WO2004070293A1 - 冷媒配管の洗浄方法、空気調和装置の更新方法、及び、空気調和装置 - Google Patents

冷媒配管の洗浄方法、空気調和装置の更新方法、及び、空気調和装置 Download PDF

Info

Publication number
WO2004070293A1
WO2004070293A1 PCT/JP2004/001148 JP2004001148W WO2004070293A1 WO 2004070293 A1 WO2004070293 A1 WO 2004070293A1 JP 2004001148 W JP2004001148 W JP 2004001148W WO 2004070293 A1 WO2004070293 A1 WO 2004070293A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
existing
air conditioner
pipe
working
Prior art date
Application number
PCT/JP2004/001148
Other languages
English (en)
French (fr)
Inventor
Kazuhide Mizutani
Hiromune Matsuoka
Atsushi Yoshimi
Manabu Yoshimi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US10/521,020 priority Critical patent/US8844300B2/en
Priority to AU2004209934A priority patent/AU2004209934B2/en
Priority to EP04708045.2A priority patent/EP1591730B1/en
Priority to KR10-2004-7021233A priority patent/KR20050013639A/ko
Priority to ES04708045T priority patent/ES2422892T3/es
Publication of WO2004070293A1 publication Critical patent/WO2004070293A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Definitions

  • the present invention relates to a method for cleaning a refrigerant pipe, a method for updating an air conditioner, and an air conditioner.
  • One of the conventional air conditioners is an air conditioner used for air conditioning of buildings and the like.
  • Such air conditioners mainly include a heat source unit having a compressor and a heat source side heat exchanger, a use unit having a use side heat exchanger, and a gas refrigerant pipe for connecting these units. And a liquid refrigerant pipe.
  • an HFC (Hide Port Fluorocarbon) -based refrigerant has come to be used in consideration of environmental problems such as destruction of the ozone layer.
  • the first method is as follows. There is a method that uses an HCFC-based refrigerant (specifically, HCFC141b, HCFC225, etc.) having high compatibility with mineral oil-based refrigeration oil as a cleaning agent.
  • HCFC-based refrigerant specifically, HCFC141b, HCFC225, etc.
  • the heat source unit and the use unit are updated, and an oil collecting device is installed in the refrigerant circuit to circulate the new HFC-based refrigerant.
  • an oil collecting device is installed in the refrigerant circuit to circulate the new HFC-based refrigerant.
  • the first method for cleaning the refrigerant pipe described above is based on the use of a mineral oil-based refrigerating machine oil remaining in the refrigerant pipe.
  • the use of HCFC-based refrigerant, which has high compatibility with water, has a high cleaning ability, but should not be used due to environmental problems such as destruction of the ozone layer.
  • the second method for cleaning the refrigerant pipes is environmentally friendly in that HFC-based refrigerants are used, but it is necessary to repeat batch cleaning, which increases the amount of refrigerant used. It is not economical.
  • the third method for cleaning the refrigerant pipes enables continuous cleaning by performing an operation of circulating the refrigerant, so that it is not necessary to repeatedly perform batch cleaning. It is economical in that the usage can be reduced.
  • An object of the present invention is to reduce the amount of refrigerant used and shorten the time for washing operation when changing the working refrigerant to an HFC-based refrigerant while diverting the refrigerant piping of an air conditioner that uses mineral oil-based refrigeration oil. Is to make it possible.
  • the method for cleaning a refrigerant pipe according to claim 1 is a method for changing a working refrigerant to a working refrigerant composed of an HFC-based refrigerant while diverting a refrigerant pipe of an air conditioner using a mineral oil-based refrigerating machine oil.
  • the refrigerant pipe is washed using an HFC-based refrigerant containing R32 in an amount of 40 wt% or more as a cleaning agent to remove residual refrigerator oil.
  • an HFC-based refrigerant containing R32 in an amount of 40 wt% or more is used as a cleaning agent.
  • R32 is a kind of HFC-based refrigerant
  • R407C composition: R32: 23 wt%, R125: 25 wt%, which is often used as an alternative refrigerant to R22 of HCFC-based refrigerant, R134a: 52 wt%).
  • HFC-based refrigerants have low compatibility with mineral oil-based refrigerating machine oils, so they are not considered to provide sufficient cleaning performance even when used to clean refrigerant piping.
  • the pipe cleaning capacity was not considered to be high.
  • the inventor of the present application washed a mineral oil-based refrigerating machine oil remaining in a refrigerant pipe by using a ⁇ 1 type refrigerant containing 40% or more of 1 ⁇ 32, and found that R 4.07 C It has been experimentally found that the cleaning effect is higher than that of the HFC-based refrigerant having a small R32 content.
  • the conventional method of cleaning refrigerant pipes for example, a method of repeatedly performing batch cleaning using HFC-based refrigerant ⁇ ⁇ An operation that circulates HFC-based refrigerant by installing an oil collecting device in the refrigerant circuit In the method, etc., it is possible to reduce the amount of refrigerant used and the time for the cleaning operation.
  • cleaning is performed by flowing a cleaning agent in a wet gas state into the refrigerant pipe.
  • the cleaning agent can be moistened and flow through the refrigerant pipe, so that the cleaning agent is easily mixed with the mineral oil-based refrigerating machine oil remaining in the refrigerant pipe, thereby further improving the cleaning performance.
  • This can contribute to a reduction in the amount of refrigerant used and a reduction in the time for the cleaning operation.
  • the cleaning agent according to claim 1 or 2 does not include R134a.
  • the cleaning ability can be further increased by using a cleaning agent containing 40 wt% or more of R32 and not containing R134a. This can contribute to a reduction in the amount used and a reduction in the time for the cleaning operation.
  • the method for cleaning a refrigerant pipe according to claim 4 is the refrigerant according to any one of claims 1 to 3, wherein the cleaning agent is a refrigerant composed of only one component or all components of the refrigerant component constituting the changed working refrigerant. It is.
  • a refrigerant component not included in the working refrigerant does not remain in the refrigerant pipe after the cleaning, and therefore, it is easy to replace the cleaning agent with the working refrigerant.
  • the method for updating an air conditioner according to claim 5 is the method for updating a refrigerant pipe of an existing air conditioner.
  • a method for renewing at least a part of the equipment constituting the existing air conditioner while diverting the refrigerant as an existing refrigerant pipe comprising: a refrigerant recovery step; an equipment update step; and a refrigerant charging step. And a pipe cleaning step.
  • the refrigerant recovery step the working refrigerant including the existing refrigeration oil composed of mineral oil refrigeration oil is collected from the existing air conditioner.
  • the equipment updating step at least a part of the equipment constituting the existing air conditioner is updated.
  • a working refrigerant including an HFC-based refrigerant containing 40 wt% or more of R32 is charged into the air-conditioning apparatus after the equipment is updated.
  • the working refrigerant filled in the refrigerant charging step is circulated, the existing refrigerant oil remaining in the existing refrigerant pipe is accompanied by the working refrigerant, and the existing refrigerant oil is separated from the working refrigerant. Remove the existing refrigerator oil remaining in the existing refrigerant piping.
  • an HFC-based refrigerant containing 40 wt% or more of R32 is used as the working refrigerant, so a high cleaning effect can be obtained even if the working refrigerant is used as a cleaning agent.
  • the cleaning operation time can be reduced.
  • the working refrigerant in the method for updating an air conditioner according to claim 6, in claim 5, in the pipe cleaning step, is circulated such that the working refrigerant in a wet regas state flows into the existing refrigerant pipe.
  • the working refrigerant as a cleaning agent is made to be in a wet state and flows through the refrigerant piping, so that the refrigerant is easily mixed with the mineral oil-based refrigerating machine oil remaining in the refrigerant piping, and the cleaning performance is further improved. This can contribute to shortening of the cleaning operation time.
  • the air conditioner according to claim 7 is an air conditioner configured by updating a part of components of an existing air conditioner and changing a working refrigerant to an HFC-based refrigerant. It has a pipe, a heat source unit and a utilization unit, and an oil collecting device.
  • the existing refrigerant piping is used for the existing air conditioner, and the existing refrigeration oil consisting of mineral oil refrigeration oil remains.
  • the heat source unit and the utilization unit are connected via the existing refrigerant pipe.
  • the oil collection device can introduce the circulated working refrigerant and separate the existing refrigerating machine oil accompanying the working refrigerant when the changed working refrigerant is circulated prior to normal air conditioning operation. It is. And the operating cooling after the change
  • the medium is an HFC-based refrigerant containing R32 at 4 O wt% or more.
  • an HFC-based refrigerant containing 40 wt% or more of R32 is used as a working refrigerant. For this reason, if circulation operation is performed using the working refrigerant as a cleaning agent prior to normal air conditioning operation, the existing refrigeration oil remaining in the existing refrigerant pipes is introduced into the oil collection device with high cleaning effect and separated. Can be removed. This makes it possible to shorten the cleaning operation time.
  • FIG. 1 is a schematic configuration diagram of an existing air conditioner according to the first and second embodiments of the present invention.
  • FIG. 2 is a schematic configuration diagram of an updated air conditioner according to the first and second embodiments of the present invention.
  • FIG. 3 is a flowchart showing a procedure of an updating method of the air conditioner according to the first embodiment of the present invention.
  • FIG. 4 is a graph showing the cleaning effect of R32.
  • FIG. 5 is a flowchart showing a procedure of an air conditioner updating method according to a second embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a refrigerant circuit of an existing air conditioner 1.
  • the air conditioner 1 is a device used for air conditioning such as cooling and heating in a building such as a building, and has one heat source unit 2 and a plurality of heat source units 2 connected in parallel to the heat source unit 2 (in this embodiment, two ), And a liquid refrigerant pipe 6 and a gas refrigerant pipe 7 for connecting the heat source unit 2 and the use unit 5 to each other.
  • the heat source unit 2 is installed on the roof of a building or the like, and mainly includes a compressor 21, a four-way switching valve 22, a heat source side heat exchanger 23, a heat source side expansion valve 24, It comprises a liquid-side stop valve 25, a gas-side stop valve 26, and a refrigerant pipe connecting these.
  • the compressor 21 is a device for sucking and compressing a gas refrigerant.
  • the four-way switching valve 22 is a valve for switching the flow direction of the refrigerant in the refrigerant circuit when switching between the cooling operation and the heating operation.
  • the gas side of the compressor 23 is connected and the suction side of the compressor 21 is connected to the gas side shut-off valve 26.
  • the discharge side of the compressor 21 is connected to the gas side shut-off valve 26.
  • the discharge side of the compressor 21 and the gas side of the heat source side heat exchanger 23 can be connected.
  • the heat source side heat exchanger 23 is a heat exchanger for evaporating or condensing a refrigerant using air or water as a heat source.
  • the heat-source-side expansion valve 24 is a valve provided on the liquid side of the heat-source-side heat exchanger 23 for adjusting the refrigerant pressure divided by the refrigerant flow rate.
  • the liquid-side shutoff valve 25 and the gas-side shutoff valve 26 are connected to a liquid refrigerant pipe 6 and a gas refrigerant pipe 7, respectively.
  • the use units 5 are installed at various places in the building, and mainly include a use-side expansion valve 51, a use-side heat exchanger 52, and a refrigerant pipe connecting these.
  • the use-side heat exchanger 52 is a heat exchanger for evaporating or condensing a refrigerant to cool or heat indoor air.
  • the use-side expansion valve 51 is a valve provided on the liquid side of the use-side heat exchanger 52 for adjusting the refrigerant pressure / the refrigerant flow rate.
  • the liquid refrigerant pipe 6 and the gas refrigerant pipe 7 are refrigerant pipes that connect the heat source unit 2 and the utilization unit 5, and most of them are arranged in a wall in a building or behind a ceiling.
  • a refrigerant pipe called an existing refrigerant pipe to be diverted When the air-conditioning apparatus 1 is renewed, at least a refrigerant pipe called an existing refrigerant pipe to be diverted.
  • the four-way switching valve 22 is in the state shown by the solid line in FIG.
  • the discharge side of the compressor 21 is connected to the gas side of the heat source side heat exchanger 23, and the suction side of the compressor 21 is connected to the gas side shut-off valve 26 side.
  • the liquid-side stop valve 25, the gas-side stop valve 26, and the heat-source-side expansion valve 24 are opened, and the opening of the use-side expansion valve 51 is adjusted so as to reduce the pressure of the refrigerant.
  • This gas refrigerant is sucked into the compressor 21 again via the gas refrigerant pipe 7, the gas side shut-off valve 26, and the four-way switching valve 22.
  • the cooling operation is performed.
  • the four-way switching valve 22 is in the state shown by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas-side shut-off valve 26, and the suction side of the compressor 21 is heated. It is connected to the gas side of the source side heat exchanger 23. Further, the liquid-side stop valve 25, the gas-side stop valve 26, and the use-side expansion valve 51 are opened, and the opening of the heat-source-side expansion valve 24 is adjusted to reduce the pressure of the coolant.
  • the compressor 21 of the heat source unit 2 When the compressor 21 of the heat source unit 2 is started in this state of the refrigerant circuit, the working refrigerant is sucked into the compressor 21 and compressed, and then the four-way switching valve 22, the gas-side shut-off valve 26 and It is sent to the utilization unit 5 via the gas refrigerant pipe 7. Then, the gas refrigerant heats the indoor air in the use-side heat exchanger 52 and is condensed to become a refrigerant in a liquid state or a gas-liquid two-phase state. The refrigerant in the liquid state or the gas-liquid two-phase state is sent to the heat source unit 2 via the use side expansion valve 51 and the liquid refrigerant pipe 6.
  • This liquid refrigerant is decompressed by the heat-source-side expansion valve 24 and then evaporated in the heat-source-side heat exchanger 23.
  • This gas refrigerant is again sucked into the compressor 21 via the four-way switching valve 22. In this way, the heating operation is performed.
  • Refrigerant and refrigeration oil used in existing air conditioners As described above, in the air-conditioning apparatus 1, the working refrigerant is circulating in the utilization unit 5, the heat source unit 2, and the refrigerant pipes 6 and 7 during the air-conditioning operation.
  • the refrigerating machine oil filled together with the working refrigerant and used for lubrication of the compressor 21 is also circulated in the working refrigerant to some extent.
  • the existing air-conditioning apparatus 1 uses “ ⁇ -type 1 to 1 ⁇ -type” refrigerant as the working refrigerant, and uses mineral oil-based refrigeration oil (hereinafter, “existing refrigeration oil”) as the refrigeration oil.
  • existing refrigeration oil mineral oil-based refrigeration oil
  • mineral oil-based refrigeration oil is used in the air conditioner 1 before use, the heat source unit 2, and the refrigerant pipes 6 and 7 before renewal. Will remain.
  • the working refrigerant was HFC-based refrigerant R41OA (composition: R32: 50 wt%, R125: 50 wt%) and how to update the usage unit 5 and the heat source unit 2 to the usage unit 105 and the heat source unit 102 will be described with reference to FIG.
  • Pump-down operation is performed to recover the working refrigerant including the existing refrigerating machine oil in the existing air conditioner 1. That is, with the liquid-side shut-off valve 25 of the heat source unit 2 closed, the same operation as the above-described cooling operation is performed to drive the working refrigerant including the existing refrigerating machine oil into the heat source unit 2, and thereafter, the gas side The shut-off valve 26 is closed and the cooling operation is terminated, and the working refrigerant including the existing refrigerating machine oil is recovered in the heat source unit 2.
  • the usage unit 5 and the heat source unit 2 are updated to the newly installed usage unit 105 and the heat source unit 102.
  • the newly installed heat source unit 102 is mainly composed of a compressor 1 2 "I, a four-way switching valve 1 2 2 and a heat source side heat exchanger 1 2 3 It comprises a heat source side expansion valve 124, a liquid side stop valve 125, a gas side stop valve 126, and a refrigerant pipe connecting these.
  • the heat source unit 102 further includes an oil collecting device 127 as shown in FIG. Have.
  • the oil collecting device 1 2 7 mainly consists of the existing refrigeration oil for the CFC-based refrigerant or HCFC-based refrigerant used in the existing air conditioner 1 remaining in the diverted liquid refrigerant pipe 6 and gas refrigerant pipe 7. It is a device for collecting the water.
  • the oil collecting device 127 is built in the heat source unit 102.
  • the compressor 122 connects the four-way switching valve 122 to the suction side of the compressor 121. It is provided in one suction pipe 1 35.
  • the oil collecting device 1 27 includes an oil collecting container 13 1, an inlet pipe 13 2 including an inlet valve 13 2 a, and an outlet pipe 1 including a check valve 13 3 a. 3 and a bypass valve 1 3 4.
  • the oil collecting vessel 13 1 is connected to the suction pipe 13 5 via the inlet pipe 13 2 and the outlet pipe 13 3, and the working refrigerant also acts as a cleaning agent flowing through the suction pipe 13 5 It is possible to separate the existing refrigerating machine oil in the working refrigerant.
  • the inlet pipe 13 2 is a pipe for introducing the refrigerant into the oil collecting vessel 13 1, and is branched from the suction pipe 13 5 and connected to the inlet of the oil collecting vessel 13 1 .
  • the inlet pipe 13 extends to the inside of the oil collecting vessel 13 1.
  • the outlet pipe 1 3 3 is a pipe for returning the working refrigerant separated from the existing refrigerating machine oil in the oil collection vessel 1 3 1 to the suction pipe 1 3 5 again, and is located downstream of the inlet pipe 1 3 2 It is branched from the suction pipe 13 5 and connected to the outlet of the oil collecting vessel 13 1.
  • the bypass valve 1 3 4 can shut off the flow of the working refrigerant between the connection between the suction pipe 1 35 and the inlet pipe 1 3 2 and the connection between the suction pipe 1 3 5 and the outlet pipe 1 3 3. Is provided.
  • the newly used unit 105 mainly comprises a user-side expansion valve 151, a user-side heat exchanger 152, and a refrigerant pipe connecting them. Have been.
  • the work of evacuating the utilization unit 105 and the refrigerant pipes 6 and 7 is performed. Thereafter, the liquid-side shutoff valve 125 and the gas-side shutoff valve 126 of the heat source unit 102 are opened, and the working refrigerant (R41) containing the refrigerating machine oil previously filled in the heat source unit 102 is opened. OA) is filled into the entire air conditioner 101 after the renewal.
  • the existing refrigerant pipes 6 and 7 are long, and the required amount of refrigerant is not enough if only the amount of refrigerant previously filled in the heat source unit 102 is sufficient.
  • the refrigerant is further externally charged.
  • an ester or ether refrigerating machine oil suitable for the C-based refrigerant such as R410 as the working refrigerant is used as the refrigerating machine oil contained in the working refrigerant to be charged.
  • the heat source unit 2 and the use unit 5 are updated to the heat source unit 102 and the use unit 105, and the existing liquid refrigerant pipe 6 and gas refrigerant pipe 7 are used as the existing refrigerant pipes.
  • the existing refrigerating machine oil remains with dirt and oil, etc. after the installation work, and the existing refrigerating machine oil containing these foreign substances is separated and removed from the refrigerant circuit before normal air-conditioning operation is performed. There is a need to.
  • the entire refrigerant circuit of the air conditioner 101 is cleaned using the working refrigerant composed of R41OA as a cleaning agent, and the oil is collected into the refrigerant circuit by the oil collecting device 127.
  • O Recover existing refrigerating machine oil by collecting o
  • the oil collecting device 127 is made usable. That is, the bypass valve 1334 is closed, the inlet valve 1332a is opened, and the circuit is configured so that the refrigerant is introduced into the oil collecting container 1331 during operation.
  • the same operation as the cooling operation is performed.
  • the circuit is configured to use the oil collecting device 127
  • the working refrigerant flowing through the suction pipe 135 is compressed via the oil collecting device 127. Inhaled.
  • the working refrigerant flows into the oil collecting device 127 together with the dust and the like remaining in various places in the refrigerant circuit and the existing refrigeration oil remaining in the liquid refrigerant piping 6 and the gas refrigerant piping ⁇ .
  • the working refrigerant including the existing refrigerating machine oil and the like is introduced into a lower portion of the oil collecting container 131, via an inlet pipe 132 extending to the inside of the container.
  • the foreign matter and refrigerating machine oil entrained in the working refrigerant are collected at the lower part of the oil collecting container 13 1, and only the working refrigerant from which the foreign matter and the refrigerating machine oil have been removed passes through the outlet pipe 13 3. Then, it is returned to the suction pipe 1 35 and sucked into the compressor 1 2 1 again.
  • the opening of the usage-side expansion valve 15 1 is made larger than the opening during normal cooling operation, and the pressure of the refrigerant after the pressure reduction is increased to near the saturation pressure to make it wet (gas-liquid two-phase flow). You may. Then, since the refrigerant flowing through the gas refrigerant pipe 7 is in a wet state, the gas refrigerant The existing refrigerating machine oil remaining in the pipe 7 is easily mixed with the liquid working refrigerant, and the cleaning effect is enhanced. Then, the working refrigerant in a liquid state flows into the oil collecting container 131 together with the existing refrigerating machine oil.
  • the working refrigerant in a liquid state accumulates together with the existing cooling machine oil and the like, and the working refrigerant in the gas state, in which the existing cooling machine oil and the working refrigerant in the liquid state are separated, is supplied to the outlet pipe. From 133, it is sent out to the suction pipe 135 to be sucked into the compressor 121.
  • the oil collecting device 127 After performing the pipe cleaning operation until a predetermined time has elapsed, the oil collecting device 127 is not used. That is, the bypass valve 134 is opened, the inlet valve 132a is closed, and the circuit is switched to a circuit configuration (normal operation state) in which the working refrigerant bypasses the oil collecting container 131.
  • the utilization unit prepared for the experiment and the heat source unit were connected by a refrigerant pipe, mineral oil and an HFC-based refrigerant for the experiment were put into the refrigerant pipe, and the same circulation operation as above was performed. This was done by measuring the amount of residual mineral oil.
  • Fig. 4 is a graph showing the results of measuring the operation time until the amount of mineral oil reaches 5000 ppm when an experiment was performed using a refrigerant mixture (4 types) of R32 and R125.
  • the amount of residual mineral oil is shown as a concentration relative to the amount of refrigerating machine oil charged together with the changed working refrigerant.
  • the operation time until the residual mineral oil becomes 5000 ppm or less increases, and when the R32 composition becomes larger, the operation time until the mineral oil becomes 5000 ppm or less decreases. Inclination The direction was seen.
  • R32 was 4 ow% or more, the operation time until the amount of mineral oil became 5000 ppm or less tended to be almost constant in about 35 to 40 minutes.
  • the method of updating the air conditioner 101 using the HFC-based refrigerant as the working refrigerant while diverting the refrigerant pipes 6 and 7 of the existing air conditioner 1 of the present embodiment has the following features. .
  • an HFC-based refrigerant (specifically, R410A) containing R32 or more by 40 wt% is used as a cleaning agent.
  • R410A HFC-based refrigerant
  • the use of a cleaning agent, such as R410A, that contains 4% or more of R32 and does not contain R134a, further enhances the cleaning capacity, and reduces the amount of refrigerant used. It is possible to contribute to the reduction of the cleaning time and the cleaning operation time.
  • the same R41 OA as the cleaning agent used in the pipe cleaning operation is used as the working refrigerant. Since it is not necessary to replace the refrigerant later, it can contribute to a reduction in the time required for the entire work of updating the air conditioner.
  • an HFC-based refrigerant containing R32 at 40 wt% or more is used as the working refrigerant.
  • the existing refrigeration oil remaining in the existing refrigerant pipes 6 and 7 can be collected with an oil collection device with a high cleaning effect. It can be introduced into 127 and separated and removed. As a result, for example, the time required for the pipe cleaning operation can be reduced as compared with the case where an HFC-based refrigerant having a small R32 composition such as R407C is used.
  • the working refrigerant as a cleaning agent is made to be in a wet state and flows through the gas refrigerant pipe 7, so that the refrigerant is easily mixed with the existing refrigerating machine oil remaining in the gas refrigerant pipe 7, and further cleaned. Since the capacity is increased, it can contribute to shortening of the cleaning operation time.
  • an oil collection device 127 is provided in the renewed heat source unit 102, and R 3 is used as the working refrigerant of the renewed air conditioner 101.
  • R 3 is used as the working refrigerant of the renewed air conditioner 101.
  • R32 is used as a cleaning agent before filling the working refrigerant with 4Owt. %
  • a pump-down operation is performed to recover the working refrigerant including the existing refrigerating machine oil in the existing air conditioner 1. That is, with the liquid-side shut-off valve 25 of the heat source unit 2 closed, the same operation as the above-described cooling operation is performed to drive the working refrigerant including the existing refrigerating machine oil into the heat source unit 2, and thereafter, the gas side The shut-off valve 26 is closed and the cooling operation is terminated, and the refrigerant including the existing refrigerating machine oil is collected in the heat source unit 2. ⁇ Device update step S12>
  • the use unit 5 and the heat source unit 2 are updated to the newly used unit 105 and the heat source unit 102.
  • the newly installed heat source unit 102 is mainly composed of a compressor 121, a four-way switching valve 122, a heat source side heat exchanger 123, a heat source side expansion valve 124, and a liquid side. It comprises a shut-off valve 125, a gas-side shut-off valve 126, and a refrigerant pipe connecting these. Further, the heat source unit 102 further includes an oil collecting device 127 as in the first embodiment.
  • the work of evacuating the utilization unit 105 and the refrigerant pipes 6 and 7 is performed. Thereafter, the liquid-side shut-off valve 125 and the gas-side shut-off valve 126 of the heat source unit 102 are opened, and a cleaning agent made of an HFC-based refrigerant containing 40 wt% or more of R32 previously filled in the heat source unit 102 (for example, R41 OA) to fill the entire air conditioner 101 after the renewal.
  • a cleaning agent made of an HFC-based refrigerant containing 40 wt% or more of R32 previously filled in the heat source unit 102 for example, R41 OA
  • the cleaning agent used for the pipe cleaning operation is discharged from the refrigerant circuit, and instead, R407C and R134a, which are working refrigerants, are filled.
  • cleaning with the HFC-based refrigerant containing 40 wt% or more of R32 can improve the existing refrigerant piping. Cleaning can be performed in a short time.
  • the working refrigerant after the change is R407C and the detergent is R41OA
  • only one component or all components of the refrigerant component constituting the working refrigerant after the change of the detergent ie, , R32, R125, R134a
  • the refrigerant component not contained in the working refrigerant will not remain in the refrigerant pipe after cleaning, so the cleaning agent and the changed operation
  • Refrigerant replacement work becomes easy.
  • the oil collecting device is provided in the updated heat source unit to clean the pipes.However, without providing such an oil collecting device, the refrigerant is transferred from the existing air conditioner to the refrigerant. After the recovery, the batch washing may be repeated with an HFC-based refrigerant containing 40 wt% or more of R32, and then the working refrigerant may be filled. Even in this case, advantages such as reduction of the number of repetitions can be obtained.
  • both the heat source unit and the use unit are updated, but the present invention is not limited to this, and the present invention is applicable even if only the heat source unit is updated or only the use unit is updated. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Air Conditioning Control Device (AREA)
  • Cleaning In General (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 本発明は、鉱油系の冷凍機油を使用する空気調和装置の冷媒配管を流用しつつ、作動冷媒をHFC系冷媒に変更する際に、冷媒使用量の低減や洗浄運転の時間短縮を可能にする。鉱油系の冷凍機油を使用する空気調和装置1の冷媒配管6、7を流用しつつ、作動冷媒をHFC系冷媒からなる作動冷媒に変更する際に、R32を40wt%以上含むHFC系冷媒を洗浄剤として用いて冷媒配管6、7内を洗浄し、残留する冷凍機油を除去する。

Description

明 細 書 冷媒配管の洗浄方法、 空気調和装置の更新方法、 及び、 空気調和装置 技術分野
本発明は、 冷媒配管の洗浄方法、 空気調和装置の更新方法、 及び、 空気調和装 置に関する。 背景技術
従来の空気調和装置の一つとして、 ビル等の空気調和に用いられる空気調和装 置がある。 このような空気調和装置は、 主に、 圧縮機及び熱源側熱交換器を有す る熱源ユニットと、 利用側熱交換器を有する利用ユニットと、 これらのユニット 間を接続するためのガス冷媒配管及び液冷媒配管とを備えている。 そして、 この ような空気調和装置の作動冷媒としては、 オゾン層の破壊等の環境上の問題を考 慮して、 H F C (ハイド口フルォロカーボン) 系冷媒が用いられるようになって いる。
このような空気調和装置において、 既設ビル等における空気調和装置の更新ェ 事を行う場合、 ェ期の短縮及びコストダウンのために、 熱源ユニットと利用ュニ ッ卜とを接続するガス冷媒配管や液冷媒配管を流用することがある。 このような 場合には、 空気調和装置の設置工事は、 主に、 以下のような工程によって行われ る。
①冷媒回収
②機器据付工事
③配管》配線工事 (既設のガス冷媒配管や液冷媒配管を流用)
④真空引き
⑤冷媒充填
このような工事工程によって、 配管■配線工事の簡略化を中心としたェ期の短 縮化が図られている。
しかし、 既設のガス冷媒配管及び液冷媒配管内には、 ゴミゃ油分等の異物が残 留しているため、 通常の空調運転を行う前に、 冷媒配管の洗浄を行って異物を除 去する必要がある。 特に、 このような既設の空気調和装置において、 作動冷媒と して、 CFC (クロ口フルォロカーボン) 系冷媒又は HCFC (ハイド口クロ口 フルォロカ一ボン) 系冷媒が使用されている場合には、 既設のガス冷媒配管及び 液冷媒配管内に C F C系冷媒又は H C F C系冷媒用の冷凍機油が残っている。 こ のため、 更新後の H FC系冷媒からなる作動冷媒用の冷凍機油に相溶せずに冷媒 回路内の異物として挙動し、 冷媒回路を構成する膨張弁やキヤビラリ等を閉塞さ せたり、 圧縮機を損傷させる可能性がある。
また、 既設の CFC系冷媒又は HCFC系冷媒用の冷凍 油は、 従来からナフ テン系等の鉱油系の極性をもたない冷凍機油が使用されている。 一方、 新設の H F C系冷媒の冷凍機油としては、 エステル系やエーテル系の極性をもつ冷凍機油 が使用されている。 このため、 〇「〇系冷媒又は1"10「〇系冷媒用の冷凍機油が 残っていると、 作動冷媒中の冷凍機油の溶解度が変化し、 HFC系冷媒の本来の 冷凍性能が得られなくなるおそれがある。 この点からも、 既設の冷媒配管の洗浄 が必要である。
このような既設のガス冷媒配管及び液冷媒液配管を流用しつつ、 空気調和装置 の更新を行う際の冷媒配管の洗浄方法として、 いくつかの方法が提供されている その第 1の方法としては、 鉱油系の冷凍機油に対する相溶性の高い HC FC系 冷媒 (具体的には、 HCFC141 bや HCFC225等) を洗浄剤として用い る方法がある。
また、 第 2の方法としては、 熱源ユニットや利用ユニットを更新した後、 HF C系冷媒を用いてバッチ洗浄を繰り返し行う方法がある (特許 3149640号 公報参照。 ) 。
さらに、 第 3の方法としては、 熱源ユニットや利用ユニットを更新するととも に冷媒回路内に油捕集装置を設けて、 新設用の H FC系冷媒を循環する運転を行 うことで、 既設の冷媒配管を洗浄する方法がある (特許 3361765号公報及 ぴ特開 2001 -41613号公報参照。 ) 。
上記の第 1の冷媒配管の洗浄方法は、 冷媒配管内に残留する鉱油系の冷凍機油 に対する相溶性の高い HCFC系冷媒を使用するため、 洗浄能力は高いが、 ォゾ ン層の破壊等の環境問題から使用すべきでない。
また、 第 2の冷媒配管の洗浄方法は、 H FC系冷媒を使用する点で環境問題に 対しての配慮はなされているが、 バッチ洗浄を繰り返して行う必要があり、 冷媒 の使用量が増加するため、 経済的ではない。
一方、 第 3の冷媒配管の洗浄方法は、 冷媒を循環させる運転を行うことによつ て連続的に洗浄することが可能になるため、 バッチ洗浄を繰り返して行う必要が なくなリ、 冷媒の使用量が削減できる点では経済的である。
しカヽし、 第 3の冷媒配管の洗浄方法において、 R407Cや R 1 34 aを作動 冷媒として使用する熱源ュニット及び利用ュニッ卜に更新する場合、 鉱油系の冷 凍機油に対する相溶性が小さい R 407 Cや R 1 34 aを用いて配管洗浄運転を 行うため、 配管洗浄運転における洗浄効果が小さく、 循環される冷媒の使用量や 洗浄運転の時間が増加する傾向にある。 このことは、 第 2の冷媒配管の洗浄方法 においても当てはまり、 バッチ洗浄の繰り返し回数や 1バッチに使用される冷媒 の使用量の増加を生じさせるものである。 発明の開示
本発明の課題は、 鉱油系の冷凍機油を使用する空気調和装置の冷媒配管を流用 しつつ、 作動冷媒を H FC系冷媒に変更する際に、 冷媒使用量の低減や洗浄運転 の時間短縮を可能にすることにある。
請求項 1に記載の冷媒配管の洗浄方法は、 鉱油系の冷凍機油を使用する空気調 和装置の冷媒配管を流用しつつ、 作動冷媒を H FC系冷媒からなる作動冷媒に変 更する際に、 R 32を 40 w t %以上含む H F C系冷媒を洗浄剤として用いて冷 媒配管内を洗浄し、 残留する冷凍機油を除去する。
この冷媒配管の洗浄方法では、 洗浄剤として、 R32を 40w t%以上含む H FC系冷媒を使用している。 ここで、 R32は、 H FC系冷媒の一種であり、 H CFC系冷媒の R 22の代替冷媒として、 よく用いられる R407C (組成は、 R 32 : 23 w t %、 R 1 25 : 25 w t %、 R 1 34 a : 52 w t %) に含ま れる冷媒である。 一般に、 H F C系冷媒は、 鉱油系の冷凍機油に対する相溶性が低いため、 冷媒 配管の洗浄に用いても十分な洗浄能力を得ることができないと考えられており、 当然、 R 3 2についても冷媒配管の洗浄能力は高いものではないと考えられてい た。 し力、し、 本願発明者は、 1^ 3 2を4 0 %以上含む^1 〇系冷媒を用ぃて 冷媒配管内に残留する鉱油系の冷凍機油を洗浄したところ、 R 4.0 7 Cのような R 3 2の含有量の小さい H F C系冷媒に比べて、 洗浄効果が高いことを実験的に 見いだした。
これにより、 従来の冷媒配管の洗浄方法、 例えば、 H F C系冷媒を用いてバッ チ洗浄を繰リ返し行う方法ゃ冷媒回路内に油捕集装置を設けて H F C系冷媒を循 環する運転を行う方法等において、 冷媒使用量の低減や洗浄運転の時間短縮が可 能となる。
請求項 2に記載の冷媒配管の洗浄方法は、 請求項 1において、 冷媒配管内に湿 リガス状態の洗浄剤を流すことによつて洗浄する。
この冷媒配管の洗浄方法では、 洗浄剤を湿り状態にして冷媒配管内を流すこと によって、 冷媒配管内に残留する鉱油系の冷凍機油と混合されやすい状態にして、 さらに洗浄能力を高めることができるため、 冷媒使用量の低減や洗浄運転の時間 短縮に寄与することができる。
請求項 3に記載の冷媒配管の洗浄方法は、 請求項 1又は 2において、 洗浄剤は, R 1 3 4 aを含んでいない。
この冷媒配管の洗浄方法では、 R 3 2を 4 0 w t %以上含み、 かつ、 R 1 3 4 aを含まない洗浄剤を使用することによって、 さらに洗浄能力を高めることがで きるため、 冷媒の使用量の低減や洗浄運転の時間短縮に寄与することができる。 請求項 4に記載の冷媒配管の洗浄方法は、 請求項 1 〜3のいずれかにおいて、 洗浄剤は、 変更後の作動冷媒を構成する冷媒成分の一成分又は全成分のみから構 成される冷媒である。
この冷媒配管の洗浄方法では、 洗浄後の冷媒配管内に、 作動冷媒に含まれない 冷媒成分が残留してしまうことがないため、 洗浄剤と作動冷媒との交換作業が容 易である。
請求項 5に記載の空気調和装置の更新方法は、 既設の空気調和装置の冷媒配管 を既設冷媒配管として流用しつつ、 前記既設の空気調和装置を構成する機器の少 なくとも一部を更新する空気調和装置の更新方法であって、 冷媒回収ステップと、 機器更新ステップと、 冷媒充填ステップと、 配管洗浄ステップとを備えている。 冷媒回収ステップは、 既設の空気調和装置から鉱油系の冷凍機油からなる既設冷 凍機油を含む作動冷媒を回収する。 機器更新ステップは、 既設の空気調和装置を 構成する機器の少なくとも一部を更新する。 冷媒充填ステップは、 R 3 2を 4 0 w t %以上含む H F C系冷媒からなる作動冷媒を機器更新後の空気調和装置内に 充填する。 配管洗浄ステップは、 冷媒充填ステップで充填された作動冷媒を循環 させて、 既設冷媒配管内に残留した既設冷凍機油を作動冷媒に同伴させ、 作動冷 媒中から既設冷凍機油を分離することにより、 既設冷媒配管内に残留した既設冷 凍機油を除去する。
この空気調和装置の更新方法では、 作動冷媒として R 3 2を 4 0 w t %以上含 む H F C系冷媒を使用しているため、 作動冷媒を洗浄剤として使用しても、 高い 洗浄効果を得ることができ、 洗浄運転の時間短縮が可能となる。
請求項 6に記載の空気調和装置の更新方法は、 請求項 5において、 配管洗浄ス テツプでは、 既設冷媒配管内に湿リガス状態の作動冷媒が流れるように、 作動冷 媒を循環させている。
この空気調和装置の更新方法では、 洗浄剤としての作動冷媒を湿り状態にして 冷媒配管内を流すことによって、 冷媒配管内に残留する鉱油系の冷凍機油と混合 されやすい状態にして、 さらに洗浄能力を高めることができるため、 洗浄運転の 時間短縮に寄与することができる。
請求項 7に記載の空気調和装置は、 既設の空気調和装置の構成機器の一部を更 新するとともに、 作動冷媒を H F C系冷媒に変更して構成される空気調和装置で あって、 既設冷媒配管と、 熱源ユニット及び利用ユニットと、 油捕集装置とを備 えている。 既設冷媒配管は、 既設の空気調和装置に使用され、 鉱油系の冷凍機油 からなる既設冷凍機油が残留している。 熱源ユニット及び利用ユニットは、 既設 冷媒配管を介して接続されている。 油捕集装置は、 通常の空調運転に先立って、 変更後の作動冷媒を循環させた際に、 循環される作動冷媒を導入して、 作動冷媒 に同伴した既設冷凍機油を分離することが可能である。 そして、 変更後の作動冷 媒は、 R 3 2を 4 O w t %以上含む H F C系冷媒である。
この空気調和装置では、 作動冷媒として R 3 2を 4 0 w t %以上含む H F C系 冷媒を使用している。 このため、 通常の空調運転に先立って、 作動冷媒を洗浄剤 として使用して循環運転を行うと、 高い洗浄効果をもって、 既設冷媒配管に残留 した既設冷凍機油を油捕集装置に導入し、 分離除去することができる。 これによ リ、 洗浄運転の時間短縮が可能となる。 図面の簡単な説明
第 1図は、 本発明の第 1及び第 2実施形態にかかる既設の空気調和装置の概略 構成図である。
第 2図は、 本発明の第 1及び第 2実施形態にかかる更新後の空気調和装置の概 略構成図である。
第 3図は、 本発明の第 1実施形態にかかる空気調和装置の更新方法の手順を示 すフローチヤ一トである。
第 4図は、 R 3 2の洗浄効果を示すグラフである。
第 5図は、 本発明の第 2実施形態にかかる空気調和装置の更新方法の手順を示 すフローチヤ一卜である。 発明を実施するための最良の形態
以下、 図面に基づいて、 本発明の実施形態について説明する。
[第 1実施形態]
( 1 ) 既設の空気調和装置の構成
①全体構成
図 1は、 既設の空気調和装置 1の冷媒回路の概略図である。 空気調和装置 1は、 ビル等の建物内の冷暖房等の空気調和に用いられる装置であり、 1台の熱源ュニ ット 2と、 それに並列に接続される複数 (本実施形態では、 2台) の利用ュニッ 卜 5と、 熱源ュニット 2と利用ュニット 5とを接続するための液冷媒配管 6及び ガス冷媒配管 7とを備えている。
②熱源ュニット 熱源ュニッ卜 2は、 建物の屋上等に設置されており、 主に、 圧縮機 2 1 と、 四 路切換弁 2 2と、 熱源側熱交換器 2 3と、 熱源側膨張弁 2 4と、 液側閉鎖弁 2 5 と、 ガス側閉鎖弁 2 6と、 これらを接続する冷媒配管とから構成されている。 圧縮機 2 1は、 ガス冷媒を吸入して圧縮するための機器である。 四路切換弁 2 2は、 冷房運転と暖房運転との切り換え時に、 冷媒回路内における冷媒の流れの 方向を切り換えるための弁であり、 冷房運転時には圧縮機 2 1の吐出側と熱源側 熱交換器 2 3のガス側とを接続するとともに圧縮機 2 1の吸入側とガス側閉鎖弁 2 6とを接続し、 暖房運転時には圧縮機 2 1の吐出側とガス側閉鎖弁 2 6とを接 続するとともに圧縮機 2 1の吐出側と熱源側熱交換器 2 3のガス側とを接続する ことが可能である。 熱源側熱交換器 2 3は、 空気や水を熱源として、 冷媒を蒸発 又は凝縮させるための熱交換器である。 熱源側膨張弁 2 4は、 熱源側熱交換器 2 3の液側に設けられた冷媒圧力ゃ冷媒流量の調節を行うための弁である。 液側閉 鎖弁 2 5及びガス側閉鎖弁 2 6は、 それぞれ、 液冷媒配管 6及びガス冷媒配管 7 に接続されている。
③利用ュニット
利用ユニット 5は、 建物内の各所に設置されており、 主に、 利用側膨張弁 5 1 と、 利用側熱交換器 5 2と、 これらを接続する冷媒配管とから構成されている。 利用側熱交換器 5 2は、 冷媒を蒸発又は凝縮させて室内空気の冷却又は加熱を 行うための熱交換器である。 利用側膨張弁 5 1は、 利用側熱交換器 5 2の液側に 設けられた冷媒圧力ゃ冷媒流量の調節を行うための弁である。
④冷媒配管
液冷媒配管 6及びガス冷媒配管 7は、 熱源ュニッ卜 2と利用ュニット 5とを接 続する冷媒配管であり、 その大部分が建物内の壁内や天井裏に配置されている。 そして、 空気調和装置 1の更新時には、 少なくとも流用される既設冷媒配管と呼 ばれる冷媒配管である。
( 2 ) 既設の空気調和装置の動作
次に、 既設の空気調和装置 1の動作について、 図 1を用いて説明する。
①冷房運転
冷房運転時は、 四路切換弁 2 2が図 1の実線で示される状態、 すなわち、 圧縮 機 2 1の吐出側が熱源側熱交換器 2 3のガス側に接続され、 かつ、 圧縮機 2 1の 吸入側がガス側閉鎖弁 2 6側に接続された状態となっている。 また、 液側閉鎖弁 2 5、 ガス側閉鎖弁 2 6及び熱源側膨張弁 2 4は開にされ、 利用側膨張弁 5 1は 冷媒を減圧するように開度調節されている。
この冷媒回路の状態で、 熱源ュニッ卜 2の圧縮機 2 1を起動すると、 作動冷媒 は、 圧縮機 2 1に吸入されて圧縮された後、 四路切換弁 2 2を経由して熱源側熱 交換器 2 3に送られて凝縮されて液冷媒となる。 この液冷媒は、 熱源側膨張弁 2 4、 液側閉鎖弁 2 5及び液冷媒配管 6を経由して、 利用ユニット 5に送られる。 そして、 この液冷媒は、 利用側膨張弁 5 1で減圧された後、 利用側熱交換器 5 2 において室内空気を冷却するとともに蒸発されてガス冷媒となる。 このガス冷媒 は、 ガス冷媒配管 7、 ガス側閉鎖弁 2 6及び四路切換弁 2 2を経由して、 再び、 圧縮機 2 1に吸入される。 このようにして、 冷房運転が行われる。 暖房運転時は、 四路切換弁 2 2が図 1の破線で示される状態、 すなわち、 圧縮 機 2 1の吐出側がガス側閉鎖弁 2 6に接続され、 かつ、 圧縮機 2 1の吸入側が熱 源側熱交換器 2 3のガス側に接続された状態となっている。 また、 液側閉鎖弁 2 5、 ガス側閉鎖弁 2 6及び利用側膨張弁 5 1は開にされ、 熱源側膨張弁 2 4は冷 媒を減圧するように開度調節されている。
この冷媒回路の状態で、 熱源ュニット 2の圧縮機 2 1を起動すると、 作動冷媒 は、 圧縮機 2 1に吸入されて圧縮された後、 四路切換弁 2 2、 ガス側閉鎖弁 2 6 及びガス冷媒配管 7を経由して、 利用ユニット 5に送られる。 そして、 このガス 冷媒は、 利用側熱交換器 5 2において室内空気を加熱するとともに凝縮されて液 状態又は気液二相状態の冷媒となる。 この液状態又は気液二相状態の冷媒は、 利 用側膨張弁 5 1及び液冷媒配管 6を経由して熱源ュニット 2に送られる。 この液 冷媒は、 熱源側膨張弁 2 4で減圧された後、 熱源側熱交換器 2 3において、 蒸発 される。 このガス冷媒は、 四路切換弁 2 2を経由して、 再び、 圧縮機 2 1に吸入 される。 このようにして、 暖房運転が行われる。
( 3 ) 既設の空気調和装置の更新
①既設の空気調和装置に使用された冷媒及び冷凍機油について 上記のように、 空気調和装置 1においては、 空調運転中、 利用ュニット 5、 熱 源ユニット 2及び冷媒配管 6、 7内を作動冷媒が循環している。 そして、 作動冷 媒とともに充填され圧縮機 2 1の潤滑に使用される冷凍機油も作動冷媒にいくら か混じって循環している。
ここで、 既設の空気調和装置 1には、 作動冷媒として、 〇「〇系ゃ1~1〇 〇系 冷媒が用いられており、 冷凍機油として、 鉱油系の冷凍機油 (以下、 既設冷凍機 油) が用いられている。 そして、 上記のような冷暖房運転を行うことで、 更新前 の空気調和装置 1の利用ユニット 5、 熱源ユニット 2及び冷媒配管 6、 7内には、 鉱油系の冷凍機油が残留することになる。
②作動冷媒の変更、 利用ュニッ卜及び熱源ュニッ卜の更新
次に、 既設の空気調和装置 1の冷媒配管 6、 7を既設冷媒配管として流用しつ つ、 作動冷媒を H F C系冷媒である R 4 1 O A (組成は、 R 3 2 : 5 0 w t %、 R 1 2 5 : 5 0 w t %) に変更するとともに、 利用ユニット 5及び熱源ユニット 2を利用ユニット 1 0 5及び熱源ユニット 1 0 2に更新する方法について、 図 3 に基づいて説明する。
<冷媒回収ステップ S 1 >
既設の空気調和装置 1内の既設冷凍機油を含む作動冷媒を回収するために、 ポ ンプダウン運転を行う。 すなわち、 熱源ユニット 2の液側閉鎖弁 2 5を閉止した 状態で、 上記の冷房運転と同様な運転を行って、 熱源ユニット 2内に既設冷凍機 油を含む作動冷媒を追い込み、 その後、 ガス側閉鎖弁 2 6を閉止するとともに冷 房運転を終了し、 熱源ュニット 2内に既設冷凍機油を含む作動冷媒を回収する。
<機器更新ステップ S 2 >
次に、 図 2に示すように、 利用ユニット 5及び熱源ユニット 2を新設の利用ュ ニット 1 0 5及び熱源ュニット 1 0 2に更新する。
新設の熱源ュニット 1 0 2は、 主に、 既設の熱源ュニッ卜 2と同様、 主に、 圧 縮機 1 2 "Iと、 四路切換弁 1 2 2と、 熱源側熱交換器 1 2 3と、 熱源側膨張弁 1 2 4と、 液側閉鎖弁 1 2 5と、 ガス側閉鎖弁 1 2 6と、 これらを接続する冷媒配 管とから構成されている。
また、 熱源ユニット 1 0 2は、 図 2に示すように、 油捕集装置 1 2 7をさらに 備えている。 油捕集装置 1 2 7は、 主に、 流用される液冷媒配管 6及びガス冷媒 配管 7に残留した既設の空気調和装置 1で使用していた C F C系冷媒又は H C F C系冷媒用の既設冷凍機油を捕集するための装置である。 本実施形態において、 油捕集装置 1 2 7は、 熱源ユニット 1 0 2に.内蔵されており、 四路切換弁 1 2 2 と圧縮機 1 2 1の吸入側とを接続する圧縮機 1 2 1の吸入配管 1 3 5に設けられ ている。 油捕集装置 1 2 7は、 本実施形態において、 油捕集容器 1 3 1 と、 入口 弁 1 3 2 aを含む入口配管 1 3 2と、 逆止弁 1 3 3 aを含む出口配管 1 3 3と、 バイパス弁 1 3 4とを有している。
油捕集容器 1 3 1は、 吸入配管 1 3 5に入口配管 1 3 2及び出口配管 1 3 3を 介して接続されており、 吸入配管 1 3 5を流れる洗浄剤としても作用する作動冷 媒を導入して、 作動冷媒中の既設冷凍機油を分離することが可能である。 入口配 管 1 3 2は、 油捕集容器 1 3 1に冷媒を導入するための配管であり、 吸入配管 1 3 5から分岐されて、 油捕集容器 1 3 1の入口に接続されている。 入口配管 1 3 2は、 油捕集容器 1 3 1の容器内部まで延びている。 出口配管 1 3 3は、 油捕集 容器 1 3 1内で既設冷凍機油を分離した作動冷媒を再び吸入配管 1 3 5に戻すた めの配管であり、 入口配管 1 3 2の下流側の位置で吸入配管 1 3 5から分岐され 、 油捕集容器 1 3 1の出口に接続されている。 バイパス弁 1 3 4は、 吸入配管 1 3 5の入口配管 1 3 2との接続部と吸入配管 1 3 5の出口配管 1 3 3との接続部 との間の作動冷媒の流れを遮断可能に設けられている。
新設の利用ュニッ卜 1 0 5は、 主に、 既設の利用ュニット 5と同様、 利用側膨 張弁 1 5 1と、 利用側熱交換器 1 5 2と、 これらを接続する冷媒配管とから構成 されている。
<冷媒充填ステップ S 3 >
次に、 熱源ュニット 1 0 2の液側閉鎖弁 1 2 5及びガス側閉鎖弁 1 2 6を閉止 した状態で、 利用ユニット 1 0 5及び冷媒配管 6、 7の真空引き作業を行う。 そ の後、 熱源ュニッ卜 1 0 2の液側閉鎖弁 1 2 5及びガス側閉鎖弁 1 2 6を開けて、 熱源ユニット 1 0 2に予め充填された冷凍機油を含む作動冷媒 (R 4 1 O A ) を 更新後の空気調和装置 1 0 1全体に充填する。 尚、 既設の冷媒配管 6、 7の配管 が長く熱源ユニット 1 0 2に予め充填されていた冷媒量だけでは、 必要充填量に 満たない場合もあるが、 この場合は、 さらに外部から冷媒を充填を行う。 ここで、 充填される作動冷媒に含まれる冷凍機油は、 作動冷媒である R 4 1 0 等の^ 「 C系冷媒に適したエステル系又はエーテル系の冷凍機油が使用される。
<配管洗浄ステップ S 4 >
次に、 配管洗浄運転の動作について説明する。 空気調和装置 1 0 1は、 熱源ュ ニット 2及び利用ュニット 5を熱源ュニット 1 0 2及び利用ュニット 1 0 5に更 新して、 既設の液冷媒配管 6及びガス冷媒配管 7を既設冷媒配管として流用して いるため、 設置工事後に、 ゴミゃ油分等とともに、 既設冷凍機油が残留しており、 通常の空調運転を行う前に、 これらの異物を含む既設冷凍機油を冷媒回路内から 分離■除去する必要がある。 ここで説明する配管洗浄運転は、 空気調和装置 1 0 1の冷媒回路全体を R 4 1 O Aからなる作動冷媒を洗浄剤として用いて洗浄して、 油捕集装置 1 2 7によって冷媒回路内に残留する既設冷凍機油を捕集する運転で める o
まず、 油捕集装置 1 2 7を使用可能な状態にする。 すなわち、 バイパス弁 1 3 4を閉、 入口弁 1 3 2 aを開として、 運転時に冷媒が油捕集容器 1 3 1に導入さ れるような回路構成にしておく。
次に、 上記の冷房運転と同様な運転を行う。 但し、 油捕集装置 1 2 7を使用す るように回路構成しているため、 吸入配管 1 3 5を流れる作動冷媒は、 油捕集装 置 1 2 7を経由して圧縮機 1 2 1に吸入される。 この運転により、 作動冷媒は、 冷媒回路の各所に残留したゴミ等と、 液冷媒配管 6及びガス冷媒配管 Ίに残留し た既設冷凍機油とを同伴して油捕集装置 1 2 7に流入する。 この既設冷凍機油等 を含む作動冷媒は、 容器内部まで延びる入口配管 1 3 2を経由して、 油捕集容器 1 3 1の下部に導入される。 そして、 作動冷媒中に同伴した異物及び冷凍機油は 、 油捕集容器 1 3 1の下部で捕集されて、 異物及び冷凍機油が除去された作動冷 媒のみが、 出口配管 1 3 3を経由して吸入配管 1 3 5に戻されて、 圧縮機 1 2 1 に再び吸入される。
ここで、 利用側膨張弁 1 5 1の開度を通常の冷房運転時の開度よりも大きくし て、 減圧後の冷媒圧力を飽和圧力付近まで高めて湿り状態 (気液二相流) にして もよい。 すると、 ガス冷媒配管 7を流れる冷媒が湿り状態であるため、 ガス冷媒 配管 7に残留する既設冷凍機油と液状の作動冷媒とが混合されやすい状態となり 、 洗浄効果が高まる。 そして、 油捕集容器 1 31には、 既設冷凍機油とともに液 状態の作動冷媒が流入する。 これにより、 油捕集容器 1 31の下部には、 既設冷 凍機油等とともに液状態の作動冷媒が溜まり、 既設冷凍機油及び液状態の作動冷 媒が分離されたガス状態の作動冷媒が出口配管 1 33から吸入配管 1 35に送り 出されて圧縮機 1 21に吸入される。
この配管洗浄運転を所定時間が経過するまで行った後、 油捕集装置 1 27を使 用しない状態にする。 すなわち、 バイパス弁 1 34を開、 入口弁 1 32 aを閉と して、 作動冷媒が油捕集容器 1 31をバイパスする回路構成 (通常運転の状態) に切り換える。
③配管洗浄運転の実験例
次に、 上記のような空気調和装置の更新を想定して、 種々の H FC系冷媒を洗 浄剤として用いて配管洗浄運転を行った際の洗浄効果を確認するための実験を行 つた。 以下に、 その実験結果について説明する。
実験は、 実験用に準備した利用ュニッ卜と熱源ュニッ卜とを冷媒配管で接続し、 その冷媒配管に鉱油と実験用の H FC系冷媒とを入れて、 上記と同様の循環運転 を行い、 残留する鉱油量を測定することにより行った。
ここで、 実験条件として、 冷媒配管には、 予め鉱油 500 G cを入れておき、 循環される実験用の H FC系冷媒の流量が約 300 L/m i nとなるように熱源 ュニッ卜の圧縮機を運転するとともに、 利用ュニッ卜の利用側膨張弁の開度調節 等を行い、 圧縮機の吸入配管における冷媒の乾き度が約 0. 9になるようにした。 また、 実験用の H FC系冷媒としては、 32と 1 25との混合冷媒 (4種 類) と、 R407Cを使用した。
図 4は、 R32と R1 25との混合冷媒 (4種類) を使用して実験を行った際 の鉱油量が 5000 p pmになるまでの運転時間を測定した結果を示すグラフで ある。 ここで、 残鉱油量は、 変更後の作動冷媒とともに充填される冷凍機油の油 量に対する濃度として示している。 図 4によると、 R32組成が小さくなると残 鉱油量が 5000 p pm以下になるまでの運転時間が大きくなリ、 R 32組成が 大きくなると鉱油量が 5000 p p m以下になるまでの運転時間が小さくなる傾 向が見られた。 しかも、 R32が 4 Ow t %以上になると鉱油量が 5000 p p m以下になるまでの運転時間が 35〜40分程度でほぼ一定になる傾向が見られ た。
これにより、 R 32が多く含まれる程、 冷媒配管の洗浄効果が高くなリ、 特に、 R32が 40w t%以上含まれる H FC系冷媒では、 高い洗浄効果とともに、 安 定した洗浄効果が得られることがわかる。
さらに、 図 4には示されていないが、 R407 Cを使用して実験した場合、 鉱 油量が 5000 p pm以下になるまでの運転時間が 1 36分であった。 この結果 は、 図 4の R32が 2 Ow t %の場合の運転時間よりも大きく、 洗浄効果として はやや劣るものであった。 実験前の予想では、 R407 Cに含まれる R32組成 が 23 w t %であるため、 図 4において R 32が 23 w t %のときの運転時間 (約 90分) になると思われた。 し力、し、 上記のように、 図 4から予想される運 転時間よりも明らかに大きく、 洗浄効果が劣るという結果となっている。 この原 因は、 明らかはないが、 R407Cには、 R 1 34 aが 52 w t %含まれている ことが起因していることが考えられる。 このため、 高い洗浄効果を得るためには、 R 1 34 aを含まない H FC系冷媒を使用することが望ましいことがわかる。
(4) 空気調和装置の更新方法の特徴
本実施形態の既設の空気調和装置 1の冷媒配管 6、 7を流用しつつ、 H FC系 冷媒を作動冷媒として使用する空気調和装置 1 01に更新する方法には、 以下の ような特徴がある。
①本実施形態の空気調和装置の更新方法では、 配管洗浄ステップにおいて、 洗 浄剤として、 R32を 40w t%以上含む H FC系冷媒 (具体的には、 R41 0 A) を使用しているため、 上記の実験結果にも述べたように、 高い洗浄効果が得 られ、 配管洗浄運転の時間短縮が可能となっている。
また、 洗浄剤としては、 R41 0 Aのように、 R32を 4 Ow t %以上含み、 かつ、 R1 34 aを含まない洗浄剤を使用することによって、 さらに洗浄能力を 高めることで、 冷媒使用量の低減や洗浄運転の時間短縮に寄与することができる。 さらに、 本実施形態の更新後の空気調和装置 1 01では、 作動冷媒として配管 洗浄運転において使用される洗浄剤と同じ R41 OAを使用しているため、 洗浄 後に、 冷媒の入れ替え作業が不要であるため、 空気調和装置の更新作業全体の時 間短縮に寄与することができる。
②更新後の空気調和装置 1 0 1では、 作動冷媒として R 3 2を 4 0 w t %以上 含む H F C系冷媒を使用している。 このため、 通常の空気調和運転に先立って、 作動冷媒を洗浄剤として使用して循環運転を行うと、 高い洗浄効果をもって、 既 設冷媒配管 6、 7に残留した既設冷凍機油を油捕集装置 1 2 7に導入し、 分離除 去することができる。 これにより、 例えば、 R 4 0 7 Cのような R 3 2組成の小 さい H F C系冷媒を用いる場合に比べて、 配管洗浄運転の時間短縮が可能となる。 また、 配管洗浄ステップにおいて、 洗浄剤としての作動冷媒を湿り状態にして ガス冷媒配管 7内を流すことによって、 ガス冷媒配管 7内に残留する既設冷凍機 油と混合されやすい状態になり、 さらに洗浄能力を高まるため、 洗浄運転の時間 短縮に寄与することができる。
[第 2実施形態]
第 1実施形態の空気調和装置の更新方法では、 更新後の熱源ュニット 1 0 2に 油捕集装置 1 2 7を設けるとともに、 更新後の空気調和装置 1 0 1の作動冷媒と して R 3 2を 5 O w t %含む R 4 1 0 Aを使用するケースであったため、 洗浄剤 として、 R 3 2を 4 0 w t o/o以上含む H F C系冷媒を別途準備する必要がなかつ たが、 更新後の空気調和装置 1 0 1の作動冷媒として洗浄効果の低い R 4 0 7 C や R 1 3 4 aを使用するケースでは、 作動冷媒を充填する前に、 洗浄剤として R 3 2を 4 O w t %以上含む H F C系冷媒を充填して第 1実施形態と同様の配管洗 浄運転を行うことも可能である。
以下に、 図 5を用いて、 本実施形態の空気調和装置の更新方法を説明する。
<冷媒回収ステップ S 1 1 >
第 1実施形態と同様に、 既設の空気調和装置 1内の既設冷凍機油を含む作動冷 媒を回収するために、 ポンプダウン運転を行う。 すなわち、 熱源ユニット 2の液 側閉鎖弁 2 5を閉止した状態で、 上記の冷房運転と同様な運転を行って、 熱源ュ ニット 2内に既設冷凍機油を含む作動冷媒を追い込み、 その後、 ガス側閉鎖弁 2 6を閉止するとともに冷房運転を終了し、 熱源ュニット 2内に既設冷凍機油を含 む冷媒を回収する。 <機器更新ステップ S12>
次に、 第 1実施形態と同様に、 利用ユニット 5及び熱源ユニット 2を新設の利 用ュニット 105及び熱源ュニット 102に更新する。
新設の熱源ュニット 102は、 既設の熱源ュニット 2と同様、.主に、 圧縮機 1 21と、 四路切換弁 122と、 熱源側熱交換器 123と、 熱源側膨張弁 1 24と 、 液側閉鎖弁 125と、 ガス側閉鎖弁 126と、 これらを接続する冷媒配管とか ら構成されている。 また、 熱源ユニット 102は、 第 1実施形態と同様に、 油捕 集装置 127をさらに備えている。
<洗浄剤充填ステップ S 13 >
次に、 熱源ュニット 102の液側閉鎖弁 125及びガス側閉鎖弁 126を閉止 した状態で、 利用ユニット 105及び冷媒配管 6、 7の真空引き作業を行う。 そ の後、 熱源ュニット 102の液側閉鎖弁 1 25及びガス側閉鎖弁 126を開けて、 熱源ュニット 102に予め充填された R 32を 40 w t %以上含む H F C系冷媒 からなる洗浄剤 (例えば、 R41 OA) を更新後の空気調和装置 101全体に充 填する。
<配管洗浄ステップ S 14>
次に、 第 1実施形態と同様な手順により、 洗浄剤を循環させる配管洗浄運転を 行う。
く冷媒充填ステップ S 15>
次に、 配管洗浄運転に使用した洗浄剤を冷媒回路内から排出して、 その代わり に、 作動冷媒となる R407Cや R134 aを充填する。
以上のように、 更新後に作動冷媒として洗浄効果の低い H FC系冷媒を使用す る場合であっても、 R32を 40wt %以上含む H FC系冷媒で洗浄することに よリ、 既設冷媒配管の洗浄を短時間で行うことができる。
また、 変更後の作動冷媒を R407 Cとし、 洗浄剤を R 41 OAにする場合の ように、 洗浄剤の成分を変更後の作動冷媒を構成する冷媒成分の一成分又は全成 分のみ (すなわち、 R32、 R125、 R134a) から構成される冷媒とする ことによって、 洗浄後の冷媒配管内に、 作動冷媒に含まれない冷媒成分が残留し てしまうことがないため、 洗浄剤と変更後の作動冷媒とが異なる場合において、 冷媒の交換作業が容易になる。
[他の実施形態]
以上、 本発明の実施形態について図面に基づいて説明したが、 具体的な構成は、 これらの実施形態に限られるものではなく、 発明の要旨を逸脱しない範囲で変更 可肯である。
( 1 ) 前記実施形態では、 更新後の熱源ユニットに油捕集装置を設けて、 配管 洗浄を行っているが、 そのような油捕集装置を設けずに、 既設の空気調和装置か ら冷媒を回収した後に、 R 3 2を 4 0 w t %以上含む H F C系冷媒で繰り返しバ ツチ洗浄し、 その後に、 作動冷媒を充填するようにしてもよい。 この場合でも、 繰り返し回数を減らすことができる等のメリツ卜が得られる。
( 2 ) 熱源ュニッ卜の台数及び利用ュニッ卜の台数は、 前記実施形態に限定さ れない。
( 3 ) 前記実施形態では、 熱源ュニット及び利用ュニッ卜の両方を更新してい るが、 それに限定されず、 熱源ユニットのみの更新や利用ユニットのみの更新で あっても本発明を適用可能である。 産業上の利用可能性
本発明を利用すれば、 鉱油系の冷凍機油を使用する空気調和装置の冷媒配管を 流用しつつ、 作動冷媒を H F C系冷媒に変更する際に、 冷媒使用量の低減や洗浄 運転の時間短縮を可能にすることができる。

Claims

請 求 の 範 囲
1. 鉱油系の冷凍機油を使用する空気調和装置 (1) の冷媒配管 (6、 7) を 流用しつつ、 作動冷媒を H FC系冷媒からなる作動冷媒に変更する際に、 R32 を 40 w t %以上含む H F C系冷媒を洗浄剤として用いて前記冷媒配管内を洗浄 し、 残留する冷凍機油を除去する、 冷媒配管の洗浄方法。
2. 前記冷媒配管 (7) 内に湿リガス状態の前記洗浄剤を流すことによって洗 浄する、 請求項 1に記載の冷媒配管の洗浄方法。
3. 前記洗浄剤は、 R134 aを含んでいない、 請求項 1又は 2に記載の冷媒 配管の洗浄方法。
4. 前記洗浄剤は、 前記変更後の作動冷媒を構成する冷媒成分の一成分又は全 成分のみから構成される冷媒である、 請求項 1〜 3のいずれかに記載の冷媒配管 の洗浄方法。
5. 既設の空気調和装置 (1 ) の冷媒配管 (6、 7) を既設冷媒配管として流 用しつつ、 前記既設の空気調和装置を構成する機器の少なくとも一部 (2、 5) を更新する空気調和装置の更新方法であって、
前記既設の空気調和装置から鉱油系の冷凍機油からなる既設冷凍機油を含む作 動冷媒を回収する冷媒回収ステップ (S1) と、
前記既設の空気調和装置を構成する機器の少なくとも一部を更新する機器更新 ステップ (S2) と、
R 32を 40 w t %以上含む H F C系冷媒からなる作動冷媒を機器更新後の空 気調和装置内に充填する冷媒充填ステップ (S3) と、
前記冷媒充填ステップで充填された作動冷媒を循環させて、 前記既設冷媒配管 内に残留した既設冷凍機油を作動冷媒に同伴させ、 作動冷媒中から既設冷凍機油 を分離することにより、 前記既設冷媒配管内に残留した既設冷凍機油を除去する 配管洗浄ステップ (S4) と、
を備えた空気調和装置の更新方法。
6. 前記配管洗浄ステップ (S4) では、 前記既設冷媒配管 (7) 内に湿リガ ス状態の作動冷媒が流れるように、 作動冷媒を循環させている、 請求項 5に記載 の空気調和装置の更新方法。
7. 既設の空気調和装置 (1 ) の構成機器の一部 (2、 5) を更新するととも に、 作動冷媒を H FC系冷媒に変更して構成される空気調和装置 (1 01 ) であ つて、
前記既設の空気調和装置に使用され、 鉱油系の冷凍機油からなる既設冷凍機油 が残留した既設冷媒配管 (6、 7) と、
前記既設冷媒配管を介して接続された熱源ユニット (1 02) 及び利用ュニッ 卜 (1 05) と、
通常の空調運転に先立って、 変更後の作動冷媒を循環させた際に、 循環される 作動冷媒を導入して、 作動冷媒に同伴した既設冷凍機油を分離することが可能な 油捕集装置 (1 27) とを備え、
前記変更後の作動冷媒は、 R32を 4 Ow t %以上含む H FC系冷媒である、 空気調和装置 (1 01 ) 。
PCT/JP2004/001148 2003-02-07 2004-02-04 冷媒配管の洗浄方法、空気調和装置の更新方法、及び、空気調和装置 WO2004070293A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/521,020 US8844300B2 (en) 2003-02-07 2004-02-04 Refrigerant pipe washing method, air conditioner updating method, and air conditioner
AU2004209934A AU2004209934B2 (en) 2003-02-07 2004-02-04 Refrigerant pipe washing method, air conditioner updating method, and air conditioner
EP04708045.2A EP1591730B1 (en) 2003-02-07 2004-02-04 Refrigerant pipe washing method
KR10-2004-7021233A KR20050013639A (ko) 2003-02-07 2004-02-04 냉매 배관의 세정 방법, 공기 조화 장치의 갱신 방법 및공기 조화 장치
ES04708045T ES2422892T3 (es) 2003-02-07 2004-02-04 Procedimiento de lavado de tubería de refrigerante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003030312A JP2004263885A (ja) 2003-02-07 2003-02-07 冷媒配管の洗浄方法、空気調和装置の更新方法、及び、空気調和装置
JP2003-030312 2003-02-07

Publications (1)

Publication Number Publication Date
WO2004070293A1 true WO2004070293A1 (ja) 2004-08-19

Family

ID=32844264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001148 WO2004070293A1 (ja) 2003-02-07 2004-02-04 冷媒配管の洗浄方法、空気調和装置の更新方法、及び、空気調和装置

Country Status (8)

Country Link
US (1) US8844300B2 (ja)
EP (1) EP1591730B1 (ja)
JP (1) JP2004263885A (ja)
KR (1) KR20050013639A (ja)
CN (1) CN1322289C (ja)
AU (1) AU2004209934B2 (ja)
ES (1) ES2422892T3 (ja)
WO (1) WO2004070293A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107514B2 (en) 2013-08-28 2018-10-23 Mitsubishi Electric Corporation Air-conditioning apparatus including multiple expansion devices
US10896424B2 (en) * 2017-10-26 2021-01-19 Mastercard International Incorporated Systems and methods for detecting out-of-pattern transactions
US10937030B2 (en) 2018-12-28 2021-03-02 Mastercard International Incorporated Systems and methods for early detection of network fraud events
US11151569B2 (en) 2018-12-28 2021-10-19 Mastercard International Incorporated Systems and methods for improved detection of network fraud events
US11157913B2 (en) 2018-12-28 2021-10-26 Mastercard International Incorporated Systems and methods for improved detection of network fraud events
US11521211B2 (en) 2018-12-28 2022-12-06 Mastercard International Incorporated Systems and methods for incorporating breach velocities into fraud scoring models

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312613B2 (ja) * 2010-01-29 2013-10-09 ダイキン工業株式会社 ヒートポンプシステム
EP2614972B1 (en) * 2010-09-10 2017-04-19 Mitsubishi Electric Corporation Updating method for vehicle air conditioning device and vehicle air conditioning device
CN102650483A (zh) * 2011-02-25 2012-08-29 北京精瑞德诚科技有限公司 制冷系统快速冲洗装置
US20130255302A1 (en) * 2012-03-30 2013-10-03 James B. Tieken Cleaning composition and method for refrigeration system
CN113483448B (zh) * 2021-07-09 2022-10-28 青岛海尔空调器有限总公司 室内机的管内油污回收方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325621A (ja) 1998-05-18 1999-11-26 Mitsubishi Electric Corp 冷凍装置及び冷凍装置における既設配管利用方法
JP2001041613A (ja) 1999-08-03 2001-02-16 Mitsubishi Electric Corp 冷凍サイクル装置
US6189322B1 (en) 1998-03-13 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Refrigerant-circulating system, and refrigerant compressor and refrigeration cycle employing the refrigerant compressor
JP3149640B2 (ja) 1993-09-17 2001-03-26 株式会社日立製作所 空気調和機の冷媒変更方法
JP2002357377A (ja) 2001-03-28 2002-12-13 Mitsubishi Electric Corp 配管洗浄装置および配管洗浄方法
JP3361765B2 (ja) 1998-04-24 2003-01-07 三菱電機株式会社 冷凍サイクル装置及びその形成方法並びに冷凍サイクル装置の室外機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014181A (en) * 1974-11-05 1977-03-29 Burger Manfred R Air conditioning methods and apparatus
US5086630A (en) * 1987-10-19 1992-02-11 Steenburgh Leon R Jr Refrigerant reclaim apparatus
US5415003A (en) * 1994-04-14 1995-05-16 Bertva; John T. Method for removing original type lubricant from air conditioning system and injecting replacement oil
JPH0894216A (ja) * 1994-09-22 1996-04-12 Zexel Corp A/cサイクル洗浄装置及び洗浄方法
WO1996012921A1 (fr) * 1994-10-25 1996-05-02 Daikin Industries, Ltd. Appareil de conditionnement de l'air et procede pour controler l'operation de lavage de celui-ci
CN1169771A (zh) * 1994-10-25 1998-01-07 大金工业株式会社 空调机及其清洗运转控制方法
KR960022411A (ko) * 1994-12-28 1996-07-18 남경희 디플루오로메탄의 제조방법
US6321542B1 (en) * 1997-04-02 2001-11-27 Daikin Industries, Ltd. Method for cleaning pipe and pipe cleaning apparatus for refrigerating apparatus
JP3521820B2 (ja) 1999-11-16 2004-04-26 三菱電機株式会社 洗浄装置、配管の洗浄方法、冷凍空調装置とその取替え方法
JP2001174110A (ja) 1999-12-15 2001-06-29 Matsushita Electric Ind Co Ltd 空気調和機の配管清浄用ポンプおよびボンベ
JP2001248941A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
JP2001181660A (ja) 1999-12-28 2001-07-03 Daikin Ind Ltd 作動流体および冷凍装置
ATE382834T1 (de) * 2000-04-28 2008-01-15 Daikin Ind Ltd Verfahren zum sammeln von kältemittel und öl und regler für die sammlung von kältemittel und öl
JP4425457B2 (ja) 2000-12-15 2010-03-03 三菱電機株式会社 冷凍サイクル装置およびその運転方法
JP4554098B2 (ja) 2001-02-26 2010-09-29 三菱電機株式会社 冷凍サイクル装置及びその運転方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149640B2 (ja) 1993-09-17 2001-03-26 株式会社日立製作所 空気調和機の冷媒変更方法
US6189322B1 (en) 1998-03-13 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Refrigerant-circulating system, and refrigerant compressor and refrigeration cycle employing the refrigerant compressor
JP3361765B2 (ja) 1998-04-24 2003-01-07 三菱電機株式会社 冷凍サイクル装置及びその形成方法並びに冷凍サイクル装置の室外機
JPH11325621A (ja) 1998-05-18 1999-11-26 Mitsubishi Electric Corp 冷凍装置及び冷凍装置における既設配管利用方法
JP2001041613A (ja) 1999-08-03 2001-02-16 Mitsubishi Electric Corp 冷凍サイクル装置
JP2002357377A (ja) 2001-03-28 2002-12-13 Mitsubishi Electric Corp 配管洗浄装置および配管洗浄方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Jokyu hyojun text reito kucho gijutsu reitohen dai 3 ji kaitei", JAPAN SOCIETY OF REFRIGERATING AND AIR CONDITIONING ENGINEERS, 31 July 2000 (2000-07-31), pages 77, XP002903784 *
See also references of EP1591730A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107514B2 (en) 2013-08-28 2018-10-23 Mitsubishi Electric Corporation Air-conditioning apparatus including multiple expansion devices
US10896424B2 (en) * 2017-10-26 2021-01-19 Mastercard International Incorporated Systems and methods for detecting out-of-pattern transactions
US10937030B2 (en) 2018-12-28 2021-03-02 Mastercard International Incorporated Systems and methods for early detection of network fraud events
US11151569B2 (en) 2018-12-28 2021-10-19 Mastercard International Incorporated Systems and methods for improved detection of network fraud events
US11157913B2 (en) 2018-12-28 2021-10-26 Mastercard International Incorporated Systems and methods for improved detection of network fraud events
US11521211B2 (en) 2018-12-28 2022-12-06 Mastercard International Incorporated Systems and methods for incorporating breach velocities into fraud scoring models
US11741474B2 (en) 2018-12-28 2023-08-29 Mastercard International Incorporated Systems and methods for early detection of network fraud events
US11830007B2 (en) 2018-12-28 2023-11-28 Mastercard International Incorporated Systems and methods for incorporating breach velocities into fraud scoring models

Also Published As

Publication number Publication date
KR20050013639A (ko) 2005-02-04
JP2004263885A (ja) 2004-09-24
EP1591730A4 (en) 2010-10-27
ES2422892T3 (es) 2013-09-16
CN1322289C (zh) 2007-06-20
AU2004209934A1 (en) 2004-08-19
US8844300B2 (en) 2014-09-30
US20050198994A1 (en) 2005-09-15
AU2004209934B2 (en) 2006-09-14
EP1591730A1 (en) 2005-11-02
EP1591730B1 (en) 2013-05-01
CN1697956A (zh) 2005-11-16

Similar Documents

Publication Publication Date Title
WO2004070293A1 (ja) 冷媒配管の洗浄方法、空気調和装置の更新方法、及び、空気調和装置
JP2009300041A (ja) 冷凍サイクル装置及び冷凍サイクル装置の圧力損失抑制方法
JP4120221B2 (ja) 冷媒及び油回収運転方法、および、冷媒及び油の回収制御装置
WO2006118140A1 (ja) 空気調和装置、熱源ユニット、及び空気調和装置の更新方法
JP2004333121A (ja) 空気調和装置の更新方法、及び、空気調和装置
JP2004333121A5 (ja)
JP2004270974A (ja) 冷凍冷蔵装置用冷媒回路の冷媒変更方法
JP2000329432A (ja) 冷凍サイクル装置の運転方法
JP3680740B2 (ja) 既設冷媒配管の利用方法、空気調和機の設置方法、空気調和機
JP4186764B2 (ja) 冷凍装置
JP4517834B2 (ja) 既設冷媒配管の利用方法
JP2000009368A (ja) 冷凍サイクル装置及びその形成方法並びにその運転方法
JPH11325621A (ja) 冷凍装置及び冷凍装置における既設配管利用方法
JP4082948B2 (ja) 空気調和装置の既設配管洗浄方法及び洗浄システム
JP3704608B2 (ja) 配管洗浄方法及び配管洗浄装置並びに冷凍機器
WO2003064939A1 (fr) Procede de recuperation d&#39;huile de refrigerateur
JP4067809B2 (ja) 空気調和装置の冷媒置換方法、洗浄機、空気調和装置
JP3666343B2 (ja) 洗浄装置、冷凍空調装置とその取替え方法
US7334426B2 (en) Refrigerating apparatus
JP3370959B2 (ja) 冷凍サイクル装置の更新方法及び運転方法
JP2004308934A (ja) 冷凍装置およびその配管洗浄方法
JP2004340430A (ja) 冷凍装置
JP2003329337A (ja) 冷凍装置の配管洗浄方法
JP3271437B2 (ja) 冷凍装置の不純物除去方法
JP2003194437A (ja) 残油回収方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047021233

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10521020

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004209934

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020047021233

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004708045

Country of ref document: EP

Ref document number: 20048006784

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2004209934

Country of ref document: AU

Date of ref document: 20040204

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004209934

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004708045

Country of ref document: EP