WO2004079945A1 - 初期段階から指向性ビームの受信品質が良好な適応アンテナ受信装置 - Google Patents

初期段階から指向性ビームの受信品質が良好な適応アンテナ受信装置 Download PDF

Info

Publication number
WO2004079945A1
WO2004079945A1 PCT/JP2004/001240 JP2004001240W WO2004079945A1 WO 2004079945 A1 WO2004079945 A1 WO 2004079945A1 JP 2004001240 W JP2004001240 W JP 2004001240W WO 2004079945 A1 WO2004079945 A1 WO 2004079945A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal processing
time
weight
signal
reception quality
Prior art date
Application number
PCT/JP2004/001240
Other languages
English (en)
French (fr)
Inventor
Masayuki Kimata
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to CN2004800119922A priority Critical patent/CN1784840B/zh
Priority to JP2005502991A priority patent/JP4359778B2/ja
Priority to US10/547,178 priority patent/US7558350B2/en
Publication of WO2004079945A1 publication Critical patent/WO2004079945A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to an adaptive antenna receiving method for receiving signals with good characteristics by weighting each antenna constituting an adaptive antenna, and an apparatus using the same.
  • a base station receives user signals from a plurality of mobile stations at the same time. User signals cause interference.
  • An adaptive antenna is used to reduce such interference and receive a desired user signal with high gain.
  • the adaptive antenna forms directivity by controlling the amplitude and phase of a signal received by each antenna, controlling the amplitude and phase according to the complex number weighting. As a result, the adaptive antenna suppresses other user signals that cause interference and efficiently receives a desired user signal.
  • One method is to determine the weight by performing feedback control using an algorithm according to the MMS E (Minimum Mean SquareError: Least Mean Square Error) standard.
  • An adaptive update algorithm such as a typical LMS (LeastMeanSquare) algorithm or a sequential weight update RLS (RecursiveLeastSquare) algorithm is used.
  • the other is a method based on open loop control targeted by the present invention.
  • the MUS IC MU I tip Ie Signal CI assification
  • ESPR ESPR
  • the direction of arrival of the desired wave is estimated using a direction-of-arrival estimation algorithm such as the IT (Estimation of Signal Parametersv ⁇ a Rotational Invariance Techniques) algorithm, and the antenna of each antenna is determined according to the direction. Determine the weight.
  • a method of determining the weight by open loop control is described in, for example, Japanese Patent Application Laid-Open No. 11-274976.
  • FIG. 1 is a block diagram showing a configuration example of a conventional adaptive antenna receiving apparatus described in Japanese Patent Application Laid-Open No. 11-274796.
  • the number of antennas constituting the adaptive antenna is N (N is an integer of 2 or more), and the number of combined multipaths is L (L is a natural number).
  • FIG. 1 shows a circuit portion for receiving a user signal received from a k-th user (k is a natural number) mobile station.
  • the adaptive antenna receiving apparatus includes antennas 1 to 1 N , signal processing units 2 to 2, an adder 11, a decision unit 12, and a searcher 16. Fingers corresponding to each multipath to be rake-combined are assigned to signal processing units 2 and 2.
  • the signal processing section 2 includes a delay unit 3, a despreading circuit 4,..., N , a weighting synthesis circuit 5, a weight calculation section 6 a transmission path estimation circuit 7, a complex conjugate circuit 8, and an initial weight generation section 9. And a multiplier 10.
  • the weight calculator 6 includes a signal in-phase average calculator 13, a correlation detector 14, and a time average calculator 15.
  • the signal processing unit 2 2 to 2 Mr. the same configuration as the signal processing unit 2.
  • the weight calculator 6 2 the signal phase averaging calculation unit 13 2, that have a correlation detection unit 14 2, and time average calculator 15 2.
  • the searcher 16 detects the delay time of the L multipaths using the signals received by the N antennas 1 to 1N. Then, the searcher 16 performs the delays 3 3 of the signal processing unit 22, which is each finger for rake synthesis, the weight calculation unit 66, and Initial weight generator 9 ⁇ 9J Notifies the timing information of the delay time used by each finger.
  • the N antennas 1 to are arranged close to each other so as to have a high correlation. Therefore, the delay profiles of N antennas 1 to 1N can all be regarded as the same. Therefore, the timing information of the delay time of each multipath antenna 1 can be used in common regardless of to 1 N.
  • Delayer 3 the signals received by the antenna 1 ⁇ 1 N, delayed in accordance with the timing information reported from searcher 1 6, sends it to the despreading circuit 4 ⁇ - DOO ⁇ . Similarly, delaying accordance with the notified timing information of each signal received by the delaying unit 3 2 - or antennas 1 ⁇ 1 N from searcher 1 6. As a result, each of the signal processing units 22 ⁇ is associated with L multipaths.
  • the despreading circuits 4,..., 41 N despread each of the received signals delayed by the delay unit 3, and send them to the weighting / synthesizing circuit 5, the weight calculator 6 #, and the initial weight generator 9 # .
  • Initial weight generation unit 9 1 generates the initial weight for use in can not be obtained weights sufficient accuracy by the weight calculator 6, and sends the weighting synthesis circuit 5.
  • Initial weight generation unit 9 the searcher 1 6 and when shed new Wariri fingers to the signal processing section 2 lambda, ten in the weight calculator 6 1 of the signal processing section 2 1 devoted Wariri fingers' Used when sufficient averaging time is not available.
  • the averaging time is the time used to calculate the average for the fluctuation values that are the targets of averaging. By averaging in the averaging time, the average value of the fluctuation values in the averaging time is obtained.
  • the initial weight generator 9 is also used when the path timing of the finger in use changes greatly.
  • FIG. 2 is a block diagram showing the configuration of the weighting synthesis circuit 5.
  • the weighting / synthesizing circuit 5 includes multipliers 17 to 17 ⁇ , an adder 18 and complex conjugate circuits 19 to 19 ⁇ .
  • Weighting and combining circuit 5 the complex conjugate circuit 1 9 1 9 New of generating the complex conjugate of the weight generated by the weight calculation unit 6 or the first Kiomomi generator 9, that sent to the multiplier 1 7 ⁇ 1 7 ⁇ .
  • Each of the multipliers 17 ⁇ 17 ⁇ receives the reception signal despread by the despreading circuit 4 ⁇ ⁇ 4 1 ⁇
  • the signal is multiplied by the complex conjugate of the weight generated by the corresponding complex conjugate circuit 19 to 19 N and sent to the adder 18.
  • the adder 18 combines the outputs of the multipliers 17 17 N and sends them to the transmission path estimation circuit 7 and the multiplier 1 shown in FIG.
  • the signal in-phase average calculator 13 of the weight calculator 61 1 performs vector addition of the symbols of the respective signals despread by the respective despreading circuits 4 to 4 and N while adjusting their phases to each other.
  • the average value of each signal is obtained and sent to the correlation detection unit 14.
  • the number of symbols to be vector-added is arbitrary.
  • each symbol may be arbitrarily weighted.
  • the correlation detector 14 uses the average value of each signal from the signal in-phase average calculator 13 to calculate the correlation between the received signal at the reference antenna and the received signal at the other antennas. Therefore, the correlation detection unit 14 multiplies the complex conjugate of the signal average value corresponding to the reference antenna by the signal average value for the other antennas, and calculates the correlation value obtained as a result of each multiplication by the time average calculation unit 15. Send to
  • the time average calculation unit 15 calculates the average of each multiplication result from the correlation detection unit 14 at a predetermined time, obtains the weight for each of the antennas 1 to 1 N , and sends it to the weighting synthesis circuit 5.
  • the time average calculation unit 15 There are various ways to calculate the average and the weighting method in the time average calculation unit 15! ⁇ You can choose any.
  • the weighting / synthesizing circuit 5 uses the weights generated by the weight calculator 6 to control the amplitudes and phases of the signals received by the antennas 1 to 1 ⁇ , and synthesizes the signals to obtain a desired user signal with a high gain. To form receivable directivity.
  • the transmission path estimation circuit 7 estimates the transmission path distortion from the output signal of the weighting synthesis circuit 5 and sends it to the complex conjugate circuit 8.
  • Complex conjugate circuit 8 generates the complex conjugate of the channel distortion estimated by the transmission path estimation circuit 7 1.
  • the multiplier 10 compensates the transmission line distortion by multiplying the output signal of the weighting synthesis circuit 5 by the complex conjugate of the transmission line distortion generated by the complex conjugate circuit 8. Similarly, a signal with transmission line distortion compensated is obtained from each finger of the signal processing units 2 to 2 J.
  • the adder 11 performs rake combining by adding the output signals of the signal processing units 2 ⁇ 2 ⁇ , and sends the combined output signal to the determiner 12.
  • FIG. 3 is a flowchart showing an operation when allocating fingers in the adaptive antenna receiving apparatus shown in FIG. Referring to FIG. 3, first, the signal processing unit ⁇ determines whether the assigned finger is a new finger (step C 1).
  • the signal processing unit 22 L includes the signal in-phase average calculation units 13, 13 to 13 and the time average calculation units 15, to 15, which are the weight calculation units 6 to 6. It is determined whether the averaging time is sufficient in step 15 (step C 2).
  • Weight calculator 6 if the averaging time of Mr ⁇ 6 is not sufficiently established, the signal processing unit 2 1 - 2 L are weighting synthesis circuit 5 to the initial weight that was generated by the initial weight generation unit 9-9 teeth Use it in Step 5 (Step C 4). In addition, if the averaging time of the weight calculators 6 to 6 L is sufficient, the signal processing units 2 to 2 L are calculated by the time average calculators 15 to 1 of the weight calculators 6 L to 6 L. The weights generated in step 5 are used in the weighting synthesis circuits 5 to 5 (step C3).
  • FIG. 4 is a flowchart showing an operation of the adaptive antenna receiver shown in FIG. 1 when finger path timing changes.
  • a signal processing unit 2 to 2 Mr. Pasutimingu of fingers determines whether changed or X tau chips (Step D 1).
  • chi tau is a threshold for the amount of change in path timing, determines whether or not the change in Pasutai timing has been made a rapid enough to the weight to be weight calculator 6 6 Shiniyori calculated can not follow.
  • the signal processing units 2 to 2 use the initial weights generated by the initial weight generation units 9 to 9 as the weighting synthesis circuits 5 to 5 (step D 4). Finger path timing changes less than ⁇ ⁇ chip Then, the signal processing unit 22 has enough averaging time in the weight calculation unit 66 L , the signal in-phase average calculation units 13 to 13 and the time average calculation units 15 to 15 J. It is determined whether the value is 0 (step D 2).
  • the signal processing units 2 to 2 weight the initial weights generated by the initial weight generators 9 and 9 of the fingers. Use the trowel 5 to 5 J (Step D 4). If the averaging time of the weight calculators 6 and 6 is sufficient, the signal processing units 2 and 2 perform time average calculation of the finger weight calculators 6 and 6. The weights generated in steps 5 to 15 are used in the weighting synthesis circuits 5 to 5 (step D3).
  • One method is to consider that the direction of arrival of the user signal differs depending on the reception situation, and to allow the user signal to be received in any situation, the value that can be received regardless of the reception situation, for example, the omnidirectional weight is defined as the initial weight. How to
  • a plurality of antennas 1 a method of estimating the initial weight from the signal received at ⁇ 1 N (see JP 2 0 0 2 7 7 0 1 1 JP). For example, there is a method in which a transmission path is estimated from a signal received by each antenna, and a weight obtained thereby is used as an initial weight.
  • the channel estimation is performed using the signals received by the multiple antennas 1 to 1 ⁇ , and the weight obtained by using that is used as the initial weight, the channel estimation is performed. This requires a large amount of calculation, a large load on the signal processing unit 22, and a large processing capability. Disclosure of the invention
  • An object of the present invention is to provide an adaptive antenna receiving apparatus based on open loop control, which can obtain an initial weight at which a user signal can be received with good reception characteristics in a short time and with a small number of calculations.
  • an adaptive antenna receiving apparatus of the present invention assigns a signal processing unit to at least one arriving wave, and in each signal processing unit, obtains a signal by a predetermined operation from signals received by a plurality of antennas. By weighting and combining the signals received by each antenna with the weight of each antenna determined using the time average of the calculated values obtained, the multiple arriving waves received by the multiple signal processing units are further combined. Get the desired signal.
  • the arrival direction detecting section performs signal processing based on the weight determined by each signal processing section in which the averaging time for obtaining the time average is secured for a predetermined time or more. Detects the direction of arrival of the arriving wave received by the unit.
  • the reception quality acquisition unit obtains the reception quality of the signal of the arriving wave that has been received by weighting and combining in each signal processing unit in which the averaging time is secured for a predetermined time or longer.
  • the information collection / selection processing unit starts the determination of the weight using the time average based on each arrival direction and each reception quality in each signal processing unit for which the averaging time is secured for a predetermined time or more. Select the initial beam direction in the processing unit.
  • the weighting using the time average is performed based on the highly reliable arrival direction and reception quality of the arriving wave received by each signal processing unit having a sufficient averaging time. It is possible to select the initial beam direction of the signal processing unit which is to start the determination of. As a result, a directional beam having good reception characteristics can be easily obtained in a short time in the initial stage.
  • the information collection / selection processing unit determines the direction of arrival detected by the signal processing unit with the best reception quality among the signal processing units for which the averaging time is secured for a predetermined time or longer.
  • the closest beam direction may be selected from a plurality of predetermined beam directions.
  • an initial weight generation unit forms a directional beam in the initial beam direction selected by the information collection selection processing unit, and an initial weight used for weighting synthesis until the averaging time is secured for a predetermined time or more in the signal processing unit. The weight may be obtained.
  • the weight in the beam direction acquired easily and in a short time is used until the averaging time is sufficient. After sufficient time, the highly accurate weight obtained by the time average can be used. Therefore, before and after a sufficient averaging time can be obtained, an appropriate beam direction determination method is selected according to the situation at that time, and a directional beam with good reception characteristics can always be obtained.
  • FIG. 1 is a block diagram showing a configuration example of a conventional adaptive antenna receiving device.
  • FIG. 2 is a block diagram showing a configuration of the weighting synthesis circuit.
  • FIG. 3 is a flowchart showing an operation when allocating fingers in the adaptive antenna receiving apparatus shown in FIG.
  • FIG. 4 is a flowchart showing the operation of the adaptive antenna receiver shown in FIG. 1 when the finger timing changes.
  • FIG. 5 is a block diagram showing an example of the configuration of an open-loop controlled adaptive antenna receiving apparatus according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of a state in which a signal is received by an antenna forming an adaptive antenna.
  • FIG. 9 is a diagram illustrating a state in which a beam directed to the direction closest to the arrival direction information of a specified finger is selected.
  • FIG. 8 is a diagram illustrating a state in which a beam directed in a direction closest to the arrival direction information of the finger whose maximum SIR is measured is selected from a plurality of beams defined by the equally spaced multibeam.
  • FIG. 9 is a list showing the weights of orthogonal or equally spaced multibeams.
  • FIG. 10 is a flowchart showing the operation of assigning fingers in the adaptive antenna receiving apparatus according to the present embodiment.
  • FIG. 11 is a flowchart showing the operation of the adaptive antenna receiving apparatus according to the present embodiment when the finger path timing changes.
  • FIG. 12 is a block diagram showing a configuration example of an adaptive antenna receiving apparatus of open loop control according to another embodiment of the present invention.
  • FIG. 13 is a block diagram showing a configuration example of an adaptive antenna receiving apparatus of open loop control according to still another embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration example of the adaptive antenna receiving apparatus of the open loop control according to the present embodiment.
  • the number of antennas constituting the adaptive antenna is N (N is an integer of 2 or more), and the number of multipaths to be combined is L (L is a natural number).
  • FIG. 5 shows a circuit portion for receiving a user signal received from a k-th user (k is a natural number) mobile station.
  • the adaptive antenna receiving apparatus includes an antenna 11 1 ⁇ signal processing units 2 to 2, an adder 11, a decision unit 12, a searcher 16, and an information collection selection processing unit 22. I have.
  • the signal processing unit 2, the delay device 3 ,, despreading circuit 4, ⁇ 4 New, weighting synthetic circuit 5 ,, infusible weight calculator 6 have channel estimator 7 have complex conjugate circuit 8 had an initial weight generation unit 9 th power It has an arithmetic unit 10, an arrival direction detection unit 20, and an SIR measurement unit 21. Also, The weight calculator 6 includes a signal in-phase average calculator 13, a correlation detector 14, and a time average calculator 15.
  • the signal processing unit 2 2 ⁇ 2 L has the same configuration as the signal processing unit 2.
  • the signal processing unit 2 2 delayer 3 2, despreading circuit 4 2 1 ⁇ 4 2 N, the weighting synthetic circuit 5 2, weight calculator 6 2, channel estimation circuit 7 2, the complex conjugate circuit 82, initial weight generation unit 9 2, multipliers 1 0 2, which consists of the arrival direction detection unit 2 0 2, and SIR measurement section 2 1 2.
  • the weight calculator 6 the signal phase averaging calculation unit 1 3 2, and a correlation detection unit 1 4 2, and time average calculator 1 5 2.
  • the searcher 16 detects the delay time of the L multipaths using the signals received by the N antennas 1 to 1N. This delay time is indicated, for example, by the number of chips. Then, the searcher 16 sends the signals to the delay units 3 to 3 of the signal processing units 2 to 2 L , the weight calculation units 6 to 6, and the initial weight generation units 9 to 9, respectively. Notify the timing information of the delay time to be used. Further, searcher 1 6, all of the signal processing unit 2, also notifies the Timingu information to the information collecting selection processing section 2 second delay time notified to ⁇ 2 L.
  • the searcher 16 is a signal processing unit 2, a delay unit 3, a weight calculation unit 6, a weight calculation unit 6, and an initial weight generation unit 9, 9 J of each of the 2 L timings of the multipath delay time.
  • Starting the signal processing operation by notifying the information is referred to as allocating the signal processing units 2 to 2 J fingers.
  • N antennas 1 to 1 N are arranged close to each other so as to have a high correlation with each other. Therefore, the delay profiles of N antennas 1 to 1N can all be regarded as the same. Therefore, the timing information of the delay time of each multipath antenna 1 can be used in common regardless of to 1 N.
  • Delayer 3 sends each of the signal received by the antenna 1 1 ⁇ 1 N, is delayed in accordance with the timing information is notified from the searcher 1 6 despreading circuits 4 " ⁇ 4 1 N.
  • the delay vessel 3 2 ⁇ 3 L comprises an antenna 1, each of the signals received at ⁇ 1 N, delays in accordance with the timing information reported from searcher 1 6.
  • the signal processing section 2 each of Mr ⁇ 2 L Of multipaths.
  • the weighting synthesis circuit 5 has the same configuration as the conventional one shown in FIG. When 2 to reference, the weighting synthetic circuit 5, the multiplier 17 17 N, adders 18 and double prime conjugate circuit 19, and has a ⁇ 19 N.
  • each multiplier 17 ⁇ 17 N includes a reception signal despread by the despreading circuit 4N ⁇ 4 1N, the complex conjugate circuit 19, the complex conjugate of the weight generated by ⁇ 19 N corresponding to each multiplying the door is sent to the adder 18.
  • the adder 18, the multiplier 17 synthesizes the output of to 17 N, the transmission path shown in FIG. 5 estimation circuit 7 ,, multiplier 10 I and SIR measuring section Send to 21.
  • the weighting synthesis circuit 5 weights and synthesizes the signals from the despreading circuits 4 to ⁇ .
  • the signal in-phase average calculation unit 13 of the weight calculation unit 6 performs a vector addition (in-phase addition) on the symbols of the signal despread by the despreading circuit 4 "to ⁇ by adjusting the phase of each symbol.
  • the average value of the signal is obtained and sent to the correlation detection unit 14_> At this time, the number of symbols to be added in phase (the number of average symbols) is arbitrary, and each symbol may be arbitrarily weighted.
  • the signal average value obtained by the above is a signal with improved S! NR (Signal ⁇ o Interferencelus Noise Ratio: ratio of desired signal power to interference signal power and thermal noise power) of the received signal.
  • the despread symbol is modulated, the symbol cannot simply be in-phase summed. In that case, if a known pilot signal is used, in-phase addition becomes possible by removing the modulation with the pilot symbol.
  • the greater the average number of symbols the greater the effect of improving the SINR, but the average number of symbols is limited when re-phase variation is severe due to fading or the like.
  • the correlation detection unit 14 uses the average value of each signal from the signal in-phase average calculation unit 13 to calculate the correlation value between the received signal at the reference antenna and the received signals at other antennas. For this purpose, the correlation detector 14 multiplies the complex conjugate of the signal average value corresponding to the reference antenna by the signal average value for the other antennas. And the correlation test The output unit 14 sends the correlation value that is the result of each multiplication to the time average calculation unit 15.
  • Figure 6 is a diagram showing an example of a state in which the signal is received by antenna 1 ⁇ 1 N constituting the adaptive antenna.
  • the antenna 1, to 1 N are arranged in a row at equal intervals element spacing d.
  • each antenna 1, the phase advance of the signal received at ⁇ 1 N are different from each other depending on the direction of arrival of the signal.
  • the signal received by antenna 1 is compared to the signal received by antenna 1 n (where n is an integer of 2 ⁇ n ⁇ N), and (n— 1) (27 T d / ⁇ ) sin 0
  • the phase advances by 0 .
  • antenna 1 the angle of arrival direction of the array direction signals for direction of. ⁇ is the wavelength of the carrier frequency.
  • the antenna 1, when the reference antenna is ideally eta th the phase of the signal received by the antenna 1 [pi one ( ⁇ - 1) (2 7 ⁇ d / ⁇ ) s ⁇ ⁇ 0. Is detected by the correlation detection unit 14 as a correlation value.
  • the time average calculation unit 15 obtains a weight for each of the antennas 1 to 1 ⁇ by averaging the correlation values obtained from the correlation detection unit 14 for a predetermined time to obtain a weighting synthesis circuit 5 and It is sent to the arrival direction detector 20.
  • the time and averaging in time average calculation unit 1 5 1, the weighting process is different, can be arbitrarily selected.
  • weighting synthetic circuit 5 the weight generated by the weight calculation unit 6, or control the amplitude and phase of the received signal by the antenna 1 to 1 New using the initial weights generated by the initial weight generation unit 9 And combine them to form a directivity capable of receiving a desired user signal with high gain.
  • Each antenna 1, the weighting for ⁇ 1 New, relative to the desired signal arriving from the direction of angle theta 0, the antenna 1, to 1 the phase of the received signal of New, a reference antenna of the reception signal of antenna 1 operates to combine in phase. Also angle ⁇ . For signals arriving from different directions, the phases do not match between antenna 1 as the reference antenna and the other antennas.
  • the directivity of the array antenna is angle ⁇ .
  • a beam having a high gain in the direction of and a reduced gain in directions other than the angle ⁇ 0 is formed.
  • the transmission path estimation circuit 7 ⁇ estimates the transmission path distortion from the output signal of the weighting synthesis circuit 5, and sends it to the complex conjugate circuit 8.
  • the complex conjugate circuit 8 generates a complex conjugate of the channel distortion estimated by the channel estimation circuit 7.
  • the multiplier 10 compensates the transmission line distortion by multiplying the output signal of the weighting synthesis circuit 5 by the complex conjugate of the transmission line distortion generated by the complex conjugate circuit 8.
  • the adder 11 performs rake combining by adding the output signals of the signal processing units 2 ⁇ 2 ⁇ , and sends the combined output signal to the decision unit 12.
  • the determiner 12 determines each symbol and outputs a received symbol of the k-th user.
  • the arrival direction detection unit 20 ⁇ 20 J and the angle of arrival direction 0 based on the weights generated by the time average calculation units 15 to 15 L of the weight calculation units 6 to. And sends it to the information collection and selection processor 22.
  • the SIR measuring units 21 to 21 measure the SIR (Signal to Interference Ratio: desired signal power to interference signal power ratio) averaged over an arbitrary time from the outputs of the weighting synthesis circuits 5 to And sends it to the information collection and selection processor 22.
  • the time for averaging this SIR (averaging time) is used by the signal in-phase average calculators 13 and 13 of the weight calculators 6 and 6 and the time average calculators 15 and 15 ⁇ . It is preferably about the same as the averaging time.
  • the averaging time is the time used to calculate the average of the refresh values to be averaged. By averaging at the averaging time, the average value of the fluctuation values at the averaging time is obtained.
  • the timing information of each finger is input from the searcher 16 to the information collection selection section 22. Further, the information collection selection processing unit 22, the signal processing unit 2 already Terra finger allocation, ⁇ 2 L of SIR measurement unit 21, the information of the SIR from through 21 L are input. Furthermore, the finger is already assigned to the information collection / selection processing section 22, and the averaging time is sufficiently long in the weight calculation sections 6 to 6. The arrival directions of the signal processing sections 2 to 2 The direction of arrival information is input from the detectors 20 to 20.
  • the information collection and selection processing unit 22 uses the signal processing units 2 and -2 J when assigning a new finger to the searcher 16 force signal processing unit 22.
  • ⁇ 6 said signal phase averaging calculation unit 1 3, ⁇ 1 3 L and Time
  • the initial weights are generated in the initial weight generation units 9 to 9 L of the signal processing unit 22.
  • the beam number notified is one of the signal processing units 2 to 2 J.
  • the signal in-phase average calculation unit 13 1 of the weight calculation unit 6 ⁇ 6 L The averaging time is sufficiently long in the averaging section 15 and the time averaging calculation section 15, and the SIR measurement sections 21 to 21 J This is the beam number in the closest direction. Note that a plurality of beam numbers are determined in advance using orthogonal or equally spaced multi-beams with respect to the arrival direction of the signal. You will select a number.
  • FIG. 7 is a diagram illustrating a state in which a beam directed to the direction closest to the maximum arrival direction information of the measured finger is selected from a plurality of beams defined by the orthogonal multi-beam.
  • the horizontal axis is the angle ⁇ ⁇ indicating the beam direction
  • the vertical axis is the amplitude. Then, the characteristics of multiple beams (here, M: M is a natural number) that can be selected as the initial weight are shown.
  • the direction of each beam is determined so that the peak direction of one beam is the null direction of another beam.
  • the angle of arrival of the finger at which the maximum SIR is measured is angle ⁇ . If so, the beam with the beam number m in the direction closest to that direction is selected.
  • FIG. 8 is a diagram showing a state in which a beam directed in the direction closest to the arrival direction information of the finger whose maximum SI is measured is selected from a plurality of beams defined by the equally spaced multibeam.
  • the direction of each beam is determined so that the intervals in the beam direction are equal.
  • the direction of arrival of the finger at which the maximum SIR is measured is angle 0. If so, the beam with the beam number closest to that direction is selected as in FIG.
  • the reason why the arrival direction information of the finger for which the maximum SIR is measured is used is that the reception quality is likely to be high in the path in the beam direction of the finger.
  • radio waves transmitted from a mobile station are first reflected, diffracted, and scattered by terrain and features such as buildings and buildings around the mobile station, and multiple waves with almost the same angle of arrival are obtained.
  • the initial weight generation unit 9 weights closest beam of the beam number in the arrival direction information of the finger that is selected as described above, it is reasonable Ru used as the initial weights generated by ⁇ 9 L.
  • the direction of arrival of the finger at which the maximum SIR was measured is not directly used to generate the initial weight.
  • This is an already assigned finger, and the averaging time in the signal in-phase average calculation units 13 and 13 L of the weight calculation units 6 and 6 and the time average calculation units 15 and 15
  • the direction-of-arrival information of the signal processing units 2 to 2 where the maximum SIR has been measured is sufficient, and the newly allocated fingers to the signal processing unit 22, the fingers whose timing has changed significantly, or the splitting This is because it is considered that the signal arrival direction differs from the signal arrival direction of the finger for which the averaging time is not sufficiently obtained in the assigned signal processing units 2 and 2.
  • the initial weight generators 9 to 9 generate initial weights to be used when weights with sufficient precision cannot be obtained by the weight calculators 6 to 6 and send the weights to the weighting / synthesizing circuits 5 to.
  • the initial weight generation units 9 to 9 L calculate the weights of the signal processing units 2 ′ 2 to which the fingers are assigned when the searcher 16 newly assigns the fingers to the signal processing units 2 to 2. Used when sufficient averaging time is not obtained in parts 6 and 6.
  • the initial weight generators 9 to 9 are also used when the path timing of the finger in use changes significantly.
  • FIG. 9 is a list showing the weights of orthogonal or equally spaced multibeams. This list is used by the initial weight generators 9 to 9 to determine the weight.
  • Initial weight generation unit 9 ⁇ 9 L is the weight corresponding to the notified beam number m by the information collection selection processing section 2 2 selected from the list of FIG. 9, notifies the weighting synthesis circuit 5, to ⁇ 5 L You.
  • the initial weight generation unit 9 9 L is already the signal processing section 2, in the finger assigned to 2 this, the weight calculation section 6, the averaging time Te ⁇ 6 J Kooi is taken sufficiently If there is no finger, a predetermined weight such as an omni-directional weight or an estimated weight obtained from channel estimation is used.
  • a predetermined weight such as an omnidirectional weight or an estimated weight obtained from transmission channel estimation is hereinafter referred to as a second initial weight.
  • FIG. 10 is a flowchart showing an operation when allocating fingers in the adaptive antenna receiving apparatus according to the present embodiment.
  • the information collection / selection processing unit 22 determines whether or not the finger allocated to the signal processing units 2 and 2 by the searcher 16 is new ( Step A 1). If the finger is a new finger, then the information collection and selection processing unit 2.2 sets the signal in-phase average of the weight calculation units 6 and 6 in the fingers that have already been assigned to the signal processing units 2 to 2 J. It is determined whether or not any of the calculation units 13 to 13 and the time averaging calculation units 15 to 15 have a sufficient averaging time (step A6). If there is no existing finger having a sufficient averaging time, the information collection and selection processing unit 22 notifies the effect to that effect by the initial weight generation unit of the signal processing units 2 to 2 to which the new finger is assigned.
  • the initial weight generators 9 to 9 receiving the notification generate second initial weights and send them to the weighting synthesis circuits 5 to 5 J.
  • the weighting synthesis circuits 5, 5 which have received the second initial weights from the initial weight generation units 9, 9 perform weighting synthesis using the second initial weights (step A8).
  • the information collection / selection processing unit 22 determines that the signal arrival of the finger whose maximum SIR is measured among the existing fingers is determined.
  • the beam number of the beam in the direction closest to the direction is reported to the initial weight generation units 9 to 9 J of the signal processing units 2 to 2 to which the new finger is assigned.
  • the initial weight generators 9 to 9 J that have received the notification select the initial weight corresponding to the beam number from the list, and send them to the weighting and combining circuit 55.
  • the weighting / combining circuits 5, 5 to 5t receiving the initial weights from the initial weight generators 9 to 9 perform weighting / combining using the initial weights (step A7).
  • step A2 If it is determined in step A1 that the finger is not a new finger, the information collection / selection processing unit 22 determines whether the averaging time is sufficiently long in the signal processing units 2 and -2 to which the finger is assigned. (Step A2).
  • the information collection and selection processing unit 22 already has the signal processing unit 2, In the fingers assigned to 22, the signal in-phase average calculators 13 113 L of the weight calculators 6 ⁇ 6 and the time average calculators 15 ⁇ 15 J It is determined whether or not there is one whose averaging time is sufficiently long (step A4).
  • step A7 the information collection and selection processing unit 22 selects the finger whose maximum SIR is measured among the existing fingers.
  • the beam number of the beam closest to the signal arrival direction is reported to the initial weight generators 9 and 9 of the signal processors 2 and 2 to which the new fingers are assigned.
  • the initial weight generators 9,..., 0 select the initial weight corresponding to the beam number from the list, and send it to the weighting and combining circuits 5,.
  • the weighting synthesis circuits 5, 5 to 5, which have received the initial weights from the initial weight generators 9, 9 perform weighting synthesis using the initial weights.
  • the information collection and selection processing unit 22 notifies the signal processing units 2 and 2 to which the finger is to be assigned.
  • the initial weight generators 9 to 9 are notified.
  • the second initial weights are generated and the weighting synthesis circuits 5 to 5 J are sent to the initial weight generators 9 to 9 J receiving the notification.
  • Initial weight generation unit 9-9 weighting synthesis circuit which receives the second initial weight from L 5 1 to 5 L performs weighting synthesis using the second initial weight of (Step A 5).
  • FIG. 11 is a flowchart showing the operation of the adaptive antenna receiver according to the present embodiment when the path timing of a finger changes.
  • the information collection selection processing unit 22 It is determined whether the finger path timing has changed by X ⁇ chips or more (step # 1).
  • chi tau chip is a threshold corresponding to the change in path timing, determines whether or not the change in path timing has been made a rapid enough that can not be followed weights calculated by the weight calculation unit 6-6 teeth .
  • Path timing If the change greatly exceeds the threshold, the weight from the weight calculators 6 and 6 cannot be trusted until the averaging time is sufficient.
  • the information collection and selection processing unit 22 then outputs the weights to the signal processing units 2 to 2 J among the fingers that have already been assigned. 6 It is determined whether there is a signal in-phase average calculation section 13, to 13! _ And a time average calculation section 15 to 15 for t_ that have sufficient averaging time (step B 6). ) o
  • the information collection / selection processing section 22 notifies the initial weight generation section 9 9 of the signal processing section 22 L to be processed.
  • the initial weight generation unit 9 ⁇ Upon receiving the notification, the initial weight generation unit 9 ⁇ generates the second initial weight and sends it to the weighting synthesis circuit 5, to 5J.
  • the weighting / synthesizing circuits 5 to which have received the second initial weights from the initial weight generators 9 to 9 perform weighting / synthesis using the second initial weights (step B8).
  • the information collection / selection processing unit 22 returns the signal arrival of the finger whose maximum SIR is measured among the existing fingers. the beam number of the nearest direction of the beam in the direction, processed and going on the signal processing unit 2, ⁇ 2 L of the initial weight generation unit 9 ⁇ 9 J this notification.
  • the initial weight generators 9 to 9 J that have received the notification and the initial weights corresponding to the beam numbers are selected from the list and sent to the weighting and combining circuits 5 to 5 J.
  • the weighting / synthesizing circuits 5 and 5 receiving the initial weights from the initial weight generators 9 and 9 perform weighting / synthesis using the initial weights (step B7).
  • step B 1 if the change is less than X tau chip Pasutimingu, information collection selection processing section 2 2 Mean Te signal processing unit 2 1 ⁇ 2 J Kooi whose fingers are devoted Wariri It is determined whether the activation time is sufficient (step B 2).
  • the information collection and selection processing unit 22 calculates the signal common mode average of the weight calculation units 6 to 6 in the fingers that have already been allocated to the signal processing units 2 to 2. Then, it is determined whether or not there is any of the sections 13 to 13 and the time averaging section 15 to 15 J in which the averaging time is sufficiently long (step B4).
  • the information collection and selection processing unit 22 calculates the beam number of the beam in the direction closest to the signal arrival direction of the finger for which the largest SIR is measured among the existing fingers. It notifies the initial weight generators 9 and 9 of the processing units 2 and 2.
  • the initial weight generators 9, 9J which have received the notification, select the initial weights corresponding to the beam numbers from the list and send them to the weighting / synthesizing circuits 5 to ⁇ .
  • the information collection and selection processing unit 22 If there is no existing finger having a sufficient averaging time in the determination in step B4, the information collection and selection processing unit 22 generates an initial weight for the signal processing units 2 and 2 to be processed. Notify parts 9 and 9. Its initial weight generation unit 9 notifies the received, ⁇ 9 L sends weighting synthesizing circuit 5 1 ⁇ 5 J This generates a second initial weight.
  • the weighting synthesis circuits 5 to 5 receiving the second initial weights from the initial weight generation units 9 to 9 perform weighting synthesis using the second initial weights (step B5).
  • step B2 If it is determined in step B2 that the averaging time is sufficient, the signal processing units 2 and 2 to be processed by the weight calculation units 6 to 6 apply the calculated weights to the weighting synthesis circuit 5, Send to ⁇ 5.
  • the weighting synthesis circuits 5 to 5 receiving the weights from the weight calculation units 6 to 6 perform weighting synthesis using the weights (step B3).
  • the stable time weighting the exact weights calculated by the weight calculator 6 ⁇ 6 L synthesizing circuit 5 ⁇ to 5 L provide.
  • the weight calculator 6 ⁇ 6 L synthesizing circuit 5 ⁇ to 5 L provide.
  • the path timing of the assigned finger changes significantly, or when the weight calculation unit 6 ⁇ 6 of the finger already assigned has sufficient accuracy, sufficient accuracy is obtained. If not, the weight is calculated with sufficient accuracy by taking a sufficient averaging time from a list of multiple beams whose beam direction and weight are predetermined as orthogonal or equally spaced multi-beams.
  • FIG. 12 is a block diagram showing a configuration example of an adaptive antenna receiving apparatus of open loop control according to another embodiment of the present invention.
  • the number of antennas constituting the adaptive antenna is N (N is an integer of 2 or more), as in the case of FIG. Is L (L is a natural number).
  • a circuit portion for receiving a user signal received from a mobile station of a k-th user (k is a natural number) is shown.
  • the adaptive antenna receiving apparatus includes antennas 1 to 1 N , signal processing units 23, to 23, an adder 11, a decision unit 12, a searcher 16, and an information collection selection processing unit 22. ing.
  • the weight calculator 6 includes a signal in-phase average calculator 13 1 ⁇ correlation detector 14 ⁇ and a time average calculator 15.
  • the signal processing section 23 2-23 Mr has the same configuration as the signal processing unit 23.
  • the signal processing unit 23 2 delayer 3 despreading circuit 4 21 to 4 2v weight combiner circuit 5 2, weight calculator 6 2, channel estimation circuit 7 2 complex conjugate circuit 82, the initial weight generation unit 9 squaring vessel 10 2, and a direction of arrival detector 20 2, and the signal power measuring section 24 2.
  • the weight calculation unit 6 2 has a signal phase averaging calculation unit 13 2, the correlation detection unit 14 2, and time average calculator 15 2.
  • Antennas 1 to 1 N adder 11, determiner 12, searcher 16, information collection and selection processing unit 22, delay unit 3 despreading circuit “ ⁇ ⁇ ”, weighting synthesis circuit 5 weight calculation unit 6
  • the transmission path estimation circuit 7 complex conjugate circuit 8 initial weight generation unit 9 multiplier 10 ⁇ arrival direction detection unit 20 is the same as in Fig. 5.
  • the SIR measurement units 21 ⁇ to 21 in Fig. 5 are The difference is that the signal power measurement units 24 and 24 are replaced in the 12.
  • the signal power measurement unit 24 ⁇ 2 can be arbitrarily determined based on the output
  • the time averaged signal power is measured and sent to the information collection and selection processor 22.
  • the information collection and selection processor 22 When the weights calculated by the weight calculators 6 and 6 are not sufficiently accurate, the information collection and selection processor 22 generates an initial weight generator for the signal processors 23 and 23. 9 to 9 J The beam number used to generate the initial weight is notified. In the present embodiment, the beam number notified at this time is assigned to the weight calculation units 6 to 6 among the fingers already assigned to any of the signal processing units 23 to 23.
  • the signal in-phase average calculators 13 and 13 and the time average calculator 15 to 15 J have sufficient averaging time, and the signal power measurement units 24 and 24 Is the beam number in the direction closest to the direction of arrival of the signal at the finger whose signal power is measured at. Note that, as shown in FIGS. 7 and 8, a plurality of beam numbers are determined in advance using orthogonal or equally spaced multi-beams with respect to the signal arrival direction.
  • the received signal on the path with high signal power is likely to have good characteristics, and a sufficient averaging time is taken to calculate the weight with sufficient accuracy. Since the beam closest to the signal arrival direction of the finger with the highest signal power is selected, a directional beam with high reception quality can be formed in a short time and with a small number of calculations, as in Fig. 5. Deterioration can be prevented. In addition, it is possible to reduce a large processing amount required when a transmission path is estimated and a weight obtained thereby is used as an initial weight.
  • FIG. 13 is a block diagram showing a configuration example of an adaptive antenna receiving apparatus of open loop control according to still another embodiment of the present invention.
  • the adaptive antenna receiving apparatus shown in Fig. 13 is the same as that shown in Figs. 5 and 12, and the number of antennas constituting the adaptive antenna is N (N is an integer of 2 or more).
  • the number of multipaths to be synthesized is L (L is a natural number).
  • a circuit portion for receiving a user signal received from a mobile station of a k-th user (k is a natural number) is shown.
  • the adaptive antenna receiving apparatus includes an antenna 1, a signal processing unit ⁇ ⁇ ⁇ ⁇ , an adder 11, a decision unit 12, a searcher 16, a path timing comparison unit 26, and an information collection and selection unit. It has a processing unit 22.
  • the signal processing unit 25 is composed of a delay unit 3 and a despreading circuit " ⁇ ⁇ , , A weight calculation section 6, a transmission path estimation circuit 7, a complex conjugate circuit 8, an initial weight generation section 9, a multiplier 10, and an arrival direction detection section 20.
  • the weight calculator 6 has a signal in-phase average calculator 13, a correlation detector 14, and a time average calculator 15.
  • the adaptive antenna receiving apparatus does not have the SIR measuring sections 21 1 to 21 shown in FIG. 5 but has a path timing comparing section 26.
  • the path timing comparison unit 26 notifies the information collection selection processing unit 22 of the finger with the shortest delay time based on the timing information from the searcher 16.
  • the information collection selection processing unit 22 includes an initial weight generation unit for the signal processing units 25 to 25. Then, the beam number used to generate the initial weight is notified. In the present embodiment, the beam number notified at this time is assigned to the weight calculation units 6 to 6 among the fingers already assigned to one of the signal processing units 25 to 25.
  • the signal in-phase average calculators 13 to 13 and the time average calculators 15 to 15 J have sufficient averaging time, and the arrival direction of the signal at the finger with the shortest delay time This is the beam number in the direction closest to. Note that, as shown in FIGS. 7 and 8, a plurality of beam numbers are determined in advance using orthogonal or equally spaced multibeams with respect to the signal arrival direction.
  • a signal receiving a path with a short delay time has a high reception level, has good reception characteristics, and is likely to be a direct wave, and a sufficient averaging time can be obtained. Since the beam closest to the signal arrival direction of the finger with the shortest delay time among the fingers whose weights are calculated with sufficient accuracy is selected, the calculation is performed in a short time and with a small number of operations, as in Fig. 5. To form a directional beam with high reception quality. Characteristic deterioration can be prevented. In addition, it is possible to reduce a large process required when the transmission path estimation is performed and the weight obtained thereby is used as the initial weight.
  • the signal arrival direction of the finger with the shortest delay time is used.
  • the signal arrival direction of the finger with the longest path duration may be used.
  • TDMA Time Div i s i o n M ul t i p l e Acc e s ss: time division multiple access
  • FDMA Time division multiple access
  • the present invention can also be applied to a device used for (rrequencyDivsiosonMultipleAccelss: frequency division multiple access) communication.
  • the weight calculators 6 to 6 J have been described as examples in which the method of simply estimating the arrival direction of the desired wave is used. It is not limited to the algorithm used in 6, to 6! _.
  • the MUSIC algorithm or ESPR! An arrival direction estimation algorithm using the T algorithm may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

平均化時間が十分にとられている各信号処理部で受信されている到来波の信頼性の高い到来方向および受信品質に基づいて、時間平均を用いた重みの決定を開始しようとする信号処理部の初期のビーム方向を選択することにより、初期において短時間かつ容易に受信特性の良い指向性ビームを得ることのできる適応アンテナ受信装置が開示される。到来方向検出部は、時間平均を求めるための平均化時間が所定時間以上確保されている各信号処理部にて決定された重みから、その信号処理部にて受信されている到来波の到来方向を検出する。SIR測定部は、平均化時間が所定時間以上確保されている各信号処理部にて重み付け合成により受信されている到来波の信号の受信品質を求める。情報収集選択処理部は、平均化時間が所定時間以上確保されている各信号処理部における各到来方向および各受信品質に基づき、時間平均を用いた重みの決定を開始しようとする信号処理部における初期のビーム方向を選択する。

Description

明 細 書 初期段階から指向性ビームの受信品質が良好な適応ァンテナ受信装置 技術分野
本発明は、 適応アンテナを構成する各アンテナに重み付けをして信号を良好な 特性で受信する適応アンテナ受信方法およびそれを用いた装置に関する。 背景技術
CDMA (Co d e D i v i s i o n Mu l t i p l e Ac c e s s : 符号分割多元接続) 方式による移動通信システムにおいては、 基地局は複数の移 動局からのユーザ信号を同時に受信するため、 あるユーザ信号に対して他のユー ザ信号は干渉となる。 このような干渉を低減し、 所望のユーザ信号を高利得で受 信するために適応ァンテナが用いられる。
適応ァンテナは複数のァンテナからなリ、 各ァンテナで受信される信号に対し て複素数の重み付けに従って振幅および位相を制御して合成することにより指向 性を形成する。 これにより、 適応アンテナは、 干渉となる他のユーザ信号を抑圧 して所望のユーザ信号を効率良く受信する。
一般に、 適応アンテナの各ァン亍ナの重みを決定する方法には 2通リの方法が
1つは、 MMS E (M i n i m um Me a n Sq u a r e E r r o r : 最小二乗平均誤差) 基準に従ったアルゴリズムを用いてフィードバック制御を行 い、 重みを決定する方法である。 代表的な LMS (Le a s t Me a n S q u a r e) アルゴリズムや、 逐次ウェイ卜更新型の R LS (Re c u r s i v e Le a s t Sq u a r e) アルゴリズムなどの適応更新アルゴリズムが用いら れる。
これに対して、 もう 1つは、 本発明が対象とするオープンループ制御による方 法である。 この方法によれば、 アンテナ受信信号から MUS I C (MU I t i p I e S i gn a l C I a s s i f i c a t i o n ) アルゴリズムや E S P R I T (Es t i ma t i o n o f S i gn a l Pa r ame t e r s v ί a Ro t a t i o n a l I n v a r i a n c e Te c h n i q u e s) アルゴリズムなどの到来方向推定アルゴリズムを用いて希望波の到来方向を推定 し、 その方向に応じて各アンテナの重みを決定する。 オープンループ制御により 重みを決定する方法は、 例えば、 特開平 1 1一 274976号公報に記載されて いる。
図 1は、 特開平 1 1一 274976号公報に記載された従来の適応アンテナ受 信装置の構成例を示すブロック図である。 図 1に示された適応アンテナ受信装置 は、 適応アンテナを構成するアンテナの数が N (Nは 2以上の整数) であり、 合 成するマルチパスの数が L (Lは自然数) である。 そして、 図 1には、 第 kユー ザ (kは自然数) の移動局から受信されるユーザ信号を受信する回路部分が示さ れている。
図 1を参照すると、 適応アンテナ受信装置は、 アンテナ 1,〜1 N、 信号処理部 2,〜2い 加算器 1 1、 判定器 1 2、 およびサーチャ 16を有している。 信号処 理部 2,〜 2しには、 レイク合成される各マルチパスに対応するフィンガが割 U当 てられる。
信号処理部 2 ,は、遅延器 3 ,、逆拡散回路 4,,〜 4 , N、重み付け合成回路 5 ,、 重み計算部 6 伝送路推定回路 7い 複秦共役回路 8い 初期重み生成部 9 お よび乗算器 10 を有している。 また、 重み計算部 6,は 信号同相平均計算部 1 3,, 相関検出部 14ぃ および時間平均計算部 15,を有している。
図示されていないが、信号処理部 22〜 2しの内部は信号処理部 2 と同じ構成で ある。例えば、信号処理部 22は、 遅延器 32 逆拡散回路 421〜42N、 重み付け 合成回路 52、 重み計算部 62、 伝送路推定回路 72、複素共役回路 82、 初期重み 生成部 92、 および乗算器 102で構成されている。また、重み計算部 62は、信号 同相平均計算部 132、相関検出部 142、および時間平均計算部 152を有してい る。
サーチャ 1 6は、 N個のアンテナ 1 〜1 Nで受信した各信号を用いて L個のマ ルチパスの遅延時間を検出する。 そして、 サーチャ 1 6は、 レイク合成め各フィ ンガとなる信号処理部 2 2,の遅延器 3 3し、重み計算部 6 6し、 および 初期重み生成部 9 ^ 9 Jこ各々のフィンガで用いる遅延時間のタイミング情報を 通知する。
なお、 N個のアンテナ 1,〜 は互いに高い相関を有するように近接して配置 されている。 そのため、 N個のアンテナ 1,〜1 Nの遅延プロファイルは、 全て同 じとみなすことができる。 したがって、 各マルチパスの遅延時間のタイミング情 報はアンテナ 1 ,〜1 Nによらず共通に使用できる。
遅延器 3 は、アンテナ 1 〜 1 Nで受信した各信号を、サーチャ 1 6から通知さ れたタイミング情報に従って遅延させ、 逆拡散回路 4 ^〜斗^に送る。 同様に、 遅延器 3 2~ まアンテナ 1 〜 1 Nで受信した各信号をサーチャ 1 6から通知 されたタイミング情報に従って遅延させる。 これにより、 信号処理部 2 2 ^の 各々が L個のマルチパスに対応付けられる。
逆拡散回路 4 , 〜4 1 Nは、遅延器 3,で遅延された受信信号の各々を逆拡散し、 重み付け合成回路 5 ,、 重み計算部 6 ¾ および初期重み生成部 9 Λに送る。
初期重み生成部 9 1は、 重み計算部 6 により十分な精度の重みが得られないと きに用いるための初期重みを生成し、 重み付け合成回路 5 に送る。
初期重み生成部 9 ,は、 サーチャ 1 6がフィンガを信号処理部 2 Λに新たに割リ 当てるときや、 フィンガを割リ当てられた信号処理部 2 1の重み計算部 6 1にて十 '分な平均化時間が取れていないときに用いられる。 平均化時間とは 平均化の対 象となる変動値について平均を求めるのに用いられる時間である。 平均化時間に おける平均化により、 変動値の平均化時間における平均値が求められる。 また 使用中のフィンガのパスタイミングが大きく変化したときにも、 初期重み生成部 9,が用いられる。
図 2は、重み付け合成回路 5,の構成を示すブロック図である。重み付け合成回 路 5,は、 乗算器 1 7,〜1 7 Ν、 加算器 1 8、 および複素共役回路 1 9 〜1 9 Ν を有している。
重み付け合成回路 5,の複素共役回路 1 9 1 9 Νは、重み計算部 6 または初 期重み生成部 9 で生成された重みの複素共役を生成し、乗算器 1 7 ^ 1 7 Νに送 る。
乗算器 1 7 ^ 1 7 Νの各々は、逆拡散回路 4 η〜4 1 Νにより逆拡散された受信 信号と、 それに対応する複素共役回路 1 9 〜1 9 Nで生成された重みの複素共役 とを乗算し、 加算器 1 8に送る。
加算器 1 8は、 乗算器 1 7 1 7 Nの出力を合成し、 図 1に示された伝送路推 定回路 7 と乗算器 1 に送る。
重み計算部 6 1の信号同相平均計算部 1 3,は、各逆拡散回路 4, 〜 4, Nにより 逆拡散された各信号のシンボルを、 互いに位相を合わせてべクトル加算し、 各ァ ンテナ毎の信号平均値を求めて相関検出部 1 4,に送る。その際、べクトル加算す るシンボル数は任意である。 また、 各シンボルに対して任意に重み付けをしても よい。
相関検出部 1 4,は、 信号同相平均計算部 1 3 からの各信号平均値を用いて、 基準となるアンテナでの受信信号と、 その他のアンテナでの受信信号との相関を 求める。そのため、相関検出部 1 4,は、基準アンテナに対応する信号平均値の複 素共役と、 他のアンテナに対する信号平均値とを乗算し、 各乗算結果である相関 値を時間平均計算部 1 5 に送る。
時間平均計算部 1 5 ·!は、 相関検出部 1 4 からの各乗算結果について所定時間 における平均をとリ、 各アンテナ 1 〜1 Nに対する重みを求めて重み付け合成回 路 5 ,に送る。 なお、 時間平均計算部 1 5,において平均をとる時間や、 重み付け 方法は様々あ!^ 任意に邐択できる。
これらによリ、 重み付け合成回路 5 は、 重み計算部 6 で生成された重みを用 いてアンテナ 1,〜1 Νによる受信信号の振幅および位相を制御して合成し、 所望 のユーザ信号を高利得で受信可能な指向性を形成する。
伝送路推定回路 7,は、 重み付け合成回路 5,の出力信号から伝送路歪みを推定 し、複素共役回路 8,に送る。
複素共役回路 8 ,は、 伝送路推定回路 7 1にて推定された伝送路歪みの複素共役 を生成する。
乗算器 1 0 は、重み付け合成回路 5 の出力信号に、複素共役回路 8 ,で生成さ れた伝送路歪みの複素共役を乗算することにより、 伝送路歪みを補償する。 同様にして、 信号処理部 2 〜 2 Jこよる各フィンガから伝送路歪みの補償され た信号が得られる。 加算器 1 1は、 信号処理部 2 ^ 2 ^の出力信号を加算することにより、 レイク 合成を行い、 合成出力信号を判定器 1 2に送る。
判定器 1 2は各シンポルを判定し、 第 kユーザの受信シンボルを出力する。 図 3は、 図 1に示した適応アンテナ受信装置において、 フィンガを割り当てる ときの動作を示すフローチャートである。 図 3を参照すると、 まず、 信号処理部 ,〜 ^は、 割り当てられたフィンガが新規のフィンガか否か判断する (ステツ プ C 1 ) 。
割り当てられたフィンガカ《新規のフィンガであれば、 信号処理部 2 〜 2 しは、 初期重み生成部 9 ,〜 9 Lで生成された初期重みを重み付け合成回路 5, ~ 5しに て使用する (ステップ C 4 )
割リ当てられたフィンガが新規のフィンガでなければ、信号処理部 2 2 Lは、 重み計算部 6 〜 6 しの信号同相平均計算部 1 3 ,〜 1 3 および時間平均計算部 1 5,〜 1 5しにおいて平均化時間が十分にとれているか否か判断する (ステップ C 2 ) 。
重み計算部 6,〜 6しの平均化時間が十分にとれていなければ、 信号処理部 2 1 〜 2 Lは、 初期重み生成部 9 〜 9しで生成された初期重みを重み付け合成回路 5 〜 5しにて使用する (ステップ C 4 ) 。また、重み計算部 6,〜 6 Lの平均化時間が 十分にとれていれば 信号処理部 2、〜2 Lは、 重み計算部 6 L〜 6しの時間平均計 算部 1 5,〜 1 5しで生成された重みを重み付け合成回路 5,〜 5しにて使用する (ステップ C 3 ) 。
図 4は、 図 1に示した適応アンテナ受信装置において、 フィンガのパスタイミ ングが変化したときの動作を示すフローチャートである。 図 4を参照すると、 ま ず、信号処理部 2,〜 2しは、フィンガのパスタィミングが X τチップ以上変化した か否か判断する (ステップ D 1 ) 。 χ τは、パスタイミングの変化量に対する閾値 であり、 重み計算部 6 6しによリ算出される重みが追従できない程にパスタイ ミングの変化が急激であつたか否かを決める。
フィンガのパスタイミングが X 7チップ以上変化すると、 信号処理部 2 ,〜 2 し は、初期重み生成部 9 ,〜 9 しで生成した初期重みを重み付け合成回路 5 〜 5 しに て使用する (ステップ D 4 ) 。 フィンガのパスタイミングの変化が χ τチップ未満 であれば、 信号処理部 2 2 しは、 重み計算部 6 6 Lの信号同相平均計算部 1 3 〜 1 3 しおよび時間平均計算部 1 5 ,〜 1 5 Jこおいて平均化時間が十分にと れてい 0か否か判断する (ステップ D 2 ) 。
重み計算部 6 〜 6しの平均化時間が十分にとれていなければ、 信号処理部 2 , 〜 2しは、そのフィンガの初期重み生成部 9 , - 9 しで生成された初期重みを重み付 け合成回路 5,〜 5 Jこて使用する (ステップ D 4 ) 。 また、 重み計算部 6 ,〜6 し の平均化時間が十分にとれていれば、 信号処理部 2,〜 2 しは、 そのフィンガの重 み計算部 6,〜 6 しの時間平均計算部 1 5 〜 1 5 しで生成された重みを重み付け 合成回路 5 〜 5しにて使用する (ステップ D 3 ) 。
一般に、 適応アンテナにて使用される初期重みの決定方法には 2通りがある。
1つの方法は、 ユーザ信号の到来方向が受信状況によって異なる点を考慮し、 いかなる状況でもユーザ信号を受信できるように、 受信状況に関わらず受信でき る値、 例えば無指向性重みを初期重みとする方法である。
他の方法は、 複数のアンテナ 1 ,〜 1 Nで受信した信号から初期重みを推定する 方法である (特開 2 0 0 2— 7 7 0 1 1号公報参照) 。 例えば、 各アンテナによ る受信信号から伝送路推定を行い、 それによつて得られる重みを初期重みとする 方法である。
上述した従来技術には以下に示すよラな問題点がある。
初期重みとして無指向性重みを使用する場合 全ての方向に対しても同じ利得 なので、 所望のユーザ信号の到来方向にビームを向けることができなかった。 また、複数のアンテナ 1 〜 1 Nで受信した信号を用いて伝送路推定を行い、 そ れによって得られる重みを初期重みとして使用する場合、 短時間では高精度の伝 送路推定が困難なため、 所望のユーザ信号の到来方向にビームを向けることがで きないことがあった。
そのため、 フィンガを新規に割り当てるとき、 フィンガのパスタイミングが大 きく変化したとき、 あるいは重み計算部 6,〜 6 Lの平均化時間が十分にとれてい ないとき、 ユーザ信号の受信特性が劣化する可能性があった。
また、複数のアンテナ 1 ,〜 1 Νで受信した信号を用いて伝送路推定を行い、 そ れによって得られる重みを初期重みとして使用する場合、 伝送路推定を行うため の演算量が大きく、 信号処理部 2 2しにかかる負荷が大きくなリ、 大きな処理 能力が要求されていた。 発明の開示
本発明の目的は、 良好な受信特性でユーザ信号を受信できる初期重みを短時間 かつ少ない演算で求めることのできる、 オープンループ制御による適応アンテナ 受信装置を提供することである。
上記目的を達成するために本発明の適応アンテナ受信装置は、 少なくとも 1つ の到来波に対して信号処理部を割り当て、 各信号処理部において、 複数のアンテ ナによる受信信号から所定の演算により得られる演算値の時間平均を用いて決定 した各アンテナの重みで各ァンテナにて受信される信号を重み付け合成すること によリ複数の信号処理部で受信された複数の到来波をさらに合成して所望の信号 を得る。
そして、 本発明の適応アンテナ受信装置において、 まず、 到来方向検出部が、 時間平均を求めるための平均化時間が所定時間以上確保されている各信号処理部 にて決定された重みからその信号処理部にて受信されている到来波の到来方向を 検出する。 次に、 受信品質取得部が、 平均化時間が所定時間以上確保されている 各信号処理部にて重み付け合成によリ受信されている到来波の信号の受信品質を 求める。 次に、 情報収集選択処理部が、 平均化時間が所定時間以上確保されてい る各信号処理部における各到来方向および各受信品質に基づき、 時間平均を用い た重みの決定を開始しょうとする信号処理部における初期のビーム方向を選択す る。
したがって、 本発明によれば、 平均化時間が十分にとられている各信号処理部 で受信されている到来波の信頼性の高い到来方向および受信品質に基づいて、 時 間平均を用いた重みの決定を開始しょうとする信号処理部の初期のビーム方向を 選択することができる。その結果、初期において短時間かつ容易に受信特性の良い 指向性ビームを得ることができる。
なお、 情報収集選択処理部は、 平均化時間が所定時間以上確保されている各信 号処理部の中で、 最良の受信品質が得られた信号処理部で検出された到来方向に 最も近いビーム方向を、 予め複数定められたビーム方向の中から選択することと してもよい。
したがって、 初期のビーム方向として選択可能なビーム方向が一覧表テーブル などで予め複数定められており、 平均化時間が十分にとられた信頼性の高い受信 品質測定が行われている各到来波の中で最も受信品質の良い到来波の到来方向に 最も近いビーム方向を、 その複数の中から選択するだけでよい。 そのため、 初期 において少ない処理で短時間に受信品質の良好な指向性ビームを得ることができる。 また、 初期重み生成部が、 情報収集選択処理部で選択された初期のビーム方向 に指向性ビームを形成し、 信号処理部において平均化時間が所定時間以上確保さ れるまで重み付け合成に用いられる初期重みを求めることとしてもよい。
したがって、 時間平均を用いた重みの決定を開始しょうとする信号処理部にお いて、 平均化時間が十分となるまで、 容易かつ短時間に取得したビーム方向の重 みを用い、 平均化時間が十分にとれた後には、 時間平均で得られた精度の高い重 みを用いることができる。 そのため、 平均化時間が十分に取れる前後とも、そのと きの状況に応じて適切なビーム方向の決定方法が選択され、常に受信特性の良い指 向性ビームを得ることができる。 図面の簡単な説明
図 1は、 従来の適応アンテナ受信装置の構成例を示すブロック図である。 図 2は、 重み付け合成回路の構成を示すブロック図である。
図 3は、 図 1に示した適応アンテナ受信装置において、 フィンガを割り当てる ときの動作を示すフローチャートである。
図 4は、 図 1に示した適応アンテナ受信装置において、 フィンガのパスタイミ ングが変化したときの動作を示すフローチヤ一卜である。
図 5は、 本発明の一実施形態によるオープンループ制御の適応アンテナ受信装 置の構成例を示すブロック図である。
図 6は、 適応アンテナを構成するアンテナによって信号が受信される様子の一 例を示す図である。
図 7は、 直交マルチビームで定められた複数のビームから、 最大の S I Rが測 定されたフィンガの到来方向情報に最も近い方向に向くビームを選択する様子を 示す図である。
図 8は、 等間隔マルチビームで定められた複数のビームから、 最大の S I Rが 測定されたフィンガの到来方向情報に最も近い方向に向くビームを選択する様子 を示す図である。
図 9は、 直交あるいは等間隔マルチビームの重みを示す一覧表である。
図 1 0は、 本実施形態による適応アンテナ受信装置において、 フィンガを割り 当てるときの動作を示すフローチヤ一卜である。
図 1 1は、 本実施形態による適応アンテナ受信装置において、 フィンガのパス タイミングが変化したときの動作を示すフローチヤ一卜である。
図 1 2は、 本発明の他の実施形態によるオープンループ制御の適応アンテナ受 信装置の構成例を示すブロック図である。
図 1 3は 本発明のさらに他の実施形態によるオープンループ制御の適応アン テナ受信装置の構成例を示すブロック図である。 発明を実施するためにの最良の形態
本発明の一実施形態について図面を参照して詳細に説明する。
図 5は 本実施形態によるオープンループ制御の適応アンテナ受信装置の構成 例を示すプロック図である。 図 5に示された本実施形態の適応アンテナ受信装置 は、 適応アンテナを構成するアンテナの数が N ( Nは 2以上の整数) であり、 合 成するマルチパスの数が L ( Lは自然数) である。 そして、 図 5には、 第 kユー ザ ( kは自然数) の移動局から受信されるユーザ信号を受信する回路部分が示さ れている。
図 5を参照すると、 適応アンテナ受信装置は、 アンテナ 1 1 ^ 信号処理部 2 〜 2し、 加算器 1 1、 判定器 1 2、 サーチャ 1 6、 および情報収集選択処理部 2 2を有している。
信号処理部 2,は、遅延器 3 ,、逆拡散回路 4 ,〜 4 Ν、重み付け合成回路 5 ,、 重み計算部 6い 伝送路推定回路 7い 複素共役回路 8い 初期重み生成部 9い 乗 算器 1 0,、到来方向検出部 2 0,、および S I R測定部 2 1 を有している。また、 重み計算部 6,は、信号同相平均計算部 1 3い相関検出部 1 4いおよび時間平均 計算部 1 5,を有している。
図示されていないが、信号処理部 2 2〜 2 Lの内部は信号処理部 2 と同じ構成で ある。例えば、信号処理部 2 2は、遅延器 3 2、逆拡散回路 4 2 1〜 4 2 N、重み付け 合成回路 5 2、 重み計算部 6 2、 伝送路推定回路 7 2、 複素共役回路 8 2、初期重み 生成部 9 2、 乗算器 1 0 2、 到来方向検出部 2 0 2、 および S I R測定部 2 1 2で構 成されている。 また、 重み計算部 6 2は、 信号同相平均計算部 1 3 2、 相関検出部 1 4 2、 および時間平均計算部 1 5 2を有している。
サーチャ 1 6は、 N個のアンテナ 1 〜 1 Nで受信した各信号を用いて L個のマ ルチパスの遅延時間を検出する。 この遅延時間は例えばチップ数によって示され る。 そして、 サ一チヤ 1 6は、 信号処理部 2,〜 2 Lの各々の遅延器 3,〜 3い 重 み計算部 6 ,〜 6し、 および初期重み生成部 9 〜 9しに、 各々で用いる遅延時間の タイミング情報を通知する。 また、 サーチャ 1 6は、 全ての信号処理部 2,〜 2 L に通知した遅延時間のタィミング情報を情報収集選択処理部 2 2にも通知する。 なお、 サーチャ 1 6が信号処理部 2,〜 2 Lの各々の遅延器 3 ,〜 3い 重み計算 部 6 〜 6い および初期重み生成部 9,〜 9 Jこ各マルチパス 遅延時間のタィミ ング情報を通知して信号処理動作を開始させることを、 信号処理部 2 〜 2 Jこフ インガを割り当てると称する。
また、 N個のアンテナ 1 ,〜1 Nは互いに高い相闋を有するように近接して配置 されている。 そのため、 N個のアンテナ 1,〜1 Nの遅延プロファイルは、 全て同 じとみなすことができる。 したがって、 各マルチパスの遅延時間のタイミング情 報はアンテナ 1,〜1 Nによらず共通に使用できる。
遅延器 3,は、アンテナ 1 1〜 1 Nで受信した信号の各々を、サーチャ 1 6から通 知されたタイミング情報に従って遅延させて逆拡散回路 4 "〜 4 1 Nに送る。 同様 に、 遅延器 3 2〜 3 Lは、 アンテナ 1 ,〜 1 Nで受信した信号の各々を、 サーチャ 1 6から通知されたタイミング情報に従って遅延させる。 これにより、 信号処理部 2,〜 2しの各々が L個のマルチパスに対応付けられる。
逆拡散回路 4 4 1 Nは、遅延器 3,で遅延された受信信号の各々を逆拡散し、 重み付け合成回路 5い 重み計算部 6 1 および初期重み生成部 9 に送る。 重み付け合成回路 5,は、図 2に示した従来のものと同じ構成である。図 2を参 照すると、重み付け合成回路 5,は、乗算器 17 17N、加算器 18、 および複 素共役回路 19,〜19Nを有している。
重み付け合成回路 5,の複素共役回路 19 1 9Nは、 重み計算部 6 または初 期重み生成部 9,で生成された重みの複素共役を各々生成し、乗算器 1フ,〜"! 7N に送る。乗算器 17^17Nの各々は、逆拡散回路 4n〜41Nにより逆拡散され た受信信号と、 その各々に対応する複素共役回路 19,〜19Nで生成された重み の複素共役とを乗算し、 加算器 18に送る。 加算器 18は、 乗算器 17,〜17N の出力を合成し、 図 5に示された伝送路推定回路 7,、 乗算器 10ぃ および S I R測定部 21,に送る。
以上のようにして、 重み付け合成回路 5,は、 逆拡散回路 4 〜 ^からの信 号を重み付け合成する。
重み計算部 6 の信号同相平均計算部 13 は、逆拡散回路 4 "〜 ^により逆 拡散された信号のシンボルを、 各シンボルの位相を合わせてべクトル加算 (同相 加算) し、 各アンテナ毎の信号平均値を求めて相関検出部 14_>に送る。 その際、 同相加算するシンポル数 (平均シンボル数) は任意である。 また、 各シンポルに 対して任意に重み付けをしてもよい。 同相加算により求まる信号平均値は、 受信 号の S ! NR (S i g n a l ΐ o I n t e r f e r e n c e l u s No i s e Ra t i o : 希望波信号電力対 干渉波信号電力と熱雑音電力の 比) が改善された信号である。
逆拡散されたシンボルに変調がかかっている場合、 そのシンボルを単純に同相 加算することはできない。 その場合、 既知のパイロット信号を用いれば、 パイ口 ッ卜シンポルで変調を除去することにより、 同相加算が可能となる。 平均シンポ ル数が多いほど S I NRの改善効果は大きいが、 フエージングなどによリ位相変 動がはげしい場合には平均シンボル数が制限される。
相関検出部 14,は、 信号同相平均計算部 1 3,からの各信号平均値を用いて、 基準となるアンテナでの受信信号と、 その他のアンテナでの受信信号との相関値 を求める。そのために、相関検出部 14,は、基準アンテナに対応する信号平均値 の複素共役と、 他のアンテナに対する信号平均値とを乗算する。 そして、 相関検 出部 1 4,は各乗算結果である相関値を時間平均計算部 1 5,に送る。
図 6は、 適応アンテナを構成するアンテナ 1 ~ 1 Nによって信号が受信される 様子の一例を示す図である。 この例では、 アンテナ 1,〜1 Nは、 素子間隔 dで等 間隔に一列に並んで配置されている。
各アンテナ 1,~ 1 Nで受信される信号の位相の進みは、 その信号の到来方向に 依存して互いに異なる。 例えば、 アンテナ 1,で受信される信号は、 アンテナ 1 n ( nは、 2≤n≤Nの整数) で受信される信号に比べて、 (n— 1 ) ( 2 7T d / λ ) s i n 0 0だけ位相が進む。 なお、 ここで 0 0は、 アンテナ 1,〜 の配列方 向に対する信号の到来方向の角度である。また、 λは搬送波周波数の波長である。 したがって、 アンテナ 1,を基準アンテナとすると、理想的には、 η番目のアン テナ 1 πで受信される信号の位相である一(η— 1 ) ( 2 7Γ d / λ ) s ί η 0。が、 相関値として相関検出部 1 4,によって検出されることとなる。
時間平均計算部 1 5,は、 相関検出部 1 4,から得られる各相関値について所定 時間の平均をとることにより、 各アンテナ 1 〜1 Νに対する重みを求めて重み付 け合成回路 5,および到来方向検出部 2 0,に送る。 なお、 時間平均計算部 1 5 1 において平均をとる時間や、 重み付け方法は様々あり、 任意に選択できる。
これらにより、 重み付け合成回路 5 は、 重み計算部 6 で生成された重み、 ま たは初期重み生成部 9 で生成された初期重みを用いてアンテナ 1 〜1 Νによる 受信信号の振幅および位相を制御して合成し 所望のユーザ信号を高利得で受信 可能な指向性を形成する。
各アンテナ 1,〜 1 Νに対する重み付けは、角度 Θ 0の方向から到来する希望信号 に対して、 各アンテナ 1,〜1 Νの受信信号の位相を、 基準アンテナとなるアンテ ナ 1 の受信信号の位相に合わせて合成するように働く。 また、 角度 Θ。と異なる 方向から到来する信号に対しては、基準アンテナとなるアンテナ 1,と他のアンテ ナとで位相が合わない。
そのため、ァレーアンテナの指向性としては、角度 Θ。の方向に高い利得を有し、 角度 Θ 0以外の方向の利得が低減されるビームが形成される。
伝送路推定回路 7 ^ 重み付け合成回路 5 ,の出力信号から伝送路歪みを推定 し、 複素共役回路 8 に送る。 複素共役回路 8,は、 伝送路推定回路 7,にて推定された伝送路歪みの複素共役 を生成する。
乗算器 10,は、重み付け合成回路 5 ,の出力信号に、複素共役回路 8 ,で生成さ れた伝送路歪みの複素共役を乗算することによリ、 伝送路歪みを補償する。
同様にして、 信号処理部 2 2 Jこよる各々のフィンガから伝送路歪みの補償 された信号が得られる。
加算器 1 1は、 信号処理部 2^2^の出力信号を加算することによりレイク合 成を行い、 合成出力信号を判定器 1 2に送る。
判定器 12は各シンボルを判定し、 第 kユーザの受信シンボルを出力する。 到来方向検出部 20^20 Jま、 重み計算部 6 〜 の時間平均計算部 15, 〜1 5Lで生成された重みから、 到来方向の角度 0。を求め、 情報収集選択処理部 22に送る。
S I R測定部 21,〜21しは、 重み付け合成回路 5,〜 しの出力から、 任意の 時間平均した S I R (S i g n a I t o I n t e r f e r e n c e Ra t i o : 希望波信号電力対干渉波信号電力比) を測定し、 情報収集選択処理部 2 2に送る。 この S I Rを平均する時間 (平均化時間) は、 重み計算部 6,〜6しの 信号同相平均計算部 1 3,〜1 3しおよび時間平均計算部 1 5,〜1 5^で用いら れる平均化時間と同程度が好ましい。 平均化時間とは 平均化の対象となる爽動 値について平均を求めるのに用いられる時間である。 平均化時間における平均化 によリ、 変動値の平均化時間における平均値が求められる。
情報収集選択処瑪部 22には、 サーチャ 16から各フィンガのタイミング情報 が入力されている。 また、 情報収集選択処理部 22には、 既にフィンガが割り当 てられている信号処理部 2,〜 2 Lの S I R測定部 21,〜21 Lから S I Rの情 報が入力されている。 さらに、 情報収集選択処理部 22には、 既にフィンガが割 リ当てられておリ、 重み計算部 6 ,〜 6しにおいて平均化時間が十分にとれている 信号処理部 2 〜 2しの到来方向検出部 20,〜 20しから到来方向の情報が入力 されている。
そして、 情報収集選択処理部 22は、 サーチャ 16力信号処理部 2 2しにフ ィンガを新たに割リ当てるとき、 信号処理部 2,-2 Jこ割リ当てているフィンガ のパスタイミングが大きく変化したとき、 あるいは既にフィンガを割リ当てられ ている信号処理部 2 〜 2 Lの重み計算部 6 ,〜 6 しの信号同相平均計算部 1 3,〜 1 3 Lおよび時間平均計算部 1 5,〜 1 5 Jこおいて平均化時間が十分にとれてい ないとき、 その信号処理部 2 2しの初期重み生成部 9,〜 9 Lに、 初期重みを生 成するのに用いるビーム番号を通知する。 このとき通知されるビーム番号は、 い ずれかの信号処理部 2 〜 2 Jこ既に割リ当てられているフィンガの中で、 重み計 算部 6 ^ 6 Lの信号同相平均計算部 1 3 1 3しおよび時間平均計算部 1 5 1 5 しにおいて平均化時間が十分にとれており、 S I R測定部 2 1 ,〜2 1 Jこて測 定された S I Rが最大のフィンガにおける信号の到来方向に最も近い方向のビー ム番号である。 なお、 ビーム番号は、 信号の到来方向に対して、 直交あるいは等 間隔マルチビームを用いて予め複数定められておリ、情報収集選択処理部 2 2は、 その中から上述した条件に合ったビーム番号を選択することとなる。
図 7は、 直交マルチビームで定められた複数のビームから、 最大の S I カ《測 定されたフィンガの到来方向情報に最も近い方向に向くビームを選択する様子を 示す図である。 図 7では、 横軸がビーム方向を示す角度 Θであり 縦軸が振幅で ある。 そして、 初期重みとして選択可能な複数 (ここでは M個: Mは自然数) の ビームの特性が示されている。
図 7に示されている直交マルチピー厶は あるビームのピーク方向が他のビー ムのヌル方向となるように各ビームの方向が定められている。 最大の S I Rが測 定されるフィンガの到来方向が角度 Θ。であれば、その方向に最も近い方向の、 ビ ーム番号 mのビームが選択される。
図 8は、 等間隔マルチビームで定められた複数のビームから、 最大の S I が 測定されたフィンガの到来方向情報に最も近い方向に向くビームを選択する様子 を示す図である。 図 8に示されている等間隔マルチビームは、 ビーム方向の間隔 が等しくなるように各ビームの方向が定められている。最大の S I Rが測定され るフィンガの到来方向が角度 0。であれば、図 7と同様に、その方向に最も近い方 向の、 ビーム番号 のビームが選択される。
なお、 最大の S I Rが測定されたフィンガの到来方向情報を用いるのは、 その フィンガのビーム方向のパスにおいて受信品質が高い可能性が高いからである。 移動通信セルラーシステムのマクロセル環境においては、 移動局から送出された 電波はまず移動局周辺のビルや建物などの地形や地物によリ反射、回折、散乱し、 ほぼ同じ到来角をもった複数のパスを通って基地局に到来するのが一般的である。 そのため、 上述したように選択されたフィンガの到来方向情報に最も近いビーム のビーム番号の重みを初期重み生成部 9,〜 9 Lで生成される初期重みとして用い るのが妥当である。
また、 最大の S I Rが測定されたフィンガの到来方向情報を直接、 初期重みの 生成に用いていない。 これは、 既に割り当てられたフィンガで、 重み計算部 6, 〜 6しの信号同相平均計算部 1 3 , ~ 1 3 Lおよび時間平均計算部 1 5,〜 1 5しに おいて平均化時間が十分にとれており、最大の S I Rが測定された信号処理部 2, 〜 2しの到来方向情報は、信号処理部 2 2しに新たに割り当てるフィンガ、タィ ミングが大きく変化したフィンガ、 あるいは割リ当てられた信号処理部 2,〜 2し の重み計算部 6,〜 6しにおいて平均化時間が十分にとれていないフィンガの信号 到来方向と異なると考えられるからである。
初期重み生成部 9 〜 9しは、 重み計算部 6 〜 6しにより十分な精度の重みが得 られないときに用いられる初期重みを生成し、重み付け合成回路 5,〜 に送る。 初期重み生成部 9,〜 9 Lは、 サ一チヤ 1 6が信号処理部 2,〜 2しにフィンガを 新たに割 当てるとき、 フィンガを割り当てられた信号処理部 2 ' 2しの重み計 算部 6 ,〜 6しにて十分な平均化時間が取れていないときに用いられる。 また 使 用中のフィンガのパスタイミングが大きく変化したときにも、初期重み生成部 9, 〜 9しが用いられる。
図 9は、 直交あるいは等間隔マルチビームの重みを示す一覧表である。 この一 覧表は、 初期重み生成部 9 ,〜 9しが重みを決定するのに用いられる。
図 9を参照すると、 ビーム番号に対応する重みが示されている。 初期重み生成 部 9 〜 9 Lは、 情報収集選択処理部 2 2によって通知されたビーム番号 mに対応 する重みを図 9の一覧表から選択し、 それを重み付け合成回路 5 , ~ 5 Lに通知す る。
なお、 初期重み生成部 9 9 Lは、 既に信号処理部 2,〜 2 こ割り当てられて いるフィンガの中に、 重み計算部 6,〜 6 Jこおいて平均化時間が十分にとられて いるフィンガが無ければ、 無指向性重み等の所定の重み、 あるいは伝送路推定か ら求まる推定重みを用いる。 無指向性重み等の所定の重み、 あるいは伝送路推定 から求まる推定重みを、 以下、 第 2の初期重みと称する。
図 1 0は、 本実施形態による適応アンテナ受信装置において、 フィンガを割り 当てるときの動作を示すフローチャートである。
図 1 0を参照すると、 まず、 情報収集選択処理部 2 2が、 サーチャ 1 6によつ て信号処理部 2, ~ 2 しに割リ当てられたフィンガが新規のものか否か判定する (ステップ A 1 ) 。 新規フィンガであれば、 次に、 情報収集選択処理部 2.2は、 既に信号処理部 2,〜 2 Jこ割リ当てられていたフィンガの中に、 重み計算部 6 , 〜 6 しの信号同相平均計算部 1 3,〜 1 3 しおよび時間平均計算部 1 5,〜 1 5しに おいて平均化時間が十分にとれているものがあるか否か判定する (ステップ A 6 )。 平均化時間が十分な既存のフィンガがなければ、 情報収集選択処理部 2 2は、 その旨を、 新規フィンガが割 y当てられた信号処理部 2,〜 2 しの初期重み生成部
9,〜 9しに通知する。 その通知を受けた初期重み生成部 9,〜 9 ま 第 2の初期 重みを生成して重み付け合成回路 5 ,〜 5 Jこ送る。 初期重み生成部 9 ,〜 9 しから 第 2の初期重みを受けた重み付け合成回路 5,〜 5 しは、 その第 2の初期重みを用 いて重み付け合成を行う (ステップ A 8 ) 。
ステツプ A 6の判定において、 平均化時間が十分な既存フィンガが少なくとも 1つ有れば、 情報収集選択処理部 2 2は、 その既存フィンガの中で最大の S I R が測定されているフィンガの信号到来方向に最も近い方向のビームのビーム番号 を、新規フィンガが割 y当てられた信号処理部 2 〜 2しの初期重み生成部 9 〜 9 Jこ通知する。その通知を受けた初期重み生成部 9 〜 9 Jま、そのビーム番号に対 応する初期重みを一覧表から選択して重み付け合成回路 5 5 送る。 初期重 み生成部 9 ,〜 9 しから初期重みを受けた重み付け合成回路 5 ,〜 5 t, その初期 重みを用いて重み付け合成を行う (ステップ A 7 ) 。
ステップ A 1の判定において、 新規フィンガでなければ、 情報収集選択処理部 2 2は、 そのフィンガが割リ当てられている信号処理部 2 , - 2しにおいて平均化 時間が十分にとれているか否か判定する (ステップ A 2 ) 。
平均化時間が十分でなければ、情報収集選択処理部 2 2は、既に信号処理部 2, 〜 2 しに割リ当てられていたフィンガの中に、重み計算部 6,〜 6しの信号同相平均 計算部 1 3 〜 1 3 Lおよび時間平均計算部 1 5,〜1 5 Jこおいて平均化時間が 十分にとれているものがあるか否か判定する (ステップ A 4 ) 。
平均化時間が十分な既存フィンガが少なくとも 1つ有れば、 ステップ A 7の処 理に進み、 情報収集選択処理部 2 2は、 その既存フィンガの中で最大の S I Rが 測定されているフィンガの信号到来方向に最も近い方向のビームのビーム番号を、 新規フィンガが割リ当てられた信号処理部 2 ,〜 2 しの初期重み生成部 9,〜 9 し に通知する。 その通知を受けた初期重み生成部 9,〜0 、 そのビーム番号に対 応する初期重みを一覧表から選択して重み付け合成回路 5 ,〜5 しに送る。 初期重 み生成部 9,〜 9 しから初期重みを受けた重み付け合成回路 5,〜 5 ,は、 その初期 重みを用いて重み付け合成を行う。
ステップ A 4の判定で、 平均化時間が十分な既存のフィンガがなければ、 情報 収集選択処理部 2 2は、 その旨を、 フィンガの割り当ての対象となっている信号 処理部 2 ,〜 2 しの初期重み生成部 9,〜 9 しに通知する。 その通知を受けた初期重 み生成部 9 〜 9 Jま、第 2の初期重みを生成して重み付け合成回路 5 〜 5 Jこ送 る。 初期重み生成部 9 〜 9 Lから第 2の初期重みを受けた重み付け合成回路 5 1 〜5 Lは、 その第 2の初期重みを用いて重み付け合成を行う (ステップ A 5 ) 。
ステップ A 2の判定で、 平均化時間が十分であれば、 フィンガの割 y当ての対 象となっている信号処理部 2 ,〜 2 しの重み計算部 6,〜 6 しは、 算出した重みを重 み付け合成回路 5 ,〜 5 Jこ送る。重み計算部 6,〜 6 しから重みを受けた重み付け 合成回路 5 ,〜5 しは、 その重みを用いて重み付け合成を行う (ステップ A 3 ) 。 図 1 1は、 本実施形態による適応アンテナ受信装置において、 フィンガのパス タイミングが変化したときの動作を示すフローチャー卜である。
図 1 1に示すように、 サーチャ 1 6によっていずれかの信号処理部 2 ,〜2しに 割り当てられているフィンガのパスタイミング (遅延時間) が変化すると、 情報 収集選択処理部 2 2が、そのフィンガのパスタイミングが X τチップ以上変化した か否か判定する (ステップ Β 1 ) 。 ここで、 χ τチップは、 パスタイミングの変化 量に対する閾値であり、 重み計算部 6 〜 6 しにより算出される重みが追従できな い程にパスタイミングの変化が急激であつたか否かを決める。 パスタイミングの 変化が閾値を越えて大きく変化した場合、 平均化時間が十分にとれるまで、 重み 計算部 6 ,〜 6 しからの重みは信用できない。
ノ スタイミングの変化が χ τチップ以上であれば、次に、情報収集選択処理部 2 2は、 既に信号処理部 2,〜 2 Jこ割り当てられていたフィンガの中に、 重み計算 部 6 〜 6 t_の信号同相平均計算部 1 3 ,〜 1 3 !_および時間平均計算部 1 5 〜 1 5 しにおいて平均化時間が十分にとれているものがあるか否か判定する(ステップ B 6 ) o
平均化時間が十分な既存のフィンガがなければ、 情報収集選択処理部 2 2は、 その旨を、 処理対象となっている信号処理部 2 2 Lの初期重み生成部 9 9 し に通知する。 その通知を受けた初期重み生成部 9 Θ ^は、 第 2の初期重みを生 成して重み付け合成回路 5,〜 5 Jこ送る。 初期重み生成部 9 ,〜 9 しから第 2の初 期重みを受けた重み付け合成回路 5 ,〜 しは、 その第 2の初期重みを用いて重み 付け合成を行う (ステップ B 8 ) 。
ステップ B 6の判定において、 平均化時間が十分な既存フィンガが少なくとも 1つ有れば、 情報収集選択処理部 2 2は、 その既存フィンガの中で最大の S I R が測定されているフィンガの信号到来方向に最も近い方向のビームのビーム番号 を、 処理対象となっている信号処理部 2,〜 2 Lの初期重み生成部 9,〜 9 Jこ通知 する。 その通知を受けた初期重み生成部 9,〜 9 Jま、 そのビーム番号に対応する 初期重みを一覧表から選択して重み付け合成回路 5,〜 5 Jこ送る。 初期重み生成 部 9 ,〜 9 しから初期重みを受けた重み付け合成回路 5 ,〜 5 しは、 その初期重みを 用いて重み付け合成を行う (ステップ B 7 ) 。
ステツプ B 1の判定において、パスタィミングの変化が X τチップ未満であれば、 情報収集選択処理部 2 2は、 そのフィンガが割リ当てられている信号処理部 2 1 〜 2 Jこおいて平均化時間が十分にとれているか否か判定する (ステップ B 2 ) 。
平均化時間が十分でなければ、情報収集選択処理部 2 2は、既に信号処理部 2 〜 2 しに割リ当てられていたフィンガの中に、重み計算部 6 〜 6 しの信号同相平均 計算部 1 3,〜 1 3 しおよび時間平均計算部 1 5 , ~ 1 5 Jこおいて平均化時間が 十分にとれているものがあるか否か判定する (ステップ B 4 ) 。
平均化時間が十分な既存フィンガが少なくとも 1つ有れば、 ステップ B 7の処 理に進み、 情報収集選択処理部 2 2は、 その既存フィンガの中で最大の S I Rが 測定されているフィンガの信号到来方向に最も近い方向のビームのビーム番号を、 処理対象となつている信号処理部 2 ,〜 2 しの初期重み生成部 9 ,〜 9 しに通知す る。 その通知を受けた初期重み生成部 9,〜9 Jま、 そのビーム番号に対応する初 期重みを一覧表から選択して重み付け合成回路 5 〜^に送る。 初期重み生成部 9 ,〜 9しから初期重みを受けた重み付け合成回路 5 1〜 5 Lは、 その初期重みを用 いて重み付け合成を行う。
ステップ B 4の判定で、 平均化時間が十分な既存のフィンガがなければ、 情報 収集選択処理部 2 2は、 その旨を、 処理対象となっている信号処理部 2 〜 2しの 初期重み生成部 9 ,〜 9しに通知する。 その通知を受けた初期重み生成部 9,〜 9 L は、 第 2の初期重みを生成して重み付け合成回路 5 1〜 5 Jこ送る。 初期重み生成 部 9,〜 9 しから第 2の初期重みを受けた重み付け合成回路 5 ~ 5 しは、 その第 2 の初期重みを用いて重み付け合成を行う (ステップ B 5 ) 。
ステップ B 2の判定で、 平均化時間が十分であれば、 処理対象となっている信 号処理部 2,〜 2しの重み計算部 6 〜 6しは、算出した重みを重み付け合成回路 5 ,〜 5しに送る。重み計算部 6 ,〜 6しから重みを受けた重み付け合成回路 5 〜 5し は、 その重みを用いて重み付け合成を行う (ステップ B 3 ) 。
以上説明したように、 本実施形態によれば フィンガ毎にビームを形成する適 応アンテナにおいて、 安定時には重み計算部 6 〜 6 Lで算出される正確な重みを 重み付け合成回路 5,〜 5 Lに提供する。また、フィンガを新たに割り当てるとき、 割り当てているフィンガのパスタイミングが大きく変化したとき、 あるいは既に 割リ当てているフィンガの重み計算部 6 ^ 6 しで算出される重みに十分な精度が 得られていないときは、 直交あるいは等間隔マルチビームとしてビーム方向およ び重みが予め定められた複数のビームの一覧表から、 十分な平均化時間がとれて 十分な精度で重みを算出している他のフィンガの中で S I Rが最大のフィンガの 信号到来方向に最も近いビームを選択し、 選択されたビームの重みを初期重みと して用いることにより、 短時間かつ少ない演算で受信品質の高い指向性ビームを 形成することができ、 特性劣化を防ぐことができる。 また、 伝送路推定を行い、 それによつて得られる重みを初期重みとする場合に必要とされるような大きな処 理量を削減することができる。
本発明の他の実施形態について説明する。
図 1 2は、 本発明の他の実施形態によるオープンループ制御の適応アンテナ受 信装置の構成例を示すブロック図である。 図 1 2に示された適応アンテナ受信装 置は、 図 5に示されたものと同様に、 適応アンテナを構成するアンテナの数が N (Nは 2以上の整数) であり、 合成するマルチパスの数が L (Lは自然数) であ る。 そして、 第 kユーザ (kは自然数) の移動局から受信されるユーザ信号を受 信する回路部分が示されている。
図 1 2を参照すると、 適応アンテナ受信装置は、 アンテナ 1,〜1 N、 信号処理 部 23 ,〜 23い 加算器 1 1、 判定器 12、 サーチャ 16、 および情報収集選択 処理部 22を有している。
信号処理部 23,は、 遅延器 3ぃ 逆拡散回路 ^〜斗^、 重み付け合成回路 5 ,、重み計算部 6 、伝送路推定回路 7 、複素共役回路 81、初期重み生成部 91、 乗算器 10^ 到来方向検出部 20い および信号電力測定部 24,を有している。 また、重み計算部 6 は、信号同相平均計算部 1 3相関検出部 14ぃ および時 間平均計算部 1 5,を有している。
図示されていないが、信号処理部 232〜 23しの内部は信号処理部 23 と同じ 構成である。 例えば、 信号処理部 232は 遅延器 3 逆拡散回路 421〜4 重み付け合成回路 52、 重み計算部 62、 伝送路推定回路 72 複素共役回路 82、 初期重み生成部 92 乗算器 102、到来方向検出部 202、および信号電力測定部 242で構成されている。 また、重み計算部 62は、信号同相平均計算部 132、相 関検出部 142、 および時間平均計算部 152を有している。
アンテナ 1,〜1 N、 加算器 1 1、 判定器 1 2、 サーチャ 1 6、 情報収集選択処 理部 22、 遅延器 3い 逆拡散回路斗"〜 ^、 重み付け合成回路 5い 重み計算 部 6 伝送路推定回路 7い 複素共役回路 8 初期重み生成部 9い 乗算器 10 ^ 到来方向検出部 20,は、 図 5と同じものである。 図 5の S I R測定部 21 Λ 〜 21しが、図 1 2では信号電力測定部 24,〜 24しに置き換わっている点が異な る。
信号電力測定部 24^2 は、 重み付け合成回路 5 5しの出力から、 任意 の時間平均した信号電力を測定し、 情報収集選択処理部 2 2に送る。
情報収集選択処理部 2 2は、 重み計算部 6 ,〜 6しで算出される重みに十分な精 度が得られていないとき、その信号処理部 2 3,〜 2 3 しの初期重み生成部 9 〜 9 Jこ、初期重みを生成するのに用いるビーム番号を通知する。そして、本実施形態 では、 このとき通知されるビーム番号は、 いずれかの信号処理部 2 3 ,〜 2 3しに 既に割リ当てられているフィンガの中で、 重み計算部 6 ,〜 6しの信号同相平均計 算部 1 3,〜 1 3 しおよび時間平均計算部 1 5 〜 1 5 Jこおいて平均化時間が十 分にとれており、 信号電力測定部 2 4,〜 2 4しにて測定された信号電力が最大の フィンガにおける信号の到来方向に最も近い方向のビーム番号である。 なお、 ビ ーム番号は、 図 7および 8に示したと同様に、 信号の到来方向に対して、 直交あ るいは等間隔マルチビームを用いて予め複数定められたものである。
本実施形態では、 信号電力の高いパスの受信信号は特性が良好である可能性が 高いことに着目し 十分な平均化時間がとれて十分な精度で重みを算出している フィンガの中で受信信号電力が最大のフィンガの信号到来方向に最も近いビーム を選択しているので、 図 5のものと同様に、 短時間かつ少ない演算で受信品質の 高い指向性ビームを形成することができ、 特性劣化を防ぐことができる。 また、 伝送路推定を行い、 それによつて得られる重みを初期重みとする場合に必要とさ れるような大きな処理量を削減することができる。
本発明のさらに他の宴施形態について説明する。
図 1 3は、 本発明のさらに他の実施形態によるオープンループ制御の適応アン テナ受信装置の構成例を示すブロック図である。 図 1 3に示された適応アンテナ 受信装置は、 図 5および図 1 2に示されたものと同樹こ、 適応アンテナを構成す るアンテナの数が N ( Nは 2以上の整数) であり、 合成するマルチパスの数が L ( Lは自然数) である。 そして、 第 kユーザ (kは自然数) の移動局から受信さ れるユーザ信号を受信する回路部分が示されている。
図 1 3を参照すると、 適応アンテナ受信装置は、 アンテナ 1,〜 信号処理 部 Ζ δ Ζ δい 加算器 1 1、 判定器 1 2、 サーチャ 1 6、 パスタイミング比較 部 2 6、 および情報収集選択処理部 2 2を有している。
信号処理部 2 5,は、 遅延器 3い 逆拡散回路斗"〜 ^、 重み付け合成回路 5 ,、重み計算部 6 ,、伝送路推定回路 7,、複素共役回路 8 ,、初期重み生成部 9 ,、 乗算器 1 0,、 および到来方向検出部 2 0,を有している。 また、 重み計算部 6, は、 信号同相平均計算部 1 3い 相関検出部 1 4い および時間平均計算部 1 5, を有している。
図示されていないが、信号処理部 2 5 2〜 2 5しの内部は信号処理部 2 5,と同じ 構成である。
アンテナ 1 ,〜 1 Ν、 加算器 1 1、 判定器 1 2、 サ一チヤ 1 6、 情報収集選択処 理部 2 2、 遅延器 3,、 逆拡散回路 〜 ^、 重み付け合成回路 5ぃ 重み計算 部 6い 伝送路推定回路 7い 複素共役回路 8い 初期重み生成部 9い 乗算器 1 0 到来方向検出部 2 0 ,は、 図 5と同じものである。
図 1 3の実施形態の適応ァンテナ受信装置は、 図 5に示されていた S I R測定 部 2 1 ,〜 2 1 しを有さず、 パスタイミング比較部 2 6を有している。
パスタイミング比較部 2 6は、 サ一チヤ 1 6からのタイミング情報を基に、 遅 延時間の最も短いフィンガを情報収集選択処理部 2 2に通知する。
情報収集選択処理部 2 2は、 重み計算部 6 , - 6しで算出される重みに十分な精 度が得られていないとき、その信号処理部 2 5,〜 2 5しの初期重み生成部 9 〜 9 しに、初期重みを生成するのに用いるビーム番号を通知する。そして、本実施形態 では、 このとき通知されるビーム番号は、 いずれかの信号処理部 2 5,〜 2 5しに 既に割リ当てられているフィンガの中で、 重み計算部 6,〜 6しの信号同相平均計 算部 1 3 〜1 3 しおよび時間平均計算部 1 5,〜 1 5 Jこおいて平均化時間が十 分にとれており、 遅延時間が最も短いフィンガにおける信号の到来方向に最も近 い方向のビーム番号である。 なお、 ビーム番号は、 図 7および 8に示したと同様 に、 信号の到来方向に対して、 直交あるいは等間隔マルチビームを用いて予め複 数定められたものである。
本実施形態では、 遅延時間が短いパスを受信している信号は、 受信レベルが高 く、 受信特性が良好で直接波である可能性が高いことに着目し、 十分な平均化時 間がとれて十分な精度で重みを算出しているフィンガの中で遅延時間が最も短い フィンガの信号到来方向に最も近いビームを選択しているので、 図 5のものと同 様に、 短時間かつ少ない演算で受信品質の高い指向性ビームを形成することがで き、 特性劣化を防ぐことができる。 また、 伝送路推定を行い、 それによつて得ら れる重みを初期重みとする場合に必要とされるような大きな処理を削減すること ができる。
なお、 本実施形態では、 遅延時間が最も短いフィンガの信号到来方向を用いた が、 その他の例として、 パスの継続時間が最も長いフィンガの信号到来方向を用 いることとしても良い。 パスの継続時間とは、 到来波が信号処理部 25,〜 25 L によって途切れることなく継続して受信されている時間である。 これは、 パスの 継続時間が長いパスで受信している信号は、 最も安定した直接波である可能性が 高いことに着目したものである。
これまでに説明した全ての実施形態では、 CDMA通信に用いる装置を例示し たが、 本発明は、 それに限定されない。 例えば、 T DMA (T i me D i v i s i o n Mu l t i p l e Ac c e s s :時間分割多元接続) や、 F DM A
(r r e q u e n c y D i v i s i o n Mu l t i p l e Ac c e s s : 周波数分割多元接続) の通信に用いる装置にも適用することができる。
また、 これまでに説明した全ての実施形態では、 重み計算部 6,〜 6 Jこおいて 簡易に希望波の到来方向を推定する方法を用いる例を示したが、 本発明は重み計 算部 6,〜6!_で用いられるアルゴリズムに限定されない。 例えば、 MUS I Cァ ルゴリズムや、 ESPR! Tアルゴリズムによる到来方向推定アルゴリズムを用 いることとしてもよい。

Claims

請求の範囲
1 . 少なくとも 1つの到来波に対して信号処理部を割リ当て、 前記各信号処理 部において、 複数のアンテナによる受信信号から所定の演算により得られる演算 値の時間平均を用いて決定した前記各アンテナの重みで前記各アンテナにて受信 される信号を重み付け合成することによリ複数の前記信号処理部で受信された複 数の到来波をさらに合成して所望の信号を得るための適応アンテナ受信方法であ つて、
時間平均を求めるための平均化時間が所定時間以上確保されている各信号処理 部にて決定された重みから該信号処理部にて受信されている到来波の到来方向を 検出する第 1のステップと、
平均化時間が前記所定時間以上確保されている前記各信号処理部にて重み付け 合成により受信されている到来波の信号の受信品質を求める第 2のステップと、 平均化時間が前記所定時間以上確保されている前記各信号処理部における各到 来方向および各受信品質に基づき、 時間平均を用いた重みの決定を開始しようと する信号処理部における初期のビーム方向を選択する第 3のステップとを有する 適応アンテナ受信方法。
2 . 前記第 3のステップにおいて 前記平均化時間が前記所定時間以上確保さ れている前記各信号処理部の中で、 最良の受信品質が得られた信号処理部で検出 された到来方向に最も近いビーム方向を、 予め複数定められたビーム方向の中か ら選択する、 請求項 1記載の適応アンテナ受信方法。
3 . 前記第 2のステップにおいて、 前記受信品質として希望波信号電力対干渉 波信号電力比を測定する、 請求項 1または 2記載の適応アンテナ受信方法。
4. 前記第 2のステップにおいて、 前記受信品質として信号電力を測定する、 請求項 1または 2記載の適応アンテナ受信方法。
5. 前記第 2のステップにおいて、 前記受信品質として遅延時間を用いる、 請 求項 1または 2記載の適応アンテナ受信方法。
6. 前記第 2のステップにおいて、 前記受信品質としてパスの継続時間を用い る、 請求項 1または 2記載の適応アンテナ受信方法。
7 . 前記第 3のステップで選択された初期のビーム方向に指向性ビームを形成 する初期重みを求め、 前記信号処理部において平均化時間が前記所定時間以上確 保されるまで重み付け合成に用いる第 4のステップをさらに有する、 請求項 1に 記載の適応ァンテナ受信方法。
8. 少なくとも 1つの到来波に対して信号処理部を割リ当て、 前記各信号処理 部において、 複数のアンテナによる受信信号から所定の演算によリ得られる演算 値の時間平均を用いて決定した前記各アン亍ナの重みで前記各アンテナにて受信 される信号を重み付け合成することにより複数の前記信号処理部で受信された複 数の到来波をさらに合成して所望の信号を得る適応アンテナ受信装置であって、 時間平均を求めるための平均化時間が所定時間以上確保されている各信号処理 部にて決定された重みから該信号処理部にて受信されている到来波の到来方向を 検出する到来方向檢出部と
平均化時間が前記所定時間以上確保されている前記各信号処理部にて重み付け 合成により受信されている到来波の信号の受信品質を求める受信品質取得部と、 平均化時間が前記所定時間以上確保されている前記各信号処理部における各到 来方向および各受信品質に基づき、 時間平均を用いた重みの決定を開始しようと する信号処理部における初期のビーム方向を選択する情報収集選択処理部とを有 する適応アンテナ受信装置。
9. 前記情報収集選択処理部は、 前記平均化時間が前記所定時間以上確保され ている前記各信号処理部の中で、 最良の受信品質が得られた信号処理部で検出さ れた到来方向に最も近いビーム方向を、 予め複数定められたビーム方向の中から 選択する、 請求項 8記載の適応アンテナ受信装置。
1 0. 前記受信品質取得部は、 前記受信品質として希望波信号電力対干渉波信 号電力比を測定する、 請求項 8または 9記載の適応アンテナ受信装置。
1 1 . 前記受信品質取得部は、 前記受信品質として信号電力を測定する、 請求 項 8または 9記載の適応ァンテナ受信装置。
1 2 . 前記受信品質取得部は、 前記受信品質として遅延時間を用いる、 請求項
8または 9記載の適応ァンテナ受信装置。
1 3 . 前記受信品質取得部は、 前記受信品質としてパスの継続時間を用いる、 請求項 8または 9記載の適応ァンテナ受信装置。
1 . 前記情報収集選択処理部で選択された初期のビーム方向に指向性ビーム を形成し、 前記信号処理部において平均化時間が前記所定時間以上確保されるま で重み付け合成に用いられる初期重みを求める初期重み生成部をさらに有する、 請求項 8に記載の適応ァン亍ナ受信装置。
PCT/JP2004/001240 2003-03-04 2004-02-06 初期段階から指向性ビームの受信品質が良好な適応アンテナ受信装置 WO2004079945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2004800119922A CN1784840B (zh) 2003-03-04 2004-02-06 具有极佳初始方向波束接收质量的自适应天线接收设备
JP2005502991A JP4359778B2 (ja) 2003-03-04 2004-02-06 初期段階から指向性ビームの受信品質が良好な適応アンテナ受信装置
US10/547,178 US7558350B2 (en) 2003-03-04 2004-02-06 Adaptive antenna reception device having excellent initial directional beam reception quality

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-057100 2003-03-04
JP2003057100 2003-03-04

Publications (1)

Publication Number Publication Date
WO2004079945A1 true WO2004079945A1 (ja) 2004-09-16

Family

ID=32958728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001240 WO2004079945A1 (ja) 2003-03-04 2004-02-06 初期段階から指向性ビームの受信品質が良好な適応アンテナ受信装置

Country Status (5)

Country Link
US (1) US7558350B2 (ja)
JP (1) JP4359778B2 (ja)
KR (1) KR100679435B1 (ja)
CN (1) CN1784840B (ja)
WO (1) WO2004079945A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126857A1 (ja) * 2007-04-10 2008-10-23 Nec Corporation マルチビームアンテナ
JP2013055559A (ja) * 2011-09-05 2013-03-21 Nippon Telegr & Teleph Corp <Ntt> 基地局装置、無線通信方法、及び無線通信システム
JP2019075814A (ja) * 2018-12-28 2019-05-16 日本電信電話株式会社 無線通信システム及び無線通信方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295312A (ja) * 2004-04-01 2005-10-20 Hitachi Ltd 携帯無線装置
JP2006005436A (ja) * 2004-06-15 2006-01-05 Fujitsu Ltd 送信ビームフォーミングの適応制御方法及び装置
JP5186748B2 (ja) * 2006-09-29 2013-04-24 富士通株式会社 無線通信装置および無線通信方法
US7812783B2 (en) * 2006-12-18 2010-10-12 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Miniaturized orthogonal antenna system
US7924225B2 (en) * 2008-06-23 2011-04-12 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Direction finding antenna systems and methods for use thereof
CN107431525B (zh) * 2015-02-17 2020-07-28 三菱电机株式会社 接收装置和接收方法
CN110603835B (zh) 2017-05-09 2022-10-18 瑞典爱立信有限公司 用于传送和接收数据的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274976A (ja) * 1998-03-19 1999-10-08 Fujitsu Ltd 無線基地局のアレーアンテナシステム
JP2002237766A (ja) * 2001-02-08 2002-08-23 Nec Corp 適応アンテナ受信装置
JP2002335233A (ja) * 2001-05-11 2002-11-22 Nec Corp 適応アンテナ受信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043459A2 (de) * 1997-03-25 1998-10-01 Siemens Aktiengesellschaft Verfahren zum kanalschätzen aus über einen funkkanal übertragenen empfangssignalen
JP3465739B2 (ja) 1998-04-07 2003-11-10 日本電気株式会社 Cdma適応アンテナ受信装置及び通信システム
JP2000013290A (ja) * 1998-06-24 2000-01-14 Matsushita Electric Ind Co Ltd ダイバーシチ通信装置及び方法
JP4219490B2 (ja) 1999-06-08 2009-02-04 日本無線株式会社 受信方法および受信装置
JP3872953B2 (ja) * 1999-12-27 2007-01-24 株式会社東芝 アダプティブアンテナを用いた無線通信装置
JP4509297B2 (ja) * 2000-04-26 2010-07-21 三菱電機株式会社 スペクトル拡散受信装置
JP3591581B2 (ja) 2000-08-30 2004-11-24 日本電気株式会社 適応アンテナ受信装置
KR100383669B1 (ko) * 2000-10-12 2003-05-14 한국전자통신연구원 배열 안테나를 이용하는 코드분할다중접속 기지국시스템의 동기 획득장치 및 방법
JP2002135185A (ja) * 2000-10-19 2002-05-10 Hitachi Kokusai Electric Inc 受信機
JP3593969B2 (ja) * 2000-10-25 2004-11-24 日本電気株式会社 送信アンテナ指向性制御装置及びその方法
JP2002151937A (ja) 2000-11-15 2002-05-24 Nec Corp 適応アレーアンテナ受信装置
JP3888189B2 (ja) * 2002-03-12 2007-02-28 松下電器産業株式会社 適応アンテナ基地局装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274976A (ja) * 1998-03-19 1999-10-08 Fujitsu Ltd 無線基地局のアレーアンテナシステム
JP2002237766A (ja) * 2001-02-08 2002-08-23 Nec Corp 適応アンテナ受信装置
JP2002335233A (ja) * 2001-05-11 2002-11-22 Nec Corp 適応アンテナ受信装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126857A1 (ja) * 2007-04-10 2008-10-23 Nec Corporation マルチビームアンテナ
JP2013055559A (ja) * 2011-09-05 2013-03-21 Nippon Telegr & Teleph Corp <Ntt> 基地局装置、無線通信方法、及び無線通信システム
JP2019075814A (ja) * 2018-12-28 2019-05-16 日本電信電話株式会社 無線通信システム及び無線通信方法

Also Published As

Publication number Publication date
US20060187118A1 (en) 2006-08-24
CN1784840A (zh) 2006-06-07
JP4359778B2 (ja) 2009-11-04
US7558350B2 (en) 2009-07-07
CN1784840B (zh) 2010-12-29
KR20050107780A (ko) 2005-11-15
JPWO2004079945A1 (ja) 2006-06-08
KR100679435B1 (ko) 2007-02-06

Similar Documents

Publication Publication Date Title
JP3465739B2 (ja) Cdma適応アンテナ受信装置及び通信システム
JP3888189B2 (ja) 適応アンテナ基地局装置
JP3092798B2 (ja) 適応送受信装置
JP4531969B2 (ja) アダプティブアンテナ受信装置
JPH11266180A (ja) 無線基地局のアレーアンテナシステム
JP3591581B2 (ja) 適応アンテナ受信装置
JP3738705B2 (ja) 適応アンテナ装置
JPH11274976A (ja) 無線基地局のアレーアンテナシステム
JP2003124856A (ja) アダプティブアレイアンテナ指向性制御システム
JP2004032656A (ja) 無線通信装置および到来方向推定方法
JP2002237766A (ja) 適応アンテナ受信装置
EP1207630A2 (en) Transmitter and receiver for radio communication using adaptive antenna array for directivity control
JP2004505539A (ja) 送信信号を受信するための装置および方法
JP4226442B2 (ja) 無線通信装置
WO2005055466A1 (ja) マルチビーム送受信装置および送受信方法
JP2004112058A (ja) アレーアンテナシステム及びその指向性制御方法、移動端末
JP4359778B2 (ja) 初期段階から指向性ビームの受信品質が良好な適応アンテナ受信装置
JP3601598B2 (ja) 適応アンテナ受信装置
JP3856126B2 (ja) パスタイミング検出方法、パスタイミング検出装置及び適応アレーアンテナシステム
JP2007049754A (ja) 無線通信装置
JP2002232326A (ja) パス検出方法、パス検出装置及びアレーアンテナ受信装置
JPH1079618A (ja) 適応アンテナ装置
JP2004357315A (ja) アダプティブアレイアンテナ指向性制御システム
JP2002359586A (ja) 適応送受信機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502991

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006187118

Country of ref document: US

Ref document number: 10547178

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057016440

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048119922

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057016440

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10547178

Country of ref document: US