WO2004085652A1 - 大麦リポキシゲナーゼ-1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法 - Google Patents

大麦リポキシゲナーゼ-1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法 Download PDF

Info

Publication number
WO2004085652A1
WO2004085652A1 PCT/JP2004/004217 JP2004004217W WO2004085652A1 WO 2004085652 A1 WO2004085652 A1 WO 2004085652A1 JP 2004004217 W JP2004004217 W JP 2004004217W WO 2004085652 A1 WO2004085652 A1 WO 2004085652A1
Authority
WO
WIPO (PCT)
Prior art keywords
barley
lox
malt
gene
lipoxygenase
Prior art date
Application number
PCT/JP2004/004217
Other languages
English (en)
French (fr)
Inventor
Naohiko Hirota
Takafumi Kaneko
Hisao Kuroda
Hirotaka Kaneda
Kiyoshi Takoi
Kazuyoshi Takeda
Original Assignee
Sapporo Breweries Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE602004017294T priority Critical patent/DE602004017294D1/de
Priority to EP04723378A priority patent/EP1609866B1/en
Priority to CA002519824A priority patent/CA2519824C/en
Application filed by Sapporo Breweries Limited filed Critical Sapporo Breweries Limited
Priority to PL04723378T priority patent/PL1609866T3/pl
Priority to MXPA05009814A priority patent/MXPA05009814A/es
Priority to AU2004223568A priority patent/AU2004223568B2/en
Priority to BRPI0408764-0A priority patent/BRPI0408764A/pt
Priority to US10/550,528 priority patent/US7897850B2/en
Priority to DK04723378T priority patent/DK1609866T3/da
Publication of WO2004085652A1 publication Critical patent/WO2004085652A1/ja
Priority to US12/505,723 priority patent/US20090285932A1/en
Priority to AU2009202975A priority patent/AU2009202975C1/en
Priority to US13/667,538 priority patent/US20130129862A1/en
Priority to US13/800,500 priority patent/US20130196027A1/en
Priority to US14/662,416 priority patent/US9497919B2/en
Priority to US14/882,998 priority patent/US20170295738A1/en
Priority to US15/979,923 priority patent/US20180271046A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4624Hordeum vulgarus [barley]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4636Oryza sp. [rice]
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C1/00Preparation of malt
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • Barley lipoxygenase-1 gene method for selecting barley, raw material for malt alcoholic beverage, and method for producing malt alcoholic beverage
  • the present invention relates to a barley lipoxygenase-1 gene, a method for selecting barley, a raw material for malt alcoholic beverage, and a method for producing a malt alcoholic beverage.
  • L OX-1 Barley lipoxygenase-1
  • an enzyme contained in malt oxidizes malt-derived linoleic acid in the preparation process for producing malt alcoholic beverages. It produces peroxyoctadecadienoic acid (Kobayashi, N. et al., J. Ferment. Bioeng., 76, 371-375, 1993).
  • 9-Hydroxypertadecadenoic acid is further converted to trihydroxyoctadedecenoic acid (THOD) by peroxygenase-like activity (Kuroda, ⁇ ⁇ , et al., J. Biosci. Bioeng., 93, 73-77, 2002).
  • This THOD is known to lower the foaminess of beer, give it astringent taste, and worsen it (Kobayashi, N., J.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is useful for producing a malt alcoholic beverage having improved flavor durability and foam retention without any manipulation.
  • LOX-1 mutant gene selection method of LOX-1 deficient barley, raw material for malt alcoholic beverage derived from barley obtained by selection, and production of malt alcoholic beverage using the raw material for malt alcoholic beverage It aims to provide a method and
  • the guanine at the splicing donor site (5′-GT-3 ′) of the fifth intron of the known LOX-1 gene is mutated to another base. It is characterized by that.
  • the other base is preferably adeyun.
  • the method for selecting LOX-1 deficient barley of the present invention is based on whether or not the guanine at the splicing donor site of LOX-1 gene intron 5 is mutated to another base. It is characterized by discriminating deleted barley.
  • the other base is preferably adenine.
  • the method for selecting LOX-1-deleted barley of the present invention comprises a genomic DNA extraction step of extracting genomic DNA from barley as a test target, and the extracted genome DN A to LOX-1 gene 5th intron splicing donor site A DNA fragment containing the splicing donor site of DNA Amplification step and LOX-1 gene 5th intron splicing donor site amplified in the above-mentioned DNA fragment increasing step A DNA fragment with a certain number of bases is detected by cleaving a DNA fragment containing DNA with a restriction enzyme, and barley LOX-1 deleted barley is discriminated based on whether or not the splicing donor site guanine has been mutated to another base. And a DNA fragment detection step.
  • the restriction enzyme used in the DNA fragment detection step is A f a I and Z or R sa I which recognizes the base sequence 5, one GTAC-3.
  • barley varieties lacking LOX-1 activity can be easily selected by gene-level analysis without directly measuring LOX-1 activity.
  • enzyme activity is affected by the growth stage and environment of the individual plant, and accurate measurement may be difficult.
  • LO X-1 activity is not affected by the environment. Barley varieties lacking can be selected.
  • enzyme activity cannot be measured until the seeds are ripened, but DNA can be determined at the early stage of growth, so it can be determined early whether or not it is an activity-deficient trait, and continuous backcrossing can also be performed. It is valid.
  • the raw material for malt alcoholic beverage of the present invention is LOX-
  • the raw material for malt alcoholic beverage of the present invention is a seed derived from barley selected by the method for selecting LOX-1 deficient barley of the present invention, malt, maltox, barley degradation product or processed barley product It is characterized by being.
  • the method for producing a malt alcoholic beverage of the present invention is characterized by using the raw material for a malt alcoholic beverage of the present invention.
  • the present invention also provides a nucleic acid comprising a base sequence represented by bases 1-155 of SEQ ID NO: 10.
  • the strong base sequence represents the coding region of the gene encoding the mutant L0X-1 protein lacking the lipoxygen-lase activity of the LOX-1 protein.
  • the present invention also provides a nucleic acid comprising the base sequence represented by SEQ ID NO: 11.
  • a base sequence represents the genomic sequence of the gene encoding the mutant LOX-1 protein lacking the lipoxygenase activity of the LOX-1 protein.
  • the present invention also provides a nucleic acid consisting of 10 to 60 consecutive base sequences containing the 31st 78th base in the nucleic acid consisting of the base sequence represented by SEQ ID NO: 11. 3 1
  • the 78th base is a single nucleotide polymorphism, which is G in normal LOX-1, but A in mutant LOX-1.
  • the present invention also includes a step of isolating genomic DNA from a barley sample, and the 31st 78th base of the base sequence represented by SEQ ID NO: 11 is detected. And a method for detecting the presence of LOX-1 activity in barley, comprising the steps of: According to this method, it is possible to determine whether the barley to be examined has a LOX-1 activity deficient trait.
  • a malt alcoholic beverage is produced using the seeds derived from barley lacking LOX-1 activity found in this way, malt, malt extract, barley degradation product or processed barley product as raw materials. For example, a malt alcoholic beverage with improved flavor durability and foam retention can be obtained.
  • FIG. 1 is a graph showing the results of LOX-1 activity in exploratory test 1.
  • FIG. 2 is a graph showing the results of L O X-1 inhibitory activity in Verification Test 1.
  • FIG. 3 is an electrophoretogram showing the results of Western analysis of L O X protein in barley seeds in Certification Test 2.
  • A shows the results of Western analysis after SDS-PAGE, and B shows the results of Western analysis after IEF.
  • FIG. 4 is an electrophoretogram showing the results of RT-PCR analysis of barley seed RNA in verification test 3.
  • FIG. 5 is a diagram showing the structure of the LOX-1 gene 5th intron splicing donor site in verification test 4.
  • Fig. 6 is an electrophoretogram showing the results of analyzing the splicing of LOX-1 mutant gene in verification test 5.
  • A is an electrophoretic photograph of an amplified fragment containing the 3rd to 5th introns
  • B is an electrophoretic photograph after digesting the same amplified fragment as A with StuI.
  • FIG. 7 is an electrophoretogram of the expression-inducing protein in E. coli in proof tests 7 and 8.
  • FIG. 8 is a graph showing the activity of LOX-1 whose expression was induced in E. coli in verification tests 7 and 8.
  • FIG. 9 is an electrophoretogram showing the DNA polymorphism in the second generation hybrid of Ken d a 1 1 X SBOU2 in certification test 9.
  • FIG. 10 is a table summarizing the DNA polymorphism in the second generation of hybrids and the L O X activity in the third generation of hybrids of Ken d a 1 1 X S BOU 2 in certification test 9.
  • FIG. 11 is an electrophoretogram showing the results of analysis by the AfaI method of the general barley variety Z in Example 1.
  • FIG. 12 is an electrophoretogram showing the results of analysis of the L OX-1 deficient barley in Example 2 by the AfaI method.
  • FIG. 13 is a graph showing the results of LOX activity of seeds of LOX-1-deficient barley in Example 2.
  • A shows the result of the enzyme reaction time of 5 minutes
  • B ' shows the result of the enzyme reaction time of 90 minutes.
  • FIG. 14 is a diagram showing the results of malt analysis of seeds of the LOX + F 4 population and the LOX-F 4 population in Example 5.
  • FIG. 15 is a graph showing the concentration of trans-2-enenal in wort and the nonenal potential in Example 5.
  • the LOX-1 mutant gene according to the present invention is a novel gene found by the present inventors, and the 60th base G is A as compared with the known LOX-1 gene (SEQ ID NO: 1). (SEQ ID NO: 2).
  • SEQ ID NO: 1 The 60th to 61st positions of SEQ ID NO: 1 are splicing donor sites (5, 1 GT-3,) Therefore, substitution of this base causes abnormal splicing of LOX-1, and it becomes impossible to express active LOX-1.
  • SEQ ID NO: 1 shows the nucleotide sequence of the fifth intron region of the known LOX-1 gene
  • SEQ ID NO: 2 shows the number of the LOX-1 gene of the LOX-1 mutant gene of the present invention. The base sequence corresponding to the 5 intron region is shown.
  • the method for selecting LOX-1 deficient barley of the present invention is based on whether or not the guanine at the splicing donor site of the fifth intron of LOX-1 gene is mutated to another base. It is characterized by discriminating deleted barley.
  • Detection of these base mutations is not particularly limited as long as a DNA fragment can be detected, but agarose gel electrophoresis or polyacrylamide gel electrophoresis may be used.
  • a quantitative PCR method such as TA QMAN can be used to detect DNA mutations based on the presence or absence of amplification and amplification efficiency.
  • the method for selecting LOX-1 deficient barley of the present invention preferably comprises a genomic DNA extraction step of extracting genomic DNA from barley as a test subject, and LOX-1 transfer from the extracted genomic DNA.
  • a DNA fragment amplification step that amplifies a DNA fragment containing the splicing donor site of the 5th intron of the child, and a splicing donor site of the 5th intron of the LOX_1 gene amplified in the DNA fragment amplification step
  • a DNA fragment with a specified number of bases is detected by cleaving the DNA fragment with a restriction enzyme, and barley LOX-1-deleted barley is discriminated based on whether or not the splicing donor site guanine is mutated to another base.
  • DN A And a fragment detection step.
  • genomic DNA extraction process There is no particular limitation on the method for extracting genomic DNA from the test barley, and it can be performed by a known method. Specifically, for example, the C TAB method (Murray et al., 1980 , Nucleic Acids Res. 8: 4321-4325) and Ethidium bromide method (Varadarajan and Frakash 1991, Plant Mol. Biol. Rep. 9: 6-12).
  • C TAB method Murray et al., 1980 , Nucleic Acids Res. 8: 4321-4325
  • Ethidium bromide method Varadarajan and Frakash 1991, Plant Mol. Biol. Rep. 9: 6-12.
  • leaves can be used as the tissue for extracting genomic DNA. For example, by using leaves, it can be used to select a large number of individuals during the backcross generation.
  • the method for amplifying a DNA fragment is not particularly limited, and can be performed by, for example, PCR method (Polymerase ChinnReactiotMethod).
  • the primer used in the PCR method is a nucleotide sequence as long as it is set in a region capable of amplifying a DNA fragment containing the splicing donor site of LOX-1 gene 5th intron.
  • it is preferably a continuous base having 10 to 60 bases in the LOX-1 gene, and more preferably a continuous base having 15 to 30 bases.
  • the GC content in the primer base sequence is preferably 40 to 60%.
  • [005 2] LOX-]. Mutant gene according to the present invention is known as described above. Since there is a difference in nucleotide sequence from LOX-1, if the amplified product is cleaved using a restriction enzyme that recognizes or cuts the difference, the size of the resulting DNA fragment will be different.
  • the restriction enzyme according to the present invention is not particularly limited as long as it recognizes, recognizes, or cleaves the above-mentioned difference, but the restriction enzyme Afa that has already been found to have such an action. I and Z or R sa I are preferred.
  • the LOX-1 mutant gene of the present invention has a restriction enzyme A existing in a known LOX-1 gene because the guanine at the splicing supply site is mutated to another base.
  • the cleavage site of fa I and R sa I (5 '— GTAC 1'3: 5th intron 60-63) has disappeared.
  • the gene amplification product containing this cleavage site is cleaved with Afa I and Z or Rsa I, so the cleavage pattern differs from that of the known LOX-1 gene. Can be determined.
  • a DNA fragment having a predetermined number of bases is a DNA fragment in which a difference is seen in the size of a DNA fragment obtained by cleaving an amplification product with a restriction enzyme due to the presence of the different part. If so, the number of bases is not particularly limited.
  • the detection according to this step is not particularly limited as long as it is a method capable of detecting a DNA fragment cleaved by a restriction enzyme. Specifically, for example, gaussose gel electrophoresis, polyacrylamide It can be detected by gel electrophoresis.
  • the malt alcoholic beverage raw material of the present invention is characterized by being seeds derived from barley having the LOX-1 mutant gene of the present invention, malt, malt extract, barley degradation product or processed barley product, It is a seed derived from barley selected by the method for selecting barley of the present invention, malt, malt extract, barley decomposition product or processed barley product.
  • the malt extract refers to an extract of malt, and examples thereof include an extract of a sugar component and a protein component in malt.
  • the barley decomposition product refers to a product obtained by decomposing barley with an enzyme, etc., and barley saccharified liquid falls under this category.
  • the processed barley products include barley grinds used as a secondary ingredient in malt alcoholic beverages. [0 0 5 9 ⁇ ] Since the raw material for malt alcoholic beverage of the present invention does not contain LOX-1, it is difficult to produce 9_hydroperoxyoctadecagenic acid from linoleic acid in the production process of malt alcoholic beverage. -Nonenal is also expected to suppress the formation of malt alcoholic beverages with improved flavor durability and foam durability.
  • the method for producing a malt alcoholic beverage of the present invention is characterized by using the raw material for a malt alcoholic beverage of the present invention.
  • the malting process according to the present invention is a process for obtaining malt characterized by using LOX-1-deficient barley, and is not particularly limited as a method for producing malt, and is a known method. Just do it. Specifically, for example, after malting until the degree of soaking reaches 40% to 45%, germination can be performed at 10 to 20 ° C for 3 to 6 days, and dried to obtain malt. .
  • the charging step according to the present invention is an step of saccharifying the malt to obtain wort. Specifically, it is further divided into the following first to fourth steps.
  • the malt used in this step is preferably one obtained by germinating barley with water and air, dried and removing the young roots.
  • Malt produced wort It is an essential source of starch and a major starch source as a raw material for saccharification.
  • the germinated malt is used for wort production to give a flavor and pigment peculiar to malt alcoholic beverages.
  • auxiliary raw materials such as LOO-1 deficient barley or general barley, corn starch, corn grits, rice, and sugars according to the present invention may be added as raw materials.
  • the LOX-1 deficient barley according to the present invention or malt extract prepared from general barley, or a barley degradation product, and a processed barley product are mixed with feed water. If necessary, the auxiliary material can be added to obtain wort.
  • the malt is added to the feed water and then mixed. What is necessary is just to mix here, when adding the said auxiliary material. In the case of sugars, it may be added before boiling as described below.
  • the water for preparation is not particularly limited, and water suitable for the malt alcoholic beverage to be produced may be used. Saccharification is basically performed under known conditions. After filtering the malt saccharified solution thus obtained, hops or herbs are added to the ingredients that can impart aroma, bitterness, and the like, followed by boiling and cooling to obtain cold wort.
  • the second step is a step in which yeast is added to the cold wort and fermented to obtain a malt alcoholic beverage intermediate product.
  • the yeast used is an alcoholic yeast that performs so-called alcoholic fermentation that metabolizes the sugar content in wort obtained by saccharification of the malt to produce alcohol, carbon dioxide, or the like. Any of these may be used, and specific examples include Saccharomyces cerevisiae and Saccharomyces upalm.
  • Fermentation is performed by cooling the wort obtained in the above-described charging step and adding the fermentation mother thereto.
  • Fermentation conditions are basically the same as known conditions.
  • the fermentation temperature is usually 15 ° C or lower, preferably 8 to 10 ° C, and the fermentation time is preferably 8 to 10 days.
  • the third step is a liquor storage step for storing the malt alcoholic beverage intermediate product obtained in the fermentation step.
  • the fermented liquor after alcoholic fermentation is transferred to a closed tank and stored.
  • the storage conditions are basically the same as the known conditions.
  • the storage temperature is preferably 0 to 2 ° C
  • the storage time is preferably 20 to 90 days. Re-fermentation and ripening of the remaining emulsion is performed by storing the fermentation end liquid.
  • the fourth step is a filtration step of filtering the malt alcohol beverage intermediate product obtained in the alcohol storage step to obtain a malt alcohol beverage
  • Filtration conditions are basically the same as known conditions.
  • diatomaceous earth, PVPP (polyvinylpolypyrrolidone), silica gel, cellulose powder, etc. are used as filtration aids, and the temperature is 0 Performed at ⁇ 1 ° C.
  • a malt alcoholic beverage is obtained.
  • the filtered malt alcoholic beverage is either as it is, or after aseptic filtration or heat treatment, and then packed in tanks, barrels, bottled or canned, and shipped to the market.
  • the malt alcoholic beverage is not particularly limited in the proportion of malt used in the production thereof, and may be an alcoholic beverage produced using malt as a raw material. Specific examples include beer and happoshu.
  • so-called non-alcohol beer and non-alcohol sparkling liquor are malt alcoholic beverages because they use the same production method as malt alcoholic beverages such as beer.
  • L-X-1 is not included in the raw material, and therefore 9 -hydroperoxyocta decagenic acid is hardly generated from linoleic acid in the production process of malt alcoholic beverage. Therefore, it is expected that THOD and Trans-Non-Nenal will be suppressed, and a malt alcoholic beverage with improved flavor durability and foam retention can be expected.
  • the nucleic acid of the present invention is characterized by comprising the base sequence represented by SEQ ID NO: 11.
  • SEQ ID NO: 1 1 represents the genomic sequence of mutant LOX-1 possessed by barley variety 3801 2 lacking 0-1 activity. That is, the LOX-1 mutant gene of the present invention is characterized by being represented by SEQ ID NO: 11.
  • the force corresponding to the 3 1 78th base is G.
  • the 3 1 78th base is mutated to A.
  • this base is the first base of the fifth intron, and GT, which is the 3rd 1st to 3rd 1st 79th base sequence, corresponds to the splicing donor site ( ( Figure 5)
  • GT which is the 3rd 1st to 3rd 1st 79th base sequence
  • the mutant LOX-1 gene since the 31st to 31st 79th base sequence corresponding to the splicing donor site is AT, splicing abnormality occurs and splicing does not occur.
  • the 31 76th to 31st 318th base sequence is TGA and is a stop codon, translation ends here.
  • the mutant LOX-1 protein resulting from this mutant LOX-1 gene exists only up to the portion corresponding to the 5th exon, and is less than the 5th exon compared to the normal LOX-1 protein. Also lacks the C-terminal amino acid residue.
  • the molecular weight of normal LOX-1 protein is 95 Kd, whereas the mutant LOX-1 protein is 57 Kd.
  • the domain corresponding to the etason region in the vicinity of the fifth intron in the normal LOX-1 protein is known to be the active center of plant LOX (Shi b a t a a n d Ax e l ro d (1 995)
  • the mutant L O X-1 protein lacks lipoxygenase activity, consistent with J. L i i d Med a ter s a nd c e l l S i g n a l i n g 1 2: 21 3—228).
  • nucleic acid comprising the base sequence represented by SEQ ID NO: 11 of the present invention is very useful for obtaining a malt alcoholic beverage having improved flavor durability and foam durability.
  • the nucleic acid of the present invention also provides a nucleic acid consisting of 10 to 60 consecutive base sequences including the 3178th base in the nucleic acid consisting of the base sequence represented by SEQ ID NO: 11.
  • this nucleic acid as a probe, it is possible to determine whether the LOX-1 gene of barley is normal or mutant. In other words, it is possible to discriminate between normal and mutant forms based on differences in hybridization using the mismatch that arises from the fact that the 31st 78th base of the normal LOX-1 gene is G.
  • this nucleic acid preferably comprises 20 to 50 consecutive base sequences including 31 78th bases, and preferably includes 3 1 78 to 3 18 1st bases.
  • the nucleic acid may be labeled with a fluorescent substance, a radioisotope, or the like.
  • the method for detecting the presence of LOX-1 activity in barley of the present invention comprises the steps of isolating a genome from a barley sample, and detecting the 3 1 78th base of the base sequence represented by SEQ ID NO: 11 And the step of using the presence of the base as an indicator of the presence of LOX-1 activity in the barley. According to the method, it is possible to determine whether the barley to be examined has a trait lacking LOX-1 activity.
  • Barley samples should not be limited to barley seeds, but should use leaves, stems, roots, etc. Is possible. Nucleic acids can be isolated by known methods, such as CT AB method or Ethidiurn bromide method.
  • the detection of the 3 1 78th base of the base sequence represented by SEQ ID NO: 11 can be performed by a method known to those skilled in the art.
  • a nucleic acid containing the 3 1 78th base of the base sequence represented by SEQ ID NO: 11 is amplified by a nucleic acid amplification method such as a PCR method.
  • the nucleic acid comprising the base sequence represented by SEQ ID NO: 11 contains 3 1 78th bases 10 to 60 By using a nucleic acid having a continuous base sequence, it is possible to discriminate the type of the 3 1 78th base.
  • the normal LOX_ 1 nucleic acid is cleaved, whereas the mutant LOX-1 The nucleic acid is not cleaved. If a nucleic acid sample that has been treated with restriction enzymes is analyzed by electrophoresis, it is possible to identify the type of LOX-1 gene (normal mutation) by the difference in the electrophoresis pattern. 3 1 7 8 It is possible to determine the type of the second base.
  • nucleic acid having a continuous base sequence of 10 to 60 including the first base of 3 1 78 to 3 1 8 as a probe by using, as a probe, a nucleic acid having a continuous base sequence of 10 to 60 including the first base of 3 1 78 to 3 1 8 as a probe, and hybridizing with a nucleic acid subjected to restriction enzyme treatment, etc. It is also possible to identify the type of L ⁇ X-1 gene, and the type of the 3 1 7 8th base can be identified.
  • the base is G If so, the barley under test has LOX-1 activity, and it can be judged that it is not suitable as a raw material for malt alcoholic beverages with improved flavor durability and foam retention. On the other hand, if the base is A, the barley to be tested does not have LOX-1 activity, and it can be judged that it is suitable as a raw material for malt alcoholic beverages with improved flavor durability and foam retention.
  • the nucleic acid of the present invention is characterized by comprising a base sequence represented by the 1st to 1554th bases of SEQ ID NO: 10.
  • SEQ ID NO: 10 represents the cDNA sequence of mutant LOX-1 expressed in barley variety SBOU2 lacking LOX-1 activity.
  • the base sequence represented by the 1st to 1554th bases is the code region.
  • the mutant LOX-1 protein encoded by this cDNA lacks the amino acid residue on the C-terminal side of the 5th exon compared to normal LOX-1 protein, and its molecular weight is It is 57 Kd and lacks lipoxygenase activity.
  • Exploratory test 1 Search for LOX-1 deficient barley by measuring LOX-1 enzyme activity
  • LOX-1 enzyme activity was measured by the following method, and LOX-1 deficient barley was searched from barley germplasm.
  • a crude enzyme solution was extracted from barley seeds by the following method.
  • One ripe barley seed was crushed with a hammer and extracted using 500 ⁇ L extraction buffer (0.1 ⁇ sodium acetate buffer ( ⁇ 5.5)) at 4 ° C for 30 minutes. It was. The obtained extract was centrifuged at 150 ° 0 rpm for 10 minutes, and the supernatant was used as a crude enzyme solution.
  • the substrate solution 40 mM linoleic acid, 1.0% (W / V) Twee ⁇ 20 aqueous solution
  • 85 ⁇ L of extraction buffer 85 ⁇ L
  • the mixture was reacted at 24 ° C for 5 minutes.
  • the reaction was stopped by adding 100 ⁇ L of a reaction stop solution (80 mM 2,6-di-t-peptile p-talesol methanol monore solution) and mixing.
  • the reaction solution was allowed to stand at 120 for 30 minutes, and then centrifuged at 3 000 rpm for 20 minutes, and the supernatant was used for the next color reaction.
  • the resulting supernatant (20 z L) was mixed with a 200 / L coloring solution (4 mM2, 6-di-tert-butinole p-tale zonole, 25 mM sulfuric acid, 0.25 mM ammonium iron (II) sulfate hexahydrate, 100 mM xylenol range, 90% aqueous methanol solution) was added, allowed to stand for 30 minutes, and the absorbance at a wavelength of 550 nm was measured.
  • a negative control a crude enzyme solution was heat-treated at 100 ° C. for 5 minutes and reacted with LOX-1 inactivated in the same manner.
  • LOX-1 barley variety Kenda 11 1 was used as a positive control.
  • the seed crude enzyme solution was used.
  • an anti-LOX-1 antibody was prepared.
  • the LO X-1 protein used as an antigen was obtained by purifying the LOX-1 protein expressed in E. coli (Kuro d a e t. A 1. (2002) J. B i o s c i e n c e a n d B e o e n g e e e i ng 93: 73-77).
  • the purified protein was immunized to rabbits to produce LOX-1 antibody. This antibody recognizes LOX-1 and LOX-2.
  • the membrane was washed with TTB S three times for 5 minutes, and then reacted with Al force phosphatase-labeled goat anti-rabbit Ig G antibody solution (manufactured by Santa Cruz, 1000-fold diluted TTB S solution) for 30 minutes. Wash the membrane with TTB S for 5 minutes x 2 times, and then add AP 9.5 (1 OmM Tris-HC 1 (pH 9.5), 0.1 M sodium chloride, 5 mM magnesium chloride) for 5 minutes. X After washing once, alkaline phosphatase substrate solution (1 mg / m 1 The color was developed by reacting with rutetrazolium, 0.5 mg / ml BC IP, AP 9.5 solution).
  • Verification test 3 (analysis of LOX_l RNA of SB0U2 seeds) [0108] About ripening of S BOU 2 About 4 weeks of seeds and germination All RNA extracted from 3rd day seeds As RT-PC R. The reaction was carried out using a commercially available kit (manufactured by Kyushu Diagnostics Co., Ltd., manufactured by Perkin Elma Co.) according to the manual of the kit. Primers are based on the previously reported sequence (DNA data bank: Accession L 3593 1), 5'— GGAGAGGAGGCCAAGAAC AAGATG-3 '(SEQ ID NO: 3) and 5, GGT TGGCCCATGGTCTT AG
  • PCR a reaction of 94 ° C for 1 minute, 65 ° C for 2 minutes and 72 ° C for 3 minutes was repeated 3 times, and then an extension reaction was performed at 72 ° C for 7 minutes.
  • the obtained DNA fragment was cloned into pCR2.1 (pGLXABAL 1), and used as a cage for structural analysis.
  • a structural sequencer was used for the structural analysis, and a dye terminator method was used for the sequence reaction. The entire structure is shown in SEQ ID NO: 11 in the sequence listing.
  • SEQ ID NO: 1 in the sequence listing shows the structure of the region containing the fifth intron in the previously reported base sequence of LOX-1 gene (W O 02053721).
  • the splicing donor site is the 60-61th nucleotide sequence 5'-GT-3 '.
  • S BOU 2 the nucleotide sequence of the corresponding region of S BOU 2 found from the analysis results is shown in SEQ ID NO: 2.
  • S BOU 2 it was revealed that the 60th guanine, which is a scouring donor site, was mutated to adenine.
  • the exon region in the vicinity of the fifth intron is known to be the active center of plant LOX;
  • Shibataand Axe 1 rod (1 9 95) J. L iid Me diatersand Cell S igna 1 i 11 g 1 2: 21 3-228), the above splicing abnormality is considered to have a great influence on the 0-1 enzyme activity.
  • Verification Test 5 Analysis of Splicing in the 5th Intron
  • RT-PCR analysis was performed to confirm that splicing abnormality actually occurred in the 5th intron.
  • the amplified fragment is the third intron (1 06 b
  • the amplified fragment of SB OU 2 had about 80 bp bases larger than the amplified fragment of Ken d al 1 (FIG. 6A).
  • the SBOU2 genomic DNA is amplified by about 1.2 Kb, and the above RT-PCR results are considered to be the results for the expressed RNA.
  • the amplified fragment was used as a restriction enzyme in the exon region between the 4th intron (132 bp) and the 5th intron. It was deleted at the Stu I site. As a result, the DNA fragment containing the 5th intron is equal to the mobility of the amplified fragment of the genomic DNA.Therefore, splicing of the 5th intron is abnormal and is not spliced, or the splicing site is on the 3 'side. It became clear that it was displaced (Fig. 6 B). In other words, the newly created stop codon shown in Fig. 5 revealed that the translation of S BOU 2 LOX-1 protein was terminated at this codon and LOX-1 activity was lost.
  • cDNA was isolated in the same manner as described above. Amplification was designed to include a primer containing a BamHI site and a start codon (5, -GGATCCATGCTGCTGGGAGGGCTG-3, (SEQ ID NO: 8)) and a Hind II site and a stop codon ( 5′-AAGCTTTTAGATGGAGATGCTGTTG-3 ′ (SEQ ID NO: 9)) was used. The amplified fragment was digested into pT7 Blue TVector (Novagen) (pB D C 1), and the structure was analyzed. As a result of structural analysis, the nucleotide sequence of cDNA obtained is shown in SEQ ID NO: 10. This cDNA clone was found to contain the entire fifth intron region (positions 1554 to 1632 of SEQ ID NO: 10).
  • Steptoe-derived cDNA was isolated and cloned in the same manner as above (p SDC 1). Cut out the BamH I- Hind III fragment from both SDC 1 and pBDC 1 clones and insert the resulting fragment into the BamHI-Hind III site of the E. coli expression vector pQE 80 L (Qiagen). E. coli expression vector (p SQE l (S teptoe cDNA)), pBQE l (insert SB OU 2 cDNA)). After these vectors were transformed into E.
  • p SQE 1 + BP S / JM109 in which P st I -S tu I fragment containing the mutation of the 5th intron splicing donor site derived from p BQE 1 was inserted into p SQE 1, was the same as PBQE 1ZJM109.
  • An approximately 57 Kd protein was induced (Fig. 7) and lost LOX activity (Fig. 8).
  • p BQ E 1 was exchanged for the P st I-S tu I fragment from p SQE 1! ) BQE 1 + SPS / JM109, like P SQE 1ZJM109, induced about 95 Kd protein (Fig. 7) and restored LOX activity (Fig.
  • Verification test 9 (Mabing and selection of barley mating lines using the fifth intron mutation)
  • the sequence containing the splicing donor site of the 5th intron (SEQ ID NO: 1, 60-63th: 5 '— GTAC-3') is the GTAC sequence. It can be digested with restriction enzyme A ⁇ a I (R sa I).
  • R sa I restriction enzyme A ⁇ a I
  • SB OU 2 strain there is a mutation in the sequence of this region (SEQ ID NO: 2 in the 60-63rd position: 5'—AT AC—3), and Afa I and Z or R sa I LOX-1 deletion gene was mapped using the inability to digest (Fig. 5).
  • SBOU2 and SBOUl i BOU3, S BOU4, SBOU5 and SBOU6 (S B O U type 2 L ⁇ X-1 deleted barley) are
  • the Afa I method which is an example of the barley selection method using DNA mutation, is not only selected from the LOX-1-deleted barley mating progeny but also from barley genetic resources. It became clear that this technology enables efficient selection of LOX-1 deficient barley.
  • Example 3 (Growing barley for test brewing)
  • LOX-1 deficient barley F 4 population consisting of barley seeds without LOX-1 activity derived from crossing of the above barley XS BOU 2 and barley with LO X-1
  • a barley F 4 population (LOX + F 4) with L ⁇ X activity was produced from the seeds and used for wheat production.
  • Barley is made using Autotomic Microma lting System (Phenix System ems), soaked at 16 ° C for a total of 82 hours (5 hours WE TZ 7 hours DRY cycle), Germination was performed under conditions of 1 hour at 55 ° C and 29 hours for drying (13.5 hours at 55 ° C, 8 hours at 65 ° C, 3.5 hours at 75 ° C, 4 hours at 83 ° C).
  • Example 5 analysis of malt and wort
  • wort was prepared from 50 g of malt by the congress method (European Brewery Convention, Analytica EBC Ed), 1987), and lipid oxides in the wort were analyzed.
  • the amount of trans-2-nonenal in wort was measured by the following method.
  • the wort sample 8 mL was placed in a vial and 3 g of NaC1 was added and capped.
  • Gas Chromatography ⁇ Mass Spectrometry 1 uses J & W DB-1 (30m X 0.25mm, film thickness 1 im) as the carrier column, and helium (ImLZ) as the carrier gas. The conditions are 60 ° C to 2 25 ° C (5 ° C / min), and the transformer is selected in select ion mode (m / z: 70).
  • 2-Nonenal was quantified.
  • a standard addition method using Sigma 2-Nenal manufactured by Sigma as a standard product was used.
  • the wort nonenal potential was measured by the following method. First, Drost et al. (Drost, BW, van den Berg, E,., Freijee, FJM, van der Velde, EG, and HoUemans, M., J. Am. Soc. Brew. Chem., 48, 124) -131, 1990) boiled wort for 2 hours. Then, the amount of trans-2-nonenal in the sample was measured according to the above method for measuring trans-2-nonenal, and the nonnal potential in wort was calculated.
  • the figure also shows the comparison between the concentration and the potential of nonenal of the wort prepared using LOX-F4 and those of wort prepared using commercially available malt. 1 to 5. As is clear from the results shown in FIG. 15, the wort according to the present invention showed analytical values that could not be achieved with conventional barley.
  • the THOD concentration in the wort was measured by high performance liquid chromatography mass spectrometry.
  • the conditions for high performance liquid chromatography are as follows.
  • the flow rate of the mobile phase is 0.3 mLZ, and the mobile phase is a mixture of 0.5% acetic acid (liquid A) and acetonitol (liquid B).
  • the column is Waters Assymetry (No.106005; C18, 3.5 im: 2.1x150mm), the force ram temperature is 5 ° C, and the Hewlett-Packard 1100 Model High Performance Liquid Chromatograph System is used.
  • the TH0D concentrations of the worts prepared using LOX-F4 and LOX + F4 were 6.5 ppm and 14.7 ppm, respectively, and the malt according to the present invention was used. It was revealed that wort THOD concentration could be suppressed to 12 or less by producing wort.
  • THOD is produced by conversion from linoleic acid by the action of malt LOX-1 and malt peroxygenase-like activity in the charging process, but malt peroxygenase. Since the activity is considered to be the rate-limiting step of THOD production (Kuroda, ⁇ ⁇ , et al., J. Biosci. Bioeng. ”93, 73-77, 2002) It is clear how much THOD production is suppressed There was no. However, from the results of this Example, it was proved that the amount of THOD in wort was reduced when malt produced from barley seeds having no LOX-1 activity was used. Ding HOD moves to the final product without being metabolized by yeast
  • the cold wort obtained in 1 above was transferred to a steam-sterilized 30 L scale syringo-caloric tank, and yeast was added to an initial concentration of 30 million ce 1 1 sZmL.
  • the main fermentation was performed.
  • the fermented liquor extract was cut to 2.5%, it was transferred to the same tank and the alcohol storage process was performed.
  • the storage process was conducted at 13 ° C for the first 6 days and at 0 ° C for the following 2 weeks.
  • the fermented liquor after the liquor storage process was filtered through a malt alcoholic beverage with a beer filtration facility and a filling facility, and filled into a koji.
  • the foam retention analysis utilized the NIB EM method. Haffmans ⁇ ⁇ STABILITY TESTER was used to analyze foam retention (Table 3). LOX-F 4 barley had a higher NIB EM value of 21 points and higher foam compared to LOX + F 4 barley. Things became clear.
  • LOX—F 4 and LOX + F 4 malt alcoholic beverages are subjected to sensory tests, and a score of 0 to 4 for two items of darkness and sharpness (higher darkness, or better the better the score ) (Table 6).
  • the cold wort obtained in 1 above was transferred to a steam-sterilized 30 L scale syringo-conical tank, and yeast was added to an initial concentration of 30 million ce 11 s / mL at 15 ° C.
  • the main fermentation was performed.
  • the fermented liquor extract was cut to 1.3%, it was transferred to the same tank and the alcohol storage process was performed.
  • the storage process was performed at 13 ° C for the first 5 days and at 0 ° C for the following 2 weeks.
  • Ding HOD value is relative to the peak area of the internal standard as 100.
  • Example 8 (malt alcoholic beverage test brewing)
  • the malt alcoholic beverage obtained in 2 above was analyzed for foam retention by the following method.
  • the foam retention analysis utilized the NI BEM method.
  • Haffmans' FOAM STABILITY TESTER was used to analyze foam retention (Table 14).
  • LOX-F 4 barley has 30% higher NIB EM value and higher foam retention than LOX + F 4 barley. Things became clear.
  • Ding HOD value is a relative value with the peak area of the internal standard as 100.
  • the flavor durability of the malt alcoholic beverages obtained in 2 was compared.
  • the specific method of the sensory test is the same as the method described in Example 6.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Physiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Alcoholic Beverages (AREA)

Abstract

大麦リポキシゲナーゼ−1遺伝子第5イントロンのスプライシング供与部位のグアニンが他の塩基に変異しているか否かにより大麦リポキシゲナーゼ−1欠失大麦を判別することを特徴とする大麦リポキシゲナーゼ−1欠失大麦の選抜方法とこの選抜方法によって得られた大麦に由来する麦芽アルコール飲料用原料を用いた麦芽アルコール飲料の製造方法。

Description

明糸田書
大麦リポキシゲナーゼ— 1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及 び麦芽アルコール飲料の製造方法
技術分野
〖000 1〗 本発明は、 大麦リポキシゲナーゼー 1遺伝子、 大麦の選抜方法、 麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法に関する。
背景技術
【0002〗 麦芽に含まれる酵素である大麦リポキシゲナーゼー 1 (以下、 「L OX— 1」 という) は、 麦芽アルコール飲料を製造する際の仕込工程において麦 芽由来のリノール酸を酸化し 9—ヒドロペルォキシォクタデカジエン酸を生成す る (Kobayashi, N. et al., J. Ferment. Bioeng., 76, 371-375, 1993) 。 そして、 9ーヒドロペルォキシォクタデカジエン酸はさらにペルォキシゲナーゼ様活性に より トリヒドロキシォクタデセン酸(THOD)へと変換される (Kuroda, Η·, et al., J. Biosci. Bioeng., 93, 73-77, 2002) 。 この THODは、 ビールの泡もちを低 下させ、また収斂味を与えたり、切れを悪くすることが知られ(Kobayashi, N., J.
Am. Soc. Brew. Chem.60: 37-41.2002;Kaneda, H. et al., J. Biosci. Bioeng., 92, 221-226.2001) 、 麦芽アルコール飲料の品質の低下を招ぐことが知られている。 また、 9—ヒドロペルォキシォクタデカジエン酸は、 老化した麦芽アルコール飲 料のカードボ一ド臭の原因物質とされるトランス一 2—ノネナールにも変換され ることが知られている (安井 醸造協会誌 96 : 94— 99 (2001)) 。
【0003】 麦芽アルコール飲料の香味耐久性を改善するため、 トランス _ 2 一ノネナールの生成を抑える技術として、 LOX— 1活性の低い麦芽を用いる麦 芽アルコール飲料を製造する方法が提案されている (Drost, J. Am. Soc. Brew. Cliem.48:124-131 (1990)) 。
[0004] また、 D o u m aらは大麦に変異原 (薬剤) 処理を施すことによ り誘発突然変異を起こし、 L O X— 1活性が対照の 9 %に低下した誘発突然変異 系統を作出し、 それを用いて麦芽アルコール飲料の製造を試みている (国際公開 第 02Z05 3721号パンフレツト) 。
[0005] しかし、 そのような大麦を用いても、 得られる麦芽アルコール飲 料のトランス一 2—ノネナール濃度の低減は不十分なものであり、 香味耐久性が 十分改善されていない。 また、 THOD量の低減や泡持ちの改善に関しては何等 明らかにされていない。
発明の開示
【0006〗 本発明は、 上記従来技術の有する課題に鑑みてなされたものであ り、 遗伝子操作することなく、 香味耐久性や泡持ちを改善された麦芽アルコール 飲料を製造するために有用な、 LOX— 1変異遺伝子と、 LOX— 1欠失大麦の 選抜方法と、 選抜によって得られた大麦に由来する麦芽アルコール飲料用原料と 、 前記麦芽アルコール飲料用原料を用いた麦芽アルコール飲料の製造方法と、 を 提供することを目的とする。
【0007】 本発明者らは、 上記目的を達成すべき鋭意研究を重ねた結果、 L OX— 1活性を全く欠いた在来大麦品種を見出すとともに、 当該大麦品種から新 規な LOX— 1変異遺伝子を見出し、 本発明を完成するに至った。
【0008】 すなわち、 本発明の LOX— 1変異遺伝子は、 既知の LOX— 1 遺伝子の第 5イントロンのスプライシング供与部位 (5' -GT- 3 ' ) のグァ ニンが他の塩基に変異していることを特徴とする。 ここで、 前記他の塩基がアデ ユンであることが好ましい。
【0009】 また、 本発明の LOX— 1欠失大麦の選抜方法は、 LOX— 1遺 伝子第 5イントロンのスプライシング供与部位のグァニンが他の塩基に変異して いるか否かにより大麦 LOX— 1欠失大麦を判別することを特徴とする。 ここで 、 前記他の塩基がアデニンであることが好ましい。
[0010] さらに、 本発明の L O X— 1欠失大麦の選抜方法は、 被検対象で ある大麦からゲノム DNAを抽出するゲノム DNA抽出工程と、 抽出したゲノム DN Aから L OX— 1遺伝子第 5イントロンのスプライシング供与部位を含む D N A断片を増幅する DN A断片増幅工程と、 前記 DN A断片增幅工程で増幅され た L O X— 1遺伝子第 5イントロンのスプライシング供与部位を含む DN A断片 を制限酵素で切断して所定の塩基数の D N A断片を検出し、 スプライシング供与 部位のグァニンが他の塩基に変異しているか否かにより大麦 LOX— 1欠失大麦 を判別する DNA断片検出工程と、 を含むことを特徴とする。
【001 1〗 ここで、 前記 DNA断片検出工程において使用する制限酵素が塩 基配列 5, 一 GTAC— 3, を認識する A f a Iおよび Zまたは R s a Iである ことが好ましい。
【001 2】 上記発明によれば、 LOX— 1遺伝子第 5イントロンのスプライ シング供与部位のグァニンの変異の有無に基づき、 LOX— 1活性欠失形質を有 する大麦品種であるか否かを選別することが可能となる。
【001 3】 その結果、 L O X— 1活性を直接測定しなくとも遺伝子レベルの 解析で容易に LOX— 1活性を欠いた大麦品種を選別することができる。 特に、 酵素活性は直物個体の生育段階、 環境などに影響され正確な測定が困難な場合が あるが、 この方法によれば酵素測定と異なり環境などに影響されることなく LO X— 1活性が欠失した大麦品種を選抜することができる。 さらに、 酵素活性を測 定するには種子が実るまで行うことができないが、 DN A判別は生育初期に行え るため早期に活性欠失形質か否かの判定ができ、 また連続戻し交配などに有効で ある。
【0014】 また、 本発明の麦芽アルコール飲料用原料は、 本発明の LOX—
1変異遺伝子を持つ大麦に由来する種子、 麦芽、 モルトエキス、 大麦分解物また は大麦加工物であることを特徴とする。
【001 5】 また、 本発明の麦芽アルコール飲料用原料は、 本発明の LOX— 1欠失大麦の選抜方法により選抜された大麦に由来する種子、 麦芽、 モルトェキ ス、 大麦分解物または大麦加工物であることを特徴とする。 【0016】 さらに、 本発明の麦芽アルコール飲料の製造方法は、 本発明の麦 芽アルコール飲料用原料を用いることを特徴とする。
【001 7】 上記本発明によれば、 原料中に LOX— 1を含まないため、 麦芽 アルコ一ル飲料の製造工程においてリノール酸から 9ーヒ ドロペルォキシォクタ デカジエン酸が生成し難くなり、 したがって THODやトランス一 2—ノネナー ルも生成し難くなるため、 香味耐久性と泡持ちが向上した麦芽アルコール飲料を 得ることができる。
【0018〗 本発明は、 また、 配列番号 10の 1〜1 554番目の塩基で表さ れる塩基配列からなる核酸を提供する。 力かる塩基配列は、 LOX— 1タンパク 質のリポキシゲ? ~一ゼ活性を欠いた変異 L〇X— 1タンパク質をコードする遺伝 子のコード領域を表している。 大麦サンプル中の当該核酸の有無を検出すること により、 当該大麦が L〇 X— 1活性欠失形質を有するか否かを見分けることが可 " 能となる。
【001 9】 本発明は、 また、 配列番号 1 1で表される塩基配列からなる核酸 を提供する。 かかる塩基配列は、 LOX— 1タンパク質のリポキシゲナーゼ活性 を欠いた変異 LOX— 1タンパク質をコードする遺伝子のゲノム配列を表してい る。 大麦サンプル中の当該核酸の有無を検出することにより、 当該大麦が LOX 一 1活性欠失形質を有するか否かを見分けることが可能となる。
【0020】 本発明は、 また、 配列番号 1 1で表される塩基配列からなる核酸 において、 31 78番目.の塩基を含む 10〜 60の連続した塩基配列からなる核 酸を提供する。 3 1 78番目の塩基は一塩基多型であり、 正常 LOX— 1では G であるが、 変異 LOX— 1では Aである。 大麦サンプル中の多型部位を含む核酸 の存在の有無を検出することにより、 当該大麦が L O X— 1活性欠失形質を有す るか否かを見分けることが可能となる。
[0021 ] 本発明は、 また、 大麦サンプルからゲノム DNAを単離する工程 と、 配列番号 1 1で表される塩基配列の 31 78番目の塩基を検出し、 その塩基 の存在を当該大麦の L OX— 1活性の存在の指標とする工程と、 を含む、 大麦に おける LOX— 1活性の存在を検出する方法を提供する。 かかる方法によれば、 検查対象の大麦が L O X— 1活性欠失形質を有するか否かを見分けることが可能 となる。
【0022】 このようにして見出された LOX— 1活性を欠失している大麦に 由来する種子、 麦芽、 モルトエキス、 大麦分解物または大麦加工物等を原料とし て麦芽アルコール飲料を製造すれば、 香味耐久性と泡持ちが向上した麦芽アルコ ール飲料を得ることができる。
図面の簡単な説明
【0023】 図 1は、 探索試験 1における LOX— 1活性の結果を示すグラフ である。
【0024】 図 2は、 証明試験 1における L O X— 1阻害活性の結果を示すグ ラフである。
【0025】 図 3は、 証明試験 2における大麦種子の L O Xタンパク質のゥェ スタン解析の結果を示す電気泳動写真である。 Aは SD S— PAGE後のウェス タン解析の結果を示し、 Bは I EF後のウェスタン解析の結果を示す。
【0026】 図 4は、 証明試験 3における大麦種子の RNAの RT- - PCR解 析の結果を示す電気泳動写真である。
【0027】 図 5は、 証明試験 4における LOX— 1遺伝子第 5イントロンス プライシング供与部位の構造を示す図である。
【0028】 図 6は、 証明試験 5における LOX— 1変異遺伝子のスプライシ ングについて解析した結果を示す電気泳動写真である。 Aは第 3イントロン〜第 5イントロンを含む増幅断片の電気泳動写真であり、 Bは Aと同じ増幅断片を S t u Iで消化した後の電気泳動写真である。
【0029】 図 7は、 証明試験 7、 8における大腸菌における発現誘導タンパ ク質の電気泳動写真である。 【0030】 図 8は、 証明試験 7、 8における大腸菌において発現誘導させた LOX- 1の活性を示すグラフである。
【0031】 図 9は、 証明試験 9における Ke n d a 1 1 X SBOU2の雑種 第 2世代における DN A多型を示す電気泳動写真である。
【0032】 図 10は、 証明試験 9における K e n d a 1 1 X S BOU 2の雑 種第 2世代における D N A多型及び雑種第 3世代における L O X活性をまとめた 図である。
【0033】 図 1 1は、 実施例 1における一般大麦品種 Z系統の A f a I法に よる解析の結果を示す電気泳動写真である。
【0034】 図 12は、 実施例 2における L OX- 1欠失大麦の A f a I法に よる解析結果を示す電気泳動写真である。
【0035】 図 13は、 実施例 2における LOX— 1欠失大麦の種子 LOX活 性の結果を示す図である。 Aは酵素反応時間 5,分の結果、 B'は酵素反応時間 90 分の結果を示す図である。
【0036】 図 14は、 実施例 5における LOX+F 4集団および LOX— F 4集団の種子の麦芽分析の結果を示す図である。
【0037】 図 15は、 実施例 5における麦汁中のトランス一 2—ネネナール 濃度とノネナールポテンシャルを示す図である。
発明を実施するための最良の形態
【0038】 以下、 本発明の好適な実施形態について詳細に説明する。
【0039】 まず、 本発明にかかる LOX— 1変異遺伝子について説明する。 【0040】 本発明にかかる LOX— 1変異遺伝子は、 本発明者らによって見 出された新規遺伝子であり、 既知の LOX— 1遺伝子 (配列番号 1) と比較して 60番目の塩基 Gが Aに置換されていることを特徴とする (配列番号 2) 。 配列 番号 1の 60— 61番目はスプライシング供与部位 (5, 一 GT— 3, ) である ため、 この塩基の置換により LOX— 1はスプライシングに異常をきたし、 活性 のある LOX— 1を発現できなくなる。
【0041〗 なお、 配列表の配列番号 1には既知の L O X— 1遺伝子の第 5ィ ントロン領域の塩基配列を、 配列番号 2には本発明の L O X— 1変異遺伝子の L O X— 1遺伝子の第 5イントロン領域に相当する部分の塩基配列を示した。
【0042〗 次に、 本発明の LOX— 1欠失大麦の選抜方法について説明する
【0043】 本発明の LOX— 1欠失大麦の選抜方法は、 LOX - 1遗伝子の 第 5イントロンのスプライシング供与部位のグァニンが他の塩基に変異している か否かにより大麦 LOX— 1欠失大麦を判別することを特徴とする。
【0044】 上記の塩基の変異を利用して LOX— 1欠失大麦を選抜する方法 としては、 例えば、 プライマー配列の 3' 末端、 あるいはプライマー配列内部に 上記変異部位を含むプライマーを用いて DN Aの増幅を行い、 増幅の有無や増幅 効率で塩基の変異を検出し、 L O X— 1欠失大麦を選抜する方法や上記変異部位 を含む DNA断片を増幅し、 塩基配列を決定することによつても塩基の変異を検 出し、 LOX— 1欠失大麦を選抜する方法などを用いることが可能である。
【0045】 これら塩基の変異の検出には、 DNA断片が検出可能であれば特 に制限は無いが、 ァガロースゲル電気泳動やポリアクリルアミ ドゲル電気泳動を 用いれば良い。 また、 増幅の有無や増幅効率で DNA変異を検出する場合には、 上記電気泳動のほか、 T A QMAN法など定量的 PC R法も用いることができる
【0046】 また、 本発明の LOX— 1欠失大麦の選抜方法は、 好ましくは、 被検対象である大麦からゲノム DNAを抽出するゲノム DNA抽出工程と、 抽出 したゲノム DNAから LOX— 1遗伝子第 5イントロンのスプライシング供与部 位を含む DN A断片を増幅する DN A断片増幅工程と、 前記 DN A断片増幅工程 で増幅された L O X _ 1遺伝子第 5イントロンのスプライシング供与部位を含む DNA断片を制限酵素で切断して所定の塩基数の DNA断片を検出し、 スプライ シング供与部位のグァニンが他の塩基に変異しているか否かにより大麦 L O X— 1欠失大麦を判別する DN A断片検出工程と、 を含むことを特徴とする。
【0047】 まず、 本発明にかかるゲノム DN A抽出工程について説明する。 〖0048】 被検対象である大麦からゲノム D N Aを抽出する方法としては特 に制限はなく、 公知の方法によって行うことができるが、 具体的には例えば、 C TAB法 (Murray et al., 1980, Nucleic Acids Res. 8:4321-4325)や E t h i d i um b r om i d e法 (Varadarajan and Frakash 1991, Plant Mol. Biol. Rep. 9:6-12) によって抽出することができる。 ここで、 ゲノム DNAを抽 出する組織は大麦種子のみならず、 葉、 茎、 根等を用いることも可能である。 例 えば、 葉を用いることで、 戻し交配世代途中の多数の個体選抜に利用することが 可能となる。
【0049】 次に本発明にかかる DNA断片増幅工程について説明する。
【0050】 DNA断片を増幅する方法としては特に制限されないが、 例えば 、 PCR法 (P o l yme r a s e Ch a i n R e a c t i o n M e t h o d) によって行うことができる。 ここで、 P CR法において用いられるプライ マーは、 LOX— 1遺伝子第 5イントロンのスプライシング供与部位を含む DN A断片を増幅することができる領域に設定されているものであれば、 塩基配列は 特に制限されないが、 具体的には例えば、 LOX— 1遺伝子において塩基数が 1 0〜 60個の連続した塩基であることが好ましく、 1 5〜30個の連続した塩基 であることがより好ましい。 また、 一般的には、 プライマーの塩基配列における GC含量が 40〜 60%であることが好ましい。 さらに、 PCR法に用いる二つ のプライマーのプライマー間の Tm値に差がないまたは少ないことが好ましい。 また、 プライマー内で 2次構造を取らないことが好ましい。
〖005 1】 次に本発明にかかる DNA断片検出工程について説明する。
[005 2] 本発明にかかる L O X— ].変異遺伝子は、 上述したように既知の LOX-1と塩基配列に相違が見られるため、 当該相違部分を認識するまたは切 断する制限酵素を用 、て増幅産物を切断すれば、 得られる D N A断片のサイズに 相違が見られる。 本発明にかかる制限酵素としては、 このように前記相違部分を 認、識するまたは切断するものであれば特に制限はないが、 既にこのような作用を 有することが判明している制限酵素 A f a Iおよび Zまたは R s a Iであること が好ましい。
【0053】 すなわち、 本発明の LOX— 1変異遗伝子は、 スプライシング供 与部位のグァニンが他の塩基に変異していることにより、 既知の LOX— 1遺伝 子に存在していた制限酵素 A f a Iおよび R s a Iの切断部位 (5' — GTAC 一 3' :第 5イントロン 60— 63番目) が消失している。 その結果、 この切断 部位を含む遺伝子増幅産物を A f a Iおよび Zまたは R s a Iで切断した際の切 断パターンが既知の LOX— 1遺伝子の場合と異なるため、 LOX— 1変異遺伝 子か否かを判別することが可能である。
【0054】 また、 所定の塩基数の DN A断片とは、 前記相違部分が存在する ことにより、 増幅産物を制限酵素で切断して得られる DNA断片のサイズに相違 が見られるような DNA断片であれば、 その塩基数は特に制限されない。
【0055】 また、 本工程にかかる検出とは、 制限酵素によって切断された D NA断片が検出可能な方法であれば特に制限されないが、 具体的には例えば、 了 ガ口ースゲル電気泳動、 ポリアクリルアミドゲル電気泳動によつて検出すればよ い。
【0056】 次に、 本発明の麦芽アルコール飲料用原料について説明する。 【0057】 本発明の麦芽アルコール飲料用原料は、 本発明の LOX— 1変異 遺伝子を持つ大麦に由来する種子、 麦芽、 モルトエキス、 大麦分解物または大麦 加工物であることを特徴とし、 また、 本発明の大麦の選抜方法によって選抜され た大麦に由来する種子、 麦芽、 モルトエキス、 大麦分解物または大麦加工物であ ることを特徴とする。 【0 0 5 8】 ここで、 モルトエキスとは麦芽の抽出物を指し、 例えば麦芽中の 糖成分やタンパク質成分の抽出物等が挙げられる。 大麦分解物とは大麦を酵素等 で分解処理したものを指し、 大麦糖化液等がこれに該当する。 大麦加工物とは麦 芽アルコール飲料の副原料として使用される大麦粉砕物などがこれに該当する。 【0 0 5 9〗 本発明の麦芽アルコール飲料用原料は L O X— 1を含まないため 、 麦芽アルコール飲料の製造工程においてリノール酸から 9 _ヒドロペルォキシ ォクタデカジェン酸が生成し難くなり、 したがって T H O Dやトランス一 2—ノ ネナールも生成抑制が期待され、 香味耐久性と泡持ちが向上した麦芽アルコール 飲料を得ることが期待できる。
【0 0 6 0】 次に、 本発明の麦芽アルコール飲料の製造方法について説明する
【0 0 6 1】 本発明の麦芽アルコール飲料の製造方法は、 本発明の麦芽アルコ ール飲料用原料を用いることを特徴とする。
【0 0 6 2】 まず、 本発明にかかる製麦工程について説明する。
【0 0 6 3】 本発明にかかる製麦工程は、 L O X— 1欠失大麦を用いることを 特徴とした麦芽を得る工程であり、 製麦の方法としては特に制限されず公知の方 ¾で行えば良い。 具体的には、 例えば、 浸麦度が 4 0 %〜 4 5 %に達するまで浸 麦後、 1 0〜2 0 °Cで 3〜6日間発芽させ、 焙燥して麦芽を得ることができる。
【0 0 6 4】 次に、 本発明にかかる仕込工程について説明する。
【0 0 6 5】 本発明にかかる仕込工程は、 前記麦芽を糖化させて麦汁を得るェ 程である。 具体的には、 さらに以下の第 1〜第 4の工程に分けられる。
【0 0 6 6】 すなわち、 第 1の工程は、 前記麦芽を含む原料と仕込用水とを混 合し、 得られた混合物を加温することにより麦芽を糖化させ、 前記糖化された麦 芽から麦汁を採取する仕込み工程である。
【0 0 6 7】 本工程において用いられる麦芽は、 大麦に水分と空気を与えて発 芽させ、 乾燥して幼根を取り除いたものであることが望ましい。 麦芽は麦汁製造 に必要な酵素源であると同時に糖化の原料として主要なデンプン源となる。また、 麦芽アルコール飲料特有の香味と色素を与えるため発芽させた麦芽を焙燥したも のを麦汁製造に用いる。 また、 さらに原料として、 上記麦芽以外に、 本発明にか かる L〇 X— 1欠失大麦あるいは一般大麦、 コーンスターチ、 コーングリッツ、 米、 糖類等の副原料を添カ卩しても良い。
【0 0 6 8〗 また、 前記麦汁の製造工程において、 本発明にかかる L O X— 1 欠失大麦あるいは一般大麦より調製されたモルトエキスあるいは大麦分解物、 大 麦加工物を仕込み用水と混合し、 必要に応じて前記副原料を添加し麦汁を得るこ ともできる。
【0 0 6 9】 前記麦芽は仕込み用水に添加した後、 混合される。 前記副原料を 添加する場合には、 ここで混合すればよい。 糖類の場合は、 後述の煮沸の前に添 加してもよい。 また、 前記仕込み用水は特に制限されず、 製造する麦芽アルコー ル飲料に応じて好適な水を用いればよい。 糖化は基本的に既知の条件で行えばよ い。 こう して得られた麦芽糖化液をろ過した後、 ホップあるいはハーブなど、 香 り、 苦味などを付与できる原料を添加して煮沸を行ない、 それを冷却することに より冷麦汁が得られる。
【0 0 7 0】 また、 第 2の工程は、 前記冷麦汁に酵母を添加して発酵させ麦芽 アルコール飲料中間品を得る工程である。
【0 0 7 1】 ここで、 用いられる酵母は、 前記麦芽の糖化によって得られた麦 汁内の糖分を代謝してアルコールや炭酸ガス等を産生する、 いわゆるアルコール 発酵を行う酒類酵母であればいずれでもよく、 具体的には、 例えば、 サッカロミ セス 'セレビシェ、 サッカロミセス■ ゥパルム等が挙げられる。
【0 0 7 2】 発酵は、 上記仕込み工程で得られた麦汁を冷却し、 ここに前記酵 母を添加して行う。 発酵条件については基本的に既知の条件と変わらず、 例えば 発酵温度が通常 1 5 °C以下、 好ましくは 8〜 1 0 °Cであり、 発酵時間が好ましく は 8〜1 0日である。 【0 0 7 3】 さらに、 第 3の工程は、 前記発酵工程で得られた麦芽アルコール 飲料中間品を貯蔵する貯酒工程である。
【0 0 7 4】 本工程では、 アルコール発酵が終了した発酵液が密閉タンクに移 され、 貯蔵される。 貯蔵条件については基本的に既知の条件と変わらず、 例えば 貯蔵温度は 0〜 2 °Cが好ましく、 貯蔵時間が 2 0〜 9 0日間であることが好まし レ、。 発酵終了液を貯蔵することにより残存ェキスの再発酵と熟成が行われる。
【 0 0 7 5〗 そして、 第 4の工程は、 前記貯酒工程で得られた麦芽アルコール 飲料中間品をろ過し麦芽アルコール飲料を得るろ過工程である
【0 0 7 6】 ろ過条件については基本的には既知の条件と変わらず、 例えばろ 過助材として珪藻土、 P V P P (ポリビニルポリピロリ ドン)、 シリカゲル、 セル ロースパウダー等が用いられ、 温度は 0 ± 1 °Cで行われる。
【0 0 7 7】 こうして麦芽アルコール飲料が得られる。 ろ過された麦芽アルコ ール飲料はそのまま、 または無菌ろ過や加熱処理を行った後、 タンク詰め、 樽 no め、 ビン詰めまたは缶詰めされ市場に出荷される。
【0 0 7 8】 なお、 麦芽アルコール飲料は、 その製造に用いられる麦芽の使用 比率の多少は特に制限されず、 麦芽を原料として製造されるアルコール飲料であ ればよい。 具体的には例えば、 ビールや発泡酒が挙げられる。 また、 いわゆるノ ンアルコールビールゃノンアルコール発泡酒も、 ビール等の麦芽アルコール飲料 と同様の製法を用いることから、 麦芽アルコール飲料である。
【0 0 7 9】 上記本発明によれば、 原料中に L〇X— 1を含まないため、 麦芽 アルコール飲料の製造工程においてリノール酸から 9ーヒドロペルォキシォクタ デカジェン酸が生成し難くなり、 したがって T H O Dやトランス一 2 _ノネナー ルも生成抑制が期待され、 香味耐久性と泡持ちが向上した麦芽アルコール飲料を 得ることが期待できる。
【0 0 8 0〗 次に、 本発明の核酸及び大麦における L O X— 1活性の存在を検 出する方法について説明する。 【008 1】 本発明の核酸は、 配列番号 1 1で表される塩基配列からなること を特徴とする。 配列番号 1 1は、 0 ー 1活性を欠失した大麦品種3801 2 が有している変異型の LOX— 1のゲノム配列を表している。 すなわち、 本発明 の LOX— 1変異遗伝子は、 配列番号 1 1で表されることを特徴とする。 通常の LOX— 1遺伝子では、 3 1 78番目に相当する塩基は Gである力 変異型の L
OX— 1遺伝子では 3 1 78番目の塩基は Aに変異している。 そして、 通常の L OX- 1遺伝子にあっては、 この塩基は第 5イントロンの 1番目の塩基であり、 3 1 78〜 3 1 79番目の塩基配列である G Tがスプライシング供与部位に相当 する (図 5) 。 し力 し、 変異型の LOX— 1遺伝子では、 スプライシング供与部 位に相当する 31 78〜31 79番目の塩基配列が ATであるため、 スプライシ ング異常を起こしてスプライシングが生じなくなる。 しかも、 31 76〜317 8番目の塩基配列は TGAであり終止コドンであるため、 ここで翻訳が終了する ことになる。
【0082】 この変異型の LOX— 1遺伝子から生じる変異型の LOX— 1タ ンパク質は、 第 5ェキソンに相当する部分までしか存在せず、 通常の LOX—1 タンパク質と比べて第 5ェキソンよりも C末端側のアミノ酸残基を欠いている。 分子量は、 通常の LOX— 1タンパク質が 95 K dであるのに対して、 変異型の LOX- 1タンパク質は 57 K dである。通常の LOX— 1タンパク質における、 第 5イントロンの近傍のエタソン領域に相当するドメインは、 植物 LOXの活性 中心であるとレヽぅ知見(S h i b a t a a n d Ax e l r o d (1 995)
J . L i i d Me d i a t e r s a n d C e l l S i g n a l i n g 1 2 : 21 3— 228) と一致するように、 変異型 L O X— 1タンパク質は リポキシゲナーゼ活性を欠いている。
[0083] したがつて、変異型 L〇 X— 1遗伝子を有する大麦を原料にして、 麦芽アルコール飲料を製造すれば、 原料中に LOX— 1タンパク質を含まないた め、 麦芽アルコール飲料の製造工程においてリノ一ル酸から 9ーヒ ドロペルォキ シォクタデカジエン酸が生成し難くなり、 したがって THODやトランス一 2— ノネナールも生成抑制が期待され、 香味耐久性と泡持ちが向上した麦芽アルコー ル飲料が得られる。 このように、 香味耐久性と泡持ちが向上した麦芽アルコール 飲料を得る上で、 本発明の配列番号 1 1で表される塩基配列からなる核酸は非常 に有用である。
【0084〗 本発明の核酸は、 また、 配列番号 11で表される塩基配列からな る核酸において、 31 78番目の塩基を含む 10〜60の連続した塩基配列から なる核酸を提供する。 この核酸をプローブとして用いることで、 大麦の有する L OX— 1遺伝子が正常型か変異型かを見分けることが可能である。 つまり、 正常 型の LOX— 1遺伝子の 31 78番目の塩基は Gであることから生じるミスマツ チを利用して、 ハイブリダィゼーションの違いから正常型か変異型かを見分ける ことが可能である。 例えば、 この核酸と LOX— 1遺伝子の核酸とのハイブリツ ドを形成させ、 徐々に温度を上昇させることによりハイプリッドの融解温度を測 定すれば、 正常型 L O X _ 1遺伝子と変異型 L O X— 1遺伝子とでは示す融解温 度が異なるため、 容易に両者を見分けることが可能である。 その他、 当業者にと つて公知の方法により、 この核酸を利用して LOX— 1遺伝子の型 (正常型 Z変 異型) を見分けることが可能である。 特異性の観点から、 この核酸は、 31 78 番目の塩基を含む 20〜 50の連続した塩基配列からなること、 また、 3 1 78 ~3 18 1番目の塩基を含んでいることが好ましい。 さらに、 この核酸は、 蛍光 物質や放射性同位元素等で標識されていてもよい。
【0085】 本発明の大麦における LOX— 1活性の存在を検出する方法は、 大麦サンプルからゲノムを単離する工程と、 配列番号 1 1で表される塩基配列の 3 1 78番目の塩基を検出し、 その塩基の存在を当該大麦の LOX— 1活性の存 在の指標とする工程と、 を含むことを特徴とする。 力かる方法によれば、 検査対 象の大麦が LOX- 1活性欠失形質を有するか否かを見分けることが可能となる。
[0086] 大麦サンプルは、 大麦種子に限らず、 葉、 茎、 根等を用いること が可能である。 核酸の単離は公知の方法で行うことが可能であり、 例えば、 CT AB法や E t h i d i urn b r om i d e法などを利用することができる。
【0 0 8 7】 また、 配列番号 1 1で表される塩基配列の 3 1 7 8番目の塩基の 検出は、 当業者にとって公知の方法により行うことが可能である。 例えば、 必要 に応じて、 P CR法等の核酸増幅方法により、 配列番号 1 1で表される塩基配列 の 3 1 7 8番目の塩基を含む核酸を増幅する。 単離した核酸又は増幅した核酸断 片に対して、 例えば、 上述したように、 配列番号 1 1で表される塩基配列からな る核酸において 3 1 7 8番目の塩基を含む 1 0〜6 0の連続した塩基配列からな る核酸を用いることにより、 3 1 7 8番目の塩基の種類を判別することが可能で ある。
【0 0 8 8】 し力、しな;^ら、 LOX— 1遺伝子の 3 1 7 8~ 3 1 8 1番目の塩 基の違いを利用して 3 1 7 8番目の塩基を検出する方法が、 より簡便で効率がよ い。 3 1 7 8〜 3 1 8 1番目の部位は、 正常型の L O X— 1遺伝子では制限酵素 A f a I /R s a Iの切断部位となっているのに対して、 変異型の LOX— 1遺 伝子では 3 1 7 8番目の塩基が Aであるために、 制限酵素 A f a I /R s a Iの 切断部位ではない (図 5) 。 つまり、 単離した核酸又は増幅した核酸断片を A f a I /R s a Iで制限酵素 ¾理を施すと、'正常型 LOX_ 1の核酸は切断される' のに対して、 変異型 LOX— 1の核酸は切断されない。 制限酵素処理を行った核 酸サンプルを電気泳動で分析すれば、 泳動パターンの違いにより、 LOX— 1遺 伝子の型 (正常型ノ変異型) を見分けることが可能であり、 3 1 7 8番目の塩基 の種類を判別することが可能である。 また、 その他、 3 1 7 8〜 3 1 8 1番目の 塩基を含む 1 0〜6 0の連続した塩基配列からなる核酸をプローブとして用いて、 制限酵素処理を行った核酸とハイブリダィズ等させることにより、 L〇X— 1遺 伝子の型を見分けることも可能であり、 3 1 7 8番目の塩基の種類を判別するこ とが可能である。
【0 0 8 9】 このようにして 3 1 7 8番目の塩基を判別した結果、 塩基が Gで あれば検査対象の大麦は L O X— 1活性を有していることになり、 香味耐久性と 泡持ちを向上させた麦芽アルコール飲料の原料には適していないと判断できる。 一方、 塩基が Aであれば検査対象の大麦は LOX— 1活性を有していないことに なり、 香味耐久性と泡持ちを向上させた麦芽アルコール飲料の原料には適してい ると判断できる。
ίθ 090】 また、 本発明の核酸は、 配列番号 10の 1〜1 554番目の塩基 で表される塩基配列からなることを特徴とする。 配列番号 1 0は LOX— 1活 性を欠失した大麦品種 SB OU 2に発現している変異型の LOX— 1の c DNA 配列を表している。 そのうち、 1〜1 554番目の塩基で表される塩基配列がコ ード領域である。 既に述べたように、 この c DNAがコードする変異型 LOX— 1タンパク質は、 通常の LOX— 1タンパク質に比べて第 5ェキソンよりも C末 端側のアミノ酸残基を欠いており、 その分子量は 57 Kdであり、 さらに、 リポ キシゲナーゼ活性を欠いている。
【009 1】 したがって、 この核酸を発現している大麦を原料にして、 麦芽ァ ルコール飲料を製造すれば、 上述したように、 香味耐久性と泡持ちが向上した麦 芽アルコール飲料が得られる。
[実施例]
【0092】 以下、 実施例により本発明の内容をより具体的に説明するが、 本 発明はこれらの実施例に何ら限定されるものではない。
【0093】 探索試験 1 (LOX— 1酵素活性測定による LOX— 1欠失大 麦の探索)
【0094】 以下の方法により L〇 X— 1酵素活性,測定を行い、 大麦遺伝資源 の中から LOX— 1欠失大麦の探索を行った。
【0095】 まず、 以下の方法により大麦種子より粗酵素液を抽出した。 完熟 大麦種子 1粒をハンマーで破砕し、 500 μ Lの抽出バッファー (0. 1 Μ 酢 酸ナトリウム緩衝液 (ρΗ5. 5)) を用いて、 4°Cで 30分間振とうして抽出し た。 得られた抽出液を 1 50◦ 0 r pmで 10分間遠心分離した後、 上清を粗酵 素液とした。
【0096】 次に、 粗酵素液 Ι Ο /i Lに の基質液 ( 40 mMリノール酸 、 1. 0% (W/V) T w e e η 20水溶液) 及び 85 μ Lの抽出バッファーを 加え混和した後、 24 °Cで 5分間反応させた。 反応の停止は、 100 μ Lの反応 停止液 ( 80 mM 2 , 6—ジー t一プチルー p—タレゾール メタノ一ノレ溶液 ) を添カ卩し混和することで行った。 反応液を一 20 で 30分間静置した後、 3 000 r pmで 20分間遠心分離し、 上清を次の発色反応に用いた。 得られた上 清 20 z Lに、 200 / Lの発色液 (4mM2, 6—ジ一 tーブチノレー p—タレ ゾーノレ、 25mM硫酸、 0. 25 mM硫酸アンモニゥム鉄 (II) 6水和物、 1 00 mMキシレノールォレンジ、 90 %メタノール水溶液) を添カ卩し、 30分間静置 後、 波長 550 nmの吸光度を測定した。 なお、 陰性対照としては、 粗酵素液を 100°Cで 5分間熱処理し、 LOX— 1を失活させたものを同様に反応させたも のを用い、 陽性対照として大麦品種 Ke n d a 1 1の種子の粗酵素液を用いた。
【0097】 遺伝資源の探索の結果、 図 1に示すように、 SBOU2の種子に は有意な L O X— 1活性が認められないことが判明した。 この S B OU 2は在来 種であることから、 人為的に突然変異誘発を施した系統ではなく自然突然変異体 である。
【0098】 証明試験 1 (SBOU 2粗酵素液に LOX— 1阻害活性のない ことの確認)
【0099】 次に、 S B O U 2粗酵素液の L O X— 1阻害活性の有無について 調べた。
【0 100】 LOX- 1活性を示す粗酵素液 (陽性対照: PC) に SBOU2 の粗酵素液 ( 1 0 μ L, 20 μ 50 μし) を添加して L Ο X— 1活性の変化 を調べたところ、 SBOU2の粗酵素液の添加によっても LOX— 1活 14は変化 せず、 S BOU 2粗酵素液に LOX— 1阻害活性は認められなかった (図 2)。 こ のことから、 S BOU 2の L OX— 1活性欠失の原因は L OX活性阻害物質によ るものではないと考えられる。
【0101】 証明試験 2 (SBOU 2種子中の LOX— 1タンパク質発現量 の確認)
【0102】 次に、 抗 LOX— 1抗体を用いて、 S BOU 2の種子に LOX— 1タンパク質が発現しているか否かを調べた。
【0103】 まず、 抗 LOX— 1抗体の作成を行った。 抗原として用いた LO X- 1タンパク質は、 大腸菌で発現させた LOX— 1タンパク質を精製すること で得た (Ku r o d a e t . a 1. (2002) J. B i o s c i e n c e a n d B i o e n g i n e e r i n g 93 : 73— 77 )。精製した タンパク質をゥサギに免疫し、 LOX— 1抗体を作製した。 本抗体は、 LOX— 1および LOX— 2を認識する。
【0104】 次に、 以下の方法でウェスタンプロッティングを行い、 SBOU 2の種子における LOX— 1タンパク質の発現について調べた。 S BOU 2から 0. 1M 酢酸ナトリウム緩衝液 (pH5. 5) を用いて抽出した全可溶性タン パク質 3 gを、 SD Sポリアクリルアミ ド電気泳動 (SDS— PAGE) によ り分画後、 PVDFメンブレン (ミリポア社) にブロッテイングした。 このメン プレンを TTB S (2 OmM T r i s— HC 1 (p H 7. 5)、 0. 1 5M 塩 化ナトリウム、 0. 05% (w/v) Tw e e n 20、 0. 05 % (w/ v) アジ化ナトリウム)) で洗浄後、 LOX— 1抗体液 (1 000倍希釈 ZTTB S) で 30分間反応させた。 メンブレンの TTB S洗浄を 5分 3回行った後、 アル力 リフォスファターゼ標識ャギ抗ゥサギ I g G抗体液(S a n t a C r u z社製、 1000倍希釈 TTB S溶液) で 30分間反応させた。 メンブレンを TTB Sで 5分間 X 2回洗浄を行い、 さらに AP 9. 5 ( 1 OmM T r i s -HC 1 (p H 9. 5)、 0. 1 M 塩化ナトリウム、 5 mM 塩化マグネシゥム) で 5分 X 1 回洗浄を行つた後、 アルカリフォスファタ一ゼ基質液 ( 1 m g /m 1 ニトロブ ルーテトラゾリゥム、 0. 5mg/m l BC I P、 AP 9. 5溶液) と反応 させ発色させた。 その結果、 対照品種 (Ke n d a l l ) では約 95 Kdの分子 量を持つ強いバンドが得られたのに対して、 SBOU2系統種子では約 95 Kd および約 57 K dの分子量領域に非常に薄いバンドが検出された (図 3 A)。 【0105】 また、 この抽出サンプルを、 P h a s t S y- s t em (Am e r s h am P h a rma c i a社製) を用いて、 等電点電気泳動 ( I E F、 p I 3- 9) を行った後、 同様にウェスタン解析した。 その結果、 S BOU 2では、 LOX— 2の p Iの位置にバンドが検出されたが、 0 ー 1の Iの位置には 明瞭なバンドは認められなかった(図 3 B)。 このことから、 SBOU2の種子抽 出タンパク質で認められた約 95Kdのバンドは、 LOX— 2タンパク質である と考えられる。
【0106】 以上の結果から、 SBOU2の種子には、 正常な LOX— 1タン パク質がほとんど発現していないことが確認された。
【0107】 証明試験 3 (SB〇U2の種子のLOX_ l RNAの解析) 【0108】 S BOU 2の登熟約 4週間目の種子および発芽 3日目の種子から 抽出した全 RN Aを铸型として RT— PC Rを行った。 反応は市販のキット (口 シュダイァグノスティック社製、 パーキンエルマ一社製) を用いて、 キットのマ ニュアルに従い行った。 プライマーは既報の配列 (DNAデータバンク :ァクセ ッシヨン L 3593 1) をもとに、 5 '— GGAGAGGAGGCCAAGAAC AAGATG- 3' (配列番号 3 )及び 5,― G G T T G C C G A T G G C T T AG
AT— 3,(配列番号 4) に設計した。 PCRは、 94°〇2分を1回、 94°C1分、 60 °C 2分、 72 °C 4分の反応を 31回繰り返した後、 72。Cで 7分の伸長反応 を ί亍った。
【0109〗 増幅された D Ν Αを電気泳動したところ、 対照 (品種 e n d a 1 1 )よりは若干増幅量が少ないものの、登熟中および発芽中の RNAに対して、 約 2. 5 Kbのバンドの増幅が検出された (図 4)。 このことは、 LOX— 1遺伝 子が正常に転写されていることを示している。
【01 10】 以上、 S BOU 2の種子において、 (1) LOX— 1活性が認めら れなかったこと、 ( 2 )し O X— 1抗体に反応する抗原タンパク質が微量にしか存 在しなかったこと、 (3)約 57 K dの分子量のタンパク質の存在が認められたこ と、 (4) LOX— 1の mRNAが認められたことなどから、 S BOU2の LOX 一 1活性が欠失しているメカニズムは、 転写以降の異常によると考えられる。 【01 1 1】 証明試験 4 (SBOU2の LOX— 1遗伝子ィントロン領域の 構造解析)
【0 11 2】 LOX— 1遺伝子のィントロンおよびェクソン領域の構造を解析 するため、 全ェクソンを含む領域のゲノム DNAを単離した。 铸型には SB OU 2の全 DNAを用いた。 プライマーは既報の配列 (DNAデータバンク :ァクセ ッシヨン U83904, L 35931) をもとに、 設計した (5, 一 CACG TCGCCGTCCGATCCATC-3' (配列表配列番号 5)、 5' — GGT TGCCGATGGCTTAGAT— 3 ' (配列表配列番号 4))。 PCRは、 9 4 °C 1分、 65 °C 2分、 72°C3分の反応を 3 1回繰り返した後、 72°Cで 7分 の伸長反応を行った。 得られた DNA断片を p CR 2. 1にクローユングし (p GLXABAL 1)、構造解析の铸型とした。構造解析は A B I社のシーケンサー を用い、 シークェンス反応はダイターミネータ一法を用いた。 全構造は配列表の 配列番号 1 1に示した。
【01 1 3】 配列表の配列番号 1は、 既報の L O X— 1遺伝子の塩基配列 (W O 02053721) のうち、 第 5イントロンがある領域の構造を示した。 ス プライシングの供与部位は 60— 61番目の塩基配列 5 '— G T— 3 'である。
【01 14】 一方、 解析の結果から分かった S B OU 2の対応する領域の塩基 配列を配列番号 2に示した。 S BOU 2では、 スブラィシング供与部位である 6 0番目のグァニンがアデニンに変異していることが明らかになった。
[01 1 5] また、 配列番号 2の 60番目の塩基がアデニンに置換されている ことにより、 終止コドンが新たに形成され (配列表の配列番号 2の 58— 60番 目の塩基配列 5' — TGA— 3,)、 スプライシング部位の 5' 上流への変化が生 じていない場合には LOX— 1タンパク質の翻訳はここで終了すると考えられる (図 5)。
【01 16】 第 5イントロンの近傍のェクソン領域は、 植物 L O Xの活性中心 であることが知ら; |τており (S h i b a t a a n d A x e 1 r o d (1 9 95) J . L i i d Me d i a t e r s a n d C e l l S i g n a 1 i 11 g 1 2 : 21 3— 228)、上記スプライシング異常は、 0 ー 1酵 素活性に大きな影響を及ぼすと考えられる。
【01 1 7】 証明試験 5 (第 5イントロンにおけるスプライシングの解析) 【01 18】 第 5イントロンにおいて実際にスプライシング異常が起こってい ることを確認するために RT— PCRによる解析を行った。
【01 19】 発芽中の S BOU 2および Ke n d a 1 1から全 RN Aを抽出し、 市販のキット (ロシュダイァグノスティック社製) を用いて c DNAを合成し鎵 型 DNAとした。 ゲノム DNAにおいて、 増幅断片が第 3イントロン (1 06 b
P)、 第 4イントロン (1 32 b p) および第 5イントロン (79 b ί>) を含むよ うに設計した 2種のプライマー (5, 一 CCATCACGCAGGGCATCC TG- 3 ' (配列表配列番号 6), 5 ' -GCGTTGATGAGCGTCTGC CG— 3' (配列表配列番号 7)) を用いて PC Rを行った。 PCRは、 94°C1 分、 65 °C 2分、 72 °C 3分の反応を 3 1回繰り返した後、 72でで 7分の伸長 反応を行った。 増幅した DNA断片をァガロースゲル電気泳動したところ、 SB OU 2の増幅断片は、 Ke n d a l 1の増幅断片より約 80 b p塩基数が大きか つた (図 6A)。 なお、 SBOU2のゲノム DNAに対しては約 1. 2Kbの断片 が增幅されており、 上記 RT— PC Rの結果は、 発現している RNAに対する結 果であると考えられる。
【01 20】 次に、 第 3イントロン (106 b p)、 第 4イントロン (1 32 b p) および第 5イントロン (79 b p) のいずれのイントロンがスプライシング 異常をおこしているか調べるために、 上記増幅断片を第 4イントロン (132 b p) と第 5イントロンの間のェクソン領域に存在する制限酵素 S t u I部位で消 化した。 その結果、 第 5イントロンを含む DN A断片は、 ゲノム DN Aの増幅断 片の移動度と等しいことから、第 5イントロンのスプライシングが異常をおこし、 スプライシングされないか、 あるいはスプライシング部位が 3 ' 側にずれこんで いることが明らかになった (図 6 B)。すなわち、図 5で示した新たにできた終止 コドンにより、 S BOU 2の LOX— 1タンパク質の翻訳はこのコドンで終了し、 LOX- 1活性が失われていることが明らかになつた。
【0121】 証明試験 6 (SBOU2の LOX— 1 c DNAの構造解析)
【0122】 SBOU2由来の LOX— 1の構造を明らかにするため上記と同 様な方法で c DN Aを単離した。 増幅は、 B amH I部位と開始コドン含むプラ イマ一 (5,-GGATCCATGCTGCTGGGAGGGCTG-3, (配列番号 8)) 及び H i n d I I 部位 と 終止コ ド ン と を含むよ う に設計 したプラ イ マー (5'-AAGCTTTTAGATGGAGATGCTGTTG-3' (配列番号 9)) を用いた。 増幅し た断片は、 pT7 Blue TVector (Novagen)にク口一二ングした後 ( p B D C 1 )、 構造解析した。 構造解析の結果、 得られた c D N Aの塩基配列を配列番号 10に 示す。 本 cDNAクローンは、 第 5イントロン全領域 (配列番号 10の 1554 番目から 1632番目) を含むことが明らかになった。
【0123】 証明試験 7 (大腸菌の形質転換と発現誘導)
【0124】 大腸菌において、 SBOU2と、 野生型 LOX— 1を保有する品 種 S t e p t o e由来の LOX— 1を発現させるため、 S t e p t o e由来 cD NAも上記と同様に単離し、 クロ ニングした (p SDC 1)。 SDC 1及び p BDC 1の両クローンから B amH I— H i n d I I I断片をそれぞれ切り出し、 大腸菌発現ベクター p QE 80 L (Qiagen) の B a mH I -H i n d I I I部位 に得られた断片をそれぞれ挿入し、 大腸菌発現ベクターとした (p SQE l (S t e p t o eの c DNAを挿入)、 pBQE l (S B OU 2の c DNAを揷入))。 これらのベクターを大腸菌 JM109に形質転換後、 Qiagen社のマニュアルに 従い、 I PTGによる発現誘導を行った。 その結果、 P SQE 1ZJM109で は約 95 K dのバンドが発現誘導されたのに対し、 p B Q E 1 J M 1 09では 約 57 Kdのパンドが発現誘導された (図 7)。 また、 これらの大腸菌を超音波に より破碎後、 粗酵素液を抽出し L O X活性を測定した。 その結果、 p S Q E 1 / JM109では高い LOX活性が認められたのに対し、 P BQE 1ZJM109 では LOX活性は認められなかった (図 8)。 これらの結果は、 SBOU2の植物 体における LOX— 1活性及び LOX— 1タンパク質の解析結果と全く一致し、 大腸菌において SBOU2の LOX—1欠失を再現できることを示している。
【01 25】 証明試験 8 (交換揷入及び発現実験)
【01 26】 次に、 p BQE 1の第 5イントロンスプライシング供与部位の変 異を含む P s t I— S t u I断片 ( S t u I部位は配列番号 10の 1 502〜1 507番目の塩基、 P s t I部位は配列番号 10の 2048~2053番目の塩 基) を、 野生型である p SQE lの P s t l— S t u l断片と互いに交換挿入し (p SQE 1 +B P S、 p BQE l +S P S),上記と同様に大腸菌における発現 誘導を行った。 その結果、 p SQE 1に p BQE 1由来の第 5イントロンスプラ イシング供与部位の変異を含む P s t I -S t u I断片を交換挿入した p SQE 1 +BP S/JM109では、 PBQE 1ZJM109と同様に、 約 57 K dの タンパク質が誘導され (図 7)、 LOX活性を失っていた (図 8)。 逆に、 p BQ E 1に、 p SQE 1由来の P s t I - S t u I断片を交換揷入した!) BQE 1 + S P S/ JM109では、 P SQE 1ZJM109と同様に、 約 95 Kdのタン パク質が誘導され (図 7)、 LOX活性が復活した (図 8)。 なお、 p BQE lの P s t I -S t u I断片の塩基配列は、 野生型 LOX— 1遺伝子と第 5イントロ ンスプライシング供与部位以外は全く同一であった (配列番号 10の 1 554番 目の Gが A)。以上の結果から、 SB OU 2の第 5イントロンスプライシング供与 部位の変異の有無が、 L OX— 1活性の有無を決定していることが明らかとなつ た。
【01 27】 証明試験 9 (第 5イントロン変異を用いた大麦交配系統のマツ ビングと選抜)
【0 128】 既報の LOX— 1塩基配列においては、 第 5イントロンのスプラ イシング供与部位を含む配列は (配列表配列番号 1の 60— 63番目 : 5' — G TAC- 3 ' )、 GTAC配列を認識する制限酵素 A ί a I (R s a I ) で消化で きる。 一方、 S B OU 2系統では、 .この領域の配列に変異があり (配列表配列番 号 2の 60— 63番目 : 5'— AT AC— 3,)、 A f a Iおよび Zあるいは R s a Iで消化できなくなつていること (図 5) を利用して、 LOX— 1欠失遺伝子の マッピングを行った。 大麦品種 Ke n d a 1 1と S B O U 2の雑種第 2世代 (F 2) 144個体の葉から DN Aを抽出し、 増幅断片がこの A f a I部位を含むよ うに設計した 2種のプライマー (5, -CCATCACGCAGGGCATCC TG— 3' (配列表配列番号 6), 5 ' -GCGTTGATGAGCGTCTGC CG- 3 ' (配列表配列番号 7)) を用いて、 PCRを行った。 PCRは、 94 °C
1分、 65°C2分、 72 °C 3分の反応を 31回繰り返した後、 72 °Cで 7分の伸 長反応を行った。 増幅された断片を A f a Iで切断し、 2. 5%ァガロースゲル 電気泳動で分析した (以上を A f a I法と呼ぶ)。 その結果、 SBOU2型、 Ke n d a 1 1型、およびへテロ型を容易に見分けることが出来た (図 9)。 A f a I 法多型調査に加え、 LOX— 1遺伝子が座乗している大麦 4H染色体の LOXA 遺伝子座近傍の DN Aマーカー (J BC 970) についても、 各系統の多型調査 を行った (図 10)。
【0129】 次に、 この F 2個体に実った種子を用いて、 種子 LOX活性を調 查した。 LOX活性が認められない系統については、 さらに複数種子(4〜7粒) の活性測定を行った (図 10)。
【01 30〗 以上の F 2世代の A f a I法多型調査と F 3種子の L O X活性測 定の結果、 SBOU2の LOX— 1欠失形質の分離は上記 A f a I法多型の分離 と完全に一致した。 すなわち、 SBOU2の LOX— 1欠失遺伝子が LOXA遺 伝子座にあることが、 これら一連の遺伝学的調査から明らかとなった。
[0 1 3 1 J また、 この結果は、 DN A変異を利用した大麦選抜法の 1例であ る A f a I法を用いれば、 LOX— 1欠失の交配系統を大麦成育初期の葉の段階 で選抜でき、 種子が実るのを待つ必要はないことを示している。
【01 32〗 実施例 1 (他の大麦品種の A f a I多型調査)
【0 1 33〗 一般的な大麦品種/系統を用いて、 A f a I法多型調査を行った。 用いた品種は、 ミカモゴールデン、 ゴールデンメロン、 はるなニ条、 みょうぎ二 条、 さきたまニ条、 ヮセドリニ条、 あぐりもち、 ハルピンニ条、 りょうふう、 北 育 33号、 北育 35号、 P r i o r、 S c h o o n e r, S l o o p、 L o f t y JN i j o、 F r a n k 1 i n、 B e t z e s、 H a r r i n g t o ii、 Ma n l e y、 B 1 251、 CDC Ke n d a l 1、 CDC S t r a t u s、 C DC C o p e l a n d、 Ha nn a、 Me r i t、 AC Me t c a l f e、 TR 145、 Ch a r i o t、 S t i r l i n g、 P r o c t o r、 Ko r a l、
He a r t 1 a n d、 計 32品種 系統である。 A f a I法多型調査の結果、 供 試したこれらの品種は S B〇U 2型ではなく、 第 5イントロンのスプライシング 供与配列を含む制限酵素 A f a I部位 (配列表配列番号 1の 60— 6 3番目: 5' -GTAC- 3 ' ) が消化されていた (図 1 1)。 このことは、 これら育成系統に おいて、 A f a I部位 (配列表配列番号 1の 60— 63番目 : 5' — GTAC— 3 ' ) に DNA変異が認められないことを示すものであり、 交配系統の LOX— 1欠失遺伝子の選抜に、 この Af a I法が有効に利用できる。
【0 1 34】 実施例 2 (遺伝資源の探索)
【0 1 35】 岡山大学保存の世界の大麦遺伝資源 (在来種) について A f a I 法による調査を行った。 その結果、 新たな 5系統において、 第 5イントロンのス 供与配列を含む制限酵素 A f a I部位 (配列表配列番号 1の 60— 63番目 : 5' — GTAC— 3' ) が消化されない系統を見出した (岡山大学保 存380111、380113、38〇114、380115ぉょび3801;6) (図 1 2)。
[01 36] 次に、 これらの系統の種子の L O X— 1活性を探索試験 1に記載 の方法で測定した。 なお、 S B〇U 5および S BOU 6については活性測定を反 応 5分で行い (図 1 3 A)、 S BOU 1、 S BOU 3および S BOU 4については より活性の有無を明確にできるよう反応時間を 90分にのばして活性測定した (図 1 3 B)。その結果、これらの全ての系統において有意な活性は認められなか つた (図 1 3)。
【013 7】 このことから、 SBOU2ならびに SBOUl、 i BOU3、 S BOU4、 SBOU5および SBOU6 ( S B O U 2型 L〇 X— 1欠失大麦) は
L〇X— 1欠失大麦であることが明らかとなった。 これらの系統はいずれも、 在 来種であり、 人為的に変異誘発を行った系統ではないことから、 L〇X— 1遺伝 子に関して自然突然変異体である。
【01 38】 以上の結果から、 DNA変異を利用した大麦選抜法の 1例である A f a I法は、 L OX— 1欠失大麦交配後代系統の選抜のみならず、 大麦遺伝資 源からでも効率的に L O X— 1欠失大麦の選抜を可能にする技術であることが明 らかとなつた。
【0139】 実施例 3 (試験醸造用大麦の育成)
【0140】 大麦品種大正麦と S B〇 U 2を交配し、 得られた雑種第 1代 ( F 1) を自殖して得られる F 2世代において、 上記探索試験 1に記載の L O X— 1 酵素活性測定法および上記証明試験 9に記載の上記 A f a I法により L OX— 1 欠失形質を確認し、 L O X— 1欠失系統群、 LOX- 1保有系統群を集団として、 以降の種子増殖に供試した。
【0141】 種子増殖は各系統 (集団) ごとに行い、 F 4種子が得られるまで 均一な圃場あるいは温室を用いて行った。 F 4種子について LOX_ 1酵素活性 を測定したところ、 F 2個体で判別された L O X— 1活性の有無を維持しており、 この結果から L O X— 1欠失形質は安定して後代に伝達されることが明らかにな つた。
ί 0142〗 以降の麦芽製造試験および麦芽アルコール飲料製造試験には、 こ の F 4種子を供試した。
〖0143〗 実施例 4 (試験醸造用麦芽の製造)
【0144〗 上記大正麦 X S BOU 2の交配に由来する、 LOX— 1活性を有 しない大麦種子からなる LOX— 1欠失大麦 F 4集団 (LOX— F 4) と、 LO X— 1を有する大麦種子から L Ο X活性保有大麦 F 4集団 (LOX+F 4) をつ くり、 製麦に用いた。
【0145】 製麦は、 Au t oma t i c M i c r oma l t i n g S y s t em (Ph e n i x S y s t ems社製) を用いて、 浸麦 16 °C合計 82 時間 ( 5時間 WE TZ 7時間 DRYサイクル)、発芽 1 5 °C 1 39時間、焙燥 29 時間 ( 55 °C 1 3. 5時間、 65 °C 8時間、 75 °C 3. 5時間、 83 °C 4時間) の条件で行った。
【0146】 実施例 5 (麦芽及び麦汁の分析)
【0147】 麦芽の分析は、 EBC標準法 (European Brewery Convention 編、 Analytica EBC (4th Ed)、 1987) に従い行つた。 その結果、 L O X _ F 4と LOX + F4を用いた麦芽には麦芽分析値に大きな差がなく、 L O X— 1活性の 有無を比較する目的の麦芽アルコール飲料醸造に問題なく使用できることが明ら かになつた (図 14)。
【0148】 次に、 麦芽 50 gを用いて、 コングレス法 (European Brewery Convention編、 Analytica EBC Ed)、 1987) により麦汁を作製し、 麦汁中の 脂質酸化物を分析した。
[0 149] まず、 麦汁中のトランス一 2—ノネナール量を以下の方法で測定 した。 麦汁サンプル 8 mLにバイアルに入れ、 3 gの N a C 1を添カ卩しキャップ をした。 次にスペルコ製ポリジメチルシロキサン S PMEファイバーを揷入し、 40°〇で1 5分間インキュベートした後、 ガスクロマトグラフィーに供試した。
[0 1 50] ガスクロマ 卜グラフィー ·マススぺク トロメ トリ一は、 キヤビラ リーカラムとして J&W社製 DB— 1 (30m X 0.25mm, フィルム厚 1 im) を、 キヤリァガスとしてヘリゥム (ImLZ分) を用い、 オーブン条件は 6 0°Cから 2 2 5°C ( 5 °C /分) とし、 セレク トイオンモード (m/ z : 70) でトランス一
2—ノネナールの定量を行った。 なお、 定量には、 シグマ社製トランス一 2—ノ ネナールを標準品とした標準添加法を用いた。
【0 1 5 1】 その結果、 LOX—F 4、 LOX + F 4を用いて作製した麦汁の トランス一 2—ノネナール濃度はそれぞれ 0. 3 6 p p bと 3. 8 5 p p bであ つた。 したがって、 本発明にかかる麦芽を使用して麦汁を製造すれば、 従来の麦 芽をした場合に比べて、 トランス一 2—ノネナール生成量を lZl 0以下に抑制 できることが明らかとなった。
【0 1 5 2】 また、 麦汁ノネナールポテンシャルは以下の方法で測定した。 ま ず、 Drostらの方法 (Drost, B. W., van den Berg, E,., Freijee, F. J.M., van der Velde, E. G., and HoUemans, M., J. Am. Soc. Brew. Chem., 48, 124-131, 1990) により麦汁を 2時間煮沸した。 その後、 上記トランス一 2—ノネナールの測定方 法に従いサンプ^/レ中のトランス一 2—ノネナールの量を測定し、 麦汁中のノ卞ナ ールポテンシャルを算出した。
【0 1 5 3】 その結果、 LOX—F 4、 L O X + F 4を用いて作製した麦汁の ノネナールポテンシャルは、それぞれ 2. 74 p p bと 1 1. 9 p p bであった。 ノネナールポテンシャルは製品老化を予測できる指標として知られることから
(Drost, B. W" et al., J. Am. Soc. Brew. Chem., 48, 124-131, 1990、 U e d a e t . a l . (200 1) EBC— r o c e e d i n g s 5 5 : p 3 2 8 t h
C o n g r e s s),本発明にかかる大麦から作製した麦芽を利用し、麦芽アルコ ール飲料を醸造すれば、 麦芽アルコール飲料の香味耐久性を大きく改善する事が 出来な。 【01 54】 また、 LOX— F 4を用いて作製した麦汁のトランス一 2—ノネ ナール濃度とノネナールポテンシャルを、 市販の麦芽を用いて作製した麦汁のそ れらと比較したのが図 1 5である。 図 1 5に示した結果から明らかなように、 本 発明にかかる麦汁は、 従来の大麦では達成できなかつた分析値を示した。
〖01 55〗 以上の結果から、 本発明にかかる大麦を利用すれば、 従来品には ない品質を有する麦芽を製造する事が出来ることが明らかとなつた。
【01 56】 さらに、 麦汁中の THOD濃度を高速液体クロマトグラフィー質 量分析にて測定した。 高速液体クロマトグラフィーの条件は以下の通りである。 移動相の流速 0. 3mLZ分とし、 移動相には 0. 5%酢酸 (A液) とァセトニ トリル (B液) の混合液を用い、 A液: B液 =35 : 65 ( 0分) 一 A液: B液 = 5 : 95 (30分) のリニアグラジェントの条件で行った。 また、 カラムはゥ オーターズ社製 Assymetry (No.106005; C18, 3.5 i m: 2.1x150mm)を用い、 力 ラム温度は 5◦ °Cとし、 ヒュレツトパッカード社製 1100型高速液体クロマトグ ラフシステムを用いて、 5 μ Lの麦汁または麦芽アルコール飲料サンプルを分離 した。 質量分析はウォーターズ ZQを用い、 E Sイオン化ネガティブモードで質 量 329をモニタリングした。 なお、 T HODの標準液はビール抽出サンプルを 利用した (Kobayashi, N" et al., Biosci. Bioeng., 90, 69-73, 2000)。
【0157】 その結果、 LOX— F 4、 L O X + F 4を用いて作製した麦汁の TH〇D濃度はそれぞれ 6. 5 p pmと 14. 7 p p mであり、 本発明にかかる 麦芽を使用して麦汁を製造すれば麦汁 T HOD濃度を 1 2以下に抑制できるこ とが明らかとなった。
【0 158】 前述したように THODは仕込工程において麦芽 LOX— 1と麦 芽ペルォキシゲナーゼ様活性の働きによりリノ一ル酸から変換されることにより 生成するが、 麦芽ペルォキシゲナーゼ様活性が THOD生成の律速段階と考えら れるため (Kuroda, Η·, et al., J. Biosci. Bioeng." 93, 73-77, 2002)、 麦芽 LOX 一 1活性を低下させた場合、 THODの生成がどの程度抑制されるかは明らかで はなかった。 しかし、 本実施例の結果から L OX— 1活性のない大麦種子から製 造される麦芽を使用すれば、 麦汁中の THOD量が減少する事が証明された。 丁 HODは酵母によって代謝されること無く最終製品に移行する事から
(Kobayashi, N., et al., J. Inst. Brew., 106, 107-110 (2000))、本発明にかかる大 麦由来の麦芽を利用すれば、 香味品質や泡品質の良い麦芽アルコール飲料の製造 が可能となることが明らかとなった。
【01 59〗 実施例 6 (麦芽アルコール飲料試験醸造)
[0160] 1. 冷麦汁の製造と分析
【016 1】 上記実施例 4で得られた LOX— F 4麦芽と LOX+F 4麦芽の 2点について、 50 Lスケール仕込設備により発泡酒仕様 (麦芽使用率 24%) での仕込を行なった。 仕込条件は以下の通りである。
【0162】 各々の麦芽 1. 5 k gを単用で 1 5 Lの仕込用水により 50°C、 20分→ 65 °C、 30分→75。C、 3分のダイァグラムに従って仕込み、 口イタ 一設備により麦汁ろ過を行ない、 最終的に 35 Lのろ過麦汁を得た。
【016 3】 得られたろ過麦汁は液糖 (糖分 75%) 5 k gと混合し、 ホップ ペレツ ト(苦味分析値 87. 0 BU (EBC)) 1 3 gを添加して 70分間煮沸し、 10°Cまで冷却し、加水によるエキス調整によりエキス含量 1 1. 6へ 1 1. 8% の冷麦汁とした。
【0 1 64】 得られた冷麦汁の分析は、 EBC標準法 (European Brewery Convention編、 Analytica EBC (4th Ed)、 1987) に従い行った。 分析値を表 1に 示した。 表 1に記載したように、 一般的な分析項目に関しては LOX— F 4と L OX + F 4の間で明らかな差は認められなかった。
【0165】 [表 1]
Figure imgf000032_0001
【01 66】 2. 麦芽アルコール飲料 (発泡酒) の製造
【0167】 上記 1で得られた冷麦汁を蒸気殺菌した 30 Lスケールのシリン ドロコ-カル型タンクに移し、 初期濃度 3000万 c e 1 1 sZmLとなるよう に酵母を添加し、 1 3°Cにて主発酵を行なった。 発酵液のエキスが 2. 5%まで 切れた段階で同型のタンクに移し替え、 貯酒工程を行った。 貯酒工程は最初の 6 日間は 1 3°Cにて、 その後の 2週間は 0°Cにて行った。
【0168】 貯酒工程の終わった発酵液は、ビールろ過設備及び充填設備にて、 麦芽アルコール飲料をろ過し、 壜への充填を行なった。
【016 9】 3. 麦芽アルコール飲料の分析
【01 70】 上記 2で得られた麦芽アルコール飲料の分析を以下のように行つ た。
【01 71】 まず、 EBC標準法に従い分析を行ったところ、 脂質酸化物分析 値以外の一般分析値に関しては LOX— F 4と LOX+F 4の間で、 明らかな差 は認められなかった (表 2)。
【01 72】 [表 2]
Figure imgf000033_0001
[0173] 次に以下の方法により上記 2で得られた麦芽アルコール飲料の泡 持ちについて分析を行った。
【0174】 泡持ち分析は、 N I B EM法を利用した。 Haffmans社の Ϊ ΑΜ STABILITY TESTERを使用し、 泡持ちを分析したところ (表 3)、 LOX-F 4大麦は LOX+F 4大麦に比べて、 N I B EM値が 21ポイント高く、 高い泡 持ちを有する事が明らかとなった。
【0175】 また、 上記実施例 5に記載した方法により、 T HOD濃度を測定 した結果、 LOX— F 4は LOX+F 4に比べ半分以下に減少していた (表 3)。
【0176】 以上の結果から、 本発明の麦芽アルコール飲料製造方法により製 造される麦芽アルコール飲料は、 THODの蓄積を抑制することができ、 製品の 泡持ちを改善できたことが明らかとなつた。
【01 77】 [表 3]
Figure imgf000034_0001
【01 78〗 次に、 以下のように 1 3人のパネルによる官能検査を行い、 上記 2で得られた麦芽アルコール飲料の香味耐久性を比較した。
【01 79】 まず、 LOX— F4及び LOX+F 4の麦芽アルコール飲料を 3 7°Cで 1週間保存した。 次に、 それを通常の飲用温度でコップに注いだものをパ ネルの官能検査に供し、 老化臭、 総合老化度 (老化臭、 老化味を加味して評価)の 2項目について 0〜 4までの評点 (老化が進むほど評点が高い)で評価した (表 4 A、 B)。
【0180】 その結果、 老化臭に関しては、 1 3人中 10人が LOX—F 4の 方に低い評点をつけており、 LOX— F4は LOX+F 4と比べて、低い評点 (平 均値)を示した。 その差は t検定により 5%の危険率で有意であると判定された (表 4A)。
【0181】 また、 総合老化度に関しては、 1 3人中 1 1人が LOX— F 4の 方に低い評点をつけており、 L〇X— F 4は L〇X F 4と比べて、低い評点 (平 均値)を示し、その差は t検定により 5 %の危険率で有意と判定された(表 4 B)。 【0182】 以上の官能検査と統計分析により、 LOX— F 4は LOX+F 4 と比べて、 老化臭が低減され、 低い総合老化度を有することが明らかとなった。 【0183】
[表 4 A]
[表 4 B]
Figure imgf000035_0001
[0184] また、 3 7。C、 1週間保存の前後で上記 2で得られた麦芽アルコ ール飲料のトランス一 2—ノネナール濃度を測定した結果、 L O X— F 4は、 保 存前でも トランス一 2 ノネナール濃度が L O X + F 4に比べて低減し、 保存後 は L〇 X + F 4の約 1. ' 3に抑制できた事が明らかとなつた (表 5 )0
【0185】
[表 5]
Figure imgf000036_0001
(単 1 : p b )
【0 186】 以上、 官能検査の結果と麦芽アルコール飲枓中のトランス一 2— ノネナール濃度の解析結果から、 本発明の麦芽アルコール飲料の製造方法により 麦芽アルコール飲料を製造すれば、 香味耐久性が改善された麦芽アルコール飲料 が得られることが明らかとなった。
【0187】 最後に、 上記 2で得られた麦芽アルコール飲料の濃醇さとキレに 関して官能検査と脂質膜センサ一により解析を行った。
【0188】 まず、 13人のパネルによる官能検査を行い香味品質を比較した。
LOX— F 4及び LOX+F 4の麦芽アルコール飲料を官能検査に供し、 濃醇さ とキレの 2項目について 0〜4までの評点 (濃醇さが強い、'またはキレが良いほど 評点が高い)で評価を行った (表 6 )。
【0189】 濃醇さに関しては、 LOX— F 4と LOX+F 4との間に有意差
(5%の危険率) はみられなかった (表 6 A:)。
【01 90】 キレに関しては、 1 3人中 8人が L〇X— F 4の方に高い評点を つけた (表 6 B)。 また、 LOX— F 4は LOX + F 4に比べて高い評点 (平均値) を示し、 その差は t検定により 5%の危険率で有意であると判定された。
[01 9 1 ] 以上の結果から、 LOX-F 4を用いて麦芽アルコール飲料を醸 造すると、 濃醇さに影響を与えることなく、 キレを改善できる事が明らかとなつ た。 【0192】
[表 6 A]
[表 6 B]
Figure imgf000037_0001
【0193】 さらに、金田等の方法により (Kaneda, H. et al., J. Biosci. Bioeng" 92, 221-226, 2001.)、脂質膜センサーを用いて製品の濃醇さとキレを評価した(表 7)。
【01 94〗 濃醇さは脂質膜への吸着性により評価されるが、 その結果、 LO X— F4と LOX+F4の吸着性の間に統計的有意差 (危険率 5°/。水準) が認め られなかった (表 7 A)。
【0195〗 一方、 キレは脂質膜への残存性により評価 (キレが劣るほど高い 残存性を示す) されるが、 LOX— F4は LOX+4に比べ約 1 Z 4の残存性を 示し、 危険率 1 %水準での有意差が認められた (表 7B)。
[表 7 A]
Figure imgf000038_0001
(単位: H Z。 危険率 5 %水準での有意差認められず)
[表 7B]
Figure imgf000038_0002
(単位: H Z。 危険率 5 %水準での有意差認められず) 【0196】 これまで、 麦芽 LOX— 1活性と仕込工程における THOD生成 量には相関が見られず (Kobayashi, N. et al., (2000). J. Biosci. Bioeng. 90:69-73.)、 麦芽 LOX— 1の抑制によりどの程度 T H O D生成が抑制されるの かは不明であった。 また、 抑制された結果、 果たしてキレを改善できるかは従来 技術では予想が付かなかった。 し力、し、 本実施例の官能検査結果と脂質膜センサ 一を利用した製品の濃醇さとキレの解析結果より、 本請求遺伝子を利用した麦芽 を利用すれば、 製品の濃醇さに影響を与える事無く、 製品のキレを改善する事が 初めて実証された。 【0197】 実施例 7 (大麦加工物を使用した麦芽アルコール飲料試験醸造) 【0198】 1. 冷麦汁の製造と分析
[0199] 上記実施例 3で得られた系統の後代である L O X— F 5および L OX + F 5の大麦加工物を副原料として用い、 50 JLスケール仕込設備により発 泡酒仕様 (麦芽使用率 24%、 大麦加工物使用率 76%) での仕込を行なった。 仕込条件は以下の通りである。
[0200] 市販のビール醸造用麦芽 1. 2 k gと、 各々の大麦加工物 3. 8 k gを 20 Lの仕込用水により 50°C、 30分→65°C、 60分→ 75 °C、 3分 のダイアグラムに従って仕込み (大麦加工物使用比率が高いため、 仕込時には a アミラーゼ、 |3グルカナーゼなどの酵素剤を併用した)、口イタ一設備により麦汁 ろ過を行ない、 最終的に 40 Lのろ過麦汁を得た。
【0201】 得られたろ過麦汁は、 ホップペレット (苦味分析値 25. 6 BU
(EBC)) 53 gを添カ卩して 80分間煮沸し、 10°Cまで冷却し、加水によるェ キス調整によりエキス含量 7. 5〜7. 6%の冷麦汁とした。
【0202】 得られた冷麦汁の分析は、 EBC標準法に従い行った。 分析値を 表 8に示した。 表 8に記載したように、 一般的な分析項目に関しては LOX— F 5と LOX+F 5の間で明らかな差は認められなかった。
【0203】
[表 8]
Figure imgf000040_0001
【0204】 2. 麦芽アルコール飲料 (発泡酒) の製造
【0205】 上記 1で得られた冷麦汁を蒸気殺菌した 30 Lスケールのシリン ドロコニカル型タンクに移し、 初期濃度 3000万 c e 1 1 s/mLとなるよう に酵母を添加し、 15°Cにて主発酵を行なった。 発酵液のエキスが 1. 3%まで 切れた段階で同型のタンクに移し替え、 貯酒工程を行なった。 貯酒工程は最初の 5日間は 1 3°Cにて、 その後の 2週間は 0°Cにて行なった。
【0206】 貯酒工程の終わった発酵液はビールろ過設備及び充填設備にて、 麦芽アルコール飲料をろ過し、 壜への充填を行なった。
【0207】 3. 麦芽アルコール飲料の分析
【0208】 上記 2で得られた麦芽アルコール飲料の分析を以下のように行つ た。
【0209】 まず、 EBC標準法に従い分析を行ったところ、 脂質酸化物分析 値以外の一般分析値に関しては LOX— F 5と LOX + F 5の間で、 明らかな差 は認められなかった (表 9)。
【0210】 [表 9〕
Figure imgf000041_0001
【0 2 1 1】 次に以下の方法により上記 2で得られた麦芽アルコール飲料の泡 持ちについて分析を行った。
【0 2 1 2】 泡持ち分析は、 N I B EM法を利用した。 Haffinans社の FOAM STABILITY TESTERを使用し、 泡持ちを分析したところ (表 1 0 )、 LOX- F 5大麦は LOX + F 5大麦に比べて、 N I BEM値が 1 7ポイント高く、 高い 泡持ちを有する事が明らかとなった。
【0 2 1 3】 また、 上記実施例 5に記載した方法により、 麦芽アルコール飲料 中の THOD濃度を測定した結果、 LOX— F 5は LOX + F 5に比べ半分以下 に減少していた。
【0 2 1 4】 以上の結果から、 本発明の麦芽アルコール飲料製造方法により製 造される麦芽アルコール飲料は、 THODの蓄稂を抑制することができ、 製品の 泡持ちを改善できたことが明らかとなつた。 10]
Figure imgf000042_0001
※丁 HODの値は、 内部標準物質のピーク面積を 100とした相対ィ直
[0215} 次に、 以下のように 1 3人のパネルによる官能検査を行い、 上記 2で得られた麦芽アルコール飲料の香味耐久性を比較した。 官能検査の具体的な 方法は、 実施例 6に記載の方法と同様である。
【0216】 その結果、 老化臭に関しては、 1 3人中 1 1人が LOX— F 5の 方に低い評点をつけており、 LOX— F 5は LOX + F 5と比べて、低い評点 (平 均値)を示した。その差は t検定により 5 %の有意水準で有意であると判定された (表 1 1 A;)。
【0217】 また、 総合老化度に関しては、 13人中 1 2人が LOX— F 5の 方に低い評点をつけており、 LOX— F 5は LOX+F 5と比べて、低い評点(平 均値) を示し、 その差は t検定により 5%の有意水準で有意と判定された (表 1 1 B)。
【021 8】 以上の官能検査と統計分析により、 LOX— F 5は LOX+F 5 と比べて、 老化臭が低減され、 低い総合老化度を有することが明らかとなった。 【021 9】
[表 1 1 A]
[表 1 I B]
Figure imgf000043_0001
[0220] また、 37°C、 1週問保存の前後で上記 2で得られた麦芽アルコ ール飲料のトランス一 2—ノネナール濃度を測定した結果、 L O X - F 5は、 保 存前のトランス一 2—ノネナール濃度は LOX + F 5と同等であつたが、 保存後 は L O X + F 5の約 1 Z 2程度に抑制できた事が明らかとなつた (表 1 2 )。
【0221】
[表 12]
Figure imgf000044_0001
(単位: p p b )
【0222】 実施例 8 (麦芽アルコール飲料試験醸造)
【0223】 1. 冷麦汁の製造と分析
【0224】 上記実施例 4と同様の方法で得られた L O X— F 4大麦および L OX + F 4大麦の 2点から作製した麦芽を用い、 50 Lスケール仕込設備により 麦芽を原料として用いたビール仕様 (麦芽使用率 71%) での仕込を行なった。 仕込条件は以下の通りである。 '
【0225】 上記の試験麦芽 5. 0 k gと、 合計 2. O k gの副原料 (コーン スターチ、 コーングリッツ、 砕米) を 23 Lの仕込用水により 50°C、 20分→ 65°C、 40分→75°(、 3分のダイアグラムに従って仕込み、 口イタ -設備に より麦汁ろ過を行ない、 最終的に 40 Lのろ過麦汁を得た。
【0226】 得られたろ過麦汁は、 ホップペレツト (苦味分析値 44. 9 BU
(EBC)) 40 gを添加して 90分間煮沸し、 10°Cまで冷却し、加水によるェ キス調整によりエキス含量 1 0. 8〜1 1. 1%の冷麦汁とした。
【0227】 得られた冷麦汁の分析は、 EBC標準法に従い行った。 分析値を 表 1 3に示した。 表 1 3に記載したように、 一般的な分析項目に関しては LOX 一 F4と LOX+F4の間で明らかな差は認められなかった。
ί 0228】 [表 1 3]
Figure imgf000045_0001
【0229】 2. 麦芽アルコール飲料 (ビール) の製造
【0230】 上記 1で得られた冷麦汁を蒸気殺菌した 30 Lスケールのシリン ドロコニカル型タンクに移し、 初期濃度 1 500万 c e 1 1 s/mLとなるよう に酵母を添加し、 10. 5°Cにて主発酵を行なった。 発酵液のエキスが 2. 5% まで切れた段階で同型のタンクに移し替え、 貯酒工程を行なった。 貯酒工程は最 初の 8日間は 8 °Cにて、 その後の 2週間は 0°Cにて行なった。
【0231】 貯酒工程の終わった発酵液はビールろ過設備及び充填設備にて、 麦芽アルコール飲料をろ過し、 壜への充填を行なった。
【0232】 3. 麦芽アルコール飲料の分析
【0233】 以下の方法により上記 2で得られた麦芽アルコール飲料の泡持ち について分析を行った。 泡持ち分析は、 N I BEM法を利用した。 Haffmans社 の FOAM STABILITY TESTERを使用し、 泡持ちを分析したところ (表 14 )、 LOX-F 4大麦は LOX+F 4大麦に比べて、 N I B EM値が 30ポイント髙 く、 高い泡持ちを有する事が明らかとなった。
[0234] また、 上記実施例 5に記載した方法により、 麦芽アルコール飲料 中の THOD濃度を測定した結果、 LOX— F 4は LOX+F 4に比べ半分以下 に減少していた。
【0235〗 以上の結果から、 本発明の麦芽アルコール飲料製造方法により製 造される麦芽アルコール飲料は、 THODの蓄積を抑制することができ、 製品の 泡持ちを改善できたことが明らかとなつた。
【0236】
[表 14]
Figure imgf000046_0001
※丁 HODの値は、 内部標準物質のピーク面積を 100とした相対値 【0237】 次に、 以下のように 1 3人のパネルによる官能検査を行い、 上記
2で得られた麦芽アルコール飲料の香味耐久性を比較した。 官能検査の具体的な 方法は、 実施例 6に記載の方法と同様である。
【0238】 その結果、 老化臭に関しては、 1 3人中 1 1人が L〇X— F 4の 方に低い評点をつけており、 LOX— F4は LOX+F4と比べて、低い評点(平 均値) を示した。 その差は t検定により 5 °/0の有意水準で有意であると判定され た (表 1 5 A)。
【0239】 また、 総合老化度に関しては、 1 3人中 1 2人が LOX— F 4の 方に低い評点をつけており、 LOX— F 4は LOX+F 4と比べて、低い評点(平 均値) を示し、 その差は t検定により 5%の有意水準で有意と判定された (表 1 5 B)。
【0240】 以上の官能検査と統計分析により、 LOX— F 5は LQX+F 5 と比べて、 老化臭が低減され、 低い総合老化度を有することが明らかとなった。 【0241】 [表 1 5 A]
[表 1 5 B]
Figure imgf000047_0001
[0242] 以上、 官能検査の結果と麦芽アルコール飲料中の トランス一 2— ノネナール濃度の解析結果から、 本発明の麦芽アルコール飲料の製造方法により 麦芽アルコール飲料を製造すれば、 香味耐久性が改善された麦芽アルコール飲料 が得られることが明らかとなった。
産業上の利用可能性
【0 2 4 3〗 遺伝子操作することなく、 香味耐久性や泡持ちを改善された麦芽 アルコール飲料を製造するために有用な、 L O X— 1変異遗伝子と、 L O X— 1 欠失大麦の選抜方法と、 選抜によって得られた大麦に由来する麦芽アルコール飲 料用原料と、 前記麦芽アルコール飲料用原料を用いた麦芽アルコール飲料の製造 方法と、 を提供することが可能となる。

Claims

言青求の範囲
1. 大麦リポキシゲナーゼ一 1遺伝子第 5イントロンのスプライシング供与 部位 (5 ' -GT-3 ' ) のグァニンが他の塩基に変異していることを特徴とす る大麦リポキシゲナーゼー 1変異遺伝子。
2. 前記他の塩基がアデニンであることを特徴とする請求項 1に記載の大麦 リポキシゲナーゼ— 1変異遺伝子。
3. 大麦リポキシゲナーゼー 1遺伝子第 5イントロンのスプライシング供与 部位のグァニンが他の塩基に変異しているか否かにより大麦リポキシゲナーゼ一 1欠失大麦を判別することを特徴とする大麦リポキシゲナーゼー 1欠失大麦の選 抜方法。
4. 前記他の塩基がアデニンであることを特徴とする請求項 3に記載の大麦 リポキシゲナーゼー 1欠失大麦の選抜方法。
5. 被検対象である大麦からゲノム DN Aを抽出するゲノム DN A抽出工程 と、
抽出したゲノム DNAから大麦リポキシゲナーゼ一 1遺伝子第 5イントロンの スプライシング供与部位を含む D N A断片を増幅する D N A断片増幅工程と、 前記 DN A断片増幅工程で增幅された大麦リポキシゲナーゼー 1遺伝子第 5ィ ントロンのスプライシング供与部位を含む D N A断片を制限酵素で切断して所定 の塩基数の DNA断片を検出し、 スプライシング供与部位のグァニンが他の塩基 に変異しているか否かにより大麦リポキシゲナーゼー 1欠失大麦を判別する DN A断片検出工程と、
を含むことを特徴とする請求項 3または 4に記載の大麦リポキシゲナーゼー 1欠 失大麦の選抜方法。
6. 前記 DN A断片検出工程において使用する制限酵素が塩基配列 5' -G TAC— 3' を認識する A f a Iおよび/または R s a Iであることを特徴とす る請求項 5に記載の大麦リポキシゲナーゼー 1欠失大麦の選抜方法。
7. 請求項 1または 2に記載の大麦リポキシゲナーゼー 1変異遺伝子を持つ 大麦に由来する種子、 麦芽、 モルトエキス、 大麦分解物または大麦加工物である ことを特徴とする麦芽アルコール飲料用原料。
8. 請求項 3〜 6のうちのいずれか 1項に記載の選抜方法により選抜された 大麦に由来する種子、 麦芽、 モルトエキス、 大麦分解物または大麦加工物である ことを特徴とする麦芽アルコール飲料用原料。
9. 請求項 7または 8に記載の麦芽アルコーノレ飲料用原料を用いることを特 徴とする麦芽アルコール飲料の製造方法。
10. 配列番号 10の 1〜 1554番目の塩基で表される塩基配列 らなる
1 1. 配列番号 1 1で表される塩基配列からなる核酸。
1 2. 配列番号 1 1で表される塩基配列からなる核酸において、 31 78番 目の塩基を含む 10〜60の連続した塩基配列からなる核酸。
1 3. 大麦サンプルからゲノム DNAを単離する工程と、
配列番号 1 1で表される塩基配列の 31 78番目の塩基を検出し、 その塩基の存 在を当該大麦の L O X— 1活性の存在の指標とする工程と、
を含む、 大麦における LOX— 1活性の存在を検出する方法。
PCT/JP2004/004217 2003-03-25 2004-03-25 大麦リポキシゲナーゼ-1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法 WO2004085652A1 (ja)

Priority Applications (16)

Application Number Priority Date Filing Date Title
DK04723378T DK1609866T3 (da) 2003-03-25 2004-03-25 Byg-lipoxygenase-1-gen, selektionsfremgangsmåde for byg, materialer til malt-alkoholiske drikkevarer og fremgangsmåde til fremstilling af malt-alkoholiske drikkevarer
EP04723378A EP1609866B1 (en) 2003-03-25 2004-03-25 Barley lipoxygenase- 1 gene, selection method for barley, materials for malt alcoholic beverages and method for production of malt alcoholic beverages
US10/550,528 US7897850B2 (en) 2003-03-25 2004-03-25 Barley Lipoxygenase 1 Gene, method of selecting barley variety, material of malt alcoholic drinks and process for producing malt alcoholic drink
PL04723378T PL1609866T3 (pl) 2003-03-25 2004-03-25 Gen lipooksygenazy-1 jęczmienia, sposób selekcji jęczmienia, materiały do słodowych napojów alkoholowych oraz sposób wytwarzania słodowych napojów alkoholowych
MXPA05009814A MXPA05009814A (es) 2003-03-25 2004-03-25 Gen de lipoxigenasa-1 de cebada, metodo de seleccion de la cebada, materiales para bebidas alcoholicas de malta y metodo para la produccion de bebidas alcoholicas de malta.
AU2004223568A AU2004223568B2 (en) 2003-03-25 2004-03-25 Barley lipoxygenase 1 gene, method of selecting barley variety, material of malt alcoholic drinks and process for producing malt alcoholic drink
BRPI0408764-0A BRPI0408764A (pt) 2003-03-25 2004-03-25 gene lipoxigenase-1 de cevada, método de seleção para cevada, materiais para bebidas alcoólicas de malte e método para produção de bebidas alcoólicas de malte
DE602004017294T DE602004017294D1 (de) 2003-03-25 2004-03-25 Gerste-lipoxygenase-1-gen, verfahren zur selektion einer gerstensorte, material für alkoholische malzgetränke sowie verfahren zur herstellung eines alkoholischen malzgetränks
CA002519824A CA2519824C (en) 2003-03-25 2004-03-25 Barley lipoxygenase-1 gene, selection method for barley, materials for malt alcoholic beverages and method for production of malt alcoholic beverages
US12/505,723 US20090285932A1 (en) 2003-03-25 2009-07-20 Barley lipoxygenase 1 gene, method of selecting barley variety, material of malt alcoholic drinks and process for producing malt alcoholic drink
AU2009202975A AU2009202975C1 (en) 2003-03-25 2009-07-23 Barley lipoxygenase-1 gene, selection method for barley, materials for malt alcoholic beverages and method for production of malt alcoholic beverages
US13/667,538 US20130129862A1 (en) 2003-03-25 2012-11-02 Barley lipoxygenase 1 gene, method of selecting barley variety, material of malt alcoholic drinks and process for producing malt alcoholic drink
US13/800,500 US20130196027A1 (en) 2003-03-25 2013-03-13 Barley lipoxygenase 1 gene, selection method for barley, materials for malt alcoholic beverages and method for production of malt alcoholic beverages
US14/662,416 US9497919B2 (en) 2003-03-25 2015-03-19 Barley lipoxygenase 1 gene, selection method for barley, materials for malt alcoholic beverages and method for production of malt alcoholic beverages
US14/882,998 US20170295738A1 (en) 2003-03-25 2015-10-14 Barley lipoxygenase 1 gene, method of selecting barley variety, material of malt alcoholic drinks and process for producing malt alcoholic drink
US15/979,923 US20180271046A1 (en) 2003-03-25 2018-05-15 Barley lipoxygenase 1 gene, method of selecting barley variety, material of malt alcoholic drinks and process for producing malt alcoholic drink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003083924A JP4113795B2 (ja) 2003-03-25 2003-03-25 大麦リポキシゲナーゼ−1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法
JP2003-083924 2003-03-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/550,528 A-371-Of-International US7897850B2 (en) 2003-03-25 2004-03-25 Barley Lipoxygenase 1 Gene, method of selecting barley variety, material of malt alcoholic drinks and process for producing malt alcoholic drink
US12/505,723 Continuation US20090285932A1 (en) 2003-03-25 2009-07-20 Barley lipoxygenase 1 gene, method of selecting barley variety, material of malt alcoholic drinks and process for producing malt alcoholic drink

Publications (1)

Publication Number Publication Date
WO2004085652A1 true WO2004085652A1 (ja) 2004-10-07

Family

ID=33094979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004217 WO2004085652A1 (ja) 2003-03-25 2004-03-25 大麦リポキシゲナーゼ-1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法

Country Status (20)

Country Link
US (7) US7897850B2 (ja)
EP (1) EP1609866B1 (ja)
JP (1) JP4113795B2 (ja)
KR (1) KR100944107B1 (ja)
CN (1) CN100379866C (ja)
AR (1) AR043922A1 (ja)
AT (1) ATE412057T1 (ja)
AU (2) AU2004223568B2 (ja)
BR (1) BRPI0408764A (ja)
CA (1) CA2519824C (ja)
CO (1) CO5660306A2 (ja)
DE (1) DE602004017294D1 (ja)
DK (1) DK1609866T3 (ja)
ES (1) ES2312984T3 (ja)
MX (1) MXPA05009814A (ja)
PL (1) PL1609866T3 (ja)
RU (1) RU2348696C2 (ja)
UA (1) UA85183C2 (ja)
WO (1) WO2004085652A1 (ja)
ZA (1) ZA200507647B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087934A3 (en) * 2004-03-11 2006-02-02 Carlsberg As Barley for production of flavor-stable beverage
CN103209584A (zh) * 2010-06-03 2013-07-17 嘉士伯酿酒有限公司 节能酿造方法
WO2018001882A1 (en) 2016-07-01 2018-01-04 Carlsberg Breweries A/S Refined cereal-based beverages
WO2019129731A1 (en) 2017-12-28 2019-07-04 Carlsberg A/S Fast methods for preparing cereal extracts
WO2019129724A1 (en) 2017-12-28 2019-07-04 Carlsberg A/S Method for producing an extract of cereal and method for processing this extract into beverage
WO2019207063A1 (en) 2018-04-25 2019-10-31 Carlsberg A/S Barley based beverages

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4113795B2 (ja) 2003-03-25 2008-07-09 サッポロビール株式会社 大麦リポキシゲナーゼ−1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法
KR100808932B1 (ko) * 2006-08-11 2008-03-07 재단법인서울대학교산학협력재단 대두의 리폭시게나아제 2에 존재하는 유전적 마커
JP2008109859A (ja) * 2006-10-27 2008-05-15 Asahi Breweries Ltd フィルタ再生装置
JP4178176B2 (ja) * 2007-10-29 2008-11-12 サッポロビール株式会社 大麦リポキシゲナーゼ−1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法
PL2373154T3 (pl) 2008-12-03 2017-01-31 Carlsberg Breweries A/S Napoje otrzymywane z jęczmienia i słodu o niskim poziomie siarczku dimetylu
US9587210B2 (en) 2008-12-03 2017-03-07 Carlsberg Breweries A/S Energy saving brewing method
SA109310019B1 (ar) 2008-12-30 2014-09-10 Carlsberg Breweries As شعير له نشاط ليبوأوكسجيناز منخفض
CN101776666B (zh) * 2010-02-04 2012-12-26 四川农业大学 一种混合脂肪酸的高效液相色谱分离方法及应用
SG10201704107WA (en) * 2011-11-22 2017-06-29 Suntory Holdings Ltd Non-alcohol, beer-taste beverage having substantiality in taste
KR102315236B1 (ko) 2012-12-28 2021-10-19 산토리 홀딩스 가부시키가이샤 톡 쏘는 맛이 부여된 논알코올의 맥주 맛 음료
CN103907989A (zh) * 2012-12-31 2014-07-09 三得利控股株式会社 赋予了味道的收敛感的无酒精啤酒味饮料
WO2016205644A2 (en) 2015-06-19 2016-12-22 Arcadia Biosciences, Inc. Wheat with reduced lipoxygenase activity
JP6901233B2 (ja) * 2015-10-30 2021-07-14 サッポロビール株式会社 ビールテイスト飲料の呈味改善方法
JP2017123837A (ja) * 2016-01-07 2017-07-20 サッポロビール株式会社 ビールテイスト飲料の渋味改善剤及びマイルドさ改善剤、並びにビールテイスト飲料の渋味改善方法及びマイルドさ改善方法
JP2017127228A (ja) * 2016-01-19 2017-07-27 サッポロビール株式会社 ノンアルコールビールテイスト飲料の製造方法
JP7249728B2 (ja) * 2016-05-17 2023-03-31 サッポロビール株式会社 ビールテイスト飲料の香味向上方法
JP2017205036A (ja) * 2016-05-17 2017-11-24 サッポロビール株式会社 ビールテイスト飲料、ビールテイスト飲料の製造方法、及びビールテイスト飲料の香味向上方法
JP2017205038A (ja) * 2016-05-17 2017-11-24 サッポロビール株式会社 ビールテイスト飲料、ビールテイスト飲料の製造方法、及びビールテイスト飲料の香味向上方法
JP6876378B2 (ja) * 2016-05-17 2021-05-26 サッポロビール株式会社 ビールテイスト飲料の香味向上方法
JP6691826B2 (ja) * 2016-06-01 2020-05-13 サッポロビール株式会社 蒸留酒類
CN110035653A (zh) 2016-06-17 2019-07-19 阿凯笛亚生物科学公司 具有降低的脂肪酶1活性的植物
JP7046593B2 (ja) * 2017-12-21 2022-04-04 キリンホールディングス株式会社 トランス-2-ノネナール等による酸化臭が低減したビールテイスト飲料
JP7134748B2 (ja) * 2018-06-29 2022-09-12 アサヒビール株式会社 アルコール飲料
JP7281346B2 (ja) * 2019-05-30 2023-05-25 サントリーホールディングス株式会社 ビールテイスト飲料、およびビールテイスト飲料の製造方法
JP7281344B2 (ja) * 2019-05-30 2023-05-25 サントリーホールディングス株式会社 ビールテイスト飲料、およびビールテイスト飲料の製造方法
JP7281347B2 (ja) * 2019-05-30 2023-05-25 サントリーホールディングス株式会社 ビールテイスト飲料、およびビールテイスト飲料の製造方法
JP7281345B2 (ja) * 2019-05-30 2023-05-25 サントリーホールディングス株式会社 ビールテイスト飲料、およびビールテイスト飲料の製造方法
JP7419015B2 (ja) 2019-10-15 2024-01-22 アサヒビール株式会社 発泡性アルコール飲料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053720A1 (en) * 2000-12-29 2002-07-11 Carlsberg Research Laboratory Low-lipoxygenase 1 barley

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3660699B2 (ja) 1994-09-29 2005-06-15 サッポロビール株式会社 遺伝子診断を用いた大麦又は麦芽の品種識別方法及びそのプライマー
ATE201809T1 (de) 1995-11-07 2001-06-15 Nestle Sa Enzymbehandeltes stärkehaltiges produkt
US6660915B2 (en) * 2000-12-29 2003-12-09 Anna Christina Douma Low lipoxygenase 1 barley
EP1346030B1 (en) 2000-12-29 2011-11-02 Carlsberg Research Laboratory Low-lipoxygenase 1 barley
JP4113795B2 (ja) * 2003-03-25 2008-07-09 サッポロビール株式会社 大麦リポキシゲナーゼ−1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法
US7420105B2 (en) * 2004-03-11 2008-09-02 Carlsberg A/S Barley for production of flavor-stable beverage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053720A1 (en) * 2000-12-29 2002-07-11 Carlsberg Research Laboratory Low-lipoxygenase 1 barley

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DROST B.W. ET AL: "Flavor Stability", J.AM.SOC.BREW.CHEM., vol. 48, no. 4, 1990, pages 124 - 131, XP002953856 *
HESSLER T.G. ET AL: "Association of a Lipoxygenase Locus, Lpx-B1, with Variation in Lipoxygenase Activity in Durum Wheat Seeds", CROP SCIENCE, vol. 42, no. 5, 2002, pages 1695 - 1700, XP002980837 *
KURODA H. ET AL: "Characterization of factors that transform linoleic acid into di- and trihydroxyoctadecenoic acids in mash", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 93, no. 1, 2002, pages 73 - 77, XP002980834 *
SHIBATA D. ET AL: "Plant lipoxygenases", J. LIPID MEDIAT CELL SIGNAL., vol. 12, no. 2-3, 1995, pages 213 - 228, XP002980835 *
VILARINHOS A.D. ET AL: "Use of the random amplified polymorphic DNA technique to characterize soybean (Glycine max (L.) Merill) genotypes", REV. BRASIL. GENET., vol. 17, no. 3, 1994, pages 287 - 290, XP002980836 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087934A3 (en) * 2004-03-11 2006-02-02 Carlsberg As Barley for production of flavor-stable beverage
US7420105B2 (en) 2004-03-11 2008-09-02 Carlsberg A/S Barley for production of flavor-stable beverage
US7838053B2 (en) 2004-03-11 2010-11-23 Carlsberg A/S Barley for production of flavor-stable beverage
EA014705B1 (ru) * 2004-03-11 2011-02-28 Карлсберг А/С Растение ячменя или его часть с мутантным геном липоксигеназы lox-1 и их применение
EP2290089A2 (en) 2004-03-11 2011-03-02 Carlsberg A/S Barley for production of flavor-stable beverage
EP2290089A3 (en) * 2004-03-11 2011-08-31 Carlsberg A/S Barley for production of flavor-stable beverage
CN103209584A (zh) * 2010-06-03 2013-07-17 嘉士伯酿酒有限公司 节能酿造方法
CN103209584B (zh) * 2010-06-03 2014-10-29 嘉士伯酿酒有限公司 节能酿造方法
WO2018001882A1 (en) 2016-07-01 2018-01-04 Carlsberg Breweries A/S Refined cereal-based beverages
EP3736321A1 (en) 2016-07-01 2020-11-11 Carlsberg Breweries A/S Refined cereal-based beverages
WO2019129731A1 (en) 2017-12-28 2019-07-04 Carlsberg A/S Fast methods for preparing cereal extracts
WO2019129724A1 (en) 2017-12-28 2019-07-04 Carlsberg A/S Method for producing an extract of cereal and method for processing this extract into beverage
EP4324902A2 (en) 2017-12-28 2024-02-21 Carlsberg A/S Fast methods for preparing cereal extracts
WO2019207063A1 (en) 2018-04-25 2019-10-31 Carlsberg A/S Barley based beverages

Also Published As

Publication number Publication date
DE602004017294D1 (de) 2008-12-04
US20150257354A1 (en) 2015-09-17
EP1609866B1 (en) 2008-10-22
US7897850B2 (en) 2011-03-01
ES2312984T3 (es) 2009-03-01
US20080193593A1 (en) 2008-08-14
DK1609866T3 (da) 2009-01-19
US20130196027A1 (en) 2013-08-01
RU2005132821A (ru) 2006-02-10
AU2004223568A1 (en) 2004-10-07
BRPI0408764A (pt) 2006-03-28
JP2004290024A (ja) 2004-10-21
US20090285932A1 (en) 2009-11-19
MXPA05009814A (es) 2006-03-13
ATE412057T1 (de) 2008-11-15
EP1609866A4 (en) 2006-05-31
JP4113795B2 (ja) 2008-07-09
US20170295738A1 (en) 2017-10-19
US20180271046A1 (en) 2018-09-27
AU2009202975C1 (en) 2014-01-23
PL1609866T3 (pl) 2009-04-30
EP1609866A1 (en) 2005-12-28
ZA200507647B (en) 2007-02-28
CO5660306A2 (es) 2006-07-31
AU2009202975B2 (en) 2012-02-02
RU2348696C2 (ru) 2009-03-10
US9497919B2 (en) 2016-11-22
AU2004223568B2 (en) 2010-07-01
AU2009202975A1 (en) 2009-08-13
KR20060022227A (ko) 2006-03-09
CN1764724A (zh) 2006-04-26
UA85183C2 (ru) 2009-01-12
CN100379866C (zh) 2008-04-09
CA2519824C (en) 2009-02-03
KR100944107B1 (ko) 2010-03-02
US20130129862A1 (en) 2013-05-23
CA2519824A1 (en) 2004-10-07
AR043922A1 (es) 2005-08-17

Similar Documents

Publication Publication Date Title
WO2004085652A1 (ja) 大麦リポキシゲナーゼ-1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法
CN109477087A (zh) 通过应用混合分裂方法筛选生物群体内突变体的方法
JP4178176B2 (ja) 大麦リポキシゲナーゼ−1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法
US20230220317A1 (en) Production of an alcohol-free beverage
Hirota et al. Development of novel barley with improved beer foam and flavor stability-The impact of lipoxygenase-1-less barley in the brewing industry
CA2767145C (en) Method for selection of barley species based on protein z7 content, and fermented malt beverage
JP4450856B2 (ja) オオムギ品種の識別方法及び優良醸造形質を有するオオムギ品種
KR20230029635A (ko) 저 디아세틸 효모
CN103114129B (zh) 一种大麦脂肪氧化酶(lox-1)合成缺陷基因的多态性分子标记方法
AU2012265620A1 (en) Barley lipoxygenase-1 gene, selection method for barley, materials for malt alcoholic beverages and method for production of malt alcoholic beverages
JP5989345B2 (ja) 大麦選抜方法及び麦芽発泡飲料
WO2019134962A1 (en) Cereal comprising starch with low gelatinisation temperature
CA2762519C (en) Method for selection of barley species for fermented malt beverage, and fermented malt beverage
JP2004016202A (ja) 麦芽のスクリーニング方法及び麦芽発泡飲料の製造方法
WO2003031653A1 (en) METHOD OF SELECTING BARLEY VARIETY, BARLEY β-AMYLASE GENE AND PROCESS FOR PRODUCING MALT ALCOHOLIC DRINK

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004223568

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/009814

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020057017511

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1-2005-501694

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2005/07647

Country of ref document: ZA

Ref document number: 2519824

Country of ref document: CA

Ref document number: 200507647

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 20048079624

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2004223568

Country of ref document: AU

Date of ref document: 20040325

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004223568

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004723378

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 05106873

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2005132821

Country of ref document: RU

Ref document number: 1200501565

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 2004723378

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057017511

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0408764

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 10550528

Country of ref document: US