RU2473710C2 - Высокопрочный термообрабатываемый алюминиевый сплав - Google Patents

Высокопрочный термообрабатываемый алюминиевый сплав Download PDF

Info

Publication number
RU2473710C2
RU2473710C2 RU2009102968/02A RU2009102968A RU2473710C2 RU 2473710 C2 RU2473710 C2 RU 2473710C2 RU 2009102968/02 A RU2009102968/02 A RU 2009102968/02A RU 2009102968 A RU2009102968 A RU 2009102968A RU 2473710 C2 RU2473710 C2 RU 2473710C2
Authority
RU
Russia
Prior art keywords
product
alloy
ingot
temperature range
aluminum
Prior art date
Application number
RU2009102968/02A
Other languages
English (en)
Other versions
RU2009102968A (ru
Inventor
Алекс ЧО
Кеннет Пол СМИТ
Вик ДАНДЖЕРФИЛД
Original Assignee
КОНСТЕЛЛИУМ РОЛЛД ПРОДАКТС - РЕЙВЕНСВУД ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by КОНСТЕЛЛИУМ РОЛЛД ПРОДАКТС - РЕЙВЕНСВУД ЭлЭлСи filed Critical КОНСТЕЛЛИУМ РОЛЛД ПРОДАКТС - РЕЙВЕНСВУД ЭлЭлСи
Publication of RU2009102968A publication Critical patent/RU2009102968A/ru
Application granted granted Critical
Publication of RU2473710C2 publication Critical patent/RU2473710C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к алюминиевоцинкомагниевым сплавам и к продуктам, выполненным из таких сплавов, которые могут быть использованы для изготовления литейных форм для производимых литьем под давлением пластмасс. Продукт толщиной по меньшей мере 4 дюйма выполнен из сплава на основе алюминия, содержащего по меньшей мере 6,5 вес.% цинка и магний в весовом отношении цинка к магнию примерно 5:1. Упомянутый продукт, на четверти толщины, имеет предел прочности на растяжение в по меньшей мере 61 килофунт/кв.дюйм и предел текучести на растяжение в по меньшей мере 54,5 килофунта/кв.дюйм. Способ получения продукта из сплава на основе алюминия толщиной по меньшей мере 4 дюйма включает следующие операции. Отливают слиток из сплава на основе алюминия, имеющего толщину по меньшей мере 12 дюймов, причем сплав содержит: от 6 вес.% до 8 вес.% Zn, от 1 вес.% до 2 вес.% Mg, при этом Mg содержится в количестве от (0,2×Zn-0,3) вес.% до (0,2×Zn+0,3) вес.%, по меньшей мере один образующий интерметаллические дисперсоиды элемент, остальное - алюминий и неизбежные примеси. Затем осуществляют гомогенизацию слитка в интервале температур от 820°F до 980°F, после чего охлаждают слиток методом, выбранным из группы, состоящей из: воздуха принудительной подачи, водяного тумана и водяного распыла. Затем проводят искусственное старение в интервале температур от 240°F до 320°F, в результате которого достигается дисперсионное твердение. Получаются продукты из сплавов, обладающих высокой прочностью и низкой чувствительностью к закалке. 3 н. и 9 з.п. ф-лы, 8 ил., 6 табл., 2 пр.

Description

Перекрестная ссылка на родственную заявку
[0001] Настоящая заявка испрашивает приоритет и преимущество предварительной заявки США № 60/817403, поданной 30 июня 2006 г., которая включена в настоящую заявку по ссылке и составляет ее часть.
Область техники, к которой относится изобретение
[0002] Настоящее изобретение относится к алюминиевоцинкомагниевым сплавам и продуктам, выполненным из таких сплавов. Эти высокопрочные сплавы являются термообрабатываемыми и имеют низкую чувствительность к закалке. Продукты являются подходящими для изготовления литейных форм для производимых литьем под давлением пластмасс.
Уровень техники
[0003] Современные алюминиевые сплавы для высокопрочного применения упрочняют термообработкой на твердый раствор и быстрым охлаждением, за которыми следует процесс дисперсионного твердения при старении. Резкое охлаждение обычно достигается закалкой холодной водой. Без такого процесса быстрой закалки сразу после термообработки на твердый раствор процесс дисперсионного твердения при старении становится очень неэффективным.
[0004] Процесс быстрого охлаждения обычно осуществляют за счет быстрой теплопередачи в холодную воду, которая имеет высокую теплоемкость. Однако внутренний объем деформированных продуктов толстого калибра не может быть закален достаточно быстро из-за медленного теплопереноса через толщу продукта. Поэтому, требуется алюминиевый сплав, подходящий для продукта очень толстого калибра. Такой сплав должен быть в состоянии сохранять хорошую способность к дисперсионному твердению при старении даже после относительно медленного процесса закалки.
[0005] Вместе с тем, быстрое охлаждение при закалке холодной водой имеет серьезный недостаток, заключающийся в повышении внутреннего остаточного напряжения, которое вредно для обрабатываемости резанием. Наиболее обычной практикой уменьшения такого остаточного напряжения является холодное растягивание закаленного продукта в малой степени, обычно используя растяжную машину. По мере того как толщина и ширина деформированных продуктов увеличиваются, увеличивается сила, требуемая для растягивания такого продукта. В результате необходима все более мощная растяжная машина по мере увеличения размера продукта, так что растяжная машина становится ограничивающим фактором в определении максимальных толщины и ширины деформированного продукта.
[0006] Растяжная машина может быть устранена как ограничивающий фактор, если бы деформированный продукт мог быть медленно охлажден без закалки холодной водой после обработки на твердый раствор. Таким образом, остаточное напряжение было бы минимально, и холодное растягивание не требовалось бы.
[0007] Поэтому желательный высокопрочный алюминиевый сплав, наиболее подходящий для деформированного продукта ультратолстого калибра, должен быть способным к достижению желательной высокой прочности в упрочненном при старении состоянии после термообработки на твердый раствор, за которой следует относительно медленная закалка.
Сущность изобретения
[0008] Аспекты настоящего изобретения относятся к алюминиевому сплаву на основе Al-Zn-Mg, имеющему Zn и Mg в качестве легирующих элементов. Сплав по изобретению разработан для максимизации упрочняющего эффекта выделений MgZn2. В одном аспекте сплав по изобретению включает Zn и Mg в весовом отношении приблизительно 5:1, чтобы максимизировать образование частиц выделений MgZn2. В другом аспекте изобретения сплав может иметь 6-8% Zn и 1-2% Mg по весу. В другом аспекте сплав может дополнительно включать один или более образующих интерметаллические дисперсоиды элементов, таких как Zr, Mn, Cr, Ti и/или Sc, для управления зеренной структурой. Один конкретный состав по этому изобретению представляет собой примерно 6,1-6,5% Zn, примерно 1,1-1,5% Mg, примерно 0,1% Zr и примерно 0,02% Ti с остатком, состоящим из алюминия и нормальных и/или неизбежных примесей и элементов, таких как Fe и Si. Веса указаны как весовые % в расчете на общий вес упомянутого сплава.
Краткое описание чертежей
[0009] Чтобы понять настоящее изобретение, оно будет теперь описано в качестве примера со ссылкой на сопровождающие чертежи, на которых:
фигура 1 - график, иллюстрирующий пределы текучести на растяжение девяти сплавов, приготовленных тремя разными способами;
фигура 2 - график, иллюстрирующий чувствительность к закалке семи сплавов, где чувствительность к закалке измерена по потере предела текучести на растяжение из-за закалки неподвижным воздухом по сравнению с закалкой холодной водой;
фигура 3 - график, иллюстрирующий пределы прочности на растяжение девяти сплавов, приготовленных тремя способами закалки;
фигура 4 - график, иллюстрирующий чувствительность к закалке семи сплавов, где чувствительность к закалке измерена по потере пределов прочности на растяжение из-за закалки неподвижным воздухом по сравнению с закалкой холодной водой;
фигура 5 - график, иллюстрирующий влияние отношения Zn:Mg на предел текучести на растяжение после медленной закалки неподвижным воздухом до состояния типа T6;
фигура 6 - график, иллюстрирующий состав по Zn и Mg в опытно-заводских испытаниях;
фигура 7 - график, иллюстрирующий изменение предела прочности на растяжение с калибром плиты для сплава по изобретению и сравнительных сплавов; и
фигура 8 - график, иллюстрирующий изменение предела текучести на растяжение с калибром плиты для сплава по изобретению и сравнительных сплавов.
Подробное описание
[0010] Настоящее раскрытие предусматривает, что добавление цинка, магния и небольших количеств по меньшей мере одного образующего дисперсоиды элемента к алюминию неожиданно приводит к превосходному сплаву. Раскрытый сплав является пригодным для термообработки на твердый раствор. Кроме того, этот сплав сохраняет высокую прочность даже без стадии охлаждения быстрой закалкой, которое имеет особое преимущество для продуктов, имеющих толстый калибр.
[0011] Если не указано иное, все использованные здесь значения для состава даны в весовых процентах (вес.%) в расчете на вес сплава.
[0012] Определения состояний указаны согласно стандартам Американского общества по испытанию материалов (ASTM) E716, E1251. Обозначенное как T6 состояние алюминия указывает, что сплав был термообработан на твердый раствор, а затем искусственно состарен. Состояние T6 относится к сплавам, которые не подвергнуты холодной деформационной обработке после термообработки на твердый раствор. T6 может также относиться к сплавам, в которых холодная деформационная обработка оказывает малозначительное влияние на механические свойства.
[0013] Если не упомянуто иное, статические механические характеристики, другими словами, предел прочности на растяжение ППР, предел текучести на растяжение ПТР и удлинение при разрыве У определяют с помощью испытания на растяжение согласно стандарту ASTM B557, а положение, в котором берут образцы, и их направления определены в стандарте AMS 2355.
[0014] Раскрытый алюминиевый сплав может включать от 6 до 8 вес.% цинка. В других примерных вариантах реализации содержание цинка составляет от 6,1 до 7,6 вес.% и от 6,2 до 6,7 вес.%. В еще одном варианте реализации содержание цинка составляет от примерно 6,1 до примерно 6,5 вес.%. Раскрытый алюминиевый сплав может также включать от 1 до 2 вес.% магния. В других примерных вариантах реализации содержание магния составляет от 1,1 до 1,6 вес.% и от 1,2 до 1,5 вес.%. В еще одном варианте реализации содержание магния составляет от примерно 1,1 до примерно 1,5 вес.%.
[0015] В одном варианте реализации сплав по существу не содержит меди и/или марганца. Под выражением «по существу не содержит меди» подразумевается, что содержание меди составляет менее 0,5 вес.% в одном варианте реализации и менее 0,3 вес.% в другом варианте реализации. Под выражением «по существу не содержит марганца» подразумевается, что содержание марганца составляет менее 0,2 вес.% в одном варианте реализации и менее 0,1 вес.% в другом варианте реализации. В определенных вариантах реализации сплав имеет совокупное содержание от примерно 0,06 вес.% вплоть до примерно 0,3 вес.% одного или более образующих дисперсоиды элементов. В одном примерном варианте реализации сплав имеет от 0,06 до 0,18 вес.% циркония и по существу не содержит марганца. Однако в других вариантах реализации сплав содержит вплоть до 0,8 вес.% марганца и вплоть до 0,5 вес.% марганца вместе с 0,06-0,18 вес.% циркония или, в некоторых случаях, по существу без циркония. Под выражением «по существу без циркония» подразумевается, что содержание циркония составляет менее 0,05 вес.% в одном варианте реализации и менее 0,03 вес.% в другом варианте реализации.
[0016] Относительные пропорции магния и цинка в сплаве могут влиять на его свойства. В одном примерном варианте реализации отношение цинка к магнию в сплаве составляет примерно 5:1 в расчете по весу. В одном варианте реализации содержание Mg составляет от (0,2 Ч Zn - 0,3) вес.% до (0,2 Ч Zn + 0,3) вес.%, а в другом варианте реализации содержание Mg составляет от (0,2 Ч Zn - 0,2) вес.% до (0,2 Ч Zn + 0,2) вес.%. В еще одном варианте реализации содержание Mg составляет от (0,2 × Zn - 0,1) вес.% до (0,2 Ч Zn + 0,1) вес.%. В этом уравнении «Zn» относится к содержанию Zn, выраженному в вес.%.
[0017] Изобретение является особенно подходящим для продуктов ультратолстого калибра, таких как продукты в литом состоянии или деформированные продукты, произведенные с помощью процессов прокатки, ковки или выдавливания (прессования) или их комбинации. Под «ультратолстым калибром» подразумевается, что калибр составляет по меньшей мере 4 дюйма, а в некоторых вариантах реализации - по меньшей мере 6 дюймов.
[0018] Один примерный вариант реализации способа получения катаных продуктов ультратолстого калибра характеризуется следующими стадиями:
- литье слитка сплава по изобретению с толщиной по меньшей мере 12 дюймов;
- гомогенизация слитка в интервале температур от 820°F до 980°F в одном варианте реализации и в интервале температур от 850°F до 950°F в другом варианте реализации;
- необязательно, горячая прокатка продукта до его конечной толщины, предпочтительно от 4 до 22 дюймов, в интервале температур от 600°F до 900°F;
- необязательно, термообработка на твердый раствор получившегося в результате продукта в интервале температур от 820°F до 980°F в одном варианте реализации и в интервале температур от 850°F до 950°F в другом варианте реализации;
- закалка или охлаждение продукта воздухом принудительной подачи или в водяном тумане или водяным распылом очень малого объема, чтобы избежать жесткой закалки и избежать подъема до высоких внутренних остаточных напряжений;
- дисперсионное твердение продукта при искусственном старении, предпочтительно в интервале температур от 240°F до 320°F.
[0019] Выполнили эксперименты с тем, чтобы сравнить раскрытый сплав (Пример 1: Сплав №6 и Пример 2: Образцы 10 и 11) с обычными алюминиевыми сплавами. В описанных ниже экспериментах обычный сплав 7108 (Пример 1: Сплав №1), восемь сплавов-вариантов (Пример 1: Сплавы с №2 по №5 и с №7 по №9), сплав AA6061 (Пример 2: Образцы с 12 по 14) и сплав AA7075 (Пример 2: Образцы 15 и 16) сравнивали с раскрытым сплавом.
ПРИМЕРЫ
Пример 1
[0020] Девять алюминиевых сплавов отливали в виде круглой заготовки (биллета) диаметром 7 дюймов с химическим составом, приведенным в таблице 1.
[0021] Заготовку гомогенизировали 24 часа при температуре в интервале от 850°F до 890°F. Затем заготовку подвергали горячей прокатке с образованием плиты толщиной 1 дюйм при температуре в интервале от 600°F до 850°F. Конечную толщину в 1 дюйм использовали с тем, чтобы оценить чувствительность сплава к закалке, применяя разные процессы медленного охлаждения для того, чтобы смоделировать процесс закалки деформированного продукта ультратолстого калибра. Плиты разделяли на два или три куска (кусок А, кусок В и кусок С) для сравнения разных скоростей закалки после термообработки на твердый раствор. Кусок А термообрабатывали на твердый раствор при 885°F в течение 1,5 часов и охлаждали на воздухе (неподвижным воздухом) для медленной скорости закалки 0,28-0,30°F/сек. Кусок В термообрабатывали на твердый раствор при 885°F в течение 1,5 часов и закаляли потоком воздуха от вентилятора для скорости закалки 0,70-0,75°F/сек. Кусок С термообрабатывали на твердый раствор при 885°F в течение 2 часов и закаляли холодной водой с последующим холодным растягиванием со степенью деформации 2%. Скорость охлаждения во время закалки холодной водой была слишком быстрой, чтобы быть измеренной во времени. Все куски упрочняли искусственным старением в течение 16 часов при 280°F. Результаты испытаний на растяжение приведены в таблице 2.
Таблица 1
Химический состав испытываемых алюминиевых сплавов (вес.%), остаток - алюминий
Сплав Cu Mn Mg Zn Zr Ti
Сплав №1 0,0 0,0 1,0 4,7 0,13 0,02
Сплав №2 0,01 0,0 1,48 4,7 - 0,02
Сплав №3 0,49 0,0 1,02 4,9 0,05 0,02
Сплав №4 0,0 0,0 2,9 4,0 0,0 0,02
Сплав №5 0,01 0,0 2,8 4,0 0,075 0,02
Сплав №6 0,0 0,0 1,28 6,2 0,05 0,02
Сплав №7 0,01 0,0 1,1 7,4 0,11 0,025
Сплав №8 0 0,0 0,89 6,57 0,11 0,02
Сплав №9 0,0 0,0 1,95 6,51 0,11 0,02
Figure 00000001
Таблица 3
Предел текучести на растяжение ПТР (килофунтов/кв.дюйм) при трех разных способах и потеря ПТР из-за закалки неподвижным воздухом по сравнению с закалкой холодной водой
Холодная вода Воздух от вентилятора Неподвижный воздух Холодная вода - Неподвижный воздух
Сплав №1 нет данных 46,9 44,6 нет данных
Сплав №2 53,6 52,5 51 2,6
Сплав №3 нет данных 48,5 46,3 нет данных
Сплав №4 59 54 52,5 6,5
Сплав №5 61,7 55 49,8 11,9
Сплав №6 60,4 58,5 54,5 5,9
Сплав №7 53,3 51,6 50,0 3,3
Сплав №8 50,0 49,0 47,8 2,2
Сплав №9 66,8 56,47 51,9 14,9
Таблица 4
Предел прочности на растяжение ППР (килофунтов/кв.дюйм) у образцов, закаленных тремя разными способами
Холодная вода Воздух от вентилятора Неподвижный воздух Холодная вода - Неподвижный воздух
Сплав №1 нет данных 53 51,5 нет данных
Сплав №2 59,4 58 56,5 2,9
Сплав №3 нет данных 55,5 54,5 нет данных
Сплав №4 65,3 61 60 5,3
Сплав №5 68,1 64 60 8,1
Сплав №6 64,4 63,5 61 3,4
Сплав №7 58,6 55,6 53,8 4,8
Сплав №8 55,1 54,0 52,5 2,6
Сплав №9 70,5 61,7 59,3 11,2
[0022] Как показано на фигурах 1-5 и в таблицах 2-4, предел прочности на растяжение (ППР) и предел текучести на растяжение (ПТР) сплава №6 - примерного варианта реализации раскрытого сплава, являются более высокими, чем ППР и ПТР сплавов №1-5 и 7-9, когда материалы обрабатывали закалкой неподвижным воздухом - самым медленным способом охлаждения, оцененным в этом исследовании. Кроме того, сплав №6 демонстрирует наиболее желательную комбинацию высокой прочности и низкой чувствительности к закалке среди изученных четырех высокопрочных сплавов.
[0023] Чтобы подтвердить желательные характеристики примерного сплава №6 для деформированных продуктов ультратолстого калибра, отлили два полноразмерных слитка промышленного масштаба, чтобы оценить свойства плит с 6-дюймовым и 12-дюймовым калибром.
Пример 2
[0024] Отлили полноразмерный промышленный слиток с целевым химическим составом сплава №6, определенным выше, для производственного испытания в заводском масштабе. Фактический химический состав приведен в таблице 5 (образец 10). Слиток 18 дюймов толщиной, 60 дюймов шириной и 165 дюймов длиной гомогенизировали в интервале температур от 900°F до 940°F в течение 24 часов. Слиток подогревали до температуры от 900°F до 920°F и подвергали горячей прокатке до плиты калибром 6 дюймов в интервале температур от 740°F до 840°F.
[0025] Эту плиту толщиной 6 дюймов термообрабатывали на твердый раствор при 940°F в течение 20 часов и закаляли холодной водой. Напряжения в плите снимали холодным растягиванием до номинальной величины 2%. Плиту подвергали дисперсионному твердению при искусственном старении 16 часов при 280°F. Конечные механические свойства показаны в таблице 6. Коррозионное поведение было удовлетворительным.
[0026] Отлили другой полноразмерный промышленный слиток с вышеуказанным целевым химическим составом сплава №6 для производственного испытания в заводском масштабе. Фактический химический состав приведен в таблице 5 (образец 11). Этот полноразмерный заводской слиток, имевший размер поперечного сечения 18 дюймов толщины × 60 дюймов ширины, гомогенизировали в интервале температур от 900°F до 940°F в течение 24 часов. Слиток подогревали до температуры от 900°F до 920°F и подвергали горячей прокатке до плиты калибром 12 дюймов в интервале температур от 740°F до 840°F.
[0027] Эту плиту толщиной 12 дюймов термообрабатывали на твердый раствор при 940°F в течение 20 часов и закаляли холодной водой. Плиту подвергали дисперсионному твердению при искусственном старении 28 часов при 280°F. Конечные механические свойства показаны в таблице 6. Коррозионное поведение было удовлетворительным.
[0028] Для того чтобы оценить превосходные характеристики материала сплава по изобретению для деформированного продукта ультратолстого калибра, провели дополнительные испытания в заводском масштабе с имеющимися в продаже продуктами ультратолстого калибра, а именно, из сплавов 6061 и 7075.
[0029] Отлили полноразмерный промышленный слиток сплава 6061 с поперечным сечением 25 дюймов толщины × 80 дюймов ширины для производственного испытания в заводском масштабе. Фактический химический состав этого слитка приведен в таблице 5 (образец 12). Слиток подогревали до температуры в интервале от 900°F до 940°F и подвергали горячей прокатке до плиты калибром 6 дюймов.
[0030] Эту плиту толщиной 6 дюймов термообрабатывали на твердый раствор при 1000°F в течение 8 часов и закаляли холодной водой. Напряжения в плите снимали холодным растягиванием до номинальной величины 2%. Плиту подвергали дисперсионному твердению при искусственном старении 8 часов при 350°F. Конечные механические свойства показаны в таблице 6.
[0031] Отлили полноразмерный промышленный слиток сплава 6061 с поперечным сечением 25 дюймов толщины × 80 дюймов ширины для производственного испытания в заводском масштабе. Фактический химический состав этого слитка приведен в таблице 5 (образец 13). Слиток подогревали до температуры в интервале от 900°F до 940°F и подвергали горячей прокатке до плиты калибром 12 дюймов.
[0032] Эту плиту толщиной 12 дюймов термообрабатывали на твердый раствор при 1000°F в течение 8 часов и закаляли холодной водой. Плиту подвергали дисперсионному твердению при искусственном старении 8 часов при 350°F. Конечные механические свойства показаны в таблице 6.
[0033] Отлили полноразмерный промышленный слиток сплава 6061 с поперечным сечением 25 дюймов толщины × 80 дюймов ширины для производственного испытания в заводском масштабе. Фактический химический состав этого слитка приведен в таблице 5 (образец 14). Слиток подогревали до температуры в интервале от 900°F до 940°F и подвергали горячей прокатке до плиты калибром 16 дюймов.
[0034] Эту плиту толщиной 16 дюймов термообрабатывали на твердый раствор при 1000°F в течение 8 часов и закаляли холодной водой. Плиту подвергали дисперсионному твердению при искусственном старении 8 часов при 350°F. Конечные механические свойства показаны в таблице 6.
[0035] Отлили полноразмерный промышленный слиток сплава 7075 с поперечным сечением 20 дюймов толщины × 65 дюймов ширины для производственного испытания в заводском масштабе. Фактический химический состав этого слитка приведен в таблице 5 (образец 15). Слиток подогревали до 920°F и подвергали горячей прокатке до плиты калибром 6 дюймов в интервале температур от 740°F до 820°F.
[0036] Эту плиту толщиной 6 дюймов термообрабатывали на твердый раствор при 900°F в течение 6 часов и затем закаляли холодной водой. Напряжения в плите снимали холодным растягиванием до номинальной величины 2%. Плиту подвергали дисперсионному твердению при искусственном старении 24 часа при 250°F. Конечные механические свойства показаны в таблице 6.
[0037] Отлили полноразмерный промышленный слиток сплава 7075 с поперечным сечением 20 дюймов толщины × 65 дюймов ширины для производственного испытания в заводском масштабе. Фактический химический состав этого слитка приведен в таблице 5 (образец 16). Слиток подогревали до 920°F и подвергали горячей прокатке до плиты калибром 10 дюймов в интервале температур от 740°F до 820°F.
[0038] Эту плиту толщиной 10 дюймов термообрабатывали на твердый раствор при 900°F в течение 6 часов и затем закаляли холодной водой. Плиту подвергали дисперсионному твердению при искусственном старении 24 часа при 250°F. Конечные механические свойства показаны в таблице 6.
[0039] Результаты испытаний на растяжение из производственных примеров заводского масштаба приведены в таблице 6 и нанесены на графики на фигурах 7 и 8, соответственно, для пределов прочности на растяжение (ППР) и пределов текучести на растяжение (ПТР). Никакой потери механической прочности с увеличением калибра для сплава по изобретению не наблюдается, в то время как такая потеря наблюдается для обычных сплавов, таких как сплавы 6061 и 7075.
Таблица 5
Химический состав (вес.%)
Сплав Si Fe Cu Mn Mg Zn Zr Ti Cr
Образец 10 0,055 0,093 0,08 0,02 1,351 6,284 0,094 0,032
Образец 11 0,055 0,093 0,08 0,02 1,338 6,265 0,094 0,032
Образец 12 (6061) 0,662 0,208 0,214 0,008 0,961 0,042 0,01 0,032
Образец 13 (6061) 0,691 0,209 0,2 0,2 0,981 0,043 0,01 0,037
Образец 14 (6061) 0,704 0,205 0,204 0,022 1,013 0,042 0,01 0,018
Образец 15 (7075) 0,07 0,16 1,37 0,059 2,52 5,51 0,09 0,016 0,225
Образец 16 (7075) 0,07 0,16 1,37 0,059 2,52 5,51 0,09 0,016 0,225
Таблица 6
Свойства на растяжение в LT направлении в положении Т/4
Сплав Толщина плиты ППР (килофунтов/кв.дюйм) ПТР (килофунтов/кв.дюйм) Удлинение (%)
Образец 10 Сплав по изобрете-нию 6 дюймов 63,5 58,7 7,4
Образец 11 Сплав по изобрете-нию 12 дюймов 63,0 58,5 6,3
Образец 12 6061-T651 6 дюймов 47,9 42,4 7,5
Образец 13 6061-T6 12 дюймов 41,9 34,6 10,3
Образец 14 6061-T6 16 дюймов 35,8 27,4 10,8
Образец 15 7075-T651 6 дюймов 67,4 52,5 12,0
Образец 16 7075-T6 10 дюймов 52,7 31,1 13,5
[0040] Фигуры 7 и 8 показывают, что падение механической прочности не наблюдается с увеличением калибра для сплавов по изобретению, тогда как такое снижение является общим признаком сплавов 6061 и 7075.
[0041] Хотя выше были раскрыты конкретные варианты реализации и применения настоящего изобретения, изобретение не ограничивается точными составами и процессами, описанными в этом исследовании. Основываясь на идеях и объеме этого изобретения, на практике могут быть осуществлены различные модификации и изменения с тем, чтобы достичь удивительной и неожиданной пользы этого изобретения. Среднему специалисту в данной области техники будут понятны признаки отдельных вариантов реализации, возможные сочетания и вариации компонентов. Среднему специалисту в данной области техники будет также понятно, что любые из этих вариантов реализации могут быть предусмотрены в любой комбинации с другими раскрытыми здесь вариантами реализации. Подразумевается, что изобретение может быть воплощено в других конкретных формах без отступления от его духа или центральных характеристик. Соответственно, в то время как выше были иллюстрированы и описаны определенные варианты реализации, многочисленные модификации приходят на ум без значительного отступления от духа изобретения, а объем охраны ограничивается только объемом приложенной формулы изобретения.

Claims (12)

1. Продукт толщиной по меньшей мере 4 дюйма, выполненный из сплава на основе алюминия, включающего по меньшей мере 6,5 вес.% цинка и магний в весовом отношении цинка к магнию примерно 5:1, причем этот продукт на четверти толщины имеет предел прочности на растяжение в по меньшей мере 61 килофунт/кв.дюйм и предел текучести на растяжение в по меньшей мере 54,5 килофунта/кв.дюйм.
2. Продукт по п.1, в котором упомянутый сплав включает по меньшей мере 0,06 вес.% по меньшей мере одного образующего интерметаллические дисперсоиды элемента, выбранного из группы, состоящей из: Zr, Mn, Cr, Ti и Sc.
3. Продукт по п.2, в котором сплав включает по меньшей мере один элемент из (а) 0,1 вес.% Zr и (b) 0,02 вес.% Ti.
4. Способ получения продукта из сплава на основе алюминия толщиной по меньшей мере 4 дюйма, включающий:
- литье слитка сплава на основе алюминия, имеющего толщину по меньшей мере 12 дюймов, причем сплав включает:
от 6 вес.% до 8 вес.% Zn,
от 1 вес.% до 2 вес.% Mg, при этом Mg содержится в количестве от (0,2·Zn-0,3) вес.% до (0,2·Zn+0,3) вес.%,
по меньшей мере один образующий интерметаллические дисперсоиды элемент, и
остальное алюминий и неизбежные примеси;
- гомогенизацию слитка в интервале температур от 820°F до 980°F;
- охлаждение слитка методом, выбранным из группы, состоящей из:
воздуха принудительной подачи, водяного тумана и водяного распыла; и
- искусственное старение в интервале температур от 240°F до 320°F, в результате которого достигается дисперсионное твердение.
5. Способ по п.4, в котором слиток гомогенизируют в интервале температур от 850°F до 950°F.
6. Способ по п.4 или 5, в котором после гомогенизации дополнительно проводят горячую прокатку слитка до конечной толщины от 4 до 22 дюймов в интервале температур от 600°F до 900°F.
7. Способ по п.4 или 5, в котором после гомогенизации дополнительно проводят термообработку слитка на твердый раствор в интервале температур от 820°F до 980°F.
8. Способ по п.7, в котором слиток термообрабатывают на твердый раствор в интервале температур от 850°F до 950°F.
9. Способ получения продукта из сплава на основе алюминия толщиной по меньшей мере 4 дюйма, включающий:
- приготовление сплава на основе алюминия, включающего:
от 6 вес.% до 8 вес.% Zn;
от 1 вес.% до 2 вес.% Mg, при этом Mg содержится в количестве от (0,2·Zn-0,3) вес.% до (0,2·Zn+0,3) вес.%;
по меньшей мере один образующий интерметаллические дисперсоиды элемент, выбранный из группы, состоящей из: Zr, Mn, Cr Ti и Sc, имеющий общее содержание в по меньшей мере 0,06 вес.%, и
остальное алюминий и неизбежные примеси;
- литье продукта из указанного сплава;
- гомогенизацию продукта в интервале температур от 820°F до 980°F;
- охлаждение продукта методом, выбранным из группы, состоящей из: воздуха принудительной подачи, водяного тумана и водяного распыла;
и
- искусственное старение продукта в интервале температур от 240°F до 320°F, в результате которого достигается дисперсионное твердение.
10. Способ по п.9, в котором продукт является ультратолстым катаным продуктом, дополнительно включающий горячую прокатку продукта до конечной толщины от 4 до 22 дюймов в интервале температур от 600°F до 900°F.
11. Способ по п.9 или 10, дополнительно включающий термообработку продукта на твердый раствор в интервале температур от 820°F до 980°F.
12. Способ по п.9 или 10, в котором продукт охлаждают воздухом принудительной подачи, и, на четверти толщины он имеет предел прочности на растяжение в по меньшей мере 61 килофунт/кв.дюйм и предел текучести на растяжение в по меньшей мере 54,5 килофунта /кв.дюйм.
RU2009102968/02A 2006-06-30 2007-06-29 Высокопрочный термообрабатываемый алюминиевый сплав RU2473710C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81740306P 2006-06-30 2006-06-30
US60/817,403 2006-06-30
PCT/US2007/072513 WO2008005852A2 (en) 2006-06-30 2007-06-29 High strength, heat treatable al-zn-mg aluminium alloy

Publications (2)

Publication Number Publication Date
RU2009102968A RU2009102968A (ru) 2010-08-10
RU2473710C2 true RU2473710C2 (ru) 2013-01-27

Family

ID=38742271

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009102968/02A RU2473710C2 (ru) 2006-06-30 2007-06-29 Высокопрочный термообрабатываемый алюминиевый сплав

Country Status (11)

Country Link
US (1) US8357249B2 (ru)
EP (1) EP2049696B1 (ru)
JP (1) JP5345056B2 (ru)
KR (1) KR20090026337A (ru)
CN (1) CN101479397B (ru)
BR (1) BRPI0713870A2 (ru)
CA (1) CA2657331C (ru)
IL (1) IL195685A0 (ru)
MX (1) MX2008016076A (ru)
RU (1) RU2473710C2 (ru)
WO (1) WO2008005852A2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621499C2 (ru) * 2015-11-17 2017-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения отливок из высокопрочного сплава на основе алюминия
RU2668106C2 (ru) * 2013-03-14 2018-09-26 Алкоа Инк. Способы искусственного старения сплавов алюминий-цинк-магний и изделия на их основе
RU2670627C1 (ru) * 2015-01-21 2018-10-24 Немак, С.А.Б. Де К.В. СПОСОБ ПОЛУЧЕНИЯ ОТЛИВОК СЛОЖНОЙ ФОРМЫ И ОТЛИВКА ИЗ СПЛАВА AlCu
RU2745433C1 (ru) * 2017-06-21 2021-03-25 Арконик Текнолоджиз ЭлЭлСи Улучшенные плотные ковкие сплавы на основе алюминия серии 7xxx и способы их получения

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1683882B2 (de) * 2005-01-19 2010-07-21 Otto Fuchs KG Abschreckunempfindliche Aluminiumlegierung sowie Verfahren zum Herstellen eines Halbzeuges aus dieser Legierung
US8333853B2 (en) * 2009-01-16 2012-12-18 Alcoa Inc. Aging of aluminum alloys for improved combination of fatigue performance and strength
US8313590B2 (en) * 2009-12-03 2012-11-20 Rio Tinto Alcan International Limited High strength aluminium alloy extrusion
FR2968675B1 (fr) * 2010-12-14 2013-03-29 Alcan Rhenalu Produits epais en alliage 7xxx et procede de fabrication
WO2012165086A1 (ja) 2011-06-02 2012-12-06 アイシン軽金属株式会社 アルミニウム合金及びそれを用いた押出形材の製造方法
AU2014324473B2 (en) * 2013-09-30 2017-09-07 Apple Inc. Aluminum alloys with high strength and cosmetic appeal
CN103469035B (zh) * 2013-10-08 2015-08-19 湖南大学 一种高强、轻质、耐蚀、可焊的Al-Zn-Mg合金及制备方法
CN103820687A (zh) * 2013-11-04 2014-05-28 熊科学 一种热交换器用铝合金板
CN103589923A (zh) * 2013-11-05 2014-02-19 吴高峰 一种热交换器用耐腐蚀的铝合金板
US20160348224A1 (en) * 2015-06-01 2016-12-01 Kaiser Aluminum Fabricated Products, Llc High Strength 7xxx Series Aluminum Alloy Products and Methods of Making Such Products
CN105088113B (zh) * 2015-08-27 2017-03-22 东北轻合金有限责任公司 一种航天用铝合金自由锻件的制造方法
CN105220040A (zh) * 2015-11-19 2016-01-06 广东和胜工业铝材股份有限公司 一种Al-Zn-Mg合金及其制备方法与应用
CN106893907A (zh) * 2015-12-21 2017-06-27 比亚迪股份有限公司 一种铝合金及其制备方法
WO2017107511A1 (zh) * 2015-12-21 2017-06-29 比亚迪股份有限公司 铝合金及其制备方法
WO2018037390A2 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
JP6393008B1 (ja) * 2017-04-27 2018-09-19 株式会社コイワイ 高強度アルミニウム合金積層成形体及びその製造方法
US11345980B2 (en) 2018-08-09 2022-05-31 Apple Inc. Recycled aluminum alloys from manufacturing scrap with cosmetic appeal
JP7366553B2 (ja) * 2019-02-06 2023-10-23 アイシン軽金属株式会社 アルミニウム合金部材の製造方法
CN110218919B (zh) * 2019-07-12 2021-09-21 广亚铝业有限公司 一种高强铝合金材料及其制备方法
CN111349833A (zh) * 2020-02-25 2020-06-30 山东南山铝业股份有限公司 一种添加稀土钪的耐腐蚀铝合金及其制备方法
CA3181557A1 (en) * 2020-04-30 2021-11-04 Ati, Inc. Corrosion resistant high strength weldable aluminum alloy for structural applications
WO2023073882A1 (ja) 2021-10-28 2023-05-04 マミヤ・オーピー株式会社 車両、操舵制御のためのシステム、方法、プログラム、プログラムを記録した記録媒体、自動走行システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU406931A1 (ru) * 1971-02-19 1973-11-21 Сплав на основе алюминия
WO2004056501A2 (fr) * 2002-12-17 2004-07-08 Pechiney Rhenalu Procede de fabrication d'elements de structure par usinage de toles epaisses
SU1172289A1 (ru) * 1982-12-15 2004-08-27 Н.С. Постников Способ термической обработки сплавов системы алюминий-магний-цинк
WO2004090185A1 (en) * 2003-04-10 2004-10-21 Corus Aluminium Walzprodukte Gmbh An al-zn-mg-cu alloy

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB118947A (en) * 1917-11-20 1918-09-19 British Thomson Houston Co Ltd Improvements in and relating to Alloys.
US3542606A (en) * 1968-03-13 1970-11-24 Kaiser Aluminium Chem Corp Hot worked metal article of aluminum base alloy and method of producing same
HU167172B (ru) * 1973-07-20 1975-08-28
US3943039A (en) * 1974-10-08 1976-03-09 Kaiser Aluminum & Chemical Corporation Anodizing pretreatment for nickel plating
SE7601702L (sv) * 1975-04-18 1976-10-19 Stauffer Chemical Co Forfarande for pletering av metaller
JPS61238937A (ja) * 1985-04-12 1986-10-24 Showa Alum Corp 押出性および応力腐食割れ性に優れた溶接構造材用高強度アルミニウム合金
JPH01127642A (ja) * 1987-11-10 1989-05-19 Kobe Steel Ltd 絞り成形用熱処理型高強度アルミニウム合金板及びその製造法
JPH01275743A (ja) * 1988-04-28 1989-11-06 Nkk Corp 強度および耐食性に優れたアルミニウム合金の熱処理方法
JPH05295478A (ja) * 1992-04-21 1993-11-09 Furukawa Alum Co Ltd 曲げ加工性に優れたアルミニウム合金押出材とその製造方法
JP3068395B2 (ja) * 1993-12-17 2000-07-24 株式会社神戸製鋼所 アルミニウム合金製ドアインパクトビーム材
US5772800A (en) * 1994-06-09 1998-06-30 Hoogovens Aluminium Walzprodukte Gmbh Aluminium alloy plate and method for its manufacture
FR2744136B1 (fr) * 1996-01-25 1998-03-06 Pechiney Rhenalu Produits epais en alliage alznmgcu a proprietes ameliorees
JP3278130B2 (ja) * 1996-03-15 2002-04-30 スカイアルミニウム株式会社 絞り加工用高強度熱処理型アルミニウム合金板の製造方法
JPH09310141A (ja) 1996-05-16 1997-12-02 Nippon Light Metal Co Ltd 押出し性に優れた構造材料用高強度Al−Zn−Mg系合金押出し形材及びその製造方法
US6342111B1 (en) * 1999-09-02 2002-01-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Energy-absorbing member
US20020150498A1 (en) * 2001-01-31 2002-10-17 Chakrabarti Dhruba J. Aluminum alloy having superior strength-toughness combinations in thick gauges
IL156386A0 (en) * 2000-12-21 2004-01-04 Alcoa Inc Aluminum alloy products and artificial aging method
FR2838136B1 (fr) * 2002-04-05 2005-01-28 Pechiney Rhenalu PRODUITS EN ALLIAGE A1-Zn-Mg-Cu A COMPROMIS CARACTERISTIQUES STATISTIQUES/TOLERANCE AUX DOMMAGES AMELIORE
FR2838135B1 (fr) * 2002-04-05 2005-01-28 Pechiney Rhenalu PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D'AERONEF
US20060000094A1 (en) * 2004-07-01 2006-01-05 Garesche Carl E Forged aluminum vehicle wheel and associated method of manufacture and alloy
JP4977281B2 (ja) 2005-09-27 2012-07-18 アイシン軽金属株式会社 衝撃吸収性及び耐応力腐食割れ性に優れた高強度アルミニウム合金押出材及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU406931A1 (ru) * 1971-02-19 1973-11-21 Сплав на основе алюминия
SU1172289A1 (ru) * 1982-12-15 2004-08-27 Н.С. Постников Способ термической обработки сплавов системы алюминий-магний-цинк
WO2004056501A2 (fr) * 2002-12-17 2004-07-08 Pechiney Rhenalu Procede de fabrication d'elements de structure par usinage de toles epaisses
WO2004090185A1 (en) * 2003-04-10 2004-10-21 Corus Aluminium Walzprodukte Gmbh An al-zn-mg-cu alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2668106C2 (ru) * 2013-03-14 2018-09-26 Алкоа Инк. Способы искусственного старения сплавов алюминий-цинк-магний и изделия на их основе
RU2670627C1 (ru) * 2015-01-21 2018-10-24 Немак, С.А.Б. Де К.В. СПОСОБ ПОЛУЧЕНИЯ ОТЛИВОК СЛОЖНОЙ ФОРМЫ И ОТЛИВКА ИЗ СПЛАВА AlCu
RU2621499C2 (ru) * 2015-11-17 2017-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения отливок из высокопрочного сплава на основе алюминия
RU2745433C1 (ru) * 2017-06-21 2021-03-25 Арконик Текнолоджиз ЭлЭлСи Улучшенные плотные ковкие сплавы на основе алюминия серии 7xxx и способы их получения

Also Published As

Publication number Publication date
CA2657331A1 (en) 2008-01-10
EP2049696A2 (en) 2009-04-22
CN101479397A (zh) 2009-07-08
CA2657331C (en) 2016-11-08
MX2008016076A (es) 2009-01-15
CN101479397B (zh) 2013-03-13
BRPI0713870A2 (pt) 2012-12-18
RU2009102968A (ru) 2010-08-10
WO2008005852A2 (en) 2008-01-10
JP5345056B2 (ja) 2013-11-20
US20080056932A1 (en) 2008-03-06
IL195685A0 (en) 2009-09-01
KR20090026337A (ko) 2009-03-12
JP2009542912A (ja) 2009-12-03
US8357249B2 (en) 2013-01-22
EP2049696B1 (en) 2016-03-02
WO2008005852A3 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
RU2473710C2 (ru) Высокопрочный термообрабатываемый алюминиевый сплав
US10301710B2 (en) Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product
US11136658B2 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
CA2596190C (en) Al-zn-cu-mg aluminum base alloys and methods of manufacture and use
JP3194742B2 (ja) 改良リチウムアルミニウム合金系
RU2404276C2 (ru) ПРОДУКТ ИЗ ВЫСОКОПРОЧНОГО, ВЫСОКОВЯЗКОГО Al-Zn СПЛАВА И СПОСОБ ИЗГОТОВЛЕНИЯ ТАКОГО ПРОДУКТА
US7229509B2 (en) Al-Cu-Li-Mg-Ag-Mn-Zr alloy for use as structural members requiring high strength and high fracture toughness
CA2908196C (en) High strength, high formability, and low cost aluminum-lithium alloys
CA2768503A1 (en) Improved 5xxx aluminum alloys and wrought aluminum alloy products made therefrom
EP2811043B1 (en) High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JP7044863B2 (ja) Al-Mg-Si系アルミニウム合金材
CA2870475A1 (en) 2xxx series aluminum lithium alloys
US20080308196A1 (en) High-strength and high-toughness aluminum alloy material for bumper beam and method for manufacturing the same
US20210262065A1 (en) 2xxx aluminum alloys
WO2023233713A1 (ja) 耐scc性に優れる高強度アルミニウム合金押出材の製造方法
US20210404038A1 (en) 2xxx aluminum lithium alloys
JPH05295478A (ja) 曲げ加工性に優れたアルミニウム合金押出材とその製造方法