WO2017107511A1 - 铝合金及其制备方法 - Google Patents

铝合金及其制备方法 Download PDF

Info

Publication number
WO2017107511A1
WO2017107511A1 PCT/CN2016/095892 CN2016095892W WO2017107511A1 WO 2017107511 A1 WO2017107511 A1 WO 2017107511A1 CN 2016095892 W CN2016095892 W CN 2016095892W WO 2017107511 A1 WO2017107511 A1 WO 2017107511A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
aluminum alloy
less
hours
alloy
Prior art date
Application number
PCT/CN2016/095892
Other languages
English (en)
French (fr)
Inventor
宫清
吴波
李江恒
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017107511A1 publication Critical patent/WO2017107511A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present disclosure pertains to the field of aluminum alloys, and more particularly, the present disclosure relates to an aluminum alloy and a method of making the same.
  • the 7000 series aluminum alloy with Zn and Mg added to the aluminum alloy shows the highest strength in the aluminum alloy and has been widely used in heavy industrial sectors such as automobile, railway, shipbuilding and aircraft manufacturing.
  • it is also hoped that the 7000 series aluminum alloy can obtain a silver-white color with metallic luster after anodizing treatment, which brings high-grade feeling and subsequent coloring diversity, but anodizing of 7000 series aluminum alloy due to composition.
  • the color of the film is obviously yellowish, which directly affects the appearance and subsequent coloring effect.
  • the present disclosure aims to provide a high-strength aluminum alloy suitable for anodizing, which not only has high mechanical strength, but also has good anodizing performance, is silver-white after anodizing, has bright and uniform color, and has good consistency.
  • an embodiment of the present disclosure provides an aluminum alloy.
  • the aluminum alloy comprises: 5% by weight to 8% by weight of Zn, 1.2% by weight to 3.2% by weight of Mg, 0.001% by weight to 0.15% by weight of Ga, 0.001% by weight to 0.1% by weight of V, 0.001% by weight to 0.2% % Ti, 0.2% by weight or less of Si, 0.2% by weight or less of Fe, 0.2% by weight or less of Cu, and the balance being Al and an unavoidable impurity element.
  • embodiments of the present disclosure also provide a method of making an aluminum alloy.
  • the method comprises: melting an aluminum alloy raw material to prepare an aluminum alloy ingot, wherein the composition of the aluminum alloy raw material is such that the composition and weight content of the obtained aluminum alloy ingot are:
  • the balance is Al and inevitable impurity elements.
  • the aluminum alloy provided by the present disclosure has high strength, yield limit of more than 440 MPa, and good anodizing performance, and the thickness of the oxide film is 8 ⁇ m to 18 ⁇ m after anodizing by a sulfuric acid bath, and the film has high transparency, silver white, bright and uniform color. Good consistency.
  • Embodiments of the present disclosure provide an aluminum alloy.
  • the aluminum alloy comprises 5% by weight to 8% by weight of Zn, 1.2% by weight to 3.2% by weight of Mg, 0.001% by weight to 0.15% by weight of Ga, 0.001% by weight to 0.1% by weight of V, and 0.001% by weight to 0.2% by weight.
  • % Ti 0.2% by weight or less of Si, 0.2% by weight or less of Fe, 0.2% by weight or less of Cu, and the balance being Al and an unavoidable impurity element.
  • the aluminum alloy may contain 6.3 wt% to 6.9% by weight of Zn, 1.6 wt% to 2.2 wt% of Mg, 0.008 wt% to 0.1 wt% of Ga, 0.005 wt%.
  • V 0.01% by weight to 0.1% by weight of Ti, 0.1% by weight or less of Si, 0.1% by weight or less of Fe, 0.1% by weight or less of Cu, and the balance being Al and an unavoidable impurity element.
  • the present disclosure systematically studies the effects of various alloying elements on the color of anodizing, such as Mn, Cu, Fe, Si, Cr, Zr, etc., although these elements play a role in refining grains and solid solution strengthening, if the content is Improper control can seriously affect the surface effect of anodizing.
  • Mn element is too much, the anodic oxidation color of the alloy is brown (pink); Cu and Cr elements will cause the color of the alloy to be yellow after anodization, especially Cr is extremely sensitive to the color effect, 0.2wt.% content can lead to oxide film Significant discoloration; excess Fe, Si, Zr can make the alloy lose its original bright silver white after oxidation, and it will appear dark gray, black when it is serious.
  • the aluminum alloy provided by the present disclosure belongs to the category of Zn-Mg strengthened 7000 series deformed aluminum alloy.
  • the addition of Zn and Mg does not drastically reduce the gloss of the alloy anodized film, and does not cause discoloration of the alloy oxide film.
  • the alloy is mainly MgZn.
  • the 2- phase and Al 2 Mg 3 Zn 3 phases were precipitated and strengthened.
  • the addition of Ga element to the alloy can activate the aluminum surface and improve the anodizing efficiency of aluminum and the uniformity of oxide film formation.
  • the anodizing of aluminum alloy is a dynamic process in which an oxide film diffuses into the aluminum matrix and dissolves in the surface film.
  • Ga element can form with other elements.
  • the eutectic mixture adheres to the oxide film barrier layer, destroys the surface passivation film, and enhances the oxidation activity of the aluminum oxide, thereby promoting the formation of the oxide film uniformly toward the aluminum matrix; in addition, the Ga element is finally dissolved in the electrolytic solution, and will not Any adverse effect on the oxide film.
  • Al 11 V and Al 3 Ti insoluble compounds When V and Ti are added to the alloy, Al 11 V and Al 3 Ti insoluble compounds can be formed, which have good functions of refining grains and increasing recrystallization temperature, and improve the overall performance of the alloy; and, V and Ti do not Affect the appearance quality of the alloy anodized film.
  • the content of Si, Fe and Cu are all below 0.2% by weight, which not only plays a good role in strengthening the alloy, but also improves the mechanical properties without affecting the anodizing effect.
  • the unavoidable impurity element comprises less than 0.02% by weight of Cr, less than 0.1% by weight of Zr, less than 0.1% by weight of Mn, and less than 0.05% by weight of a single other impurity element. Wherein the total amount of the single other impurity element is less than 0.15% by weight.
  • the aluminum alloy of the present disclosure has high strength, a yield limit of more than 440 MPa, and good anodizing performance.
  • the thickness of the oxide film is 8 ⁇ m to 18 ⁇ m after anodizing by a sulfuric acid bath, and the film has high transparency, silver white color, bright and uniform color. Good consistency.
  • Embodiments of the present disclosure also provide a method of making an aluminum alloy.
  • the method comprises melting an aluminum alloy raw material to prepare an aluminum alloy ingot, wherein the composition of the aluminum alloy raw material is such that the composition and weight content of the obtained aluminum alloy ingot are:
  • the balance is Al and inevitable impurity elements.
  • the method further includes molding the aluminum alloy ingot into an aluminum alloy piece by roll forming or extrusion molding.
  • the molten aluminum alloy ingot is rolled at 475 ° C to 530 ° C Processing, obtaining rolled aluminum alloy parts.
  • the molten aluminum alloy ingot is subjected to extrusion processing at 485 ° C to 540 ° C to obtain an extruded profile.
  • the method prior to forming the aluminum alloy piece, further includes homogenizing the aluminum alloy ingot.
  • the homogenization treatment can eliminate casting defects such as composition and tissue segregation, and the alloy composition is more homogeneous.
  • the homogenization treatment is carried out by incubating the aluminum alloy ingot at 410 ° C to 430 ° C for 2 hours to 4 hours, and then heating to 460 ° C to 480 ° C for 12 hours to 16 hours.
  • the aluminum alloy member is further subjected to a solution treatment after molding.
  • the effect of the solution treatment can sufficiently dissolve the alloying elements to form a supersaturated solid solution, and prepare the structure for precipitation (precipitation) strengthening.
  • the temperature of the solution treatment is 465 ° C to 485 ° C for a period of 0.5 h to 1.5 h.
  • the aluminum alloy member is subjected to artificial aging treatment after the solution treatment.
  • the artificial aging treatment can resolve the supersaturated solid solution into the strengthening phase, and distribute the alloy in the alloy structure and strengthen the alloy.
  • the artificial aging treatment process is: holding at 95 ° C to 105 ° C for 4 hours to 6 hours, and then heating to 120 ° C to 130 ° C for 12 hours to 20 hours.
  • the artificial aging treatment process is: maintaining at 110 ° C to 130 ° C for 16 hours to 28 hours.
  • the aluminum alloy raw material in the embodiment of the present disclosure may be various pure metal ingots or alloy ingots including Al, Zn, Mg, Ga, V, Ti, Si, Fe, and Cu. From the viewpoints of easy availability and low cost, for example, pure Al ingot, Al-V alloy, Al-Fe alloy, Al-Ti alloy, Al-Si alloy, Al-Cu alloy, pure Mg, pure Zn, and pure Ga can be used.
  • pure Al ingot, Al-V (10 wt% V) alloy, Al-Ti (5 wt% Ti) alloy, Al-Si (20 wt% Si) are weighed according to the amount. Alloy, Al-Fe (20% by weight Fe) alloy, Al-Cu (50% by weight Cu) alloy, pure Mg, pure Zn and pure Ga, and then pure Al ingot, Al-V alloy, Al-Ti alloy, The Al-Si alloy, the Al-Fe alloy, and the Al-Cu alloy are heated in a melting furnace to be completely melted, and then pure Zn, pure Mg, pure Ga (encapsulated with aluminum foil) are sequentially added, melted in the melt, and stirred for 8 minutes.
  • the slag removing agent 0.5% by weight of the refining agent is refined and degassed. After completion, the slag is allowed to stand for 20 minutes to 35 minutes, and then cooled to about 710 ° C to start casting into ingots; then the aluminum alloy ingots are passed through. After extrusion or rolling, the aluminum alloy parts and profiles with excellent mechanical properties and anodizing properties can be obtained by heat treatment.
  • each intermediate alloy and metal element are weighed according to the weight, and then the aluminum alloy ingot is obtained by melting according to the aluminum alloy smelting sample preparation process provided above, and the weight ratio of each intermediate alloy and metal element is as shown in Table 1 below.
  • the aluminum alloy ingot is incubated at 415 ° C for 3.5 hours, and then heated to 470 ° C for 14 hours for homogenization; then, The aluminum alloy ingot temperature is set to 435 ° C for rolling, to obtain rolled aluminum alloy parts, the aluminum alloy parts are solution treated at 475 ° C / 1 h, water cooling is carried out at 25 ° C to 30 ° C, and then stretched and deformed. The amount was 1%.
  • artificial aging treatment was carried out: heating at 100 ° C for 5 hours, and then heating to 125 ° C for 18 hours to prepare an aluminum alloy piece A1.
  • each intermediate alloy and metal element are weighed according to the weight, and then the aluminum alloy ingot is obtained by melting according to the aluminum alloy smelting sample preparation process provided above, and the weight ratio of each intermediate alloy and metal element is as shown in Table 1 below.
  • the aluminum alloy ingot is kept at 425 ° C for 4 hours, and then heated to 475 ° C for 15 hours for homogenization treatment; then, the aluminum alloy ingot temperature is set to 445 ° C for rolling processing to obtain rolling
  • the aluminum alloy parts are solution treated at 485 ° C / 1.5 h, water-cooled at 25 ° C to 30 ° C, and then stretched, the deformation amount is 1.5%, and finally, artificial aging treatment: heating at 105 ° C 6 After an hour, it was further heated to 130 ° C for 20 hours to prepare an aluminum alloy piece A2.
  • each intermediate alloy and metal element are weighed according to the weight, and then the aluminum alloy ingot is obtained by melting according to the aluminum alloy smelting sample preparation process provided above, and the weight ratio of each intermediate alloy and metal element is as shown in Table 1 below.
  • the aluminum alloy ingot is kept at 410 ° C for 4 hours, and then heated to 460 ° C for 12 hours for homogenization treatment; then, the aluminum alloy ingot temperature is set to 450 ° C for rolling processing to obtain rolling
  • the aluminum alloy parts are solution treated at 465 ° C / 1 h, water-cooled at 25 ° C to 30 ° C, and then stretched, the deformation amount is 1.5%, and finally, artificial aging treatment: heating to 120 ° C insulation 24 In an hour, an aluminum alloy piece A3 was prepared.
  • the aluminum alloy piece A4 was prepared in the same manner as in Example 1 except that the weight ratio of each of the intermediate alloys and the metal element was as shown in Table 1 below.
  • each intermediate alloy and metal element are weighed according to the weight, and then the aluminum alloy ingot is obtained by melting according to the aluminum alloy smelting sample preparation process provided above, and the weight ratio of each intermediate alloy and metal element is as shown in Table 1 below. Then, the aluminum alloy ingot is kept at 425 ° C for 4 hours, and then heated to 475 ° C for 15 hours for homogenization treatment; then, the aluminum alloy ingot temperature is set to 450 ° C for extrusion processing, and the extrusion is obtained.
  • the aluminum alloy parts are solution treated at 485 ° C / 1.5 h, water-cooled at 25 ° C to 30 ° C, and then stretched, the deformation amount is 1%, and finally, artificial aging treatment: heating at 105 ° C 6 After an hour, it was further heated to 130 ° C for 20 hours to prepare an aluminum alloy piece A5.
  • An aluminum alloy piece A6 was prepared in the same manner as in Example 5 except that the weight ratio of each of the intermediate alloys and the metal element was as shown in Table 1 below.
  • the aluminum alloy piece A7 was prepared in the same manner as in Example 5 except that the weight ratio of each of the intermediate alloys and the metal element was as shown in Table 1 below.
  • the aluminum alloy piece A8 was prepared in the same manner as in Example 5 except that the weight ratio of each of the intermediate alloys and the metal element was as shown in Table 1 below.
  • the aluminum alloy piece A9 was prepared in the same manner as in Example 5 except that the weight ratio of each of the intermediate alloys and the metal element was as shown in Table 1 below.
  • the aluminum alloy piece A10 was prepared in the same manner as in Example 5 except that the weight ratio of each of the intermediate alloys and the metal element was as shown in Table 1 below.
  • the aluminum alloy piece B1 was prepared in the same manner as in Example 1 except that the weight ratio of each of the intermediate alloys and the metal element was as shown in Table 1 below.
  • the aluminum alloy piece B2 was prepared in the same manner as in Example 5 except that the weight ratio of each of the intermediate alloys and the metal element was as shown in Table 1 below.
  • composition and content of the aluminum alloy parts A1-A10 and B1-B2 were measured by an ICP spectrometer (Thermo ICAP 6300). The results are shown in Table 2.
  • the aluminum alloy parts A1-A8 and B1-B2 were tested as follows:
  • the aluminum alloy members A1-A10 and B1-B2 were anodized as follows to obtain anodized products CA1-CA10 and CB1-CB2.
  • the DC anodizing process of sulfuric acid was adopted: the temperature of the oxidation bath was 19 ° C, the current density was 1.6 A ⁇ dm -2 , and the oxidation time was 30 min.
  • CA1-CA10 and CB1-CB2 were placed under natural light, and the anodized film on the surface was visually observed. The results are shown in Table 4.
  • the thickness of the anodized film on the surfaces of CA1-CA10 and CB1-CB2 was measured by a TIME2818 cladding thickness gauge. The results are shown in Table 4.
  • the aluminum alloy parts maintain a high yield strength of 440 MPa or more, and increase with the increase of the content of the main strengthening elements Mg and Zn; At the same time, all aluminum alloy parts maintain good anodizing performance, the oxide film is silvery white, uniform color and bright.
  • the aluminum alloy member contained more Fe and Si. Although its mechanical properties were not bad, it was not suitable for bright anodizing treatment. After anodizing, the overall color was dark, grayish, and partially gray spots. At the same time, the oxide film formation efficiency is also reduced, and the film thickness is only 6 ⁇ m.
  • the aluminum alloy parts contain more Cu, Cr, and Mn, and the mechanical properties are good, but the anodization performance is obviously decreased. After the anodization, the whole sample is obtained. The color is darker and yellowish, which is not suitable for bright anodizing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

一种铝合金及其制备方法。所述铝合金含有5重量%至8重量%的Zn,1.2重量%至3.2重量%的Mg,0.001重量%至0.15重量%的Ga,0.001重量%至0.1重量%的V,0.001重量%至0.2重量%的Ti,0.2重量%以下的Si,0.2重量%以下的Fe,0.2重量%以下的Cu,以及余量为Al和不可避免的杂质元素。

Description

铝合金及其制备方法
相关申请的交叉引用
本申请主张在2015年12月21日在中国提交的中国专利申请号No.201510971460.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开属于铝合金领域,更具体地,本公开涉及一种铝合金及其制备方法。
背景技术
在铝合金中添加Zn和Mg的7000系列铝合金显示出铝合金中最高强度,已广泛应用于汽车、铁路、船舶及飞机制造等重型工业部门。随着人们对电子产品的要求,人们开始研究7000系列铝合金在电子产品领域的应用。同时,也希望7000系列铝合金能够通过阳极氧化处理后,表面能获得具有金属光泽的银白色,从而带来高级感和后续上色的多样性,但由于成分原因,7000系列铝合金的阳极氧化膜颜色明显偏黄色,直接影响外观和后续上色效果。
发明内容
本公开旨在提供一种适合阳极氧化的高强度铝合金,不仅具有较高的机械强度,而且阳极氧化性能良好,阳极氧化后呈银白色,色泽鲜亮、均匀,一致性好。
第一方面,本公开的实施例提供了一种铝合金。该铝合金包含:5重量%至8重量%的Zn,1.2重量%至3.2重量%的Mg,0.001重量%至0.15重量%的Ga,0.001重量%至0.1重量%的V,0.001重量%至0.2%的Ti,0.2重量%以下的Si,0.2重量%以下的Fe,0.2重量%以下的Cu,以及余量为Al和不可避免的杂质元素。
第二方面,本公开的实施例还提供了一种制备铝合金的方法。该方法包括:使铝合金原料熔融以制备铝合金铸锭,其中所述铝合金原料的组成使得得到的铝合金铸锭的组分及重量含量为:,
5重量%至8重量%的Zn,
1.2重量%至3.2重量%的Mg,
0.001重量%至0.15重量%的Ga,
0.001重量%至0.1重量%的V,
0.001重量%至0.2重量%的Ti,
0.2重量%以下的Si,
0.2重量%以下的Fe,
0.2重量%以下的Cu,以及
余量为Al和不可避免的杂质元素。
本公开提供的铝合金强度高,屈服极限达440MPa以上,并且其阳极氧化性能良好,经硫酸浴阳极氧化后氧化膜厚度达8μm至18μm,并且该膜透明度高,呈银白色,色泽鲜亮、均匀,一致性好。
本公开的其它特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
为了使本公开所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
本公开的实施例提供了一种铝合金。该铝合金包含5重量%至8重量%的Zn,1.2重量%至3.2重量%的Mg,0.001重量%至0.15重量%的Ga,0.001重量%至0.1重量%的V,0.001重量%至0.2重量%的Ti,0.2重量%以下的Si,0.2重量%以下的Fe,0.2重量%以下的Cu,以及余量为Al和不可避免的杂质元素。
为了增强合金力学性能及阳极氧化表面效果,所述铝合金可以包含6.3重量%至6.9重量%的Zn,1.6重量%至2.2重量%的Mg,0.008重量%至0.1重量%的Ga,0.005重量%至0.1重量%的V,0.01重量%至0.1重量%的Ti,0.1重量%以下的Si,0.1重量%以下的Fe,0.1重量%以下的Cu,以及余量为Al和不可避免的杂质元素。
本公开系统地研究了各种合金化元素对阳极氧化颜色的影响,如Mn、Cu、Fe、Si、Cr,Zr等,这些元素虽然起到了细化晶粒、固溶强化作用,但若含量控制不得当会严重影响阳极氧化的表面效果。如Mn元素过多使得合金阳极氧化颜色泛棕色(粉色);Cu、Cr元素均会导致合金阳极氧化后颜色发黄,尤其是Cr对颜色影响极为敏感,0.2wt.%含量即可导致氧化膜明显变色;过量的Fe、Si、Zr能使合金氧化后失去原本鲜亮的银白色,而呈现出暗灰色,严重时发黑。
本公开提供的铝合金属于Zn-Mg强化的7000系变形铝合金范畴,Zn和Mg的加入并不会剧烈降低合金阳极氧化膜的光泽度,更不会导致合金氧化膜变色,合金主要为MgZn2相 和Al2Mg3Zn3相沉淀强化。
Ga元素加入合金能够活化铝表面,提高铝阳极氧化效率和氧化膜生成的均匀性,铝合金阳极氧化是一个氧化膜向铝基体扩散生成与表面膜溶解的动态过程,Ga元素能与其他元素形成低共熔混合物,附着在氧化膜阻挡层,破坏表面钝化膜,提高铝氧化的反应活性,从而促进氧化膜的生成均匀向铝基体推进;另外,Ga元素最终溶解于电解溶液中,不会对氧化膜产生任何不利影响。
V和Ti加入合金中,能生成Al11V和Al3Ti难溶化合物,均具有很好的细化晶粒及提高再结晶温度的作用,提高了合金综合性能;并且,V和Ti不会影响合金阳极氧化膜外观质量。
Si、Fe及Cu含量均在0.2重量%以下,既起到了很好的强化合金,提高力学性能的作用,又不会影响阳极氧化效果。
本公开的实施例中,所述不可避免的杂质元素包含少于0.02重量%的Cr,少于0.1重量%的Zr,少于重量0.1%的Mn,以及少于0.05重量%的单个其它杂质元素,其中所述单个其它杂质元素的总量少于0.15重量%。
本公开的铝合金强度高,屈服极限达440MPa以上,并且其阳极氧化性能良好,经硫酸浴阳极氧化后氧化膜厚度达8μm至18μm,并且该膜透明度高,呈银白色,色泽鲜亮、均匀,一致性好。
本公开的实施例还提供了一种制备铝合金的方法。该方法包括使铝合金原料熔融以制备铝合金铸锭,其中所述铝合金原料的组成使得得到的铝合金铸锭的组分及重量含量为:
5重量%至8重量%的Zn,
1.2重量%至3.2重量%的Mg,
0.001重量%至0.15重量%的Ga,
0.001重量%至0.1重量%的V,
0.001重量%至0.2重量%的Ti,
0.2重量%以下的Si,
0.2重量%以下的Fe,
0.2重量%以下的Cu,以及
余量为Al和不可避免的杂质元素。
本公开的实施例中,该方法还包括通过轧制成型或挤出成型将所述铝合金铸锭成型为铝合金件。在本公开的一个具体示例中,在475℃至530℃对经过熔融的铝合金铸锭进行轧制 加工,得到轧制铝合金件。在本公开的另一个具体示例中,在485℃至540℃对经过熔融的铝合金铸锭进行挤出加工,得到挤出型材。
本公开的实施例中,在使铝合金件成型之前,所述方法还包括对铝合金铸锭进行均匀化处理。该均匀化处理可以消除成分、组织偏析等铸造缺陷,使合金成分均质性更好。所述均匀化处理的方法为:将铝合金铸锭在410℃至430℃保温2小时至4小时,再加热到460℃至480℃保温12小时至16小时。
本公开的实施例中,在成型之后还包括对铝合金件进行固溶处理。固溶处理的效果可以使合金元素充分固溶,形成过饱和固溶体,为沉淀(析出)强化做好组织准备。所述固溶处理的温度为465℃至485℃,时间为0.5h至1.5h。
本公开的实施例中,在所述固溶处理之后对铝合金件进行人工时效处理。人工时效处理可以使过饱和固溶体分解析出强化相,弥散分布于合金组织,强化合金。在本公开的一个实施例中,人工时效处理工艺为:在95℃至105℃保温4小时至6小时,然后,再加热到120℃至130℃保温12小时至20小时。在本公开的另一个实施例中,人工时效处理工艺为:在110℃至130℃保温16小时至28小时。
本公开实施例中的所述铝合金原料可以为包含Al、Zn、Mg、Ga、V、Ti、Si、Fe和Cu的各种纯金属锭或合金锭。从容易得到和低成本角度考虑,例如可以采用纯Al锭、Al-V合金、Al-Fe合金、Al-Ti合金、Al-Si合金、Al-Cu合金、纯Mg、纯Zn及纯Ga。
本公开的实施例中,经配料计算后,按量称取纯Al锭、Al-V(10重量%V)合金、Al-Ti(5重量%Ti)合金、Al-Si(20重量%Si)合金,Al-Fe(20重量%Fe)合金,Al-Cu(50重量%Cu)合金,纯Mg、纯Zn及纯Ga,再将纯Al锭、Al-V合金、Al-Ti合金、Al-Si合金、Al-Fe合金、Al-Cu合金放入熔炼炉加热至全部熔化,然后依次加入纯Zn、纯Mg、纯Ga(以铝箔包紧)没入熔体中熔化后,搅拌8分钟至15分钟,使成分均匀。在加入0.5重量%除渣剂除渣,0.5重量%精炼剂精炼除气,完成后扒渣静置20分钟至35分钟,然后降温至710℃左右开始浇铸成锭;再将铝合金铸锭经过挤出或轧制成型后经热处理强化可获得力学性能及阳极氧化性能优异的铝合金件和型材。
下面通过具体实施例对本公开进行进一步的详细说明。
实施例1
经配料计算后,按重量称取各中间合金及金属单质,然后按照上述提供的铝合金熔炼制样工艺进行熔炼制得铝合金铸锭,各中间合金及金属单质重量比例如下表1。然后,将铝合金铸锭在415℃保温3.5小时,再加热到470℃温度下保温14小时进行均质化处理;然后, 将铝合金铸锭温度设定到435℃进行轧制加工,得到轧制铝合金件,将铝合金件进行475℃/1h固溶处理,采用25℃至30℃水冷,然后进行拉伸,变形量为1%,最后,进行人工时效处理:在100℃加热5小时,再加热到125℃保温18小时,制备得到铝合金件A1。
实施例2
经配料计算后,按重量称取各中间合金及金属单质,然后按照上述提供的铝合金熔炼制样过程进行熔炼制得铝合金铸锭,各中间合金及金属单质重量比例如下表1。然后,将铝合金铸锭在425℃保温4小时,再加热到475℃温度下保温15小时进行均质化处理;然后,将铝合金铸锭温度设定到445℃进行轧制加工,得到轧制铝合金件,将铝合金件进行485℃/1.5h固溶处理,采用25℃至30℃水冷,然后进行拉伸,变形量为1.5%,最后,进行人工时效处理:在105℃加热6小时,再加热到130℃保温20小时,制备得到铝合金件A2。
实施例3
经配料计算后,按重量称取各中间合金及金属单质,然后按照上述提供的铝合金熔炼制样过程进行熔炼制得铝合金铸锭,各中间合金及金属单质重量比例如下表1。然后,将铝合金铸锭在410℃保温4小时,再加热到460℃温度下保温12小时进行均质化处理;然后,将铝合金铸锭温度设定到450℃进行轧制加工,得到轧制铝合金件,将铝合金件进行465℃/1h固溶处理,采用25℃至30℃水冷,然后进行拉伸,变形量为1.5%,最后,进行人工时效处理:加热到120℃保温24小时,制备得到铝合金件A3。
实施例4
按照实施例1的方法制备铝合金件A4,区别在于各中间合金及金属单质的重量比例如下表1。
实施例5
经配料计算后,按重量称取各中间合金及金属单质,然后按照上述提供的铝合金熔炼制样过程进行熔炼制得铝合金铸锭,各中间合金及金属单质重量比例如下表1。然后,将铝合金铸锭在425℃保温4小时,再加热到475℃温度下保温15小时进行均质化处理;然后,将铝合金铸锭温度设定到450℃进行挤出加工,得到挤出铝合金件,将铝合金件进行485℃/1.5h固溶处理,采用25℃至30℃水冷,然后进行拉伸,变形量为1%,最后,进行人工时效处理:在105℃加热6小时,再加热到130℃保温20小时,制备得到铝合金件A5。
实施例6
按照实施例5的方法制备铝合金件A6,区别在于各中间合金及金属单质的重量比例如下表1。
实施例7
按照实施例5的方法制备铝合金件A7,区别在于各中间合金及金属单质的重量比例如下表1。
实施例8
按照实施例5的方法制备铝合金件A8,区别在于各中间合金及金属单质的重量比例如下表1。
实施例9
按照实施例5的方法制备铝合金件A9,区别在于各中间合金及金属单质的重量比例如下表1。
实施例10
按照实施例5的方法制备铝合金件A10,区别在于各中间合金及金属单质的重量比例如下表1。
对比例1
按照实施例1的方法制备铝合金件B1,区别在于各中间合金及金属单质的重量比例如下表1。
对比例2
按照实施例5的方法制备铝合金件B2,区别在于各中间合金及金属单质的重量比例如下表1。
表1
Figure PCTCN2016095892-appb-000001
Figure PCTCN2016095892-appb-000002
表2
Figure PCTCN2016095892-appb-000003
性能测试
一、铝合金件的成分能测试
将铝合金件A1-A10及B1-B2用ICP光谱仪(美国热电的Thermo ICAP 6300)测试其组成及含量,结果见表2。
二、铝合金件的力学性能测试
将铝合金件A1-A8及B1-B2进行如下测试:
根据GB/T228-2002金属材料室内拉伸试验方法测量铝合金件的抗拉强度、屈服强度和延伸率,结果见表3。
三、阳极氧化的性能测试
阳极氧化的条件:分别将铝合金件A1-A10及B1-B2进行如下的阳极氧化,得到阳极氧化产品CA1-CA10及CB1-CB2。
采用硫酸直流阳极氧化工艺:氧化槽液温度19℃,电流密度1.6A·dm-2,氧化时间30min。
1、阳极氧化膜的效果
将CA1-CA10及CB1-CB2放在自然光下,肉眼观察其表面的阳极氧化膜,结果见表4。
2、阳极氧化的厚度
用TIME2818覆层测厚仪测试CA1-CA10及CB1-CB2表面的阳极氧化膜的厚度,结果见表4。
表3
处理方式 抗拉强度/MPa 屈服强度/MPa 延伸率/%
A1 467 447 14.5
A2 470 458 12.5
A3 492 471 11
A4 509 482 8.5
A5 478 461 12
A6 479 463 11.5
A7 495 475 9.5
A8 469 451 14
A9 460 447 16
A10 488 465 10.5
B1 461 442 15
B2 486 465 13.5
表4
Figure PCTCN2016095892-appb-000004
Figure PCTCN2016095892-appb-000005
从表3-表4的性能测试数据中可以看出,实施例1-10,铝合金件均保持高的屈服强度,达440MPa以上,并且随着主强化元素Mg、Zn含量的增加而增加;同时,所有铝合金件均保持良好的阳极氧化性能,氧化膜呈银白色,色泽均匀、鲜亮。
对比例1中,铝合金件含有较多的Fe和Si,虽然其机械性能不差,但已不适合于光亮阳极氧化处理,阳极氧化后整体色泽较暗,偏灰色,并且局部有灰斑,同时氧化膜生成效率也降低,膜厚仅6μm;对比例2中,铝合金件含有较多的Cu、Cr、Mn,其机械性能良好,但阳极氧化性能下降明显,阳极氧化后,整个样件色泽较暗,且偏黄色,已不适合于光亮阳极氧化处理。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (11)

  1. 一种铝合金,包含:
    5重量%至8重量%的Zn,
    1.2重量%至3.2重量%的Mg,
    0.001重量%至0.15重量%的Ga,
    0.001重量%至0.1重量%的V,
    0.001重量%至0.2重量%的Ti,
    0.2重量%以下的Si,
    0.2重量%以下的Fe,
    0.2重量%以下的Cu,以及
    余量为Al和不可避免的杂质元素。
  2. 根据权利要求1所述的铝合金,包含:
    6.3重量%至6.9重量%的Zn,
    1.6重量%至2.2重量%的Mg,
    0.008重量%至0.1重量%的Ga,
    0.005重量%至0.1重量%的V,
    0.01重量%至0.1重量%的Ti,
    0.1重量%以下的Si,
    0.1重量%以下的Fe,
    0.1重量%以下的Cu,以及
    余量为Al和不可避免的杂质元素。
  3. 根据权利要求1或2所述的铝合金,其中所述不可避免的杂质元素包含:
    少于0.02重量%的Cr,
    少于0.1重量%的Zr,
    少于0.1重量%的Mn,以及
    少于0.05重量%的单个其它杂质元素,其中所述单个其它杂质元素的总量少于0.15重量%。
  4. 根据权利要求1至3任一项中所述的铝合金,其中所述铝合金的屈服极限大于440MPa。
  5. 一种制备铝合金的方法,包含:使铝合金原料熔融以制备铝合金铸锭,其中所述铝合金原料的组成使得得到的铝合金铸锭的组分及重量含量为:
    5重量%至8重量%的Zn,
    1.2重量%至3.2重量%的Mg,
    0.001重量%至0.15重量%的Ga,
    0.001重量%至0.1重量%的V,
    0.001重量%至0.2重量%的Ti,
    0.2重量%以下的Si,
    0.2重量%以下的Fe,
    0.2重量%以下的Cu,以及
    余量为Al和不可避免的杂质元素。
  6. 根据权利要求5所述的方法,还包括:通过轧制成型或挤出成型将所述的铝合金铸锭成型为铝合金件。
  7. 根据权利要求6所述的方法,其中在使铝合金件成型之前,所述方法还包括:通过在410℃至430℃保温2小时至4小时,再加热到460℃至480℃保温12小时至16小时而对经过熔融的铝合金铸锭进行均质化处理。
  8. 根据权利要求6或7所述的方法,其中在使铝合金件成型之后,所述方法还包括:在465℃至485℃对所述铝合金件进行0.5h至1.5h的固溶处理。
  9. 根据权利要求8所述的方法,其中在所述固溶处理之后,所述方法还包括:对所述铝合金件进行人工时效处理。
  10. 根据权利要求9所述的方法,其中所述人工时效处理的方法为:在95℃至105℃保温4小时至6小时,然后再加热到120℃至130℃保温12小时至20小时。
  11. 根据权利要求9所述的方法,其中所述人工时效处理的方法为:在110℃至130℃保温16小时至28小时。
PCT/CN2016/095892 2015-12-21 2016-08-18 铝合金及其制备方法 WO2017107511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510971460.3 2015-12-21
CN201510971460 2015-12-21

Publications (1)

Publication Number Publication Date
WO2017107511A1 true WO2017107511A1 (zh) 2017-06-29

Family

ID=59088932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095892 WO2017107511A1 (zh) 2015-12-21 2016-08-18 铝合金及其制备方法

Country Status (2)

Country Link
CN (1) CN106893908A (zh)
WO (1) WO2017107511A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050853A (zh) * 2017-12-14 2018-05-18 沈阳市东盛金属制品有限公司 一种铸造201z5铝合金的方法和熔炼炉

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619976B (zh) * 2017-08-09 2019-04-16 中车青岛四方机车车辆股份有限公司 一种Al-Zn-Mg合金及其制备方法
CN107447143A (zh) * 2017-08-10 2017-12-08 佛山市三水凤铝铝业有限公司 一种中空铝合金型材及其挤压方法
CN107964615A (zh) * 2017-11-22 2018-04-27 华南理工大学 一种挤压型材用高强7xxx系铝合金及其制备方法
CN110396628B (zh) * 2018-04-25 2022-02-08 比亚迪股份有限公司 一种铝合金及其制备方法
CN112143949B (zh) * 2019-06-27 2021-12-07 比亚迪股份有限公司 一种压铸铝合金及其制备方法和应用
CN113150653A (zh) * 2021-06-22 2021-07-23 南通市通州区同博机械制造有限公司 一种高强度耐腐蚀铝合金及其加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830002513B1 (ko) * 1982-05-18 1983-11-07 정해룡 유전 양극용 알루미늄 합금
JP2000273566A (ja) * 1999-03-23 2000-10-03 Nippon Boshoku Kogyo Kk 低温海水用アルミニウム合金流電陽極
RU2327757C2 (ru) * 2006-07-05 2008-06-27 Открытое акционерное общество "Каменск-Уральский металлургический завод" Сплав на основе алюминия и изделие из него
CN105063442A (zh) * 2015-08-10 2015-11-18 台山市金桥铝型材厂有限公司 一种铝合金
CN105112747A (zh) * 2015-10-08 2015-12-02 台山市金桥铝型材厂有限公司 一种7xxx铝合金

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749597B2 (ja) * 1988-10-17 1998-05-13 古河電気工業株式会社 成形金型及び工具用高強度アルミニウム合金
CN101479397B (zh) * 2006-06-30 2013-03-13 肯联铝业轧制品-雷文斯伍德有限公司 高强度、可热处理的Al-Zn-Mg铝合金
CN101619459B (zh) * 2009-08-11 2011-06-22 山东德瑞防腐材料有限公司 一种快速活化铝合金牺牲阳极

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830002513B1 (ko) * 1982-05-18 1983-11-07 정해룡 유전 양극용 알루미늄 합금
JP2000273566A (ja) * 1999-03-23 2000-10-03 Nippon Boshoku Kogyo Kk 低温海水用アルミニウム合金流電陽極
RU2327757C2 (ru) * 2006-07-05 2008-06-27 Открытое акционерное общество "Каменск-Уральский металлургический завод" Сплав на основе алюминия и изделие из него
CN105063442A (zh) * 2015-08-10 2015-11-18 台山市金桥铝型材厂有限公司 一种铝合金
CN105112747A (zh) * 2015-10-08 2015-12-02 台山市金桥铝型材厂有限公司 一种7xxx铝合金

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050853A (zh) * 2017-12-14 2018-05-18 沈阳市东盛金属制品有限公司 一种铸造201z5铝合金的方法和熔炼炉

Also Published As

Publication number Publication date
CN106893908A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2017107511A1 (zh) 铝合金及其制备方法
KR101624116B1 (ko) 고강도 알루미늄 합금재 및 이의 제조 방법
CN105189795B (zh) 电子设备框体用的具有耐酸铝皮膜的高强度铝合金板及其制造方法
CN110042332B (zh) 一种铝合金及其制备方法
US10661338B2 (en) Damage tolerant aluminium material having a layered microstructure
CN105112747B (zh) 一种7xxx铝合金
WO2015025706A1 (ja) 高強度アルミニウム合金及びその製造方法
US20080056932A1 (en) High Strength, Heat Treatable Aluminum Alloy
JPH06500602A (ja) 改良リチウムアルミニウム合金系
US9970090B2 (en) Aluminum alloy combining high strength, elongation and extrudability
JP2023085484A (ja) 7xxxシリーズアルミニウム合金製品
CN106350716A (zh) 一种高强度外观件铝合金材料及其制备方法
US10208370B2 (en) High-strength aluminum alloy and manufacturing method thereof
CN109536794A (zh) 一种耐弯曲开裂高抗性电泳铝型材及其制备方法
CN112458344B (zh) 一种高强耐蚀的铝合金及其制备方法和应用
US20110278397A1 (en) Aluminum-copper-lithium alloy for a lower wing skin element
CN112626386B (zh) 一种高强耐蚀的Al-Mg-Si-Cu系铝合金及其制备方法和应用
CN110396628B (zh) 一种铝合金及其制备方法
CN110983122A (zh) 一种5a65铝合金带材及其制备方法
CN112522552B (zh) 一种耐蚀的铝合金及其制备方法和应用
US20210388470A1 (en) Metal sheet made of high-strength 2xxx alloy for an aircraft fuselage
CN114351019B (zh) 一种铝合金材料及其制备方法和应用
CN114351016B (zh) 一种粗晶铝合金及其制备方法和应用
JPH10306336A (ja) 陽極酸化処理後の表面光沢性に優れたアルミニウム合金押出材およびその製造方法
CN106636808A (zh) 一种铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877323

Country of ref document: EP

Kind code of ref document: A1