WO2004079468A1 - 流量制御弁 - Google Patents

流量制御弁 Download PDF

Info

Publication number
WO2004079468A1
WO2004079468A1 PCT/JP2004/002673 JP2004002673W WO2004079468A1 WO 2004079468 A1 WO2004079468 A1 WO 2004079468A1 JP 2004002673 W JP2004002673 W JP 2004002673W WO 2004079468 A1 WO2004079468 A1 WO 2004079468A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
evaporator
control valve
flow control
Prior art date
Application number
PCT/JP2004/002673
Other languages
English (en)
French (fr)
Inventor
Hisatoshi Hirota
Original Assignee
Tgk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tgk Co., Ltd. filed Critical Tgk Co., Ltd.
Priority to DE602004017843T priority Critical patent/DE602004017843D1/de
Priority to EP04716730A priority patent/EP1600841B1/en
Publication of WO2004079468A1 publication Critical patent/WO2004079468A1/ja
Priority to US11/229,444 priority patent/US20060005556A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/04Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B27/067Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/028Controlling a pressure difference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2022Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means actuated by a proportional solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2505Fixed-differential control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a flow control valve, and particularly to an expansion device for sending a high-temperature, high-pressure refrigerant to a low-temperature, low-pressure refrigerant and sending it to an evaporator in a refrigeration cycle of an automotive air conditioner.
  • the present invention relates to a flow control valve to be used. Rice field
  • This flow control valve has a constant flow mechanism, and the constant flow mechanism determines the cross-sectional area of the passage through which the refrigerant flows between the refrigerant inlet and the refrigerant outlet and the differential pressure before and after the passage. Since the flow rate of the refrigerant flowing through the control valve can be kept constant, it can be controlled at a constant flow rate corresponding to the value set by the solenoid by changing either the cross-sectional area or the differential pressure with the solenoid. Based on principles. Specifically, the constant flow mechanism includes a flow path cross-sectional area control valve that controls the cross-sectional area of the passage, and a constant differential pressure valve that makes the differential pressure across the inlet and outlet of the flow path cross-sectional area control valve substantially constant.
  • the flow rate of the refrigerant flowing through the flow control valve is maintained at a predetermined constant flow rate corresponding to the flow cross-section set by the solenoid.
  • the constant flow mechanism includes a throttle passage whose cross-sectional area does not change, and a differential pressure control valve that makes the differential pressure before and after the inlet and the outlet of the throttle passage substantially constant, and sets the differential pressure of the differential pressure control valve.
  • the conventional flow control valve is provided with a throttle passage for generating a differential pressure and a differential pressure control valve for controlling the differential pressure before and after the throttle passage to maintain a constant flow rate. Therefore, there was a problem that the structure became complicated. Disclosure of the invention
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a constant flow control type flow control valve having a simplified structure.
  • the flow rate control valve in order to solve the above-mentioned problem, in a flow control valve for controlling the flow rate of the refrigerant that is throttled and expanded and sent to the evaporator to be substantially constant, the flow rate control valve is provided before and after a pressure loss caused by the refrigerant passing through the evaporator.
  • a flow control valve including a constant differential pressure valve for controlling a differential pressure to be substantially constant.
  • the evaporator is regarded as a throttle passage, and the constant differential pressure valve controls the pressure loss to be constant so that a substantially constant flow rate of refrigerant can be sent to the evaporator.
  • the configuration of the flow control valve can be simplified, and a low-cost flow control valve can be provided.
  • FIG. 1 is a central longitudinal sectional view showing the configuration of the flow control valve according to the first embodiment.
  • FIG. 2 is a central longitudinal sectional view showing the configuration of the flow control valve according to the second embodiment.
  • FIG. 3 is an enlarged cross-sectional view showing a main part of a flow control valve according to the second embodiment.
  • FIG. 4 is a central longitudinal sectional view showing a flow control valve according to a third embodiment of the present invention.
  • FIG. 5 is a central longitudinal sectional view showing a flow control valve according to a fourth embodiment of the present invention.
  • FIG. 1 is a central longitudinal sectional view showing the configuration of the flow control valve according to the first embodiment.
  • This flow control valve can perform constant flow control only when it is connected to the evaporator 1 .
  • the high-pressure refrigerant inlet 3 through which the refrigerant at the pressure Po is sent to the main body block 2, and the refrigerant expands.
  • a strainer 7 is arranged at the high-pressure refrigerant inlet 3 so as to close the passage.
  • a large-diameter hole is formed at the upper part of the main body block 2, a cylinder concentric with the large-diameter hole is formed at the center in the vertical direction in the figure, and a lower part communicates with the cylinder at the center. Holes are formed.
  • the lower hole is communicated with the return refrigerant inlet 5 and the return refrigerant outlet 6 by the return passage 8, and the packing is pressed against the main body block 2 with the screw 10 via the packing retainer 9, thereby returning the return passage 8.
  • the lower opening is closed.
  • the upper end of the cylinder at the center constitutes a valve seat 11, and a valve body 12 is disposed on the valve seat 11 so as to be able to freely contact and separate from the upper side of the figure.
  • the valve body 12 is integrally formed with a piston 13 as a pressure-sensitive member, which is disposed in the cylinder so as to be able to advance and retreat in the axial direction, by a small-diameter shaft.
  • a refrigerant passage communicating with the high-pressure refrigerant inlet 3 is opened at a portion where the small-diameter shaft is located.
  • the upper chamber of the cylinder formed of a large-diameter hole formed in the upper part of the main body block 2 is also in communication with the low-pressure refrigerant outlet 4 via the refrigerant passage.
  • the solenoid includes a plunger 14 formed integrally with the valve body 12, a core 15 arranged concentrically with the plunger 14, an electromagnetic coil 16 arranged around the plunger 14, and a plunger. It has a spring 17 arranged between the core 14 and the core 15, and a yoke 18 surrounding the electromagnetic coil 16.
  • the core 15 has a hollow shape, and an adjust screw 19 for adjusting the load of the spring 17 is screwed inside the core 15. This adjust screw 19 also has a hollow shape, and the lower end is fixed to the plunger 14.
  • the shaft 20 is configured to support the shaft 20 such that it can advance and retreat in the axial direction.
  • the upper open end of the core 15 is hermetically closed by a pole 21 and a fixing screw 22. This solenoid is screwed into a large-diameter hole formed in the upper part of the main body block 2 by a connecting portion 23.
  • the plunger 14 When a predetermined current is supplied to the solenoid coil 16 of the solenoid, the plunger 14 is attracted to the core 15 against the urging force of the spring 17, and the valve body 12 is lifted from the valve seat 11.
  • the flow control valve is set to a valve opening determined by the balance between the solenoid force according to the solenoid current and the load of the spring 17. At this time, the refrigerant introduced into the high-pressure refrigerant inlet 3 is squeezed and expanded in the gap between the valve body 12 and the valve seat 11, and is sent out from the low-pressure refrigerant outlet 4 to the evaporator 1.
  • the pressure P o of the refrigerant supplied to the space between the valve body 12 and the piston 13 is equal to the valve body 12. Since the forces acting in the direction of pushing up and the direction of pushing down the piston 13 are substantially equal and cancelled, the movements of the valve body 12 and the piston 13 are not affected.
  • valve element 12 and the piston 13 are subjected to the outlet pressure PX of the flow control valve, which is the downstream pressure, on the valve element 12, and the pressure of the refrigerant return passage 8 is applied to the lower surface of the piston 13. Therefore, it moves in the axial direction from the position set by the solenoid due to the pressure difference between the inlet pressure and the outlet pressure Pe of the evaporator. For example, if the pressure difference between the inlet pressure and the outlet pressure P e of the evaporator 1 increases, the valve body 1 2 closes because the outlet pressure P e of the X evaporator 1 tries to push down the piston 13. In the direction, thereby reducing the flow rate of the refrigerant and reducing the differential pressure.
  • FIG. 2 is a central longitudinal sectional view showing the configuration of the flow control valve according to the second embodiment
  • FIG. 3 is an enlarged sectional view showing a main part of the flow control valve according to the second embodiment. 2 and 3, the same or equivalent elements as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • this flow control valve has a configuration that prevents internal leakage of the refrigerant when the valve is closed, and reverses the driving direction of the valve body 12 by the solenoid. .
  • a flexible valve sheet 24 is arranged on the seating surface of the valve body 12 on the valve seat 11 to prevent refrigerant leakage at the valve portion, and the outlet pressure P of the evaporator 1 of the piston 13
  • the diaphragm 25 is disposed on the surface receiving the e, and the leakage of the refrigerant from the high-pressure refrigerant inlet 3 to the return passage 8 through the sliding portion of the piston 13 is almost completely prevented.
  • the space in which the valve element 12 is arranged is closed by an adjust screw 26 screwed into the main body block 2, and the valve element 12 is closed between the valve element 12 and the adjust screw 26.
  • a spring 27 biasing in the valve direction is provided. The load of the spring 27 can be adjusted by the amount of adjustment screw 26 inserted.
  • the periphery of the diaphragm 25 is in close contact with the main body block 2 by press-fitting the ring member 28 into the main body block 2.
  • the diaphragm 25 has an effective diameter substantially equal to the effective diameter of the valve seat 11, and a disc 29 having an end surface substantially equal to the end surface of the lower end of the piston 13 is abutted at the center thereof. .
  • the disk 29 urges the diaphragm 25 by a spring 30 in the valve opening direction of the valve section.
  • the solenoid has a core 15 disposed on the side of the diaphragm 25 and a plunger 14 disposed on the opposite side, and the plunger 14 is fixed to the shaft 31.
  • the shaft 31 extends through the core 15, and the tip of the shaft 31 is in contact with the disk 29. Therefore, this solenoid acts to push the diaphragm 25, the piston 13 and the valve body 12 in the valve opening direction by flowing a current through the electromagnetic coil 16.
  • valve body 12 and the diaphragm 25 receive the pressure difference between the inlet pressure and the outlet pressure Pe of the evaporator 1, and the difference is obtained.
  • the pressure is controlled so as to be almost constant, so that the evaporator 1
  • the refrigerant that is sent to the tank is controlled at a constant flow rate determined by the current flowing through the solenoid.
  • this flow control valve can almost completely prevent internal leakage of the refrigerant when the solenoid is closed when the solenoid is de-energized. Therefore, for example, the refrigerant contains flammable gas such as HFC-152a, propane, butane, etc.
  • flammable gas such as HFC-152a, propane, butane, etc.
  • carbon dioxide it is possible to isolate the evaporator 1 from the circuit on the condenser side to prevent fire and oxygen depletion due to inflow into the cabin due to damage to the evaporator 1.
  • the evaporator 1 arranged in the passenger compartment in the refrigeration cycle can be isolated from the refrigeration cycle.
  • the energization of the solenoid is stopped, the compressor is rotated for a while, and then the compressor is stopped.
  • the refrigerant in the evaporator 1 is recovered through the check valve 32, and the recovered refrigerant does not flow back to the evaporator 1 by the check valve 32. Dangerous gas is not released into the cabin even if it is damaged by rupture.
  • FIG. 4 is a central longitudinal sectional view showing a flow control valve according to a third embodiment of the present invention.
  • the same or equivalent elements as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the flow control valve according to the third embodiment is different from the flow control valve shown in FIG. 1 in that an internal leak prevention mechanism of the flow control valve shown in FIG. And a backflow prevention mechanism for isolating the backflow.
  • valve body 12 is configured to be tightly seated on the valve seat forming member 33 press-fitted into the passage between the high-pressure refrigerant inlet 3 and the low-pressure refrigerant outlet 4 via the valve seat 24, and the piston 1
  • the cylinder on the lower surface of 3 is sealed by a diaphragm 25.
  • the center of the diaphragm 25 is attached to the piston 13 by the stop member 34.
  • the piston 13 is fixed to a valve body 12 formed integrally with a plunger 14 of a solenoid.
  • the check valve is located at a position between the refrigerant outlet 6 and the branch point where the diaphragm 25 branches to the space for receiving the outlet pressure Pe of the evaporator 1.
  • the check valve 32 biases the valve body from the refrigerant outlet 6 side by a spring.
  • the check valve 32 reverses.
  • the stop valve 32 is opened to allow the refrigerant to flow from the evaporator 1 to the compressor.
  • this flow control valve controls the differential pressure before and after the evaporator evening 1 to be almost constant, so that the refrigerant sent to the evaporator evening 1 is kept at a constant pressure determined by the current flowing through the solenoid. Control the flow rate.
  • FIG. 5 is a central longitudinal sectional view showing a flow control valve according to a fourth embodiment of the present invention.
  • the same or equivalent components as those shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the position of the check valve 32 provided in the return passage 8 is changed from the side of the refrigerant outlet 6 shown in FIG.
  • the valve body 12 and the diaphragm 25 receive a differential pressure of the sum of the differential pressure across the evaporator 1 and the differential pressure across the check valve 32, and the differential pressure is reduced.
  • the refrigerant is controlled so as to be almost constant, whereby the refrigerant flowing into the evaporator 1 is controlled to a constant flow rate determined by the current supplied to the solenoid.
  • the constant pressure differential valve is configured to be self-closed when the solenoid is not energized. However, when the solenoid is energized, the constant pressure differential valve is closed. You may comprise so that it may self-close.
  • the evaporator is regarded as the throttle passage, and the constant pressure differential valve for controlling the differential pressure before and after the evaporator to be substantially constant is provided. This eliminates the need to provide a throttle passage in the flow control valve, thereby simplifying the configuration of the flow control valve and providing a low-cost flow control valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 構造を簡単にした定流量制御式の流量制御弁を提供する。エバポレータ(1)を絞り通路とみなし、そのエバポレータ(1)に冷媒が通過することにより生じる圧力損失の前後差圧をほぼ一定に制御する定差圧弁を備える構成にした。定差圧弁は、その弁体(12)に流量制御弁の出口圧力(Px)を閉弁方向に受け、ピストン(13)がエバポレータ1の出口圧力(Pe)を開弁方向に受けており、エバポレータ(1)の入口圧力と出口圧力(Pe)との差圧がほぼ一定になるよう制御することにより、エバポレータ(1)に送り込まれる冷媒をソレノイドの通電電流によって決まる一定の流量に制御する。これにより、流量制御弁内に絞り通路を設ける必要がないため、流量制御弁の構成を簡素化でき、低コストの流量制御弁を提供することができる。

Description

流量制御弁 技術分野
本発明は流量制御弁に関し、 特に自動車用空調装置の冷凍サイクルにおいて高 温 ·高圧の冷媒を低温 ·低圧にしてエバポレー夕に送り出すための膨張装置とし 明
て使用される流量制御弁に関する。 田
背景技術
自動車用空調装置の冷凍サイクルでは、 圧縮機を制御する制御弁としてその前 後差圧あるいは吸入圧力をほぼ一定に制御する差圧制御式のものが使用されてい る場合、 系の制御性を安定させるために、 膨張装置として制御方式の異なる流量 制御式の膨張弁を使用することが良いとされている。 このような流量制御弁は、 たとえば特開 2 0 0 1 - 1 5 3 4 9 5号公報に記載されている。
この流量制御弁は、 定流量機構を有しており、 その定流量機構は、 冷媒入口と 冷媒出口との間において冷媒が流れる通路の断面積とその通路の前後の差圧とが 決まれば、 制御弁を流れる冷媒の流量を一定にすることができるので、 断面積ま たは差圧の一方をソレノィドで可変することによってソレノイドで設定された値 に対応した流量で一定に制御することができるという原理に基づいている。 具体 的には、 定流量機構は、 通路の断面積を制御する流路断面積制御弁と、 この流路 断面積制御弁の入口と出口の前後の差圧をほぼ一定にする定差圧弁とを備え、 流 路断面積制御弁の流路断面積をソレノィドで制御することにより、 流量制御弁を 流れる冷媒流量を、 ソレノィドで設定された流路断面積に対応した所定の一定流 量に維持するような構成にしている (特開 2 0 0 1 - 1 5 3 4 9 5号公報の図 1 参照。 ) 。 あるいは、 定流量機構は、 断面積が変化しない絞り通路と、 この絞り 通路の入口と出口の前後の差圧をほぼ一定にする差圧制御弁とを備え、 この差圧 制御弁の設定差圧をソレノィドで制御することにより、 流量制御弁を流れる冷媒 流量を、 ソレノィドで設定された差圧に対応した所定の一定流量に維持するよう な構成にしている (特開 2 0 0 1— 1 5 3 4 9 5号公報の図 2参照。 ) 。
しかしながら、 従来の流量制御弁においては、 流量を一定に制御するため、 内 部に、 差圧を発生させる絞り通路とその絞り通路の前後の差圧を一定に制御する 差圧制御弁を備えているため、 構造が複雑になるという問題があった。 発明の開示
本発明はこのような点に鑑みてなされたものであり、 構造を簡単にした定流量 制御式の流量制御弁を提供することを目的とする。
本発明では上記問題を解決するために、 絞り膨張されてエバポレー夕に送り出 される冷媒の流量をほぼ一定に制御する流量制御弁において、 前記エバポレータ に冷媒が通過することにより生じる圧力損失の前後差圧をほぼ一定に制御する定 差圧弁を備えていることを特徴とする流量制御弁が提供される。
このような流量制御弁によれば、 エバポレ一タを絞り通路とみなし、定差圧弁 がその圧力損失を一定にするように制御することでエバポレ一タにほぼ一定流量 の冷媒を送り込むことができる。 これにより、 流量制御弁内に絞り通路を設ける 必要がないため、 流量制御弁の構成を簡素化でき、 低コストの流量制御弁を提供 することができる。
本発明の上記および他の目的、 特徴および利点は本発明の例として好ましい実 施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。 図面の簡単な説明
図 1は、 第 1の実施の形態に係る流量制御弁の構成を示す中央縦断面図である。 図 2は、 第 2の実施の形態に係る流量制御弁の構成を示す中央縦断面図である。 図 3は、 第 2の実施の形態に係る流量制御弁の主要部を示す拡大断面図である。 図 4は、 本発明の第 3の実施の形態に係る流量制御弁を示す中央縦断面図であ る。
図 5は、 本発明の第 4の実施の形態に係る流量制御弁を示す中央縦断面図であ る。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して詳細に説明する。
図 1は第 1の実施の形態に係る流量制御弁の構成を示す中央縦断面図である。 この流量制御弁は、 エバポレー夕 1に接続して初めて定流量制御を行うことが できるもので、 本体ブロック 2に、 圧力 P oの冷媒が送られてくる高圧冷媒入口 3と、 冷媒が膨張しながらエバポレー夕 1に送り出される低圧冷媒出口 4と、 ェ バポレー夕 1から冷媒が戻ってくる戻り冷媒入口 5と、 戻ってきた冷媒をコンプ レッサに送り出す戻り冷媒出口 6とが設けられている。 高圧冷媒入口 3には、 そ の通路を塞ぐようにストレーナ 7が配置されている。
本体ブロック 2の上部には、 大径の穴が形成され、 中央部には、 その大径の穴 と同心のシリンダが図の上下方向に形成され、 下部には、 中央部のシリンダと連 通する穴が形成されている。 その下部の穴は、 戻り冷媒入口 5および戻り冷媒出 口 6と戻り通路 8によって連通され、 パッキン押さえ 9を介してパッキンをねじ 1 0で本体ブロック 2に押し付けるようにすることで、 戻り通路 8の下方開口部 を閉塞している。
中央部のシリンダは、 その上端縁部が弁座 1 1を構成し、 その弁座 1 1に図の 上方から対向して接離自在に弁体 1 2が配置されている。 この弁体 1 2は シリ ンダ内をその軸線方向に進退自在に配置された感圧部材としてのピストン 1 3と 小径シャフトによつて連結された形で一体に形成されている。 シリンダは、 その 小径シャフトが位置する部分に高圧冷媒入口 3と連通する冷媒通路が開口されて いる。 本体ブロック 2の上部に形成された大径の穴からなるシリンダ上部の部屋 も、 冷媒通路を介して低圧冷媒出口 4と連通されている。
本体ブロック 2の上部には、 ソレノィドが配置されている。 このソレノィドは、 弁体 1 2と一体に形成されたプランジャ 1 4と、 このプランジャ 1 4と同心上に 配置されたコア 1 5と、 これらの周りに配置された電磁コイル 1 6と、 プランジ ャ 1 4とコア 1 5との間に配置されたスプリング 1 7と、 電磁コイル 1 6を囲繞 するヨーク 1 8とを備えている。 コア 1 5は中空形状を有し、 その内部には、 ス プリング 1 7の荷重を調節するアジャストねじ 1 9が螺着されている。 このアジ ャストねじ 1 9も、 中空形状を有していて、 下端部がプランジャ 1 4に固定され たシャフト 2 0を軸線方向に進退自在に支持する軸受を構成している。 コア 1 5 の上部開口端は、 ポール 2 1および固定ねじ 2 2によって気密に閉止されている。 このソレノイドは、 連結部 2 3によって本体ブロック 2の上部に形成された大径 の穴に螺着されている。
ここで、 ソレノイドが通電されていないとき、 プランジャ 1 4は、 スプリング 1 7によってコア 1 5から離れる方向に付勢されているため、 弁体 1 2が弁座 1 1に着座し、 この流量制御弁は、 全閉状態になっている。
ソレノィドの電磁コイル 1 6に所定の電流が供給されると、 プランジャ 1 4は スプリング 1 7の付勢力に抗してコア 1 5に吸引されるので、 弁体 1 2が弁座 1 1からリフトされ、 流量制御弁は、 ソレノィド電流に応じたソレノィド力とスプ リング 1 7の荷重とのバランスによって決まる弁開度に設定される。 このとき、 高圧冷媒入口 3に導入された冷媒は、 弁体 1 2と弁座 1 1との間の隙間にて絞ら れて膨張し、 低圧冷媒出口 4からエバポレー夕 1に送り出される。
弁座 1 1の有効径とピストン 1 3の有効径とは略等しいので、 弁体 1 2とピス トン 1 3との間の空間に供給される冷媒の圧力 P oは、 弁体 1 2を押し上げる方 向とピストン 1 3を押し下げる方向とに働く力が略等しくてキャンセルされるの で、 これら弁体 1 2およびピストン 1 3の動きに影響を与えることはない。
また、 これら弁体 1 2およびビストン 1 3は、 弁体 1 2にその下流側の圧力で ある流量制御弁の出口圧力 P Xがかかり、 ピストン 1 3の下面には、 冷媒の戻り 通路 8の圧力がかかるため、 エバボレー夕 1の入口圧力と出口圧力 P eとの差圧 を受けてソレノィドによって設定された位置から軸線方向に動くことになる。 た とえば、 エバポレー夕 1の入口圧力と出口圧力 P eとの差圧が大きくなると、 X バポレ一夕 1の出口圧力 P eがピストン 1 3を押し下げようとするため、 弁体 1 2は閉じる方向に動き、 これにより冷媒の流量が減って、 差圧が小さくなるよう 作用する。 逆に、 差圧が小さくなると、 差圧が大きくなる方向に作用する。 した がって、 この流量制御弁は、 エバポレー夕 1の入口圧力と出口圧力 P eとの差圧 をほぼ一定になるよう制御する定差圧弁として機能しており、 エバポレー夕 1に 送り込まれる冷媒を、 ソレノィドの通電電流によって決まるほぼ一定の流量に制 御することになる。 図 2は第 2の実施の形態に係る流量制御弁の構成を示す中央縦断面図、 図 3は 第 2の実施の形態に係る流量制御弁の主要部を示す拡大断面図である。 この図 2 および図 3において、 図 1に示した構成要素と同じまたは同等の要素については 同じ符号を付してその詳細な説明は省略する。
この流量制御弁は、 図 1に示した流量制御弁に比較して、 閉弁時における冷媒 の内部漏れを防止し、 ソレノィドによる弁体 1 2の駆動方向を逆にした構成を有 している。
すなわち、 弁体 1 2の弁座 1 1への着座面に柔軟性のあるバルブシ一ト 2 4を 配置して弁部における冷媒漏れを防止するとともに、 ピストン 1 3のエバポレー 夕 1の出口圧力 P eを受ける面にダイヤフラム 2 5を配置してピストン 1 3の摺 動部を介して高圧冷媒入口 3から戻り通路 8への冷媒漏れをほぼ完全に防止して いる。 弁体 1 2が配置されている空間は、 本体ブロック 2に螺入されたアジヤス トねじ 2 6によって閉止され、 弁体 1 2とアジヤストねじ 2 6との間には、 弁体 1 2を閉弁方向に付勢するスプリング 2 7が配置されている。 このスプリング 2 7の荷重は、 アジャストねじ 2 6の螺入量によって調整できるようにしている。 ダイヤフラム 2 5は、 本体ブロック 2にリング部材 2 8を圧入することによつ て周囲が本体ブロック 2に密着されている。 ダイヤフラム 2 5は 弁座 1 1の有 効径と略等しい有効径を有し、 その中央部分には、 ピストン 1 3の下端部の端面 と略等しい端面を有するディスク 2 9が当接されている。 このディスク 2 9は、 スプリング 3 0によってダイヤフラム 2 5を弁部の開弁方向へ付勢している。 ソレノイドは、 ダイヤフラム 2 5の側にコア 1 5を配置し、 その反対側にブラ ンジャ 1 4を配置し、 プランジャ 1 4はシャフト 3 1に固着されている。 シャフ ト 3 1は、 コア 1 5を貫通して配置され、 その先端はディスク 2 9に当接されて いる。 したがって、 このソレノイドは、 電磁コイル 1 6に電流を流すことにより、 ダイヤフラム 2 5、 ピストン 1 3および弁体 1 2を開弁方向に押すよう作用する ことになる。
この流量制御弁の作用については、 図 1に示した流量制御弁と同様に、 弁体 1 2およびダイヤフラム 2 5がエバポレー夕 1の入口圧力と出口圧力 P eとの差圧 を受けてその差圧がほぼ一定になるよう制御し、 これによつて、 エバポレータ 1 に送り込まれる冷媒を、 ソレノィドの通電電流によって決まる一定の流量に制御 するようにしている。
また、 この流量制御弁は、 ソレノイドが非通電状態の閉弁時において、 冷媒の 内部漏れをほぼ完全に防止できることから、 たとえば冷媒に H F C— 1 5 2 a , プロパン、 ブタンなどの可燃性ガスや二酸化炭素を使用した場合、 エバポレー夕 1の破損などによる車室内への流入によって火災や酸欠を防止するため、 エバポ レー夕 1をコンデンサ側の回路から隔離することが可能になる。 この場合、 エバ ポレー夕 1の出口側の回路に逆止弁 3 2を揷置してコンプレッサの吸入側の回路 からも隔離する必要がある。
流量制御弁の戻り通路 8に連通する冷媒出口 6とコンプレッサの吸入側との間 の配管に逆止弁 3 2を設け、 膨張弁にこの内部漏れのない流量制御弁を使用する ことにより、 自動車用空調装置を使用していないときに、 冷凍サイクルの中で車 室内に配置されるエバポレータ 1を冷凍サイクルから隔離することができる。 こ の場合、 たとえば自動車用空調装置を停止するときに、 ソレノイドの通電を止め た後、 しばらくコンプレッサを回転させてからコンプレッサを停止するようにす る。 これにより、 エバポレー夕 1内の冷媒が逆止弁 3 2を介して回収され、 回収 された冷媒は、 逆止弁 3 2によってエバポレ一夕 1へ逆流することはないので たとえ、 エバポレー夕 1が破裂などの損傷を受けたとしても、 車室内へ危険なガ スが放出することはない。
図 4は本発明の第 3の実施の形態に係る流量制御弁を示す中央縦断面図である。 なお、 この図 4において、 図 1および図 2に示した構成要素と同じまたは同等の 要素には同じ符号を付してその詳細な説明は省略する。
この第 3の実施の形態に係る流量制御弁は、 図 1に示した流量制御弁に、 図 2 に示した流量制御弁の内部漏れ防止機構と、 自動車用空調装置の停止時にエバポ レー夕 1を隔離する逆流防止機構とを備えた構成を有している。
すなわち、 高圧冷媒入口 3と低圧冷媒出口 4との間の通路に圧入された弁座形 成部材 3 3に弁体 1 2がバルブシート 2 4を介して緊密に着座するよう構成され、 ピストン 1 3の下面のシリンダは、 ダイヤフラム 2 5によってシールされている。 ダイヤフラム 2 5は、 その中央部が止部材 3 4によってピストン 1 3に取り付け られ、 ピストン 1 3は、 ソレノイドのプランジャ 1 4と一体に形成された弁体 1 2に固定されている。 また、 冷媒出口 6に連通する戻り通路 8の中で、 ダイヤフ ラム 2 5がエバポレー夕 1の出口圧力 P eを受圧する空間への分岐位置と冷媒出 口 6との間の位置に逆止弁 3 2が介揷されている。 この逆止弁 3 2は、 冷媒出口 6の側からスプリングによって弁体を付勢しており、 コンプレッサの吸入圧力と エバポレー夕 1の出口圧力 P eとの差圧が所定値以上になると、 逆止弁 3 2が開 いてエバポレー夕 1からコンプレッサへ冷媒が流れるようにしている。
自動車用空調装置の稼動中は、 この流量制御弁は、 エバポレー夕 1の前後差圧 をほぼ一定になるよう制御して、 エバポレー夕 1に送り込まれる冷媒を、 ソレノ ィドの通電電流によって決まる一定の流量に制御する。
自動車用空調装置を停止するときは、 ソレノイドの通電を止めて弁体 1 2を弁 座形成部材 3 3に着座させることによってエバポレー夕 1をコンデンサから隔離 した後、 引き続きコンプレッサを回転させることでエバポレー夕 1内の冷媒を逆 止弁 3 2を介して回収してからコンプレッサを停止させる。 これにより、 逆止弁 3 2がエバポレー夕 1をコンプレッサの吸入側から隔離する。 このときには、 X バポレータ 1内には、 冷媒がないので、 たとえ、 自動車用空調装置の停止中に、 エバポレータ 1に損傷を受けたとしても、 危険なガス冷媒が車室内に漏れ出るこ とを防止することができる。
図 5は本発明の第 4の実施の形態に係る流量制御弁を示す中央縦断面図である。 なお、 この図 5において、 図 4に示した構成要素と同じまたは同等の要素には同 じ符号を付してその詳細な説明は省略する。
この第 4の実施の形態に係る流量制御弁は、 戻り通路 8内に設けられた逆止弁 3 2の位置を図 4に示した冷媒出口 6の側から冷媒入口 5の側にしている。
したがつて、 この流量制御弁は、 弁体 1 2およびダイヤフラム 2 5がエバポレ 一夕 1の前後差圧と逆止弁 3 2の前後差圧との和の差圧を受けてその差圧がほぼ 一定になるよう制御し、 これによつて、 エバポレー夕 1に送り込まれる冷媒を、 ソレノイドの通電電流によって決まる一定の流量に制御することになる。
なお、 上記の実施の形態では、 ソレノイドが通電されていないときに定差圧弁 が自閉されるように構成したが、 ソレノィドが通電されているときに定差圧弁が 自閉されるように構成してもよい。
以上説明したように、 本発明では、 エバポレータを絞り通路とみなし、その前 後の差圧をほぼ一定に制御する定差圧弁を備える構成にした。 これにより、 流量 制御弁内に絞り通路を設ける必要がないため、 流量制御弁の構成を簡素化でき、 低コス卜の流量制御弁を提供することができる。
上記については単に本発明の原理を示すものである。 さらに、 多数の変形、 変 更が当業者にとって可能であり、 本発明は上記に示し、 説明した正確な構成およ び応用例に限定されるものではなく、 対応するすべての変形例および均等物は、 添付の請求項およびその均等物による本発明の範囲とみなされる。

Claims

請 求 の 範 囲
1 . 絞り膨張されてエバポレー夕に送り出される冷媒の流量をほぼ一定に制御 する流量制御弁において、
前記エバポレー夕に冷媒が通過することにより生じる圧力損失の前後差圧をほ ぼ一定に制御する定差圧弁を備えていることを特徴とする流量制御弁。
2 . 前記定差圧弁は、 前記エバポレー夕への低圧冷媒出口の圧力を閉弁方向に 受ける弁体と、 前記エバポレー夕の出口圧力を前記弁体が開弁する方向に受ける 感圧部材とを一体に動くよう構成したことを特徴とする請求の範囲第 1項記載の 流量制御弁。
3 . 前記弁体および前記感圧部材に対し、 前記弁体が開弁する方向に付勢する ソレノィドを備えていることを特徴とする請求の範囲第 1項記載の流量制御弁。
4. 前記弁体の有効径と前記感圧部材の有効径とを略等しくしてあることを特 徴とする請求の範囲第 2項記載の流量制御弁。
5 . 前記弁体に設けられて閉弁時にシールを行うバルブシートと、 前記感圧部 材の摺動部をシールするダイヤフラムとを備えていることを特徴とする請求の範 囲第 2項記載の流量制御弁。
6 . 前記エバポレー夕の出口とコンプレッサの吸入側との間を連結する戻り通 路を備え、 前記エバポレー夕の出口圧力を前記戻り通路から導入するようにした ことを特徴とする請求の範囲第 1項記載の流量制御弁。
7 . 前記戻り通路内に、 前記コンプレッサの吸入側から前記エバポレー夕の出 口への冷媒の逆流を防止する逆止弁を備えていることを特徴とする請求の範囲第 6項記載の流量制御弁。
8 . 前記逆止弁は、 前記コンプレッサの吸入側へ配管する冷媒出口側に配置さ れていることを特徴とする請求の範囲第 7項記載の流量制御弁。
9 . 逆止弁は、 前記エバポレー夕の出口へ配管する冷媒入口側に配置されてい ることを特徴とする請求の範囲第 7項記載の流量制御弁。
PCT/JP2004/002673 2003-03-06 2004-03-03 流量制御弁 WO2004079468A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602004017843T DE602004017843D1 (de) 2003-03-06 2004-03-03 Durchflussregelventil
EP04716730A EP1600841B1 (en) 2003-03-06 2004-03-03 Flow rate control valve
US11/229,444 US20060005556A1 (en) 2003-03-06 2005-09-02 Flow rate control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-059353 2003-03-06
JP2003059353A JP2004270975A (ja) 2003-03-06 2003-03-06 流量制御弁

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/229,444 Continuation US20060005556A1 (en) 2003-03-06 2005-09-02 Flow rate control valve

Publications (1)

Publication Number Publication Date
WO2004079468A1 true WO2004079468A1 (ja) 2004-09-16

Family

ID=32958845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002673 WO2004079468A1 (ja) 2003-03-06 2004-03-03 流量制御弁

Country Status (5)

Country Link
US (1) US20060005556A1 (ja)
EP (1) EP1600841B1 (ja)
JP (1) JP2004270975A (ja)
DE (1) DE602004017843D1 (ja)
WO (1) WO2004079468A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529150A (zh) * 2013-10-28 2014-01-22 徐继承 一种含有恒温气化装置的低压液化气体检验用进样蒸发器
CN103543227A (zh) * 2013-10-28 2014-01-29 徐继承 一种含有自动置换装置的低压液化气体检验用进样蒸发器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006014559D1 (de) 2005-09-19 2010-07-08 Sullivan John Joe O' Trainingsvorrichtung
JP5292540B2 (ja) * 2008-08-22 2013-09-18 株式会社テージーケー 膨張装置
BRPI0921071A2 (pt) * 2008-11-20 2015-12-15 Danfoss As válvula de expansão que compreende um diafragma e pelo menos duas aberturas de saída
DE102009060499A1 (de) * 2009-12-22 2011-06-30 JENOPTIK Robot GmbH, 40789 Verfahren und Anordnung zur Erfassung von Verkehrsverstößen in einem Ampelbereich
FR2959004B1 (fr) * 2010-04-16 2016-02-05 Valeo Systemes Thermiques Dispositif de detente thermoplastique et boucle de climatisation comprenant un tel dispositif de detente thermoplastique
JP5773610B2 (ja) * 2010-10-18 2015-09-02 株式会社不二工機 複合弁
US9541319B2 (en) * 2011-01-20 2017-01-10 Mitsubishi Electric Corporation Air-conditioning apparatus
CN106337938B (zh) * 2015-07-06 2019-11-05 杭州三花研究院有限公司 流量控制阀、该流量控制阀的控制方法及其控制系统
KR101734265B1 (ko) * 2015-08-28 2017-05-11 현대자동차 주식회사 차량용 에어컨 시스템의 팽창밸브 및 이를 포함하는 차량용 에어컨 시스템
DE102015217793A1 (de) * 2015-09-17 2017-03-23 Volkswagen Aktiengesellschaft Vorrichtung, Verfahren und Computerprogramm zum Bereitstellen von Stauinformation über eine Fahrzeug-zu-Fahrzeug-Schnittstelle
AU2016425930B2 (en) * 2016-10-07 2021-03-25 Bitzer Kühlmaschinenbau Gmbh Semi-hermetic coolant compressor
JP2020041658A (ja) * 2018-09-13 2020-03-19 株式会社不二工機 複合弁
RU2771541C1 (ru) * 2021-03-17 2022-05-05 Битцер Кюльмашиненбау Гмбх Полугерметичный компрессор холодильного агента (варианты)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346983A (ja) * 1993-06-08 1994-12-20 Tgk Co Ltd パイロット型電磁弁
JPH07232541A (ja) * 1994-02-22 1995-09-05 Tgk Co Ltd 温水循環式暖房装置
EP1039250A2 (en) * 1999-03-25 2000-09-27 TGK Co., Ltd. Refrigerating cycle with a by-pass line
JP2002195695A (ja) * 2000-12-21 2002-07-10 Tgk Co Ltd 電磁弁

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740423B2 (ja) * 1973-01-24 1982-08-27
US4065939A (en) * 1976-01-30 1978-01-03 The Singer Company Combination valve
JPS5316961U (ja) * 1976-07-26 1978-02-13
JPH01296064A (ja) * 1988-05-23 1989-11-29 Fuji Koki Seisakusho:Kk 温度膨脹弁
JP3305039B2 (ja) * 1993-04-22 2002-07-22 株式会社不二工機 温度膨脹弁
JP3471438B2 (ja) * 1993-12-06 2003-12-02 株式会社ショーワ 緩衝器のバルブ構造
JPH0828969A (ja) * 1994-07-15 1996-02-02 Sanyo Electric Co Ltd 冷却装置
JPH10267471A (ja) * 1997-03-25 1998-10-09 Tgk Co Ltd 膨張弁
DE59802135D1 (de) * 1997-07-04 2001-12-20 Bayerische Motoren Werke Ag Ventilvorrichtung für einen im nebenstrom angeordneten wärmetauscher in einem kühlkreislauf, insbesondere einer brennkraftmaschine
JP3428926B2 (ja) * 1999-07-12 2003-07-22 株式会社テージーケー パイロット作動流量調整弁
JP2001021230A (ja) * 1999-07-12 2001-01-26 Tgk Co Ltd 容量可変圧縮機が用いられた冷凍サイクルの膨張弁
JP2001033123A (ja) * 1999-07-19 2001-02-09 Fuji Koki Corp 温度膨張弁
JP3840354B2 (ja) * 1999-12-01 2006-11-01 株式会社テージーケー 電気制御膨張弁
US6375085B1 (en) * 2000-05-11 2002-04-23 Parker-Hannifin Corporation Reducing noise in a thermal expansion valve
JP4485711B2 (ja) * 2001-06-12 2010-06-23 株式会社不二工機 膨張弁
JP3949417B2 (ja) * 2001-10-10 2007-07-25 株式会社テージーケー 膨張弁

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346983A (ja) * 1993-06-08 1994-12-20 Tgk Co Ltd パイロット型電磁弁
JPH07232541A (ja) * 1994-02-22 1995-09-05 Tgk Co Ltd 温水循環式暖房装置
EP1039250A2 (en) * 1999-03-25 2000-09-27 TGK Co., Ltd. Refrigerating cycle with a by-pass line
JP2002195695A (ja) * 2000-12-21 2002-07-10 Tgk Co Ltd 電磁弁

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529150A (zh) * 2013-10-28 2014-01-22 徐继承 一种含有恒温气化装置的低压液化气体检验用进样蒸发器
CN103543227A (zh) * 2013-10-28 2014-01-29 徐继承 一种含有自动置换装置的低压液化气体检验用进样蒸发器
CN103543227B (zh) * 2013-10-28 2014-11-26 徐继承 一种含有自动置换装置的低压液化气体检验用进样蒸发器
CN103529150B (zh) * 2013-10-28 2015-05-06 徐继承 一种含有恒温气化装置的低压液化气体检验用进样蒸发器

Also Published As

Publication number Publication date
EP1600841A4 (en) 2006-11-22
US20060005556A1 (en) 2006-01-12
DE602004017843D1 (de) 2009-01-02
JP2004270975A (ja) 2004-09-30
EP1600841B1 (en) 2008-11-19
EP1600841A1 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
US20060005556A1 (en) Flow rate control valve
KR101955038B1 (ko) 제어 밸브
JP2018040385A (ja) 電磁弁
US6866242B2 (en) Proportional valve
JP2006242413A (ja) 定流量膨張弁
US7036744B2 (en) Solenoid valve-equipped expansion valve
JP5974239B2 (ja) 制御弁
JP6216923B2 (ja) 制御弁
JP4848548B2 (ja) 電磁弁付き膨張弁
JP6142183B2 (ja) 電磁弁
KR102190793B1 (ko) 전자 밸브
JP2004101163A (ja) 定流量膨張弁
JP2004076920A (ja) 差圧制御弁
EP1522803B1 (en) Constant differential pressure valve
JP4086682B2 (ja) 膨張装置
JP2009024945A (ja) 電磁弁付膨張弁
JP6340742B2 (ja) 電磁弁
JP2001343081A (ja) 定差圧弁
JP2004053192A (ja) 定流量膨張弁
JP7359432B2 (ja) 制御弁
JP4346538B2 (ja) 冷凍サイクル及びアキュムレータ
JP4049909B2 (ja) パイロット作動流量調整弁
JP2007162951A (ja) 電磁制御弁
JP2007155136A (ja) 電磁制御弁
JP2004044673A (ja) 電磁制御弁

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11229444

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004716730

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004716730

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11229444

Country of ref document: US