by effectively using the space that does not affect the optical system 35. Usage efficiency can be improved.
  • an aperture actuator 202 and a shutter actuator 203 are formed so as to protrude toward the second group frame unit 42 side.
  • the second group frame 150 of the second group frame unit 42 is fitted in the intermediate portion in the Z-axis direction between the aperture actuator 202 and the shutter actuator 203 when the shutter unit 60 and the second group frame unit 42 are close to each other. . This makes it possible to reduce the size of the imaging device 2 in the direction along the second optical axis.
  • the sixth lens L6 and the seventh lens L7 are supported on the X axis direction negative side by fixing the opening member 159 to the second group frame 150.
  • the aperture member 159 blocks unnecessary light in the unnecessary direction out of the light emitted from the seventh lens L7, and supports the sixth lens L6 and the seventh lens L7 on the negative side in the X-axis direction. . For this reason, it is possible to reduce the number of constituent members of the imaging device 2 and achieve an effect of cost reduction.
  • the digital camera 1 includes the imaging device 2, the effects of the imaging device 2 can be achieved.
  • the direction along the second optical axis A2 is approximately the same as the horizontal direction. To do.
  • the normal direction of the digital camera 1 coincides with the horizontal direction in the normal imaging state where the vertical direction of the subject is aligned with the vertical direction of the short side of the captured subject image.
  • the vertical dimension in the normal imaging state can be reduced as compared with a digital camera that performs imaging by aligning the short direction of the digital camera with the horizontal direction. .
  • the direction along the second optical axis A 2 is substantially parallel to the long side direction of the image display unit 18.
  • the long side direction of the image display unit 18 is substantially parallel to the longitudinal direction of the exterior unit 11. For this reason, in a normal shooting state in which imaging is performed with the long side direction of the image display unit 18 aligned with the substantially horizontal direction, it is possible to perform imaging with the longitudinal direction of the exterior unit 11 aligned with the approximately horizontal direction. . In addition, it is possible to reduce the size of the image display unit 18 in the short side direction compared to a digital camera in which the direction along the second optical axis A2 is substantially parallel to the short side direction of the image display unit 18. Become.
  • a grip portion 12 is formed on the positive side in the X-axis direction. Therefore, it is possible to secure a distance in the X-axis direction between the grip portion 12 and the first group frame unit 41 arranged on the X-axis direction negative side of the digital camera 1. This prevents the first lens group G1 from being caught during shooting.
  • the first group frame unit 41 protrudes from the exterior portion 11 to the subject side (positive side in the Y-axis direction) during shooting. Fingers to the first lens group G1 can be prevented during shooting.
  • the digital camera 1 includes an image shake correction mechanism 61. This makes it possible to take higher quality images.
  • the Z-axis direction width (Wz) of the imaging device 2 is formed larger than the Y-axis direction width (Wy). For this reason, the thickness of the digital camera 1 in the direction along the first optical axis A1 can be reduced.
  • the appearance and configuration of the digital camera 1 and the main body 3 described with reference to FIGS. 1 to 3 in the above embodiment are not limited to those described.
  • the members constituting the digital camera 1 and the arrangement thereof are not limited to those described above.
  • the appearance and configuration of the digital camera may be as shown in FIG. In FIG. 30, parts that are the same as the parts described in FIGS. 1 to 3 are given the same reference numerals, and descriptions thereof will be omitted.
  • Fig. 30 (a) shows the external appearance of the digital camera 211 on the positive side in the Y-axis direction.
  • the digital camera 211 includes the imaging device 2 described above, a main body part 213 having an exterior part 214 having a rectangular parallelepiped appearance, and an image display part 228 coupled to the exterior part 214 by a coupling mechanism 212.
  • the image display unit 228 is attached by a coupling mechanism 212 so as to be rotatable about an axis extending in the X-axis direction, and can be folded to the Y-axis direction positive side and the Y-axis direction negative side of the exterior unit 214.
  • the image display unit 228 includes a liquid crystal unit 228a for displaying an image on a surface facing the Y axis direction negative side in a state of being folded to the Y axis direction negative side of the exterior unit 214.
  • the liquid crystal unit 228a is disposed on the surface facing the Y axis direction positive side in a state of being folded to the Y axis direction positive side.
  • the image display unit 228 can be folded to the Y axis direction negative side of the exterior unit 214, and the liquid crystal unit 228a can be protected when the digital camera 211 is not used. It becomes.
  • the image display unit 228 can be folded to the Y axis direction positive side of the exterior unit 214, and in this state, an image captured by the liquid crystal unit 228a facing the Y axis direction positive side can be visually recognized. It becomes possible to do.
  • the Z-axis direction dimension Wzl of the image display unit 228 is substantially the same as the Z-axis direction dimension Wz2 of the exterior part 214, and the X-axis direction dimension Wxl is an imaging apparatus 2 that protrudes from the exterior part 214 to the positive side in the Y-axis direction.
  • X-axis direction dimension Wx2 from the end on the X-axis direction positive side to the end of the exterior portion 214 on the X-axis direction positive side is substantially the same. Therefore, when the image display unit 228 is folded to the Y axis direction positive side of the exterior part 214, the image display part 228 does not protrude in the X axis direction or the Z axis direction of the exterior part 214.
  • FIG. 30 (b) shows a state in which the image display unit 228 is folded to the Y axis direction positive side of the exterior part 214 and a perspective view showing members disposed on the X axis direction negative side inside the exterior part 214. It is.
  • the Y-axis direction dimension Wyl of the image display unit 228 is substantially the same as the Y-axis direction dimension Wy2 of the fixed frame 52 of the imaging device 2 protruding from the exterior unit 214. Therefore, in a state where the image display unit 228 is folded to the Y axis direction positive side of the exterior unit 214, the end of the fixed frame 52 on the Y axis direction positive side and the surface of the image display unit 228 on the Y axis direction positive side The Y-axis position is almost the same.
  • the imaging device 2, the main board 23, the battery 22, and the memory card 24 are arranged inside the exterior portion 214.
  • FIG. 30 (c) is a perspective view showing members arranged on the Y axis direction positive side inside the exterior portion 214.
  • each lens group G1 to G5 may be realized by a combination of other lenses.
  • the configuration of the first group frame unit 41 is not limited to the configuration described.
  • cam pins and cam grooves formed on the first group frame 50, the drive frame 51, and the fixed frame 52 may be realized by other configurations as long as they perform the same function.
  • the configuration of the second group frame unit 42 is not limited to the configuration described.
  • the second group frame 150 may have another structure as long as it can hold the second lens group G2. /. Industrial applicability
  • the camera according to the present invention is useful in a field where both realization of a zoom lens system with a high magnification and realization of downsizing of the apparatus are required.

Abstract

 本発明は、高倍率なズームレンズ系の実現と、装置の小型化の実現とを両立するカメラを提供することを課題とする。デジタルカメラ(1)は、第1レンズ群(G1)と、2群枠ユニット(42)と、1群枠ユニット(41)と、第3レンズ群(G3)と、CCDユニット(33)と、レンズ鏡筒(31)と、外装部(11)とを備えている。第1レンズ群(G1)は、第1の光軸(A1)に沿って入射した光束を取り込む。2群枠ユニット(42)は、第1の光軸(A1)に沿って入射した光束を、第2の光軸(A2)に沿った方向に屈曲させる。1群枠ユニット(41)は、第1レンズ群(G1)を保持し、第1の光軸(A1)に沿った方向に第1レンズ群(G1)を移動させる。第3レンズ群(G3)は、2群枠ユニット(42)により屈曲された光束を取り込む。CCDユニット(33)は、第3レンズ群(G3)を通過した光束を受光する。レンズ鏡筒(31)は、1群枠ユニット(41)を移動可能に支持するとともに、2群枠ユニット(42)と第3レンズ群(G3)とCCDユニット(33)とが配置される。外装部(11)は、レンズ鏡筒(31)を保持する。被写体の鉛直方向上下と撮像される被写体像の短辺方向上下とが一致するように撮像を行う場合に、第2の光軸(A2)に沿った方向が水平方向に略一致する。

Description

カメラ
技術分野
[0001] 本発明は、カメラ、特に、屈曲光学系を備えるカメラに関する。
背景技術
[0002] 近年、 CCD (Charge Coupled Device)や CMOS (Complementary Metal
-oxide Semiconductor)センサなどの撮像素子を用いて、光学像を電気信号に 変換し、電気信号をデジタルィ匕して記録するデジタルカメラが普及している。このよう なデジタルカメラにおいては、 CCDや CMOSセンサの高画素化などだけでなぐそ れらの撮像素子に光学像を結像させるレンズ鏡筒に対しても高性能化が求められて いる。具体的には、より高倍率なズームレンズ系を搭載したレンズ鏡筒が求められて いる。
一方、デジタルカメラの分野においては、携帯性能の向上のため、本体の小型化 に対する要求がある。このため、本体の小型化に大きく貢献すると考えられる、レンズ 鏡筒と撮像素子とを備える撮像装置の小型化が求められている。このような撮像装置 の小型化に際しては、ズームレンズ系を光路の途中で折り曲げ、光路長を変化させ ずに装置の小型化を図る、 V、わゆる屈曲光学系の提案が行われて 、る。
例えば、特許文献 1では、反射鏡を用いて光路を折り曲げる屈曲光学系が開示さ れている。具体的には、特許文献 1に開示されたレンズ鏡筒は、反射鏡の被写体側 に、被写体側から順に第 1レンズ群および第 2レンズ群を備え、反射鏡の撮像素子側 に、反射鏡側力 順に第 3レンズ群と第 4レンズ群とを備えている。第 1レンズ群は、 固定されている。第 2レンズ群および第 3レンズ群は、それぞれ光軸方向に移動可能 であり、それぞれの協働によりズームレンズ系を構成する。第 4レンズ群は、フォー力 ス調整用のレンズである。
また、特許文献 2では、プリズムを用いて光路を折り曲げる屈曲光学系が開示され ている。具体的には、特許文献 2に開示されたレンズ鏡筒は、プリズムの被写体側に 、レンズ群を備える。レンズ群は、使用位置と収納位置との間を光軸方向に移動可能 である。さら〖こ、プリズムは、レンズ群が収納位置に有る場合にその収納空間を確保 するように移動可能である。
また、特許文献 3では、屈曲光学系に用いられるレンズ群の構成について開示され ている。
特許文献 1:特開平 11― 258678号公報
特許文献 2 :特開 2003— 169236号公報
特許文献 3 :特開 2004— 102089号公報
発明の開示
し力しながら、高倍率なズームレンズ系の実現と小型化の実現とに対する要求の高 まりを両立するためには、さらなる改善が求められる。
具体的には、特許文献 1や特許文献 2に開示されている構成では、装置の小型化 を実現しつつ、高倍率なズームレンズ系を構成することが難しい。さらに、特許文献 3 に開示されているレンズ構成を採用するとしても、装置の小型化を実現するための構 成が開示されておらず、具体的な装置の構成が不明であるという問題がある。
そこで、本発明は、高倍率なズームレンズ系の実現と、装置の小型化の実現とを両 立するカメラを提供することを課題とする。
第 1の発明としてのカメラは、第 1のレンズ群と、屈曲手段と、少なくとも一つのレン ズ枠と、第 2のレンズ群と、撮像手段と、レンズ鏡筒と、ケーシングとを備えている。第 1のレンズ群は、第 1の光軸に沿って入射した光束を取り込む。屈曲手段は、第 1の 光軸に沿って入射した光束を、第 1の光軸に交差する第 2の光軸に沿った方向に屈 曲させる。レンズ枠は、第 1のレンズ群を保持し、第 1の光軸に沿った方向に第 1のレ ンズ群と屈曲手段とを相対的に移動させる。第 2のレンズ群は、屈曲手段により屈曲 された光束を取り込む。撮像手段は、第 2のレンズ群を通過した光束を受光する。レ ンズ鏡筒は、レンズ枠を移動可能に支持するとともに、屈曲手段と第 2のレンズ群と撮 像手段とが配置される。ケーシングは、レンズ鏡筒を保持する。被写体の鉛直方向上 下と撮像される被写体像の短辺方向上下とがー致するように撮像を行う場合に、第 2 の光軸に沿つた方向が水平方向に略一致する。
ここで、第 1の光軸に沿う、とは、例えば、第 1の光軸に平行なこと、を意味する。ま た、第 2の光軸に沿う、とは、例えば、第 2の光軸に平行なこと、を意味する。屈曲手 段は、例えば、反射面を有する部材を含み、より詳しくは、プリズム、ミラーなどを含ん でもよい。撮像手段は、例えば、電気的に受光する CCD、 CMOSなどであってもよ いが、これに限定せず、フィルムなどであってもよい。
本発明のカメラでは、レンズ枠により、第 1のレンズ群と屈曲手段との相対位置が変 化する。すなわち、レンズ枠により、第 1のレンズ群と撮像手段との光路に沿った相対 位置が変化する。このように、レンズ枠により、第 1のレンズ群力 撮像手段までの光 路長を長くすることができるため、高倍率なズームレンズ系を構成することが可能とな る。
さらに、本発明のカメラでは、屈曲光学系を採用している。このため、屈曲光学系を 採用しないカメラに比して、同じ光路長の光学系をよりコンパクトに構成することが可 能となる。
さらに、本発明のカメラでは、被写体の鉛直方向上下と撮像される被写体像の短辺 方向上下とがー致するように撮像を行う場合 (以下、このような撮像を行う場合を通常 撮像状態という)に、第 2の光軸に沿った方向が水平方向に一致する。一般に、レン ズ鏡筒では、第 1の光軸と第 2の光軸とに直交する方向の寸法を第 2の光軸に沿った 方向の寸法よりも小さくすることが可能である。このため、このようなレンズ鏡筒を保持 するケーシングにおいても、第 2の光軸に沿った方向がケーシングの長手方向となる ことが多い。
このため、本発明のカメラでは、通常撮像状態において、カメラの長手方向を水平 方向に一致させて撮像を行うことが可能となり、通常撮像状態においてカメラの短手 方向を水平方向に一致させて撮像を行うカメラに比して、通常撮像状態での鉛直方 向の寸法が小さいカメラを提供することが可能となる。
第 2の発明としてのカメラは、第 1のレンズ群と、屈曲手段と、少なくとも一つのレン ズ枠と、第 2のレンズ群と、撮像手段と、レンズ鏡筒と、ケーシングとを備えている。第 1のレンズ群は、第 1の光軸に沿って入射した光束を取り込む。屈曲手段は、第 1の 光軸に沿って入射した光束を、第 1の光軸に交差する第 2の光軸に沿った方向に屈 曲させる。レンズ枠は、第 1のレンズ群を保持し、第 1の光軸に沿った方向に第 1のレ ンズ群と屈曲手段とを相対的に移動させる。第 2のレンズ群は、屈曲手段により屈曲 された光束を取り込む。撮像手段は、第 2のレンズ群を通過した光束を受光する。レ ンズ鏡筒は、レンズ枠を移動可能に支持するとともに、屈曲手段と第 2のレンズ群と撮 像手段とが配置される。ケーシングは、レンズ鏡筒を保持するとともに、撮像手段が 撮像する像を視認するための視認手段が設けられている。第 2の光軸に沿った方向 と視認手段の長辺方向とは略並行する。
ここで、第 1の光軸に沿う、とは、例えば、第 1の光軸に平行なこと、を意味する。ま た、第 2の光軸に沿う、とは、例えば、第 2の光軸に平行なこと、を意味する。屈曲手 段は、例えば、反射面を有する部材を含み、より詳しくは、プリズム、ミラーなどを含ん でもよい。撮像手段は、例えば、電気的に受光する CCD、 CMOSなどであってもよ いが、これに限定せず、フィルムなどであってもよい。視認手段は、例えば、光学ある いは電子ファインダーなどである。
本発明のカメラでは、レンズ枠により、第 1のレンズ群と屈曲手段との相対位置が変 化する。すなわち、レンズ枠により、第 1のレンズ群と撮像手段との光路に沿った相対 位置が変化する。このように、レンズ枠により、第 1のレンズ群力 撮像手段までの光 路長を長くすることができるため、高倍率なズームレンズ系を構成することが可能とな る。
さらに、本発明のカメラでは、屈曲光学系を採用している。このため、屈曲光学系を 採用しないカメラに比して、同じ光路長の光学系をよりコンパクトに構成することが可 能となる。
さらに、本発明のカメラでは、視認手段の長辺方向と第 2の光軸に沿った方向とが 略並行している。一般に、レンズ鏡筒では、第 1の光軸と第 2の光軸とに直交する方 向の寸法を第 2の光軸に沿った方向の寸法よりも小さくすることが可能である。このた め、このようなレンズ鏡筒を保持するケーシングにおいても、第 2の光軸に沿った方向 がケーシングの長手方向となることが多い。
このため、本発明のカメラでは、視認手段の長辺方向を略水平方向に一致させて 撮像を行う通常撮影状態において、ケーシングの長手方向を略水平方向に一致さ せて撮像を行うことが可能となる。また、本発明のカメラでは、第 2の光軸が視認手段 の短辺方向と略並行するカメラに比して、視認手段の短辺方向のカメラの寸法を小さ くすることが可能となる。
第 3の発明としてのカメラは、第 1または第 2の発明であって、レンズ枠は、複数設け られている。
本発明のカメラは、複数のレンズ枠を、例えば、多段に配置して備えている。このた め、レンズ枠により、第 1のレンズ群力ゝら撮像手段までの光路長を長くすることができ るため、高倍率なズームレンズ系を構成することが可能となる。
第 4の発明としてのカメラは、第 1〜第 3のいずれかの発明であって、ケーシングの 第 2の光軸に沿った方向の撮像手段側には、把持のための把持手段が設けられて いる。
本発明のカメラでは、第 2の光軸に沿った方向の撮像手段側には、把持手段が設 けられている。このため、第 1のレンズ群を保持するレンズ枠と把持手段との距離を確 保することが可能となる。これにより、撮影時に第 1のレンズ群への指が力りが防止可 能となる。
第 5の発明としてのカメラは、第 1〜第 4のいずれかの発明であって、レンズ枠は、 被写体を撮像する場合に、ケーシングの被写体側の面よりも被写体側に向けて突出 する。
本発明のカメラでは、レンズ枠は、被写体を撮像する場合に、ケーシングの被写体 側の面よりも被写体側に向けて突出する。このため、撮影時に第 1のレンズ群への指 がかりが防止可能となる。
第 6の発明としてのカメラは、第 1〜第 5のいずれかの発明であって、第 2のレンズ群 を第 2の光軸に直交する方向に移動可能に保持する像振れ補正手段をさらに備え ている。
本発明のカメラでは、第 1の光軸および第 2の光軸に直交する方向(例えば、視認 手段の短辺方向)のカメラの寸法を小さくすることを可能としつつ、像振れ補正手段 を備えるため、より高品質な撮像を行うことが可能となる。
第 7の発明としてのカメラは、第 1〜第 6のいずれかの発明であって、屈曲手段は、 第 1の光軸に沿って入射する光束を第 2の光軸に沿った方向に反射させる反射面を 有するとともに、撮像手段に対する相対位置が固定されている。
本発明のカメラでは、屈曲手段と撮像手段との相対位置が固定されており、より高 精度な光学性能を得ることが可能となる。
第 8の発明としてのカメラは、第 1〜第 7のいずれかの発明であって、レンズ鏡筒は 、第 1の光軸に沿った方向の寸法が、第 1の光軸と第 2の光軸とに直交する方向の寸 法よりも小さく形成されている。
本発明のカメラでは、第 1の光軸に沿った方向の厚みが薄く形成されたカメラを提 供することが可能となる。
図面の簡単な説明
[図 1]デジタルカメラの外観を示す斜視図
圆 2]デジタルカメラの外観を示す斜視図
[図 3]本体部の構成を概略的に示す透視図
圆 4]撮像装置の組み立て斜視図
[図 5]光学系の構成を示す説明図 (広角端)
[図 6]光学系の構成を示す説明図 (広角端)
[図 7]光学系の構成を示す説明図 (望遠端)
[図 8]光学系の構成を示す説明図 (望遠端)
[図 9]撮像装置の分解斜視図
[図 10] 1群枠ユニットの分解斜視図
[図 11]ベースユニットの分解斜視図
[図 12]2群枠ユニットの分解斜視図
[図 13]2群枠ユニットの断面図
[図 14]ロッドユニットの分解斜視図
[図 15]ロッドユニットの組み立て斜視図
[図 16]3群枠ユニットとベースユニットとの組み立て状態を示す斜視図
圆 17]3群移動機構の動作を説明する説明図
圆 18]3群移動機構の動作を説明する説明図 (広角端)
圆 19]3群移動機構の動作を説明する説明図 (広角側) [図 20]3群移動機構の動作を説明する説明図 (ノーマル位置)
[図 21]3群移動機構の動作を説明する説明図 (望遠側)
[図 22]3群移動機構の動作を説明する説明図 (望遠端)
[図 23]3群枠ユニットの分解斜視図
[図 24]4群枠ユニットの分解斜視図
[図 25]マスターフランジュニットの分解斜視図
[図 26]レンズ鏡筒の動作を説明する説明図
[図 27]2群枠ユ ットと 3群枠ユ ットとの位置関係について説明する説明図
[図 28]2群枠ユ ットと 3群枠ユ ットとの位置関係について説明する説明図
[図 29]2群枠ユニットと 3群枠ユ ットとの位置関係について説明する説明図
[図 30]変形例としてのデジタルカメラの外観および構成を示す正面図および透視図 符号の説明
[0005] 1 デジタルカメラ
2 撮像装置
11 外装部
18 画像表示部
31 レンズ鏡筒
32 CCDユニット
41 1群枠ユニット
42 2群枠ユニット
G1 第 1レンズ群
G3 第 3レンズ群
A1 第 1の光軸
A2 第 2の光軸
発明を実施するための最良の形態
[0006] 〈1 :概要について〉
本発明の実施形態について、図 1〜図 30を用いて説明する。
本発明のデジタルカメラは、光学系に屈曲光学系を採用するとともに、被写体側の レンズ鏡筒が多段に繰り出し可能に形成されている。これにより、高倍率なズームレ ンズ系の実現と、装置の小型化の実現とを両立する。
〈2:デジタルカメラにっ 、て〉
本発明の第 1実施形態のデジタルカメラについて、図 1〜図 3を用いて説明する。
[2. 1 :デジタルカメラの構成〕
図 1は、本発明の第 1実施形態のデジタルカメラ 1の外観を示す斜視図である。 デジタルカメラ 1は、撮像装置 2と、本体部 3とを備えている。撮像装置 2は、第 1の 光軸 A1に沿って入射した光束を、第 1の光軸 A1に直交する第 2の光軸 A2に沿った 方向に屈曲させて撮像素子に導く屈曲光学系を備えている。本体部 3は、撮像装置 2を収納するとともに、撮像装置 2の制御などを行う。
まず、撮像装置 2の詳しい構成を説明する前に、本体部 3の構成について説明を行 なお、以下の説明では、デジタルカメラ 1の 6面を以下のように定義する。
デジタルカメラ 1による撮影時に被写体側を向く面を前面、その反対側の面を背面 とする。被写体の鉛直方向上下とデジタルカメラ 1で撮像される長方形の像 (一般に は、アスペクト比(長辺対短辺の比)が 3 : 2、 4 : 3、 16 : 9など)の短辺方向上下とがー 致するように撮影を行う場合に、鉛直方向上側に向く面を上面、その反対側の面を 底面とする。さらに、被写体の鉛直方向上下とデジタルカメラ 1で撮像される長方形 の像の短辺方向上下とがー致するように撮影を行う場合に、被写体側力 見て左側 にくる面を左側面、その反対側の面を右側面とする。なお、以上の定義は、デジタル カメラ 1の使用姿勢を限定するものではな 、。
以上の定義によれば、図 1は、前面、上面および左側面を示す斜視図ということ〖こ なる。
なお、デジタルカメラ 1の 6面だけでなぐデジタルカメラ 1に配置される各構成部材 の 6面も同様に定義する。すなわち、デジタルカメラ 1に配置された状態の各構成部 材の 6面に対して、上述の定義を適用する。
また、図 1に示すように、第 1の光軸 A1に平行な Y軸と第 2の光軸 A2に平行な X軸 とを有する 3次元直交座標系(右手系)を定義する。この定義によれば、第 1の光軸 A 1に沿って背面側力 前面側に向力う方向が Y軸正方向であり、第 2の光軸 A2に沿 つて右側面側から左側面側に向かう方向が X軸正方向であり、第 1の光軸 A1と第 2 の光軸 A2とに直交する直交軸に沿って底面側力 上面側に向力う方向が Z軸正方 向となる。
以下、それぞれの図面において、この XYZ座標系を基準として説明を行う。すなわ ち、それぞれの図面における X軸正方向、 Y軸正方向、 Z軸正方向は、それぞれ同じ 方向を示している。
〔2. 2 :本体部の構成〕
図 1、図 2、図 3 (a)〜(c)を用いて、本体部 3の構成について説明を行う。
図 2は、デジタルカメラ 1の背面、上面および右側面の外観を示す斜視図である。 図 3 (a)〜(c)は、本体部 3の構成を概略的に示す透視図である。図 3 (a)は、 Y軸 方向正側(前面側)に配置される部材の構成を示す透視図であり、図 3 (b)は、 Z軸方 向負側 (底面側)に配置される部材の構成を示す透視図であり、図 3 (c)は、 Y軸方 向負側 (背面側)に配置される部材の構成を示す透視図である。
図 1〜図 3に示すように、本体部 3は、撮像装置 2を収納する筐体を構成する外装 部 11およびグリップ部 12と、外装部 11の表面に配置されるストロボ 15,レリーズボタ ン 16、操作ダイアル 17および画像表示部 18と、外装部 11およびグリップ部 12から 構成される筐体の内部に配置されるメインコンデンサ 20、サブ基板 21、電池 22、メイ ン基板 23およびメモリカード 24とから主に構成されている。
図 1に示すように、外装部 11は、第 2の光軸 A2方向に長い、略直方体形状のハウ ジングであり、 X軸方向正側には、撮影者が撮影時に把持するためのグリップ部 12が 外装部 11から Y軸方向に突出するように配置されている。これにより、外装部 11およ びグリップ部 12は、略 L字上の中空の筐体を構成している。外装部 11からは、後述 する撮像装置 2の固定枠 52 (図 9参照)がその筒状部 125 (図 10参照)の一部を Y軸 方向正側に突出させている。また、外装部 11の前面には、ストロボ 15が配置されて いる。ストロボ 15は、被写体が暗い時など必要に応じて閃光して被写体を照射し露 光の補助を行う。また、外装部 11の上面のグリップ部 12側には、レリーズボタン 16や 操作ダイアル 17が配置されている。レリーズボタン 16は、撮影動作を実行する際に Z 軸方向負側に向かって押下される。操作ダイアル 17は、撮影動作の設定など各種 設定を行う。
さら〖こ、図 2に示すように、外装部 11の背面には、撮像装置 2により撮影される像を 撮影者などに視認させる視認手段としての画像表示部 18が設けられて 、る。画像表 示部 18は、例えば、アスペクト比(長辺対短辺の比)が 3 : 2、 4 : 3、 16 : 9などの長方 形の外形を有しており、その長辺方向が第 2の光軸 A2に沿った方向(X軸方向)とほ ぼ並行するように設けられて 、る。
なお、図 1や図 2は、外装部 11の表面に配置される主な部材のみを示すものであり 、説明を行った部材以外の部材が設けられて 、てもよ 、。
次に、図 3を用いて、本体部 3の内部構成について説明を行う。
図 3 (a)に示すように、本体部 3の内部の Y軸方向正側には、第 2の光軸 A2方向(X 軸方向正側)に長い撮像装置 2がその長手方向を外装部 11の長手方向に沿わせる ように配置されている。撮像装置 2は、被写体に向く第 1レンズ群 G1を保持する 1群 枠ユニット 41を X軸方向負側にして本体部 3に配置されている。これにより、第 1レン ズ群 G1からグリップ部 12までの X軸方向距離を確保している。
さらに、撮像装置 2の Z軸方向正側には、ストロボ 15と、メインコンデンサ 20と、サブ 基板 21とが配置されている。メインコンデンサ 20は、後述する電池 22からの充電に より、ストロボ 15に閃光エネルギーを与える。サブ基板 21は、後述する電池 22からの 電力を必要に応じて変圧したり、ストロボ 15の制御を行う。また、グリップ部 12の内部 の Y軸方向正側には、デジタルカメラ 1を動作させるため電源としての電池 22が配置 されている。
さらに、図 3 (b)および (c)に示すように、撮像装置 2の Y軸方向負側には、メイン基 板 23が配置されている。メイン基板 23には、撮像装置 2からの画像信号を処理する 画像処理回路や、撮像装置 2を制御するための制御回路などが実装されている。ま た、電池 22の Y軸方向負側には、メモリカード 24が配置されている。メモリカード 24 は、撮像装置 2からの画像信号を記録する。
なお、図 3 (a)および (b)に示すように、撮像装置 2は、その Z軸方向幅 (Wz)が Y軸 方向幅 (Wy)よりも大きく形成されて 、る。 〈3 :撮像装置について〉
〔3. 1 :撮像装置の構成について〕
デジタルカメラ 1に搭載されて 、る撮像装置 2の構成にっ 、て、図 4を用いて説明を 行う。
図 4は、撮像装置 2の組み立て斜視図である。図 4 (a)は、撮像装置 2の前面、上面 および左側面を示す斜視図であり、図 4 (b)は、撮像装置 2の前面、上面および右側 面を示す斜視図である。
撮像装置 2は、光学系 35を有するレンズ鏡筒 31と、レンズ鏡筒 31を駆動するズー ムモータ 36を有するモータユニット 32と、レンズ鏡筒 31を通過した光束を受光する 撮像手段としての CCD37を有する CCDユニット 33と力も構成されている。
レンズ鏡筒 31は、機構的には、第 1の光軸 A1方向に多段に繰り出し可能かつ沈 胴可能な多段沈胴式のレンズ枠を有する点に特徴を有しており、光学的には、屈曲 光学系を構成する光学系 35を有する点に特徴を有している。光学系 35は、光学 3倍 ズームを超える高倍率ズーム (例えば、 6倍〜 12倍程度の光学ズーム)を実現する 5 群 12枚の光学素子(レンズおよびプリズム)を備えている。このような構成により、レン ズ鏡筒 31は、第 1の光軸 A1に沿って入射する光束を取り込み、第 1の光軸 A1に沿 つて入射した光束を、第 1の光軸 A1に交差する第 2の光軸 A2に沿った方向に屈曲 させ、さらに、第 2の光軸 A2に沿った方向に屈曲された光束を CCD37に導く。
モータユニット 32は、例えば、 DCモータなどのズームモータ 36と、ズームモータ 36 をメイン基板 23 (図 3参照)に電気的に接続するフレキシブルプリント配線板 (FPC) ( 図示せず)と、ズームモータ 36のモータ回転数の計測を通して、レンズ鏡筒 31にお けるレンズの原点からの位置を計測するために設けられているフォトセンサ(図示せ ず)とから主に構成されている。ズームモータ 36は、レンズ鏡筒 31を駆動し、光学系 35を広角端と望遠端との間で移動させる。これにより、レンズ鏡筒 31が備える光学系 35は、 CCD37における光束の結像倍率を変化させるズームレンズ系として動作す る。フォトセンサは、以下のように動作する。フォトセンサは、モータボックス(ギアボッ タス)の外側より進入して設けられる一対の透過型フォトセンサである。フォトセンサは 、外形コの字形状を成し、対向する両端には、一対の発光素子および受光素子が備 えられている。発光素子と受光素子との間には、ズームモータ 36に直結するギアが 通過するようになっており、単位時間あたりにこの発光素子と受光素子との間をギア が遮る回数を計測することにより、ズームモータの回転数を非接触で計測することが できる。
CCDユニット 33は、レンズ鏡筒 31を通過した光束を受光し、電気的な信号に変換 する CCD37と、 CCD37をレンズ鏡筒 31に固定するための CCD板金 38と、 CCD3 7をメイン基板 23 (図 3参照)に電気的に接続する FPC (図示せず)とから主に構成さ れている。
〔3. 2 :光学系について〕
(3. 2. 1 :光学系の構成について)
撮像装置 2の詳細な構成を説明する前に、レンズ鏡筒 31が備える光学系 35の構 成について、図 5〜図 8を用いて説明する。
図 5〜図 8は、レンズ鏡筒 31が備える光学系 35の構成を示している。図 5〜図 6は 、光学系 35が広角端に位置する場合の光学系 35の配置を示している。図 7〜図 8は 、光学系 35が望遠端に位置する場合の光学系 35の配置を示している。図 5と図 7と は、図 4と同じ視点から見た光学系 35の配置を示している。図 6と図 8とは、図 5と図 7 とに示す光学系 35の光軸を含む平面における断面図である。
図 5〜図 8に示すように、光学系 35は、被写体側から順に、第 1レンズ群 Gl、第 2レ ンズ群 G2、露光調整部材 St (図 6または図 8参照)、第 3レンズ群 G3、第 4レンズ群 G 4、第 5レンズ群 G5および IRフィルタ F1 (図 6または図 8参照)から構成されており、 第 1レンズ群 G1から入射する光束力 各レンズ群 G1〜G5および IRフィルタ F1を通 過し、 CCD37に導かれるように構成されている。また、各レンズ群 G1〜G5は、それ ぞれのレンズ群間の間隔を変化させることにより、ズームレンズ系を構成している。 第 1レンズ群 G1は、全体として正のパワーを有するレンズ群であり、第 1の光軸 A1 上に被写体側カゝら順に配置される第 1レンズ L1と、第 2レンズ L2と、第 3レンズ L3と を備えている。
第 1レンズ L1は、被写体側に凸面を向けた凹メニスカスレンズである。第 2レンズ L2 は、被写体側に凸面を向けた平凸レンズである。第 3レンズ L3は、被写体側に凸面 を向けた凸メニスカスレンズである。
第 2レンズ群 G2は、全体として負のパワーを有するレンズ群であり、第 1の光軸 A1 上に配置される第 4レンズ L4と、第 1の光軸 A1に沿って入射した光束を第 1の光軸 A1に略直交する第 2の光軸 A2に沿った方向に屈曲させるプリズム L5と、第 2の光軸 A2上に配置される第 6レンズ L6と、第 7レンズ L7とを備えている。
第 4レンズ L4は、被写体側に凸面を向けた凹メニスカスレンズである。プリズム L5 は、第 1の光軸 A1に沿って入射した光束を第 1の光軸 A1に略直交する第 2の光軸 A2に沿った方向に反射させる反射面 L5a (図 6または図 8参照)を有している。なお、 ここでは、プリズム L5、特に内部反射プリズムを用いたが、同様の機能を奏する表面 反射プリズム、内部反射鏡、表面反射鏡のいずれを採用してもよい。第 6レンズ L6は 、両凹レンズである。第 7レンズ L7は、両凸レンズである。
露光調整部材 St (図 6または図 8参照)は、第 2の光軸 A2上に配置され、第 2の光 軸 A2に沿って CCD37に入射する光の量を調整する絞りやシャッターなどの部材で ある。
第 3レンズ群 G3は、全体として正のパワーを有するレンズ群であり、第 8レンズ L8と 、第 9レンズ L9と、第 10レンズ L10とを備えている。
第 8レンズ L8は、プリズム L5側に凸面を向けた平凸レンズである。第 9レンズ L9は 、両凸レンズである。第 10レンズ L10は、両凹レンズである。
第 4レンズ群 G4は、焦点調節用のレンズ群であり、第 2の光軸 A2上に配置される 第 11レンズ L11を備えている。第 11レンズ L11は、プリズム L5側に凸面を向けた凸 メニスカスレンズである。
第 5レンズ群 G5は、第 2の光軸 A2上に配置される第 12レンズ L 12を備えている。 第 12レンズ L12は、両凸レンズである。
IRフィルタ F1 (図 6または図 8参照)は、 CCD37に入射する赤外領域の不可視光 をカットするフィルタである。なお、光学系 35は、 IRフィルタ F1の第 2の光軸 A2方向( X軸方向正側)に、光学ローパスフィルタを配置していてもよい。光学ローパスフィル タは、 CCD37に入射する光束の空間周波数の高い成分を取り除き、偽色を解消す るためのフィルタである。 なお、各レンズ群 G1〜G5を構成するレンズの構成は、上述のものに限らず、同様 の光学的効果を奏する構成で有れば、他のレンズ構成を採用することも可能である。
(3. 2. 2 :光学系の動作について)
図 6と図 8とを参照して、光学系 35の動作について説明する。
上述のように、図 6は、光学系 35が広角端に位置する場合の各レンズ群 G1〜G5 の配置を示し、図 8は、光学系 35が望遠端に位置する場合の各レンズ群 G1〜G5の 配置を示す。
第 1レンズ群 G1は、第 1の光軸 A1方向に移動可能であり、光学系 35が広角端に 位置する場合は、可動範囲のうち第 2レンズ群 G2に対する最近接位置に位置し(図 6参照)、光学系 35が望遠端に位置する場合は、可動範囲のうち第 2レンズ群 G2に 対する最離隔位置に位置する(図 8参照)。
2レンズ群 G2は、図 6と図 8とで示すように、光学系 35の広角端から望遠端のズ 一ミングに際して、 CCD37に対して相対的に静止している。
第 3レンズ群 G3は、露光調整部材 Stとともに、第 2の光軸 A2方向に移動可能であ り、光学系 35が広角端に位置する場合は、可動範囲のうち第 2レンズ群 G2に対する 最離隔位置に位置し (図 6参照)、光学系 35が望遠端に位置する場合は、可動範囲 のうち第 2レンズ群 G2に対する最近接位置に位置する(図 8参照)。
第 4レンズ群 G4は、第 2の光軸 A2方向に移動可能である。第 4レンズ群 G4は、焦 点調節動作を行うとともに、第 1レンズ群 G1および第 3レンズ群 G3の移動による結像 倍率の変化に伴って生じる焦点調節状態のずれを補正する。
第 5レンズ群 G5および IRフィルタ F1は、図 6と図 8とで示すように、光学系 35の広 角端から望遠端のズーミングに際して、 CCD37に対して相対的に静止している。 各レンズ群 G1〜G5は、それぞれ上述のように動作する。特に、第 1レンズ群 G1と 第 3レンズ群 G3とは、それぞれ連動して移動し、 CCD37における結像倍率を変化さ せる。
なお、レンズ鏡筒 31では、多段沈胴式のレンズ枠の沈胴時の各レンズ群 G1〜G5 の配置を、光学系 35が広角端に位置する場合の各レンズ群 G1〜G5の配置と一致 させている。 〈4 :レンズ鏡筒について〉
〔4. 1 :レンズ鏡筒の構成について〕
撮像装置 2の構成、主に、レンズ鏡筒 31の構成について、図 9を用いて説明する。 図 9は、図 4 (a)と同じ視点カゝら見た撮像装置 2の分解斜視図である。
レンズ鏡筒 31は、第 1レンズ群 G1を保持する 1群枠ユニット 41と、第 2レンズ群 G2 を保持する 2群枠ユニット 42が固定されているベースユニット 43と、露光調整部材 St および第 3レンズ群 G3を保持する 3群枠ユニット 44と、第 4レンズ群 G4を保持する 4 群枠ユニット 45と、第 5レンズ群 G5を保持するマスターフランジュニット 46と力も構成 されている。
1群枠ユニット 41は、第 1の光軸 A1上に配置される第 1レンズ群 G1と、第 1レンズ 群 G1を保持する 1群枠 50と、 1群枠 50を第 1の光軸 A1方向 (Y軸方向)に移動可能 に支持する駆動枠 51と、駆動枠 51を第 1の光軸 A1方向 (Y軸方向)に移動可能に 支持する固定枠 52と、固定枠 52とベースユニット 43との間に Y軸方向に沿って回転 可能に配置され、モータユニット 32の駆動力を駆動枠 51に伝達する駆動ギア 53と から主に構成される。
固定枠 52は、第 2レンズ群 G2を保持する 2群枠ユニット 42に固定される。この固定 に際しては、第 1レンズ群 G1の光軸と第 2レンズ群 G2の第 4レンズ L4の光軸とがー 致するように Z軸方向および X軸方向の位置決めが行われて 、る。
ベースユニット 43は、レンズ鏡筒 31の筐体を構成するベース 55と、ベース 55ととも に筐体を構成し、ベース 55の前面側を覆うカバー 56と、ベース 55に固定された 2群 枠ユニット 42と、ベース 55およびカバー 56により構成される筐体の内部に収納され る 3群枠ユニット 44を第 2の光軸 A2方向(X軸方向)に沿って移動させる 3群移動機 構 57と、 3群枠ユニット 44の X軸方向位置を検知するフォトセンサ 58と力も主に構成 されている。
ベースユニット 43の X軸方向負側には、駆動ギア 53を回転駆動するモータユニット 32が取り付けられている。モータユニット 32の駆動力は、駆動ギア 53を介して 3群移 動機構 57に伝達されている。ベースユニット 43の X軸方向正側には、ベースユニット 43の X軸方向正側を覆うマスターフランジュニット 46が固定されている。 3群枠ユニット 44は、第 2の光軸 A2上に設けられ、シャッター動作および絞り動作 を行う露光調整部材 Stを備えるシャッターユニット 60と、第 3レンズ群 G3と、第 3レン ズ群 G3を Y軸方向および Z軸方向に移動可能に保持する像振れ補正機構 61と、シ ャッターユニット 60と像振れ補正機構 61とを支持する 3群枠 62とから主に構成されて いる。
3群枠 62は、ベースユニット 43の 3群移動機構 57に固定され、 X軸方向に駆動さ れる。この固定に際しては、第 3レンズ群 G3が可動範囲の可動中心に位置する場合 の光軸と、第 2レンズ群 G2の第 6レンズ L6および第 7レンズ L7の光軸とがー致するよ うに Y軸方向および Z軸方向の位置決めが行われている。さらに、 3群枠 62は、後述 するマスターフランジュニット 46から X軸方向負側に延びる 3群ガイドポール 70, 71 に摺動可能に嵌合している。これにより、 3群枠ユニット 44は、 X軸方向すなわち第 2 の光軸 A2方向にのみ移動可能となる。
4群枠ユニット 45は、第 4レンズ群 G4と、第 4レンズ群 G4を保持する 4群枠 66と、 4 群枠 66に固定されるセンサーマグネット 67およびコイル 68とから主に構成されてい る。
4群枠 66は、後述するマスターフランジュニット 46から X軸方向負側に延びる 4群 ガイドポール 72, 73に摺動可能に嵌合している。これにより、 4群枠 66は、第 4レンズ 群 G4の光軸と第 2レンズ群 G2の第 6レンズ L6および第 7レンズ L7の光軸とがー致 するように Y軸方向および Z軸方向に位置決めされるとともに、 X軸方向すなわち第 2 の光軸 A2方向にのみ移動可能となる。
マスターフランジュニット 46は、第 5レンズ群 G5と、第 5レンズ群 G5を保持するマス ターフランジ 75と、マスターフランジ 75に固定され、 X軸方向負側に延びる 3群ガイド ポール 70, 71および 4群ガイドポール 72, 73と、クッションゴム 80を介して X軸方向 正側から取り付けられた IRフィルタ F1と、コイル 68との協働〖こより 4群枠ユニット 45に 駆動を発生させる磁性部材 76と、センサーマグネット 67の磁気を検知し 4群枠ュ-ッ ト 45の X方向位置をセンシングする MRセンサ 77とから主に構成されている。
マスターフランジ 75は、ベース 55の X軸方向正側に固定される。この固定に際して は、第 5レンズ群 G5の光軸と第 2レンズ群 G2の第 6レンズ L6および第 7レンズ L7の 光軸とがー致するように Y軸方向および z軸方向に位置決めされる。さらに、マスター フランジュニット 46の X軸方向正側には、 CCDユニット 33が固定される。
以下、レンズ鏡筒 31を構成する各部の詳細について説明する。
〔4. 2 : 1群枠ユニットについて〕
(4. 2. 1 : 1群枠ユニットの構成について)
図 10を用いて、 1群枠ユニット 41の詳細な構成について説明する。
図 10は、 1群枠ユニット 41の分解斜視図である。 1群枠ユニット 41は、第 1レンズ群 G1を多段沈胴式の枠体で支持するユニットである。
図 10に示すように、 1群枠ユニット 41は、第 1レンズ群 G1と、第 1レンズ群を保持す る 1群枠 50と、 1群枠 50に取り付けられた 1群 DR (デザインリング) 54と、 1群枠 50を 移動可能に支持する駆動枠 51と、駆動枠 51を移動可能に支持する固定枠 52と、駆 動枠 51にモータユニット 32 (図 9参照)からの駆動を伝達する駆動ギア 53とから構成 されている。
第 1レンズ群 G1は、 1群枠 50の内周面 101に接着または熱カシメにより固定されて いる。さらに、 1群枠 50の内周面 101において、第 1レンズ群 G1の Y軸方向正側に は、 1群 DR54が取り付けられている。これにより、第 1レンズ群 G1に不要光が入射す ることを防止している。また、 1群 DR54を取り付けることで、 1群枠 50に対する第 1レ ンズ群 G1の固着跡 (接着跡)を覆 、、外観品質を確保して 、る。
1群枠 50は、筒状部 102と、フランジ部 103と、カムピン 104a〜104cと、延長部 10 5a, 105bと、係合咅 106a, 106bと有して!/ヽる。
筒状部 102は、第 1レンズ群 G1が取り付けられる環状の内周面 101を有する。フラ ンジ部 103は、筒状部 102の Y軸方向負側の縁部において形成され、筒状部 102よ りも径大の外周面を有している。カムピン 104a〜104cは、フランジ部 103の外周面 の周方向複数箇所 (例えば、 3箇所:例えば、 Y軸方向正側から見て 3時、 7時、 11時 の位置)において、それぞれ周方向に所定角度 (例えば、 120度)離隔して設けられ ており、第 1の光軸 A1の放射方向に突起する。延長部 105a, 105bは、フランジ部 1 03の Y軸方向負側の縁部の周方向 2箇所 (例えば、 Y軸方向正側力 見て 1時の位 置と 5時の位置)を中心として所定の周方向幅 (例えば、 30度)を持って形成された、 Y軸方向負側に向力つて延びる弧状の部材である。係合部 106a, 106bは、延長部 105a, 105bのそれぞれの先端において、第 1の光軸 A1の放射方向に延びるように 形成されており、その放射方向先端かつ X軸方向正側の端部には、他の部分よりも 周方向幅が狭 、先端部 107a, 107bが形成されて 、る。
馬区動枠 51は、筒状咅 と、カムピン l l la〜l l lcと、リングギア 112とを有して!/、 る。
カムピン111&〜111じは、筒状部 110の外側面 115の周方向複数箇所 (例えば、 3 箇所:例えば、 Y軸方向正側から見て 1時、 5時、 9時の位置)において、それぞれ周 方向に所定角度 (例えば、 120度)離隔して設けられており、第 1の光軸 A1の放射方 向に突起する。リングギア 112は、筒状部 110の Y軸方向負側の縁部の周方向一部 (例えば、 Y軸方向正側から見て 1時の位置から 5時の位置)において、歯先を外側 面 115よりも第 1の光軸 A1の放射方向に突出させて、筒状部 110と一体的に形成さ れている。カムピン 11 la〜l 11cの先端を結ぶ仮想円の半径は、リングギア 112の歯 先を結ぶ仮想円の半径よりも大きく形成されている。
筒状部 110およびリングギア 112の環状の内側面 116は、 1群枠 50のフランジ部 1 03の半径よりも大きい半径を有するとともに、 1群枠 50のカムピン 104a〜104cの先 端を結ぶ仮想円の半径よりも小さい半径を有している。このため、 1群枠 50は、カムピ ン 104a〜104cを内側面 116に形成されたカム溝 118a〜118cにカム係合させるこ とにより、駆動枠 51の内側に配置可能となって 、る。
また、筒状部 110の Y軸方向正側の縁部には、第 1の光軸 A1の放射方向内側に 延びる環状のフランジ部 122が形成されている。フランジ部 122の内側面の半径は、 1群枠 50の筒状部 102の外周面の半径とほぼ同じ大きさに形成されている。これに より、 1群枠 50と駆動枠 51との第 1の光軸 A1の放射方向隙間から、レンズ鏡筒 31の 内部に不要光が進入することが防止されている。
カム溝 118a〜118cは、内側面 116の周方向に所定角度 (例えば、 120度)隔離し て形成されている。それぞれのカム溝 118a〜118cは、内側面 116の Y軸方向負側 の端部 3箇所 (例えば、 3時、 7時、 11時の位置)に開口し、カムピン 104a〜104cを カム溝 118a〜l 18cに導入するための導入端を有している。また、それぞれのカム溝 118a〜 118cは、それぞれの導入端から Y軸方向正側に延びる導入溝 119a〜 119 cと、導入溝 119a〜l 19cに連続し Y軸方向正側から見て時計回りおよび Y軸方向 正側に向かって延びる傾斜溝 120a〜 120cとを有している。なお、内側面 116のリン グギア 112側に導入端を形成するカム溝 118aの導入溝 119aは、他の導入溝 119b および 119cに比して、リングギア 112の Y軸方向幅の大きさだけ Y軸方向長さが長く なっている。
固定枠 52は、筒状部 125と、延長部 126a, 126bとを有している。筒状部 125と延 長部 126a, 126bとの内側面 127には、カム溝 128a〜128cと直進溝 129a, 129b とが形成されている。
筒状部 125の外側面 130の周方向所定位置 (例えば、 Y軸方向正側から見て 2時 の位置)には、第 1の光軸 A1の放射方向に突起する突起部 140と、突起部 140の Y 軸方向負側から延びるとともに、筒状部 125を第 1の光軸 A1の放射方向に貫通する 貫通溝 141とが形成されている。突起部 140は、駆動ギア 53の駆動軸の Y軸方向正 側の端部を軸支する。貫通溝 141には、 Y軸方向に沿って駆動ギア 53が配置される 。駆動ギア 53の歯先は、筒状部 125の内側にまで進入しており、固定枠 52の内側に 配置される駆動枠 51のリングギア 112に嚙合する。
また、筒状部 125の Y軸方向正側の縁部には、第 1の光軸 A1の放射方向内側に 延びる環状のフランジ部 142が形成されている。フランジ部 142の内側面の半径は、 駆動枠 51の筒状部 110の外側面 115の半径とほぼ同じ大きさに形成されている。こ れにより、駆動枠 51と固定枠 52との第 1の光軸 A1の放射方向隙間から、レンズ鏡筒 31の内部に不要光が進入することが防止されている。
筒状部 125の Y軸方向負側の縁部には、周方向一部において、第 1の光軸 A1の 放射方向外側に延びるフランジ 145が形成されている。フランジ 145上には、固定部 145a, 145bが形成されている。固定部 145aは、後述する 2群枠ユニット 42の固定 部 164cに位置決めされるとともに、螺子などにより固定される。固定部 145bは、モー タユニット 32に一体に形成されている腕部に位置決めされるとともに、螺子などにより 固定される。
延長部 126a, 126bは、筒状部 125の Y軸方向負側の縁部の周方向 2箇所に所定 の周方向幅を持って形成された、 Y軸方向負側に向力つて延びる弧状の部材である 。より詳細には、延長部 126a, 126bは、 Y軸方向正側から見て 12時の位置と 6時の 位置とにそれぞれの X軸方向正側の端部を有し、周方向に所定の幅を持って形成さ れている。ここで、所定の幅とは、延長部 126a, 126bの内側面 127に、後述する力 ム溝 128a, 128bの導入溝 13 la, 13 lbと直進溝 129a, 129bとをそれぞれ形成す るのに十分な幅である。
延長部 126aの Y軸方向負側の端部には、第 1の光軸 A1の放射方向外側に延び る固定部 145cが形成されている。固定部 145cは、後述する 2群枠ユニット 42の固 定部 168bに位置決めされるとともに、螺子などにより固定される。延長部 126aと延 長部 126bとの周方向中間部には、延長部 126aに隣接して、第 1の光軸 A1の放射 方向外側に延びる固定部 145dが形成されている。固定部 145dは、モータユニット 3 2の前面に対して位置決めされるとともに、螺子などにより固定される。さらに、延長部 126bの周方向に隣接して、第 1の光軸 A1の放射方向外側に延びる固定部 145eが 形成されている。固定部 145eは、後述する 2群枠ユニット 42の固定部 165dに対して 位置決めされるとともに、螺子などにより固定される。
筒状部 125および延長部 126a, 126bの環状の内側面 127は、駆動枠 51のリング ギア 112の先端を結ぶ仮想円の半径よりも大きい半径を有するとともに、駆動枠 51の カムピン 11 la〜l 1 lcの先端を結ぶ仮想円の半径よりも小さ 、半径を有して 、る。こ のため、駆動枠 51は、カムピン l l la〜l l lcを内側面 127に形成されたカム溝 128 a〜 128cにカム係合させることにより、駆動枠 51の内側に配置可能となって 、る。 カム溝 128a〜128cは、内側面 127の周方向に所定角度 (例えば、 120度)隔離し て形成されている。それぞれのカム溝 128a〜128cは、内側面 127の Y軸方向負側 の端部 3箇所 (例えば、 1時、 5時、 9時の位置)に開口し、カムピン l l la〜l l lcを力 ム溝 128a〜128cに導入するための導入端を有している。また、それぞれのカム溝 1 28a〜 128cは、それぞれの導入端から Y軸方向正側に延びる導入溝 13 la〜 131c と、導入溝 131a〜131cに連続し、 Y軸方向正側から見て反時計回りおよび Y軸方 向正側に向力つて延びる傾斜溝 132a〜132cとを有している。なお、延長部 126a, 126bの Y軸方向負側の端部にそれぞれの導入端を形成するカム溝 128a, 128bの 導入溝 131a, 131bは、他の導入溝 131cに比して、延長部 126a, 126bの Y軸方 向長さだけ Y軸方向長さが長くなつている。
直進溝 129a, 129bは、 1群枠 50の先端部 107a, 107bと係合し、 1群枠 50の第 1 の光軸 A1方向への移動を案内するとともに、 1群枠 50の固定枠 52に対する相対回 転を不可能とする。
(4. 2. 2 : 1群枠ユニットの動作について)
上述の構成を有する 1群枠ユニット 41の動作について説明する。
まず、光学系 35が広角端に位置する場合(図 5または図 6参照)、 1群枠 50は、カム ピン 104a〜104cのそれぞれが駆動枠 51の導入溝 119a〜119cの Y軸方向正側の 端部にカム係合する状態で、駆動枠 51の内側に配置されている。さらに、駆動枠 51 は、カムピン111&〜111じのそれぞれが固定枠52の導入溝131&〜131(:の¥軸方 向正側の端部にカム係合する状態で、固定枠 52の内側に配置されている。また、固 定枠 52の直進溝 129a, 129bの Y軸方向負側の端部近傍には、 1群枠 50の先端部 107a, 107b力カム係合して!/ヽる。
このとき、 1群枠 50の筒状部 102、駆動枠 51の筒状部 110、固定枠 52の筒状部 1 25のそれぞれの Y軸方向正側の端部は、その Y軸方向位置をほぼ一致させており、 1群枠ユニット 41のそれぞれ構成の配置状態は、撮像装置 2の不使用時における 1 群枠ユニット 41の配置状態 (沈胴状態)と同じ状態になっている。
次に、駆動ギア 53がモータユニット 32 (図 9参照)により Y軸方向正側から見て時計 回り方向に回転駆動されると、駆動ギア 53に嚙合するリングギア 112を介して、駆動 枠 51には、 Y軸方向正側力も見て反時計回り方向の駆動が伝達される。駆動枠 51と 固定枠 52との間には、円筒カム機構が形成されている。このため、駆動枠 51が回転 駆動されると、駆動枠 51は、固定枠 52に対して第 1の光軸 A1回りに回転するととも に、第 1の光軸 A1に沿った方向 (Y軸方向正側)に移動する。また、駆動枠 51と 1群 枠 50の間には、円筒カム機構が形成されている。さらに、 1群枠 50は、 1群枠 50と固 定枠 52との係合により、固定枠 52に対して第 1の光軸 A1回りの相対回転が規制さ れている。このため、駆動枠 51が回転駆動されると、 1群枠 50は、駆動枠 51に対し て第 1の光軸 A1方向(Y軸方向正側)に相対移動する。 最後に、光学系 35が望遠端に位置する場合、 1群枠 50は、カムピン 104a〜104c のそれぞれが駆動枠 51の傾斜溝 120a〜 120cの Y軸方向正側の端部にカム係合 する状態で、筒状部 102の大部分を駆動枠 51の筒状部 110よりも Y軸方向正側に 繰り出している。さらに、駆動枠 51は、カムピン l l la〜l l lcのそれぞれが固定枠 52 の傾斜溝 132a〜 132cの Y軸方向正側の端部にカム係合する状態で、筒状部 110 の大部分を固定枠 52の筒状部 125よりも Y軸方向正側に繰り出している。すなわち、 光学系 35が望遠端に位置する場合には広角端に位置する場合に比して、第 1レン ズ群 G1は、 1群枠 50と駆動枠 51との間に構成される円筒カム機構のリフト量と、駆 動枠 51と固定枠 52との間に構成される円筒カム機構のリフト量との合計だけ Y軸方 向正側に移動する。なお、この状態で、 1群枠 50の先端部 107a, 107bは、直進溝 1 29a, 129bの Y軸方向正側の端部近傍に位置している。すなわち、第 1レンズ群 G1 は、光学系 35が広角端に位置する場合に比して、ほぼ直進溝 129a, 129bの Y軸 方向長さ分だけ第 1の光軸 A1方向に移動している。
また、上記した 1群枠ユニット 41の広角端力も望遠端への移動に際して、固定枠 52 の筒状部 125の Y軸方向負側、かつ延長部 126a, 126bの X軸方向正側には、 1群 枠ユニット 41の各部材が進入することなぐ空間が確保されている。これにより、後述 する 3群枠ユニット 44のこの空間への進入が可能となっている。
〔4. 3 :ベースユニットについて〕
(4. 3. 1 :ベースユニットの構成について)
図 11を用いて、ベースユニット 43の構成にっ 、て説明する。
図 11は、ベースユニット 43の分解斜視図である。ベースユニット 43は、第 1の光軸 A1に沿って入射する光束を第 1の光軸 A1に直交する第 2の光軸に沿った方向に屈 曲させる第 2レンズ群 G2を保持する。また、ベースユニット 43は、第 1レンズ群 G1とと もにズームレンズ系を構成する第 3レンズ群 G3 (図 5〜図 8参照)を第 2の光軸 A2方 向に移動するための機構を備える。
図 11では、図 9を用いて説明したベースユニット 43の構成のうち、 2群枠ユニット 42 と、 2群枠ユニット 42を Y軸方向負側から固定的に支持するベース 55と、 2群枠ュ- ット 42とベース 55との Y軸方向中間に配置され、ベース 55に取り付けられる 3群移動 機構 57とを図示している。
以下、 2群枠ユニット 42、ベース 55、 3群移動機構 57のそれぞれについて詳細な 構成を説明する。
(4. 3. 2 : 2群枠ユニットの構成について)
図 11〜図 13を参照して、 2群枠ユニット 42の構成について説明する。
図 12は、 2群枠ユニット 42の分解斜視図である。
図 13は、第 1の光軸 A1および第 2の光軸 A2を含む平面による 2群枠ユニット 42の 断面図である。
図 12に示すように、 2群枠ユニット 42は、第 2レンズ群 G2と、第 2レンズ群 G2を保 持する 2群枠 150と、 2群枠 150を支持し、ベース 55に取り付けられる支持部 151とを 有している。
第 2レンズ群 G2の詳細は、図 5〜図 8を用いて説明したので、ここでは省略する。 2群枠 150は、第 4レンズ L4を保持する第 4レンズ保持枠 155と、プリズム L5を保持 するプリズム保持枠 156と、第 6レンズ L6を保持する第 6レンズ保持枠 157と、第 7レ ンズ L7を保持する第 7レンズ保持枠 158と、力も主に構成されている。
第 4レンズ保持枠 155は、第 4レンズ L4の半径とほぼ一致する半径を有し、 Y軸方 向に延びる環状の内周面 155aを有する。第 4レンズ L4は、内周面 155aに嵌合して 配置され、接着などにより固定される。また、内周面 155aの Y軸方向負側の端部の 内周側には、 Y軸に直交し、第 4レンズ L4を Y軸方向正側に向力つて支持する支持 面 155b (図 13参照)が形成されている。第 4レンズ L4は、 Y軸方向負側の面がこの 支持面 155bに当接するように配置され、 Y軸方向(第 1の光軸 A1方向)に位置決め される。
プリズム保持枠 156は、内部にプリズム L5を収納するとともに、第 1の光軸 A1方向 および第 2の光軸 A2方向に開口する枠体であり、第 4レンズ保持枠 155の Y軸方向 負側に一体に形成されている。プリズム保持枠 156の内部には、プリズム L5の反射 面 L5a (図 13参照)に対向配置され、 X軸方向正側に向力つて 45度下傾する傾斜面 156a (図 13参照)と、傾斜面 156aの Z軸方向両端力 Z軸に直交するように延伸し、 それぞれプリズム L5の上面 L5bと底面 L5cとに対向配置される対向面 156bおよび 1 56cと、が形成されている。プリズム保持枠 156の内部において、傾斜面 156a、対向 面 156b, 156cにより形成される空間には、プリズム L5が収納され、接着などにより 固定される。
第 6レンズ保持枠 157は、プリズム保持枠 156の X軸方向正側において、プリズム 保持枠 156と一体に形成されている。第 6レンズ保持枠 157は、第 6レンズ L6の半径 とほぼ一致する半径を有し、 X軸方向に延びる環状の内周面 157aを有する。第 6レ ンズ L6は、内周面 157aに嵌合して配置され、接着などにより固定される。また、内周 面 157aの X軸方向負側には、プリズム L5の出射面 L5dが位置しており(図 13参照) 、第 6レンズ L6は、 X軸方向負側の面が出射面 L5dに当接するように配置され、 X軸 方向(第 2の光軸 A2方向)に位置決めされる。
第 7レンズ保持枠 158は、第 6レンズ保持枠 157の X軸方向正側において、第 6レン ズ保持枠 157と一体に形成されている。第 7レンズ保持枠 158は、第 7レンズ L7を内 接円とする仮想正三角柱のそれぞれの側面の一部を構成する斜面 158aと、それぞ れの斜面を第 2の光軸 A2回りに滑らかに接続する弧状面 158bとを有する。第 7レン ズ L7は、外周面をそれぞれの斜面 158aに当接させて配置され、接着により固定さ れる。また、第 7レンズ L7の X軸方向負側には、第 6レンズ L6の X軸方向正側の面が 位置しており(図 13参照)、第 7レンズ L7は、 X軸方向負側の面が第 6レンズ L6の X 軸方向正側の面に当接するように配置され、 X軸方向(第 2の光軸 A2方向)に位置 決めされる。
第 7レンズ保持枠 158の X軸方向正側の端面には、中心部に開口を有する板状部 材である開口部材 159が螺子などにより固定されている。開口部材 159は、第 2の光 軸 A2に沿って 2群枠ユニット 42から出射する光のうち、不要な方向に向力 不要光 を遮断するための部材である。開口部材 159は、ほぼ中心部に円形の開口を有して おり、その開口の中心と第 2の光軸 A2とが一致するように第 7レンズ保持枠 158に取 り付けられる(図 13参照)。さらに、開口部材 159は、その開口の開口縁で、第 7レン ズ L7を X軸方向負側に支持する。
支持部 151は、 2群枠 150の X軸方向中間位置から Z軸方向正側に向かって形成 され、 X軸方向正側を向く面を有する第 1部材 163と、第 1部材 163の先端部におい て、 X軸方向正側に延びる第 2部材 164と、 2群枠 150の Z軸方向負側に形成され、 X軸方向正側を向く面を有する第 3部材 165と、 X軸方向負側の端部に形成される固 定部 168a, 168bとから主に形成されている。
第 1部材 163は、 X軸方向正側を向く面に、 4群ガイドポール 73 (図 9参照)を嵌合 固定するための孔部 163aを有している。
第 2部材 164は、 X軸方向正側を向く面の孔部 163aとほぼ同じ Y軸方向位置にお いて、 3群ガイドポール 71 (図 9参照)を嵌合固定するための孔部 164aを有している 。また、第 2部材 164は、 Z軸方向正側の端部において、 2群枠ユニット 42をベース 5 5に固定するための固定部 164bを形成するとともに、 1群枠ユニット 41を 2群枠ュ- ット 42に固定するための固定部 164cを形成する。固定部 164bは、ベース 55に形成 される固定部 171aに対して位置決めされ、螺子などにより固定される。固定部 164c は、 1群枠ユニット 41の固定枠 52に形成される固定部 145aに対して位置決めされ、 螺子などにより固定される。
上述のように、第 1部材 163は、 2群枠 150の X軸方向中間位置から Z軸方向正側 に向力つて形成され、第 2部材は、第 1部材 163の先端部において、 X軸方向正側に 向かって形成されている。このため、 2群枠 150の Z軸方向正側の面と第 2部材の Z軸 方向負側の面との間の、 2群枠 150の X軸方向正側の端面よりも X軸方向負側には、 凹部空間 166が確保されている。この凹部空間 166には、後述するシャッターュ-ッ ト 60の X軸方向負側に突出する絞り用ァクチユエータ 202が進入可能となっている。 これについては、図 27〜図 29を用いて後述する。
第 3部材 165は、 2群枠 150の Y軸方向負側の端部近傍力も Z軸方向負側に向か つて形成されており、 X軸方向正側を向く面に、 Z軸方向正側から順に、 4群ガイドポ ール 72とを嵌合固定するための孔部 165a (図 11参照)と、 3群ガイドポール 70を嵌 合固定するための孔部 165bとを有している。また、第 3部材 165は、 Z軸方向負側の 端部において、 2群枠ユニット 42をベース 55に固定するための固定部 165cを形成 するとともに、 1群枠ユニット 41を 2群枠ユニット 42に固定するための固定部 165dを 形成する。固定部 165cは、ベース 55に形成される固定部 171bに対して位置決めさ れ、螺子などにより固定される。固定部 165dは、 1群枠ユニット 41の固定枠 52に形 成される固定部 145eに対して位置決めされ、螺子などにより固定される。
上述のように、第 3部材 165は、 2群枠 150の Y軸方向負側の端部近傍力も Z軸方 向負側に向力つて形成されている。このため、第 3部材 165の Y軸方向正側には、 2 群枠 150の Z軸方向負側に隣接する凹部空間 167が確保されている。この凹部空間 167には、後述するシャッターユニット 60の X軸方向負側に突出するシャッター用ァ クチユエータ 203が進入可能となっている。これについては、図 27〜図 29を用いて 後述する。
固定部 168aは、モータユニット 32の背面側に設けられた固定部に対して、位置決 めされ、固定される。
固定部 168bは、ベース 55に形成される固定部 171cに対して位置決めされ、螺子 などにより固定されるとともに、固定枠 52の固定部 145cを固定している。
(4. 3. 3 :ベースの構成について)
図 11を用いて、ベース 55の構成について説明する。
ベース 55は、レンズ鏡筒 31の背面を構成する背面 170と、背面 170から Y軸方向 正側に延びる側面 171とから主に構成されている。
背面 170には、後述する 3群移動機構 57のリングギア 180の中心孔 180aを軸支す るための軸受部 172と、後述する 3群移動機構 57のロッドユニット 182の X軸方向へ 並進運動をガイドするためのガイドピン 173a, 173bと、ロッドユニット 182の X軸方向 への移動を規制する規制部 174と、駆動ギア 53を軸支する駆動軸軸受部 175とが 形成されている。
軸受部 172は、 Y軸方向正側に突起する円筒状の凸部であり、リングギア 180の回 転中心に設けられた中心孔 180aに挿入され、リングギア 180を回転可能に支持する ガイドピン 173a, 173bは、 X軸方向および Z軸方向にそれぞれ所定の間隔を有す るように形成された Y軸方向正側に突起する部材であり、ロッドユニット 182の長手方 向に沿って形成された案内溝 183a, 183bにそれぞれ挿入され、ロッドユニット 182 の X軸方向への移動を案内する。
規制部 174は、 X軸方向に延びる有底の長手溝であり、その X軸方向両端には、規 制部 174の溝底力も Y軸方向正側に立ち上がる端部 174a, 174bが形成されて 、る 駆動軸軸受部 175は、 1群枠ユニット 41の駆動ギア 53の駆動軸の Y軸方向負側の 端部を軸支する。
側面 171には、 2群枠ユニット 42をベース 55に固定するための固定部 171a〜171 cが形成されている。固定部 171a, 171b, 171cは、それぞれ 2群枠ユニット 42の固 定部 164b, 165c, 168bに対して位置決めされ、螺子などにより固定される。
(4. 3. 4 : 3群移動機構の構成について)
図 11を用いて、 3群移動機構 57の構成について説明する。 3群移動機構 57は、モ ータユニット 32 (図 9参照)からの駆動を受けて駆動され、 3群枠ユニット 44を第 2の 光軸 A2に沿つた方向に移動させるための機構である。
3群移動機構 57は、モータユニット 32から駆動ギア 53を介して伝達される回転駆 動を第 2の光軸 A2に沿った方向の駆動へと変換するためのリングギア 180と、 3群枠 ユニット 44と一体的に第 2の光軸 A2に沿った方向に並進運動可能なロッドユニット 1 82と、リングギア 180とロッドユニット 182とを機能的に連結するリングギアピン 181と 力 主に構成されている。
リングギア 180は、駆動ギア 53に嚙合するように外周に円弧状に歯が形成された板 状の部材であり、所定の回転角度範囲で回転運動する。リングギア 180は、回転中 心に中心孔 180aを有しており、中心孔 180aをベース 55の軸受部 172に嵌合させる ことによりベース 55に取り付けられる。
リングギアピン 181は、所定の Y軸方向長さを有する円柱状部材であり、 Y軸方向 負側の端部がカシメなどによりリングギア 180に固定されて 、る。
ロッドユニット 182は、リングギアピン 181に係合することにより、リングギア 180と機 能的に連結され、リングギア 180とともにスライダクランク機構を構成する。
図 14を用いて、ロッドユニット 182の構成を説明する。図 14は、ロッドユニット 182の 分解斜視図である。
図 14に示すように、ロッドユニット 182は、ロッド 183と、ロッド 183に固定される圧着 ノ ネ 186と、ロッド 183に圧着パネ 186を固定するためのパネピン 187と、圧着パネ 1 86の圧着動作を規制する圧着パネ規制ピン 185とから主に構成されている。圧着バ ネ 186と、パネピン 187と、圧着パネ規制ピン 185とにより、リングギア 180とロッドュ ニット 182とを弾性的に連結する弾性連結機構が構成されている。
ロッド 183は、 X軸方向に長い板状部材である。ロッド 183には、長手方向に延びる 2本の案内溝 183a, 183bと、案内溝 183bの X軸方向正側に形成されている貫通孔 183cと、案内溝 183a, 183bの X軸方向負側に形成されている係合孔 183dとが形 成されている。
案内溝 183a, 183bには、図 11を用いて説明したように、ベース 55に形成されるガ イドピン 173a, 173bがそれぞれ挿通される。案内溝 183aと案内溝 183bとは、ガイド ピン 173aとガイドピン 173bとの Z軸方向距離と同じ距離だけ Z軸方向に離れて形成 されている。これにより、ロッド 183の運動は、 X軸方向への並進運動のみに規制され ている。
貫通孔 183cには、後述する 3群枠ユニット 44の突起部 65が Y軸方向正側カも揷 入される。突起部 65は、その先端がロッド 183の Y軸方向負側に突出するまで挿入さ れる。
係合孔 183dには、リングギアピン 181が Y軸方向負側力も挿入される。係合孔 183 dは、 Z軸方向に延び、リングギアピン 181の直径よりも大きい X軸方向幅を有する第 1係合孔 183eと、第 1係合孔 183eの Z軸方向正側に連続して形成される第 1係合孔 183eよりも X軸方向に幅広な第 2係合孔 183fとから構成される。
圧着ノ ネ 186は、コィノレ 186aと、コィノレ 186a力ら延びる 2本の腕咅 186b, 186cと 力 構成されるねじりコイルばねなどである。圧着パネ 186は、コイル 186aを巻き込 むように弾性変形される場合に、それぞれの腕部 186b, 186cがお互いに向力 方 向に荷重を支持することができるように形成されて 、る。
パネピン 187は、圧着パネ 186のコイル 186aに揷通され、一端がロッド 183に形成 された孔に嵌めあわされて固定される部材であり、圧着パネ 186をロッド 183に固定 する。パネピン 187は、第 1係合孔 183eの Z軸方向負側に配設される。
圧着パネ規制ピン 185は、圧着パネ 186を所定の弾性変形状態に維持するための 部材であり、腕部 186bと腕部 186cとの間に配置され、それぞれの腕部 186b, 186c 力も他方の腕部 186c, 186bに向力 方向への圧着力を受ける。圧着パネ規制ピン 185は、第 1係合孔 183eの Z軸方向負側に配置される。また、圧着パネ規制ピン 18 5における圧着パネ 186との当接面の X軸方向幅は、第 1係合孔 183eの X軸方向幅 よりも広くなつている。
図 15を用いて、 3群移動機構 57の組み立て状態を説明する。図 15は、主にロッド ユニット 182の組み立て状態を示す斜視図である。
図 15に示すように、ロッドユニット 182では、圧着パネ 186は、ノ ネピン 187により口 ッド 183〖こ固定されている。圧着パネ 186は、弾性変形された状態で、それぞれの腕 部 186b, 186cの間に圧着パネ規制ピン 185を介在させて固定されている。この取り 付け状態では、 X軸方向正側に位置する腕部 186bは、圧着パネ規制ピン 185の X 軸方向正側の面に当接し、圧着パネ規制ピン 185に対して X軸負側に向力う方向の 圧着力を作用させている。一方、 X軸方向負側に位置する腕部 186cは、圧着パネ 規制ピン 185の X軸方向負側の面に当接し、圧着パネ規制ピン 185に対して X軸正 側に向かう方向の圧着力を作用させて 、る。
ロッドユニット 182の係合孔 183dには、圧着パネ 186の腕部 186bと腕部 186cとの X軸方向中間において、リングギア 180 (図 11参照)に固定されたリングギアピン 181 が Y軸方向負側力も挿入されている。これにより、リングギア 180が回転駆動されリン グギアピン 181の X軸方向位置が変化すると、ロッド 183は、係合孔 183dの孔縁をリ ングギアピン 181の外周に摺動させつつ X軸方向に駆動される。
ロッド 183の X軸方向に延びる案内溝 183a, 183bには、ベース 55 (図 11参照)に 形成されるガイドピン 173a, 173bがそれぞれ Y軸方向負側力ゝら揷通されている。こ れにより、駆動を受けたロッド 183は、 X軸方向に並進運動する。
ロッド 183の貫通孔 183cは、ベース 55に形成される規制部 174の Y軸方向正側に 対向するように位置している。貫通孔 183cには、後述する 3群枠ユニット 44の突起 部 65が Y軸方向正側力も挿入されている。突起部 65の先端は、ロッド 183の Y軸方 向負側に突出し、さらに規制部 174にまで進入して 、る。
図 16に、 3群枠ユニット 44の突起部 65とロッド 183と規制部 174との係合状態を示 す。図に示すように、 3群枠ユニット 44の 3群枠 62に形成された Y軸方向負側に突起 する突起部 65は、ロッド 183に形成された貫通孔 183cに挿入されており、さらに、そ の先端は、ベース 55の規制部 174に進入している。
これにより、ロッド 183は、 X軸方向正側には、突起部 65が端部 174aに当接する位 置まで移動可能であり、 X軸方向負側には、突起部 65が端部 174bに当接する位置 まで移動可能である(図 11または図 15参照)。
(4. 3. 5 :ベースユニットの動作について)
図 17〜図 22を用いて、ベースユニット 43の動作、特に、 3群移動機構 57の動作に ついて説明する。
図 17を用いて、 3群移動機構 57の動作のうち、リングギア 180 (図 11参照)とロッド 183とを弾性連結する弾性連結機構の動作について説明する。図 17は、リングギア ピン 181が係合孔 183dに挿入された状態を示して 、る。
係合孔 183dの第 1係合孔 183eの X軸方向幅 W1は、リングギアピン 181の直径 d よりも大きい。さらに、圧着パネ規制ピン 185の圧着パネ 186との当接面の X軸方向 幅 W2は、第 1係合孔 183eの X軸方向幅 W1よりも大きい。このため、リングギアピン 1 81力 第 1係合孔 183eに挿入された状態では、圧着パネ 186の腕部 186b, 186c は圧着パネ規制ピン 185の X軸方向両端の当接面に当接する。よって、リングギアピ ン 181が、第 1係合孔 183eに位置する場合には、圧着パネ 186の圧着力は、リング ギアピン 181に作用しな!/、。
一方、リングギアピン 181が係合孔 183dの縁部に沿つて第 1係合孔 183eよりも X 軸方向に幅広の第 2係合孔 183fに移動すると、リングギアピン 181は、第 2係合孔 1 83fの縁部に当接するとともに、圧着パネ 186の腕部 186bまたは腕部 186cに当接 する。よって、リングギアピン 181が、第 2係合孔 183fに位置する場合には、圧着バ ネ 186の圧着力は、リングギアピン 181に作用する。
より具体的には、リングギアピン 181が第 2係合孔 183fの X軸方向正側に位置する 場合、 X軸方向正側の腕部 186bは、リングギアピン 181により X軸方向正側に弾性 変形され、腕部 186bは、圧着パネ規制ピン 185の X軸方向正側の当接面力 離間 する。このため、圧着パネ 186の圧着力は、 X軸方向負側の腕部 186cから圧着パネ 規制ピン 185の X軸方向負側の当接面に作用する。この結果、ロッド 183は、圧着バ ネ規制ピン 185を介して、 X軸方向正側に向力 方向の押圧力を受ける。
一方、リングギアピン 181が第 2係合孔 183fの X軸方向負側に位置する場合、 X軸 方向負側の腕部 186cは、リングギアピン 181により X軸方向負側に弾性変形され、 腕部 186cは、圧着パネ規制ピン 185の X軸方向負側の当接面力も離間する。このた め、圧着パネ 186の圧着力は、 X軸方向正側の腕部 186bから圧着パネ規制ピン 18 5の X軸方向正側の当接面に作用する。この結果、ロッド 183は、圧着パネ規制ピン 185を介して、 X軸方向負側に向力 方向の押圧力を受ける。
図 18〜図 22を用いて、上述した弾性連結機構により連結されたリングギア 180と口 ッド 183との動作について説明する。
図 18は、光学系 35が広角端に位置する場合のリングギア 180の回転角度と、それ に応じた弾性連結機構の動作とロッド 183の動作とを示している。図 19〜図 21は、 光学系 35が広角端力も望遠端に移動する場合のリングギア 180の回転角度と、それ に応じた弾性連結機構の動作とロッド 183の動作とを示している。特に、図 20は、光 学系 35が広角端と望遠端との中間位置であるノーマル位置に位置する場合のリング ギア 180の回転角度と、それに応じた弾性連結機構の動作とロッド 183の動作とを示 している。図 22は、光学系が望遠端に位置する場合のリングギア 180の回転角度と、 それに応じた弾性連結機構の動作とロッド 183の動作とを示している。
図 18では、リングギア 180は、 Y軸方向正側力も見て時計回り方向の端部に位置し ている。この場合、リングギア 180に固定されるリングギアピン 181は、 X軸方向への 可動範囲のうち正側の端部に位置するとともに、ロッド 183の第 2係合孔 183fの X軸 方向正側に係合している。図 17を用いて説明したように、リングギアピン 181が第 2 係合孔 183fの X軸方向正側に位置する場合、圧着パネ 186は、ロッド 183を X軸方 向正側に押圧している。一方、ロッド 183に挿入されベース 55の規制部 174に係合 する 3群枠ユニット 44の突起部 65は、規制部 174の X軸方向正側の端部 174aに当 接しており、 X軸方向正側への移動が規制されている。よって、光学系 35が広角端 に位置する場合には、ロッド 183は、 X軸方向正側への移動が規制されているととも に、 X軸方向正側に押圧されることで確実に固定されている。
なお、本実施形態では、光学系 35を広角端に位置させた状態は、撮像装置 2の不 使用時における光学系 35の配置状態 (沈胴状態)と同じ状態になっている。このため 撮像装置 2の不使用時においてロッド 183を確実に固定することが可能となる。
図 19〜図 21では、リングギア 180は、 Y軸方向正側力も見て時計回り方向の端部 力 反時計回り方向に回転駆動されている。図 19は、リングギア 180が Y軸方向正側 から見て時計回り方向の端部近傍に位置する場合を示している。図 20は、リングギア 180が可動範囲の中間位置に位置する場合を示している。図 21は、リングギア 180 が Y軸方向正側力も見て反時計回り方向の端部近傍に位置する場合を示している。 この場合、リングギア 180に固定されるリングギアピン 181は、ロッド 183の第 1係合 孔 183eに係合しつつ、 X軸方向負側に移動される。図 17を用いて説明したように、リ ングギアピン 181が第 1係合孔 183eに位置する場合、圧着パネ 186の圧着力は、リ ングギアピン 181に作用しない。この場合、リングギア 180は、リングギアピン 181を口 ッド 183の第 1係合孔 183eに係合させながら反時計回り方向に回転運動し、これに よりロッド 183を X軸方向負側に向力つて駆動させる。ロッド 183は、案内溝 183a, 1 83bをベース 55〖こ形成されるガイドピン 173a, 173bに係合させつつ駆動されるため 、 X軸方向負側に向力つて並進運動する。ロッド 183には、 3群枠ユニット 44の突起 部 65が嵌合されている。このため、 3群枠ユニット 44は、ロッド 183の移動に従って、 X軸方向負側に向力つて移動する。
図 22では、リングギア 180は、 Y軸方向正側力も見て反時計回り方向の端部に位 置している。この場合、リングギア 180に固定されるリングギアピン 181は、 X軸方向 への可動範囲のうち負側の端部に位置するとともに、ロッド 183の第 2係合孔 183fの X軸方向負側に係合している。図 17を用いて説明したように、リングギアピン 181が 第 2係合孔 183fの X軸方向負側に位置する場合、圧着パネ 186は、ロッド 183を X 軸方向負側に押圧している。一方、ロッド 183に挿入されベース 55の規制部 174に 係合する 3群枠ユニット 44の突起部 65は、規制部 174の X軸方向負側の端部 174b に当接しており、 X軸方向負側への移動が規制されている。よって、光学系 35が望 遠端に位置する場合には、ロッド 183は、 X軸方向負側への移動が規制されていると ともに、 X軸方向負側に押圧されることで確実に固定されている。
〔4. 4 : 3群枠ユニットについて〕 図 23を用いて、 3群枠ユニット 44の詳細な構成について説明する。
図 23は、 3群枠ユニット 44の分解斜視図である。 3群枠ユニット 44は、第 2の光軸 A 2上に設けられシャッター動作および絞り動作を行う露光調整部材 Stを備えるシャツ ターユニット 60と、第 3レンズ群 G3と、第 3レンズ群 G3を Y軸方向および Z軸方向に 移動可能に保持する像振れ補正機構 61と、シャッターユニット 60と像振れ補正機構 61とを支持する 3群枠 62とから主に構成されている。
第 3レンズ群 G3の詳細は、図 5〜図 8を用いて説明したので、ここでは省略する。 シャッターユニット 60は、第 2の光軸 A2上に設けられ CCD37 (図 9参照)の露光量 および露光時間を制御するための絞りやシャッターである露光調整部材 Stを備える 本体部 201と、本体部 201の Z軸方向正側において X軸方向負側に向力つて突出し て備えられている絞り用ァクチユエータ 202と、本体部 201の Z軸方向負側において X軸方向負側に向かって突出して備えられているシャッター用ァクチユエータ 203と、 から主に構成されて 、る。絞り用ァクチユエータ 202とシャッター用ァクチユエータ 20 3とは、第 2の光軸 A2を挟んで Z軸方向に離隔して設けられている。シャッターュ-ッ ト 60は、後述する像振れ補正機構 61を挟んで、 3群枠 62に固定される。
像振れ補正機構 61は、第 3レンズ群 G3を保持し、 3群枠 62に対して Z軸方向(ピッ チング方向)および Y軸方向(ョーイング方向)に移動可能なピッチング移動枠 205と 、ピッチング移動枠 205の X軸方向正側に取り付けられた電気基板 206と、電気基板 206の X軸方向正側からピッチング移動枠 205に取り付けられるキャップ 207と、ピッ チング移動枠 205を Z軸方向に移動可能に保持するとともに、 3群枠 62に対して Y軸 方向に移動可能なョーイング移動枠 208と力 主に構成されて 、る。
ピッチング移動枠 205は、中心部に第 3レンズ群 G3を保持する筒部 205cが形成さ れ、 Y軸方向正側に軸受 205aを、 Y軸方向負側に廻り止め 205bを有している。軸 受 205aには、 Z軸方向と平行なピッチングシャフト 205cが挿入される。ピッチングシ ャフト 205cの両端は、後述するョーイング移動枠 208の固定部 208aにより支持され る。廻り止め 205bは、後述するョーイング移動枠 208の係合部 208bに対して、 Z軸 方向に移動可能に係合する。これにより、ピッチング移動枠 205は、ョーイング移動 枠 208に対して、ピッチングシャフト 205cに沿う方向に摺動可能になっている。 電気基板 206には、第 3レンズ群 G3を Y軸方向に駆動するコイル 206aと、 Z軸方 向に駆動するコイル 206bと、第 3レンズ群 G3の Y軸方向位置を検出するホール素 子 206cと、 Z軸方向位置を検出するホール素子 206dとが設けられている。なお、コ ィル 206a, 206bは、例えば、積層コイルとして電気基板 206に一体に構成されてい る。 FPC206eは、電気基板 206に取り付けられコィノレ 206a, 206b,ホーノレ素子 20 6c, 206cとメイン基板 23 (図 3参照)との間の信号の伝達を行う。
キャップ 207は、第 3レンズ群 G3の X軸方向正側に取り付けられ、フレアやゴースト などの発生を抑制する。キャップ 207は、電気基板 206を挟んでピッチング移動枠 2 05の筒部 205cを覆うように取り付けられる。
ョーイング移動枠 208は、中心部に第 3レンズ群 G3を保持する筒部 205cおよびキ ヤップ 207が挿入される開口を有する部材であり、 Y軸方向正側には、ピッチングシャ フト 205cの両端を支持する固定部 208aが、 Y軸方向負側には、ピッチング移動枠 2 05の廻り止め 205bと係合する係合部 208bが形成されている。これにより、ョーイン グ移動枠 208は、ピッチング移動枠 205を Z軸方向に摺動可能に支持している。また 、ョーイング移動枠 208の X軸方向正側の面には、 Z軸方向正側に軸受 208cが、 Z 軸方向負側に廻り止め 208dが形成されている。軸受 208cには、 Y軸方向と平行な ョーイングシャフト 208eが挿入される。ョーイングシャフト 208eの両端は、後述する 3 群枠 62の固定部 62aにより支持される。廻り止め 208dは、後述する 3群枠 62の係合 部 62bに対して、 Y軸方向に移動可能に係合する。これにより、ョーイング移動枠 20 8は、 3群枠 62に対して、ョーイングシャフト 208eに沿う方向に摺動可能になってい る。
3群枠 62は、ョーイング移動枠 208に対して、 X軸方向正側に配置される部材であ り、 X軸方向負側の面には、 Z軸方向正側にョーイングシャフト 208eの両端を支持す る固定部 62aが、 Z軸方向負側にョーイング移動枠 208の廻り止め 208dと係合する 係合部 62bが形成されている。これ〖こより、 3群枠 62は、ョーイング移動枠 208を Y軸 方向に移動可能に支持して 、る。
3群枠 62の Z軸方向負側の嵌合部 62gには、ヨーク 62dが圧入固定されている。ョ ーク 62dは、 Y軸に垂直な断面がコの字状の部材であり、内側には、 Z軸方向に 2極 着磁されたマグネット 62cを固定する。ヨーク 62dは、電気基板 206のコイル 206aと マグネット 62cとが X軸方向に対向するように固定される。これにより、ピッチング方向 の電磁ァクチユエータが構成されている。また、 3群枠 62の Y軸方向負側の嵌合部 6 2hには、ヨーク 62fが圧入固定されている。ヨーク 62fは、 Z軸に垂直な断面がコの字 状の部材であり、内側には、 Y軸方向に 2極着磁されたマグネット 62eを固定する。ョ ーク 62fは、電気基板 206のコイル 206bとマグネット 62eとが X軸方向に対向するよう に固定される。これにより、ョーイング方向の電磁ァクチユエータが構成されている。 以上の構成により、電気基板 206のコイル 206aに電流が流されると、マグネット 62 cとヨーク 62dとにより、ピッチング方向(Z軸方向)に沿った電磁力が発生する。同様 に、電気基板 206のコイル 206bに電流が流されると、マグネット 62eとヨーク 62fとに より、ョーイング方向 (Y軸方向)に沿った電磁力が発生する。
以上のように、像振れ補正機構 61では、第 2の光軸 A2に直交する 2つの方向(Y 軸方向および Z軸方向)に第 3レンズ群 G3を駆動させ、像振れ補正を行うことが可能 となる。
3群枠 62の Y軸方向負側には、 Y軸方向負側に突起する突起部 65が形成されて いる。突起部 65は、ロッド 183 (図 14参照)の貫通孔 183cに係合する。これにより、 3 群枠 62は、ロッドユニット 182からの X軸方向への駆動を受ける。
また、 3群枠 62には、 Y軸方向正側かつ Z軸方向正側の角部と、 Y軸方向負側かつ Z軸方向負側の角部とに、それぞれ軸受部 62iと、軸受部 6¾とが形成されている。軸 受部 62iには、マスターフランジュニット 46 (図 9参照)から X軸方向に沿って延びる 3 群ガイドポール 71が挿入される。軸受部 62jには、マスターフランジュニット 46 (図 9 参照)から X軸方向に沿って延びる 3群ガイドポール 70が挿入される。これにより、 3 群枠 62は、 3群ガイドポール 70, 71に沿って、 X軸方向に移動可能となっている。 さら〖こ、 3群枠 62〖こは、上述のように、像振れ補正機構 61が固定されるとともに、さ らにその X軸方向負側からシャッターユニット 60が取り付けられている。
以上により、 3群枠ユニット 44は一体として、ロッドユニット 182からの X軸方向への 駆動を受けるとともに、 3群ガイドポール 70, 71により X軸方向にガイドされ、 X軸方 向すなわち第 2の光軸 A2に沿った方向に移動する。 〔4. 5 :4群枠ユニットについて〕
図 24を用いて、 4群枠ユニット 45の詳細な構成について説明する。
図 24は、 4群枠ユニット 45の分解斜視図である。 4群枠ユニット 45は、第 4レンズ群
G4を保持し、第 2の光軸 A2に沿って移動して焦点調節動作を行うとともに、第 1レン ズ群 G1および第 3レンズ群 G3の移動による結像倍率の変化に伴って生じる焦点調 節状態のずれを補正する。
4群枠ユニット 45は、第 4レンズ群 G4と、第 4レンズ群 G4を保持する 4群枠 66と、 4 群枠 66に固定されるセンサーマグネット 67およびコイル 68とから主に構成されてい る。
第 4レンズ群 G4の詳細は、図 5〜図 8を用いて説明したので、ここでは省略する。
4群枠 66は、第 4レンズ群 G4を保持する開口 66aを有している。第 4レンズ群 G4は 、この開口 66aに接着またはカシメにより固定されている。
4群枠 66には、 Y軸方向正側かつ Z軸方向正側の角部と、 Y軸方向負側かつ Z軸 方向負側の角部とに、それぞれ軸受部 66bと、軸受部 66cとが形成されている。軸受 部 66bは、 X軸方向に長い筒状の軸受であり、マスターフランジュニット 46 (図 9参照 )から X軸方向に沿って延びる 4群ガイドポール 73が挿入される。軸受部 66cには、 マスターフランジュニット 46 (図 9参照)から X軸方向に沿って延びる 4群ガイドポール 72が挿入される。これにより、 4群枠 66は、 4群ガイドポール 73, 72に沿って、 X軸方 向に移動可能となっている。
4群枠 66には、筒状の軸受部 66bに長手方向が沿うようにセンサーマグネット 67が 固定されている。センサーマグネット 67は、 X軸方向に多極着磁されている。センサ 一マグネット 67は、マスターフランジュニット 46の MRセンサ 77 (図 9参照)と Y軸方 向に対向して配置される。これにより、センサーマグネット 67が 4群枠 66とともに X軸 方向に移動すると、 MRセンサ 77は、その周辺の磁界の変化を検出する。これにより 、 4群枠ユニット 45の位置が検出される。
また、 4群枠 66の X軸方向正側には、コイル 68が接着固定されている。コイル 68に は、 FPC68aが接続されている。 FPC68aは、コイル 68とメイン基板 23 (図 3参照)と を電気的に接続する。 コイル 68は、後述するマスターフランジュニット 46に固定されている Z軸に垂直な 断面がコの字状のメインヨーク 76aの一部により貫通されている。メインヨーク 76aの 他部には、マグネット 76bが固定されている。また、メインヨーク 76aの X軸方向負側 の開放端は、コイル 68を貫通した状態でサイドヨーク 76cにより閉じられている。以上 のメインヨーク 76a、マグネット 76bおよびサイドヨーク 76cにより構成される磁性部材 76と、コイル 68とにより、ボイスコイル型のリニアモータが構成される。これにより、コィ ル 68に電流が流されると、コイル 68に X軸方向の駆動力が発生し、コイル 68および コイル 68を固定する 4群枠ユニット 45が X軸方向に駆動される。
以上により、 4群枠ユニット 45は、ボイスコイル型のリニアモータにより X軸方向への 駆動を受けるとともに、 4群ガイドポール 73, 72により X軸方向にガイドされ、 X軸方 向すなわち第 2の光軸 A2に沿った方向に移動する。
なお、ここでは、リニアモータを用いて、 4群枠ユニット 45を駆動する場合について 示したが、 4群枠ユニット 45は、他のモータ、例えば、ステッピングモータなどにより駆 動されてもよい。
〔4. 6 :マスターフランジュニットについて〕
図 25を用いて、マスターフランジュニット 46の詳細な構成について説明する。 図 25は、マスターフランジュニット 46の分解斜視図である。マスターフランジュ-ッ ト 46は、ベースユニット 43とともに、レンズ鏡筒 31の筐体を構成する部材であり、ベ ース 55の X軸方向に螺子などにより固定される。
マスターフランジュニット 46には、 4群枠ユニット 45のコイル 68とともに磁気回路を 構成する磁性部材 76が固定されている。具体的には、磁性部材 76を構成するメイン ヨーク 76aの圧入用突起 76dをマスターフランジュニット 46の嵌合部(図示せず)に 圧入固定することにより、磁性部材 76を固定している。メインヨーク 76aの Y軸方向負 側の内側面には、マグネット 76bが接着などにより固定されている。さらに、メインョー ク 76aには、 4群枠ユニット 45のコイル 68が貫通されており、コイル 68が貫通された 状態で、メインヨーク 76aの X軸方向負側の開放端には、サイドヨーク 76cが固定され ている。
マスターフランジュニット 46の Y軸方向正側の面には、 MRセンサ 77 (図 9参照)を 取り付けるための嵌合部 75fが形成されている。嵌合部 75fの一部は、マスターフラ ンジユニット 46の内側と貫通された貫通部 75gを有している。 MRセンサ 77は、この 嵌合部 75fに固定されるとともに、貫通部 75gを介して、マスターフランジュニット 46 の内側に位置する 4群枠ユニット 45のセンサーマグネット 67 (図 24参照)と Y軸方向 に対向する。 MRセンサ 77には、図示しない FPCが接続されており、 FPCを介して、 メイン基板 23 (図 3参照)と電気的に接続されている。
マスターフランジュニット 46の Y軸方向正側かつ Z軸方向正側の角部には、 Z軸方 向に隣接する筒状のガイドポール支持部 75b, 75cが形成されている。 Z軸方向正側 に位置するガイドポール支持部 75bは、 3群ガイドポール 71の X軸方向正側の端部 を支持する。 Z軸方向負側に位置するガイドポール支持部 75cは、 4群ガイドポール 73の X軸方向正側の端部を支持する。また、マスターフランジュニット 46の Y軸方向 負側かつ Z軸方向負側の角部には、 Z軸方向に隣接する筒状のガイドポール支持部 75d, 75eが形成されている。 Z軸方向正側に位置するガイドポール支持部 75dは、 4群ガイドポール 72の X軸方向正側の端部を支持する。 Z軸方向負側に位置するガ イドポール支持部 75eは、 3群ガイドポール 70の X軸方向正側の端部を支持する。ま た、それぞれのガイドポール 70〜73の X軸方向負側の端部は、 2群枠ユニット 42に 固定されている。
〔4. 7 :レンズ鏡筒の動作〕
図 26を用いて、レンズ鏡筒 31の各部の動作について説明する。図 26は、レンズ鏡 筒 31の第 1の光軸 A1および第 2の光軸 A2を含む平面における断面図である。図 2 6では、説明の都合上、第 1の光軸 A1および第 2の光軸 A2を含む平面に位置しな い部材も示している。また、説明の都合上、主に説明に必要な構成を示している。図 26 (a)は、光学系 35が広角側に位置する場合、図 26 (b)は、光学系 35が広角端と 望遠端との中間位置であるノーマル位置に位置する場合、図 26 (c)は、光学系 35が 望遠端に位置する場合を示して!/、る。
以下、光学系 35が広角側から望遠側にズーミングされる場合の各部の動作につい て説明する。
まず、モータユニット 32が動作すると、駆動ギア 53が駆動される。駆動ギア 53は、 1 群枠ユニット 41の駆動枠 51と、ベースユニット 43のリングギア 180に嚙合しており、 駆動ギア 53の回転駆動は、駆動枠 51とリングギア 180とを回転駆動させる。
駆動枠 51が回転駆動されると、上述のごとく構成された 1群枠ユニット 41が動作し 、それに保持される第 1レンズ群 G1が Y軸方向正側に移動する。
リングギア 180が回転駆動されると、その駆動は、ロッドユニット 182の X軸方向負 側への並進運動に変換される。ロッドユニット 182には、 3群枠ユニット 44の突起部 6 5が係合している。このため、ロッドユニット 182とともに、 3群枠ユニット 44は、 X軸方 向負側に並進運動する。
図 26 (a)に示すように、光学系 35が広角側に位置する場合には、 3群枠ユニット 44 は、その一部が 1群枠ユニット 41の X軸方向正側の一部と Y軸方向に対向するように 配置されている。具体的には、 3群枠ユニット 44の一部が固定枠 52の X軸方向正側 の一部と Y軸方向に対向するように配置されて 、る。
また、図 26 (b)に示すように、光学系 35が望遠側に移動すると、 1群枠 50および駆 動枠 51が Y軸方向正側に移動するとともに、その移動により生まれた空間に 3群枠ュ ニット 44が X軸方向正側から進入する。
さらに、図 26 (c)に示すように、光学系 35が望遠端に位置する場合には、 3群枠ュ ニット 44は、 X軸方向への可動範囲のうち、 2群枠ユニット 42に最近接する位置まで 移動する。
ここで、図 27〜図 29を用いて、 2群枠ユニット 42と 3群枠ユニット 44との位置関係 について説明する。図 27は、光学系 35が広角端に位置する場合の 2群枠ユニット 4 2と 3群枠ユニット 44のシャッターユニット 60との位置関係を示す斜視図である。図 2 8は、光学系が望遠端に位置する場合の 2群枠ユニット 42と 3群枠ユニット 44のシャ ッターユニット 60との位置関係を示す斜視図である。図 29は、光学系が望遠端に位 置する場合の 2群枠ユニット 42と 3群枠ユニット 44のシャッターユニット 60との位置関 係を示す Y軸方向正側から見た平面図である。
図 27に示すように、 2群枠ユニット 42には、 X軸方向正側、すなわち 3群枠ユニット 44側に向けて凹部空間 166と凹部空間 167とが形成されている。この凹部空間 166 と凹部空間 167とは、 3群枠ユニット 44から X軸方向負側に突出して設けられた絞り 用ァクチユエータ 202とシャッター用ァクチユエータ 203とに対して、それぞれ X軸方 向に対向する位置に形成されている。このため、図 28に示すように、光学系 35が望 遠側に移動し、シャッターユニット 60が 2群枠ユニット 42側に最近接する位置まで移 動すると、凹部空間 166に絞り用ァクチユエータ 202が嵌り合い、凹部空間 167にシ ャッター用ァクチユエータ 203が嵌り合う。
また、図 29に示すように、絞り用ァクチユエータ 202とシャッター用ァクチユエータ 2 03とは、第 2の光軸 A2を挟んで Z軸方向に離隔して設けられており、その間隔は、 2 群枠 150の Z軸方向幅よりも大きい。このため、シャッターユニット 60が 2群枠ユニット 42側に最近接する位置まで移動すると、 2群枠 150は、絞り用ァクチユエータ 202と シャッター用ァクチユエータ 203との Z軸方向中間部に嵌り合う。
以上のように 2群枠ユニット 42と 3群枠ユニット 44とを構成しているため、第 3レンズ 群 G3の X軸方向の可動範囲を大きくすることが可能となる。すなわち、レンズ鏡筒 31 を X軸方向にコンパクトに形成しつつ、第 3レンズ群 G3と CCD37との X軸方向最大 距離を大きくすることが可能となる。
以上に説明した 1群枠ユニット 41と 3群枠ユニット 44との協働により、光学系 35は、 CCD37への結像倍率を変化させる(図 26参照)。 4群枠ユニット 45は、この結像倍 率の変化に伴って生じる焦点調節状態のずれを補正する。補正は、 4群枠ユニット 4 5のコイル 68とマスターフランジュニット 46の磁性部材 76とにより構成されるボイスコ ィル型のリニアモータにより、 4群枠ユニット 45を X軸方向に駆動することにより行わ れる(図 24参照)。
なお、図 26に示すように、 2群枠ユニット 42の X軸方向負側には、 1群枠ユニット 41 の Y軸方向負側に形成される空間 195を利用してモータユニット 32が配置されてい る。これにより、光学系 35を構成する部材が配置されておらず、光学系 35に影響を 与えない空間を有効に利用して、撮像装置 2を構成する部材を配置することが可能と なり、空間利用効率を向上させることが可能となっている。
〈5 :効果〉
[5. 1〕
撮像装置 2は、第 1の光軸 A1方向に多段に繰り出し可能かつ沈胴可能な多段沈 胴式の 1群枠ユニット 41を有している。さらに、光学系 35として、屈曲光学系を採用 している。このため、撮像装置 2をコンパクトに構成しつつ、第 1レンズ群 G1から CCD 37までの光路長を長くすることができ、高倍率なズームレンズ系を構成することが可 能となる。
[5. 2〕
撮像装置 2では、第 1レンズ群 G1と第 3レンズ群 G3とは、 CCD37に対する光路上 での相対位置を変更する。このため、より光学的に高性能なズームレンズ系を構成す ることが可能となる。
[5. 3〕
駆動枠 51は、ズームモータ 36により第 1の光軸 A1回りに回転駆動されることにより 、プリズム L5を備える 2群枠ユニットに対して第 1の光軸 A1に沿った方向に移動する 。さらに、 1群枠 50は、駆動枠 51の駆動により、駆動枠 51に対して第 1の光軸 A1に 沿った方向に移動する。撮像装置 2では、ズームモータ 36からの駆動力が駆動枠 51 を介して 1群枠 50に伝達される。このため、 1群枠 50を駆動するための特別なモータ が不必要となり、撮像装置 2をより簡易に構成することが可能となる。
[5. 4〕
1群枠ユニット 41の固定枠 52は、プリズム L5を固定する 2群枠ユニット 42に対して 直接固定されている。固定枠 52は、 1群枠 50および駆動枠 51を第 1の光軸 A1方向 に移動可能に支持する。このため、プリズム L5に対する第 1レンズ群 G1の位置決め 、特に第 1の光軸 A1に直交する方向の位置決めを高精度に行うことが可能となる。
[5. 5〕
撮像装置 2では、固定枠 52の内周側に駆動枠 51が配置され、駆動枠 51の内周側 に 1群枠 50が配置される。駆動枠 51は、カムピン l l la〜l l lcを固定枠 52のカム溝 128a〜128cに係合させつつ第 1の光軸 A1方向に移動可能である。 1群枠 50は、 カムピン 104a〜104cを駆動枠 51のカム溝 128a〜128cに係合させ、さらに先端部 107a, 107bを直進溝 129a, 129bに係合させつつ第 1の光軸 Al方向に移動可能 である。特に、先端部 107a, 107bを直進溝 129a, 129bに係合させて直進するた め、 1群枠 50の第 1の光軸 A1回りの回転が防止されている。このため、撮像装置 2で は、 1群枠 50を直進させるための直進枠を設ける必要がなぐ撮像装置 2をより簡易 に構成することが可能となる。
[5. 6〕
固定枠 52では、延長部 126a, 126bは、筒状部 125の X軸方向負側にのみ設けら れている。このため、図 26で説明したように、 3群枠ユニット 44は、固定枠 52と干渉 することなぐ X軸方向に移動することが可能となる。
[5. 7]
撮像装置 2は、第 3レンズ群 G3を保持する 3群枠ユニット 44を第 2の光軸 A2に沿つ た方向に移動させる 3群移動機構 57を備えている。 1群枠ユニット 41と 3群移動機構 57とは、ズームモータ 36により駆動される駆動ギア 53を介して機能的に連結されて いる。このため、 1群枠ユニット 41と 3群移動機構 57とをそれぞれ駆動する機構を必 要とせず、撮像装置 2をより簡易に構成することが可能となる。また、このことは、撮像 装置 2の静音化にもつながる。さらに、 1群枠ユニット 41の駆動枠 51のリングギア 112 と 3群移動機構 57のリングギア 180とのいずれも力 駆動ギア 53に嚙合して駆動され るため、簡易に 1群枠ユニット 41と 3群移動機構 57との動作を連動させることが可能 となる。
[5. 8〕
3群移動機構 57は、ズームモータ 36からの回転駆動を第 2の光軸 A2に沿った方 向の駆動へと変換するリングギア 180およびリングギアピン 181と、リングギアピン 18 1に係合し第 2の光軸 A2に沿った方向に移動するロッドユニット 182とを備える。この ため、第 1レンズ群 G1を第 1の光軸 A1に沿った方向に移動させる 1群枠ユニット 41と 、第 3レンズ群 G3を第 2の光軸 A2に沿った方向に移動させる 3群移動機構 57とを同 じ駆動手段で駆動することが可能となる。
[5. 9〕
撮像装置 2では、圧着パネ 186と、パネピン 187と、圧着パネ規制ピン 185とにより 、リングギア 180とロッド 183とを弹性的に連結する弾性連結機構が構成されている。 弾性連結機構は、ロッド 183が X軸方向正側の端部に位置する場合に、 X軸方向正 側に向けてロッド 183を押圧する。また、ロッド 183が X軸方向負側の端部に位置す る場合に、 X軸方向負側に向けてロッド 183を押圧する。これにより、ロッド 183および ロッド 183と一体的に移動する 3群枠ユニット 44のがたつきを防止できる。特に、光学 系が広角端または望遠端に位置する場合や撮像装置の不使用状態 (沈胴状態)に おける 3群枠ユニット 44のがたつきを防止できる。
〔5. 10〕
3群枠ユニット 44の X軸方向への移動を案内する 3群ガイドポール 70, 71の一端 は、第 2レンズ群 G2を備える 2群枠ユニット 42に固定されている。このため、 2群枠ュ ニット 42に対する 3群枠ユニット 44の位置決め、特に、第 2の光軸 A2に直交する方 向への位置決めを高精度に行うことが可能となる。
[5. 11〕
図 26に示すように、モータユニット 32の一部は、プリズム L5の反射面 L5aを挟んで 3群枠ユニット 44と反対側の空間に配置される。このため、光学系 35を構成する部材 が配置されておらず、光学系 35に影響を与えない空間を有効に利用して、撮像装 置 2を構成する部材を配置することが可能となり、空間利用効率を向上させることが 可能となる。
〔5. 12〕
シャッターユニット 60には、絞り用ァクチユエータ 202とシャッター用ァクチユエータ 203が 2群枠ユニット 42側に突出して形成されている。 2群枠ユニット 42の 2群枠 15 0は、シャッターユニット 60と 2群枠ユニット 42とが近接する場合に、絞り用ァクチユエ ータ 202とシャッター用ァクチユエータ 203との Z軸方向中間部に嵌り込む。これによ り、撮像装置 2の第 2の光軸に沿った方向の寸法を小さくすることが可能となる。
〔5. 13〕
2群枠ユニット 42では、開口部材 159を 2群枠 150に固定することにより、第 6レンズ L6および第 7レンズ L7を X軸方向負側に支持している。開口部材 159は、第 7レンズ L7から出射する光のうち、不要な方向に向力 不要光を遮断しているとともに、第 6レ ンズ L6および第 7レンズ L7を X軸方向負側に支持する。このため、撮像装置 2の構 成部材を削減し、コスト低減の効果を奏することが可能となる。
[5. 14〕 デジタルカメラ 1は、撮像装置 2を備えるため、上記撮像装置 2の効果を奏すること が可能である。
〔5. 15〕
デジタルカメラ 1では、被写体の鉛直方向上下と撮像される被写体像の短辺方向 上下とがー致するように撮像を行う場合に、第 2の光軸 A2に沿った方向が水平方向 に略一致する。このため、デジタルカメラ 1では、被写体の鉛直方向上下と撮像され る被写体像の短辺方向上下とがー致するように撮像を行う通常撮像状態において、 デジタルカメラ 1の長手方向を水平方向に一致させて撮像を行うことが可能となる。ま た、通常撮像状態にぉ 、てデジタルカメラの短手方向を水平方向に一致させて撮像 を行うデジタルカメラに比して、通常撮像状態での鉛直方向の寸法を小さくすること が可能となる。
〔5. 16〕
デジタルカメラ 1では、第 2の光軸 A2に沿った方向は、画像表示部 18の長辺方向 に略並行する。画像表示部 18の長辺方向は、外装部 11の長手方向と略並行する。 このため、画像表示部 18の長辺方向を略水平方向に一致させて撮像を行う通常撮 影状態において、外装部 11の長手方向を略水平方向に一致させて撮像を行うこと が可能となる。また、第 2の光軸 A2に沿った方向が画像表示部 18の短辺方向と略並 行するデジタルカメラに比して、画像表示部 18の短辺方向の寸法を小さくすることが 可能となる。
[5. 17]
デジタルカメラ 1では、 X軸方向正側にグリップ部 12が形成されている。このため、 グリップ部 12と、デジタルカメラ 1の X軸方向負側に配置される 1群枠ユニット 41との X軸方向距離を確保することが可能となる。これにより、撮影時に第 1レンズ群 G1へ の指がかりが防止可能となる。
〔5. 18〕
デジタルカメラ 1では、撮影時に 1群枠ユニット 41が外装部 11から被写体側 (Y軸 方向正側)に突出する。撮影時に第 1レンズ群 G1への指が力りが防止可能となる。 〔5. 19〕 デジタルカメラ 1では、像振れ補正機構 61を備えている。このため、より高品質な撮 像を行うことが可能となる。
〔5. 20]
撮像装置 2の Z軸方向幅 (Wz)は、 Y軸方向幅 (Wy)よりも大きく形成されている。こ のため、デジタルカメラ 1の第 1の光軸 A1に沿った方向の厚みを薄く形成することが 可能となる。
〈6 :その他〉
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定さ れるものではなぐ発明の要旨を逸脱しない範囲で種々の変更が可能である。
[6. 1〕
上記実施形態で図 1〜図 3を用 ヽて説明したデジタルカメラ 1および本体部 3の外 観および構成は、説明したものに限らない。
例えば、デジタルカメラ 1を構成する部材およびその配置は、上記したものに限定さ れない。
また例えば、デジタルカメラの外観および構成は、図 30に示すようなものであっても よい。なお、図 30では、図 1〜図 3で説明した各部と同様の部分には同じ符号を付し て説明を省略する。
図 30 (a)にデジタルカメラ 211の Y軸方向正側の外観を示す。デジタルカメラ 211 は、上述の撮像装置 2と、外観が直方体状の外装部 214を有する本体部 213と、外 装部 214に連結機構 212により連結された画像表示部 228とを備えている。
画像表示部 228は、連結機構 212により、 X軸方向に延びる軸回りに回転可能に 取り付けられており、外装部 214の Y軸方向正側および Y軸方向負側に折りたたみ 可能である。また、画像表示部 228は、外装部 214の Y軸方向負側に折りたたまれた 状態で Y軸方向負側を向く面に画像を表示するための液晶部 228aを配置している。 言い換えれば、画像表示部 228は、 Y軸方向正側に折りたたまれた状態で Y軸方向 正側を向く面に液晶部 228aを配置している。これにより、デジタルカメラ 211の不使 用時には、画像表示部 228を外装部 214の Y軸方向負側に折りたたむことが可能と なり、デジタルカメラ 211の不使用時に液晶部 228aを保護することが可能となる。ま た、デジタルカメラ 211の使用時には、画像表示部 228を外装部 214の Y軸方向正 側に折りたたむことが可能となり、この状態で Y軸方向正側を向く液晶部 228aにより 撮像される像を視認することが可能となる。
画像表示部 228の Z軸方向寸法 Wzlは、外装部 214の Z軸方向寸法 Wz2とほぼ 同じであり、 X軸方向寸法 Wxlは、外装部 214から Y軸方向正側に突出する撮像装 置 2の X軸方向正側の端部から外装部 214の X軸方向正側の端部までの X軸方向寸 法 Wx2とほぼ同じである。このため、画像表示部 228が外装部 214の Y軸方向正側 に折りたたまれると、画像表示部 228は、外装部 214の X軸方向にも Z軸方向にも突 出しない。
図 30 (b)は、画像表示部 228を外装部 214の Y軸方向正側に折りたたんだ状態を 示すとともに、外装部 214の内部において X軸方向負側に配置される部材を示す透 視図である。
図 30 (b)に示すように、画像表示部 228の Y軸方向寸法 Wylは、外装部 214から 突出する撮像装置 2の固定枠 52の Y軸方向寸法 Wy2とほぼ同じである。このため、 画像表示部 228を外装部 214の Y軸方向正側に折りたたんだ状態で、固定枠 52の Y軸方向正側の端部と画像表示部 228の Y軸方向正側の面との Y軸方向位置がほ ぼ一致する。また、図 3 (b)に示したのと同様に、外装部 214の内部には、撮像装置 2 、メイン基板 23、電池 22、メモリカード 24が配置されている。
図 30 (c)は、外装部 214の内部において Y軸方向正側に配置される部材を示す透 視図である。図 3 (a)に示したのと同様に、外装部 214には、ストロボ 15、メインコンデ ンサ 20、サブ基板 21、撮像装置 2、電池 22が配置されている。
[6. 2〕
光学系 35の構成は、説明した構成に限らない。例えば、各レンズ群 G1〜G5は、 他のレンズの組み合わせにより実現されてもよい。
[6. 3〕
1群枠ユニット 41の構成は、説明した構成に限らない。例えば、 1群枠 50、駆動枠 5 1、固定枠 52のそれぞれに形成されるカムピンやカム溝は、同様の機能を果たすも のであれば、他の構成により実現されてもよい。 [6. 4〕
2群枠ユニット 42の構成は、説明した構成に限らない。例えば、 2群枠 150は、第 2 レンズ群 G2を保持することができるものであれば、他の構造を有して 、てもよ!/、。 産業上の利用可能性
本発明では、高倍率なズームレンズ系の実現と、装置の小型化の実現とを両立す るカメラを提供することが可能となる。このため、本発明にかかるカメラは、高倍率なズ ームレンズ系の実現と、装置の小型化の実現との両立が求められる分野において有 用である。

Claims

請求の範囲
[1] 第 1の光軸に沿って入射した光束を取り込む第 1のレンズ群と、
前記第 1の光軸に沿って入射した光束を、前記第 1の光軸に交差する第 2の光軸 に沿った方向に屈曲させる屈曲手段と、
前記第 1のレンズ群を保持し、前記第 1の光軸に沿った方向に前記第 1のレンズ群 と前記屈曲手段とを相対的に移動させる少なくとも一つのレンズ枠と、
前記屈曲手段により屈曲された前記光束を取り込む第 2のレンズ群と、 前記第 2のレンズ群を通過した前記光束を受光する撮像手段と、
前記レンズ枠を移動可能に支持するとともに、前記屈曲手段と前記第 2のレンズ群 と前記撮像手段とが配置されるレンズ鏡筒と、
前記レンズ鏡筒を保持するケーシングと、
を備え、
被写体の鉛直方向上下と撮像される被写体像の短辺方向上下とがー致するように 撮像を行う場合に、前記第 2の光軸に沿った方向が水平方向に略一致する、 カメラ。
[2] 第 1の光軸に沿って入射した光束を取り込む第 1のレンズ群と、
前記第 1の光軸に沿って入射した光束を、前記第 1の光軸に交差する第 2の光軸 に沿った方向に屈曲させる屈曲手段と、
前記第 1のレンズ群を保持し、前記第 1の光軸に沿った方向に前記第 1のレンズ群 と前記屈曲手段とを相対的に移動させる少なくとも一つのレンズ枠と、
前記屈曲手段により屈曲された前記光束を取り込む第 2のレンズ群と、 前記第 2のレンズ群を通過した前記光束を受光する撮像手段と、
前記レンズ枠を移動可能に支持するとともに、前記屈曲手段と前記第 2のレンズ群 と前記撮像手段とが配置されるレンズ鏡筒と、
前記レンズ鏡筒を保持するとともに、前記撮像手段が撮像する像を視認するための 視認手段が設けられたケーシングと、
を備え、
前記第 2の光軸に沿った方向と前記視認手段の長辺方向とは略並行する、 カメラ。
[3] 前記レンズ枠は、複数設けられている、
請求項 1または 2に記載のカメラ。
[4] 前記ケーシングの前記第 2の光軸に沿った方向の前記撮像手段側には、把持のた めの把持手段が設けられて 、る、
請求項 1〜3のいずれか 1項に記載のカメラ。
[5] 前記レンズ枠は、被写体を撮像する場合に、前記ケーシングの前記被写体側の面 よりも前記被写体側に向けて突出する、
請求項 1〜4のいずれか 1項に記載のカメラ。
[6] 第 2のレンズ群を前記第 2の光軸に直交する方向に移動可能に保持する像振れ補 正手段、
をさらに備える、
請求項 1〜5のいずれか 1項に記載のカメラ。
[7] 前記屈曲手段は、前記第 1の光軸に沿って入射する光束を前記第 2の光軸に沿つ た方向に反射させる反射面を有するとともに、前記撮像手段に対する相対位置が固 定されている、
請求項 1〜6のいずれか 1項に記載のカメラ。
[8] 前記レンズ鏡筒は、前記第 1の光軸に沿った方向の寸法が、前記第 1の光軸と第 2 の光軸とに直交する方向の寸法よりも小さく形成されている、
請求項 1〜7のいずれか 1項に記載のカメラ。
PCT/JP2006/321655 2005-10-31 2006-10-30 カメラ WO2007052606A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007542727A JPWO2007052606A1 (ja) 2005-10-31 2006-10-30 カメラ
US12/092,193 US7782549B2 (en) 2005-10-31 2006-10-30 Camera
CN2006800383784A CN101288026B (zh) 2005-10-31 2006-10-30 照相机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-316745 2005-10-31
JP2005316745 2005-10-31

Publications (1)

Publication Number Publication Date
WO2007052606A1 true WO2007052606A1 (ja) 2007-05-10

Family

ID=38005759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321655 WO2007052606A1 (ja) 2005-10-31 2006-10-30 カメラ

Country Status (4)

Country Link
US (1) US7782549B2 (ja)
JP (1) JPWO2007052606A1 (ja)
CN (1) CN101288026B (ja)
WO (1) WO2007052606A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787193B2 (en) * 2005-11-04 2010-08-31 Panasonic Corporation Imaging device and camera
US7869702B2 (en) * 2005-12-07 2011-01-11 Panasonic Corporation Image blur correcting device and camera
JP2010266582A (ja) * 2009-05-13 2010-11-25 Canon Inc 光学素子の位置決め装置
TW201126249A (en) * 2010-01-18 2011-08-01 Ability Entpr Co Ltd Photographic and projection device
US8620151B2 (en) 2010-03-12 2013-12-31 Ability Enterprise Co., Ltd. Photographic and projection module and electronic system having the same
KR101630307B1 (ko) * 2010-05-12 2016-06-14 삼성전자주식회사 디지털 촬영 장치, 그 제어 방법, 및 컴퓨터 판독가능 저장매체
US9274311B2 (en) * 2014-01-13 2016-03-01 Genius Electronic Optical Co., Ltd. Compact narrow field of view lenses for mobile devices
JP6427944B2 (ja) * 2014-05-08 2018-11-28 ソニー株式会社 撮像装置
CN108037578B (zh) * 2018-01-10 2019-10-18 浙江舜宇光学有限公司 摄像透镜系统
JP7381241B2 (ja) * 2019-08-01 2023-11-15 ニデックインスツルメンツ株式会社 光学ユニット
CN112532818A (zh) * 2019-09-18 2021-03-19 Oppo广东移动通信有限公司 成像模组、成像方法和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876165A (ja) * 1994-06-28 1996-03-22 Nikon Corp 防振カメラ
JPH11258678A (ja) * 1998-03-11 1999-09-24 Olympus Optical Co Ltd レンズ鏡筒
JP2003169236A (ja) * 2001-11-30 2003-06-13 Olympus Optical Co Ltd 電子カメラ
JP2005121799A (ja) * 2003-10-15 2005-05-12 Olympus Corp ズームレンズ及びそれを用いた電子撮像装置
JP2005300562A (ja) * 2003-05-12 2005-10-27 Konica Minolta Opto Inc カメラ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831671A (en) * 1992-09-10 1998-11-03 Canon Kabushiki Kaisha Image blur prevention apparatus utilizing a stepping motor
US6295412B1 (en) 1994-06-28 2001-09-25 Nikon Corporation Shake-proof camera
US6037972A (en) * 1994-10-21 2000-03-14 Canon Kabushiki Kaisha Camera
JP2002072302A (ja) * 2000-08-24 2002-03-12 Minolta Co Ltd カメラの調光制御装置
JP2002350951A (ja) * 2001-05-29 2002-12-04 Olympus Optical Co Ltd 電子カメラ
JP2004102089A (ja) 2002-09-12 2004-04-02 Minolta Co Ltd 撮像装置
JP3731580B2 (ja) * 2003-01-10 2006-01-05 コニカミノルタフォトイメージング株式会社 屈曲光学系を備えたカメラ
JP2004304827A (ja) * 2004-05-19 2004-10-28 Olympus Corp 電子カメラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876165A (ja) * 1994-06-28 1996-03-22 Nikon Corp 防振カメラ
JPH11258678A (ja) * 1998-03-11 1999-09-24 Olympus Optical Co Ltd レンズ鏡筒
JP2003169236A (ja) * 2001-11-30 2003-06-13 Olympus Optical Co Ltd 電子カメラ
JP2005300562A (ja) * 2003-05-12 2005-10-27 Konica Minolta Opto Inc カメラ
JP2005121799A (ja) * 2003-10-15 2005-05-12 Olympus Corp ズームレンズ及びそれを用いた電子撮像装置

Also Published As

Publication number Publication date
US20090116123A1 (en) 2009-05-07
CN101288026A (zh) 2008-10-15
US7782549B2 (en) 2010-08-24
CN101288026B (zh) 2012-07-25
JPWO2007052606A1 (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4896885B2 (ja) 撮像装置およびカメラ
WO2007052606A1 (ja) カメラ
JP5476354B2 (ja) レンズ鏡筒および撮像装置
US7869702B2 (en) Image blur correcting device and camera
US7760996B2 (en) Image blur correction device and camera
WO2010122841A1 (ja) レンズ鏡胴、撮像装置及びレンズ鏡胴の製造方法
JP2009104168A5 (ja)
JP5280677B2 (ja) レンズ鏡筒
JPWO2007077704A1 (ja) カメラ
JP5432449B2 (ja) レンズ鏡筒および光学素子駆動装置
JP4945144B2 (ja) レンズ鏡筒およびレンズ鏡筒製造方法
JP2007241207A (ja) 撮像装置およびカメラ
JP2010181684A (ja) レンズ鏡筒
JP2010066375A (ja) 振れ補正装置、レンズ鏡筒および撮像装置
JP5363725B2 (ja) レンズ鏡筒およびレンズ支持構造
JP2010181683A (ja) レンズ支持構造
JP2010066373A (ja) 振れ補正装置、レンズ鏡筒および撮像装置
JP2010066374A (ja) レンズ鏡筒および撮像装置
JP2007156069A (ja) レンズ鏡胴及び撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038378.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12092193

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812165

Country of ref document: EP

Kind code of ref document: A1