WO2004095740A1 - 光受信装置および光伝送システム - Google Patents

光受信装置および光伝送システム Download PDF

Info

Publication number
WO2004095740A1
WO2004095740A1 PCT/JP2003/005206 JP0305206W WO2004095740A1 WO 2004095740 A1 WO2004095740 A1 WO 2004095740A1 JP 0305206 W JP0305206 W JP 0305206W WO 2004095740 A1 WO2004095740 A1 WO 2004095740A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
electric
discriminator
control circuit
Prior art date
Application number
PCT/JP2003/005206
Other languages
English (en)
French (fr)
Inventor
Takashi Sugihara
Hirofumi Totsuka
Takashi Mizuochi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to DE60333399T priority Critical patent/DE60333399D1/de
Priority to EP03816683A priority patent/EP1617578B1/en
Priority to US10/508,321 priority patent/US7505695B2/en
Priority to JP2004567196A priority patent/JP4409446B2/ja
Priority to PCT/JP2003/005206 priority patent/WO2004095740A1/ja
Publication of WO2004095740A1 publication Critical patent/WO2004095740A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/675Optical arrangements in the receiver for controlling the input optical signal for controlling the optical bandwidth of the input signal, e.g. spectral filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6972Arrangements for reducing noise and distortion using passive filtering

Definitions

  • the present invention relates to an optical receiving apparatus and an optical transmission system including the optical receiving apparatus. More particularly, the present invention relates to an optical receiving apparatus and an optical receiving apparatus that perform high-quality and large-capacity long-distance communication using an electric equalizer. The present invention relates to an optical transmission system. Background art
  • Equalization technology that equalizes waveform distortion caused by electric circuits is a technology that has been actively used in the field of wired and wireless communications using metallic cables and the like for the purpose of transmitting high-quality data. is there.
  • Patent Literature 1 and Patent Literature 2 are based on a trans-persistor-reflector; FFE (Feedforard E ua 1 izer) is shown.
  • Patent Literature 3 discloses a configuration example of a decision feedback equalizer (DFE: Decision Fe ⁇ dbbac eqeqlizer) based on a transversal filter.
  • Patent Document 4 discloses an example of the configuration of a Viterbi equalizer using maximum likelihood sequence estimation (MLSE: MaximumLikelyhoodSequenceEstimation).
  • Patent Document 1 JP-A-8-163027
  • Patent Document 2 JP 2000-292263
  • Patent Document 4 JP 2001-7765 small and high-speed waveform shaping can be easily performed using an electric equalization filter that performs waveform equalization in the electrical domain without using an optical equalization filter that performs waveform equalization in the optical domain.
  • an electric equalization filter that performs waveform equalization in the electrical domain
  • an optical equalization filter that performs waveform equalization in the optical domain.
  • the advantage of the signal alone does not change the obtained signal quality as compared with the case of using the optical equalization means, and cannot substantially contribute to the improvement of the function of the entire apparatus.
  • the present invention seeks to obtain a more efficient optical communication system by utilizing the waveform improvement effect of an electric equalizer, and specifically, degrades reception characteristics. It is an object of the present invention to provide an optical receiving device capable of increasing the transmission rate and increasing the frequency use efficiency without causing the optical receiving device to use the optical receiving device. Disclosure of the invention
  • An optical receiving device includes: an optical band-limiting filter configured to limit a band of an input optical signal; an optical-electrical converter configured to convert an optical signal output from the optical band-limiting filter into an electric signal; An electrical equalizer that performs an equalization process on a signal waveform of an electrical signal output from the optical-electrical converter, wherein a full width at half maximum of the optical band limiting filter is substantially equal to a bit rate frequency of the optical signal, It is characterized by the following.
  • the optical band limiting filter is provided before the photoelectric conversion. The full width at half maximum of this optical band limiting filter is set to be equal to or less than the bit rate frequency of the optical signal. In the optical band limiting filter, the band of the input optical signal is limited.
  • the optical signal output from the optical band limiting filter is converted into an electric signal and input to the electric equalizer.
  • the electric equalizer the signal waveform of the electric signal is equalized.
  • the optical band limiting filter performs band limiting in the optical domain, so that the SNR can be increased, but on the other hand, waveform distortion and intersymbol interference occur. These waveform distortions and intersymbol interference are recovered by the equalization process performed by the electric equalizer in the electric domain.
  • FIG. 1 is a block diagram illustrating a configuration of an optical receiver according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of the optical receiver according to Embodiment 2 of the present invention.
  • Fig. 3 (a) is a graph showing the penalty when the power cut-off frequency of the low-pass filter is changed from each viewpoint of intersymbol interference and SNR.
  • FIG. 4 is a graph showing the relationship between the cut-off frequency of the low-pass filter and the total penalty of both the inter-symbol interference and the SNR.
  • FIG. 4 is a diagram showing the optical reception according to the third embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of an apparatus, FIG.
  • FIG. 5 is a block diagram showing a configuration of an optical transmission system according to a fourth embodiment of the present invention
  • FIG. 6 (a) is a block diagram of 10 [GbZs].
  • FIG. 4 is a waveform diagram illustrating a frequency spectrum of an NRZ optical signal
  • Figure (b) is a connection diagram around the optical multiplexer when multiplexing the NRZ optical signal
  • Figure (c) is a diagram showing how 5 waves of the 10. [Gb / s] NRZ optical signal are converted to 100 waves.
  • FIG. 7 (a) is a waveform diagram showing a frequency spectrum of a 10 [GbZs] NRZ optical signal, showing a frequency spectrum of a wavelength multiplexed signal multiplexed at [GHz] intervals.
  • FIG. 8 is a waveform diagram showing a frequency spectrum of a wavelength multiplexed signal obtained by multiplexing five waves of a Z signal at intervals of 10 GHz, and FIG. 8 is a waveform observation when considering a waveform of a transmitted wavelength multiplexed signal.
  • FIG. 9 is a diagram showing points on the configuration diagram of the optical transmission system, and FIG. 9 is a diagram showing a frequency spectrum or an eye pattern of an optical signal or an electric signal at each observation point shown in FIG.
  • FIG. 10 (a) is a block diagram showing an example of the configuration of the FFE, and FIG.
  • FIG. 10 (b) is a block diagram showing an example of the configuration combining the FFE and the DFE.
  • the figure is a graph showing the relationship between the frequency use efficiency and the Q value penalty depending on the presence or absence of the electric equalizer 14.
  • FIG. 1 is a block diagram showing a configuration of the optical receiver according to the first embodiment of the present invention.
  • the optical receiver shown in FIG. 1 includes an optical band-limiting filter 10 to which an optical signal is input, an optical-electrical converter 1 that receives an output (optical signal) of the optical-band-limiting filter 10, a photoelectric converter ⁇
  • the low-pass filter 12 receives the output (electric signal) of 1
  • the amplifier 13 receives the output (electric signal) of the low-pass filter 12, and the output (electric signal) of the amplifier 13
  • an electric equalizer 14 for receiving.
  • an optical band limiting filter 10 to which an optical signal after transmission is input limits the spectrum of the optical signal.
  • the optical signal that has passed through the optical band limiting filter 10 is converted into an electric signal by the photoelectric conversion unit 11 and input to the low-pass filter 12.
  • the electric signal converted by the photoelectric converter 11 is subjected to band limitation in the electric region i.
  • the band-limited signal output by the low-pass filter 12 is input to the amplifier 13, the signal level is adjusted, and output to the electric equalizer 14.
  • the output level was adjusted by the amplifier 13.
  • the band-limited signal is subjected to a signal waveform equalization process and output to a discriminator (not shown).
  • the equalization process in the electric domain performed by the electric equalizer 14 can effectively suppress excessive intersymbol interference caused by band limitation in the optical band limiting filter 10. That is, the output of the electric equalizer 14 can be output to the subsequent classifier as a signal capable of suppressing intersymbol interference.
  • the band of the optical band limiting filter 10 In order to effectively suppress the intersymbol interference, the band of the optical band limiting filter 10 must be effectively limited.
  • the full width at half maximum defined by the wavelength difference between the shortest wavelength and the longest wavelength at which the signal intensity within a certain wavelength range is half of the maximum value ( FWHM: fu 1 1 widthathalfmaximum).
  • the optical receiving apparatus of this embodiment when performing wavelength division multiplexing, only the desired wavelength is sufficiently narrow in band with the wavelength multiplicity increased (for example, the bit rate frequency and By selectively passing through the optical band limiting filter, it is possible to construct an optical receiving device with high frequency use efficiency without deteriorating the receiving characteristics.
  • an optical band limiting filter having a band limiting function is inserted immediately before the photoelectric converter.
  • this optical band limiting filter is arranged on the transmitting side. May be.
  • FIG. 2 is a block diagram showing a configuration of an optical receiving device according to a second embodiment of the present invention.
  • the optical receiver shown in FIG. 2 is different from the configuration shown in FIG. In this configuration, 10 is removed.
  • Other configurations have the same or equivalent configurations as those of the optical receiver shown in FIG. 1, and the same portions are denoted by the same reference characters and denoted by “C”.
  • FIG. 3 (a) shows the penalty when the cutoff frequency of the low-pass filter 12 is changed by using the intersymbol interference and the signal-to-noise ratio (SNR: Signa 1 to Noise Ratio).
  • SNR Signa 1 to Noise Ratio
  • FIG. 13B is a graph showing the relationship between the cutoff frequency of the low-pass filter 12 and the total noise penalty of both the intersymbol interference and the SNR. .
  • an optical signal after transmission is input to an opto-electric conversion unit 11, converted into an electric signal, and input to a low-pass finoletor 12.
  • the electric signal converted by the photoelectric converter 11 is subjected to high-frequency limitation in the electric domain.
  • the band-limited signal output by the low-pass filter 12 is input to the amplifier 13 to adjust the level of the signal component, and is output to the electric equalizer 14.
  • the electric equalizer 14 the band-limited signal whose output level has been adjusted by the amplifier 13 is subjected to equalizing processing of the signal waveform, and is output to a discriminator, not shown.
  • the full width at half maximum of the optical band limiting filter 10 is set to a suitable value in order to effectively suppress the signal quality degradation due to intersymbol interference.
  • Embodiment 2 considers both signal quality degradation depending on the SNR of the received optical signal and signal quality degradation due to intersymbol interference caused by band limitation of the low-pass filter 12. It is necessary to set the cut-off frequency of the low-pass filter 12 to a suitable value. .
  • curves C1 and C2 are graphs showing the relationship between cutoff frequency (fc) and penalty from the viewpoint of intersymbol interference.
  • curve. 1 is an example in which the electric equalizer 14 is not provided
  • a curve C 2 is an example in which the electric equalizer 14 is provided. Both show a tendency for penalty to increase when the cut-off frequency is reduced, but as shown in curve C1, the electric equalizer Without the setting of 14, the penalty increases sharply due to the decrease in the power-off frequency.
  • the curve C3 is a graph showing the relationship between the cut-off frequency (fc) and the penalty from the viewpoint of the SNR of the received optical signal regardless of the presence or absence of the electric equalizer. Unlike the characteristics of curves C1 and C2, there is a cutoff frequency (f b) that optimizes the penalty.
  • FIG. 3 (b) is a graph showing the relationship between the power-off frequency (fc) and the penalty from the viewpoint of both the intersymbol interference and the SNR. That is, the curve K1 is a graph showing the relationship between the cut-off frequency (f c ) and the total penalty when the electric equalizer 14 is not provided, and the curve K1 in FIG. This is a composite of the curve C3. Similarly, curve 2 is a graph showing the relationship between the power cut-off frequency '(fc) and the total penalty when the electric equalizer 14 is installed, and the curves C2 and C3 in FIG. Are synthesized.
  • the cutoff frequency that minimizes (optimum) the total penalty differs depending on whether or not the electric equalizer 14 is provided.
  • the optimal cut-off frequency without the electric equalizer 14 is fa that minimizes the curve K1
  • the optimal cut-off frequency with the electric equalizer 14 minimizes the curve K2.
  • Fb is preferably set to ⁇ b so as to satisfy the relationship of fb (Rb / 2) between the bit rate frequencies Rb of the optical signal.
  • the cut-off frequency of the low-pass filter 12 is equal to or less than the bit rate frequency of 2. It is preferable to set the value below.
  • the effect of improving the total penalty by ⁇ is produced.
  • the provision of the electric isolator 14 means that the allowable range of the set value of the cutoff frequency of the low-pass filter 12 for setting a desired total torque penalty is widened.
  • the optical receiving apparatus of the present embodiment in determining the electrical band of the receiving apparatus, the effect of intersymbol interference due to band limitation and the deterioration of signal quality due to the SNR effect are considered. By minimizing the degree, it is possible to easily supply high-quality signals to the discriminator.
  • the receiving end is provided with a low-pass filter having an electric band limiting function.
  • an electric band limiting filter having this electric band limiting function may be used. It can also be used at the transmitting end.
  • the optimal electrical band for the total optical transmission characteristics :! ⁇ Needless to say, it is possible to measure.
  • FIG. 4 is a block diagram showing a configuration of an optical receiving device according to a third embodiment of the present invention.
  • the optical receiver shown in the figure has, in addition to the configuration shown in FIG. 1, a discriminator 15 for receiving the output (electric signal) of the electric equalizer 14, and an output (electric signal) of the discriminator 15. And a FEC decoder 16 for receiving the data.
  • the control circuit 17 is connected to the amplifier 13, the electric equalizer 4, and the discriminator 15 via a control signal line.
  • the operation up to the output of the band-limited signal whose output level has been adjusted by the electric equalizer 14 is the same as in the first embodiment, and a description thereof will be omitted.
  • the output signal from the electric equalizer 14 is input to the discriminator 15.
  • the discriminator 15 discriminates and reproduces the input signal, and outputs the reproduced frame signal to a FEC (Forward Error Correction on Code) decoder 16.
  • the FEC decoder 16 performs error detection and error correction on the input frame signal.
  • the transmission error information (for example, the number of error corrections and alarm information) generated based on the error information detection function and error information correction function of the FEC decoder 16 itself is output to the control circuit 17.
  • the control circuit 17 generates a control signal for correcting transmission errors based on the transmission error information transmitted from the FEC decoder 16 and sends the control signal to the amplifier 13, the electric equalizer 14, and the discriminator 15. Send a control signal.
  • the parameters controlled by the electric equalizer 14 be easily estimated. For example, by enabling estimation of equalization parameters using a known data sequence, the amount of calculation and the circuit scale of the control circuit 17 can be reduced as compared with the case where complete blind equalization is performed. Wear. ''
  • the amplitude of the electric signal input to the electric equalizer 14 can be adjusted at any time according to the state fluctuation of the transmission line, and the stable operation of the electric equalizer 14 can be realized. it can.
  • the signal waveform output from the electric equalizer 14 to the discriminator 15 is generally an analog signal subjected to a finite band limitation, the setting of the discrimination threshold of the discriminator 15 is always optimal. In such a state, the influence of unintended waveform distortion generated in the electric equalizer 14 can be suppressed to the minimum.
  • an error correction code superior in the above-described error information detection function and error information correction function.
  • a lead-solomon code 255 ⁇ 239
  • a BCH Bosset-Chaudhri-Hocque11enghhem
  • an OTN (Optical Transport Ne two rk) transmission frame specified by ITU-T G.709 is usually used.
  • a frame structure such as a frame is used.
  • a known bit string embedded in the OTN transmission frame it is possible to estimate the optimum Eich parameter given to the electric equalizer 14 with a small circuit scale and a small amount of computation. it can.
  • the threshold control of the discriminator 15 since the number of error corrections can be detected by using the error correction code, in the threshold control of the discriminator 15, it is possible to control such that the threshold is set at a position where the number of detected errors is minimized. A more sophisticated optical receiver can be realized.
  • an optical receiver using the electric equalization means when configuring an optical receiver using the electric equalization means, it is possible to obtain a higher-performance optical receiver with a small circuit scale.
  • an optical receiver using an electric equalizer can be configured with high functionality and small size.
  • FIG. 5 is a block diagram showing a configuration of an optical transmission system according to a fourth embodiment of the present invention.
  • the optical transmission system shown in FIG. 1 employs the optical receiver shown in FIG. 1 as a receiver for processing five wavelength multiplexed signals.
  • FIG. 5 the configuration in FIG. 5 will be described.
  • the transmitting end there are five optical transmitters 20a to 20e, and outputs (optical signals) of these optical transmitters 20a to 20e. 1 and an optical band limiting filter 10 for receiving the output of the optical multiplexer 21.
  • the output of the optical band limiting filter 10 is coupled to the optical fiber 22 and transmitted to the receiving end. .
  • the optical demultiplexer 2 3 for receiving an output of the optical fiber 2 2, and an optical demultiplexer 2 3 by demultiplexed receiving optical signals five receivers 2 4 A through 2 4 e I have it.
  • Each of these five receivers 24a to 24e has the same configuration, and one of them shows the internal configuration of the receiver 24c.
  • the receiver 24c includes a channel selection filter 25 for selecting one of the wavelength multiplexed signals, an opto-electric converter 11 for receiving an output (optical signal) of the channel selection filter 25, and an opto-electric converter. It has a low-pass filter 12 for receiving the output (electric signal) of the mll 1 and an electric equalizer 14 for receiving the output (electric signal) of the low-pass filter 12.
  • the amplifier 13 described in the first to third embodiments, the discriminator 15, the FEC decoder 16, and the control circuit 17 described in the third embodiment are omitted for convenience of description.
  • the optical band limiting filter 10 is disposed at the transmitting end.
  • the signals of the respective channels of the optical transmitters 20 a to 20 e are multiplexed by the optical multiplexer 21, and the multiplexed wavelength multiplexed signal is output to the optical band limiting filter 10.
  • the optical band limiting filter 10 limits the band of the wavelength multiplexed signal.
  • the optical band limiting filter 10 is provided to collectively narrow the band of the wavelength multiplexed optical signal.
  • a filter having a periodicity with respect to the wavelength for example, an interleaved AWG (Ar rayed Wave gu ide G rating)
  • the optical passband is designed so that multiplexing and band limiting can be performed simultaneously in the optical multiplexer 21
  • the function of the optical band-limiting filter 10 and the function of the optical multiplexer 21 are combined. Can be combined.
  • the wavelength multiplexed signal transmitted by the optical fiber 22 is separated by the optical demultiplexer 23 and input to the optical receiver 24c.
  • FIG. 6 and FIG. 7 are explanatory diagrams for explaining how the optical spectrum changes when the multiplicity is increased when performing wavelength multiplexing. Specifically, FIG. 6 (a) is a waveform diagram showing the frequency spectrum of a non-return-to-zero (NRZ) optical signal of 10 [GbZs], and FIG. Fig.
  • NRZ non-return-to-zero
  • FIG. 2 is a diagram showing a connection configuration around the optical multiplexer 21 when multiplexing this NRZ optical signal.
  • Fig. 3 (c) shows five 10 NRZ optical signal waves at 100 [GHz] intervals of 10 [Gb / s].
  • FIG. 4 is a waveform diagram showing a frequency spectrum of a wavelength multiplexed signal multiplexed in FIG. The frequency utilization efficiency of the wavelength division multiplexed signal shown in Fig. 6 (c) is 0.1 (bitZs / Hz).
  • FIG. 7 (a) is a waveform diagram showing the frequency spectrum of a 10 [Gb / s] NRZ (Non-Return-to-zero) optical signal
  • FIG. FIG. 3C is a connection configuration diagram around the optical multiplexer 21 when multiplexing an NRZ optical signal
  • FIG. 4C illustrates a case where five waves of a 10 [Gb / s] NRZ signal are multiplexed at 10 [GHz] intervals.
  • FIG. 6 is a waveform diagram showing a frequency spectrum of a wavelength-division multiplexed signal. The frequency utilization efficiency of the wavelength multiplexed signal shown in Fig.
  • FIG. 8 shows an optical transmission point at the waveform observation point when considering the waveform of a wavelength-multiplexed signal to be transmitted.
  • FIG. 9 is a diagram showing a frequency spectrum or an eye pattern of an optical signal or an electric signal at each observation point shown in FIG. 8, and
  • FIG. 10 is a diagram shown on the system configuration diagram. 2 is a block diagram showing a detailed configuration of the electric equalizer 14.
  • FIG. 9A is a waveform diagram showing the frequency spectrum of the NRZ optical signal (S 1) of one transmission channel.
  • an NRZ optical signal of 10 [GbZs] which is the same signal as the signals shown in FIGS. 6 (a) and 7 (a)
  • FIG. 2B is a waveform diagram showing an eye pattern of the NRZ optical signal (S 1) shown in FIG. 2A
  • FIG. 2C is a wavelength multiplexed optical signal (S 2).
  • FIG. 4 is a waveform diagram showing a frequency spectrum of the waveform.
  • a 10 [GbZs] NRZ optical signal is band-limited by a filter pass width of 10 GI-Iz, and a wavelength multiplexed optical signal obtained by multiplexing 5 waves at 10 GHz intervals is used.
  • (D) is a waveform diagram showing the frequency spectrum of the optical signal (S3) of one received channel immediately before being input to the photoelectric simulation 11
  • (e) of FIG. 7 is a waveform diagram showing an eye pattern of the electric signal (S4) of one received channel immediately before being input to the electric equalizer 14, and
  • FIG. 7 (f) shows an FFE (Feedforware rd Equ.
  • alizer is a waveform diagram showing an eye pattern of the output signal (S5) after passing through the electric equalizer when the electric equalizer 14 is used
  • FIG. FIG. 11 is a waveform diagram showing an eye pattern of an output signal (S5) after passing through an electric equalizer when using a Decision on Fedback Equalizer (Issizer).
  • FIG. 10A is a block diagram showing an example of the configuration of the above-mentioned FFE
  • FIG. 10B is a block diagram showing the above-mentioned FFE and DFE. It is a block diagram which shows an example of a structure which combined.
  • the configuration of the electric equalizer can be a configuration as shown by FFE 14a in FIG. 3A by combining a delay circuit, an addition circuit, and the like.
  • the electric equalizer 14 combining the FFE and the DFE can be configured so that the output of the FFE 14a is received and processed by the DFE 14b as shown in FIG.
  • the same figure The block diagram of DFE14b shown in (b) usually consists of a discriminator placed immediately after the electric equalizer.
  • FIG. 11 is a graph showing the relationship between the frequency use efficiency and the Q value penalty with and without the electric equalizer 14.
  • the graph shown in the figure is an example of a calculation result performed to quantitatively evaluate the effect of the electric equalizer 14 in the configuration of FIG.
  • the signal bit rate is 10 [G 1? S]
  • the pass band (full width at half maximum) of the band limiting filter is equal to the wavelength multiplexing interval (for example, when multiplexing at 10 GHz interval, the signal passes through the filter.
  • the bandwidth was 10 GHz
  • the SNR of the optical signal was 20 dB (0.1 nm resolution).
  • the Q value penalty was used as an index to estimate the degree of improvement.
  • the curve plotted with “mouth” indicates the characteristics when the electric equalizer is not used, and the curve plotted with “ ⁇ ” indicates the first electric equalizer.
  • 0 shows the characteristics when FFE 14a shown in Fig. 10 (a) is used, and the curves plotted by the """marks are the FFE 14a and the electric equalizer shown in Fig. 10 (b). This shows the characteristics when DFE 14b is used.
  • the band limitation technique is used in combination with the electric equalization means to limit the band of the optical spectrum so that the crosstalk of the adjacent channel can be sufficiently suppressed, and the effect of inter-code interference caused by excessive band limitation.
  • the electric equalizing means By suppressing by the electric equalizing means, it is possible to realize more efficient wavelength division multiplexing transmission over a finite transmission band, so that the transmission capacity can be easily expanded.
  • the full width at half maximum of the optical band limiting filter that limits the band of the input optical signal is equal to or less than the bit rate frequency of the optical signal. Since this value is set to a value, the SNR of the received signal can be increased, while on the other hand, waveform distortion and intersymbol interference caused by optical band limitation are recovered by equalization processing by an electric equalizer. Therefore, it is possible to easily construct an optical receiver having high frequency use efficiency.
  • the parameter of the electric equalizer is estimated based on the known sequence of the error correction code embedded in the overhead of the transmission frame. However, since the estimation of the optimal equalization parameter in the electric equalizer can be performed at high speed and the power and the circuit scale can be reduced, it is possible to obtain a small and high-performance optical receiver.
  • the parameter of the electric equalizing means is estimated based on the frame synchronization pulse embedded in the overhead of the transmission frame. Since the estimation of the optimum equalization parameter in the equalizer can be performed at high speed and the circuit scale can be reduced, an effect that a small-sized and high-performance optical receiver can be obtained can be obtained.
  • the identification threshold of the classifier is set based on the number of error corrections, the effect of improving the performance of the optical receiving apparatus can be obtained.
  • the amplitude of the input signal to the electric equalizer is adjusted as needed in accordance with the state fluctuation of the transmission path, so that the Even in the case of waveform fluctuations, a stable effect of the optical receiver can produce a radiation effect.
  • the cut-off frequency of the low-pass filter is set to a value that is equal to or less than the power of the bit rate frequency of the optical signal, ie, 1 to 2, so that the receiving Band limitation can be performed so that the SNR at the end becomes optimal, and the effect of easily improving the quality of the received signal is achieved.
  • the cutoff frequency of the low-pass filter is a total penalty for compensating for signal quality deterioration depending on the signal-to-noise ratio and signal quality deterioration due to intersymbol interference. Is set to be a smaller value, so that it is possible to limit the band so that the SNR at the receiving end is optimized, and it is possible to easily improve the quality of the received signal.
  • the transmission frame is embedded in the overhead of the transmission frame. Since the parameter estimation of the electric equalizer is performed based on the known sequence of the embedded error correction code, the estimation of the optimal equalization parameter in the electric equalizer can be performed at high speed.
  • the parameters of the electric equalizing means are estimated based on the frame synchronization pulse embedded in the overhead of the transmission frame. Fast estimation of optimal equalization parameters
  • the identification threshold of the classifier is set based on the number of error corrections, the effect of improving the performance of the optical receiving apparatus can be obtained.
  • the amplitude of the input signal to the electric equalizer is adjusted as needed in accordance with the state fluctuation of the transmission path, so that the An effect is obtained that the optical receiver can be operated stably even with respect to waveform fluctuations.
  • the full width at half maximum of the optical band limiting filter that limits the band of the input optical signal is set to a value equal to or less than the bit rate frequency of the optical signal. Therefore, the SNR of the received signal can be increased, and on the other hand, the waveform distortion and intersymbol interference generated by the optical band limitation are recovered by equalization processing by an electric equalizer, so that the frequency is reduced.
  • the effect is that an optical transmission system with high use efficiency can be easily constructed.
  • the parameters of the electric equalizer are estimated based on the known sequence of the error correction code embedded in the overhead of the transmission frame.
  • the estimation of the optimal equalization parameter in the electric equalizer can be performed at high speed and the circuit scale can be reduced, there is an effect that a small and high-performance optical transmission system can be obtained.
  • the parameters of the electric equalizer are estimated based on the frame synchronization pulse embedded in the overhead of the transmission frame. Since the estimation of the optimal equalization parameter in the optical communication system can be performed at high speed and the circuit scale can be reduced, there is an effect that a small and high-performance optical transmission system can be obtained.
  • the identification threshold of the discriminator is set based on the number of error corrections, there is an effect that the performance of the optical transmission system can be improved.
  • the amplitude of the input signal to the electric equalizer is adjusted as needed in accordance with the change in the state of the transmission line.
  • the effect is that the optical transmission system can be operated stably even with fluctuations.
  • the full width at half maximum of the optical band limiting filter that limits the band of the input optical signal is set to a value equal to or less than the bit rate frequency of the optical signal, and Since the cutoff frequency of the low-pass filter is set to a value that is less than or equal to 1/2 of the bit rate frequency of the optical signal, a band limitation that optimizes the SNR at the receiving end In both the domain and the electrical domain, the waveform distortion and intersymbol interference caused by these band limitations are recovered by the equalization processing by the electrical equalizer, so that the quality of the received signal can be simplified.
  • an optical transmission system having high frequency use efficiency can be easily constructed.
  • the cut-off frequency of the low-pass filter is a total penalty for compensating for signal quality deterioration depending on the signal-to-noise ratio and signal quality deterioration due to intersymbol interference. Is set to a smaller value, it is possible to limit the band so that the SNR at the receiving end is optimized, and it is possible to easily improve the quality of the received signal.
  • the overhead of the transmission frame Since the parameter estimation of the electric equalizer is performed based on the frame synchronization pulse embedded in the EPC, the estimation of the optimal equalization parameter in the electric equalizer can be performed at high speed, and the circuit scale can be reduced. Therefore, it is possible to obtain a small and high-performance optical receiver. .
  • the identification threshold of the discriminator is set based on the number of error corrections, there is an effect that the performance of the optical receiver can be improved.
  • the optical receiving device and the optical transmission system according to the present invention are suitable for, for example, improving the performance of an optical transmission system that increases the transmission speed and the frequency use efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Communication System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Dc Digital Transmission (AREA)

Abstract

入力された光信号の帯域制限を行う光帯域制限フィルタ(10)と、光帯域制限フィルタ(10)から出力された光信号を電気信号に変換する光電気変換器(11)と、光電気変換器(11)から出力された電気信号の帯域制限を行う低域通過フィルタ(12)と、低域通過フィルタ(12)からの出力信号を増幅する増幅器(13)と、増幅器(13)から出力された電気信号波形の等化処理を行う電気等化器(14)とを備え、光帯域制限フィルタ(10)の半値全幅が、光信号のビットレート周波数と同程度か、それ以下に設定する。

Description

明 細 書 光受信装置およぴ光伝送システム 技術分野
この発明は、 光受信装置および光受信装置を備えた光伝送システムに関するも のであり、 特に、 電気等化器を用いて高品質かつ大容量の'長距離通信を行う光受 信装置およぴ光伝送システムに関するものである。 背景技術
電気回路による波形歪を等化する等化技術は、 これまでメタリックケーブル等 を用いた有線通信や無線通信の分野において、 高品質なデータ伝送を行うことを 目的として活発に活用されている技術である。
しかしながら、 当該技術の光通信への応用には様々な課題が存在しており、 実 用の途についたばかりである。 具体的に、 これまで提案されている電気等化器の 光通信システムへの適用例として、 特許文献 1および特許文献 2には、 トランス パーサノレフイノレタをベースにした; FFE (Fe e d f o r a r d E u a 1 i z e r ) の構成例が示されている。 また、 特許文献 3には、 トランスバーサ ルフィルタをベースにした判定帰還型等化器 (DFE : De c i s i on F e Θ d b a c k Equ a l i z e r) の構成例が示されている。 さらに、 特許文 献 4には、 最尤系列推定 (ML S E: Ma X i mum L i k e l yh o o d S e qu e n c e E s t ima t i o n) を用いたビタビ等化器の構成例が示 されている。
特許文献 1 特開平 8— 163027
特許文献 2 特開 2000— 292263
特許文献 3 特開 2001— 308750
特許文献 4 特開 2001— 7765 これらの適用例は、 光領域での波形等化を行う光等化フィルタを用いずに、 電 気領域で波形等ィヒを行う電気等化フィルタを用いて小型 ·高速な波形整形を簡便 に行うことが特徴であり、 光電気変換後の歪信号に対して上述の各種電気等化フ ィルタを用いたデータ復元を行うことで、 光伝送路の有する波長分散や偏波モー ド分散などが問題となる伝送システムであっても良好な信号品質を確保すること を目的とするものである。
したがって、 これらの適用例のいずれについても、 基本的に、 上述の有線通信 や無線通信での活用方法の延長線上にあり、 当該技術を積極的に利用した光通信 システムとしての提案ではない。
ところで、 光伝送システムの信号品質向上を目指す上で、 電気等化フィルタを 受信波形の改善効果のみに使用する場合には、 装置の小型 ·低コスト化に関する 利点のみが主に発揮される。
しかしながら、 その利点のみでは、 得られる信号品質は光等化手段を用いた場 合となんら変わりなく、 本質的に装置全体の機能向上に大きく寄与させることは できない。
このような状況に鑑み、 この発明は、 電気等化器の波形改善効果を利用して、 より高幾能な光通信システムを得ようとするものであり、 具体的には、 受信特性 を劣化させることなく伝送速度の増加と周波数利用効率の増大とを可能とする光 受信装置およびこの光受信装置を用レ、た光伝送システムを提供することを目的と するものである。 発明の開示
この発明にかかる光受信装置は、 入力された光信号の帯域制限を行う光帯域制 限フィルタと、 前記光帯域制限フィルタから出力された光信号を電気信号に変換 する光電気変 «と、 前記光電気変換器から出力された電気信号の信号波形の等 化処理を行う電気等化器とを備え、 前記光帯域制限フィルタの半値全幅が、 前記 光信号のビットレート周波数と同程度か、 それ以下であることを特徴とする。 この発明によれば、 光電気変 «の前段に光帯域制限フィルタが設けられる。 この光帯域制限フィルタの半値全幅は、 光信号のビットレート周波数と同程度か 、 それ以下であるように設定される。 光帯域制限フィルタでは、 入力された光信 号の帯域制限が行われる。 光電気変換器では、 光帯域制限フィルタから出力され た光信号が電気信号に変換され、 電気等化器に入力される。 電気等化器では、 こ の電気信号の信号波形の等化処理が行われる。 これらの一連の処理では、 光帯域 制限フィルタが光領域にぉレ、て帯域制限を行っているので、 S N Rを高めること ができるが、 その一方で、 波形歪や、 符号間干渉を生じる。 これらの波形歪およ ぴ符号間干渉は、 電気領域にぉレヽて電気等化器が行う等化処理によつて回復され る。 図面の簡単な説明
第 1図は、 この発明の実施の形態 1にかかる光受信装置の構成を示すプロック 図であり、 第 2図は、 この発明の実施の形態 2にかかる光受信装置の構成を示す ブロック図であり、 第 3図 ( a ) は、 低域通過フィルタの力ットオフ周波数を変 化させた場合のペナルティを符号間干渉おょぴ S N Rのそれぞれの観点から示し たグラフであり、 同図 (b) は、 低域通過フィルタのカットオフ周波数と符号間 ' 干渉おょぴ SNRの両者のトータルペナルティとの関係を示したグラフであり、 第 4図は、 この発明の実施の形態 3にかかる光受信装置の構成を示すプロック図 であり、 第 5図は、 この発明の実施の形態 4にかかる光伝送システムの構成を示 すブロック図であり、 第 6図 (a) は、 10 [GbZs] の NRZ光信号の周波 数スペク トルを示す波形図であり、 同図 (b) は、 NRZ光信号を多重ィ匕する際 の光合波器周辺の接続構成図であり、 同図 (c) は、 10. [Gb/s] の NRZ 光信号の 5波を 100 [GHz] 間隔で多重した波長多重信号の周波数スぺタト ルを示す波形図であり、 第 7図 (a) は、 10 [GbZs] の NRZ光信号の周 波数スペク トルを示す波形図であり、 同図 (b) は、 NRZ光信号を多重化する 際の光合波器周辺の接続構成図であり、 同図 (c) は、 10 [GbZs] の NR Z信号の 5波を 1 0 [GH z ] 間隔で多重した波長多重信号の周波数スペク トル を示す波形図であり、 第 8図は、 伝送される波長多重信号の波形を考察する際の 波形観測点を光伝送システムの構成図上に示した図であり、 第 9図は、 第 8図に 示す各観測点での光信号または電気信号の周波数スぺク トルまたはアイパターン を示す図であり、 第 1 0図 (a ) は、 F F Eの構成の一例を示すプロック図であ り、 同図 (b ) は、 F F Eと D F Eとを組み合わせた構成の一例を示すブロック 図であり、 第 1 1図は、 電気等化器 1 4の有無による周波数利用効率と Q値ペナ ルティ.との関係を示すグラフである。 発明を実施するための最良の形態
- 以下に添付図 ¾を参照して、 この発明にかかる光受信装置および光伝送システ ムの好適な実施の形態を詳細に説明する。
実施の形態 1 .
第 1図は、 この発明の実施の形態 1にかかる光受信装置の構成を示すプロック 図である。 同図に示す光受信装置は、 光信号が入力される光帯域制限フィルタ 1 0と、 光帯域制限フィルタ 1 0の出力 (光信号) を受信する光電気変 « 1 Γと 、 光電気変 ίβ ΐ 1の出力 (電気信号) を受信する低域通過フィルタ 1 2と、 低 域通過フィルタ 1 2の出力 (電気信号) .を受信する増幅器 1 3と、 増幅器 1 3の 出力 (電気信号) を受信する電気等化器 1 4とを備えている。
つぎに、 この光受信装置の動作について説明する。 第 1図において、 伝送後の 光信号が入力された光帯域制限フィルタ 1 0では、 光信号のスぺク トルの帯域制 限が行われる。 光帯域制限フィルタ 1 0を通過した光信号は、 光電気変換手段 1 1により電気信号に変換され、 低域通過フィルタ 1 2に入力される。 低域通過フ ィルタ 1 2では、 光電気変 « 1 1によって変換された電気信号に対して電気領 i或での帯域制限が行われる。 低域通過フィルタ 1 2によって出力された帯域制限 信号は、 増幅器 1 3に入力されて信号レベルの調整が行われ、 電気等化器 1 4に 出力される。 電気等化器 1 4では、 増幅器 1 3によって出力レベルが調整された 帯域制限信号に対して信号波形の等化処理が施されて図示しない識別器に出力さ れる。
ここで、 電気等化器 1 4が行う電気領域での等化処理は、 光帯域制限フィルタ 1 0での帯域制限によつて生ずる過剰な符号間干渉を効果的に抑圧することがで きる。 すなわち、 電気等化器 1 4の出力は、 符号間干渉の抑圧が可能な信号とし て後段の識別器に出力することができる。
なお、 この符号間干渉の抑圧を効果的に行うためには、 光帯域制限フィルタ 1 0の帯域制限を効果的に行わなければならなレ、。 光帯域制限フィルタ 1 0のフィ ルタ特性を表す指標として、 ある波長域内での信号強度が最高値の半分になる最 短の波長と最長の波長との間の波長差で定義される半値全幅 (FWHM: f u 1 1 w i d t h a t h a l f m a x i m u m) を考える。 いま、 6帯域制 限フィルタ 1 0のフィルタ特性を示す半値全幅を" BW" とし、 光信号のビット レート周波数を" R b " とするとき、 これらの BWと R bとの間で、 BWく R b の関係を満たすような BWを選定することが好適である。 すなわち、 光帯域制限 フィルタ 1 0の半値全幅を信号伝送速度と同程度以下の値に設定することが好適 である。 '
以上説明したように、 この実施の形態の光受信装置によれば、 波長多重通信を 行う場合に波長多重度を大きくした状態で所望の波長のみを帯域の充分狭い (例 えば、 ビットレート周波数と同程度) 光帯域制限フィルタで選択通過させること により、 受信特性を劣ィ匕させることなく周波数利用効率の高い光受信装置を構築 することができる。
なお、 この実施の形態では、 光電気変換器の直前に帯域制限機能を有する光帯 域制限フィルタを揷入する構成としている力 光伝送システムの構成によっては この光帯域制限フィルタを送信側に配置してもよい。
実施の形態 2. ·
第 2図は、 この発明の実施の形態 2にかかる光受信装置の構成を示すプロック 図である。 同図に示す光受 ί言装置は、 第 1図に示す構成から光帯域制限フィルタ 1 0を取り除いた構成である。 その他の構成は、 第 1図に示した光受信装置と同 一あるいは同等の構成を有するものであり、 同一部分には同一符号を付し" C示し ている。
つぎに、 この光受信装置の動作について第 2図および第 3図を用いて説明する 。 なお、 第 3図 (a ) は、 低域通過フィルタ 1 2のカットオフ周波数を変化させ た場合のペナルティを符号間干渉および信号対雑音比 (S NR: S i g n a 1 t o N o i s e R a t i o ) をそれぞれの観点から示したグラフであり、 同 図 (b ) は、 低域通過フィルタ 1 2のカットオフ周波数と符号間干渉おょぴ S N Rの両者のトータノレペナルティとの関係を示したグラフである。
第 2図において、 光電気変換手段 1 1では、 伝送後の光信号が入力されて電気 信号に変換され、 低域通過フィノレタ 1 2に入力される。 低域通過フィルタ 1 2で は、 光電気変換器 1 1によって変換された電気信号に対して電気領域での带域制 限が行われる。 低域通過フィルタ 1 2によって出力された帯域制限信号は、 增幅 器 1 3に入力されて信号成分のレベル調整が行われ、 電気等化器 1 4に出力され る。 電気等化器 1 4では、 増幅器 1 3によって出力レベルが調整された帯域制限 信号に対して信号波形の等ィ匕処理が施されて図示しなレ、識別器に出力される。 ところで、 実施の形態 1では、 符号間干渉による偉号品質劣化を効果的に抑圧 するために、 光帯域制限フィルタ 1 0の半値全幅を好適な値に設定した。 一方、 実施の形態 2では、 受信光信号の S N Rに依存する信号品質劣化と低域通過フィ ルタ 1 2の帯域制限によって生じる符号間干渉に起因する信号品質劣化との両者 を考慮した上で、 低域通過フィルタ 1 2のカツトオフ周波数を好適な値に設定す る必要がある。 .
第 3図 (a ) において、 曲線 C 1および曲線 C 2は、 符号間干渉の観点から見 た場合のカットオフ周波数 (f c ) とペナ ティとの関係を示すグラフである。 曲線。 1は、 電気等化器 1 4を設けない場合の例であり、 曲線 C 2は、 電気等化 器 1 4を設けた場合の例である。 両者ともカツトオフ周波数を小さくするとペナ ルティが増加する傾向を示しているが、 曲線 C 1に見られるように、 電気等化器 1 4を設けない場合には、 力ットオフ周波数の減少によりペナルティが急激に増 加している。
—方、 曲線 C 3は電気等化器の有無に関わらず、 受信光信号の S N Rの観点か ら見た場合のカツトオフ周波数 (f c ) とペナ ティとの関係を示すグラフであ る。 曲線 C 1および曲線 C 2の特性とは異なり、 ペナルティを最適にするカツト オフ周波数 (f b ) が存在している。
また、 第 3図 ( b ) は、 符号間干渉と S N Rとの両者の観点から見た場合の力 ットオフ周波数 (f c ) とペナルティとの関係をそれぞれ示すグラフである。 す なわち、 曲線 K 1は、 電気等化器 1 4を設けない場合のカットオフ周波数 (f c ) とトータルペナルティとの関係を示すグラフであり、 第 3図 (a ) の曲線 C 1 と曲線 C 3とを合成したものである。 同様に、 曲線 2は、 電気等化器 1 4を設 けた場合力ットオフ周波数 ' ( f c ) とトータルペナルティとめ関係を示すグラフ であり、 第 3図 (a ) の曲線 C 2と曲線 C 3とを合成したものである。
第 3図 (b ) に示すように、 低域通過フィルタ 1 2のカットオフ周波数を減少 させて通過帯域幅を狭窄ィヒすると、 電気等化器 1 4の有無に関わらず、 トータル ペナルティを最適化するカツトオフ周波数が存在する。
さらに、 低域通過フィルタ 1 2の力ットオフ周波数をこの最適値以下に減少さ せて通過帯域幅を狭窄化していくと、 トータノレペナルティが増加する。 この特性 は、 帯域制限によって発生する符合間干渉効果により、 通過帯域幅の狭窄ィ匕が進 むほど帯域制限を受けた光信号の信:号波形が劣化するからである。
また、 電気等化器 1 4がある場合とない場合とでは、 トータルペナルティを最 小 (最適) にするカットオフ周波数が異なる。 すなわち、 電気等化器 1 4がない 場合の最適カットオフ周波数は、 曲線 K 1を最小にする f aであり、 電気等化器 1 4がある場合の最適カツトオフ周波数は、 曲線 K 2を最小にする f bである。 なお、 この f bは、 光信号のビットレート周波数 R bの間では、 f bく (R b / 2 ) の関係を満たすような ί bに設定することが好適である。 すなわち、 低域 通過フィルタ 1 2のカツトオフ周波数をビットレート周波数の 2と同程度以 下の値に設定することが好適である。
カロえて、 第 3図 (b ) に示すように、 電気等化器 1 4を備えた場合には、 トー タルペナルティを Δ Ρだけ改善させる効果が生ずる。 逆な見方をすれば、 電気等 ィ匕器 1 4を備えることによって、 所望のトータノレペナルティに設定するための低 域通過フィルタ 1 2のカットオフ周波数の設定値の許容幅が広がることを意味す る。 すなわち、 第 3図 (b ) に示すように、 カットオフ周波数 f bの値を f から f b 2 ( f b x < f b 2) の間の任意の値に設定することができ、 帯域制限の パラメータ設定に関する自由度を増大させることができる。
以上説明したように、 この実施の形態の光受信装置によれば、 受信装置の電気 帯域を決定する上で、 帯域制限による符号間干渉の効果と S NRの効果による信 号品質劣ィ匕の度合を最小限に抑圧することで、 高品質な信号の識別器への供給を 容易に実現することができる。
なお、 この実施の形態では、 受信端に電気帯域制限機能を有する低域通過フィ ルタを備える構成としているが、 光伝送システムの構成によっては、 この電気帯 域制限機能を有する電気帯域制限フィルタを送信端にも用いることができる。 こ の場合、 トータルの光伝送特性として最適な電気帯:!!^:計が可能となることはい うまでもない。
実施の形態 3 .
第 4図は、 この発明の実施の形態 3にかかる光受信装置の構成を示すプロック 図である。 同図に示す光受信装置は、 第 1図に示す構成に加えて、 電気等化器 1 4の出力 (電気信号) を受信する識別器 1 5と、 識別器 1 5の出力 (電気信号) を受信する F E C復弩化器 1 6とを備えている。 また、 増幅器 1 3、 電気等化器 4および識別器 1 5と制御信号線で接続される制御回路 1 7を備えている。 つぎに、 この光受信装置の動作について第 4図を用いて説明する。 なお、 電気 等化器 1 4によって出力レベルが調整された帯域制限信号が出力されるまでの動 作は、 実施の形態 1と同様なので、 ここでの説明は省略する。
第 4図において、 電気等化器 1 4からの出力信号が識別器 1 5に入力される。 識別器 15では、 入力された信号の識別再生を行い、 再生したフレーム信号を F EC (Fo rwa r d Er r o r Co r r e c t i on Co d e) 復号化 器 16に出力する。 FEC復号化器 16は、 入力されたフレーム信号に対して誤 り検出および誤り訂正を行う。 その際に、 F EC復号化器 16自身が有する誤り 情報検出機能や誤り情報訂正機能などに基づいて生成される伝送誤り情報 (例え ば、 誤り訂正個数、 アラーム情報) を制御回路 17に出力する。 制御回路 17で は、 FEC復号化器 16から伝達された伝送誤り情報に基づいて伝送誤りを是正 • するための制御信号を生成し、 増幅器 13、 電気等化器 14および識別器 15に 対して制御信号を送信する。
なお、 電気等化器 14の制御をより簡便に行うためには、 電気等化器 14にて 制御されるパラメータの推定が容易であることが必要となる。 例えば、 既知デー タ系列を用いた等ィ匕パラメータの推定を可能とすることで、 完全なブラインド等 化を行う場合に比較して、 制御回路 17の演算量や回路規模を縮小することがで きる。 ' '
また、 増幅器 13を制御することによって電気等化器 14への入力電気信号の 振幅を伝送路の状態変動に合わせて随時調整することができ、 電気等化器 14の 安定動作を実現することができる。
加えて、 電気等化器 14から識別器 15へ出力される信号波形は、 一般的には 、 有限の帯域制限を受けたアナログ信号であるため、 識別器 15の識別閾値の設 定を常に最適な状態にしておくことで、 電気等化器 14で生じる意図しない波形 歪の影響を最小限度に抑圧することができる。
これらの機能の実現には、 上述した誤り情報検出機能や誤り情報訂正機能に優 れた誤り訂正符号を用いることが好適である。 例えば、 誤り訂正符号としてリー ドソロモン符号 (255·、 239) や B CH (B o s e-Ch a udh r i - H o c q u e 11 e n g h e m) 符号等を用いることが好適である。
また、 誤り訂正符号を用いる場合、 通常 I TU— T G. 709にて規定され た OTN (Op t i c a l Tr a n s p o r t Ne two r k) 伝送フレー ムのようなフレーム構造が用いられる。 特に、 この O T N伝送フレームのオーバ へッド内に、 誤り訂正符号の既知系列としてシステムに対する既知のビット列 ( 例えば、 フレーム同期パルス) を埋め込むことが可能である。 この O T N伝送フ レーム内に埋め込まれた既知のビット列を用いることにより、 電気等化器 1 4に 付与する最適な等ィヒパラメータの推定を、 少ない回路規模と演算量とによって実 現することができる。
また、 誤り訂正符号を用いると誤り訂正個数の検出が可能となるので、 識別器 1 5に対する識別閾値制御において、 検出誤り個数が最小となる位置に識別閾値 を設定するような制御が可能となり、 より高機能な光受信装置を実現することが できる。
以上説明したように、 この実施の形態の光受信装置によれば、 電気等化手段を 用いた光受信装置を構成する際、 少ない回路規模にてより高性能な光受信装置を 得ることが可能となり、 電気等化器を用いた光受信装置を高機能力 小型に構成 可能である。 '
実施の形態 4 .
第 5図は、 この発明の実施の形態 4にかかる光伝送システムの構成を示すプロ ック図である。 同図に示す光伝送システムは、 5波の波長多重信号を処理する受 信装置として、 第 1図に示す光受信装置を適用してレ、る。
まず、 第 5図の構成について説明する。 同図において、 送信端では、 5つの光 送信器 2 0 a〜2 0 eと、 これらの光送信器 2 0 a〜2 0 eの出力 (光 ί言号) 合波される光合波器 2 1と、 光合波器 2 1の出力を受信する光帯域制限フィルタ 1 0とを備えている。 なお、 光帯域制限フィルタ 1 0の出力は光ファイバ 2 2に 結合されて受信端側に伝送される。 .
受信端では、 光ファイバ 2 2の出力を受信する光分波器 2 3と、 光分波器 2 3 によって分波された光信号を受信する5つの受信器2 4 a〜2 4 eとを備えてい る。 これらの 5つの受信器 2 4 a〜 2 4 eは、 それぞれが同等の構成を有するも のであり、 それらの一つとして、 受信器 2 4 cの内部構成を示している。 すなわ ち、 受信器 24 cは、 波長多重信号の一つを選択するためのチャネル選択フィル タ 25と、 チャネル選択フィルタ 25の出力 (光信号) を受信する光電気変 « 1 1と、 光電気変 m ll 1の出力 (電気信号) を受信する低域通過フィルタ 12 と、 低域通過フィルタ 12の出力 (電気信号) を受信する電気等化器 14とを備 えている。
なお、 実施の形態 1〜3で示した増幅器 13や、 実施の形態 3で示した識別器 15、 FE C復号化器 16、 制御回路 17については、 説明の便宜上省略してい る。 また、 実施の形態 1および 2のところで、 説明を加えたように、 この実施の 形態の光伝送システムでは、 光帯域制限フィルタ 10を送信端に配置している。 つぎに、 この光伝送システムの動作について第 5図を用いて説明する。 同図に おいて、 光送信器 20 a〜20 eの各チャネルの信号が光合波器 21によって合 波され、 この合波された波長多重信号が光帯域制限フィルタ 10に出力される。 光帯域制限フィルタ 10では、 この波長多重信号に対して帯域制限が行われる。 この光帯域制限フィルタ 10は、 波長多重光信号を一括して帯域狭窄するために 備えられるものであり、 例えば、 波長に対して周期性'を有するフィルタ (例えば 、 ィンターリーバゃ AWG (Ar r a y e d Wa v e gu i d e G r a t i n g) ) を使用することができる。 なお、 光合波器 21において、 合波と帯域制 限とが同時に行えるように光通過帯域の設計がなされている場合には、 光帯域制 限フィルタ 10の機能と光合波器 21の機能とを兼用させることができる。 受信端では、 光ファイバ 22によって伝送された波長多重信号が光分波器 23 によって分離され、 光受信器 24 cに入力される。 光受信器 24 c内のチャネル 選択用フィルタ 25は、 所望の光信号帯域外の雑音を除去するために挿入されて おり、 光分波器 23での隣接ヂャネルの抑圧が不完全な場合や、 ASE (Amp l i f i e d Sp on t a n e ou s Emm s i o n) 雑音の抑圧が不完全 な場合には、 これらの不要波成分の抑圧のために挿入される。 なお、 光分波器 2 3のフィルタリング特性が充分な場合には、 チャネル選択用フィルタ 25を省略 することができる。 第 6図および第 7図は、 波長多重化を行う際に多重度を増カ卩させた場合の光ス ぺクトルの変化の様子を説明するための説明図である。 具体的には、 第 6図 (a ) は、 10 [G b Z s ] の NR Z (Non-Re t u r n - t o-Z e r o) 光 信号の周波数スペクトルを示す波形図であり、 同図 (b) は、 この NRZ光信号 を多重化する際の光合波器 21周辺の接続構成図であり、 同図 (c) は、 10 [ Gb/s] の NRZ光信号の 5波を 100 [GHz] 間隔で多重した波長多重信 号の周波数スペクトルを示す波形図である。 なお、 この第 6図 (c) に示される 波長多重信号の周波数利用効率は、 0. 1 (b i tZs/Hz) である。
同様に、 第 7図 (a) は、 10 [Gb/s] の NRZ (No n-R e t u r - t o-Z e r o) 光信号の周波数スぺクトルを示す波形図であり、 同図 (b) は、 この NRZ光信号を多重ィ匕する際の光合波器 21周辺の接続構成図であり、 同図 (c) は、 10 [Gb/s] の NRZ信号の 5波を 10 [GHz] 間隔で多 重した波長多重信号の周波数スペクトルを示す波形図である。 なお、 この第 7図 (c) に示される波長多重信号の周波数利用効率は、 1 (b i t/s/Hz) で あり、 第 6図 (c) に示される波長多重信号の 10倍の値に設定されている。 通常、 10 [Gb/s] の NRZ光信号は第 6図 (a) およぴ第 7図 (a) に 示されるように、 光スペクトルの帯域幅 (全幅) として 20 [GHz] を有する ので、 第 6図 (c) に示されるように、 充分広い間隔にて多重を行った場合には ,、 それぞれのチャネル間での漏言舌 (クロストーク) によるペナルティはほとんど 発生しない。
ところが、 第 7図 (c) に示されるように、 周波数利用効率を增カ卩させるため に、 チャネル単独のスぺクトル幅と同等の間隔で波長多重を行うような場合には 、 隣接チャネルからのクロス }、一クによるペナルティが無視できない。 このため 、 例えば、 第 7図 (b) に示すように帯域制限フィルタ 10を設けて隣接チヤネ ル間のクロストークを充分低減できるように、 光スぺクトル幅を制限して各チヤ ネルの信号を多重する'ことが必要である。
第 8図は、 伝送される波長多重信号の波形を考察する際の波形観測点を光伝送 システムの構成図上に示した図であり、 第 9図は、 第 8図に示す各観測点での光 信号または電気信号の周波数スぺクトルまたはアイパターンを示す図であり、 第 10図は、 電気等化器 14の細部構成を示すプロック図である。
第 9図に示す波形を具体的に説明すると、 同図 (a) は、 送信 1チャネルの N RZ光信号 (S 1) の周波数スペクトルを示す波形図である。 この例では、 第 6 図 (a) および第 7図 (a) で示した信号と同一信号である 10 [GbZs] の NRZ光信号を角いている。 また、 同図 (b) は、 同図 (a) に示した NRZ光 信号 (S 1) のアイパターンを示す波形図であり、,同図 (c) は、 波長多重光信 号 (S 2) の周波数スペクトルを示す波形図である。 この例では、 10 [GbZ s ] の NR Z光信号をそれぞれ 10 GI-I zのフィルタ通過幅にて帯域制限し、 1 0 GH z間隔で 5波多重した波長多重光信号を用いている。 ' さらに、 同図 (d) は、 光電気変擬 11に入力される直前の受信 1チャネル の光信号 (S 3) の周波数スぺクトルを示す波形図であり、 同図 (e) は、 電気 等化器 14に入力される直前の受信 1チャネルの電気信号 (S4) のアイパター ンを示す波形図であり、 同図 ( f ) は、 電気等化器 14として FFE (Fe e d f o rwa r d Equ a l i z e r) を用いたときの電気等化器通過後の出力 信号 (S 5) のアイパターンを示す波形図であり、 同図 (g) は、 電気等化器 1 4として FFEおよぴ DFE (De c i s i on Fe e db a c k E q u a 1 i z e r ) を用いたときの電気等化器通過後の出力信号 (S 5) のアイパター ンを示す波形図である。
また、 第 10図に示す波形を具体的に説明すると、 同図 (a) は、 前述の FF Eの構成の一例を示すブロック図であり、 同図 (b) は、 前述の FFEと DFE とを組み合わせた構成の一例を示すブロック図である。
この電気等化器の構成は、 遅延回路や加算回路などを組み合わせて、 同図 (a ) の FFE 14 aに示すような構成とすることができる。 同様に、 FFEと DF Eとを組み合わせた電気等化器 14は、 同図 ( b ) に示すように、 F F E 14 a の出力を DFE 14 bが受信して処理する構成とすることができる。 なお、 同図 ( b ) に示す D F E 1 4 bのプロック図中には、 通常では、 電気等化器の直後に 配置される識別器を含んだ形で構成している。
第 9図に戻って、 同図の (e ) 〜 (f ) の波形に着目すると、 以下に示す事項 が明らかとなる。 まず、 同図 (e ) に示すアイパターンを見ると、 アイ開口が小 さくなつており、 受信信号が劣化していることが明らかである。 この理由は、 波 長多重度 (もしくは周波数利用効率) を向上させるために光信号段での帯域制限 を行つた結果、 隣接チャネルのクロストークによるビートノィズが低減された代 りに、 帯域制限による符号間干渉の影響が増大しているからである。
つぎに、 電気等化手段通過前の波形である同図 (e ) と、 電気等化手段通過後 の波形である同図 (f ) および同図 (g ) のそれぞれの波形とを比較すると、 電 気等化手段通過前後でアイ開口の劣ィヒが改善されていることが明らかである。 こ のことは、 過度の帯域制限によって符号間干渉が増大した場合であっても、 電気 信号波形の等化手段として用いられる電気等化器 1 4の能力が充分であれば、 符 号間干渉の影響が低減されることを意味している。 また、 これらの結果は、 周波 数利用効率を高めるために波長多重度を増加させた場合であっても、 電気等化器 1 4を光信号の帯域制限と併用させることにより、 帯域制限に起因する信号品質 劣化を抑圧できることを示唆している。
第 1 1図は、 電気等化器 1 4の有無による周波数利用効率と Q値ペナルティと の関係を示すグラフである。 同図に示すグラフは、 第 8図の構成において、 電気 等化器 1 4の効果を定量的に評価するために行った計算結果の一例である。 この 計算では、 信号ビットレートを 1 0 〔G 1? s ] 、 帯域制限フィルタの通過帯域 (半値全幅) は、 波長多重間隔と同等 (例えば、 1 0 GH z間隔にて多重する際 はフィルタ通過帯域 1 0 GH z ) 、 光信号の S NRは 2 0 d B ( 0 . I n m分解 能) とした。 また、 改善の度合を見積るために Q値ペナルティを指標として用い た。
同図において、 " 口" 印でプロットされた曲線は電気等化器を用いない場合の 特性を示すものであり、 " 〇"印でプロットされた曲線は電気等化器として第 1 0図 (a) に示す FFE 14 aを用いた場合の特性を示すものであり、 " △" 印 でプロットされた曲線は電気等化器として第 10図 ( b ) に示す F F E 14 aお よび DFE 14 bを用いた場合の特性を示すものである。
同図に示す計算結果より、 以下のことが明らかとなる。 いま、 縦軸方向 (Q値 ペナルティ) に着目すると、 例えば、 1 [b i tZs/Hz] の周波数利用効率 (10GHz間隔で波長多重) において、 電気等ィ匕器を用いたことにより 3 d B 近い信号品質改善が得られている。 一方、 横軸方向 (周波数利用効率) に着目す ると、 電気等化器を用いない 0. 8 [b i t/s/Hz] の場合の信号品質を維 持したまま、 1 [ b i t Z s ZH z ] の周波数利用効率を得ることができる。 す なわち、 電気等化器と帯域制限技術を併用することで、 周波数利用効率の改善が 容易に実現できることを意味している。
このように、 帯域制限の技術と電気等化手段を併用し、 隣接チャネルのクロス トークが充分抑圧できるよう光スペクトルの帯域制限を行い、 かつ、 過度の帯域 制限によつて発生した符合間干渉効果は電気等化手段によつて抑圧することで、' 有限の伝送帯域に対してより効率的な波長多重伝送を実現できるため、 伝送容量 を容易に拡大することが可能である。
なお、 この実 ¾tの形態では、 10 [Gb/s] にて変調された 5波長の波長多 重信号に関する説明を行ったが、 ビットレート周波数や波長多重数、 波長多重閒 隔等はこれに限定されるものではなレ、。 また、 この実施の形態では、 第 10図に 示す 2種類の電気等化器を例にどって評価したが、 利用可能な電気等化器はこれ に限定されるものではない。
以上説明したように、 この発明にかかる光受信装置によれば、 入力された光信 号の帯域制限を行う光帯域制限フィルタの半値全幅が光信号のビットレート周波 数と同程度か、 それ以下の値に設定されているので、 受信信号の SNRを高める ことができ、 その一方で、 光帯域制限によって発生する波形歪や符号間干渉を電 気等化器による等ィヒ処理によって回復するようにしているので、 周波数利用効率 の高い光受信装置を容易に構築することができるという効果を奏する。 つぎの発明にかかる光受信装置によれば、 伝送フレームのオーバへッド内に埋 め込まれた誤り訂正符号の既知系列に基づいて電気等化器のパラメータ推定を行 うようにしているので、 電気等化器での最適等化パラメータの推定を高速にでき 、 力つ、 回路規模を縮小することができるので、 小型で高性能な光受信装置を得 ることができるという効果を奏する。
つぎの発明にかかる光受信装置によれば、 伝送フレームのオーバへッド内に埋 め込まれたフレーム同期パルスに基づいて、 電気等化手段のパラメータ推定を行 うようにしているので、 電気等化器での最適等化パラメータの推定を高速にでき 、 かつ、 回路規模を縮小することができるので、 小型で高性能な光受信装置を得 ることができるという効果を奏する。
つぎの発明にかかる光受信装置によれば、 誤り訂正個数に基づいて識別器の識 別閾値を設定するようにしているので、 光受信装置の性能を高めることができる という効果を奏する。
つぎの発明にかかる光受信装置によれば、 電気等化器への入力信号の振幅を伝 送路の状態変動に合わせて随時調整するようにしているので、 伝送路の状態変動 などに伴う光波形変動に対しても、 光受信装置を安定に動作させることができる とレヽぅ効果を奏する。
つぎの発明にかかる光受信装置によれば、 低域通過フィルタのカツトオフ周波 数が、 光信号のビットレート周波数の 1ノ 2と同程度力 \ それ以下の値に設定さ れているので、 受信端における S N Rが最適となるように帯域制限を行うことが でき、 受信信号の品質を簡易に向上させることができるという効果を奏する。 つぎの発明にかかる光受信装置によれば、 低域通過フィルタのカツトオフ周波 数は、 信号対雑音比に依存する信号品質劣化と符号間干渉に起因する信号品質劣 化とを捕償するトータルペナルティがより小さい値になるように設定されるので 、 受信端における S N Rが最適となるように帯域制限を行うことができ、 受信信 号の品質を簡易に向上させることができるという効果を奏する。
つぎの発明にかかる光受信装置によれば、 伝送フレームのオーバへッド内に埋 め込まれた誤り訂正符号の既知系列に基づいて電気等化器のパラメータ推定を行 うようにしているので、 電気等化器での最適等化パラメータの推定を高速にでき
、 つ、 回路規模を縮小することができるので、 小型で高性能な光受信装置を得 ることができるという効果を奏する。
つぎの発明にかかる光受信装置によれば、 伝送フレームのオーバヘッド内に埋 め込まれたフレーム同期パルスに基づいて、 電気等化手段のパラメータ推定を行 うようにしているので、 電気等化器での最適等化パラメータの推定を高速にでき
、 力つ、 回路規模を縮小することができるので、 小型で高性能な光受信装置を得 ることができるという効果を奏する。
つぎの発明にかかる光受信装置によれば、 誤り訂正個数に基づいて識別器の識 別閾値を設定するようにしているので、 光受信装置の性能を高めることができる という効果を奏する。
つぎの発明にかかる光受信装置によれば、 電気等化器への入力信号の振幅を伝 送路の状態変動に合わせて随時調整するようにしているので、 伝送路の状態変動 などに伴う光波形変動に対しても、 光受信装置を安定に動作させることができる という効果を奏する。
つぎの発明にかかる光伝送システムによれば、 入力された光信号の帯域制限を 行う光帯域制限フィルタの半値全幅が光信号のビットレート周波数と同程度か、 それ以下の値に設定されているので、 受信信号の S N Rを高めることができ、 そ の一方で、 光帯域制限によつて発生する波形歪や符号間干渉を電気等化器による 等化処理によって回復するようにしているので、 周波数利用効率の高い光伝送シ ステムを容易に構築することができるという効果を奏する。
つぎの発明にかかる光伝送システムによれば、 伝送フレームのオーバへッド内 に埋め込まれた誤り訂正符号の既知系列に基づレ、て電気等化器のパラメータ推定 を行うようにしているので、 電気等化器での最適等化パラメータの推定を高速に でき、 かつ、 回路規模を縮小することができるので、 小型で高性能な光伝送シス テムを得ることができるという効果を奏する。 つぎの発明にかかる光伝送システムによれば、 伝送フレームのオーバへッド内 に埋め込まれたフレーム同期パルスに基づいて、 電気等化手段のパラメータ推定 を行うようにしているので、 電気等化器での最適等化パラメータの推定を高速に でき、 かつ、 回路規模を縮小することができるので、 小型で高性能な光伝送シス テムを得ることができるという効果を奏する。
つぎの発明にかかる光伝送システムによれば、 誤り訂正個数に基づいて識別器 の識別閾値を設定するようにしているので、 光伝送システムの性能を高めること ができるという効果を奏する。
つぎの発明にかかる光伝送システムによれば、 電気等化器への入力信号の振幅 を伝送路の状態変動に合わせて随時調整するようにしているので、 伝送路の状態 変動などに伴う光波形変動に対しても、 光伝送システムを安定に動作させること ができるという効果を奏する。
つぎの発明にかかる光伝送システムによれば、 入力された光信号の帯域制限を 行う光帯域制限フィルタの半値全幅を光信号のビットレート周波数と同程度か、 それ以下の値に設定し、 かつ、 低域通過フィルタのカットオフ周波数を光信号の ビットレート周波数の 1 / 2と同程度力 それ以下の値に設定しているので、 受 信端における S N Rが最適となるような帯域制限を光領域および電気領域の両方 で行うとともに、 これらの帯域制限によって発生する波形歪や符号間干渉を電気 等化器による等化処理によつて回復するようにしているので、 受信信号の品質を 簡易に向上させることができ、 また、 周波数利用効率の高い光伝送システムを容 易に構築することができるという効果を奏する。
つぎの発明にかかる光伝送システムによれば、 低域通過フィルタのカツトオフ 周波数は、 信号対雑音比に依存する信号品質劣化と符号間干渉に起因する信号品 質劣ィ匕とを補償するトータルペナルティがより小さい値になるように設定される ので、 受信端における S N Rが最適となるように帯域制限を行うことができ、 受 信信号の品質を簡易に向上させることができるという効果を奏する。
つぎの発明にかかる光伝送システムによれば、 伝送フレームのオーバへッド内 に埋め込まれたフレーム同期パルスに基づいて、 電気等化手段のパラメータ推定 を行うようにしているので 電気等化器での最適等化パラメータの推定を高速に でき、 かつ、 回路規模を縮小することができるので、 小型で高性能な光受信装置 を得ることができるという効果を奏する。 .
つぎの発明にかかる光伝送システムによれば、 誤り訂正個数に基づいて識別器 の識別閾値を設定するようにしているので、 光受信装置の性能を高めることがで きるという効果を奏する。 産業上の利用可能个生
以上のように、 この発明にかかる光受信装置および光伝送システムは、 例えば 、 伝送速度と周波数利用効率とを増大させるような光伝送システムの能力向上に 適している。

Claims

請 求 の 範 囲
1 . 入力された光信号の帯域制限を行う光帯域制限:
前記光帯域制限フィルタから出力された光信号を電気信号に変換する光電気変 觸と、
前記光電気変 ί«から出力された電気信号の信号波形の等化処理を行う電気等 化器と、
を備え、
前記光帯域制限フイノレタの半値全幅が、 前記光信号のビットレート周波数と同 程度か、 それ以下であることを特徴とする光受信装置。
2; 前記光受信装置は、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出および誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに備え、
前記制御回路は、 伝送フレームのオーバへッド内に埋め込まれた誤り訂正符号 の既知系列に基づいて前記電気等化器のパラメータ推定を行うことを特徴とする 請求の範囲第 1項に記載の光受信装置。
3 . 前記制御回路は、 伝送フレームのオーバヘッド内に埋め込まれたフレーム 同期パルスに基づいて、 前記電気等化器のパラメータ推定を行うことを特徴とす る請求の範囲第 1項に記載の光受信装置。
4 . 前記光受信装置は、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出およぴ誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに備え、
前記制御回路は、 前記誤り訂正個数に基づレヽて前記識別器の識別閾値を設定す ることを特徴とする請求の範囲第 1項に記載の光受信装置。
5 . 前記光受信装置は、
前記電気等化器への出力信号を増幅する増幅器と、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出およぴ誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに備え、 '
前記制御回路は、 前記増幅器を制御して、 前記電気等化器への入力信号の振幅 を伝送路の状態変動に合わせて随時調整することを特徴とする請求の範囲第 1項 に記載の光受信装置。
6 . 入力された光信号を電気信号に変換する光電気変 «と、
前記光電気変換器から出力された電気信号の帯域制限を行う低域通過フィルタ と、
前記低域通過フィルタから出力された電気信号の信号波形の等化処理を行う電 気等化器と、 ' を備え、
β低域通過フィルタの力ットオフ周波数が、 前記光信号のビットレート周波 数の 1ノ 2と同程度か、 それ以下であることを特徴とする光受信装置。
7 . 前記低域通過フィルタのカットオフ周波数は、 信号対雑音比に依存する信 号品質劣化と符号間干渉に起因する信号品質劣化とを補償するトータルペナルテ ィがより小さい値になるように設定されることを特徴とする請求の範囲第 6項に 記載の光受信装置。
8 . 前記光受信装置は、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出および誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに備え、
前記制御回路は、 伝送フレームのオーバへッド内に埋め込まれた誤り訂正符号 の既知系列に基づいて前記電気等化器のパラメータ推定を行うことを特徴とする 請求の範囲第 6項に記載の光受信装置。
9 . 前記光受信装置は、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出および誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号ィヒ器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに備え、
前記制御回路は、 伝送フレームのオーバへッド内に埋め込まれたフレーム同期 パルスに基づいて、 前記電気等ィヒ手段のパラメータ推定を行うことを特徴とする 請求の範囲第 6項に記載の光受信装置。
1 0 . 前記光受信装置は、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出およぴ誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに備え、
前記制御回路は、 前記誤り訂正個数に基づいて前記識別器の識別閾値を設定す ることを特徴とする請求の範囲第 6項に記載の光受信装置。
1 1 . 前記光受信装置は、
前記電気等ィヒ器への出力信号を増幅する増幅器と、 ' 前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出および誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに ϋえ、
前記制御回路は、 前記増幅器を制御して、 前記電気等化器への入力信号の振幅 を伝送路の状態変動に合わせて随時調整することを特徴とする請求の範囲第 6項 に記載の光受信装置。
1 2. 光送信装置と光受信装置とを備えた光伝送システムにおいて、
前記光送信装置は、
光信号の帯域制限を行う光帯域制限フィルタを備え、
前記光受信装置は、.
' 前記光送信装置から送信された光信号を電気信号に変換する光電気変 と、 前記光電気変換器が出力する電気信号波形の等ィ匕処理を行う電気等化器と、 を備え、
前記光帯域制限フィルタの半値全幅が、 前記光信号のビットレート周波数と同 程度か、 それ以下であることを特徴とする光伝送システム。
1 3 . 前記光受信装置は、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出およぴ誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C複号化器と、 ' 前記誤り訂正個数が伝送される制御回路と、
をさらに備え、
前記制御回路は、 伝送フレームのオーバへッド内に埋め込まれた誤り訂正符号 の既知系列に基づいて前記電気等化器のパラメータ推定を行うことを特徴とする 請求の範囲第 1 2項に記載の光伝送システム。
1 4. 前記光受信装置は、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出およぴ誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C複号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに え、
前記制御回路は、 伝送フレームのオーバへッド内に埋め込まれたフレーム同期 パルスに基づいて、 前記電気等化器のパラメータ推定を行うことを特徴とする請 求の範囲第 1 2項に記載の光伝送システム。
1 5 . 前記光受信装置は、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出おょぴ誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C複号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに備え.、 前記制御回路は、 前記誤り訂正個数に基づレヽて前記識別器の識別閾値を設定す ' ることを特徴とする請求の範囲第 1 2項に記載の光伝送システム。
1 6 . 前記光受信装置は、
前記電気等化器への出力信号を増幅する増幅器と、
前記電気等化器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出および誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに ϋえ、
前記制御回路ほ、 前記増幅器を制御して、 前記電気等化器への入力信号の振幅 を伝送路の状態変動に合わせて随時調整することを特徴とする請求の範囲第 1 2 項に記載の光伝送システム。
1 7 . 前記光受信装置は、
前記光電気変 3«から出力された電気信号の帯域制限を行う低域通過フィルタ をさらに備え、
前記低域通過フィルタのカツトオフ周波数が、 前記光信号のビットレート周波 数の 1 / 2と同程度か、 それ以下であることを特徴とする請求の範囲第 1 2項に 記載の光伝送システム。
1 8 . 前記低域通過フィルタのカットオフ周波数は、 信号対'雑音比に依存する信 号品質劣化と符号間干渉に起因する信号品質劣化とを補償するトータルペナルテ ィがより小さい直になるように設定されることを特徴とする請求の 囲第 1 7項 に記載の光伝送システム。
1 9 . 前記光受信装置は、 前記電気等化器から出力される出力信号の識別再生を行う識別器と、 · 前記識別器から出力されたフレーム信号に対して誤り検出および誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに備え、
前記制御回路は、 伝送フレームのオーバへッド内に埋め込まれたフレーム同期 パルスに基づいて、 前記電気等ィヒ手段のパラメータ推定を行うことを特徴とする 請求の範囲第 1 7項に記載の光伝送システム。
2 0 . 前記光受信装置は、
前記電気等ィ匕器から出力される出力信号の識別再生を行う識別器と、 前記識別器から出力されたフレーム信号に対して誤り検出および誤り訂正を行 うとともに、 該フレーム信号の誤り訂正個数を検出する F E C復号化器と、 前記誤り訂正個数が伝送される制御回路と、
をさらに^ iえ、
前記制御回路は、 前記誤り訂正個数に基づレヽて前記識別器の識別閾値を設定す ることを特徴とする請求の範囲第 1 7項に記載の光伝送システム。
PCT/JP2003/005206 2003-04-23 2003-04-23 光受信装置および光伝送システム WO2004095740A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60333399T DE60333399D1 (de) 2003-04-23 2003-04-23 Optischer empfänger und optisches übertragungssystem
EP03816683A EP1617578B1 (en) 2003-04-23 2003-04-23 Optical receiver and optical transmission system
US10/508,321 US7505695B2 (en) 2003-04-23 2003-04-23 Optical receiver and optical transmission system
JP2004567196A JP4409446B2 (ja) 2003-04-23 2003-04-23 光受信装置および光伝送システム
PCT/JP2003/005206 WO2004095740A1 (ja) 2003-04-23 2003-04-23 光受信装置および光伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005206 WO2004095740A1 (ja) 2003-04-23 2003-04-23 光受信装置および光伝送システム

Publications (1)

Publication Number Publication Date
WO2004095740A1 true WO2004095740A1 (ja) 2004-11-04

Family

ID=33307227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005206 WO2004095740A1 (ja) 2003-04-23 2003-04-23 光受信装置および光伝送システム

Country Status (5)

Country Link
US (1) US7505695B2 (ja)
EP (1) EP1617578B1 (ja)
JP (1) JP4409446B2 (ja)
DE (1) DE60333399D1 (ja)
WO (1) WO2004095740A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259255A (ja) * 2006-03-24 2007-10-04 Nec Corp 分散補償型光信号受信装置、受信回路、受信方法、および受信プログラム
JP2008541510A (ja) * 2005-04-28 2008-11-20 シオプティカル インコーポレーテッド 多重光通信チャンネルで使用する共通の電子分散補償アレンジメント
WO2009054045A1 (ja) * 2007-10-23 2009-04-30 Fujitsu Limited 光分散補償装置および光受信装置
JP2009198364A (ja) * 2008-02-22 2009-09-03 Fujitsu Ltd 光ファイバ伝送路の特性および光信号の品質をモニタするモニタ回路
JP2010068029A (ja) * 2008-09-08 2010-03-25 Sumitomo Electric Ind Ltd 光トランシーバ
JP2011089945A (ja) * 2009-10-26 2011-05-06 Fujitsu Ltd 非線形歪検出回路、光受信機、光伝送システム、および非線形歪検出方法
JP2013045079A (ja) * 2011-08-26 2013-03-04 Nippon Telegr & Teleph Corp <Ntt> 光透過特性補正フィルタ及び光伝送システム
US8582093B2 (en) 2010-09-07 2013-11-12 Nec Corporation Signal light monitoring apparatus and signal light monitoring method
JP7459528B2 (ja) 2020-01-31 2024-04-02 ソニーグループ株式会社 光受信装置、波長幅調整装置および波長幅調整方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881001B2 (ja) * 2003-06-03 2007-02-14 富士通株式会社 光信号受信装置およびその二値化処理用識別点制御方法
ATE313175T1 (de) * 2003-08-18 2005-12-15 Cit Alcatel Verfahren zur optischen übertragung und optischer empfänger
US20050047779A1 (en) * 2003-09-02 2005-03-03 Harris Corporation Post-detection, fiber optic dispersion compensation using adjustable inverse distortion operator employing trained or decision-based parameter adaptation (estimation)
US7418212B1 (en) * 2003-10-01 2008-08-26 Nortel Networks Limited Electrical detection of optical symbols
US20050191059A1 (en) * 2004-01-12 2005-09-01 Clariphy Use of low-speed components in high-speed optical fiber transceivers
WO2006116554A2 (en) * 2005-04-25 2006-11-02 The Regents Of The University Of California System and method for increasing spectral efficiency, capacity and/or dispersion limited reach of modulated signals in communication links
EP1788734B1 (en) * 2005-11-21 2009-10-07 Alcatel Lucent Method of transmitting an optical signal and transmission system
US7961086B2 (en) * 2006-04-17 2011-06-14 James Roy Bradley System and method for vehicular communications
US20080122607A1 (en) * 2006-04-17 2008-05-29 James Roy Bradley System and Method for Vehicular Communications
US20070242338A1 (en) * 2006-04-17 2007-10-18 James Roy Bradley System and Method for Vehicular Communications
DE102006035097A1 (de) * 2006-07-28 2008-01-31 Nokia Siemens Networks Gmbh & Co.Kg Verfahren und Anordnungen zur Verbesserung der Signalqualität
IL190890A0 (en) * 2008-04-15 2008-12-29 Eci Telecom Ltd Technique for detection of optical data signals
US8638886B2 (en) * 2009-09-24 2014-01-28 Credo Semiconductor (Hong Kong) Limited Parallel viterbi decoder with end-state information passing
US8301036B2 (en) * 2009-11-15 2012-10-30 Credo Semiconductor (Hong Kong) Limited High-speed adaptive decision feedback equalizer
US8805204B2 (en) 2011-02-23 2014-08-12 Tyco Electronics Subsea Communications Llc Generating higher-level quadrature amplitude modulation (QAM) using a delay line interferometer and systems and methods incorporating same
JP2012217050A (ja) * 2011-03-31 2012-11-08 Fujitsu Ltd 光受信回路及び帯域幅制御方法
EP2579485B1 (en) * 2011-10-04 2013-05-22 u2t Photonics AG Method and system for receiving an optical-duo-binary signal
WO2014135184A1 (en) * 2013-03-04 2014-09-12 Genesis Ingenieria Asociados S. Coop. System and method for the access to information contained in motor vehicles
US9076729B2 (en) 2013-03-13 2015-07-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming interconnection structure having notches for semiconductor device
MX362782B (es) * 2014-01-28 2019-02-08 Sa Photonics Inc Retransmisión de datos por sistema de comunicación óptica por espacio libre atmosférico.
AU2016311179B2 (en) 2015-08-21 2020-03-12 SA Photonics, Inc. Free space optical (FSO) system
WO2017035095A1 (en) 2015-08-21 2017-03-02 SA Photonics, Inc. Free space optical (fso) system
US9973274B1 (en) 2015-10-07 2018-05-15 SA Photonics, Inc. Fast tracking free space optical module
US9935800B1 (en) 2016-10-04 2018-04-03 Credo Technology Group Limited Reduced complexity precomputation for decision feedback equalizer
CN106972892A (zh) * 2017-05-05 2017-07-21 深圳市凯利华电子有限公司 一种新型catv光纤数字电视接收机组件
US10728059B1 (en) 2019-07-01 2020-07-28 Credo Technology Group Limited Parallel mixed-signal equalization for high-speed serial link
WO2022226199A1 (en) 2021-04-23 2022-10-27 SA Photonics, Inc. Wavefront sensor with inner detector and outer detector
KR102592655B1 (ko) * 2022-07-20 2023-10-23 엘지전자 주식회사 멀티미디어 디바이스 및 그 제어 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104670A (ja) * 1992-09-17 1994-04-15 Fujitsu Ltd 光受信器
JPH09233030A (ja) * 1996-02-22 1997-09-05 Fujitsu Ltd 光送受信回路
JPH1172756A (ja) * 1997-08-27 1999-03-16 Nippon Telegr & Teleph Corp <Ntt> 光信号波形劣化補償装置
JPH11331132A (ja) * 1998-05-20 1999-11-30 Fujitsu Ltd 光伝送システム及び光伝送装置
JP2000031904A (ja) * 1998-04-28 2000-01-28 Lucent Technol Inc 光分散の補償
JP2002009699A (ja) * 2000-06-26 2002-01-11 Kdd Submarine Cable Systems Inc 受信信号の弁別閾値を決定する方法及び装置並びに光伝送システム
JP2002062217A (ja) * 2000-08-23 2002-02-28 Nec Corp 光伝送路監視システム及びその監視装置及びその監視方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163027A (ja) 1994-11-30 1996-06-21 Fujitsu Ltd 光信号受信処理回路
US5661585A (en) * 1995-02-27 1997-08-26 Lucent Technologies Inc. Passive optical network having amplified LED transmitters
JP3939003B2 (ja) * 1998-02-20 2007-06-27 富士通株式会社 同期偏波スクランブラを用いた光通信システム及び光受信装置
JP2000151516A (ja) 1998-11-05 2000-05-30 Toshiba Corp 光伝送システム、光送信機および光受信機
DE19904252A1 (de) 1999-02-03 2000-08-10 Alcatel Sa Methode zur Detektion von Verzerrungen sowie Empfänger für verzerrte optische Signale
DE19914052A1 (de) 1999-03-27 2000-09-28 Alcatel Sa Empfänger für optisch übertragene Signale
US6151358A (en) * 1999-08-11 2000-11-21 Motorola, Inc. Method and apparatus, and computer program for producing filter coefficients for equalizers
DE10015115A1 (de) 2000-03-28 2001-10-04 Alcatel Sa Verfahren zur Rückgewinnung von digitalen optischen Signalen sowie rückgekoppelter Entscheider
US6519375B1 (en) * 2000-07-20 2003-02-11 Trw Inc. Optical phase modulator design incorporating pre-emphasis
US6775322B1 (en) * 2000-08-14 2004-08-10 Ericsson Inc. Equalizer with adaptive pre-filter
DE10058255A1 (de) * 2000-11-23 2002-05-29 Sel Alcatel Ag Verfahren zur Verbesserung der Signalqualität von optischen Signalen, Übertragungssystem sowie Modulator
JP4646048B2 (ja) * 2001-03-02 2011-03-09 日本電気株式会社 単一側波帯信号光の生成方法および単一側波帯信号光の生成回路
JP4278332B2 (ja) 2001-06-29 2009-06-10 日本電信電話株式会社 光送信器および光伝送システム
EP1296471A3 (de) * 2001-09-25 2005-06-01 Siemens Aktiengesellschaft Kompensationsanordnung zur adaptiven Entzerrung eines optischen Signals
US6643046B2 (en) * 2001-09-26 2003-11-04 Kabushiki Kaisha Toshiba Apparatus and method for optical modulation
ITRM20020056A1 (it) * 2002-02-04 2003-08-04 Mario Zitelli Modulazione combinata di intensita' e fase in un sistema di comunicazione ottico.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104670A (ja) * 1992-09-17 1994-04-15 Fujitsu Ltd 光受信器
JPH09233030A (ja) * 1996-02-22 1997-09-05 Fujitsu Ltd 光送受信回路
JPH1172756A (ja) * 1997-08-27 1999-03-16 Nippon Telegr & Teleph Corp <Ntt> 光信号波形劣化補償装置
JP2000031904A (ja) * 1998-04-28 2000-01-28 Lucent Technol Inc 光分散の補償
JPH11331132A (ja) * 1998-05-20 1999-11-30 Fujitsu Ltd 光伝送システム及び光伝送装置
JP2002009699A (ja) * 2000-06-26 2002-01-11 Kdd Submarine Cable Systems Inc 受信信号の弁別閾値を決定する方法及び装置並びに光伝送システム
JP2002062217A (ja) * 2000-08-23 2002-02-28 Nec Corp 光伝送路監視システム及びその監視装置及びその監視方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1617578A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541510A (ja) * 2005-04-28 2008-11-20 シオプティカル インコーポレーテッド 多重光通信チャンネルで使用する共通の電子分散補償アレンジメント
JP2007259255A (ja) * 2006-03-24 2007-10-04 Nec Corp 分散補償型光信号受信装置、受信回路、受信方法、および受信プログラム
WO2009054045A1 (ja) * 2007-10-23 2009-04-30 Fujitsu Limited 光分散補償装置および光受信装置
JP2009198364A (ja) * 2008-02-22 2009-09-03 Fujitsu Ltd 光ファイバ伝送路の特性および光信号の品質をモニタするモニタ回路
JP2010068029A (ja) * 2008-09-08 2010-03-25 Sumitomo Electric Ind Ltd 光トランシーバ
JP2011089945A (ja) * 2009-10-26 2011-05-06 Fujitsu Ltd 非線形歪検出回路、光受信機、光伝送システム、および非線形歪検出方法
US8582093B2 (en) 2010-09-07 2013-11-12 Nec Corporation Signal light monitoring apparatus and signal light monitoring method
JP2013045079A (ja) * 2011-08-26 2013-03-04 Nippon Telegr & Teleph Corp <Ntt> 光透過特性補正フィルタ及び光伝送システム
JP7459528B2 (ja) 2020-01-31 2024-04-02 ソニーグループ株式会社 光受信装置、波長幅調整装置および波長幅調整方法

Also Published As

Publication number Publication date
EP1617578B1 (en) 2010-07-14
US7505695B2 (en) 2009-03-17
JPWO2004095740A1 (ja) 2006-07-13
DE60333399D1 (de) 2010-08-26
US20050105919A1 (en) 2005-05-19
EP1617578A4 (en) 2007-01-03
JP4409446B2 (ja) 2010-02-03
EP1617578A1 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP4409446B2 (ja) 光受信装置および光伝送システム
US20060127100A1 (en) Simplified signal regenerator structure
JP4584257B2 (ja) 光パフォーマンス監視方法及びシステム
EP2168278B1 (en) A method and apparatus for increasing the capacity of a data communication channel
EP1641152A1 (en) Equalizer having tunable optical and electronic dispersion compensation
Yamazaki et al. 100-Gb/s optical transport network and beyond employing digital signal processing
EP3539228B1 (en) Higher-level clock and data recovery (cdr) in passive optical networks (pons)
CN110036577B (zh) 无源光网络中的光网络单元和信号处理方法
WO2001008422A2 (en) Method and apparatus for improving transmission performance over wdm optical communication links using fec coding
JP4481266B2 (ja) 受信回路および伝送システム
WO2019134687A1 (en) Adaptive signal processing in optical communications
US7161980B2 (en) Receiver for high rate digital communication system
EP1780914B1 (en) Adaptive equalization of a polarization scrambled optical signal
JP3960299B2 (ja) 分散補償方法、wdm光伝送システム、光伝送システム及び光伝送装置
Wettlin et al. Comparison of PAM formats for 200 Gb/s short reach transmission systems
EP1318639B1 (en) Digital transmission system with receiver using parallel decision circuits
US20040047283A1 (en) FDM signals crosstalk cancellation technique
JP4924428B2 (ja) 偏波モード分散補償回路
JP5338593B2 (ja) 分散等化回路および光トランシーバ
US20090041468A1 (en) Method for recovering distorted optical signal by equalizing unit
EP1788734B1 (en) Method of transmitting an optical signal and transmission system
KR20120075962A (ko) 적응형 채널 등화기 및 채널 등화방법
US20240089004A1 (en) Reduction of four-wave mixing crosstalk in optical links
JP4087290B2 (ja) 受信回路およびディジタル伝送システム
Gomatam The next generation in optical transport semiconductors: IC solutions at the system level

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004567196

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10508321

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003816683

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003816683

Country of ref document: EP