WO2004090296A1 - Abgasnachbehandlungseinrichtung und -verfahren - Google Patents

Abgasnachbehandlungseinrichtung und -verfahren Download PDF

Info

Publication number
WO2004090296A1
WO2004090296A1 PCT/EP2004/001824 EP2004001824W WO2004090296A1 WO 2004090296 A1 WO2004090296 A1 WO 2004090296A1 EP 2004001824 W EP2004001824 W EP 2004001824W WO 2004090296 A1 WO2004090296 A1 WO 2004090296A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalytic converter
reforming
catalyst
reforming unit
Prior art date
Application number
PCT/EP2004/001824
Other languages
English (en)
French (fr)
Inventor
Frank Duvinage
Berthold Keppeler
Bernd Krutzsch
Markus Paule
Michel Weibel
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to JP2006504462A priority Critical patent/JP2006522257A/ja
Priority to US10/552,263 priority patent/US8181445B2/en
Publication of WO2004090296A1 publication Critical patent/WO2004090296A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/25Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ammonia generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an apparatus and a method for exhaust gas aftertreatment for mobile applications according to the preamble of claim 1 and of claim 11.
  • catalytic NO x reduction with hydrogen is considered to be advantageous. This catalytic removal of nitrogen oxides from the combustion exhaust gases of motor vehicles is carried out using hydrogen on suitable catalysts after the reaction 2NO + 2H 2 -> N 2 + 2H 2 0.
  • the hydrogen required for the reaction is carried in the vehicle, for example via pressure tanks, liquid hydrogen tanks or metal hydride storage.
  • a disadvantage of this method is that large, heavy containers are required for the hydrogen entrainment, which moreover have a very limited capacity, so that short refill intervals are necessary.
  • EP 537 968 AI a device for the catalytic reduction of nitrogen oxides in exhaust gases of motor vehicles with the supply of hydrogen is known.
  • the hydrogen production takes place on board the motor vehicle by partial oxidation or reforming of methanol on a corresponding catalyst.
  • the heating of the catalysts takes place in that they are arranged in the hot exhaust gas stream of the engine.
  • an emission control system in a vehicle with a reforming reactor for the extraction of hydrogen from fuel is known in which the hydrogen is an exhaust gas stream of an exhaust pipe of an internal combustion engine upstream of an exhaust gas catalyst supplied.
  • the reforming reactor has a supply device for oxygen and / or water and is connected to a side branch of the exhaust pipe, wherein oxygen and water for reforming in the form of a partial exhaust gas stream via the side branch can be fed.
  • the object of the invention is therefore to specify a method or a device for exhaust aftertreatment, with which a space optimization can be realized in terms of a more compact design.
  • the invention solves this problem by providing an exhaust aftertreatment device having the features of claim 1 and an exhaust aftertreatment method having the features of claim 11.
  • the exhaust aftertreatment device with a reforming unit for generating hydrogen by steam reforming, partial oxidation of hydrocarbons and / or mixed forms thereof is characterized in that the reforming unit is arranged directly in the main exhaust gas flow of an internal combustion engine.
  • the water vapor and residual oxygen required for the reforming preferably originate from the exhaust gas.
  • the provision of the required reducing agent consists in briefly switching the predominantly lean combustion device, whose exhaust gas is after-treated, to rich operation, whereby a reforming tion is made possible by means of inventive reforming reactor with the hydrocarbons present in the exhaust gas.
  • air ratio ⁇ for short, have already been proposed for this purpose; see, for example, published patent applications EP 0 560 991 A1 and DE 196 26 835 A1.
  • the reforming reactor in the presence of residual oxygen, an exothermic partial oxidation or, in the absence of oxygen, an endothermic steam reforming takes place.
  • the combination of both processes, which characterizes a balanced heat balance, is called autothermal reforming.
  • the reforming reactor can also be operated as a so-called autothermal reforming reactor, short ATR reactor.
  • the hydrocarbons in the exhaust gas are essentially converted into a C0- and H 2 -containing gas mixture (synthesis gas).
  • the present reducing agents hydrogen (H 2 ), carbon monoxide (CO) and / or unburned hydrocarbons (HC) are further used to reduce nitrogen oxides.
  • the inventive device and the inventive method for exhaust gas treatment allow the use of a reforming reactor or reforming unit in the full exhaust gas stream to optimize the synthesis gas yield in the rich mode, which in an extremely advantageous manner to improve the N0 X - and sulfur regeneration of the N0 X - storage catalysts, and leads to a reduction of the occurring HC emissions.
  • the NH 3 yield can be optimized in rich operation on the NO x storage catalytic converter.
  • a cyclic rich operation can either be done within the engine (eg post fuel injection into the combustion chamber of the combustion engine). engines or throttling), by secondary injection into the exhaust stream upstream of the reforming reactor and / or by a combination of both.
  • rich operation resulting NO x is degraded largely reductively under the conditions of reforming.
  • the reforming reactor behaves like a conventional in the exhaust gas oxidation catalyst, which reduces the gaseous emissions (HC, CO, N0 X ) in the oxygen-rich exhaust gas.
  • the reforming unit can be equipped with a heating function, for example electrically, by means of a flame glow plug, etc.
  • an exhaust gas recirculation can be provided according to claim 9 after the reforming unit.
  • rich operation ⁇ ⁇ 1
  • reforming of the combustion engine can thus be supplied. This leads advantageously to a reduction of the raw emissions and at the same time to a lower fuel consumption.
  • the at least one exhaust gas catalyst is in the main exhaust gas flow downstream of the reforming unit is arranged, which is preferably a N0 X - storage catalyst is, which removes at flow with a lean exhaust gas to the exhaust gas of nitrogen oxides by storing and flow with reducing exhaust gas by reducing the stored nitrogen oxides N 2 generated.
  • NH 3 can be generated by selecting suitable operating parameters.
  • at least one further catalytic converter is arranged downstream of the NO x storage catalytic converter, which is preferably an SCR catalytic converter which reduces nitrogen oxides contained in the exhaust gas using NH 3 which was generated by means of nitrogen oxide storage catalytic converter, or stores excess NH 3 and thereafter in lean operation as a reducing agent provides.
  • the at least one exhaust gas unit arranged, which is preferably an SCR catalyst, which contained in the exhaust gas nitrogen oxides using NH 3 , which de wit ⁇ de generated by means of nitrogen oxide storage ⁇ de reduced. Further min ⁇ least arranged a further catalytic converter downstream of the SCR catalyst, which is preferably a NO x storage catalytic converter, which removes at flow with a lean exhaust gas to the exhaust gas of nitrogen oxides by storing and generates at flow with reducing exhaust gas by reducing the stored nitrogen oxides N 2 ,
  • nitrogen oxide storage catalysts also referred to as NO x storage catalysts or NO x adsorber catalysts or abbreviated NSK
  • NSK nitrogen oxide storage catalysts
  • Lean operating phases of the internal combustion engine correspond to adsorption phases of the nitrogen oxide storage catalyst in which it oxidizes nitrogen monoxide (NO) into nitrogen dioxide (NO 2 ) and temporarily stores it as nitrates.
  • the nitrogen oxide storage catalyst is freed from the stored nitrates by converting them to nitrogen dioxide and then nitrogen monoxide. The latter is then reduced to nitrogen by suitable reducing agents.
  • an efficient nitrogen oxide reduction is limited to a relatively narrow temperature range between about 200 ° C and 400 ° C with this NO x storage catalyst, since at lower temperature, the oxidation of NO to N0 2 is inhibited and at higher temperature, the nitrates formed no longer stable in can be stored significant amount and the thermodynamic balance between NO and N0 2 increasingly shifts to the side of the nitrogen monoxide.
  • the provision of synthesis gas advantageously results in an improved NO x regeneration at a lower temperature, which in turn has an advantageous effect on the aging behavior and the efficiency of the NO x storage catalytic converter.
  • Typical NO x storage catalysts contain alkaline earth and alkali metals known for their nitrogen oxide storage capacity. Under lean conditions, the nitrogen oxides are converted as follows:
  • Nitrogen dioxide is again desorbed from the storage tank under rich exhaust gas conditions and directly converted into nitrogen oxide with the carbon monoxide present in the exhaust gas:
  • Another problem is the use of sulfur-containing fuels, the so-called sulfur poisoning of the NO x - storage catalyst by storing sulfates, which are more stable to the nitrates and do not decompose in the NO x - regeneration phases.
  • special desulphurization phases are usually carried out from time to time at elevated exhaust gas temperature and rich exhaust gas composition, see, for example, Offenlegungsschrift DE 198 27 195 A1.
  • the noxious gas can produce hydrogen sulfide (H 2 S) whose emission should be avoided.
  • H 2 S hydrogen sulfide
  • DE 100 25 044 C1 proposes supplying secondary air into the exhaust gas line during the desulfurization phases in order to oxidize the hydrogen sulfide in a downstream oxidation catalyst.
  • a control unit which can also serve, for example, for controlling the combustion device, such as an internal combustion engine
  • functions are preferably implemented which decide on the necessity and possibility of targeted NH 3 generation and the operating parameters, in particular the duration and depth of enrichment in the NSK - Regeneration, suitable pretend.
  • NH 3 formation can be enhanced by a lower air ratio and a longer regeneration period, as long as the temperature of the NO x storage catalyst is within the range of possible NH 3 formation.
  • the operation of incineration Direction during the NSK regeneration in a conventional manner be adjusted so that a high NO x -Rohemission achieved the same and thereby the NH 3 formation at the N0 X - storage catalyst is further enhanced.
  • the occurring maximum temperature load of the individual components can be adapted to the specific requirements.
  • it can be ensured by a suitable arrangement that the temperatures of the individual components during driving are in a range which is favorable for the respective function.
  • the rich operation required for the regeneration of the NO x storage catalytic converter can be realized by internal engine measures or an additional post-engine introduction of reducing agents (eg fuel into the exhaust line upstream of the reformer), referred to below as secondary injection.
  • the post-engine supply of reductant upstream of the NO x storage catalyst may also be used to set rich NSK regeneration conditions during lean exhaust engine operation. This is preferably done at
  • a secondary air injection can be carried out before a downstream oxidation catalyst, if required.
  • the secondary air can be generated, for example, by an electrically driven secondary air pump or a compressor are provided or removed in turbocharged engines after compressor.
  • SCR process Another known exhaust aftertreatment process is the so-called selective catalytic reduction process, abbreviated as SCR process.
  • a selectively acting reducing agent is added to the exhaust gas for the purpose of nitrogen oxide reduction, typically ammonia.
  • the ammonia is cached in a corresponding denitration catalyst, abbreviated as SCR catalyst, and used by the latter to catalytically reduce nitrogen oxides (NO x ) present in the exhaust gas to form nitrogen and water.
  • NO x nitrogen oxides
  • SCR catalysts are strongly dependent on the ratio NO / N0 2 at lower temperatures, with an efficiency maximum at an N0 2 content of about 50% for temperatures below 200 ° C and significantly reduced effectiveness at lower N0 2 content .
  • the nitrogen oxide reduction is limited by oxidation of ammonia, also decreases with increasing temperature, the ammonia storage capacity of the SCR catalyst.
  • a suitable temperature window for efficient nitrogen oxide reduction of about 250 ° C. to about 550 ° C. results for such SCR systems.
  • SCR catalysts are subject to thermal aging and should not be exposed to temperatures above approximately 700 ° C to 750 ° C.
  • the lean phases can be extended and thus advantageously lead to fuel savings and at the same time to an improved aging behavior of the NSK catalyst. It has been found that the SCR catalyst can also be used to avoid, for example, in the desulfation resulting H 2 S emission. Experiments have shown that an SCR catalyst, due to its specific properties, can also be used in rich exhaust gas compositions. tion ( ⁇ ⁇ 1) can oxidize hydrogen sulfide occurring during desulfation to S0 2 . As a result, an unpleasant odor nuisance can be avoided.
  • HC vanadium pentoxide
  • V2O5 vanadium pentoxide
  • the reductant breakthrough in NSK regeneration can usually be reduced and also contribute to a reduction in HC emissions after cold start due to its ability to store hydrocarbons at low temperatures.
  • the emission of possibly carcinogenic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene, can be reduced, which can occur in rich conditions on the NO x storage catalyst.
  • the stored at low temperatures HC are released at higher temperatures and can be oxidized on the SCR catalyst or a downstream oxidation catalyst.
  • Typical SCR catalysts contain V2O5, TiO2 and at least one of the components from the group tungsten oxide, molybdenum oxide, silicon dioxide and zeolites.
  • the reforming unit is designed as a catalytic soot particle filter.
  • This catalytically active diesel particulate filter is designed as a wall vent.
  • the reforming unit thus serves in an extremely advantageous manner both as a reformer, on the other hand as a particle filter. This results in addition to the arrangement in full flow and the elimination of an additional filter unit to a much more compact design. By combining or integrating two of the mentioned functionalities in one component, it is also possible to achieve a significant reduction in the space requirement.
  • This particle filter retains the emitted particles with a high degree of effectiveness.
  • a regeneration of the filter can be achieved by various measures. Since diesel soot burns off at elevated temperatures, it is possible on the one hand to increase the exhaust gas temperatures (eg by post fuel injection into the exhaust gas line) or the filter temperatures or, on the other hand, to reduce the soot ignition temperatures to ⁇ 400 ° C. by means of a catalytic coating or by adding fuel to the fuel the reduction of the ignition temperature leads to a shortening of the necessary Nacheinspritz- time or to a reduction of the post-injection quantity. A combination of different regeneration methods is also possible. In general, coated particle filters are clearly superior to additive fueling in terms of emissions during the regeneration phase.
  • the simultaneously acting as a particulate reforming unit contains as a carrier material of an exhaust gas catalysts a ceramic monolith, for example from Cor- dierit, a ceramic having the empirical formula 2MgO x 2A1 2 0 3 5Si0 2 x, silicon carbide (SiC) or other suitable materials.
  • the catalytic coating essentially contains carrier oxides, further oxidic components, such as, for example, cerium oxide and noble metals, which are applied to the ceramic monolith as an aqueous coating, also called a washcoat.
  • carrier oxides may, for example, A1 2 0 3, Si0 2, Ti0 2, lithe Zeo- or mixtures thereof are used, further comprising e lements of the rare earths or Zr, whether in the form of oxides, may be present to increase the specific surface area.
  • the noble metals have been found to be effective catalysts, in particular Pt, Rh, Pd, Ir, Ru and Ni.
  • the heating of the NO x storage catalyst for desulfating and the particulate filter for thermal regeneration can be carried out by internal engine measures, including fuel post-injection into the combustion chamber.
  • the regeneration of the NO x storage catalyst takes place by means of the H 2 and CO formed in the reformer.
  • the exhaust gas temperature is further increased.
  • reducing agents eg fuel
  • the at least one catalytic converter is arranged in the main exhaust gas stream downstream of the reforming reactor, wherein the catalytic converter has the functions of a NO x storage and SCR catalyst.
  • a three-way catalyst is arranged immediately behind the reforming unit in the main flow direction of the exhaust gas.
  • the at least one exhaust gas catalyst is arranged in the main exhaust gas downstream of the reforming unit, which is preferably a DENOX catalyst.
  • the DENOX catalyst can contain zeolite, A1 2 0 3 and / or perovskite, for example as support material, as catalytically active component, for example Pt, Cu or other suitable metals.
  • a NO x - storage catalyst is arranged in front of or behind the DENOX catalytic converter.
  • the method for operating an exhaust aftertreatment device allows a reduction of nitrogen oxides in exhaust gases of motor vehicles by reduction to a catalyst in which hydrogen is supplied, wherein the hydrogen required for the nitrogen oxide reduction aboard the motor vehicle by steam reforming, partial oxidation of hydrocarbons and / or hybrid forms thereof.
  • the reforming is carried out according to the invention directly in the main exhaust gas stream of an internal combustion engine.
  • the water vapor and residual oxygen required for the reforming preferably originate from the exhaust gas.
  • the temperature of the reforming unit is adjusted via the air / fuel ratio, wherein the current oxygen concentration in the exhaust gas is determined by means of a broadband lambda probe.
  • the reforming unit according to the invention is operated at an air / fuel ratio in the range of about 0.5 ⁇ ⁇ 1.0.
  • an amount of fuel supplied to the reforming reactor is set inside the engine, by a secondary injection and / or by a combination of both.
  • FIG. 1 shows a block diagram representation of a full-flow exhaust aftertreatment device, which has a reforming / particle filter unit, a NO x storage catalytic converter and SCR catalytic converter connected in series, FIG.
  • FIG. 2 shows a block diagram of a full-flow exhaust aftertreatment device, which connects in series a reforming / particle filter unit and an integrated catalytic converter with N0 X - Has storage catalytic converter and SCR catalyst function,
  • Fig. 3 is a block diagram representation of an exhaust gas aftertreatment device in the full flow, the hinterthege- switches a reforming / filter unit, a three-way catalyst, an NO x storage catalytic converter and an SCR catalytic converter has,
  • FIG. 4 is a block diagram of a full flow exhaust aftertreatment device having a reforming / particulate filter unit and HC-DENO x storage catalyst in series.
  • the exhaust aftertreatment device of Fig. 1 includes in the exhaust gas flow direction behind an internal combustion engine (not shown) in full flow of the exhaust line 4 successively a reforming unit 1, which also acts as a particle filter, a NO x storage catalyst 2 and an SCR catalyst 3 as exhaust gas cleaning components.
  • a control unit not shown in more detail is used to control the internal combustion engine, which is preferably a diesel engine, and the exhaust aftertreatment device.
  • temperature sensors, NO x sensors, lambda sensors, a device for supplying secondary air and pressure sensors, which are not shown further, can be arranged at suitable locations of the exhaust gas line 4.
  • a device for post-engine supply of reducing agent 5, also referred to as secondary injection, is arranged upstream of the reforming unit 1.
  • the internal combustion engine supplies exhaust gas containing, inter alia, NO x , particulates, CO and HC as unburned hydrocarbons.
  • the reforming Unit 1 as a normal oxidation catalyst and CO and HC are oxidized to C0 2 and H 2 0.
  • the particles present in the exhaust gas are retained in the reforming unit 1, which also acts as a particle filter.
  • a portion of the accumulated in the particulate soot is oxidized by reaction with N0 2, N0 2 being reduced to NO. If, after the NO x storage catalytic converter 2, nitrogen oxides should still be present in the exhaust gas, these are usually present in the form of NO.
  • NO x is stored as nitrate in the NO x storage catalyst 2.
  • the reforming unit 1 supplies in the rich operation ( ⁇ ⁇ l) a CO and H 2 -containing synthesis gas mixture having a reduced HC content.
  • rich operation then stored NO x is desorbed and reduced with synthesis gas or CO and / or HC to N 2 .
  • ammonia is still formed according to the equation 3.5H 2 + N0 2 - »NH 3 + 2H 2 0.
  • This NH 3 can directly the resulting also in rich operation NO x at the subsequent SCR stage 3 according to the equation 4NH 3 + 3N0 2 -> reduce 3.5N 2 + 6H 2 0.
  • Excess ammonia is adsorptively stored in the SCR catalyst 3. As a result, existing NO x can be partially implemented already in lean operation.
  • an exhaust gas recirculation (not shown) may be provided. This can be fed in rich operation reformate the engine combustion. This leads to a reduction in raw emissions and at the same time reduces fuel consumption.
  • the temperature control of the reforming unit 1 takes place in rich operation by a variation of the lambda.
  • the reforming unit can be provided with a heating function (eg, electrical, flame glow plug, etc.).
  • sequence of NO x storage catalyst 2 and an SCR catalyst 3 can be interchanged with one another as exhaust-gas-cleaning components, with the result that the reduction of NO x at the SCR catalyst 3 takes place instead of NH 3 with H 2 or reformate ,
  • An oxygen-storage-function oxidation catalyst downstream of both versions converts the remaining hydrocarbon from lean to rich operation by means of stored 0 2 .
  • the oxidation catalyst may be preceded by a device, not shown, for supplying secondary air.
  • heating measures can be applied.
  • These may be internal engine, for example a late shift of the main injection or post-injection into the combustion chamber, or post-engine by supply of reducing agent before the reforming unit 1 for exothermic generation, if the NO x storage catalytic converter 2 has reached a sufficient temperature for the implementation of the reducing agent.
  • the exhaust pipe may also be thermally insulated to minimize heat losses from the exhaust gas. For example, an air gap insulation can be used.
  • Other measures to increase the exhaust gas temperature may be: Increase the idle speed, extension of the afterglow, switching on additional electrical consumers o- an increase in the EGR rate.
  • the abovementioned measures can be controlled, for example, by a control unit for controlling the engine or exhaust-gas purification components as a function of the incoming temperature signals or by means of a model.
  • the control unit for example, models for the NO x -Rohemission, the NO x of the NO x -Speicher - storage catalyst 2, the formation of NH 3 on the NO x - deposited storage catalyst 2, and the NH 3 storage in the SCR catalyst 3, in which, inter alia, the criteria for NSK Regeneration are set.
  • the models can be adapted to the current state of aging of the catalysts.
  • Thermal regenerations of the reforming unit 1, which also acts as a particle filter, are necessary at regular intervals, so that the flow resistance is not increased by the soot deposits and thus the engine power is reduced.
  • the soot layer is burned off, whereby CO 2 forms from the soot and water vapor.
  • temperatures above 550 ° C are normally required.
  • With a catalytically designed soot filter it is possible to reduce the soot ignition temperature in the range below 400 ° C.
  • the reaction is similar to the CRT system, ie NO is converted to N0 2 which reacts with the carbon black.
  • the post-engine supply of reducing agent can be used for heating the particle filter 1, for example.
  • the exemplary embodiment illustrated in FIG. 2 differs from that of FIG. 1 in that the exhaust gas purification components NO x storage component 2 and the SCR catalytic converter 3 arranged downstream in full flow are combined to form an integrated catalytic converter 6.
  • This has the advantage that the temperature drop in the exhaust pipe of the cascaded catalysts occurs in an integrated solution is eliminated. It is advantageous in any case that the space requirement is considerably reduced by this measure.
  • both functional components reach the required operating temperature very quickly, so that no additional heating measures are required, which increase the force material consumption.
  • an oxidation catalyst with oxygen storage function with a downstream of this catalyst means for supplying secondary air can be connected downstream.
  • the present in integrated form catalytic converter can generally be in the form of a honeycomb body designed as a Vollextrudates; that is, the components of the catalyst are processed to an extrudable mass and then extruded into honeycomb bodies.
  • a catalyst consists entirely of catalyst mass and is therefore also referred to as a full catalyst.
  • the SCR catalyst component 3 can be extruded into a honeycomb body and the NO x storage catalyst component 2 can be applied in the form of a coating to the walls of the flow channels.
  • the techniques used for this purpose are known to the person skilled in the art.
  • the NO x storage catalyst 2 and the SCR catalyst 3 may also be applied in the form of a coating on the walls of the flow channels of catalytically inert support bodies in honeycomb form.
  • the inert support body are preferably made of cordierite.
  • the catalyst, the N0 X is - storage catalyst component 2 and the SCR catalyst component applied 3 in two separate layers on the inert support structure, wherein preferably the N0 X - storage catalyst component 2 in the bottom, lying directly on the support body layer and the SCR Catalyst component 3 is arranged in the upper layer, which comes into direct contact with the exhaust gas.
  • the SCR catalyst 3 may be upstream of the NO x storage catalyst 2, so that the TWC catalyst 7 is upstream of the SCR Katalsyator.
  • the two components SCR catalytic converter 3 and NO x storage catalytic converter can be designed as integrated catalytic converter 6, to which the TWC catalytic converter 7 is connected upstream.
  • FIG. 4 shows a further variant of an exhaust aftertreatment device, in which behind the reforming unit 1 a HC-DENOX catalyst 8 is arranged downstream in the full flow of the exhaust gas line. He replaces the variant "NSK catalyst with downstream SCR catalyst", whereby he catalyzes the nitrogen oxide reduction by means of HC ..
  • a NO x storage catalyst 2 can be arranged immediately before or after the HC-DENOX catalyst his.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

Die erfindungsgemässe Abgasnachbehandlungseinrichtung mit einer Reformierungseinheit (1) zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon zeichnet sich dadurch aus, dass die Reformierungseinheit direkt im Hauptabgasstrom eines Verbrennungsmotors angeordnet ist. Der für die Reformierung notwendige Wasserdampf und Restsauerstoff stammen bevorzugt aus dem Abgas. Die Bereitstellung der erforderlichen Reduktionsmittel besteht darin, die vorwiegend mager betriebene Verbrennungseinrichtung, deren Abgas nachbehandelt wird, kurzzeitig auf Fettbetrieb umzustellen, wodurch eine Reformierung mittels erfindungsgemässem Reformierungsreaktor mit den im Abgas vorhandenen Kohlenwasserstoffen ermöglicht wird.

Description

Abgasnachbehandlunqseinrichtung und -verfahren
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Abgasnachbehandlung für mobile Anwendungen nach dem Oberbegriff des Anspruchs 1 bzw. des Anspruchs 11.
Für die Nutzung von Kraftfahrzeugen mit Otto- und insbesondere Dieselmotoren ist die Einhaltung entsprechender gesetzlicher Emissionsvorschriften unabdingbar. In diesem Zusammenhang wird die katalytische NOx-Reduktion mit Wasserstoff als vorteilhaft angesehen. Diese katalytische Entfernung von Stickoxiden aus den Verbrennungsabgasen von Kraftfahrzeugen wird unter Einsatz von Wasserstoff an geeigneten Katalysatoren nach der Reaktion 2NO + 2H2 —> N2 + 2H20 durchgeführt.
Bei einem Teil der bekannten Verfahren zur Entfernung von Stickoxiden nach der NOx-Reduktion wird der für die Reaktion benötigte Wasserstoff im Fahrzeug mitgeführt, z.B. über Drucktanks, Flüssig-Wasserstofftanks oder Metallhydridspeicher. An diesem Verfahren ist nachteilig, dass für die Was- serstoffmitführung große, schwere Behälter benötigt werden, die darüber hinaus eine eng limitierte Kapazität aufweisen, so dass kurze Nachfüllintervalle notwendig sind.
In der EP 537 968 AI ist eine Vorrichtung zur katalytischen Reduktion von Stickoxiden in Abgasen von Kraftfahrzeugen unter Zufuhr von Wasserstoff bekannt. Die Wasserstofferzeugung erfolgt an Bord des Kraftfahrzeugs durch partielle Oxidation oder Reformierung von Methanol an einem entsprechendem Katalysator. Das Aufheizen der Katalysatoren erfolgt dadurch, dass sie in dem heißen Abgasstrom des Motors angeordnet sind. Aus der DE 101 20 097 AI ist eine Abgasreinigungsanlage in einem Fahrzeug mit einem Reformierungsreaktor zur Extraktion von Wasserstoff aus Kraftstoff bekannt, bei welcher der Wasserstoff einem Abgasstrom einer Abgasleitung einer Brennkraftmaschine stromauf eines Abgaskatalysators zuführbar ist. Der Reformierungsreaktor weist eine Zuführeinrichtung für Sauerstoff und/oder Wasser auf und ist mit einem Nebenzweig der Abgasleitung verbunden, wobei Sauerstoff und Wasser zur Reformierung in Form eines Abgasteilstroms über den Nebenzweig zuführbar sind.
Um die Anordnung der jeweiligen Komponenten zur Abgasreinigung in den vorgenannten Patentdokumenten realisieren zu können, muss ein entsprechender großer Bauraum für die Abgasnachbehandlungsvorrichtung vorgesehen werden, die daher relativ unhandlich ist.
Aufgabe der Erfindung ist daher die Angabe eines Verfahrens bzw. einer Vorrichtung zur Abgasnachbehandlung, mit welcher sich eine Bauraumoptimierung im Hinblick auf eine kompaktere Bauweise realisieren lässt.
Die Erfindung löst dieses Problem durch die Bereitstellung einer Abgasnachbehandlungseinrichtung mit den Merkmalen des Anspruchs 1 sowie eines Abgasnachbehandlungsverfahrens mit den Merkmalen des Anspruchs 11.
Die erfindungsgemäße Abgasnachbehandlungseinrichtung mit einer Reformierungseinheit zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon zeichnet sich dadurch aus, dass die Reformierungseinheit direkt im Hauptabgasstrom eines Verbrennungsmotors angeordnet ist. Der für die Reformierung notwendige Wasserdampf und Restsauerstoff stammen bevorzugt aus dem Abgas. Die Bereitstellung der erforderlichen Reduktionsmittel besteht darin, die vorwiegend mager betriebene Verbrennungseinrichtung, deren Abgas nachbehandelt wird, kurzzeitig auf Fettbetrieb umzustellen, wodurch eine Refor- mierung mittels erfindungsgemäßem Reformierungsreaktor mit den im Abgas vorhandenen Kohlenwasserstoffen ermöglicht wird. Hierzu sind bereits verschiedene spezifische Maßnahmen zur Steuerung des Luft/Kraftstoff-Verhältnisses, auch kurz als Luftverhältnis λ bezeichnet, vorgeschlagen worden, siehe z.B. die Offenlegungsschriften EP 0 560 991 AI und DE 196 26 835 AI.
In der Reformierungseinheit findet unter Anwesenheit von Restsauerstoff eine exotherme partielle Oxidation bzw. unter Abwesenheit von Sauerstoff eine endotherme Dampfreformierung statt. Die Kombination beider Prozesse, die eine ausgeglichene Wärmebilanz kennzeichnet, bezeichnet man als autotherme Reformierung. Der Reformierungsreaktor kann ferner auch als sogenannter autothermer Reformierungsreaktor, kurz ATR- Reaktor, betrieben werden.
Bei der Reformierung werden die Kohlenwasserstoffe im Abgas im wesentlichen in ein C0- und H2-haltiges Gasgemisch (Synthesegas) umgewandelt. Die hier vorliegenden Reduktionsmittel Wasserstoff (H2) , Kohlenmonoxid (CO) und/oder unverbrannte Kohlenwasserstoffe (HC) werden im weiteren zur Reduzierung von Stickoxiden eingesetzt.
Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren zur Abgasnachbehandlung erlauben durch den Einsatz eines Reformierungsreaktors bzw. einer Reformierungseinheit im Abgasvollstrom eine Optimierung der Synthesegasausbeute im Fettbetrieb, welche in äußerst vorteilhafter Weise zu einer Verbesserung der N0X- und Schwefel-Regeneration der N0X- Speicherkatalysatoren sowie zu einer Reduzierung der auftretenden HC-Emissionen führt. Zusätzlich kann die NH3-Ausbeute im Fettbetrieb auf dem NOx-Speicherkatalysator optimiert werden.
Ein zyklischer Fettbetrieb kann entweder innermotorisch (z.B. Kraftstoffnacheinspritzung in den Brennraum des Verbrennungs- motors oder Androsselung) , durch eine Sekundäreinspritzung in den Abgasstrom vor dem Reformierungsreaktor und/oder durch eine Kombination von beidem realisiert werden. Im Fettbetrieb anfallendes NOx wird unter den Bedingungen der Reformierung weitgehend reduktiv abgebaut.
Im Magerbetrieb verhält sich der Reformierungsreaktor wie ein im Abgasbereich üblicher Oxidationskatalysator, der im sauerstoffreichen Abgas die gasförmigen Emissionen (HC, CO, N0X) reduziert. Um einen schnellen Kaltstart zu ermöglichen, kann die Reformierungseinheit mit einer Beheizungsfunktion, z.B. elektrisch, mittels Flammglühkerze, etc., ausgestattet sein.
Optional kann gemäß Anspruch 9 nach der Reformierungseinheit eine Abgasrückführung vorgesehen sein. Im Fettbetrieb (λ<l) kann somit Reformat der motorischen Verbrennung zugeführt werden. Dies führt in vorteilhafter Weise zu einer Verminderung der Rohemissionen und gleichzeitig zu einem geringeren Kraftstoffverbrauch .
In einer Weiterbildung nach Anspruch 2 ist im Hauptabgasstrom stromab der Reformierungseinheit der mindestens eine Abgaskatalysator angeordnet, der bevorzugt ein N0X- Speicherkatalysator ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N2 erzeugt. Zusätzlich kann durch die Wahl geeigneter Betriebsparameter NH3 erzeugt werden. Des Weiteren ist stromab des NOx-Speicherkatalysators mindestens ein weiterer Abgaskatalysator angeordnet, der bevorzugt ein SCR-Katalysator ist, welcher im Abgas enthaltene Stickoxide unter Verwendung von NH3 welches mittels Stickoxidspeicherka- talysator erzeugt wurde, reduziert bzw. überschüssiges NH3 einspeichert und danach im Magerbetrieb als Reduktionsmittel zur Verfügung stellt.
In einer Ausgestaltung nach Anspruch 3 ist im Hauptabgasstrom stromab der Reformierungseinheit der mindestens eine Abgaska- talysator angeordnet, der bevorzugt ein SCR-Katalysator ist, welcher im Abgas enthaltene Stickoxide unter Verwendung von NH3, welches mittels Stickoxidspeicherkatalysator erzeugt wur¬ de, reduziert. Ferner ist stromab des SCR-Katalysators min¬ destens ein weiterer Abgaskatalysator angeordnet, der bevorzugt ein NOx-Speicherkatalysator ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N2 erzeugt.
Der Einsatz von Stickoxidspeicherkatalysatoren, auch als NOx- Speicherkatalysatoren oder NOx-Adsorberkatalysatoren bzw. abgekürzt als NSK bezeichnet, ist zur nachmotorischen Stickoxidminderung bei mager betriebenen Brennkraftmaschinen allgemein bekannt. Magerbetriebsphasen der Brennkraftmaschine entsprechen Adsorptionsphasen des Stickoxidspeicherkatalysa- tors, in welchen er Stickstoffmonoxid (NO) in Stickstoffdioxid (N02) oxidiert und als Nitrate zwischenspeichert. Während kurzzeitiger, periodischer Regenerations- bzw. Desorpti- onsphasen wird der Stickoxidspeicherkatalysator von den eingespeicherten Nitraten befreit, indem diese zu Stickstoffdioxid und anschließend Stickstoffmonoxid umgewandelt werden. Letzteres wird dann durch geeignete Reduktionsmittel zu Stickstoff reduziert.
Bei diesem abwechselnden Adsorptions-/Desorptionsbetrieb sind einige Problempunkte zu beachten. So können abhängig von der Katalysatortemperatur, der Abgaszusammensetzung und der Materialzusammensetzung des Stickoxidspeicherkatalysators in der Regenerationsphase erhebliche Mengen des Schadgases Ammoniak (NH3) durch Reaktion von Wasserstoff mit Stickstoffmonoxid und/oder Stickstoffdioxid entstehen. Beim Übergang von magerer auf fette Abgasatmosphäre besteht die Gefahr eines unerwünschten Stickoxid-Durchbruchs aufgrund schlagartiger Nitratzersetzung, wenn nicht ausreichend rasch Reduktionsmittel in entsprechender Menge bereitgestellt wird. Beim Übergang von fetter auf magere Abgasatmosphäre kann durch exotherme Verbrennungsreaktionen eine Erwärmung des Stickoxidspeicher- katalysators mit der Folge auftreten, dass bereits gebildete Nitrate wieder zersetzt und vorübergehend nicht mehr eingespeichert werden können, was einen unerwünschten Stickoxid- Schlupf verursachen kann. Eine effiziente Stickoxidminderung ist mit dieser NOx-Speicherkatalysatortechnik auf einen relativ schmalen Temperaturbereich etwa zwischen 200 °C und 400 °C begrenzt, da bei geringerer Temperatur die Oxidation von NO zu N02 gehemmt ist und bei höherer Temperatur die gebildeten Nitrate nicht mehr stabil in signifikanter Menge gespeichert werden können und sich das thermodynamische Gleichgewicht zwischen NO und N02 zunehmend auf die Seite des Stickstoffmonoxids verschiebt. Erfindungsgemäß ergibt sich durch die Bereitstellung von Synthesegas günstigerweise eine verbesserte NOx-Regeneration bei niedrigerer Temperatur, welche sich wiederum vorteilhaft auf das Alterungsverhalten und die Effizienz des NOx-Speicherkatalysators auswirkt.
Typische NOx-Speicherkatalysatoren enthalten Erdalkali- und Alkalimetalle, die für ihre Stickoxid-Speicherfähigkeit bekannt sind. Unter mageren Bedingungen werden die Stickoxide wie folgt umgesetzt:
2NO + 02 → 2N02 (Pt-Katalysator)
4N02 + 02 + 2BaC03 - 2Ba(N03)2 + 2C02
Unter fetten Abgasbedingungen wird Stickstoffdioxid wieder aus dem Speicher desorbiert und direkt mit dem im Abgas vorhandenen Kohlenmonoxid zu Stickoxid umgesetzt:
2Ba(N03)2 + 2C02 → 4N02 + 02 + 2BaC03
2N02 + 4CO → 2C02 + N2 (Pt, Rh-katalysiert) Die Umschaltzeiten zwischen Mager- und Fettbetrieb des Motors hängen von der eingesetzten Speichermaterialmenge, den NOx- Emissionen und den für alle katalysierten Reaktionen typischen Parametern, wie Gasdurchsatz und Temperatur, ab.
Ein weiterer Problempunkt ist bei Verwendung schwefelhaltiger Kraftstoffe die sogenannte Schwefelvergiftung des NOx- Speicherkatalysators durch Einspeichern von Sulfaten, die gegenüber den Nitraten stabiler sind und sich in den NOx- Regenerationsphasen nicht zersetzen. Zur Sulfatentfernung werden daher üblicherweise von Zeit zu Zeit spezielle Desul- fatisierungsphasen bei erhöhter Abgastemperatur und fetter Abgaszusammensetzung durchgeführt, siehe z.B. die Offenle- gungsschrift DE 198 27 195 AI. Auch hier ergibt sich gemäß der Erfindung durch die Bereitstellung von Synthesegas günstigerweise beim NOx-Speicherkatalysator eine verbesserte Schwefel-Regeneration bzw. -entfernung bei ebenfalls niedrigerer Temperatur, welche sich wiederum vorteilhaft auf das Alterungsverhalten des NOx-Speicherkatalysators auswirkt. Bei der Desulfatisierung kann das Schadgas Schwefelwasserstoff (H2S) entstehen, dessen Emission vermieden werden sollte. Dazu wird z.B. in der Patentschrift DE 100 25 044 Cl eine Zufuhr von Sekundärluft in den Abgasstrang während der Desulfa- tisierungsphasen vorgeschlagen, um den Schwefelwasserstoff in einem nachgeschalteten Oxidationskatalysator zu oxidieren.
In einer entsprechenden Steuerungseinheit, die z.B. auch zur Steuerung der Verbrennungseinrichtung, wie einer Brennkraftmaschine, dienen kann, sind bevorzugt Funktionen implementiert, die über die Notwendigkeit und Möglichkeit einer gezielten NH3-Erzeugung entscheiden und die Betriebsparameter, insbesondere die Dauer und Anfettungstiefe bei der NSK- Regeneration, geeignet vorgeben. Typischerweise kann die NH3- Bildung durch ein kleineres Luftverhältnis und eine längere Regenerationsdauer verstärkt werden, sofern die Temperatur des NOx-Speicherkatalysators im Bereich möglicher NH3-Bildung liegt. Darüber hinaus kann der Betrieb der Verbrennungsein- richtung während der NSK-Regeneration in an sich bekannter Weise so eingestellt werden, dass eine hohe NOx-Rohemission derselben erzielt und dadurch die NH3-Bildung am N0X- Speicherkatalysator weiter verstärkt wird.
Durch geeignete Anordnung der Komponenten kann die auftretende maximale Temperaturbelastung der einzelnen Komponenten den spezifischen Erfordernissen angepasst werden. Zudem kann durch geeignete Anordnung sichergestellt werden, dass die Temperaturen der einzelnen Komponenten im Fahrbetrieb in einem für die jeweilige Funktion günstigen Bereich liegen. Der für die Regeneration des NOx-Speicherkatalysators erforderliche Fettbetrieb kann durch innermotorische Maßnahmen oder eine zusätzliche nachmotorische Einbringung von Reduktionsmitteln (z.B. Kraftstoff in den Abgasstrang vor dem Reformer), im weiteren als Sekundäreinspritzung bezeichnet, realisiert werden.
Die nachmotorische Zufuhr von Reduktionsmittel stromaufwärts des NOx-Speicherkatalysators kann auch dazu genutzt werden, bei Motorbetrieb mit magerem Abgas fette Bedingungen zur NSK- Regeneration einzustellen. Dies geschieht vorzugsweise bei
Motorbetrieb zwischen λ=l .0 und λ=1.2, da andernfalls die zuzuführende Reduktionsmittelmenge zu groß ist. Hierbei ergibt sich als Vorteil, dass üblicherweise im Bereich zwischen λ=1.0 und λ=1.2 eine hohe NOx-Rohemission auftritt, während diese bei Luftverhältnissen λ<l deutlich niedriger ist. Somit kann dieses Verfahren dazu dienen, bei der NSK-Regeneration eine hohe NOx-Emission und damit eine starke NH3-Bildung zu erzielen.
Zur Vermeidung hoher CO- und HC-Emissionen während NSK- Regenerationen mit λ<l kann vor einem nachgeschalteten Oxida- tionskatalysator bei Bedarf eine Sekundärlufteinblasung erfolgen. Die Sekundärluft kann z.B. durch eine elektrisch an- getriebene Sekundärluftpumpe oder einen Kompressor bereitgestellt werden oder bei aufgeladenen Motoren nach Verdichter entnommen werden.
Ein weiteres bekanntes Abgasnachbehandlungsverfahren ist das sogenannte selektive katalytische Reduktionsverfahren, abgekürzt als SCR-Verfahren bezeichnet. Hierbei wird dem Abgas zwecks Stickoxidreduktion ein selektiv wirkendes Reduktionsmittel zugegeben, typischerweise Ammoniak. Der Ammoniak wird in einem entsprechenden Denitrierungskatalysator, abgekürzt als SCR-Katalysator bezeichnet, zwischengespeichert und von diesem dazu verwendet, im Abgas enthaltene Stickoxide (NOx) katalytisch unter Bildung von Stickstoff und Wasser zu reduzieren. Die Effektivität von SCR-Katalysatoren ist bei niedrigeren Temperaturen stark vom Verhältnis NO/N02 abhängig, mit einem Effektivitätsmaximum bei einem N02-Anteil von ca. 50% für Temperaturen unterhalb von 200 °C und deutlich reduzierter Effektivität bei geringerem N02-Anteil. Bei höheren Temperaturen oberhalb von ca. 400 °C wird die Stickoxidreduktion durch Oxidation von Ammoniak limitiert, außerdem nimmt mit zunehmender Temperatur die Ammoniak-Speicherkapazität des SCR-Katalysators ab. Insgesamt ergibt sich für solche SCR- Systeme ein taugliches Temperaturfenster zur effizienten Stickoxidminderung von etwa 250 °C bis etwa 550 °C. SCR- Katalysatoren unterliegen einer thermischen Alterung und sollten nicht mit Temperaturen über ca. 700°C bis 750°C belastet werden. Durch das im SCR-Katalysator gespeicherte NH3 können die Magerphasen verlängert werden und führen damit vorteilhafterweise zu einer Kraftstoffeinsparung und gleichzeitig zu einem verbesserten Alterungsverhalten des NSK- Katalysators . Es hat sich gezeigt, dass der SCR-Katalysator auch eingesetzt werden kann, um eine beispielsweise bei der Desulfatisierung entstehende H2S-Emission zu vermeiden. Versuche haben ergeben, dass ein SCR-Katalysator aufgrund seiner spezifischen Eigenschaften auch bei fetter Abgaszusammenset- zung (λ<l) bei der Desulfatisierung auftretenden Schwefelwasserstoff zu S02 oxidieren kann. Hierdurch kann eine unangenehme Geruchsbelästigung vermieden werden.
Als weitere Besonderheit können SCR-Katalysatoren bei niedri¬ gen Temperaturen unverbrannte Kohlenwasserstoffe (HC) Zwischenspeichern und diese, sofern sie Vanadiumpentoxid (V2O5) enthalten, bei fetten Bedingungen (λ<l) auch oxidieren. Hierdurch kann üblicherweise der Reduktionsmittel-Durchbruch bei der NSK-Regeneration vermindert werden und aufgrund seiner Eigenschaft, bei niedrigen Temperaturen auch Kohlenwasserstoffe zu speichern ferner zu einer Verringerung der HC- Emissionen nach dem Kaltstart beitragen. Insbesondere die E- mission von möglicherweise krebserregenden Kohlenwasserstoffen wie Benzol, Toluol, Ethylbenzol und Xylol kann verringert werden, die bei fetten Bedingungen am NOx-Speicherkatalysator entstehen können. Die bei niedrigen Temperaturen gespeicherten HC werden bei höheren Temperaturen wieder freigesetzt und können am SCR-Katalysator oder einem nachgeschalteten Oxida- tionskatalysator oxidiert werden. Die zur Oxidation von unverbrannten Kohlenwasserstoffen am SCR-Katalysator notwendigen hohen Temperaturen führen jedoch zu einer Verschlechterung des Alterungsverhaltens. Dieses kann durch die Erfindung überwunden werden, da durch den Einsatz der Reformereinheit im Vollstrom, die gleichzeitig als Reformer oder Reformater- zeugungseinheit fungiert, kann der Synthesegasanteil im Fettbetrieb erhöht werden bei gleichzeitiger Verringerung der HC- Emissionen. Dies führt als ein weiterer Vorteil zu einem verbesserten Alterungsverhalten des SCR-Katalysators .
Typische SCR-Katalysatoren enthalten V2O5, Tiθ2 und wenigstens eine der Komponenten aus der Gruppe Wolframoxid, Molybdänoxid, Siliciumdioxid und Zeolithe. In einer weiteren vorteilhaften Ausbildung nach Anspruch 10 zur nachmotorischen Partikelminderung ist die Reformierungseinheit als katalytischer Rußpartikelfilter ausgebildet. Dieser katalytisch aktive Dieselpartikelfilter ist als Wand- durchströmer ausgeführt. Die Reformierungseinheit dient somit in äußerst vorteilhafter Weise gleichzeitig zum einen als Reformer, zum anderen als Partikelfilter. Dies führt neben der Anordnung im Vollstrom und dem Wegfall einer zusätzlichen Filtereinheit zu einer wesentlich kompakteren Bauweise. Durch die Kombination bzw. Integration von zwei der genannten Funktionalitäten in einem Bauteil kann außerdem eine deutliche Reduzierung des Bauraumbedarfs erzielt werden.
Dieser Partikelfilter hält die emittierten Partikel mit einer hohen Effektivität zurück. Eine Regeneration des Filters kann durch verschiedene Maßnahmen erreicht werden. Da Dieselruß bei erhöhten Temperaturen abbrennt, kann man zum einen die Abgastemperaturen (z.B. durch Kraftstoffnacheinspritzung in den Abgasstrang) bzw. die Filtertemperaturen erhöhen oder zum anderen die RußZündtemperaturen durch eine katalytische Beschichtung oder durch die Additivierung des Kraftstoffs erniedrigen auf Bereiche < 400 °C, wobei die Reduktion der Zündtemperatur zu einer Verkürzung der notwendigen Nacheinspritz- zeit bzw. zu einer Reduktion der Nacheinspritzmenge führt. Eine Kombination verschiedener Regenerationsmethoden ist e- benso möglich. Generell sind beschichtete Partikelfilter im Hinblick auf Emissionen während der Regenerationsphase einer Additivierung des Kraftstoffs deutlich überlegen. Beim Abbrennen der Rußschicht, für die Abgastemperaturen oberhalb von 550 °C erforderlich bildet sind, bildet sich aus dem Ruß C02 und Wasserdampf. Soweit das den Partikelfilter erreichende Abgas N02 enthält, erfolgt auch bereits im Temperaturbereich von etwa 250°C bis 400°C eine Rußoxidation durch Reaktion mit N02 (CRT-Effekt) . Die gleichzeitig als Partikelfilter fungierende Reformierungseinheit enthält als Trägermaterial eines Abgaskatalysatoren einen keramischen Monolithen, beispielsweise aus Cor- dierit, einer Keramik mit der Summenformel 2MgO x 2A1203 x 5Si02, Siliciumcarbid (SIC) oder andere geeignete Materialien. Die katalytische Beschichtung enthält im wesentlichen Trägeroxide, weitere oxidische Komponenten, wie z.B Ceroxid und Edelmetalle, die als wässrige Beschichtung, auch Washcoat genannt, auf den keramischen Monolithen aufgebracht werden. Als Trägeroxide können beispielsweise A1203, Si02, Ti02, Zeo- lithe oder Mischungen davon verwendet werden, wobei ferner E- lemente der Seltenen Erden oder Zr, auch in Form von Oxiden, zur Erhöhung der spezifischen Oberfläche vorhanden sein können. In der Praxis haben sich besonders die Edelmetalle als wirksame Katalysatoren herausgestellt, insbesondere Pt, Rh, Pd, Ir, Ru sowie Ni .
Die Aufheizung des NOx-Speicherkatalysators zur Desulfatisierung sowie des Partikelfilters zur thermischen Regeneration kann durch innermotorische Maßnahmen, u.a. Kraftstoff- nacheinspritzung in den Brennraum, erfolgen. Die Regeneration des NOx-Speicherkatalysators erfolgt mittels des im Reformer entstandenen H2 und CO. Neben der gezielt erhöhten Abgastemperatur führen im Abgas verbleibende, unvollständig verbrannte Kohlenwasserstoffe zu einer zusätzlichen Exothermie auf einem optional motornah angeordneten Katalysator, wodurch die Abgastemperatur weiter angehoben wird. Zusätzlich oder alternativ kann auch eine Zufuhr von Reduktionsmitteln (z.B. Kraftstoff) im Abgasstrang direkt vor der oder vor den aufzuheizenden Komponenten bzw. vor einem diesen Komponenten vorgeschalteten Oxidationskatalysator erfolgen. Dies hat den Vorteil, dass die Wärmeverluste durch Aufheizung weiterer vorgeschalteter Komponenten sowie Wärmeverluste durch Abküh- lung in der Abgasleitung verringert werden. Hierdurch wird der Energieaufwand und damit der Kraftstoff-Mehrverbrauch für die Aufheizung auf ein Minimum beschränkt. Ein weiterer Vorteil ist, dass auf diese Weise weitere vorgeschaltete Komponenten nicht mit hohen Abgastemperaturen belastet werden und somit deren thermische Alterung auf ein Minimum beschränkt werden kann. Außerdem wird vermieden, dass weitere vorgeschaltete Komponenten, z.B. ein vorgeschalteter NOx- Speicherkatalysator, aufgrund der Aufheizung das für eine gute Effizienz erforderliche Temperaturfenster verlassen.
Im Fall eines katalytisch beschichteten Partikelfilters besteht ein weiterer Vorteil darin, dass die Kraftstoff- Umsetzung wegen der hohen Wärmekapazität des Partikelfilters auch beispielsweise nach längeren Schubphasen des Verbrennungsmotors mit niedriger Abgastemperatur weiterhin möglich ist. Bei einem konventionellen Katalysator besteht dagegen die Gefahr, dass aufgrund der geringen Wärmekapazität die Temperatur unter vergleichbaren Bedingungen unter die Anspringtemperatur sinkt und somit keine katalytische Umsetzung der Kohlenwasserstoffe mehr möglich ist. Generell sind statt der Zufuhr von Reduktionsmittel (z.B. Kraftstoff) vor einem Katalysator auch andere Verfahren zur Aufheizung anstelle der nachmotorischen Zufuhr von Reduktionsmittel möglich. Wie- beispielsweise eine elektrische Beheizung des Partikelfilters/Reformers als in der Praxis übliche Maßnahmen zu nennen.
In einer weiteren Besonderheit nach Anspruch 4 ist im Hauptabgasstrom stromab des Reformierungsreaktors der mindestens eine Abgaskatalysator angeordnet, wobei der Abgaskatalysator die Funktionen eines NOx-Speicher- und SCR-Katalysators aufweist. Durch die Kombination bzw. Integration beider Funktionalitäten in einem Bauteil kann wiederholt eine deutliche Reduzierung des Bauraumbedarfs erzielt werden. In einer bevorzugten Ausbildung gemäß Anspruch 5 ist stromab hinter dem jeweils letzten Abgaskatalysator ein Oxidationska- talysator angeordnet.
In einer weiteren Ausgestaltung gemäß Anspruch 6 ist unmittelbar hinter der Reformierungseinheit in Hauptströmungsrichtung des Abgases ein Drei-Wege-Katalysator angeordnet.
In einer anderen vorteilhaften Weiterbildung der Erfindung nach Anspruch 7 ist im Hauptabgasstrom stromab der Reformierungseinheit der mindestens eine Abgaskatalysator angeordnet, der bevorzugt ein DENOX-Katalysator ist. Der DENOX- Katalysator kann beispielsweise als Trägermaterial Zeolith, A1203 und/oder Perowskit enthalten, als katalytisch aktive Komponente z.B. Pt, Cu oder andere geeignete Metalle.
Gemäß einer weiteren vorteilhaften Ausbildung nach Anspruch 8 ist vor oder hinter dem DENOX-Katalyator ein NOx- Speicherkatalysator angeordnet.
Das Verfahren zum Betreiben einer Abgasnachbehandlungseinrichtung gemäß Anspruch 11 erlaubt eine Reduzierung von Stickoxiden in Abgasen von Kraftfahrzeugen durch Reduktion an einem Katalysator, in dem Wasserstoff zugeführt wird, wobei der für die Stickoxid-Reduktion benötigte Wasserstoff an Bord des Kraftfahrzeugs durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon erzeugt wird. Hierbei wird erfindungsgemäß die Reformierung direkt im Hauptabgasstrom eines Verbrennungsmotors durchgeführt. Der für die Reformierung notwendige Wasserdampf und Restsauerstoff stammt bevorzugt aus dem Abgas.
In einer Ausgestaltung des Verfahrens gemäß Anspruch 12 wird die Temperatur der Reformierungseinheit über das Luft/Kraftstoffverhältnis eingestellt, wobei die aktuelle Sauerstoffkonzentration im Abgas mit Hilfe einer Breitband- lambdasonde ermittelt wird. In einem Verfahren nach Anspruch 13 wird erfindungsgemäß die Reformierungseinheit bei einem Luft/Kraftstoff-Verhältnis im Bereich von etwa 0,5 < λ < 1,0 betrieben.
Ferner wird gemäß einer Weiterbildung des Verfahrens nach Anspruch 14 eine dem Reformierungsreaktor zugeführte Kraftstoffmenge innermotorisch, durch eine Sekundäreinspritzung und/oder durch eine Kombination aus beidem eingestellt.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Weitere Vorteile und Ausgestaltungen der Erfindung gehen aus den Ansprüchen und der Beschreibung hervor. Insbesondere ergeben Vorteile durch geeignete Kombination bzw. Integration von verschiedenen Katalysatorkomponenten wie nachstehend erläutert .
Die Erfindung ist nachstehend anhand einer Zeichnung näher beschrieben, dabei zeigen in beispielhafter und schematischer Weise :
Fig. 1 eine Blockdiagrammdarstellung einer Abgasnachbehandlungsvorrichtung im Vollstrom, die hintereinanderge- schaltet eine Reformierungs-/Partikelfiltereinheit, einen NOx-Speicherkatalysator und SCR-Katalysator aufweist,
Fig. 2 eine Blockdiagrammdarstellung einer Abgasnachbehandlungsvorrichtung im Vollstrom, die hintereinanderge- schaltet eine Reformierungs-/Partikelfiltereinheit und einen integrierten Abgaskatalysator mit N0X- Speicherkatalysator- und SCR-Katalysator-Funktion aufweist,
Fig. 3 eine Blockdiagrammdarstellung einer Abgasnachbehandlungsvorrichtung im Vollstrom, die hintereinanderge- schaltet eine Reformierungs-/Partikelfiltereinheit, einen Drei-Wege-Katalysator, einen NOx-Speicher- katalysator und einen SCR-Katalysator aufweist,
Fig. 4 eine Blockdiagrammdarstellung einer Abgasnachbehandlungsvorrichtung im Vollstrom, die hintereinanderge- schaltet eine Reformierungs-/Partikelfiltereinheit und einen HC-DENOx-Speicherkatalysator aufweist.
Die Abgasnachbehandlungseinrichtung von Fig. 1 beinhaltet in Abgasströmungsrichtung hinter einer Brennkraftmaschine (nicht dargestellt) im Vollstrom des Abgasstrangs 4 nacheinander eine Reformierungseinheit 1, die gleichzeitig als Partikelfilter wirkt, einen NOx-Speicherkatalysator 2 und einen SCR- Katalysator 3 als abgasreinigende Komponenten. Eine nicht näher dargestellt Steuereinheit dient zur Steuerung der Brennkraftmaschine, bei der es sich bevorzugt um einen Dieselmotor handelt, und der Abgasnachbehandlungseinrichtung. Des Weiteren können nicht weiter dargestellte Temperatursensoren, NOx- Sensoren, Lambdasonden, eine Einrichtung zur Zufuhr von Sekundärluft und Drucksensoren an geeigneten Stellen des Abgasstrangs 4 angeordnet sein. Eine Einrichtung zur nachmotorischen Zufuhr von Reduktionsmittel 5, auch als Sekundäreinspritzung bezeichnet, ist stromauf der Reformierungseinheit 1 angeordnet .
Die Brennkraftmaschine liefert Abgas, das unter anderem NOx, Partikel, CO und HC als unverbrannte Kohlenwasserstoffe enthält. Im Magerbetrieb (λ>l) verhält sich die Reformierungs- einheit 1 wie eine normaler Oxidationskatalysator und CO und HC werden zu C02 und H20 oxidiert. Die im Abgas vorhandenen Partikel werden im der gleichzeitig als Partikelfilter wirkenden Reformierungseinheit 1 zurückgehalten. Ein Teil der im Partikelfilter angesammelten Rußpartikel wird durch Reaktion mit N02 oxidiert, wobei N02 zu NO reduziert wird. Falls nach dem NOx-Speicherkatalysator 2 noch Stickoxide im Abgas enthalten sein sollten, so liegen diese meist in Form von NO vor. Im Magerbetrieb wird NOx als Nitrat im NOx- Speicherkatalysator 2 gespeichert. Die Reformierungseinheit 1 liefert im Fettbetrieb (λ<l) ein CO und H2-haltiges Synthesegasgemisch mit einem verringerten HC-Gehalt . Im Fettbetrieb wird dann eingelagertes NOx desorbiert und mit Synthesegas bzw. CO und/oder HC zu N2 reduziert. Daneben wird noch Ammoniak gebildet nach der Gleichung 3,5H2 + N02 -» NH3 + 2H20. Diese NH3 kann direkt das auch im Fettbetrieb entstandene NOx an der nachfolgenden SCR-Stufe 3 nach der Gleichung 4NH3 + 3N02 — > 3,5N2 + 6H20 reduzieren. Überschüssiger Ammoniak wird im SCR-Katalysator 3 adsorptiv abgespeichert. Dadurch kann vorhandenes NOx bereits im Magerbetrieb teilweise umgesetzt werden. Hierdurch können die Magerphasen verlängert werden mit dem Vorteil der Kraftstoffeinsparung und einer Verbesserung des Alterungsverhaltens des NOx-Speicherkatalysator 2. Optional kann nach der Reformierungseinheit und vor dem NOx- Speicherkatalysator 2 eine Abgasrückführung (nicht dargestellt) vorgesehen sein. Damit kann im Fettbetrieb Reformat der motorischen Verbrennung zugeführt werden. Dies führt zu einer Verminderung der Rohemissionen und verringert gleichzeitig den Kraftstoffverbrauch. Die Temperaturregelung der Reformierungseinheit 1 erfolgt im Fettbetrieb durch eine Variation des Lambdas. Für einen schnellen Kaltstart kann die Reformierungseinheit mit einer Beheizungsfunktion (z.B. e- lektrisch, Flammglühkerze etc.) versehen sein. Optional kann auch die Reihenfolge von NOx- Speicherkatalysator 2 und einen SCR-Katalysator 3 als abgasreinigende Komponenten miteinander vertauscht sein, mit der Folge, dass die Reduktion von NOx am SCR-Katalysator 3 statt mit NH3 mit H2 bzw. Reformat stattfindet.
Ein beiden Versionen nachgeschalteter Oxidationskatalysator mit Sauerstoffspeicherfunktion setzt die bei der Umschaltung von Mager- auf Fettbetrieb noch übriggebliebenen Kohlenwasserstoff mittels eingespeichertem 02 um. Dem Oxidationskatalysator kann noch eine nicht dargestellte Einrichtung zur Zufuhr von Sekundärluft vorgeschaltet sein.
Um an den abgasreinigenden Komponenten, insbesondere am N0X- Speicherkatalysator 2 und am SCR-Katalysator 3, ausreichende Temperaturen auch bei Niedriglastbetrieb und damit eine bestmögliche NOx-Minderung zu erzielen, können Heizmaßnahmen angewendet werden. Diese können innermotorisch sein, z.B. eine Spätverlegung der Haupteinspritzung oder Nacheinspritzung in den Brennraum, oder auch nachmotorisch durch Zufuhr von Reduktionsmittel vor der Reformierungseinheit 1 zur Exothermie- erzeugung, sofern der NOx-Speicherkatalysator 2 eine ausreichende Temperatur zur Umsetzung des Reduktionsmittels erreicht hat. Die Abgasleitung kann ferner thermisch isoliert sein, um Wärmeverluste aus dem Abgas zu minimieren. Beispielsweise kann eine Luftspalt-Isolation verwendet werden. Weitere Maßnahmen zur Erhöhung der Abgastemperatur können sein: Erhöhung der Leerlaufdrehzahl, Verlängerung der Nachglühzeit, Zuschalten zusätzlicher elektrischer Verbraucher o- der eine Erhöhung der AGR-Rate. Die oben genannten Maßnahmen können beispielsweise durch eine Steuereinheit zur Steuerung von Motor bzw. Abgasreinigungskomponenten in Abhängigkeit der eingehenden Temperatur-Signale oder mittels Modell gesteuert sein. In der Steuereinheit sind beispielsweise Modelle für die NOx-Rohemission, das NOx-Speicherverhalten des NOx- Speicherkatalysators 2, die NH3-Bildung am NOx- Speicherkatalysator 2 und die NH3-Speicherung im SCR- Katalysator 3 hinterlegt, in denen u.a. die Kriterien für eine NSK-Regeneration festgelegt sind. Auf Basis verschiedener Sensorsignale kann eine Adaption der Modelle an den aktuellen Alterungszustand der Katalysatoren erfolgen.
In regelmäßigen Abständen sind thermische Regenerationen der auch als Partikelfilter wirkenden Reformierungseinheit 1 notwendig, damit sich durch die Rußablagerungen nicht der Durchflußwiderstand erhöht und damit die Motorleistung herabgesetzt wird. Die Rußschicht wird abgebrannt, wobei sich aus dem Ruß C02 und Wasserdampf bildet. Zur Rußverbrennung sind normalerweise Temperaturen oberhalb von 550 °C erforderlich. Mit einem katalytisch ausgelegten Rußfilter gelingt es jedoch, die Rußzündtemperatur in den Bereich unter 400 °C zu senken. Die Reaktion läuft ähnlich wie beim CRT-System ab, d.h. es wird NO zu N02 umgewandelt, das mit dem Ruß reagiert. Zur Aufheizung des Partikelfilters 1 kann beispielsweise die nachmotorische Zufuhr von Reduktionsmittel genutzt werden.
Das in Fig. 2 dargestellte Ausführungsbeispiel unterscheidet sich von demjenigen der Fig. 1 darin, dass die Abgasreinigungskomponenten NOx-Speicherkomponente 2 und der im Vollstrom nachfolgend angeordnete einen SCR-Katalysator 3 zu einem integrierten Abgaskatalysator 6 zusammengefasst sind. Dies hat den Vorteil, dass der Temperaturabfall in der Abgasleitung der bei hintereinandergeschalteten Katalysatoren auftritt, bei einer integrierten Lösung entfällt. Vorteilhaft ist in jedem Fall, dass durch diese Maßnahme der Bauraumbedarf erheblich reduziert ist. Außerdem erreichen beide funk- tionelle Komponenten nach dem Kaltstart sehr schnell die erforderliche Betriebstemperatur, so dass keine zusätzlichen Heizmaßnahmen erforderlich sind, die eine Erhöhung des Kraft- stoffVerbrauchs zur Folge hätten. Im integrierten Stickoxidspeicher- und SCR-Katalysator wird ein wesentlicher Teil der im Abgas enthaltenen Stickoxide zwischengespeichert, ein übriger Teil durch dort zwischengespeicherten Ammoniak reduziert. Auch hier kann ein Oxidationskatalysator mit Sauerstoffspeicherfunktion mit einer diesem Katalysator vorgeschalteten Einrichtung zur Zufuhr von Sekundärluft nachgeschaltet sein.
Der in integrierter Form vorliegende Abgaskatalysator kann generell in Form eines als Vollextrudates ausgeführten Wabenkörpers vorliegen; das heißt, die Komponenten des Katalysators werden zu einer extrudierfähigen Masse verarbeitet und dann zu Wabenkörpern extrudierf. Ein solcher Katalysator besteht durchgehend aus Katalysatormasse und wird daher auch als Vollkatalysator bezeichnet. Im vorliegenden Fall kann die SCR-Katalysatorkomponente 3 zu einem Wabenkörper extrudierf sein und die NOx-Speicherkatalysatorkomponente 2 in Form einer Beschichtung auf die Wände der Strömungskanäle aufgebracht sein. Die hierfür anzuwendenden Techniken sind dem Fachmann bekannt. Der NOx-Speicherkatalysator 2 und der SCR- Katalysator 3 können jedoch auch in Form einer Beschichtung auf die Wände der Strömungskanäle von katalytisch inerten Tragkörpern in Wabenform aufgebracht sein. Die inerten Tragkörper bestehen bevorzugt aus Cordierit. In einer weiteren Ausführungsform des Katalysators werden die N0X- Speicherkatalysatorkomponente 2 und die SCR-Katalysatorkomponente 3 in zwei separaten Schichten auf den inerten Tragkörper aufgebracht, wobei bevorzugt die N0X- Speicherkatalysatorkomponente 2 in der unteren, direkt auf dem Tragkörper liegenden Schicht und die SCR- Katalysatorkomponente 3 in der oberen Schicht angeordnet ist, welche direkt mit dem Abgas in Kontakt tritt. Der in Fig. 1 bereits beschriebenen Abgasnachbehandlungseinheit mit einer Reformierungseinheit 1, die gleichzeitig als Partikelfilter wirkt, einem NOx-Speicherkatalysator 2 und einem SCR-Katalysator 3 als abgasreinigende Komponenten zeigt als weitere Ausführung in dem Beispiel von Fig. 3 einen direkt dem NSK-Katalysator 2 vorgeschalteten Drei-Wege- Katalysator (TWC) 7. Dieser fungiert zum einen als zusätzlicher NH3-Erzeuger, indem er mit dem von der Reformierungseinheit 1 gelieferten H2 bzw. Reformat zur Reduktion von Stickoxiden beiträgt, zum anderen ist er aufgrund seiner SauerstoffSpeicherfunktion in der Lage, unverbrannte Kohlenwasserstoff aufzuoxidieren und trägt somit zu einer merklichen Effektivitätssteigerung des SCR-Katalysators 3 bei. Auch in diesem Ausführungsbeispiel kann der SCR-Katalysator 3 dem NOx-Speicherkatalysator 2 vorgeschaltet sein, so daß der TWC- Katalysator 7 dem SCR-Katalsyator vorgeschaltet ist. In einer weiteren Variante können die beiden Komponenten SCR- Katalysator 3 und NOx-Speicherkatalysator als integrierter Abgaskatalysator 6 ausgeführt sein, denen der TWC-Katalysator 7 vorgeschaltet ist.
Fig. 4 zeigt eine weitere Variante einer Abgasnachbehandlungseinrichtung, in der hinter der Reformierungseinheit 1 ein HC-DENOX-Katalysator 8 im Vollstrom des Abgasstrangs nachgeordnet ist. Er ersetzt die Variante „NSK-Katalysator mit nachgeordnetem SCR-Katalysator" , wobei er die Stickoxidreduktion mittels HC katalysiert. Um den Umsatz von Stickoxiden noch zu maximieren, kann unmittelbar vor oder hinter dem HC-DENOX-Katalysator ein NOx-Speicherkatalysator 2 angeordnet sein.

Claims

DaimlerChrysler AGPatentansprüche
1. Abgasnachbehandlungseinrichtung an Bord eines Kraftfahrzeuges, umfassend eine Reformierungseinheit (1) zur Erzeugung von Wasserstoff durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon und mindestens einen Abgaskatalysator, wobei der für die Reformierung notwendige Wasserdampf und Restsauerstoff bevorzugt aus dem Abgas stammt, d a d u r c h g e k e n n z e i c h n e t , dass die Reformierungseinheit (1) direkt im Hauptabgasstrom (4) eines Verbrennungsmotors angeordnet ist.
2. Abgasnachbehandlungseinrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, der bevorzugt ein NOx-Speicherkatalysator (2) ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N2 erzeugt und weiterhin stromab des NOx-Speicherkatalysators (2) mindestens ein weiterer Abgaskatalysator angeordnet ist, der bevorzugt ein SCR- Katalysator (3) ist, welcher im Abgas enthaltene Stickoxide unter Verwendung von NH3, welches mittels Stickoxidspeicherkatalysator erzeugt wurde, reduziert.
3. Abgasnachbehandlungseinrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, der bevorzugt ein SCR-Katalysator (3) ist, welcher im Abgas enthaltene Stickoxide unter Verwendung von NH3/ welches mittels Stickoxidspeicherkatalysator erzeugt wurde, reduziert und weiterhin stromab des SCR-Katalysators (3) mindestens ein weiterer Abgaskatalysator angeordnet ist, der bevorzugt ein NOx-Speicherkatalysator (2) ist, welcher bei Durchströmung mit magerem Abgas dem Abgas Stickoxide durch Speicherung entzieht und bei Durchströmung mit reduzierendem Abgas durch Reduktion der gespeicherten Stickoxide N2 erzeugt.
4. Abgasnachbehandlungseinrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, wobei der Abgaskatalysator die Funktionen eines NOx- Speicher- und SCR-Katalysators (6) aufweist.
5. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 2 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass stromab hinter dem jeweils letzten Abgaskatalysator ein Oxidationskatalysator angeordnet ist.
6. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 2 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass unmittelbar hinter der Reformierungseinheit in Hauptströmungsrichtung des Abgases ein Drei-Wege- Katalysator (7) angeordnet ist.
7. Abgasnachbehandlungseinrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass im Hauptabgasstrom (4) stromab der Reformierungseinheit (1) der mindestens eine Abgaskatalysator angeordnet ist, der bevorzugt ein DENOX-Katalysator (8) ist.
8. Abgasnachbehandlungseinrichtung nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , dass vor oder hinter dem DENOX-Katalyator (8) ein N0X- Speicherkatalysator (2) angeordnet ist.
9. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass nach der Reformierungseinheit (1) eine Abgasrückführung vorgesehen ist.
10. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass die Reformierungseinheit (1) als katalytisch aktiver
Rußpartikelfilter ausgebildet ist.
11. Verfahren zum Betreiben einer Abgasnachbehandlungseinrichtung nach Anspruch 1 zur Reduzierung von Stickoxiden in Abgasen von Kraftfahrzeugen durch Reduktion an einem Katalysator unter Zuführung von Wasserstoff, wobei der für die Stickoxid-Reduktion benötigte Wasserstoff an Bord des Kraftfahrzeugs durch Wasserdampfreformierung, partielle Oxidation von Kohlenwasserstoffen und/oder Mischformen davon erzeugt wird, wobei der für die Reformierung notwendige Wasserdampf und Restsauerstoff aus dem Abgas stammt, d a d u r c h g e k e n n z e i c h n e t , dass die Reformierung direkt im Hauptabgasstrom (4) eines Verbrennungsmotors durchgeführt wird.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass die Temperatur der Reformierungseinheit (1) über das Luft/Kraftstoffverhältnis eingestellt wird, wobei die aktuelle Sauerstoffkonzentration im Abgas mit Hilfe einer Breitbandlambdasonde ermittelt wird.
13. Verfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass die Reformierungseinheit (1) bei einem Luft/Kraftstoffverhältnis im Bereich von etwa 0,5 < λ < 1,0 betrieben wird.
14. Verfahren nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t , dass eine der Reformierungseinheit (1) zugeführte Kraftstoffmenge innermotorisch, durch eine Sekundäreinspritzung (5) und/oder durch eine Kombination aus beidem eingestellt wird.
PCT/EP2004/001824 2003-04-05 2004-02-25 Abgasnachbehandlungseinrichtung und -verfahren WO2004090296A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006504462A JP2006522257A (ja) 2003-04-05 2004-02-25 排気ガスの後処理用の装置及び方法
US10/552,263 US8181445B2 (en) 2003-04-05 2004-02-25 Device and method for exhaust gas aftertreatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10315593A DE10315593B4 (de) 2003-04-05 2003-04-05 Abgasnachbehandlungseinrichtung und -verfahren
DE10315593.7 2003-04-05

Publications (1)

Publication Number Publication Date
WO2004090296A1 true WO2004090296A1 (de) 2004-10-21

Family

ID=33038889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001824 WO2004090296A1 (de) 2003-04-05 2004-02-25 Abgasnachbehandlungseinrichtung und -verfahren

Country Status (4)

Country Link
US (1) US8181445B2 (de)
JP (1) JP2006522257A (de)
DE (1) DE10315593B4 (de)
WO (1) WO2004090296A1 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564385A3 (de) * 2004-02-16 2006-01-18 Honda Motor Co., Ltd. Abgasreinigungsvorrichtung für eine Brennkraftmaschine
WO2007042904A2 (en) 2005-10-07 2007-04-19 Eaton Corporation Aftertreatment system with transmission control
US7213395B2 (en) 2004-07-14 2007-05-08 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
WO2007063406A2 (en) 2005-12-02 2007-06-07 Eaton Corporation Lnt desulfation strategy with reformer temperature management
US7251929B2 (en) 2005-07-07 2007-08-07 Eaton Corporation Thermal management of hybrid LNT/SCR aftertreatment during desulfation
EP1835141A2 (de) 2006-03-14 2007-09-19 EATON Corporation Modellbasierte Diagnose für ein System zur Brennstoffdosierung nach der Behandlung
WO2007129203A1 (en) 2006-05-05 2007-11-15 Eaton Corporation Reformer temperature control with leading temperature estimation
WO2008043833A2 (en) * 2006-10-13 2008-04-17 Shell Internationale Research Maatschappij B.V. Process to prepare a gaseous mixture
EP1931451A1 (de) * 2005-10-04 2008-06-18 Heesung Catalysts Corporation Scr-katalysator ohne nh3- oder harnstoffinjektion
WO2008077602A1 (de) * 2006-12-23 2008-07-03 Umicore Ag & Co. Kg Abgasreinigungsanlage für magermotoren und verfahren zum betreiben der anlage
US7412823B2 (en) 2005-12-02 2008-08-19 Eaton Corporation LNT desulfation strategy
US7434387B2 (en) 2006-07-26 2008-10-14 Eaton Corporation Integrated DPF-reformer
US7562522B2 (en) 2006-06-06 2009-07-21 Eaton Corporation Enhanced hybrid de-NOx system
US7610751B2 (en) 2006-07-21 2009-11-03 Eaton Corporation Fuel injection before turbocharger
US7614214B2 (en) 2006-07-26 2009-11-10 Eaton Corporation Gasification of soot trapped in a particulate filter under reducing conditions
US7624570B2 (en) 2006-07-27 2009-12-01 Eaton Corporation Optimal fuel profiles
EP2354505A1 (de) * 2010-02-09 2011-08-10 Honda Motor Co., Ltd. Abgasreinigungsvorrichtung für einen Verbrennungsmotor
US8069654B2 (en) 2007-01-16 2011-12-06 Eaton Corporation Optimized rhodium usage in LNT SCR system
FR2964696A1 (fr) * 2010-09-13 2012-03-16 Renault Sa Systeme et procede de traitement des oxydes d'azote pour ligne d'echappement d'un vehicule automobile
DE102010049957A1 (de) 2010-10-04 2012-04-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Abgasreinigungsvorrichtung, Verfahren zur Abgasreinigung, Katalysator sowie Pyrolysereaktor
EP2503121A1 (de) * 2011-02-07 2012-09-26 Toyota Jidosha Kabushiki Kaisha Abgasreinigungssystem für einen verbrennungsmotor
US8603941B2 (en) * 2006-10-23 2013-12-10 Haldor Topsoe A/S Method and apparatus for the purification of exhaust gas from a compression ignition engine
AT516182B1 (de) * 2015-03-16 2016-03-15 Avl List Gmbh Verfahren zum ermitteln der konzentration zumindest eines reaktionsproduktes am ausgang eines katalysators
WO2019243065A3 (de) * 2018-06-20 2020-02-20 Daimler Ag Verfahren zum entschwefeln eines stickoxid-speicherkatalysators
US11478748B2 (en) 2007-04-26 2022-10-25 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014265A1 (de) * 2005-03-24 2006-10-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasanlage mit zwei Abgasbehandlungseinheiten
DE102005015569A1 (de) * 2005-04-05 2006-10-12 Robert Bosch Gmbh Keramisches Widerstands- oder Sensorelement
US7389638B2 (en) * 2005-07-12 2008-06-24 Exxonmobil Research And Engineering Company Sulfur oxide/nitrogen oxide trap system and method for the protection of nitrogen oxide storage reduction catalyst from sulfur poisoning
DE102006043082A1 (de) * 2005-11-14 2007-06-28 Robert Bosch Gmbh Verfahren zur Reduktionsmittelsteuerung in einer Abgasnachbehandlungsanlage
DE102006029080A1 (de) * 2006-06-24 2007-12-27 Umicore Ag & Co. Kg Verfahren zur On-Board-Reaktivierung thermisch gealterter Stickoxid-Speicherkatalysatoren in Kraftfahrzeugen mit überwiegend mager betriebenen Verbrennungsmotoren
US8209960B2 (en) * 2006-07-21 2012-07-03 International Engine Intellectual Property Company, Llc System and method for coupled DPF regeneration and LNT DeNOx
DE102006046006B4 (de) * 2006-09-28 2008-11-27 Enerday Gmbh Reformer zur Nutzung von Stickoxiden zur kontinuierlichen Regeneration
US20080131345A1 (en) * 2006-11-30 2008-06-05 Frederic Vitse Multi-bed selective catalytic reduction system and method for reducing nitrogen oxides emissions
DE102007008577B3 (de) * 2007-02-16 2008-10-23 Audi Ag Verfahren und Vorrichtung zur Erzeugung von Ammoniak für die Abgasbehandlung bei Brennkraftmaschinen in einem Kraftfahrzeug
DE102007008954B4 (de) 2007-02-21 2009-12-17 Umicore Ag & Co. Kg Katalysatorsystem und seine Verwendung
JP5590640B2 (ja) * 2007-08-01 2014-09-17 日産自動車株式会社 排気ガス浄化システム
US7941995B2 (en) * 2007-10-02 2011-05-17 Cummins Filtration Ip, Inc. Exhaust aftertreatment system with compliantly coupled sections
DE102008013405A1 (de) * 2008-03-10 2009-09-17 Robert Bosch Gmbh Abgasvorrichtung einer Brennkraftmaschine
US9180408B2 (en) * 2008-05-02 2015-11-10 GM Global Technology Operations LLC Fuel efficient ammonia generation strategy for lean-burn engines utilizing passive NH3-SCR for the control of NOx
DE102008037156A1 (de) * 2008-08-08 2010-02-18 Audi Ag Verfahren und eine Vorrichtung zur Reinigung eines Abgasstroms einer magerlauffähigen Brennkraftmaschine
US8196391B2 (en) * 2008-12-02 2012-06-12 Ford Global Technologies, Llc SCR emissions-control system
US8291695B2 (en) * 2008-12-05 2012-10-23 GM Global Technology Operations LLC Method and apparatus for controlling exhaust emissions in a spark-ignition direct-injection engine
US8486341B2 (en) 2008-12-09 2013-07-16 Caterpillar Inc. System and method for treating exhaust gases
US20100186391A1 (en) * 2009-01-28 2010-07-29 Gm Global Technology Operations, Inc. Technique for production of ammonia on demand in a three way catalyst for a passive selective catalytic reduction system
US8931257B2 (en) 2009-02-23 2015-01-13 GM Global Technology Operations LLC Technique for production of ammonia on demand in a three way catalyst for a passive selective catalytic reduction system
US8424289B2 (en) * 2009-02-23 2013-04-23 GM Global Technology Operations LLC Technique for production of ammonia on demand in a three way catalyst for a passive selective catalytic reduction system
KR101448734B1 (ko) * 2009-03-09 2014-10-08 현대자동차 주식회사 질소 산화물 저감 촉매 및 이를 이용한 배기 장치
US9453443B2 (en) * 2009-03-20 2016-09-27 Basf Corporation Emissions treatment system with lean NOx trap
US8479501B2 (en) * 2009-07-20 2013-07-09 International Engine Intellectual Property Company, Llc Exhaust cooling module for SCR catalysts
WO2011030433A1 (ja) * 2009-09-10 2011-03-17 トヨタ自動車株式会社 内燃機関の制御システム
US8875494B2 (en) * 2009-09-29 2014-11-04 Ford Global Technologies, Llc Fuel control for spark ignited engine having a particulate filter system
US8327628B2 (en) * 2009-09-29 2012-12-11 Ford Global Technologies, Llc Gasoline particulate filter regeneration and diagnostics
CN102741515B (zh) * 2010-03-15 2014-10-01 丰田自动车株式会社 内燃机排气净化装置
CN102791971B (zh) * 2010-03-15 2015-08-05 丰田自动车株式会社 内燃机的排气净化装置
RU2480592C1 (ru) 2010-03-15 2013-04-27 Тойота Дзидося Кабусики Кайся Система очистки выхлопных газов двигателя внутреннего сгорания
KR101321294B1 (ko) 2010-04-01 2013-10-28 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 장치
US8677734B2 (en) * 2010-04-19 2014-03-25 GM Global Technology Operations LLC Method of producing ammonia effective to control aftertreatment conditions of NOx emissions
US9108153B2 (en) 2010-07-28 2015-08-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
CA2752774C (en) 2010-08-30 2014-02-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9121325B2 (en) 2010-08-30 2015-09-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9242242B2 (en) * 2010-09-02 2016-01-26 Basf Se Catalyst for gasoline lean burn engines with improved NO oxidation activity
US8539760B2 (en) * 2010-09-14 2013-09-24 GM Global Technology Operations LLC Catalyst materials for NOx oxidation in an exhaust aftertreatment system that uses passive ammonia SCR
WO2012046332A1 (ja) 2010-10-04 2012-04-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5120498B2 (ja) 2010-10-04 2013-01-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9010090B2 (en) 2010-10-18 2015-04-21 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2484876B8 (de) 2010-12-06 2016-09-14 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsmethode für einen verbrennungsmotor
WO2012086093A1 (ja) 2010-12-20 2012-06-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9028761B2 (en) 2010-12-24 2015-05-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
KR20120080361A (ko) * 2011-01-07 2012-07-17 에스케이이노베이션 주식회사 합성가스 전환용 촉매로 코팅된 여과 구조물 및 이를 이용한 여과방법
EP2503120B1 (de) 2011-02-10 2016-09-14 Toyota Jidosha Kabushiki Kaisha Nox reinigungsverfahren eines abgasreinigungssystems für einen verbrennungsmotor
US8468803B2 (en) 2011-02-26 2013-06-25 International Engine Intellectual Property Company, Llc Soot resistant diesel fuel reformer for diesel engine emissions aftertreatment
CN103502590B (zh) 2011-03-17 2016-03-16 丰田自动车株式会社 内燃机的排气净化装置
JP5218672B2 (ja) 2011-04-15 2013-06-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102011100677A1 (de) * 2011-05-06 2012-11-08 Daimler Ag Betriebsverfahren für einen Kraftfahrzeug-Dieselmotor
BR112014007885A2 (pt) * 2011-10-04 2017-04-11 Basf Se módulo termoelétrico, termoelétrico, sistema de exaustão de um motor de combustão interno, preferencialmente de um veículo motor e processo para preparar um módulo termoelétrico
KR101317411B1 (ko) * 2011-10-13 2013-10-18 기아자동차주식회사 매연 필터 재생 시스템 및 그 방법
JP5878336B2 (ja) * 2011-11-04 2016-03-08 日野自動車株式会社 排ガス浄化装置
ES2633727T3 (es) 2011-11-07 2017-09-25 Toyota Jidosha Kabushiki Kaisha Dispositivo de limpieza de gases de escape para motor de combustión interna
EP2626529B1 (de) 2011-11-09 2015-10-21 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsvorrichtung für einen verbrennungsmotor
CN103228883B (zh) 2011-11-30 2015-08-19 丰田自动车株式会社 内燃机的排气净化装置
US9175590B2 (en) 2011-11-30 2015-11-03 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8745974B2 (en) 2012-01-31 2014-06-10 Caterpillar Inc. Exhaust system
EP2639419B1 (de) 2012-02-07 2017-05-03 Toyota Jidosha Kabushiki Kaisha Abgasreinigungssystem für einen verbrennungsmotor
US9255513B2 (en) 2012-05-25 2016-02-09 Ford Global Technologies, Llc Exhaust air injection
US9163543B2 (en) 2012-05-25 2015-10-20 Ford Global Technologies, Llc Exhaust air injection
US9222420B2 (en) 2012-08-02 2015-12-29 Ford Global Technologies, Llc NOx control during cylinder deactivation
US8862370B2 (en) 2012-08-02 2014-10-14 Ford Global Technologies, Llc NOx control during engine idle-stop operations
JP6293416B2 (ja) * 2013-03-07 2018-03-14 大阪瓦斯株式会社 炭化水素化合物類のオートサーマル改質方法
DE102013219371A1 (de) 2013-09-26 2015-04-09 Volkswagen Aktiengesellschaft Betriebsverfahren für einen Kraftstoffreformer und Abgassystem mit einem Kraftstoffreformer
FR3013381B1 (fr) * 2013-11-15 2016-01-01 IFP Energies Nouvelles Procede de depollution des gaz d'echappement, notamment de moteur a combustion interne, en particulier pour vehicule automobile, et installation utilisant un tel procede.
DE102014202291A1 (de) 2014-02-07 2015-08-13 Volkswagen Aktiengesellschaft Abgasreinigungseinrichtung und Kraftfahrzeug mit einer solchen
JP6388208B2 (ja) * 2014-11-20 2018-09-12 株式会社デンソー 内燃機関の排気浄化装置
DE102015205125A1 (de) * 2015-03-20 2016-09-22 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
JP6482935B2 (ja) * 2015-04-14 2019-03-13 本田技研工業株式会社 内燃機関の排気浄化装置
DE102015213617A1 (de) 2015-07-20 2017-01-26 Volkswagen Ag Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102015219113A1 (de) 2015-10-02 2017-04-06 Volkswagen Ag Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
DE202015008552U1 (de) * 2015-12-14 2017-03-16 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Computerprogramm zur Steuerung eines Abgassystems eines Verbrennungsmotors
DE102017200090B4 (de) 2017-01-05 2022-05-12 Ford Global Technologies, Llc Verfahren zum Betreiben einer Abgasanlage mit NOx-Speicherkatalysator und SCR-Abgasnachbehandlungseinrichtung
IL251356B (en) * 2017-03-23 2018-11-29 Dan Yitzhaki An improved system for cleaning exhaust gases from diesel and gasoline engines in cold drive and removing nitrogen oxides
JP7002312B2 (ja) 2017-12-08 2022-01-20 ボッシュ株式会社 診断装置及び内燃機関の排気浄化装置
US11215148B2 (en) * 2018-07-12 2022-01-04 Exxonmobil Research And Engineering Company Vehicle powertrain with on-board catalytic reformer
AT521758B1 (de) * 2018-10-05 2023-07-15 Avl List Gmbh Verfahren und Ottomotoranordnung mit einer verbesserten Abgasnachbehandlung durch eine Schubabschaltungsstrategie
KR20210142112A (ko) * 2019-03-27 2021-11-24 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. 배기 가스 배출 제어 장치, 이를 구비한 내연 기관 및 배기 가스 배출 제어 방법
CN112943418B (zh) * 2021-01-27 2023-07-18 江苏大学 一种稀燃发动机的高效脱硝尾气后处理系统及控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537968A1 (de) 1991-10-16 1993-04-21 Toyota Jidosha Kabushiki Kaisha Einrichtung zur Minderung von Stickstoffoxiden in Rauchgasen aus Brennkraftmaschinen
EP0560991A1 (de) 1991-10-03 1993-09-22 Toyota Jidosha Kabushiki Kaisha Gerät zum reinigen von verbrennungsmotor-abgasen
DE19626835A1 (de) 1995-07-08 1997-01-09 Volkswagen Ag Dieselbrennkraftmaschine mit NOx-Speicher
EP0957242A2 (de) * 1998-05-09 1999-11-17 DaimlerChrysler AG Stickoxidemissionsmindernde Abgasreinigungsanlage
EP1027919A2 (de) * 1999-02-09 2000-08-16 Ford Global Technologies, Inc. Vorrichtung und Verfahren zur Behandlung von Abgasen eines Dieselmotors unter Verwendung eines Stickoxid-Absorptionmittels
WO2000076637A1 (en) * 1999-06-11 2000-12-21 Gastec N.V. Method for removing nitrogen oxides from an oxygen-containing gas stream
EP1211394A2 (de) * 2000-11-30 2002-06-05 Nissan Motor Co., Ltd. Abgasreinigungsanlage und -verfahren
EP1226861A1 (de) * 2001-01-30 2002-07-31 OMG AG &amp; Co. KG Abgasreinigungsanlage für einen Verbrennungsmotor und Verfahren zum Betreiben der Anlage
DE10120097A1 (de) 2001-04-25 2002-11-07 Daimler Chrysler Ag Abgasreinigungsanlage und Verfahren zum Betreiben der Anlage

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272871A (en) * 1991-05-24 1993-12-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Method and apparatus for reducing nitrogen oxides from internal combustion engine
JPH0674031A (ja) 1992-08-27 1994-03-15 Hitachi Ltd 内燃機関の2次空気供給制御装置及びそれを備えた自動車
JPH07208153A (ja) 1994-01-20 1995-08-08 Toyota Motor Corp 内燃機関の排気浄化装置
US6044644A (en) * 1994-12-06 2000-04-04 Engelhard Corporation Close coupled catalyst
JPH08303227A (ja) 1995-05-09 1996-11-19 Matsushita Electric Ind Co Ltd 煤塵と窒素酸化物の除去装置の再生方法、及び煤塵と窒素酸化物の除去方法
JP3899534B2 (ja) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
US6047542A (en) * 1995-11-17 2000-04-11 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of engine
US5727385A (en) * 1995-12-08 1998-03-17 Ford Global Technologies, Inc. Lean-burn nox catalyst/nox trap system
JP3713831B2 (ja) * 1996-04-19 2005-11-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5809774A (en) * 1996-11-19 1998-09-22 Clean Diesel Technologies, Inc. System for fueling and feeding chemicals to internal combustion engines for NOx reduction
DE19731623B4 (de) * 1997-07-23 2006-11-23 Volkswagen Ag Verfahren und Vorrichtung zur De-Sulfatierung von NOx-Speichern bei Dieselmotoren
DE19827195A1 (de) 1998-06-18 1999-12-23 Volkswagen Ag Verfahren zur De-Sulfatierung eines NOx-Speicherkatalysators
US6122909A (en) * 1998-09-29 2000-09-26 Lynntech, Inc. Catalytic reduction of emissions from internal combustion engines
US6560958B1 (en) * 1998-10-29 2003-05-13 Massachusetts Institute Of Technology Emission abatement system
US6125629A (en) * 1998-11-13 2000-10-03 Engelhard Corporation Staged reductant injection for improved NOx reduction
GB9913732D0 (en) * 1999-06-15 1999-08-11 Johnson Matthey Plc Improvements in emissions control
JP2001140630A (ja) 1999-11-19 2001-05-22 Hitachi Ltd 内燃機関の排ガス浄化装置
DE10025044C1 (de) 2000-05-20 2001-11-29 Daimler Chrysler Ag Abgasreinigungsanlage für eine Verbrennungsvorrichtung und Verfahren zur Durchführung von Desulfatisierungsvorgängen
US6655130B1 (en) * 2000-10-30 2003-12-02 Delphi Technologies, Inc. System and controls for near zero cold start tailpipe emissions in internal combustion engines
JP3794468B2 (ja) * 2000-12-19 2006-07-05 三菱電機株式会社 内燃機関の排気ガス浄化装置
DE10128414A1 (de) * 2001-06-12 2002-12-19 Daimler Chrysler Ag Abgasreinigungsanlage mit Reduktionsmittelversorgung
DE10135646A1 (de) * 2001-07-21 2003-02-06 Ballard Power Systems Vorrichtung und Verfahren zur Reduzierung von Stichoxiden im Abgas einer Brennkraftmaschine
US6810658B2 (en) * 2002-03-08 2004-11-02 Daimlerchrysler Ag Exhaust-gas purification installation and exhaust-gas purification method for purifying an exhaust gas from an internal combustion engine
US6732506B2 (en) * 2002-04-03 2004-05-11 General Motors Corporation Cylinder deactivation system and NOx trap regeneration
US6745560B2 (en) * 2002-07-11 2004-06-08 Fleetguard, Inc. Adsorber aftertreatment system having dual soot filters
GB0220645D0 (en) * 2002-09-05 2002-10-16 Johnson Matthey Plc Exhaust system for a lean burn ic engine
US7332135B2 (en) * 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
US6832473B2 (en) * 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters
US6732507B1 (en) * 2002-12-30 2004-05-11 Southwest Research Institute NOx aftertreatment system and method for internal combustion engines
US7043902B2 (en) * 2003-03-07 2006-05-16 Honda Motor Co., Ltd. Exhaust gas purification system
US6981367B2 (en) * 2003-06-25 2006-01-03 General Motors Corporation Hydrogen and oxygen generation from a water vapor containing exhaust
US6964156B2 (en) * 2003-10-23 2005-11-15 Hydrogensource Llc Intermittent application of syngas to NOx trap and/or diesel engine
US20070056268A1 (en) * 2005-09-10 2007-03-15 Eaton Corporation LNT-SCR packaging
US7063642B1 (en) * 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
US7472545B2 (en) * 2006-05-25 2009-01-06 Delphi Technologies, Inc. Engine exhaust emission control system providing on-board ammonia generation
US7434387B2 (en) * 2006-07-26 2008-10-14 Eaton Corporation Integrated DPF-reformer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560991A1 (de) 1991-10-03 1993-09-22 Toyota Jidosha Kabushiki Kaisha Gerät zum reinigen von verbrennungsmotor-abgasen
EP0537968A1 (de) 1991-10-16 1993-04-21 Toyota Jidosha Kabushiki Kaisha Einrichtung zur Minderung von Stickstoffoxiden in Rauchgasen aus Brennkraftmaschinen
DE19626835A1 (de) 1995-07-08 1997-01-09 Volkswagen Ag Dieselbrennkraftmaschine mit NOx-Speicher
EP0957242A2 (de) * 1998-05-09 1999-11-17 DaimlerChrysler AG Stickoxidemissionsmindernde Abgasreinigungsanlage
EP1027919A2 (de) * 1999-02-09 2000-08-16 Ford Global Technologies, Inc. Vorrichtung und Verfahren zur Behandlung von Abgasen eines Dieselmotors unter Verwendung eines Stickoxid-Absorptionmittels
WO2000076637A1 (en) * 1999-06-11 2000-12-21 Gastec N.V. Method for removing nitrogen oxides from an oxygen-containing gas stream
EP1211394A2 (de) * 2000-11-30 2002-06-05 Nissan Motor Co., Ltd. Abgasreinigungsanlage und -verfahren
EP1226861A1 (de) * 2001-01-30 2002-07-31 OMG AG &amp; Co. KG Abgasreinigungsanlage für einen Verbrennungsmotor und Verfahren zum Betreiben der Anlage
DE10120097A1 (de) 2001-04-25 2002-11-07 Daimler Chrysler Ag Abgasreinigungsanlage und Verfahren zum Betreiben der Anlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JONES M R ET AL: "EXHAUST-GAS REFPORMING OF HYDROCARBON FUELS", SAE TECHNICAL PAPER SERIES, SOCIETY OF AUTOMOTIVE ENGINEERS, WARRENDALE, PA, US, 1993, pages 223 - 234, XP008010384, ISSN: 0148-7191 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564385A3 (de) * 2004-02-16 2006-01-18 Honda Motor Co., Ltd. Abgasreinigungsvorrichtung für eine Brennkraftmaschine
US7475536B2 (en) 2004-02-16 2009-01-13 Honda Motor Co., Ltd. Exhaust gas purifying apparatus for internal combustion engine
US7213395B2 (en) 2004-07-14 2007-05-08 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
EP1784247A1 (de) * 2004-07-14 2007-05-16 Eaton Corporation Hybridkatalysatorsystem zur verringerung von abgasemissionen
US7650746B2 (en) 2004-07-14 2010-01-26 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
US7251929B2 (en) 2005-07-07 2007-08-07 Eaton Corporation Thermal management of hybrid LNT/SCR aftertreatment during desulfation
EP1931451A4 (de) * 2005-10-04 2009-12-30 Heesung Catalysts Corp Scr-katalysator ohne nh3- oder harnstoffinjektion
EP1931451A1 (de) * 2005-10-04 2008-06-18 Heesung Catalysts Corporation Scr-katalysator ohne nh3- oder harnstoffinjektion
WO2007042904A2 (en) 2005-10-07 2007-04-19 Eaton Corporation Aftertreatment system with transmission control
WO2007063406A3 (en) * 2005-12-02 2007-11-08 Eaton Corp Lnt desulfation strategy with reformer temperature management
US7669408B2 (en) 2005-12-02 2010-03-02 Eaton Corporation LNT desulfation strategy with reformer temperature management
US7412823B2 (en) 2005-12-02 2008-08-19 Eaton Corporation LNT desulfation strategy
WO2007063406A2 (en) 2005-12-02 2007-06-07 Eaton Corporation Lnt desulfation strategy with reformer temperature management
JP2009517599A (ja) * 2005-12-02 2009-04-30 イートン コーポレーション 改質装置の温度管理を用いたlnt脱硫酸方法
EP1835141A2 (de) 2006-03-14 2007-09-19 EATON Corporation Modellbasierte Diagnose für ein System zur Brennstoffdosierung nach der Behandlung
WO2007129203A1 (en) 2006-05-05 2007-11-15 Eaton Corporation Reformer temperature control with leading temperature estimation
US7562522B2 (en) 2006-06-06 2009-07-21 Eaton Corporation Enhanced hybrid de-NOx system
US7610751B2 (en) 2006-07-21 2009-11-03 Eaton Corporation Fuel injection before turbocharger
US7434387B2 (en) 2006-07-26 2008-10-14 Eaton Corporation Integrated DPF-reformer
US7614214B2 (en) 2006-07-26 2009-11-10 Eaton Corporation Gasification of soot trapped in a particulate filter under reducing conditions
US7624570B2 (en) 2006-07-27 2009-12-01 Eaton Corporation Optimal fuel profiles
WO2008043833A2 (en) * 2006-10-13 2008-04-17 Shell Internationale Research Maatschappij B.V. Process to prepare a gaseous mixture
WO2008043833A3 (en) * 2006-10-13 2008-10-02 Shell Int Research Process to prepare a gaseous mixture
US8603941B2 (en) * 2006-10-23 2013-12-10 Haldor Topsoe A/S Method and apparatus for the purification of exhaust gas from a compression ignition engine
WO2008077602A1 (de) * 2006-12-23 2008-07-03 Umicore Ag & Co. Kg Abgasreinigungsanlage für magermotoren und verfahren zum betreiben der anlage
US8069654B2 (en) 2007-01-16 2011-12-06 Eaton Corporation Optimized rhodium usage in LNT SCR system
US11478748B2 (en) 2007-04-26 2022-10-25 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts
EP2354505A1 (de) * 2010-02-09 2011-08-10 Honda Motor Co., Ltd. Abgasreinigungsvorrichtung für einen Verbrennungsmotor
US8671665B2 (en) 2010-02-09 2014-03-18 Honda Motor Co., Ltd. Exhaust gas purifying apparatus for internal combustion engine
FR2964696A1 (fr) * 2010-09-13 2012-03-16 Renault Sa Systeme et procede de traitement des oxydes d'azote pour ligne d'echappement d'un vehicule automobile
DE102010049957B4 (de) * 2010-10-04 2013-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Abgasreinigungsvorrichtung, Verfahren zur Abgasreinigung sowie Pyrolysereaktor
WO2012045423A2 (de) 2010-10-04 2012-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Abgasreinigungsvorrichtung, verfahren zur abgasreinigung, katalysator sowie pyrolysereaktor
DE102010049957A1 (de) 2010-10-04 2012-04-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Abgasreinigungsvorrichtung, Verfahren zur Abgasreinigung, Katalysator sowie Pyrolysereaktor
EP2503121A1 (de) * 2011-02-07 2012-09-26 Toyota Jidosha Kabushiki Kaisha Abgasreinigungssystem für einen verbrennungsmotor
EP2503121A4 (de) * 2011-02-07 2014-08-20 Toyota Motor Co Ltd Abgasreinigungssystem für einen verbrennungsmotor
AT516182B1 (de) * 2015-03-16 2016-03-15 Avl List Gmbh Verfahren zum ermitteln der konzentration zumindest eines reaktionsproduktes am ausgang eines katalysators
AT516182A4 (de) * 2015-03-16 2016-03-15 Avl List Gmbh Verfahren zum ermitteln der konzentration zumindest eines reaktionsproduktes am ausgang eines katalysators
WO2019243065A3 (de) * 2018-06-20 2020-02-20 Daimler Ag Verfahren zum entschwefeln eines stickoxid-speicherkatalysators
US11286824B2 (en) 2018-06-20 2022-03-29 Daimler Ag Method for desulphurising a nitrogen oxide accumulator catalytic converter

Also Published As

Publication number Publication date
DE10315593B4 (de) 2005-12-22
US8181445B2 (en) 2012-05-22
DE10315593A1 (de) 2004-10-28
JP2006522257A (ja) 2006-09-28
US20070028601A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
DE10315593B4 (de) Abgasnachbehandlungseinrichtung und -verfahren
EP1395351B1 (de) Abgasreinigungsanlage mit reduktionsmittelversorgung
DE102010014468B4 (de) Verfahren zur Verminderung von Lachgas bei der Abgasnachbehandlung von Magermotoren
DE102008048854B4 (de) Regelungsstrategie für ein Katalysatorkonzept zur Abgasnachbehandlung mit mehreren Stickoxid-Speicherkatalysatoren
DE102007060623B4 (de) Entstickung von Dieselmotorenabgasen unter Verwendung eines temperierten Vorkatalysators zur bedarfsgerechten NO2-Bereitstellung
DE102010026890B4 (de) Abgasbehandlungssystem und Verfahren
DE60215411T2 (de) Abgasreinigungssystem
DE60313236T2 (de) NOx-Reduktionssystem für Dieselmotoren unter Verwendung einer durch Wasserstoff selektiven katalytischen Reduktion
DE102004040533B4 (de) Nachbehandlung von Abgasemissionen
EP2115277B1 (de) Verfahren zur regeneration von russfiltern in der abgasanlage eines magermotors und abgasanlage hierfür
US20110120093A1 (en) Process and apparatus for purifying exhaust gases from an internal combustion engine
WO2008101585A1 (de) Katalytisch aktiviertes dieselpartikelfilter mit ammoniak-sperrwirkung
EP1529155A1 (de) Brennkraftmaschine mit reduktionsmittelerzeugungseinheit und betriebsverfahren hierfür
DE102018118035B4 (de) Abgasnachbehandlungssysteme, die einen einzelnen elektrisch beheizten katalysator verwenden
EP2104782A1 (de) Abgasreinigungsanlage für magermotoren und verfahren zum betreiben der anlage
DE60205036T2 (de) Abgasleitung für verbrennungsmotor
DE102014202291A1 (de) Abgasreinigungseinrichtung und Kraftfahrzeug mit einer solchen
DE102004018393A1 (de) Abgasnachbehandlungseinrichtung
DE102011078326A1 (de) LNT zur NOx-Entfernung aus Abgasen von Verbrennungskraftmaschinen
DE102012008523A1 (de) Abgasnachbehandlungssystem
DE10358910B4 (de) Abgasnachbehandlung
DE102004024370A1 (de) Verbrennungsmotor mit Hilfsenergieeinheit
DE102006043151A1 (de) Verfahren und Vorrichtung zur Regeneration eines Partikelfilters
DE102004048141A1 (de) Abgasreinigungsverfahren
DE102008037156A1 (de) Verfahren und eine Vorrichtung zur Reinigung eines Abgasstroms einer magerlauffähigen Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006504462

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007028601

Country of ref document: US

Ref document number: 10552263

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10552263

Country of ref document: US