WO2004090185A1 - An al-zn-mg-cu alloy - Google Patents
An al-zn-mg-cu alloy Download PDFInfo
- Publication number
- WO2004090185A1 WO2004090185A1 PCT/EP2004/003994 EP2004003994W WO2004090185A1 WO 2004090185 A1 WO2004090185 A1 WO 2004090185A1 EP 2004003994 W EP2004003994 W EP 2004003994W WO 2004090185 A1 WO2004090185 A1 WO 2004090185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy product
- aluminium alloy
- product according
- aluminium
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12389—All metal or with adjacent metals having variation in thickness
Definitions
- the invention relates to a wrought Al-Zn-Mg-Cu aluminium type (or 7000- or
- the present invention is related to an age-hardenable, high strength, high fracture toughness and highly corrosion resistant aluminium alloy and products made of that alloy. Products made from this alloy are very suitable for aerospace applications, but not limited to that.
- the alloy can be processed to various product forms, e.g. sheet, thin plate, thick plate, extruded or forged products.
- alloy members and temper designations used herein are in accordance with the well-known aluminium alloy product standards of the Aluminum Association. All percentages are in weight percents, unless otherwise indicated.
- FCGR fatigue crack growth rate
- plane stress fracture toughness a combination of fatigue crack growth rate (FCGR)
- FCGR fatigue crack growth rate
- high damage tolerant AA2x24-T351 see e.g. US-5,213,639 or EP- 1026270-A1
- Cu containing AA6xxx-T6 see e.g. US-4,589,932, US-5,888,320, US- 2002/0039664-A1 or EP-1143027-A1
- For lower wing skin a similar property balance is desired, but some toughness is allowably sacrificed for higher tensile strength.
- AA2x24 in the T39 or a T8x temper are considered to be logical choices (see e.g. US-5,865,914, US- 5,593,516 or EP-1114877-A1), although AA7x75 in the same temper is sometimes also applied.
- the compressive strength, fatigue (SN-fatigue or life-time) and fracture toughness are the most critical properties.
- the preferred choice would be AA7150, AA7055, AA7449 or AA7x75 (see e.g. US-5,221 ,377, US-5,865,911 , US- 5,560,789 or US-5,312,498).
- These alloys have high compressive yield strength with at the moment acceptable corrosion resistance and fracture toughness, although aircraft designers would welcome improvements on these property combinations.
- the present invention is directed to an AA7xxx-series aluminium alloy having the capability of achieving a property balance in any relevant product that is better than property balance of the variety of commercial aluminium alloys (AA2xxx, AA6xxx, AA7xxx) nowadays used for those products.
- a preferred composition of the alloy of the present invention comprises or consists essentially of, in weight %, about 6.5 to 9.5 zinc (Zn), about 1.2 to 2.2 % magnesium (Mg), about 1.0 to1.9% copper (Cu), about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 0.8% manganese (Mn), the balance being aluminium (Al) and other incidental elements.
- Zn zinc
- Mg magnesium
- Cu copper
- Zr zirconium
- Sc scandium
- Cr chromium
- Hf hafnium
- Ti titanium
- Mn manganese
- a more preferred alloy composition according to the invention consist essentially of, in weight %, about 6.5 to 7.9% Zn, about 1.4 to 2.10% Mg, about 1.2 to 1.80% Cu, and preferably wherein (0.9Mg-0.5) ⁇ Cu ⁇ 0.9Mg, about 0 to 0.5% Zr, about 0 to 0.7% Sc, about 0 to 0.4% Cr, about 0 to 0.3% Hf, about 0 to 0.4% Ti, about 0 to 0.8% Mn, the balance being Al and other incidental elements.
- a more preferred alloy composition according to the invention consist essentially of, in weight %, about 6.5 to 7.9% Zn, about 1.4 to 1.95% Mg, about 1.2 to 1.75% Cu, and preferably wherein (0.9Mg-0.5) ⁇ Cu ⁇ (0.9Mg-0.1), about 0 to 0.5% Zr, about 0 to 0.7% Sc, about 0 to 0.4% Cr, about 0 to 0.3% Hf, about 0 to 0.4% Ti, about 0 to 0.8%
- the lower limit for the Zn-content is 6.7%, and more preferably 6.9%.
- the lower limit for the Mg-content of 1.90%, and more preferably 1.92%.
- This lower-limit for the Mg-content is in particular preferred when the alloy product is being used for sheet product, e.g. fuselage sheet, and when used for sections made from thick plate.
- the above mentioned aluminium alloys may contain impurities or incidental or intentionally additions, such as for example up to 0.3% Fe, preferably up to 0.14% Fe, up to 0.2% silicon (Si), and preferably up to 0.12% Si, up to 1 % silver (Ag), up to 1 % germanium (Ge), up to 0.4% vanadium (V).
- the other additions are generally governed by the 0.05-0.15 weight % ranges as defined in the Aluminium Association, thus each unavoidable impurity in a range of ⁇ 0.05%, and the total of impurities ⁇ 0. 5%.
- the iron and silicon contents should be kept significantly low, for example not exceeding about 0.08% Fe and about 0.07% Si or less. In any event, it is conceivable that still slightly higher levels of both impurities, up to about 0.14% Fe and up to about 0.12% Si may be tolerated, though on a less preferred basis herein. In particular for the mould plates or tooling plates embodiments hereof, even higher levels of up to 0.3% Fe and up to 0.2% Si or less, are tolerable.
- the dispersoid forming elements like for example Zr, Sc, Hf, Cr and Mn are added to control the grain structure and the quench sensitivity.
- the optimum levels of dispersoid formers do depend on the processing, but when one single chemistry of main elements (Zn, Cu and Mg) is chosen within the preferred window and that chemistry will be used for all relevant products forms, then Zr levels are preferably less than 0.11%.
- a preferred maximum for the Zr level is a maximum of 0.15%.
- a suitable range of the Zr level is a range of 0.04 to 0.15%.
- a more preferred upper-limit for the Zr addition is 0.13%, and even more preferably not more than 0.11 %.
- the addition of Sc is preferably not more than 0.3%, and preferably not more than 0.18%.
- the sum of Sc+Zr should be less then 0.3%, preferably less than 0.2%, and more preferably at a maximum of 0.17%, in particular where the ratio of Zr and Sc is between 0.7 and 1.4.
- Another dispersoid former that can be added, alone or with other dispersoid formers is Cr.
- Cr levels should be preferable below 0.3%, and more preferably at a maximum of 0.20%, and even more preferably 0.15%.
- the sum of Zr + Cr should not be above 0.20%, and preferably not more than 0.17%.
- the preferred sum of Sc+Zr+Cr should not be above 0.4%, and more preferably not more than 0.27%.
- Mn can be added alone or in combination with one of the other dispersoid formers.
- a preferred maximum for the Mn addition is 0.4%.
- a suitable range for the Mn addition is in the range of 0.05 to 0.40%, and preferably in the range of 0.05 to 0.30%, and even more preferably 0.12 to 0.30%.
- a preferred lower limit for the Mn addition is 0.12%, and more preferably 0.15%.
- the sum of Mn + Zr should be less then 0.4%), preferably less than 0.32%, and a suitable minimum is 0.14%.
- the alloy is free of Mn, in practical terms this would mean that the Mn-content is ⁇ 0.02%, and preferably ⁇ 0.01 %, and more preferably the alloy is essentially free or substantially free from Mn.
- substantially free and “essentially free” we mean that no purposeful addition of this alloying element was made to the composition, but that due to impurities and/or leaching from contact with manufacturing equipment, trace quantities of this element may, nevertheless, find their way into the final alloy product.
- the alloy consists essentially of, in weight percent:
- Mn optionally in a range of 0.05 to 0.19, and preferably 0.09 to 0.19, or in an alternative embodiment ⁇ 0.02, preferably ⁇ 0.01 Si ⁇ 0.07, and typically about 0.04
- the alloy consists essentially of, in weight percent:
- Mg 1.90 to 1.97, preferably 1.92 to 1.97, and typically about 1.94
- the alloy product according to the invention can be prepared by conventional melting and may be (direct chill, D.C.) cast into ingot form. Grain refiners such as titanium boride or titanium carbide may also be used. After scalping and possible homogenisation, the ingots are further processed by, for example extrusion or forging or hot rolling in one or more stages. This processing may be interrupted for an inter- anneal. Further processing may be cold working, which may be cold rolling or stretching. The product is solution heat treated and quenched by immersion in or spraying with cold water or fast cooling to a temperature lower than 95°C.
- the product can be further processed, for example by rolling or stretching, for example up to 8%, or may be stress relieved by stretching or compression up to about 8%, for example, from about 1 to 3%, and/or aged to a final or intermediate temper.
- the product may be shaped or machined to the final or intermediate structure, before or after the final ageing or even before solution heat treatment.
- FCGR damage tolerant properties under tensile loads
- the important material properties for an upper wing skin product are the properties under compressive loads, i.e. compressive yield strength, fatigue life and corrosion resistance.
- the important material properties for machined parts from thick plate depend on the machined part. But, in general, the gradient in material properties through thickness must be very small and the material properties like strength, fracture toughness, fatigue and corrosion resistance must be a high level.
- the present invention is directed at an alloy composition when processed to a variety of products, such as, but not limited to, sheet, plate, thick plate etc, will meet or exceed the desired material properties.
- the property balance of the product will outperform the property balance of the product made from nowadays commercially used alloys. It has been found very surprisingly a chemistry window within the AA7000 window, unexplored before, that does fulfil this unique capability.
- the present invention resulted from an investigation on the effect of Cu, Mg and Zn levels, combined with various levels and types of dispersoid former (e.g. Zr, Cr, Sc, Mn) on the phases formed during processing.
- dispersoid former e.g. Zr, Cr, Sc, Mn
- Some of these alloys were processed to sheet and plate and tested on tensile, Kahn-tear toughness and corrosion resistance.
- Interpretations of these results lead to the surprising insight that an aluminium alloy with a chemical composition within a certain window, will exhibit excellent properties as well as for sheet as for plate as for thick plate as for extrusions as for forgings.
- a method of manufacturing the aluminium alloy product according to the invention comprising the processing steps of: a) casting an ingot having a composition as set out in the present description; b) homogenising and/or pre-heating the ingot after casting; c) hot working the ingot into a pre-worked product by one or more methods selected from the group consisting of: rolling, extruding and forging; d) optional reheating the pre-worked product and either, e) hot working and/or cold working to a desired work piece form; f) solution heat treating (SHT) the formed work piece at a temperature and time sufficient to place into solid solution essentially all soluble constituents in the alloy; g) quenching the solution heat treated work piece by one of spray quenching or immersion quenching in water or other quenching media; h) optionally stretching or compress
- the alloy products of the present invention are conventionally prepared by melting and may be direct chill (D.C.) cast into ingots or other suitable casting techniques. Homogenisation treatment is typically carried out in one or multi steps, each step having a temperature preferably in the range of 460 to 490°C.
- the pre-heat temperature involves heating the rolling ingot to the hot-mill entry temperature, which is typically in a temperature range of 400 to 460°C.
- Hot working the alloy product can be done by one or more methods selected from the group consisting of rolling, extruding and forging. For the present alloy hot rolling is being preferred.
- Solution heat treatment is typically carried out in the same temperature range as used for homogenisation, although the soaking times can be chosen somewhat shorter.
- the artificial ageing step i.) comprises a first ageing step at a temperature in a range of 105°C to 135°C preferably for 2 to 20 hours, and a second ageing step at a temperature in a range of 135°C to 210°C preferably for 4 to 20 hours.
- a third ageing step may be applied at a temperature in a range of 105°C to 135°C and preferably for 20 to 30 hours.
- a surprisingly excellent property balance is being obtained in whatever thickness is produced.
- the properties will be excellent for fuselage sheet, and preferably the thickness is up to 1 inch.
- the thin plate thickness range of 0.7 to 3 inch the properties will be excellent for wing plate, e.g. lower wing plate.
- the thin plate thickness range can be used also for stringers or to form an integral wing panel and stringer for use in an aircraft wing structure. More peak-aged material will give an excellent upper wing plate, whereas slightly more over- ageing will give excellent properties for lower wing plate.
- thicker gauge products When processed to thicker gauges of more than 2.5 inch up to about 11 inch or more excellent properties will be obtained for integral parts machined from plates, or to form an integral spar for use in an aircraft wing structure, or in the form of a rib for use in an aircraft wing structure.
- the thicker gauge products can be used also as tooling plate or mould plate, e.g. moulds for manufacturing formed plastic products, for example via die-casting or injection moulding.
- thickness ranges are given hereinabove, it will be immediately apparent to the skilled person that this is the thickness of the thickest cross sectional point in the alloy product made from such a sheet, thin plate or thick plate.
- the alloy products according to the invention can also be provided in the form of a stepped extrusion or extruded spar for use in an aircraft structure, or in the form of a forged spar for use in an aircraft wing structure. Surprisingly, all these products with excellent properties can be obtained from one alloy with one single chemistry.
- the component increased elongation compared to its AA7050 aluminium alloy counterpart.
- the elongation (or A50) in the ST testing direction is 5% or more, and in the best results 5.5% or more.
- the component has a fracture toughness Kapp in the L-T testing direction at ambient room temperature and when measured at S/4 according to ASTM E561 using 16-inch centre cracked panels (M(T) or CC(T)) showing an at least 20% improvement compared to its AA7050 aluminium alloy counterpart, and in the best examples an improvement of 25% or more is found.
- the alloy products have been extruded into profiles having at their thickest cross sectional point a thickness in the range of up to 10 mm, and preferably in the range of 1 to 7mm.
- the alloy product can also replace thick plate material, which is conventionally machined via high-speed machining or milling techniques into a shaped structural component.
- the extruded alloy product has preferably at its thickest cross sectional point a thickness in a range of 2 to 6 inches.
- Fig. 1 is an Mg-Cu diagram setting out the Cu-Mg range for the alloy according to this invention, together with narrower preferred ranges;
- Fig. 2 is a diagram comparing the fracture toughness vs. the tensile yield strength for the alloy product according to the invention against several references;
- Fig. 3 is a diagram comparing the fracture toughness vs. the tensile yield strength for the alloy product according to this invention in a 30 mm gauge against two references;
- Fig. 4 is a diagram comparing the plane strain fracture toughness vs. the tensile yield strength for the alloy products according to the invention using different processing routes.
- Fig. 1 shows schematically the ranges for the Cu and Mg for the alloy according to the present invention in their preferred embodiments as set out in dependent claims 2 to 4. Also shown are two narrower more preferred ranges. The ranges can also be identified by using the corner-points A, B, C, D, E, and F of a hexagon box. Preferred ranges are identified by A' to F, and more preferred ranges by A" to F". The coordinates are listed in Table 1. In Fig. 1 also the alloy composition according to this invention as mentioned in the examples hereinafter are illustrated as individual points.
- the blocks were re-heated at 410+5°C. Some blocks were hot rolled to the final gauge of 30 mm, others were hot rolled to a final gauge of 4.0mm. During the whole hot-rolling process, care was taken to mimic an industrial scale hot rolling.
- the hot- rolled products were solution heat treated and quenched. Most were quenched in water, but some were also quenched in oil to mimic the mid and quarter-thickness quenching-rate of a 6-inch thick plate.
- the products were cold stretched by about 1.5% to relieve the residual stresses.
- the ageing behaviour of the alloys was investigated. The final products were over-aged to a near peak aged strength (e.g. T76 or T77 temper).
- Tensile properties have been tested according EN10.002.
- the tensile specimens from the 4 mm thick sheet were flat EURO-NORM specimen with 4 mm thickness.
- the tensile specimens from the 30 mm plate were round tensile specimens taken from mid- thickness.
- the tensile test results in Table 1 are from the L-direction.
- the Kahn-tear toughness is tested according ASTM B871-96.
- the test direction of the results on Table 2 is the T-L direction.
- the so-called notch-toughness can be obtained by dividing the tear-strength, obtained by the Kahn-tear test, by the tensile yield strength ("TS/Rp").
- the unit propagation energy (UPE)
- UPE unit propagation energy
- EXCO exfoliation corrosion resistance
- IRC inter-granular corrosion
- the Zn-content should not be below 6.5%, and preferably not below 6.7%, and more preferably not below 6.9%.
- Mg is required to have acceptable strength levels. It has been found that a ratio of Mg/Zn of about 0.27 or lower seems to give the best strength-toughness combination. However, Mg levels should not exceed 2.2%, and preferably not exceed ⁇ o 2.1%, and even more preferably not exceed 1.97%, with a more preferred upper level of 1.95%). This upper-limit is lower than in the conventional AA-windows or ranges of presently used commercial aerospace alloys like AA7050, AA7010 and AA7075.
- Mg levels In order to have a desirably very high crack growth resistance (or UPE) Mg levels must be carefully balanced and should preferable be in the same order or slightly more 15 than the Cu levels, and preferably (0.9xMg - 0.6) ⁇ Cu ⁇ (0.9xMg + 0.05).
- the Cu- content should not be too high. It has been found that the Cu-content should not be higher than 1.9%, and preferably should not exceed 1.80%, and more preferably not exceed 1.75%.
- the dispersoid formers used in AA7xxx-series alloys are typically Cr, as in e.g. AA7x75, or Zr, as in e.g. AA7x50 and AA7x10.
- Mn is believed to be detrimental for toughness, but much to our surprise, a combination of Mn and Zr shows still a very good strength-toughness balance.
- a batch of full-size rolling ingots with a thickness of 440mm thick on an industrial scale were produced by a DC-casting and having the chemical composition (in wt.%): 7.43% Zn, 1.83% Mg, 1.48% Cu, 0.08% Zr, 0.02% Si and 0.04% Fe, balance aluminium and unavoidable impurities.
- One of these ingots was scalped, homogenised at 12hrs/470°C + 24hrs/475°C + air cooled to ambient temperature. This ingot was preheated at 8hrs/410°C and then hot rolled to about 65mm. The rolling block was then turned 90 degrees and further hot rolled to about 10mm. Finally the rolling block was cold rolled to a gauge of 5.0mm.
- variant A for 5hrs/120°C + 9hrs/155°C
- variant B for 5hrs/120°C + 9hrs/165°C.
- the tensile results have been measured according EN 10.002.
- the compression yield strength (“CYS”) has been measured according ASTM E9-89a.
- the shear strength has been measured according ASTM B831-93.
- the fracture toughness, Kapp has been measured according ASTM E561-98 on 16-inch wide centre cracked panels [M(T) or CC(T)].
- the Kapp has been measured at ambient room temperature (RT) and at -65°F.
- a high damage tolerant (“HDT”) AA2x24-T351 has been tested as well. The results are listed in Table 3.
- the exfoliation corrosion resistance has been measured according ASTM G34- 97. Both variant A and B showed EA rating.
- the inter-granular corrosion measured according MIL-H-6088 for variant A was about 70 ⁇ m and for variant B about 45 ⁇ m. Both are significantly lower than the typical 200 ⁇ m as measured for the reference AA2x24-T351.
- FCGR fatigue crack growth rate
- the tensile results have been measured according EN 10.002.
- the plane strain fracture toughness, Kq has been measured according ASTM E399-90 on CT- specimens. If the validity requirements as given in ASTM E399-90 are met, these Kq values are a real material property and called K ⁇ C .
- the K 1C has been measured at ambient room temperature ("RT").
- the EXCO exfoliation corrosion resistance has been measured according ASTM G34-97. The results are listed in Table 6. All ageing variants as shown in Table 6 showed "EA"-rating. Table 6
- Fig. 3 a comparison is given of the inventive alloy versus AA7150-T77 and AA7055-T77. From Fig. 3 it can be clearly seen that the tensile versus toughness balance of the current inventive alloy is superior to commercial available AA7150-T77 and also to AA7055-T77.
- Example 5 Another full-scale ingot taken from the batch DC-cast from Example 2 (hereinafter in Example 5 "Alloy A”) was produced to plates of 20mm thickness. Also one other casting was made (designated “Alloy B” for this example) with a chemical composition (in wt.%): 7.39% Zn, 1.66% Mg, 1.59% Cu, 0.08% Zr, 0.03% Si and 0.04% Fe, balance aluminium and unavoidable impurities. These ingots were scalped, homogenised at 12hrs/470°C + 24hrs/475°C + air cooled to ambient temperature. For further processing, three different routes were used.
- Route 1 The ingot of alloy A and B were pre-heated at 6hrs/420°C and then hot rolled to about 20 mm.
- Route 2 Ingot of alloy A were pre-heated at 6hrs/460°C and then hot rolled to about 20 mm
- Route 3 Ingot of alloy B were pre-heated at 6hrs/420°C and then hot rolled to about 24 mm, subsequently these plates were cold rolled to 20mm.
- A1 , A2, B1 and B3 The resultant plates were solution heat treated at 475°C for about 2 to 4 hrs followed by water-spray quenching. The plates were stress relieved by a cold stretching operation of about 2.1 %.
- the tensile results have been measured according EN 10.002.
- the plane strain fracture toughness, Kq has been measured according ASTM E399-90 on CT specimens. If the validity requirements as given in ASTM E399-90 are met, these Kq values are a real material property and called K C or KIC. Note that most of the fracture toughness measurement in this example failed the meet the validity criteria on specimen thickness.
- the reported Kq values are a conservative with respect to K 1C , in other words, the reported Kq values are in fact generally lower than the standard K C values obtained when specimen size related validity criteria of ASTM E399-90 are satisfied.
- the exfoliation corrosion resistance has been measured according ASTM G34-97. The results are listed in Table 8. All ageing variants as shown in Table 8 showed "EA"-rating for the EXCO resistance.
- A1 and B1 have a similar strength versus toughness behaviour.
- the best strength versus toughness could be obtained by either B3 (i.e. cold rolling to final thickness) or by A2 (i.e. pre-heat at a higher temperature).
- B3 i.e. cold rolling to final thickness
- A2 i.e. pre-heat at a higher temperature.
- Table 8 show a significant better strength versus toughness balance than AA7150-T77 and AA7055- T77 as listed in Table 7.
- alloy B represents an alloy composition according a preferred embodiment of the invention when the alloy product is in the form of a sheet product.
- Example 1 The ingots were scalped, homogenized at 12hrs/470°C + 24 hrs/475°C and then hot rolled to an intermediate gauge of 65 mm and final hot rolled to about 9 mm. Finally the hot rolled intermediate products have been cold rolled to a gauge of 4mm.
- the obtained sheet products were solution heat treated at 475°C for about 20 minutes, followed by water-spray quenching. The resultant sheets were stress relieved by a cold stretching operation of about 2%. The stretched sheets have been aged thereafter for 5 hrs/120°C + 8 hrs/165°C.
- Mechanical properties have tested analogue to Example 1 and the results are listed in Table 10. The results of this full-scale trial confirm the results of Example 1 that the positive addition of Mn in the defined range significantly improves the toughness (both UPE and Ts/Rp) of the sheet product resulting in a very good and desirable strength-toughness balance.
- alloy C represents a typical alloy falling within the AA7050-series range
- alloy D represents an alloy composition according to a preferred embodiment of the invention when the alloy product is in the form of plate, e.g. thick plate.
- the ingots were scalped, homogenized in a two-step cycle of 12hrs/470°C + 24hrs/475°C and air-cooled to ambient temperature.
- the ingot was pre-heated at 8hrs/410°C and then hot rolled to final gauge.
- the obtained plate products were solution heat treated at 475°C for about 6 hours, followed by water-spray quenching.
- the resultant plates were stretched by a cold stretching operation for about 2%.
- the stretched plates have been aged using a two-step ageing practice of first 5hrs/120°C followed by 12 hrs/165°C. Mechanical properties have been tested analogue to Example 3 in three test directions and the results are listed in Table 12 and 13.
- the specimens were taken from S/4 position from the plate for the L- and LT-testing direction and at S/2 for the ST-testing direction
- the Kapp has been measured at S/2 and S/4 locations in the L-T direction using panels having a width of 160mm centre cracked panels and having a thickness of 6.3mm after milling. These Kapp measurements have been carried out at room temperature in accordance with ASTM E561.
- the designation "ok" for the SCO means that no failure occurred at 180MPa/45days.
- the alloy according to the invention in comparison with AA7050 has similar corrosion performance, the strength (yield strength and tensile strength) are comparable or slightly better than AA7050, in particular in the ST-direction. But more importantly the alloy of the present invention showed significantly better results in elongation (or A50) in the ST-direction.
- the elongation (or A50), in particular the elongation in ST-direction, is an important engineering parameter of amongst others ribs for use in an aircraft wing structure.
- the alloy product according to the invention further shows a significant improvement in fracture toughness (both K
- alloy F represents an alloy composition according to a preferred embodiment of the invention when the alloy product is in the form of plate for wings.
- the ingots were scalped, homogenized in a two-step cycle of 12hrs/470°C + 24hrs/475°C and air-cooled to ambient temperature.
- the ingot was pre-heated at 8hrs/410°C and then hot rolled to final gauge.
- the obtained plate products were solution heat treated at 475°C for about 4 hours, followed by water-spray quenching.
- the resultant plates were stretched by a cold stretching operation for about 2%.
- the stretched plates have been aged using a two-step ageing practice of first 5hrs/120°C followed by 10 hrs/155°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Extrusion Of Metal (AREA)
- Metal Rolling (AREA)
- Continuous Casting (AREA)
- Forging (AREA)
- Heat Treatment Of Steel (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Conductive Materials (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BRPI0409267A BRPI0409267B1 (pt) | 2003-04-10 | 2004-04-09 | produto de liga de alumínio com alta resistência mecânica e tenacidade à fratura e uma boa resistência à corrosão, componente estrutural de liga de alumínio e chapa de molde |
| CA2519390A CA2519390C (en) | 2003-04-10 | 2004-04-09 | An al-zn-mg-cu alloy |
| JP2006505137A JP5128124B2 (ja) | 2003-04-10 | 2004-04-09 | Al−Zn−Mg−Cu合金 |
| DE112004000603.1T DE112004000603B4 (de) | 2003-04-10 | 2004-04-09 | AI-Zn-Mg-Cu-Legierung |
| AT0911104A AT502310B1 (de) | 2003-04-10 | 2004-04-09 | Eine al-zn-mg-cu-legierung |
| GB0520501A GB2415202B (en) | 2003-04-10 | 2004-04-09 | An Al-Zn-Mg-Cu alloy |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP03076048 | 2003-04-10 | ||
| EP03076048.2 | 2003-04-10 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2004090185A1 true WO2004090185A1 (en) | 2004-10-21 |
Family
ID=33041013
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2004/003994 Ceased WO2004090185A1 (en) | 2003-04-10 | 2004-04-09 | An al-zn-mg-cu alloy |
Country Status (12)
| Country | Link |
|---|---|
| US (2) | US20090269608A1 (enExample) |
| JP (2) | JP5128124B2 (enExample) |
| CN (2) | CN100547098C (enExample) |
| AT (1) | AT502310B1 (enExample) |
| BR (1) | BRPI0409267B1 (enExample) |
| CA (1) | CA2519390C (enExample) |
| DE (2) | DE112004000603B4 (enExample) |
| ES (2) | ES2293813B2 (enExample) |
| FR (1) | FR2853667B1 (enExample) |
| GB (2) | GB2426979B (enExample) |
| RU (1) | RU2353693C2 (enExample) |
| WO (1) | WO2004090185A1 (enExample) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006086534A3 (en) * | 2005-02-10 | 2006-09-28 | Alcan Rolled Products Ravenswood Llc | Al-zn-cu-mg aluminum base alloys and methods of manufacture and use |
| CN1302137C (zh) * | 2005-05-18 | 2007-02-28 | 山东大学 | 一种铝锌镁系合金及其制备工艺 |
| WO2009156283A1 (en) * | 2008-06-24 | 2009-12-30 | Aleris Aluminum Koblenz Gmbh | Al-zn-mg alloy product with reduced quench sensitivity |
| WO2010029572A1 (en) * | 2008-07-31 | 2010-03-18 | Aditya Birla Science & Technology Co. Ltd. | Method for manufacture of aluminium alloy sheets |
| WO2009126347A3 (en) * | 2008-01-16 | 2010-09-30 | Questek Innovations Llc. | High-strength aluminum casting alloys resistant to hot tearing |
| US8157932B2 (en) | 2005-05-25 | 2012-04-17 | Alcoa Inc. | Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings |
| US8317947B2 (en) | 2007-06-11 | 2012-11-27 | Sumitomo Light Metal Industries, Ltd. | Aluminum alloy sheet for press forming |
| RU2473710C2 (ru) * | 2006-06-30 | 2013-01-27 | КОНСТЕЛЛИУМ РОЛЛД ПРОДАКТС - РЕЙВЕНСВУД ЭлЭлСи | Высокопрочный термообрабатываемый алюминиевый сплав |
| CN104789837A (zh) * | 2014-05-07 | 2015-07-22 | 天长市正牧铝业科技有限公司 | 一种制作棒球棒的铝合金材料 |
| CN104789838A (zh) * | 2014-05-07 | 2015-07-22 | 天长市正牧铝业科技有限公司 | 一种球棒用强韧铝合金 |
| CN104789835A (zh) * | 2014-05-07 | 2015-07-22 | 天长市正牧铝业科技有限公司 | 一种用于球棒的高强高韧铝合金 |
| US9353430B2 (en) | 2005-10-28 | 2016-05-31 | Shipston Aluminum Technologies (Michigan), Inc. | Lightweight, crash-sensitive automotive component |
| EP3153600A1 (en) * | 2015-10-06 | 2017-04-12 | BAE Systems PLC | Metal object production |
| WO2017060697A1 (en) * | 2015-10-06 | 2017-04-13 | Bae Systems Plc | Metal object production |
| US10301710B2 (en) | 2005-01-19 | 2019-05-28 | Otto Fuchs Kg | Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product |
| US11421309B2 (en) | 2015-10-30 | 2022-08-23 | Novelis Inc. | High strength 7xxx aluminum alloys and methods of making the same |
| WO2024250117A1 (en) * | 2023-06-09 | 2024-12-12 | 9480-3798 Québec Inc. | Method for manufacturing a sheet or plate of high strength aluminum alloy and article including an aluminum alloy produced using the method for manufacturing the sheet or plate of high strength aluminum alloy |
Families Citing this family (86)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050034794A1 (en) * | 2003-04-10 | 2005-02-17 | Rinze Benedictus | High strength Al-Zn alloy and method for producing such an alloy product |
| US7883591B2 (en) * | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
| FR2907796B1 (fr) | 2006-07-07 | 2011-06-10 | Aleris Aluminum Koblenz Gmbh | Produits en alliage d'aluminium de la serie aa7000 et leur procede de fabrication |
| WO2008003503A2 (en) | 2006-07-07 | 2008-01-10 | Aleris Aluminum Koblenz Gmbh | Method of manufacturing aa2000 - series aluminium alloy products |
| DE202008018370U1 (de) * | 2007-09-21 | 2013-04-30 | Aleris Rolled Products Germany Gmbh | Al-Cu-Li Legierungsprodukt, welches für eine Luftfahrzeuganwendung geeignet ist |
| WO2009073794A1 (en) * | 2007-12-04 | 2009-06-11 | Alcoa Inc. | Improved aluminum-copper-lithium alloys |
| KR100909699B1 (ko) * | 2008-06-11 | 2009-07-31 | 보원경금속(주) | 충격에너지가 향상된 알루미늄 합금 및 이로부터 제조된압출재 |
| CN101407876A (zh) * | 2008-09-17 | 2009-04-15 | 北京有色金属研究总院 | 适于大截面主承力结构件制造的铝合金材料及其制备方法 |
| US8613820B2 (en) * | 2009-06-12 | 2013-12-24 | Aleris Aluminum Duffel Bvba | Structural automotive part made from an Al—Zn—Mg—Cu alloy product and method of its manufacture |
| CN101649433B (zh) * | 2009-07-10 | 2012-11-21 | 西南铝业(集团)有限责任公司 | 一种铝合金板材的加工方法 |
| CN102041417B (zh) * | 2009-10-16 | 2012-06-13 | 吉林利源铝业股份有限公司 | 一种用于制造汽车保安件的铝合金及制备方法 |
| CN102108463B (zh) | 2010-01-29 | 2012-09-05 | 北京有色金属研究总院 | 一种适合于结构件制造的铝合金制品及制备方法 |
| US9163304B2 (en) * | 2010-04-20 | 2015-10-20 | Alcoa Inc. | High strength forged aluminum alloy products |
| CN101818290A (zh) * | 2010-05-28 | 2010-09-01 | 中南大学 | 一种同时添加Ag、Ge的低淬火敏感性铝合金 |
| CN101824569A (zh) * | 2010-05-28 | 2010-09-08 | 中南大学 | 一种含Ge的低淬火敏感性铝合金 |
| JP2013537936A (ja) * | 2010-09-08 | 2013-10-07 | アルコア インコーポレイテッド | 改良されたアルミニウム−リチウム合金及びその製造方法 |
| RU2443793C1 (ru) * | 2010-10-08 | 2012-02-27 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Высокопрочный сплав на основе алюминия и способ получения изделия из него |
| CN101935790A (zh) * | 2010-10-19 | 2011-01-05 | 上海友升铝业有限公司 | 高强度的适用于摩托车轮辋的铝合金材料 |
| CN102002615B (zh) * | 2010-10-21 | 2012-11-21 | 哈尔滨工业大学 | 超高强铝合金材料及用于制备分离机内筒的管坯的制备方法 |
| US9493867B2 (en) * | 2010-11-05 | 2016-11-15 | Aleris Aluminum Duffel Bvba | Method of manufacturing a structural automotive part made from a rolled Al—Zn alloy |
| CN102011037B (zh) * | 2010-12-10 | 2013-04-24 | 北京工业大学 | 稀土Er微合金化的Al-Zn-Mg-Cu合金及其制备方法 |
| CN102286683B (zh) * | 2011-08-12 | 2013-10-02 | 宁波德精铝业科技有限公司 | 铝合金材料及其制备方法 |
| CN104619872A (zh) * | 2012-09-20 | 2015-05-13 | 株式会社神户制钢所 | 铝合金制汽车构件 |
| US9249487B2 (en) * | 2013-03-14 | 2016-02-02 | Alcoa Inc. | Methods for artificially aging aluminum-zinc-magnesium alloys, and products based on the same |
| KR20150047246A (ko) | 2013-10-24 | 2015-05-04 | 한국기계연구원 | 결정립이 미세화된 알루미늄-아연-마그네슘-구리 합금 판재의 제조방법 |
| CN103555906A (zh) * | 2013-11-05 | 2014-02-05 | 中国航空工业集团公司西安飞机设计研究所 | 一种飞机蒙皮板残余应力消除方法 |
| CN103757506B (zh) * | 2013-12-18 | 2016-03-09 | 宁波市鄞州天鹰铝制品有限公司 | 一种登山钩及其加工工艺 |
| CN103740991B (zh) * | 2013-12-18 | 2016-09-07 | 宁波市鄞州天鹰铝制品有限公司 | 一种登山钩 |
| US9765419B2 (en) | 2014-03-12 | 2017-09-19 | Alcoa Usa Corp. | Methods for artificially aging aluminum-zinc-magnesium alloys, and products based on the same |
| GB2527486A (en) | 2014-03-14 | 2015-12-30 | Imp Innovations Ltd | A method of forming complex parts from sheet metal alloy |
| CN104195391B (zh) * | 2014-08-23 | 2016-05-11 | 福建省闽发铝业股份有限公司 | 一种高强铝合金及其制备方法 |
| RU2569275C1 (ru) * | 2014-11-10 | 2015-11-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Плита из высокопрочного алюминиевого сплава и способ ее изготовления |
| CN105734367A (zh) * | 2014-12-12 | 2016-07-06 | 中国航空工业集团公司北京航空材料研究院 | 一种铝合金材料及制备方法 |
| CN104451292B (zh) * | 2014-12-12 | 2017-01-18 | 西南铝业(集团)有限责任公司 | 一种7a85铝合金 |
| US20160348224A1 (en) * | 2015-06-01 | 2016-12-01 | Kaiser Aluminum Fabricated Products, Llc | High Strength 7xxx Series Aluminum Alloy Products and Methods of Making Such Products |
| CN108368571A (zh) * | 2015-12-23 | 2018-08-03 | 诺尔斯海德公司 | 生产具有改善的机械性能的可热处理铝合金的方法 |
| DE102016001500A1 (de) * | 2016-02-11 | 2017-08-17 | Airbus Defence and Space GmbH | Al-Mg-Zn-Legierung für den integralen Aufbau von ALM-Strukturen |
| CN106048333B (zh) * | 2016-08-10 | 2017-09-29 | 江苏亚太安信达铝业有限公司 | 家用汽车控制臂铝镁硅合金及其制备方法 |
| MX2019008351A (es) * | 2017-01-17 | 2019-09-16 | Novelis Inc | Envejecimiento rapido de aleaciones de aluminio de la serie 7xxx de alta resistencia y metodos de preparacion de estas. |
| JP2018178193A (ja) * | 2017-04-13 | 2018-11-15 | 昭和電工株式会社 | アルミニウム合金製加工品およびその製造方法 |
| CN107012375A (zh) * | 2017-04-20 | 2017-08-04 | 宁波弘敏铝业有限公司 | 一种渔具用铝合金及其制备工艺 |
| WO2018237196A1 (en) * | 2017-06-21 | 2018-12-27 | Arconic Inc. | Improved thick wrought 7xxx aluminum alloys, and methods for making the same |
| CN107058827A (zh) * | 2017-06-27 | 2017-08-18 | 桂林理工大学 | 具有优异力学性能的Al‑Zn‑Mg‑Cu‑Sc‑Zr合金板材及其制备方法 |
| MX2020001995A (es) * | 2017-08-29 | 2020-03-24 | Novelis Inc | Productos de aleacion de aluminio serie 7xxx en un temple t4 estable y metodos para la fabricacion de estos. |
| CN107475573A (zh) * | 2017-08-30 | 2017-12-15 | 芜湖舜富精密压铸科技有限公司 | 一种铝合金的压铸方法 |
| FR3071513B1 (fr) | 2017-09-26 | 2022-02-11 | Constellium Issoire | Alliages al-zn-cu-mg a haute resistance et procede de fabrication |
| CN107675112A (zh) * | 2017-10-12 | 2018-02-09 | 哈尔滨工业大学 | 一种超高强铝合金的包套变形方法 |
| CN107740012B (zh) * | 2017-10-16 | 2019-08-06 | 西南铝业(集团)有限责任公司 | 一种航空铝合金模锻件制备方法 |
| CN108161345B (zh) * | 2017-12-08 | 2019-11-29 | 航天材料及工艺研究所 | 一种7055铝合金复杂结构零件的加工制造方法 |
| CN108193090B (zh) * | 2018-01-24 | 2020-09-29 | 广西南南铝加工有限公司 | 一种安全鞋用铝合金材料及其生产方法 |
| PT3807434T (pt) * | 2018-06-12 | 2022-10-06 | Novelis Koblenz Gmbh | Método de fabrico de um produto de chapa em liga de alumínio da série 7xxx com uma melhor resistência à rutura por fadiga |
| RU2765103C1 (ru) | 2018-07-02 | 2022-01-25 | Отто Фукс - Коммандитгезельшафт | Алюминиевый сплав и перестаренное изделие из такого алюминиевого сплава |
| CN108642351A (zh) * | 2018-07-03 | 2018-10-12 | 广西大学 | 一种高性能耐腐蚀铝合金及其制备方法 |
| CN109022967A (zh) * | 2018-10-15 | 2018-12-18 | 广东华劲金属型材有限公司 | 一种低压铝合金及其制备方法 |
| WO2020099124A1 (en) * | 2018-11-12 | 2020-05-22 | Aleris Rolled Products Germany Gmbh | Method of producing a high-energy hydroformed structure from a 7xxx-series alloy |
| EP3880857A4 (en) * | 2018-11-14 | 2022-08-03 | Arconic Technologies LLC | IMPROVED 7XXX ALUMINUM ALLOYS |
| CN109457149A (zh) * | 2018-12-05 | 2019-03-12 | 天津忠旺铝业有限公司 | 一种7系铝合金厚板的加工方法 |
| US12378643B2 (en) | 2019-01-18 | 2025-08-05 | Divergent Technologies, Inc. | Aluminum alloys |
| KR102565183B1 (ko) | 2019-01-18 | 2023-08-10 | 노벨리스 코블렌츠 게엠베하 | 7xxx-시리즈 알루미늄 합금 제품 |
| CN110172624A (zh) * | 2019-03-11 | 2019-08-27 | 中国航发北京航空材料研究院 | 一种高强韧铝合金锻件及其制备方法 |
| CN110172623A (zh) * | 2019-03-11 | 2019-08-27 | 中国航发北京航空材料研究院 | 一种高强韧铝合金及其制备方法 |
| CN110592445B (zh) * | 2019-08-27 | 2021-06-22 | 江苏大学 | 720-740MPa冷挤压Al-Zn-Mg-Cu-Ti铝合金及制备方法 |
| CN110592444B (zh) * | 2019-08-27 | 2021-06-22 | 江苏大学 | 一种700-720MPa强度耐热高抗晶间腐蚀铝合金及其制备方法 |
| CN110983128A (zh) * | 2019-09-23 | 2020-04-10 | 山东南山铝业股份有限公司 | 一种高强耐热变形铝合金及其制备方法 |
| CN111647774A (zh) * | 2020-02-17 | 2020-09-11 | 海德鲁挤压解决方案股份有限公司 | 生产耐腐蚀和耐高温材料的方法 |
| CN111763860B (zh) * | 2020-06-02 | 2021-09-07 | 远东电缆有限公司 | 一种超高强铝合金线及其生产工艺 |
| CN114107761B (zh) * | 2020-08-26 | 2022-08-12 | 宝山钢铁股份有限公司 | 一种喷射铸轧7xxx铝合金薄带及其制备方法 |
| RU2744582C1 (ru) * | 2020-08-26 | 2021-03-11 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Способ получения массивных полуфабрикатов из высокопрочных алюминиевых сплавов |
| US20220195561A1 (en) * | 2020-12-21 | 2022-06-23 | Divergent Technologies, Inc. | 3-d printable alloys |
| CN112921255A (zh) * | 2021-01-15 | 2021-06-08 | 烟台南山学院 | 一种消减7000系铝合金厚板淬火残余应力的方法及铝合金板材 |
| CN113183561B (zh) * | 2021-04-26 | 2021-10-12 | 河海大学 | 一种具有层状超细晶结构的高强韧可降解锌合金及其制备方法和应用 |
| CN113444938A (zh) * | 2021-05-19 | 2021-09-28 | 山东南山铝业股份有限公司 | 高速列车铝合金支撑槽及其制备方法 |
| CN113355614A (zh) * | 2021-06-02 | 2021-09-07 | 吉林大学 | 一种7075铝合金预冷成形方法 |
| CN113528907B (zh) * | 2021-07-06 | 2022-06-10 | 福建祥鑫新材料科技有限公司 | 一种超高强铝合金材料及其管材制造方法 |
| IL309904A (en) * | 2021-07-22 | 2024-03-01 | Novelis Koblenz Gmbh | Armor component manufactured from 7XXX series aluminum alloy |
| CN114182146A (zh) * | 2021-12-21 | 2022-03-15 | 湖南顶立科技有限公司 | 一种Ag强化铝合金及其制备方法 |
| CN114293076A (zh) * | 2021-12-24 | 2022-04-08 | 东北轻合金有限责任公司 | 一种高合金化高强韧性Al-Zn-Mg-Cu合金及其制备方法 |
| CN114540675A (zh) * | 2022-01-20 | 2022-05-27 | 山东南山铝业股份有限公司 | 一种高性能变形铝合金及制造方法 |
| CN119278283A (zh) * | 2022-05-17 | 2025-01-07 | 奥科宁克技术有限责任公司 | 新型7xxx铝合金产品 |
| CN114959386B (zh) * | 2022-05-30 | 2022-11-15 | 中国第一汽车股份有限公司 | 快速时效响应的铝合金及其热处理工艺 |
| CN115612900A (zh) * | 2022-08-30 | 2023-01-17 | 西南铝业(集团)有限责任公司 | 一种Al-Mg-Zn-Cu铝合金及其制备方法 |
| CN116445779A (zh) * | 2023-03-03 | 2023-07-18 | 中国兵器科学研究院宁波分院 | 一种防爆轰铝合金及其制备方法 |
| CN116426801B (zh) * | 2023-03-22 | 2024-08-13 | 有研工程技术研究院有限公司 | 螺母类紧固件用铝锌镁铜合金棒材及其制备方法 |
| CN116656979A (zh) * | 2023-06-02 | 2023-08-29 | 中铝材料应用研究院有限公司 | 一种Al-Zn-Mg-Cu铝合金板材的制备方法 |
| KR102642641B1 (ko) * | 2023-09-12 | 2024-03-04 | (주) 동양에이.케이코리아 | Al-Zn-Mg-Cu계 알루미늄 합금 및 이의 열처리 방법 |
| CN120350276B (zh) * | 2025-06-20 | 2025-10-10 | 天目山实验室 | 一种Sc/Zr微合金化调控TiB2颗粒增强铝基复合材料及其制备方法 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5221377A (en) * | 1987-09-21 | 1993-06-22 | Aluminum Company Of America | Aluminum alloy product having improved combinations of properties |
| EP0587274A1 (en) * | 1992-08-13 | 1994-03-16 | Reynolds Metals Company | Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness and product thereof |
| US5560789A (en) * | 1994-03-02 | 1996-10-01 | Pechiney Recherche | 7000 Alloy having high mechanical strength and a process for obtaining it |
| US5865911A (en) * | 1995-05-26 | 1999-02-02 | Aluminum Company Of America | Aluminum alloy products suited for commercial jet aircraft wing members |
| US6027582A (en) * | 1996-01-25 | 2000-02-22 | Pechiney Rhenalu | Thick alZnMgCu alloy products with improved properties |
| WO2002052053A1 (en) * | 2000-12-21 | 2002-07-04 | Alcoa Inc. | Aluminum alloy products and artificial aging nethod |
Family Cites Families (161)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2249349A (en) * | 1939-08-23 | 1941-07-15 | Aluminum Co Of America | Method of hot working an aluminum base alloy and product thereof |
| GB925956A (en) | 1960-09-27 | 1963-05-15 | Sankey & Sons Ltd Joseph | Improvements relating to the manufacture of motor vehicle bumper bars |
| BE639908A (enExample) * | 1962-11-15 | |||
| US3305410A (en) * | 1964-04-24 | 1967-02-21 | Reynolds Metals Co | Heat treatment of aluminum |
| US3418090A (en) * | 1966-03-14 | 1968-12-24 | Reynolds Metals Co | Composite aluminum article |
| FR1508123A (fr) | 1966-08-19 | 1968-01-05 | Pechiney Prod Chimiques Sa | Procédé de traitement des alliages aluminium-zinc-magnésium, pour améliorer leur résistance à la corrosion |
| CH493642A (de) | 1967-12-29 | 1970-07-15 | Alusuisse | Verfahren zur Herstellung von feinkörnigen Bändern aus manganhaltigen Aluminium-Legierungen |
| GB1273261A (en) | 1969-02-18 | 1972-05-03 | British Aluminium Co Ltd | Improvements in or relating to aluminium alloys |
| US3674448A (en) * | 1969-04-21 | 1972-07-04 | Aluminum Co Of America | Anodic aluminum material and articles and composite articles comprising the material |
| CH520205A (de) | 1969-10-29 | 1972-03-15 | Alusuisse | Verwendung von Al-Zn-Mg-Blechen für auf Spannungskorrosion beanspruchte Werkstücke und Konstruktionen |
| DE2052000C3 (de) * | 1970-10-23 | 1974-09-12 | Fa. Otto Fuchs, 5882 Meinerzhagen | Verwendung einer hochfesten Aluminiumlegierung |
| US3826688A (en) * | 1971-01-08 | 1974-07-30 | Reynolds Metals Co | Aluminum alloy system |
| US3881966A (en) * | 1971-03-04 | 1975-05-06 | Aluminum Co Of America | Method for making aluminum alloy product |
| US3857973A (en) * | 1971-03-12 | 1974-12-31 | Aluminum Co Of America | Aluminum alloy container end and sealed container thereof |
| US3791880A (en) * | 1972-06-30 | 1974-02-12 | Aluminum Co Of America | Tear resistant sheet and plate and method for producing |
| US3791876A (en) * | 1972-10-24 | 1974-02-12 | Aluminum Co Of America | Method of making high strength aluminum alloy forgings and product produced thereby |
| FR2163281A5 (en) | 1972-12-28 | 1973-07-20 | Aluminum Co Of America | Aluminium base alloy sheet or plate - which is resistant to tearing |
| SU664570A3 (ru) | 1973-02-05 | 1979-05-25 | Алюминиум Компани Оф Америка (Фирма) | Способ изготовлени листового материала из сплава на основе алюмини |
| FR2234375B1 (enExample) | 1973-06-20 | 1976-09-17 | Pechiney Aluminium | |
| US4477292A (en) * | 1973-10-26 | 1984-10-16 | Aluminum Company Of America | Three-step aging to obtain high strength and corrosion resistance in Al-Zn-Mg-Cu alloys |
| US4140549A (en) * | 1974-09-13 | 1979-02-20 | Southwire Company | Method of fabricating an aluminum alloy electrical conductor |
| US3984259A (en) * | 1975-08-22 | 1976-10-05 | Aluminum Company Of America | Aluminum cartridge case |
| FR2393070A1 (fr) * | 1977-06-02 | 1978-12-29 | Cegedur | Procede de traitement thermique de toles en alliages d'aluminium |
| FR2409319A1 (fr) | 1977-11-21 | 1979-06-15 | Cegedur | Procede de traitement thermique de produits minces en alliages d'aluminium de la serie 7000 |
| US4305763A (en) * | 1978-09-29 | 1981-12-15 | The Boeing Company | Method of producing an aluminum alloy product |
| JPS5687647A (en) * | 1979-12-14 | 1981-07-16 | Sumitomo Light Metal Ind Ltd | Airplane stringer material and its manufacture |
| JPS5690949A (en) * | 1979-12-21 | 1981-07-23 | Sumitomo Light Metal Ind Ltd | Material for airplane stringer with fine crystal grain and its manufacture |
| JPS5713140A (en) * | 1980-06-27 | 1982-01-23 | Sumitomo Light Metal Ind Ltd | Material for stringer of airplane with superior corrosion resistance and its manufacture |
| JPS5953347B2 (ja) * | 1979-09-29 | 1984-12-24 | 住友軽金属工業株式会社 | 航空機ストリンガ−素材の製造法 |
| JPS5713141A (en) * | 1980-06-27 | 1982-01-23 | Sumitomo Light Metal Ind Ltd | Finely grained material for stringer of airplane with superior corrosion resistance and its manufacture |
| GB2065516B (en) | 1979-11-07 | 1983-08-24 | Showa Aluminium Ind | Cast bar of an alumium alloy for wrought products having mechanical properties and workability |
| US5108520A (en) * | 1980-02-27 | 1992-04-28 | Aluminum Company Of America | Heat treatment of precipitation hardening alloys |
| JPS5929663B2 (ja) * | 1980-12-24 | 1984-07-21 | 三菱アルミニウム株式会社 | 押出加工性のすぐれた野球バット用高力Al合金 |
| JPS57161045A (en) * | 1981-03-31 | 1982-10-04 | Sumitomo Light Metal Ind Ltd | Fine-grain high-strength aluminum alloy material and its manufacture |
| JPS5852386A (ja) * | 1981-09-24 | 1983-03-28 | Mitsubishi Oil Co Ltd | 炭素繊維原料ピツチの製造方法 |
| FR2517702B1 (enExample) | 1981-12-03 | 1985-11-15 | Gerzat Metallurg | |
| US4954188A (en) * | 1981-12-23 | 1990-09-04 | Aluminum Company Of America | High strength aluminum alloy resistant to exfoliation and method of making |
| GB2114601B (en) | 1981-12-23 | 1986-05-08 | Aluminum Co Of America | High strength aluminum alloy resistant to exfoliation and method of heat treatment |
| US4828631A (en) * | 1981-12-23 | 1989-05-09 | Aluminum Company Of America | High strength aluminum alloy resistant to exfoliation and method of making |
| JPS5928555A (ja) * | 1982-08-06 | 1984-02-15 | Sumitomo Light Metal Ind Ltd | 押出性が良好で強度と靭性にすぐれた高力アルミニウム合金 |
| US4711762A (en) * | 1982-09-22 | 1987-12-08 | Aluminum Company Of America | Aluminum base alloys of the A1-Cu-Mg-Zn type |
| JPS59126762A (ja) | 1983-01-10 | 1984-07-21 | Kobe Steel Ltd | 高強度、高靭性アルミニウム合金の製造方法 |
| US4589932A (en) | 1983-02-03 | 1986-05-20 | Aluminum Company Of America | Aluminum 6XXX alloy products of high strength and toughness having stable response to high temperature artificial aging treatments and method for producing |
| JPS6013047A (ja) * | 1983-06-30 | 1985-01-23 | Showa Alum Corp | 冷間加工性に優れた高強度アルミニウム合金 |
| US4618382A (en) * | 1983-10-17 | 1986-10-21 | Kabushiki Kaisha Kobe Seiko Sho | Superplastic aluminium alloy sheets |
| JPS6149796A (ja) | 1984-08-14 | 1986-03-11 | Kobe Steel Ltd | 拡散接合用超塑性アルミニウム合金の製造方法 |
| US4713216A (en) * | 1985-04-27 | 1987-12-15 | Showa Aluminum Kabushiki Kaisha | Aluminum alloys having high strength and resistance to stress and corrosion |
| JPS6210246A (ja) | 1985-07-08 | 1987-01-19 | Sumitomo Light Metal Ind Ltd | アルミニウム合金の熱間鍛造品の製造方法 |
| JPS6228691A (ja) | 1985-07-31 | 1987-02-06 | 三菱重工業株式会社 | 原子炉検査用貫通口プラグ取扱装置 |
| JPS62122745A (ja) | 1985-11-25 | 1987-06-04 | 株式会社神戸製鋼所 | 焼付硬化性および成形加工性に優れたアルミニウム合金合せ板 |
| JPS62122744A (ja) | 1985-11-25 | 1987-06-04 | 株式会社神戸製鋼所 | 成形加工性、焼付硬化性および耐糸錆性の優れたアルミニウム合金合せ板 |
| FR2601967B1 (fr) * | 1986-07-24 | 1992-04-03 | Cerzat Ste Metallurg | Alliage a base d'al pour corps creux sous pression. |
| JPS63297180A (ja) * | 1987-05-27 | 1988-12-05 | 昭和アルミニウム株式会社 | 接着構造による自転車フレ−ム |
| JPS63319143A (ja) | 1987-06-24 | 1988-12-27 | Furukawa Alum Co Ltd | 磁気ディスク基板用アルミニウム合金合わせ材 |
| JPH01208438A (ja) | 1988-02-15 | 1989-08-22 | Kobe Steel Ltd | 包装用アルミニウム合金硬質板の製造法 |
| SU1625043A1 (ru) * | 1988-06-30 | 1995-10-20 | А.В. Пронякин | Способ получения полуфабрикатов из сплавов системы алюминий - цинк - магний |
| JP2766482B2 (ja) | 1988-08-09 | 1998-06-18 | 古河電気工業株式会社 | アルミニウム基合金圧延板の製造方法 |
| US4988394A (en) * | 1988-10-12 | 1991-01-29 | Aluminum Company Of America | Method of producing unrecrystallized thin gauge aluminum products by heat treating and further working |
| EP0368005B1 (en) | 1988-10-12 | 1996-09-11 | Aluminum Company Of America | A method of producing an unrecrystallized aluminum based thin gauge flat rolled, heat treated product |
| US4927470A (en) * | 1988-10-12 | 1990-05-22 | Aluminum Company Of America | Thin gauge aluminum plate product by isothermal treatment and ramp anneal |
| US4946517A (en) * | 1988-10-12 | 1990-08-07 | Aluminum Company Of America | Unrecrystallized aluminum plate product by ramp annealing |
| CA1340618C (en) | 1989-01-13 | 1999-06-29 | James T. Staley | Aluminum alloy product having improved combinations of strength, toughness and corrosion resistance |
| US4976790A (en) * | 1989-02-24 | 1990-12-11 | Golden Aluminum Company | Process for preparing low earing aluminum alloy strip |
| FR2645546B1 (fr) * | 1989-04-05 | 1994-03-25 | Pechiney Recherche | Alliage a base d'al a haut module et a resistance mecanique elevee et procede d'obtention |
| JPH03140433A (ja) * | 1989-10-27 | 1991-06-14 | Nkk Corp | 耐食性にすぐれた高強度アルミニウム合金 |
| EP0462055A1 (de) | 1990-06-11 | 1991-12-18 | Alusuisse-Lonza Services Ag | Vormaterial aus einer superplastischen AlZnMg-Legierung |
| JPH06503854A (ja) | 1990-08-22 | 1994-04-28 | コマルコ アルミニウム リミティド | 缶の製造に適したアルミニウム合金 |
| US5213639A (en) | 1990-08-27 | 1993-05-25 | Aluminum Company Of America | Damage tolerant aluminum alloy products useful for aircraft applications such as skin |
| US5186235A (en) * | 1990-10-31 | 1993-02-16 | Reynolds Metals Company | Homogenization of aluminum coil |
| US5277719A (en) * | 1991-04-18 | 1994-01-11 | Aluminum Company Of America | Aluminum alloy thick plate product and method |
| US5496423A (en) * | 1992-06-23 | 1996-03-05 | Kaiser Aluminum & Chemical Corporation | Method of manufacturing aluminum sheet stock using two sequences of continuous, in-line operations |
| US5356495A (en) * | 1992-06-23 | 1994-10-18 | Kaiser Aluminum & Chemical Corporation | Method of manufacturing can body sheet using two sequences of continuous, in-line operations |
| US5313639A (en) * | 1992-06-26 | 1994-05-17 | George Chao | Computer with security device for controlling access thereto |
| RU2044098C1 (ru) | 1992-07-06 | 1995-09-20 | Каширин Вячеслав Федорович | Свариваемый сплав на основе алюминия для слоистой алюминиевой брони |
| US5376192A (en) | 1992-08-28 | 1994-12-27 | Reynolds Metals Company | High strength, high toughness aluminum-copper-magnesium-type aluminum alloy |
| JP2711970B2 (ja) | 1992-10-13 | 1998-02-10 | スカイアルミニウム 株式会社 | 陽極酸化処理後の色調が無光沢の暗灰色〜黒色である高強度アルミニウム合金展伸材およびその製造方法 |
| US5442174A (en) * | 1992-10-23 | 1995-08-15 | Fujitsu Limited | Measurement of trace element concentration distribution, and evaluation of carriers, in semiconductors, and preparation of standard samples |
| FR2717827B1 (fr) | 1994-03-28 | 1996-04-26 | Jean Pierre Collin | Alliage d'aluminium à hautes teneurs en Scandium et procédé de fabrication de cet alliage. |
| JPH07316601A (ja) * | 1994-03-28 | 1995-12-05 | Toyo Alum Kk | アルミニウム急冷凝固粉末およびアルミニウム合金成形材の製造方法 |
| US5919323A (en) * | 1994-05-11 | 1999-07-06 | Aluminum Company Of America | Corrosion resistant aluminum alloy rolled sheet |
| US5496426A (en) * | 1994-07-20 | 1996-03-05 | Aluminum Company Of America | Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product |
| WO1996010099A1 (en) | 1994-09-26 | 1996-04-04 | Ashurst Technology Corporation (Ireland) Limited | High strength aluminum casting alloys for structural applications |
| JPH08120385A (ja) | 1994-10-25 | 1996-05-14 | Kobe Steel Ltd | 展伸用Al−Zn−Mg−Cu系合金 |
| FR2726007B1 (fr) * | 1994-10-25 | 1996-12-13 | Pechiney Rhenalu | Procede de fabrication de produits en alliage alsimgcu a resistance amelioree a la corrosion intercristalline |
| JPH08144031A (ja) | 1994-11-28 | 1996-06-04 | Furukawa Electric Co Ltd:The | 強度と成形性に優れたAl−Zn−Mg系合金中空形材の製造方法 |
| US5624632A (en) * | 1995-01-31 | 1997-04-29 | Aluminum Company Of America | Aluminum magnesium alloy product containing dispersoids |
| JP4208156B2 (ja) * | 1995-02-24 | 2009-01-14 | 住友軽金属工業株式会社 | 高強度アルミニウム合金押出材の製造方法 |
| US5681405A (en) | 1995-03-09 | 1997-10-28 | Golden Aluminum Company | Method for making an improved aluminum alloy sheet product |
| JPH11502264A (ja) * | 1995-03-21 | 1999-02-23 | カイザー アルミナム アンド ケミカル コーポレーシヨン | 航空機用アルミニウムシートの製造方法 |
| DE69628922T2 (de) | 1995-05-11 | 2004-01-29 | Kaiser Aluminium Chem Corp | Aluminium 6xxx-legierung mit verbesserter beschädigungsbeständigkeit |
| US5863359A (en) | 1995-06-09 | 1999-01-26 | Aluminum Company Of America | Aluminum alloy products suited for commercial jet aircraft wing members |
| JP3594272B2 (ja) | 1995-06-14 | 2004-11-24 | 古河スカイ株式会社 | 耐応力腐食割れ性に優れた溶接用高力アルミニウム合金 |
| FR2737225B1 (fr) * | 1995-07-28 | 1997-09-05 | Pechiney Rhenalu | Alliage al-cu-mg a resistance elevee au fluage |
| US5718780A (en) | 1995-12-18 | 1998-02-17 | Reynolds Metals Company | Process and apparatus to enhance the paintbake response and aging stability of aluminum sheet materials and product therefrom |
| FR2744136B1 (fr) | 1996-01-25 | 1998-03-06 | Pechiney Rhenalu | Produits epais en alliage alznmgcu a proprietes ameliorees |
| EP0799900A1 (en) | 1996-04-04 | 1997-10-08 | Hoogovens Aluminium Walzprodukte GmbH | High strength aluminium-magnesium alloy material for large welded structures |
| EP0829552B1 (en) | 1996-09-11 | 2003-07-16 | Aluminum Company Of America | Aluminium alloy products suited for commercial jet aircraft wing members |
| WO1998037251A1 (en) | 1997-02-19 | 1998-08-27 | Alcan International Limited | Process for producing aluminium alloy sheet |
| JPH10280081A (ja) | 1997-04-08 | 1998-10-20 | Sky Alum Co Ltd | Al−Zn−Mg系合金からなる高強度・高精度枠形状部材およびその製造方法 |
| JP3705320B2 (ja) * | 1997-04-18 | 2005-10-12 | 株式会社神戸製鋼所 | 耐食性に優れる高強度熱処理型7000系アルミニウム合金 |
| JPH10298692A (ja) | 1997-04-22 | 1998-11-10 | Sky Alum Co Ltd | 高強度・高精度枠形状部材およびその製造方法 |
| JP2973969B2 (ja) | 1997-04-28 | 1999-11-08 | セイコーエプソン株式会社 | アクテイブマトリクスパネル及びその検査方法 |
| JPH116044A (ja) * | 1997-06-13 | 1999-01-12 | Aisin Keikinzoku Kk | 高強度・高靱性アルミニウム合金 |
| US6315842B1 (en) * | 1997-07-21 | 2001-11-13 | Pechiney Rhenalu | Thick alznmgcu alloy products with improved properties |
| KR100510077B1 (ko) * | 1997-12-12 | 2005-08-25 | 알코아 인코포레이티드 | 항공기 평판용에 적합한 고인성 알루미늄 합금 |
| US6224992B1 (en) * | 1998-02-12 | 2001-05-01 | Alcoa Inc. | Composite body panel and vehicle incorporating same |
| DE59803924D1 (de) | 1998-09-25 | 2002-05-29 | Alcan Tech & Man Ag | Warmfeste Aluminiumlegierung vom Typ AlCuMg |
| FR2789406B1 (fr) | 1999-02-04 | 2001-03-23 | Pechiney Rhenalu | PRODUIT EN ALLIAGE AlCuMg POUR ELEMENT DE STRUCTURE D'AVION |
| WO2000052219A1 (en) * | 1999-03-01 | 2000-09-08 | Alcan International Limited | Aa6000 aluminium sheet method |
| EP1169177B9 (en) | 1999-03-18 | 2012-03-07 | Aleris Aluminum Koblenz GmbH | Weldable aluminium alloy structural component |
| FR2792001B1 (fr) | 1999-04-12 | 2001-05-18 | Pechiney Rhenalu | Procede de fabrication de pieces de forme en alliage d'aluminium type 2024 |
| KR100602331B1 (ko) | 1999-05-04 | 2006-07-14 | 코루스 알루미늄 발쯔프로두크테 게엠베하 | 알루미늄-마그네슘 합금제품, 그 용접 구조체, 및 그 사용방법 |
| JP3494591B2 (ja) * | 1999-06-23 | 2004-02-09 | 株式会社デンソー | 耐食性が良好な真空ろう付け用アルミニウム合金ブレージングシート及びこれを使用した熱交換器 |
| JP2001020028A (ja) | 1999-07-07 | 2001-01-23 | Kobe Steel Ltd | 耐粒界腐食性に優れたアルミニウム合金鋳鍛材 |
| RU2165995C1 (ru) * | 1999-10-05 | 2001-04-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Высокопрочный сплав на основе алюминия и изделие, выполненное из этого сплава |
| RU2165996C1 (ru) | 1999-10-05 | 2001-04-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Высокопрочный сплав на основе алюминия и изделие, выполненное из него |
| JP2001115227A (ja) | 1999-10-15 | 2001-04-24 | Furukawa Electric Co Ltd:The | 表面性状に優れた高強度アルミニウム合金押出材および前記押出材を用いた二輪車用フレーム |
| JP3418147B2 (ja) * | 1999-12-17 | 2003-06-16 | 住友ゴム工業株式会社 | 重荷重用タイヤ |
| FR2802946B1 (fr) | 1999-12-28 | 2002-02-15 | Pechiney Rhenalu | Element de structure d'avion en alliage al-cu-mg |
| JP3732702B2 (ja) * | 2000-01-31 | 2006-01-11 | 株式会社リコー | 画像処理装置 |
| FR2805282B1 (fr) * | 2000-02-23 | 2002-04-12 | Gerzat Metallurg | Procede de fabrication de corps creux sous pression en alliage a1znmgcu |
| FR2807449B1 (fr) | 2000-04-07 | 2002-10-18 | Pechiney Rhenalu | Procede de fabrication d'elements de structure d'avions en alliage d'aluminium al-si-mg |
| US7135077B2 (en) | 2000-05-24 | 2006-11-14 | Pechiney Rhenalu | Thick products made of heat-treatable aluminum alloy with improved toughness and process for manufacturing these products |
| CA2402997C (en) | 2000-06-01 | 2011-03-08 | Alcoa Inc. | Corrosion resistant 6000 series alloy suitable for aerospace applications |
| US6562154B1 (en) | 2000-06-12 | 2003-05-13 | Aloca Inc. | Aluminum sheet products having improved fatigue crack growth resistance and methods of making same |
| RU2184166C2 (ru) | 2000-08-01 | 2002-06-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Высокопрочный сплав на основе алюминия и изделие, выполненное из него |
| US20020150498A1 (en) | 2001-01-31 | 2002-10-17 | Chakrabarti Dhruba J. | Aluminum alloy having superior strength-toughness combinations in thick gauges |
| FR2820438B1 (fr) | 2001-02-07 | 2003-03-07 | Pechiney Rhenalu | Procede de fabrication d'un produit corroye a haute resistance en alliage alznmagcu |
| JP4285916B2 (ja) | 2001-02-16 | 2009-06-24 | 株式会社神戸製鋼所 | 高強度、高耐食性構造用アルミニウム合金板の製造方法 |
| WO2002075010A2 (en) | 2001-03-20 | 2002-09-26 | Alcoa Inc. | Method for aging 7000 series aluminium |
| US6543122B1 (en) * | 2001-09-21 | 2003-04-08 | Alcoa Inc. | Process for producing thick sheet from direct chill cast cold rolled aluminum alloy |
| JP3852915B2 (ja) | 2001-11-05 | 2006-12-06 | 九州三井アルミニウム工業株式会社 | 輸送機器用アルミニウム合金の半溶融成型ビレットの製造方法 |
| RU2215807C2 (ru) * | 2001-12-21 | 2003-11-10 | Региональный общественный фонд содействия защите интеллектуальной собственности | Сплав на основе алюминия, изделие из него и способ производства изделия |
| WO2003066926A1 (en) | 2002-02-08 | 2003-08-14 | Nichols Aluminum | Method of manufacturing aluminum alloy sheet |
| RU2215058C1 (ru) | 2002-02-28 | 2003-10-27 | Закрытое акционерное общество "Промышленный центр "МАТЭКС" | Способ производства прессованных изделий из термически упрочняемых алюминиевых сплавов |
| JP4053793B2 (ja) | 2002-03-08 | 2008-02-27 | 古河スカイ株式会社 | 熱交換器用アルミニウム合金複合材の製造方法とアルミニウム合金複合材 |
| JP4022491B2 (ja) * | 2002-03-27 | 2007-12-19 | 株式会社神戸製鋼所 | アルミニウム合金製バット |
| FR2838136B1 (fr) | 2002-04-05 | 2005-01-28 | Pechiney Rhenalu | PRODUITS EN ALLIAGE A1-Zn-Mg-Cu A COMPROMIS CARACTERISTIQUES STATISTIQUES/TOLERANCE AUX DOMMAGES AMELIORE |
| FR2838135B1 (fr) * | 2002-04-05 | 2005-01-28 | Pechiney Rhenalu | PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D'AERONEF |
| BR0312098A (pt) | 2002-06-24 | 2005-03-29 | Corus Aluminium Walzprod Gmbh | Método para a produção de liga de al-mg-si balanceada de alta resistência e produto desta liga capaz de ser soldado |
| US20050006010A1 (en) | 2002-06-24 | 2005-01-13 | Rinze Benedictus | Method for producing a high strength Al-Zn-Mg-Cu alloy |
| FR2842212B1 (fr) * | 2002-07-11 | 2004-08-13 | Pechiney Rhenalu | Element de structure d'avion en alliage a1-cu-mg |
| FR2846669B1 (fr) * | 2002-11-06 | 2005-07-22 | Pechiney Rhenalu | PROCEDE DE FABRICATION SIMPLIFIE DE PRODUITS LAMINES EN ALLIAGES A1-Zn-Mg, ET PRODUITS OBTENUS PAR CE PROCEDE |
| US7060139B2 (en) * | 2002-11-08 | 2006-06-13 | Ues, Inc. | High strength aluminum alloy composition |
| DE60327941D1 (de) * | 2002-11-15 | 2009-07-23 | Alcoa Inc | Chaftskombinationen |
| RU2238997C1 (ru) | 2003-03-12 | 2004-10-27 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Способ изготовления полуфабрикатов из алюминиевого сплава и изделие, полученное этим способом |
| BRPI0408432B1 (pt) | 2003-03-17 | 2015-07-21 | Corus Aluminium Walzprod Gmbh | Método para produção de uma estrutura integrada de alumínio monolítico e produto de alumínio usinado daquela estrutura |
| US20050034794A1 (en) * | 2003-04-10 | 2005-02-17 | Rinze Benedictus | High strength Al-Zn alloy and method for producing such an alloy product |
| US7666267B2 (en) | 2003-04-10 | 2010-02-23 | Aleris Aluminum Koblenz Gmbh | Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties |
| US20050056353A1 (en) | 2003-04-23 | 2005-03-17 | Brooks Charles E. | High strength aluminum alloys and process for making the same |
| JP2005016937A (ja) * | 2003-06-06 | 2005-01-20 | Denso Corp | 耐食性に優れたアルミニウム製熱交換器 |
| US8043445B2 (en) | 2003-06-06 | 2011-10-25 | Aleris Aluminum Koblenz Gmbh | High-damage tolerant alloy product in particular for aerospace applications |
| US20050095447A1 (en) * | 2003-10-29 | 2005-05-05 | Stephen Baumann | High-strength aluminum alloy composite and resultant product |
| US20060032560A1 (en) | 2003-10-29 | 2006-02-16 | Corus Aluminium Walzprodukte Gmbh | Method for producing a high damage tolerant aluminium alloy |
| US7883591B2 (en) | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
| US20070151636A1 (en) * | 2005-07-21 | 2007-07-05 | Corus Aluminium Walzprodukte Gmbh | Wrought aluminium AA7000-series alloy product and method of producing said product |
| US20070204937A1 (en) * | 2005-07-21 | 2007-09-06 | Aleris Koblenz Aluminum Gmbh | Wrought aluminium aa7000-series alloy product and method of producing said product |
| FR2907796B1 (fr) * | 2006-07-07 | 2011-06-10 | Aleris Aluminum Koblenz Gmbh | Produits en alliage d'aluminium de la serie aa7000 et leur procede de fabrication |
| WO2008003503A2 (en) * | 2006-07-07 | 2008-01-10 | Aleris Aluminum Koblenz Gmbh | Method of manufacturing aa2000 - series aluminium alloy products |
| WO2010085678A1 (en) * | 2009-01-22 | 2010-07-29 | Alcoa Inc. | Improved aluminum-copper alloys containing vanadium |
| CN107592887B (zh) | 2015-05-11 | 2020-12-08 | 奥科宁克技术有限责任公司 | 改善的厚锻7xxx铝合金及其制备方法 |
-
2004
- 2004-04-09 CA CA2519390A patent/CA2519390C/en not_active Expired - Lifetime
- 2004-04-09 BR BRPI0409267A patent/BRPI0409267B1/pt active IP Right Grant
- 2004-04-09 AT AT0911104A patent/AT502310B1/de not_active IP Right Cessation
- 2004-04-09 JP JP2006505137A patent/JP5128124B2/ja not_active Expired - Lifetime
- 2004-04-09 DE DE112004000603.1T patent/DE112004000603B4/de not_active Expired - Lifetime
- 2004-04-09 ES ES200550064A patent/ES2293813B2/es not_active Expired - Fee Related
- 2004-04-09 GB GB0618549A patent/GB2426979B/en not_active Expired - Lifetime
- 2004-04-09 ES ES201130224A patent/ES2393366B2/es not_active Expired - Fee Related
- 2004-04-09 CN CNB2004800095665A patent/CN100547098C/zh not_active Expired - Lifetime
- 2004-04-09 RU RU2005134849/02A patent/RU2353693C2/ru active
- 2004-04-09 CN CN2009101674725A patent/CN101693968B/zh not_active Expired - Lifetime
- 2004-04-09 GB GB0520501A patent/GB2415202B/en not_active Expired - Lifetime
- 2004-04-09 WO PCT/EP2004/003994 patent/WO2004090185A1/en not_active Ceased
- 2004-04-09 DE DE112004003147.8T patent/DE112004003147B4/de not_active Expired - Lifetime
- 2004-04-13 FR FR0403810A patent/FR2853667B1/fr not_active Expired - Lifetime
-
2009
- 2009-07-06 US US12/497,987 patent/US20090269608A1/en not_active Abandoned
-
2012
- 2012-06-26 JP JP2012143382A patent/JP5405627B2/ja not_active Expired - Lifetime
-
2013
- 2013-12-27 US US14/141,960 patent/US10472707B2/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5221377A (en) * | 1987-09-21 | 1993-06-22 | Aluminum Company Of America | Aluminum alloy product having improved combinations of properties |
| EP0587274A1 (en) * | 1992-08-13 | 1994-03-16 | Reynolds Metals Company | Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness and product thereof |
| US5560789A (en) * | 1994-03-02 | 1996-10-01 | Pechiney Recherche | 7000 Alloy having high mechanical strength and a process for obtaining it |
| US5865911A (en) * | 1995-05-26 | 1999-02-02 | Aluminum Company Of America | Aluminum alloy products suited for commercial jet aircraft wing members |
| US6027582A (en) * | 1996-01-25 | 2000-02-22 | Pechiney Rhenalu | Thick alZnMgCu alloy products with improved properties |
| WO2002052053A1 (en) * | 2000-12-21 | 2002-07-04 | Alcoa Inc. | Aluminum alloy products and artificial aging nethod |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10301710B2 (en) | 2005-01-19 | 2019-05-28 | Otto Fuchs Kg | Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product |
| CN103834837A (zh) * | 2005-02-10 | 2014-06-04 | 肯联铝业轧制品-雷文斯伍德有限公司 | Al-Zn-Cu-Mg铝基合金及其制造方法和用途 |
| WO2006086534A3 (en) * | 2005-02-10 | 2006-09-28 | Alcan Rolled Products Ravenswood Llc | Al-zn-cu-mg aluminum base alloys and methods of manufacture and use |
| CN103834837B (zh) * | 2005-02-10 | 2016-11-09 | 肯联铝业轧制品-雷文斯伍德有限公司 | Al-Zn-Cu-Mg铝基合金及其制造方法和用途 |
| US8277580B2 (en) | 2005-02-10 | 2012-10-02 | Constellium France | Al-Zn-Cu-Mg aluminum base alloys and methods of manufacture and use |
| RU2425902C2 (ru) * | 2005-02-10 | 2011-08-10 | АЛКАН РОЛЛД ПРОДАКТС-РЕЙВЕНСВУД ЭлЭлСи | Al-Zn-Cu-Mg СПЛАВЫ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ |
| CN1302137C (zh) * | 2005-05-18 | 2007-02-28 | 山东大学 | 一种铝锌镁系合金及其制备工艺 |
| US8157932B2 (en) | 2005-05-25 | 2012-04-17 | Alcoa Inc. | Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings |
| US9353430B2 (en) | 2005-10-28 | 2016-05-31 | Shipston Aluminum Technologies (Michigan), Inc. | Lightweight, crash-sensitive automotive component |
| RU2473710C2 (ru) * | 2006-06-30 | 2013-01-27 | КОНСТЕЛЛИУМ РОЛЛД ПРОДАКТС - РЕЙВЕНСВУД ЭлЭлСи | Высокопрочный термообрабатываемый алюминиевый сплав |
| US8317947B2 (en) | 2007-06-11 | 2012-11-27 | Sumitomo Light Metal Industries, Ltd. | Aluminum alloy sheet for press forming |
| WO2009126347A3 (en) * | 2008-01-16 | 2010-09-30 | Questek Innovations Llc. | High-strength aluminum casting alloys resistant to hot tearing |
| RU2503735C2 (ru) * | 2008-06-24 | 2014-01-10 | Алерис Алюминум Кобленц Гмбх | ИЗДЕЛИЕ ИЗ Al-Zn-Mg СПЛАВА С ПОНИЖЕННОЙ ЧУВСТВИТЕЛЬНОСТЬЮ К ЗАКАЛКЕ |
| CN102066596B (zh) * | 2008-06-24 | 2016-08-17 | 阿勒里斯铝业科布伦茨有限公司 | 具有降低的淬火敏感性的Al-Zn-Mg合金产品 |
| CN102066596A (zh) * | 2008-06-24 | 2011-05-18 | 阿勒里斯铝业科布伦茨有限公司 | 具有降低的淬火敏感性的Al-Zn-Mg合金产品 |
| WO2009156283A1 (en) * | 2008-06-24 | 2009-12-30 | Aleris Aluminum Koblenz Gmbh | Al-zn-mg alloy product with reduced quench sensitivity |
| US9890448B2 (en) | 2008-06-24 | 2018-02-13 | Aleris Aluminum Koblenz Gmbh | Al—Zn—Mg alloy product with reduced quench sensitivity |
| WO2010029572A1 (en) * | 2008-07-31 | 2010-03-18 | Aditya Birla Science & Technology Co. Ltd. | Method for manufacture of aluminium alloy sheets |
| CN104789838A (zh) * | 2014-05-07 | 2015-07-22 | 天长市正牧铝业科技有限公司 | 一种球棒用强韧铝合金 |
| CN104789835A (zh) * | 2014-05-07 | 2015-07-22 | 天长市正牧铝业科技有限公司 | 一种用于球棒的高强高韧铝合金 |
| CN104789837A (zh) * | 2014-05-07 | 2015-07-22 | 天长市正牧铝业科技有限公司 | 一种制作棒球棒的铝合金材料 |
| EP3153600A1 (en) * | 2015-10-06 | 2017-04-12 | BAE Systems PLC | Metal object production |
| WO2017060697A1 (en) * | 2015-10-06 | 2017-04-13 | Bae Systems Plc | Metal object production |
| US11421309B2 (en) | 2015-10-30 | 2022-08-23 | Novelis Inc. | High strength 7xxx aluminum alloys and methods of making the same |
| WO2024250117A1 (en) * | 2023-06-09 | 2024-12-12 | 9480-3798 Québec Inc. | Method for manufacturing a sheet or plate of high strength aluminum alloy and article including an aluminum alloy produced using the method for manufacturing the sheet or plate of high strength aluminum alloy |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2519390C (en) | An al-zn-mg-cu alloy | |
| US7666267B2 (en) | Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties | |
| US8043445B2 (en) | High-damage tolerant alloy product in particular for aerospace applications | |
| US8118950B2 (en) | Aluminum-copper-lithium alloys | |
| US8608876B2 (en) | AA7000-series aluminum alloy products and a method of manufacturing thereof | |
| US8002913B2 (en) | AA7000-series aluminum alloy products and a method of manufacturing thereof | |
| US20100089502A1 (en) | Al-Cu ALLOY PRODUCT SUITABLE FOR AEROSPACE APPLICATION |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2519390 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 200550064 Country of ref document: ES Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: P200550064 Country of ref document: ES |
|
| ENP | Entry into the national phase |
Ref document number: 0520501 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20040409 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 0520501.8 Country of ref document: GB Ref document number: 20048095665 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006505137 Country of ref document: JP |
|
| ENP | Entry into the national phase |
Ref document number: 91112004 Country of ref document: AT Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: A9111/2004 Country of ref document: AT |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2005134849 Country of ref document: RU |
|
| ENP | Entry into the national phase |
Ref document number: PI0409267 Country of ref document: BR |
|
| 122 | Ep: pct application non-entry in european phase | ||
| WWP | Wipo information: published in national office |
Ref document number: 200550064 Country of ref document: ES Kind code of ref document: A |