WO2004066290A1 - 情報記録又は再生装置並びに記録又は再生制御方法 - Google Patents

情報記録又は再生装置並びに記録又は再生制御方法 Download PDF

Info

Publication number
WO2004066290A1
WO2004066290A1 PCT/JP2004/000303 JP2004000303W WO2004066290A1 WO 2004066290 A1 WO2004066290 A1 WO 2004066290A1 JP 2004000303 W JP2004000303 W JP 2004000303W WO 2004066290 A1 WO2004066290 A1 WO 2004066290A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
information recording
field
recording medium
information
Prior art date
Application number
PCT/JP2004/000303
Other languages
English (en)
French (fr)
Inventor
Tsutomu Ishimoto
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/542,082 priority Critical patent/US7733747B2/en
Priority to JP2005508053A priority patent/JP4513744B2/ja
Publication of WO2004066290A1 publication Critical patent/WO2004066290A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0941Methods and circuits for servo gain or phase compensation during operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Definitions

  • the present invention relates to an information recording device and an information recording control method for recording or reproducing information by using epacentescent light, and further relates to an information reproducing device and an information reproducing device. It concerns the control method.
  • an optical disk that is detachably attached to a recording and Z or playback device when mounted on the recording and Z or playback device, constitutes a disk rotation drive mechanism at the center of the disk.
  • a disk rotation drive mechanism By being clamped to the turntable, it can be rotated together with the evening table.
  • an optical disc that rotates while its center is clamped to the turntable is liable to cause so-called surface runout that rotates while swinging up and down with the clamped center as a fulcrum.
  • the optical disk detachably attached to the recording / reproducing or reproducing device be placed horizontally on the turntable without tilting when it is clamped to the turntable. It is difficult to mount and clamp horizontally on
  • the recording and / or reproducing apparatus assumes that a certain amount of runout will occur when the disc is mounted on the disc rotation drive mechanism and is driven to rotate. This is handled by the focus servo mechanism on the device side.
  • the focus servo mechanism on the recording and / or reproducing device side can be used even if a soil of 300 m above and below the rotation plane occurs. Measures have been taken to prevent focus errors.
  • SIL Sol id Immersion Lens
  • an aperture as a two-group lens combining SIL and an aspherical lens is used as an optical system for condensing the light beam irradiated on the optical recording medium. It is necessary that the number NA is set to 1 or more, and the distance between the light emitting surface of the optical system and the information recording surface of the optical recording medium be less than half the wavelength of the light beam incident on the SIL. For example, if the wavelength ⁇ of the light beam is 40 nm, the interval is set to 200 nm or less.
  • the position of the light emitting surface of the condensing optical system and the information recording surface of the optical recording medium are controlled at very short intervals on the order of nanometers.
  • the wavelength required to keep the distance between the light emitting surface of the condensing optical system and the information recording surface of the optical recording medium at 200 nm or less is 400 nm. It is extremely difficult to apply to a recording and Z or reproducing apparatus using evanescent light of nm.
  • the distance (gap) between the light emitting surface of the condensing optical system and the information recording surface of the optical recording medium is 100 nm.
  • the allowable gap error is ⁇ 1%
  • the surface deviation of about 300 m, which is an allowable range for DVD etc. occurs, the DC gain required for the focus support becomes 100 dB or more.
  • the amount of runout of the optical recording medium during the rotation drive is to be suppressed to, for example, ⁇ 10 / Xm or less in advance, in a device in which the optical recording medium is detachably attached to the rotation drive device. It is extremely difficult to achieve.
  • a recording and / or reproducing device that records or reproduces information using evanescent light, and a laser beam from a laser light source such as a CD or DVD, and irradiates the information recording surface of the disc to record or reproduce.
  • a laser light source such as a CD or DVD
  • the configuration of the optical system and the configuration of the optical head are completely different. Therefore, in order to configure a device that makes it possible to use a CD or DVD interchangeably with an optical recording medium that performs recording and Z or reproduction using evanescent light, the optical system to be used is switched according to each recording medium. There is a need.
  • An object of the present invention is to provide a novel information recording or reproducing apparatus and a recording or reproducing control method which can solve the problems of the conventional technology as described above.
  • Another object of the present invention is to record or reproduce information with good characteristics while using a detachable recording medium while taking into account the occurrence of surface deviation of the recording medium that occurs during rotational driving. It is an object of the present invention to provide an information recording or reproducing apparatus capable of controlling the recording or reproducing.
  • Still another object of the present invention is to provide an information recording or reproducing apparatus and a recording or reproducing control method for realizing recording or reproducing of information in a field, recording or reproducing of far field information by a simple mechanism. To provide.
  • An information recording apparatus comprises: mounting means for mounting a removable disk-shaped optical recording medium; rotation driving means for rotating the disk-shaped optical recording medium mounted on the mounting means at a predetermined number of rotations; Pulse signal generating means for generating N (N is a natural number) pulse signals at a predetermined cycle while the disk-shaped optical recording medium makes one revolution by the driving means; and N pulse signals generated by the pulse signal generating means.
  • Counting means for counting the number of times, and a pulse signal is generated by the pulse signal generating means, and the amount of surface deviation at a predetermined radial position of the disk-shaped recording medium detected at the time of the timing is stored in association with the count value of the counting means.
  • a light source for emitting a light beam of a predetermined wavelength modulated by recording information to be recorded on an information recording surface of a disc-shaped optical recording medium; Focused light beam to the information recording surface of the disc-shaped optical recording medium.
  • a near-field light emitting means for emitting a focused light beam as near-field light to an information recording surface when arranged in a near-field, and a disk-shaped optical recording medium on which the near-field light emitting means irradiates the light beam.
  • Radial position information detecting means for detecting radial position information indicating the radial position of the information recording surface; gain generating means for generating a predetermined gain corresponding to the radial position information detected by the radial position information detecting means; Means for reading the amount of surface fluctuation stored in the storage means in accordance with the count value of the pulse signal counted by the means; and the amount of surface vibration read by the amount of surface vibration readout means.
  • a first control means for generating a control signal by multiplying the predetermined gain generated by the gain generation means, and controlling the near-field light emitting means to follow the surface shake amount;
  • a return light quantity detecting means for detecting a return light quantity of the near-field light emitted to the information recording surface; and a near-field light emission means based on a linear characteristic of the return light quantity of the near-field light detected by the return light quantity detection means.
  • second control means for controlling a predetermined distance in a near field with respect to the information recording surface.
  • Another information recording apparatus is a mounting means for mounting a removable disk-shaped optical recording medium, a rotation driving means for rotating the disk-shaped optical recording medium mounted on the mounting means at a predetermined number of rotations, Pulse signal generating means for generating N (N is a natural number) pulse signals at a predetermined cycle during one rotation of the disk-shaped optical recording medium by the rotation driving means; and N pulse signals generated by the pulse signal generating means.
  • Counting means for counting the number of pulse signals, and storage means for storing the amount of surface deviation detected at the timing when the pulse signal is generated by the pulse signal generating means in association with the count value of the counting means and the radial position information.
  • a light source for emitting a light beam of a predetermined wavelength modulated by recording information to be recorded on an information recording surface of a disc-shaped optical recording medium; and a light beam emitted from the light source
  • a near-field light emitting means for converging and emitting a condensed light beam to the information recording surface as near-field light when arranged in a near-field with respect to the information recording surface of the disc-shaped optical recording medium;
  • a surface shake amount reading unit that reads the surface shake amount stored in the storage unit in accordance with the radial position information detected by the position information detection unit;
  • First control means for controlling the near-field light emitting means to follow the amount of surface shake based on the read-out surface shake amount, and the amount of return of the near-field light emitted to the information recording surface is detected.
  • the near-field light emitting means is maintained at a predetermined distance in the near field with respect to the information recording surface based on the linear characteristic of the returning light quantity of the near-field light detected by the returning light quantity detecting means.
  • second control means for controlling.
  • Still another information recording apparatus comprises: a mounting means for mounting a removable disk-shaped optical recording medium; and a predetermined wavelength modulated by recording information to be recorded on an information recording surface of the disk-shaped optical recording medium.
  • a light source for emitting a light beam, an optical means for condensing the light beam emitted from the light source, and emitting the information beam to an information recording surface of a disk-shaped optical recording medium, and a disc-shaped light beam returned from the optical means.
  • a surface shake amount detecting means for detecting a surface shake amount of the optical recording medium; and a light beam emitted from the light source, condensed, and collected when arranged in a near field with respect to the information recording surface of the disk-shaped optical recording medium.
  • a near-field light emitting unit that emits the emitted light beam to the information recording surface as a near-field light
  • a return light amount detection unit that detects a return light amount of the near-field light emitted to the information recording surface
  • a surface shake amount detection unit Yo
  • a first control unit that controls the near-field light emitting unit to follow the surface shake amount based on the surface shake amount when the detected surface shake amount is equal to or greater than the first threshold; and a surface shake amount.
  • the near-field light emitting means is changed to the information recording surface based on the linear characteristic of the returning light quantity of the near-field light detected by the returning light quantity detecting means.
  • second control means for controlling a predetermined distance in a near field with respect to the object.
  • An information reproducing apparatus comprises: mounting means for mounting a removable disk-shaped optical recording medium; rotation driving means for rotating the disk-shaped optical recording medium mounted on the mounting means at a predetermined number of rotations; Pulse signal generating means for generating N (N is a natural number) pulse signals at a predetermined cycle while the disk-shaped optical recording medium makes one revolution by the driving means; and N pulse signals generated by the pulse signal generating means.
  • Counting means for counting the number of times, and storage means for storing the amount of surface deviation detected at the timing when the pulse signal is generated by the pulse signal generating means in association with the count value at the counting means and the radial position information.
  • a light source that emits a light beam having a predetermined wavelength for reproducing predetermined information recorded on a disk-shaped optical recording medium; and a light beam that is emitted from the light source and condensed.
  • a near-field light emitting unit that emits a focused light beam to the information recording surface as near-field light when placed in a near field with respect to the information recording surface of the disk-shaped optical recording medium; and a near-field light emitting unit includes a light beam.
  • Radial position information detecting means for detecting the radial position information indicating the radial position of the information recording surface of the disc-shaped optical recording medium irradiating the light, and the count value of the pulse signal counted by the counting means and the radial position information detecting means.
  • a surface blur amount reading means for reading the surface blur amount stored in the storage means in accordance with the detected radial position information, and a near-field light emission based on the surface blur amount read by the surface blur amount reading means.
  • First control means for controlling the means to follow the amount of surface deviation, a return light amount detecting means for detecting a return light amount of near-field light emitted to the information recording surface, and Second control means for controlling the near-field light emitting means to maintain a predetermined distance in the near field with respect to the information recording surface based on the linear characteristic of the returning light quantity of the near-field light detected by the light quantity detecting means
  • Second control means for controlling the near-field light emitting means to maintain a predetermined distance in the near field with respect to the information recording surface based on the linear characteristic of the returning light quantity of the near-field light detected by the light quantity detecting means
  • Another information reproducing apparatus comprises: a mounting means for mounting a removable disk-shaped optical recording medium; a rotation driving means for rotating the disk-shaped optical recording medium mounted on the mounting means at a predetermined rotation speed; Pulse signal generating means for generating N (N is a natural number) pulse signals at a predetermined cycle while the disk-shaped optical recording medium makes one revolution by the rotation driving means; and N pulse signals generated by the pulse signal generating means.
  • a counting means for counting the pulse signal; and an amount of runout at a predetermined radial position of the disk-shaped recording medium detected at the time when the pulse signal is generated by the pulse signal generating means.
  • Storage means for storing values in association with values, a light source for emitting a light beam of a predetermined wavelength for reproducing predetermined information recorded on a disk-shaped optical recording medium, and a light beam emitted from the light source
  • Near-field light emitting means for converging light and, when placed in a near-field with respect to the information recording surface of the disc-shaped optical recording medium, emitting the collected light beam as near-field light to the information recording surface
  • Radial position information detecting means for detecting radial position information indicating the radial position of the information recording surface of the disc-shaped optical recording medium on which the light emitting means irradiates the light beam; and radial position information detected by the radial position information detecting means.
  • Gain generation means for generating a predetermined gain corresponding to the following; surface shake amount read means for reading the surface shake amount stored in the storage means according to the count value of the pulse signal counted by the count means; Check the amount of runout read by the runout amount reading means.
  • a first control means for generating a control signal by multiplying the predetermined gain generated by the signal generation means, and controlling the near-field light emitting means to follow the surface shake amount; and an information recording surface.
  • a return light quantity detecting means for detecting a return light quantity of the near-field light emitted to the near field light, and a near field light emitting means based on a linear characteristic of the return light quantity of the near field light detected by the return light quantity detection means.
  • Second control means for controlling so as to keep a predetermined distance within the proximity of the surface.
  • Still another information reproducing apparatus comprises: a mounting means for mounting a removable disk-shaped optical recording medium; and a predetermined wavelength for reproducing predetermined information recorded on an information recording surface of the disk-shaped optical recording medium.
  • a light source that emits a light beam from the light source, an optical unit that collects the light beam emitted from the light source and emits the light beam to the information recording surface of the disk-shaped optical recording medium, and return light of the light beam emitted by the optical unit From a light source emitted from a light source and placed in the near field to the information recording surface of the disk-shaped optical recording medium
  • Near-field light emitting means for emitting the light beam condensed on the information recording surface as near-field light to the information recording surface; return light amount detecting means for detecting the returning light amount of the near-field light emitted to the information recording surface;
  • the first control means for controlling the driving means based on the surface shake amount
  • Still another information recording apparatus includes: mounting means for mounting a removable disk-shaped optical recording medium; rotation driving means for rotating the disk-shaped optical recording medium mounted on the mounting means; and rotation driving means.
  • a pulse signal generating means for generating N (N is a natural number) pulse signals at a predetermined period during one rotation of the disk-shaped optical recording medium; and a voltage of the pulse signal generated by the pulse signal generating means,
  • a voltage value converting means for converting the voltage value into a value
  • a voltage value comparing means for comparing the voltage value converted by the voltage value converting means with a predetermined reference voltage value, and a rotation based on a comparison result by the voltage value comparing means.
  • First rotation speed control means for controlling the rotation speed of the driving means; phase comparison means for comparing the phase of the pulse signal generated by the pulse signal generation means with the phase of a predetermined reference signal; Second rotation speed control means for controlling the rotation speed of the rotation drive means based on the comparison result by the phase comparison means; and a predetermined wavelength modulated by recording information to be recorded on the information recording surface of the disc-shaped optical recording medium.
  • a light source that emits a light beam from the light source and a light beam emitted from the light source are condensed, and when placed in a near field with respect to the information recording surface of the disc-shaped optical recording medium, the converged light beam is converted into near-field light.
  • a near-field light emitting means for emitting the near-field light emitted to the information recording surface, a returning light amount detecting means for detecting a returning light amount of the near-field light emitted to the information recording surface, and a near-field light detected by the returning light amount detecting means.
  • First gap control means for controlling the near-field light emitting means to maintain a predetermined distance in the near field with respect to the information recording surface based on the linear characteristic of the returning light amount, and a disc-shaped optical recording medium.
  • the rotation drive means is controlled by the first rotation number control means so as to rotate at the predetermined rotation number, and when the predetermined rotation number is reached, the control by the second rotation number control means is started.
  • control means for starting the control by the first gap control means in response to the result of the phase comparison by the phase comparison means being equal to or less than a predetermined threshold value.
  • a pulse signal generating means for generating N (N is a natural number) pulse signals in a period; a voltage value converting means for converting a frequency of the pulse signal generated by the pulse signal generating means into a voltage value; A voltage value comparing means for comparing the voltage value converted by the means with a predetermined reference voltage value, and a first rotational speed for controlling the rotational speed of the rotary driving means based on a comparison result by the voltage value comparing means. Control means; phase comparison means for comparing the phase of the pulse signal generated by the pulse signal generation means with the phase of the predetermined reference signal; and the rotational speed of the rotation drive means based on the comparison result by the phase comparison means.
  • a light source for emitting a light beam of a predetermined wavelength for reproducing predetermined information recorded on a disk-shaped recording medium; and a light source for condensing the light beam emitted from the light source.
  • a near-field light emitting means for emitting a condensed light beam as near-field light to the information recording surface when disposed in a near field with respect to the information recording surface of the disc-shaped optical recording medium; Of the emitted near-field light
  • a return light amount detecting means for detecting the return light amount, and a near field based on a linear characteristic of the return light amount of the proximity light detected by the return light amount detection means.
  • First gap control means for controlling the light emitting means to maintain a predetermined distance in the near field with respect to the information recording surface, and rotation driving means for rotating the disk-shaped optical recording medium at a predetermined rotation speed.
  • Control by the first rotation speed control means and when the predetermined rotation speed is reached, the control by the second rotation speed control means is started, and the phase comparison result by the phase comparison means becomes equal to or less than a predetermined threshold value.
  • Still another information recording apparatus includes: a first light source that emits a light beam having a first wavelength modulated by recording information to be recorded on an information recording surface of an optical recording medium; and information recording on the optical recording medium.
  • a second light source that emits a light beam of a second wavelength that is modulated by recording information to be recorded on the surface, and a light beam of the first wavelength that is emitted from the first light source;
  • a light beam of the first wavelength collected when placed in the near field with respect to the information recording surface of the medium is emitted to the information recording surface as near-field light, and the light beam of the second wavelength emitted from the second light source is emitted.
  • An emitting means for emitting the light beam so as to converge it on the information recording surface; a return light amount detecting means for detecting a return light amount of the near-field light emitted to the information recording surface; A reflected light amount detection method that detects the reflected light amount of the reflected light of the light beam of wavelength 2
  • the emitting means is kept at a predetermined distance in the proximity of the information recording surface based on the linear characteristic of the returning light quantity of the proximity light detected by the returning light quantity detecting means.
  • Control means to control the light emission means on the information recording surface based on the linear characteristic of the reflected light amount of the reflected light detected by the reflected light amount detecting means during recording with the light beam of the second wavelength.
  • Second control means for controlling a predetermined distance at a distance equal to or longer than the near field with respect to the second control means.
  • Still another information reproducing apparatus includes: a first light source that emits a light beam having a first wavelength for reproducing predetermined information recorded on an information recording surface of an optical recording medium; and information on the optical recording medium.
  • a second light source that emits a light beam of a second wavelength that reproduces predetermined information recorded on the recording surface; and a light beam of the first wavelength that is emitted from the first light source.
  • a light beam of the first wavelength condensed when placed in the near field with respect to the information recording surface of the recording medium is emitted as near-field light to the information recording surface, and the light beam of the second wavelength emitted from the second light source is emitted.
  • Emitting means for emitting the light beam so as to converge it on the information recording surface;
  • Return light amount detecting means for detecting the return light amount of the near-field light emitted to the recording surface, and reflected light amount detecting means for detecting the reflected light amount of the reflected light of the second wavelength light beam condensed on the information recording surface
  • the emission means is controlled to maintain a predetermined distance in the near field with respect to the information recording surface based on the linear characteristic of the return light quantity of the near-field light detected by the return light quantity detection means.
  • the first control means performs the reproduction with the light beam of the second wavelength, and sets the emission means to the near field to the information recording surface based on the linear characteristic of the reflected light amount of the reflected light detected by the reflected light amount detecting means.
  • second control means for controlling so as to maintain a predetermined distance at the distance.
  • Still another information recording apparatus includes: a light source that emits a light beam of a predetermined wavelength modulated by recording information to be recorded on an information recording surface of an optical recording medium; and light of a predetermined wavelength emitted from the light source.
  • the focused light beam of a predetermined wavelength is emitted to the information recording surface as near-field light and emitted from the light source.
  • Emission means for emitting a light beam of a predetermined wavelength so as to converge it on the information recording surface; return light amount detection means for detecting the return light amount of near-field light emitted to the information recording surface; A reflected light amount detecting means for detecting a reflected light amount of reflected light of a light beam having a predetermined wavelength, and a linear characteristic of a returning light amount detected by the returning light amount detecting means at the time of recording with near-field light.
  • Emission means First control means for controlling a predetermined distance in a near field with respect to the recording surface, and a linear characteristic of the amount of reflected light of the reflected light detected by the reflected light amount detection means during recording with a light beam of a predetermined wavelength. And second control means for controlling the emission means to maintain a predetermined distance at a distance equal to or longer than the near field with respect to the information recording surface based on the information.
  • Still another information reproducing apparatus includes: a light source that emits a light beam of a predetermined wavelength for reproducing predetermined information recorded on an information recording surface of an optical recording medium; and a light source of a predetermined wavelength emitted from the light source.
  • a light source that emits a light beam of a predetermined wavelength for reproducing predetermined information recorded on an information recording surface of an optical recording medium
  • a light source of a predetermined wavelength emitted from the light source When the light beam is condensed, and is arranged in the near field with respect to the information recording surface of the optical recording medium, the converged light beam having a predetermined wavelength is emitted to the information recording surface as near-field light, and is emitted from the light source.
  • Emitting means for emitting a light beam having a wavelength of 3 nm on the information recording surface, returning light amount detecting means for detecting the returning light amount of near-field light emitted on the information recording surface, and focusing on the information recording surface Of a light beam of a given wavelength
  • a reflected light amount detecting means for detecting a reflected light amount of the light
  • a recording means for detecting the near-field light.
  • First control means for controlling the distance to be maintained, and information recording on the emitting means based on the linear characteristic of the reflected light quantity of the reflected light detected by the reflected light quantity detecting means at the time of recording with a light beam of a predetermined wavelength.
  • Second control means for controlling a predetermined distance at a distance equal to or longer than the near field to the surface.
  • FIG. 1 is a block diagram showing an information recording apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a side view showing an optical head included in the information recording device.
  • FIG. 3 is a diagram showing the relationship between the amount of return light and the distance between gaps.
  • FIG. 4 is a block diagram showing a control system provided in the information recording device.
  • FIG. 5 is a block diagram showing a mechanism for acquiring the amount of runout of the optical recording medium in the information recording device.
  • FIG. 6 is a diagram for explaining detection of the amount of surface shake using the off-axis method in the information recording apparatus.
  • FIG. 7 is a diagram showing the surface error signal and the position of the optical recording medium in the information recording apparatus.
  • FIG. 8 is a first diagram illustrating a relationship between a radius of an optical recording medium and a peak amplitude of a runout in an information recording apparatus.
  • FIG. 9 is a flowchart for explaining the operation of the information recording apparatus when storing the surface shake signal in the memory.
  • FIG. 10 is a second diagram showing a relationship between a radius of an optical recording medium and a peak amplitude of surface wobble in the information recording apparatus.
  • FIG. 11 is a block diagram showing an information reproducing apparatus according to a second embodiment of the present invention.
  • FIG. 12 is a block diagram showing another configuration of the information reproducing apparatus according to the second embodiment of the present invention.
  • FIG. 13 is a flowchart showing a control operation by a control system provided in the information recording device and the information reproducing device according to the present invention.
  • FIG. 14 is a block diagram showing another configuration of the control system.
  • FIG. 15 is a block diagram showing an information recording device according to a third embodiment of the present invention.
  • FIG. 16 is a block diagram showing a control system of the information recording device.
  • FIG. 17 is a diagram for explaining thresholds set by the control system of the information recording device.
  • FIG. 18 is a block diagram showing an information reproducing apparatus according to a fourth embodiment of the present invention.
  • FIG. 19 is a block diagram showing an information reproducing apparatus according to a fourth embodiment of the present invention.
  • FIG. 20 is a flowchart for explaining a control operation by a control system provided in the information recording apparatus and the information reproducing apparatus according to the present invention.
  • FIG. 21 is a block diagram showing a rotation control system mounted on the information recording apparatus according to the present invention.
  • FIG. 22 is a block diagram showing the configuration of the rotation control system.
  • FIG. 23 is a diagram illustrating characteristics of a frequency control voltage generated by the frequency loop control unit.
  • FIG. 24 is a diagram illustrating characteristics of a phase error signal in the PLL control unit.
  • Fig. 25 is a flowchart showing the control of the rotation control system and the operation timing of the control system.
  • FIG. 26 is a block diagram showing an information recording device as a fourth embodiment according to the present invention.
  • FIG. 27 is a side view showing an optical head included in the information recording device.
  • FIG. 28 is a diagram for explaining the relationship between the amount of return light and the distance between gaps.
  • Fig. 29A is a side view showing how the evanescent light is emitted from the optical head
  • Fig. 29B is a view showing how the light beam emitted from the optical head is focused on the information recording surface.
  • FIG. 30 is a block diagram showing a configuration of a control system provided in an information recording device according to a fourth embodiment of the present invention.
  • FIG. 31 shows a pull-in signal and a focus error signal.
  • FIG. 32 is a flowchart showing the operation of the control system provided in the information recording apparatus according to the present invention.
  • FIG. 33 is a block diagram showing a configuration of an expander included in the information recording apparatus.
  • FIG. 34A is a side view showing a state in which evanescent light is emitted from an optical head
  • FIG. FIG. 3 is a side view showing a state in which a light beam emitted from a head is focused on an information recording surface.
  • FIG. 35 is a block diagram showing a configuration for adjusting the distance between the second group lenses of the optical head in the information recording apparatus.
  • Fig. 36A is a side view showing how the epanescent light is emitted from the optical head
  • Fig. 36B is a view showing how the light beam emitted from the optical head is focused on the information recording surface.
  • FIG. 37 is a block diagram of an information reproducing apparatus as a fifth embodiment according to the present invention.
  • FIG. 38 is a block diagram showing an information reproducing apparatus according to a sixth embodiment of the present invention.
  • FIG. 39 is a first block diagram illustrating a configuration of an expander included in the information reproducing device.
  • FIG. 40 is a second block diagram illustrating the configuration of the expander included in the information reproducing device.
  • FIG. 41 is a first block diagram showing a configuration for adjusting the distance between the second lens group of the optical head in the information reproducing apparatus.
  • FIG. 42 is a second block diagram showing a configuration for adjusting the distance between the second lens group of the optical head in the information reproducing apparatus.
  • FIG. 43 is a block diagram showing an information recording device as a sixth embodiment according to the present invention.
  • FIG. 44 is a block diagram showing a configuration of an expander included in the information recording device.
  • FIG. 45 is a block diagram showing a configuration for adjusting the distance between the second lens group of the optical head in the information recording device.
  • FIG. 46 is a block diagram showing an information reproducing apparatus according to a seventh embodiment of the present invention.
  • FIG. 47 is a block diagram showing another configuration of the information reproducing apparatus shown as the seventh embodiment according to the present invention.
  • FIG. 48 is a block diagram illustrating a configuration of an expander included in the information reproducing apparatus.
  • C is a block diagram illustrating another configuration of the expander included in the information reproducing apparatus.
  • FIG. 50 is a block diagram showing a state in which the distance between the second lens group of the optical head is adjusted in the information reproducing apparatus.
  • FIG. 51 is a block diagram showing another state in which the distance between the two lens groups of the optical head is adjusted in the information reproducing apparatus.
  • FIG. 52 is a block diagram showing another configuration of the gap support controller provided in the control system.
  • FIG. 53 is a diagram illustrating a frequency characteristic of the auxiliary control unit connected in parallel to the main control unit of the gap servo control unit.
  • FIG. 54A is a diagram showing the state of the control voltage when only the main control unit is used
  • FIG. 54B is a diagram showing the state of the control voltage when the auxiliary control unit is connected in parallel.
  • FIG. 55 is a diagram showing frequency characteristics when an auxiliary control unit is connected to the main control unit in parallel.
  • the information recording device 50 shown in FIG. 1 has a detachable disk-shaped optical recording medium 51 mounted on a mounting portion (not shown), and a second field (near-field) attached to the mounted disk-shaped optical recording medium 51.
  • the information is recorded by irradiating the evanescent light detected in).
  • the information recording device 50 includes an information source 1 for supplying information to be recorded on the disc-shaped optical recording medium 51, an APC (Auto Power Controller) 2, a laser diode (LD) 3, and a collimator lens 4.
  • An information source 1 for supplying information to be recorded on the disc-shaped optical recording medium 51
  • an APC Auto Power Controller
  • LD laser diode
  • collimator lens 4 Beam splitter (BS) 5, mirror 6, optical head 7, condenser lens 52, photodetector (PD) 12, spindle motor 16 and feeder 17 , A feed motor 18, a potentiometer 19, and a control system 20.
  • the APC 2 controls so as to modulate the laser light emitted from the laser diode 3 provided at the subsequent stage according to the information supplied from the information source 1 at the time of recording.
  • the laser diode 3 emits a laser beam having a predetermined wavelength under the control of the APC 2.
  • the laser diode 3 is a red semiconductor laser, a blue-violet semiconductor laser, or the like.
  • the collimator lens 4 emits the laser light emitted from the laser diode 3 as a light beam parallel to the optical axis.
  • the beam splitter 5 transmits the light beam emitted from the collimator lens 4 and emits it to the mirror 16.
  • the beam splitter 5 reflects the return light from the optical head 7 reflected by the mirror 16 and emits it to the condenser lens 52.
  • the mirror 6 reflects the light beam emitted from the beam splitter 5 and emits it to the light head 7.
  • the mirror 6 reflects the return light from the optical head 7 and emits it to the beam splitter 5.
  • the optical head 7 focuses the light beam emitted from the mirror 6 and irradiates the information recording surface of the disc-shaped optical recording medium 51.
  • the light that the optical head 7 irradiates the information recording surface is Evanescent light with a spot size equal to or larger than the diffraction limit of the lens and capable of recording or reproducing information.
  • the optical head 7 includes an objective lens 8, a SIL (Solid I t ersion lens) 9, a lens folder 10, and an actuator 11.
  • the objective lens 8 converges the light beam emitted from the laser diode 3 and entered through the collimator lens 4, beam splitter 5, and mirror 16 and supplies it to the SIL 9.
  • SIL 9 is a high-refractive-index lens having a shape obtained by cutting a part of a spherical lens into a plane.
  • the SIL 9 impinges the light beam transmitted through the objective lens 8 and condensed from the spherical surface side and condensed on the central portion of the surface (end surface) opposite to the spherical surface.
  • SIL 9 a reflection mirror is formed, and SIM (Solid Immersion Mirror) having the same function as SIL 9 may be used.
  • the lens folder 10 integrally holds the objective lens 8 and the SIL 9 in a predetermined positional relationship.
  • the SIL 9 is held by the lens holder 10 such that the spherical surface faces the objective lens 8 and the surface (end surface) opposite to the spherical surface faces the information recording surface of the disc-shaped optical recording medium 51.
  • the numerical aperture of only the objective lens 8 can be obtained.
  • a larger numerical aperture can be obtained.
  • the spot size of the light beam emitted from the lens is inversely proportional to the numerical aperture of the lens, so that the objective lens 8 and SIL 9 can make the light beam with a much smaller spot size.
  • the actuator 11 drives and displaces the lens folder 10 in the focus direction and / or the tracking direction according to a control current output as a control signal from the control system 20.
  • the evanescent light is light that is incident on the end face of the SIL 9 at an angle equal to or greater than the critical angle and protrudes from the reflection boundary surface of the totally reflected light beam.
  • the end surface of the SIL 9 is located within a field (near field) to be described later from the information recording surface of the disc-shaped optical recording medium 51, the evanescent light oozing from the end surface of the SIL 9 is It will be irradiated on the information recording surface.
  • the near field is a region where the distance d from the light beam exit surface of the lens is d ⁇ AZ2, where ⁇ is the wavelength of light incident on the lens.
  • the distance from the end face of the SIL 9 of the optical head 7 to the information recording surface of the disk-shaped optical recording medium 51 ( The area where the gap d is defined as d ⁇ / 2 by the wavelength of the light beam incident on the SIL 9 is the near field.
  • the gap d defined by the distance between the information recording surface of the disc-shaped optical recording medium 51 and the end face of the SIL 9 satisfies d ⁇ / 2, and evanescent light is emitted from the end face of the SIL 9 to the disc-shaped optical recording medium 5.
  • the state that oozes into the information recording surface in 1 is called the near-field state, and the state where the gap d satisfies d> AZ2 and the evanescent light does not ooze onto the information recording surface is called the far-field state.
  • the total reflected return light amount in the far field state is a constant value.
  • the position of the end face of SIL 9 is in the near-field state, it is possible to perform a feed pack service by using a linear portion where the total amount of reflected light changes according to the gap length as a gap error signal.
  • the gap between the end surface of the SIL 9 and the information recording surface of the disc-shaped optical recording medium 51 can be controlled to be constant. For example, as shown in Fig. 3, if control is performed so that the total reflection return light amount becomes the control target value P, the gear The tip will be kept constant at a distance of d.
  • the condenser lens 52 is totally reflected by the end face of the SIL 9 of the optical head 7,
  • the return light reflected by 6 and reflected by the beam splitter 5 is focused on the photodetector 12.
  • the photodetector 12 detects the amount of return light condensed by the condenser lens 52 as a current value. Note that the current value detected by the photodetector 12 has already been converted to DC, and is supplied to the control system 20 as the voltage value of the total reflection return light amount.
  • the spindle motor 16 is provided with an encoder (not shown) that generates a fixed number of pulse signals called FG signals during the rotation of the spindle motor 16. By counting the FG signal generated from the encoder (not shown), the light beam radiated from the optical head 7 to the disc-shaped optical recording medium 51 is currently recording information on the disc-shaped optical recording medium 51. You can see which position in the circumferential direction of the surface is being irradiated.
  • An FG signal output from an encoder (not shown) provided in the spindle motor 16 is used as information indicating where in the circumferential direction the optical head 7 is located on the disk-shaped optical recording medium 51.
  • the FG signal output from the encoder (not shown) is supplied to the control system 20.
  • the feed base 17 is a base on which a spindle motor 16 which is a rotary drive system is mounted, and the disk-shaped optical recording medium 51 mounted on a mounting part (not shown) is moved in a radial direction.
  • the disk-shaped optical recording medium 51 is moved in the radial direction by the feeding mode 18.
  • the potentiometer 19 is attached to the feed motor 18, and by detecting the rotation angle of the feed motor 18, it is possible to know how much the feed base 17 has moved.
  • the moving amount of the feed base 17 is relatively the same as the moving amount of the optical head 7 in the radial direction of the disc-shaped optical recording medium 51. Therefore, from the value detected by the potentiometer 19, the optical head 7 is located in the radial direction of the disc-shaped optical recording medium 51. You can see where it is.
  • the detection value obtained from the potentiometer 19 is used as radial position information indicating the position of the optical head 7 in the radial direction of the disk-shaped optical recording medium 51.
  • the radial position information output from the potentiometer 19 is supplied to the control system 20.
  • control system 20 determines the gap between the information recording surface of the disc-shaped optical recording medium 51 and the SIL 9 of the optical head 7 based on the FG signal and the radial position information. And a feedback control unit 40 for controlling the gap based on the total reflected return light amount.
  • the disc-shaped optical recording medium 51 used in the information recording device 50 according to the present invention is a recording medium that is detachable from the information recording device 50. Therefore, compared to a recording medium or the like fixed in advance to a disk rotation drive mechanism in the apparatus, the mounting accuracy with respect to the disk rotation drive mechanism cannot be maintained with high accuracy. For this reason, it is difficult to suppress the occurrence of surface runout when mounted on a disk rotation drive mechanism and driven to rotate.
  • the feedforward control section 30 of the control system 20 is a control section provided mainly for following the surface shake caused by the disturbance.
  • the feedforward control unit 30 acquires and stores the amount of surface deviation at a predetermined location after the disk-shaped optical recording medium 51 is clamped by the disk rotation drive mechanism, and reads out the amount during the reproduction or recording processing operation. Control such as following is executed.
  • the feedforward control section 30 includes a memory 31 and a gain section 32.
  • the memory 31 is a RAM (Random Access Memory) that stores the amount of runout error that occurs after the disk-shaped optical recording medium 51 is clamped to the information recording device 50.
  • the amount of runout error is used in the control processing by the feedforward control section 30 in order to cause the optical head 7 to follow the runout generated on the information recording surface of the disc-shaped optical recording medium 51. Control voltage value.
  • a run-out error signal is applied to the optical head 7 on the optical head 7, the optical head 7 becomes a disk-shaped optical recording medium. It operates so as to follow the run-out occurring on the information recording surface of the body 51.
  • the information recording device 50 includes an APC 2, a laser diode 3, and a collimating lens 4 in order to obtain the amount of surface deviation error of the disc-shaped optical recording medium 51 stored in the memory 31.
  • the control signal converter 6 5 and c diaphragm 61 includes a can collimator one Evening lens 4 Reduces the amount of light beam incident from the lens.
  • the mirror 62 reflects the light beam that has passed through the pinhole 61 and emits it to the objective lens 63.
  • the objective lens 63 condenses the light beam emitted from the mirror 62 and irradiates the information recording surface of the disc-shaped optical recording medium 51 with a spot-shaped light beam.
  • the position detection diode 64 is an optical sensor that can detect the position of a spot-like light as a current value.
  • the position detection diode 64 is irradiated with the return light of the light beam irradiated on the information recording surface of the disc-shaped optical recording medium 51 by the objective lens 63, and the position of the irradiated light beam is used as a current value. To detect.
  • the mechanism for acquiring the amount of surface runout error in the information recording device 50 shown in FIG. 5 is automatically operated by mechanically moving the APC 2, laser diode 3, and collimator lens 4 shown in FIG. or switched to, in mechanisms of obtaining the runout shown in c Figure 5 is realized as the light beam emitted from Rezadaio one de 3 passes the pinhole 61 by an optical method, generally away A technique called the axis method is used.
  • the off-axis method will be described with reference to FIGS.
  • the position detection diode 64 irradiates the position A ′ with return light, and the spot position of the irradiated return light is detected as a current value.
  • the position detecting diode 64 When the information recording surface of the disc-shaped optical recording medium 51 is at the position B, when the information recording surface at the position B is irradiated with a light beam through the objective lens 63, the position detecting diode 64 is The return light is irradiated to the position B ', and the spot position of the irradiated return light is detected as a current value.
  • the position detecting diode 64 stores the information of the disc-shaped optical recording medium 51. Return light of the light beam applied to the disk-shaped optical recording medium 51 is applied to different positions of the position detection diode 64 according to the difference in the position of the recording surface in the focus direction. Therefore, by detecting the position of the return light applied to the position detection diode 64, it is possible to obtain how much the information recording surface of the disc-shaped optical recording medium 51 has changed in the focus direction. .
  • the amount of change in the focus direction detected as a current value by the position detection diode 64 is subjected to a predetermined operation by the control signal converter 65 to be converted to a voltage value, and the information is recorded on the disc-shaped optical recording medium 51. It is possible to obtain a run-out error signal indicating the run-out of the surface as a voltage value.
  • FIG. 7 shows the relationship between the position (position) where the spot of the return light is irradiated in the position detection diode 64 and the surface error signal.
  • a method for acquiring the amount of surface deviation error it is also possible to use a generally known method using a Michelson interferometer, a triangulation method, or the like, in addition to the above-described off-axis method.
  • the runout error signal detected by the position detection diode 64 and obtained by the processing in the control signal converter 65 is stored in the memory 31 of the feedforward controller 30.
  • the memory 31 stores a surface error signal for a predetermined radius position and one round of the disk-shaped optical recording medium 51.
  • the surface error signal for a predetermined radius and one round of the removable disk-shaped optical recording medium 51 which is mounted on the information recording device 50 with its center clamped is shown in FIG.
  • the diameter increases almost in proportion from the center to the outer periphery of the disk. Therefore, at a certain radial position of the disk-shaped optical recording medium 51, if the error signal for one round is acquired and stored in the memory 31, then if the rate of change is known, the stored error is recorded. By multiplying the error signal by the rate of change, it is possible to obtain the surface error signal at an arbitrary radius position.
  • the memory 31 stores the circumferential wobble error signal at a predetermined radial position of the disk-shaped optical recording medium 51.
  • the circumferential runout error signal stored in the memory 31 is irradiated on the optical head 7 when the FG signal is output by an encoder (not shown) connected to the spindle motor 16 to detect the position.
  • This is a one-way error signal detected by the diode 64 and acquired from the control signal converter 65.
  • the encoder (not shown) outputs the FG signal, which is a pulse signal, a predetermined number of times each time the spindle motor 16 rotates once, so that the memory 31 stores a predetermined number of the disk-shaped optical recording medium 51.
  • the runout error signal corresponding to the FG signal is stored.
  • step ST1 an FG signal is output from an encoder (not shown) attached to the spindle motor 16, and the power is increased by an FG counter (not shown).
  • the runout error signal is constantly being obtained from the position detection diode 64 and the control signal converter 65.
  • step ST2 in response to the FG signal being counted up by the FG counter (not shown), the count value of the FG signal counted by the FG counter (not shown) is stored in the memory 31. It is stored in the memory 31 as the signal address value.
  • the surface error signal acquired from the control signal converter 65 is stored in the memory 31 in correspondence with the address value stored in the memory 31.
  • step ST3 it is determined whether the FG counter (not shown) has counted the FG signal for one round of the disk-shaped optical recording medium 51. If one round of FG signal has not been counted, the process returns to step ST 1 and one round of F If the G signal has been counted, the process ends.
  • the memory 31 stores the count value of the FG signal as the address value, and associates the address value with the surface error signal at the position where the FG signal is generated in one-to-one correspondence. Will be done.
  • the runout error signal stored in the memory 31 is read according to the value of the FG signal output from an encoder (not shown) attached to the spindle motor 16 during the recording operation of the information recording device 50. It is output and supplied to the subsequent gain section 32.
  • the gain section 32 of the feedforward control section 30 will be described.
  • the gain unit 32 calculates, for each FG signal, the surface vibration error signal shown in FIG. 8 from the surface vibration error signal for one round at a predetermined radial position of the disc-shaped optical recording medium 51 stored in the memory 31. By multiplying the gain determined by using the proportionality of the signal, the runout error signal at any radial position is calculated.
  • the gain multiplied by the gain unit 32 will be described.
  • the memory 31 stores a runout error signal for one round of a radius Rm of the disk-shaped optical recording medium 51.
  • the maximum value of the amplitude at the portion of the disk-shaped optical recording medium 51 from which the largest surface error signal among the surface error signals stored in the memory 31 is obtained is referred to as a surface amplitude peak amplitude value i3.
  • a surface shake peak value which is the maximum amplitude value of the surface shake at an arbitrary radius Rn of the disk-shaped optical recording medium 51 is a
  • the radius of the disk-shaped optical recording medium 51 and the surface shake peak amplitude value I is a proportional relationship as shown in FIG.
  • Equation 1 shows that, by designating an arbitrary radius R n as a parameter, the peak amplitude value ⁇ of the runout at the radius is obtained.
  • the runout error signal stored in the memory 31 is Vfg
  • the runout error signal Vf at an arbitrary radius Rn can be estimated from equation (2).
  • the wobble error signal Vfg stored in the memory 31 is multiplied by the wobble peak amplitude value a at an arbitrary radius Rn as a gain.
  • a surface shake error signal V f is generated which is a control signal proportional to the value of an arbitrary radius Rn and taking into account the maximum displacement of the surface shake amplitude. can do.
  • the gain section 32 uses the equation 2 to provide the surface error signal V fg at the radius R m supplied from the memory 31 and the feed motor 18 By multiplying the gain obtained from the radial position information output from the attached potentiometer 19, a surface error signal Vf is generated and supplied to the system controller 46 as a control voltage.
  • the feedback control unit 40 included in the control system 20 will be described.
  • the feedback control unit 40 includes an adder 41, a comparator 42, a main control unit 43, a sub-control unit 44, a control signal switching circuit 45, and a system controller 46. I can.
  • the total reflection return light amount voltage value output from the photodetector 12 described above is supplied to the adder 41 and the comparator 42.
  • the adder 41 compares the control target voltage value for setting the gap to the control target value P with the total reflection return light amount voltage value output from the photodetector 12, and calculates the t control target voltage value. Is a preset constant voltage or the like.
  • the comparator 42 compares the voltage value of the total reflection return light quantity output from the photodetector 12 with a threshold value T1, which is a predetermined voltage value.
  • the threshold value T 1 is a value selected so as to satisfy the relationship of the control target value P and T 1> P.
  • the SIL 9 of the optical head 7 is determined. Indicates that the SIL 9 is in the far-field state. Conversely, if the voltage value of the total reflection return light quantity is smaller than the threshold value T1, it indicates that the SIL 9 is in the second field state.
  • the control signal switching circuit 45 selects the control voltage value generated by the sub-control unit 44. For example, when the switching signal “0” is output and the device is in the near field state, the control voltage value generated by the main controller 43 is selected. Thus, for example, the switching signal “1” is output to the control signal switching circuit 45.
  • the main control section 43 generates a control signal Vg which is a control voltage for bringing the gap d closer to the control target value P when the SIL 9 is in the second field state.
  • the main control unit 43 includes, for example, a phase compensation filter designed based on the frequency response, and generates a control signal Vg, which is a control voltage, from the deviation calculated by the adder 41.
  • the sub-control unit 44 generates a control signal Vh that brings the SIL 9 of the optical head 7 closer to the information recording surface of the disk-shaped optical recording medium 51 until the SIL 9 is in the near-field state.
  • the control signal switching circuit 45 outputs the control signal Vh generated by the sub-control unit 44 or the control signal generated by the main control unit 43 according to the switching signal output from the comparator 42. Or output V g.
  • the system controller 46 is a control unit that controls the control system 20 in a comprehensive manner.
  • the system controller 46 operates the feedforward control unit 30 and the feedback control unit 40 to generate a control signal.
  • the control signal generated in step 1 is supplied to the optical head 7 of the optical head 7 appropriately.
  • the information reproducing device 5OA reproduces predetermined information recorded on the disc-shaped optical recording medium 51.
  • the information reproducing apparatus 5 OA controls the laser diode 3 so that the APC 2 emits a laser beam of a constant power during reproduction, and returns the light beam irradiated on the disc-shaped optical recording medium 51. Except for obtaining a reproduction signal from light, the operation is exactly the same as that of the information recording device 50 such as control by the control system 20. Therefore, the same reference numerals are given to each functional unit, and the description is omitted.
  • the mechanism for acquiring the amount of run-out error stored in the memory 31 of the information recording device 50 described with reference to FIG. 5 and the like also has exactly the same configuration in the information reproducing device 50A.
  • a method using the difference in the frequency band between the reproduction signal shown in Fig. 11 and the gap error signal there are two methods for obtaining the reproduction signal from the return light: a method using the difference in the frequency band between the reproduction signal shown in Fig. 11 and the gap error signal, and a method using the difference in the polarization plane shown in Fig. 12. is there.
  • a band separation filter 13 is provided at a subsequent stage of the photodetector 12 as shown in FIG.
  • the band separation filter 13 separates and extracts a reproduction signal, which is information to be reproduced, from a detected value of the return light detected by the photodetector 12, and a gap error signal used for gap control.
  • the gap error signal is supplied to the control system 20 as in the case of the information recording device 50.
  • a polarizing beam splitter 14 is provided between a condenser lens 52 and a photodetector 12 as shown in FIG.
  • the return light condensed by the condenser lens 52 is transmitted and reflected by the polarization beam splitter 14 depending on the difference in the polarization plane.
  • the return light transmitted by the polarization beam splitter 14 is detected by the photodetector 12 similarly to the information recording device 50, and is supplied to the control system 20 as a gap error signal.
  • the return light reflected by the polarization beam splitter 14 is detected by the photodetector 15 via the condenser lens 53 and becomes a reproduced signal.
  • step ST11 the FG signal and the radial position information are supplied to the feedforward control unit 30 of the control system 20.
  • step ST12 the control system 20 operates the feedforward control unit 30 and stops the operation of the feedback control unit 40. As a result, feed feed control by the feed feed control unit 30 is executed.
  • step ST 13 the gain unit 32 of the feedforward control unit 30 reads out the surface error signal corresponding to the FG signal from the memory 31.
  • step ST 14 the gain unit 32 multiplies the predetermined gain based on the above-described equation (2) based on the radial error information read from the memory 31 and the supplied radial position information. And generates a control signal V f.
  • the generated control signal Vf is supplied to the system controller 46.
  • step ST15 the system controller 46 applies the control signal Vf generated by the feedforward control unit 30 to the actuator 11 of the optical head 7, Perform feedforward control.
  • step ST 16 the control system 20 holds the control signal V f applied to the actuator 11, controls to keep applying the control signal V f, and stops the operation of the feedforward control unit 30. . After stopping the operation of the feedforward control unit 30, the control system 20 subsequently operates the feedback control unit 40.
  • step ST17 the feedback control unit 40 compares the total reflection return light amount voltage value detected by the photodetector 12 with the threshold value T1 by the comparator 42.
  • the comparator 42 determines that the total reflection return light amount voltage value is larger, the comparator 42 outputs a switching signal such that the control signal Vh generated by the sub control unit 44 is output to the system controller 46.
  • the signal is output to the control signal switching circuit 45, and the process proceeds to step ST18.
  • the control signal V g generated by the main control unit 43 is switched to a switching signal that is output to the system controller 46. Output to the switching circuit 45, and the process proceeds to step ST19.
  • the total reflection return light amount voltage value is larger than the threshold value T1
  • step ST18 the feedback control unit 40 outputs the control signal Vh generated by the sub control unit 44 to the system controller 46 via the control signal switching circuit 45.
  • the system controller 46 includes a sub-control unit 4 in addition to the control signal V f generated by the feedforward control unit 30 and held and applied to the actuator 11 of the optical head 7.
  • the control signal Vh generated in 4 is applied. That is, the control signal V supplied to the actuator 11 of the optical head 7 has the following value.
  • V V f + V h
  • step ST 18 is based on the total reflection return detected by the photo detector 12. The process is repeatedly performed until the light amount becomes smaller than the threshold value T1 in the determination process of step ST17.
  • step S ⁇ 19 when the total reflection return light amount voltage value becomes smaller than the threshold value ⁇ ⁇ 1, the control signal V h ′ of the sub-control unit 44 at that time is held and the control is performed.
  • the signal switching circuit 45 switches so that the control signal Vg from the main control section 43 is output.
  • the control signal Vg is supplied to the system controller 46 through the control signal switching circuit 45.
  • the system controller 46 holds the sub-control unit 44 in addition to the control signal Vf which is generated by the feedforward control unit 30 and is held and applied to the unit 11 of the optical head 7.
  • the control signal V h ′ and the control signal V g generated by the main controller 43 are applied. That is, the control signal V supplied to the actuator 11 of the optical head 7 has the following value.
  • V V f + (V g + V h ')
  • the hold voltage V h ′ of the sub-control unit 44 may be held during control, or may be transferred to the main control unit 43 when switching to the main control unit 43.
  • the hold voltage of the sub-control unit 44 may be released by copying the hold voltage of the sub-control unit 44, and the control may be performed only by the main control unit 43.
  • the two-stage control by the two control units of the feedforward control unit 30 and the feedback control unit 40 included in the control system 20 controls the total reflection return light amount detected by the photodetector 12.
  • the gap d which is the distance between the end face of the SIL 9 of the optical head 7 and the information recording surface of the disc-shaped optical recording medium 51, can be controlled to be constant.
  • the outer peripheral portion is also clamped without employing a structure for clamping the center portion of the disc-shaped optical recording medium 51.
  • the control system 20 of the information recording device 50 and the information reproducing device 5 OA is changed to a control system 20 A including a feedforward control unit 30 A as shown in FIG. , Disc-shaped light This can be dealt with by acquiring a runout error signal for the entire information recording surface of the recording medium 51 in advance and storing the radius position information and the FG signal in the memory 31 as addresses.
  • the feedforward control unit 3OA reads out a runout error signal from the memory 31 based on the radial position information and the FG signal, and executes feedforward control.
  • the control in the feedforward control unit 30 is exactly the same as the control method in the control system 20 shown in FIG. 4 described above.
  • the end face of the SIL 9 of the optical head 7 and the disc-shaped optical recording The gap d, which is the distance from the information recording surface of the medium 51, can be controlled so that the predetermined gap d is constant.
  • the track is formed by moving the feed base 17 by the feed motor 18 in the radial direction of the loaded disk-shaped optical recording medium 51.
  • the radial position information was obtained by a potentiometer 19 that detects the rotation angle of the feed motor 18.
  • an optical pickup is provided by a laser diode 3, a collimator lens 4, a beam splitter 5, a mirror 6, an optical head 7, a condenser lens 52, and a photodetector 12.
  • the inter-track movement of the disc-shaped optical recording medium 51 may be performed by the optical pickup.
  • the radial position information may be obtained by installing a potentiometer at a linear motor where the optical pickup is moved between tracks.
  • the present invention is applied to an information recording device 60 shown in FIG. 15 as a third embodiment.
  • the information recording device 60 is equipped with a removable disk-shaped optical recording medium 51 in the same manner as the information recording device 50, and the evanescent light detected in the second field is attached to the loaded disk-shaped optical recording medium 51. And record the information.
  • the information recording device 60 is provided with a polarizing beam splitter 70 in place of the mirror 6 of the information recording device 50 shown in FIG. 1, and the surface of the disc-shaped optical recording medium 51 shown in FIG. It has a mechanism for detecting a shake error signal, and further includes a control system 80 instead of the control system 20.
  • the relative positions of the objective lens 8 of the optical head 7 and the SIL 9 are fixed, and the relative positions of the objective lens 63 and the objective lens 8 and the SIL 9 of the optical head 7 are also fixed. . For this reason, by performing support control using the surface shake error signal detected by the objective lens 6 3, not only the objective lens 6 3 but also the objective lens 8 and SIL 9 can be used for the disk-shaped optical recording medium 5. It can follow the information recording surface of 1.
  • the functional components other than the polarization beam splitter 70 and the control system 80 are denoted by the same reference numerals in the information recording device 50 described with reference to FIGS. Since these are exactly the same as those described above, detailed descriptions of the corresponding portions are omitted.
  • the light beam emitted from the laser diode 3 and transmitted through the beam splitter 5 via the collimating lens 4 is emitted to the polarization beam splitter 70.
  • the polarization beam splitter 70 reflects and transmits the light beam emitted from the beam splitter 5 depending on the difference in polarization components.
  • the polarizing beam splitter 70 reflects the P-polarized light component of the light beam and transmits the S-polarized light component.
  • the polarization beam splitter 70 reflects the light beam emitted from the beam splitter 5 and supplies the reflected light beam to the light head 7, and the light beam emitted from the beam splitter 5 is The light passes through the pinhole 61 and the mirror 62 and is supplied to the objective lens 63.
  • the return light of the light beam supplied to the optical head 7 and applied to the information recording surface of the disc-shaped optical recording medium 51 is reflected by the polarization beam splitter 70, and also reflected by the beam splitter 5 to form the condenser lens 5 2, detected by the photodetector 12 and supplied to the control system 80 as a gap error signal.
  • the return light of the light beam supplied to the objective lens 63 and applied to the information recording surface of the disc-shaped optical recording medium 51 is detected by the position detection diode 64 and is transmitted to the control signal conversion unit 65. It is converted into a shake error signal and supplied to the control system 80.
  • control system 80 operates the optical head 7 on the basis of the run-out error signal or the total reflection return light amount, thereby controlling the SIL 9 and the information recording surface of the disc-shaped optical recording medium 51.
  • a gap servo control unit 40A for controlling the gap between the two.
  • the surface run control unit 90 includes an adder 91 and a controller 92.
  • the adder 91 has a surface deviation error signal voltage value detected by the position detection diode 64 and converted into the control voltage value by the control signal conversion unit 65, and a surface deviation that becomes the control target value Q. The deviation of the error signal from the reference voltage value is supplied to the controller 92.
  • the controller 92 generates a control signal V1 based on the runout error signal supplied from the adder 91, and supplies the control signal V1 to the system controller 46A. Further, the controller 92 compares the absolute value of the surface error signal supplied from the adder 91 with the threshold value TH2, and notifies the system controller 46A of the comparison result.
  • the threshold value TH2 is a surface shake error signal detected when the end surface of SIL9 is at the boundary between the far field state and the near field state.
  • FIG. 17 shows the threshold value TH2.
  • the control by the runout error signal has been compensated, and the runout error signal supplied from the adder 92 has been compensated. Is smaller than the threshold value TH2, the control by the gap sampling controller 40A using the total reflected return light quantity can be performed.
  • the gap control unit 40 A is supplied with a control signal V 1 supplied from the controller 92 of the surface control unit 90 instead of the system controller 46 provided in the feedback control unit 40.
  • the configuration is exactly the same as that of the feed knock control unit 40 except that a system controller 46 A is provided.
  • the total reflection return light amount detected by the photodetector 12 that is, the voltage value of the total reflection return light amount, is supplied to the adder 41 and the comparator 42.
  • the main control unit 43 or the sub control unit 44 is selected, and the control voltage generated by the selected control unit is supplied to the system controller 46A.
  • the main control unit 43 feedback control in the second field using the total reflection return light amount voltage value is performed.
  • the sub control unit 43 is selected, the SIL 9 is set to the far field. Thus, the control is performed to loosely approach the optical head 7 to the vicinity of the near field state.
  • the system controller 46 A is a control unit that controls the control system 80 in a comprehensive manner, and is controlled by operating the surface control unit 90 A and the gap control unit 40 A. A signal is generated, and the control signal generated by each control unit is appropriately supplied to the optical head 7 of the optical head 7.
  • the system controller 46A stops the servo control in the surface run control unit 90 according to the result of the comparison between the run-out error signal output from the controller 92 and the threshold value TH2. Or to stop or operate the servo control of the gap servo control unit 40A.
  • the gap servo controller 4OA is stopped, the surface error controller 90 is operated, and the surface error signal is output. If it becomes smaller than the threshold value TH2, the gap servo control unit 4OA is operated, and the runout servo control unit 90 is stopped.
  • the information reproducing device 6OA reproduces predetermined information recorded on the disc-shaped optical recording medium 51.
  • the information reproducing device 6 OA controls the laser diode 3 so that the APC 2 emits a laser beam of a constant power during reproduction, and returns the light beam irradiated on the disc-shaped optical recording medium 51. Except for obtaining a reproduction signal from light, the control is exactly the same as that of the information recording device 60, such as control by the control system 80.
  • the method of acquiring the reproduction signal from the return light is based on the method using the difference in the frequency band between the reproduction signal shown in Fig. 18 and the gap error signal, and the method using the difference in the polarization plane shown in Fig. 19 There is.
  • a band separation filter 13 is provided at a subsequent stage of the photodetector 12 as shown in FIG.
  • the band separation filter 13 separates and extracts a reproduced signal, which is information to be reproduced, from a detected value of the return light detected by the photodetector 12, and a gap error signal used for the gap control.
  • the gap error signal is supplied to the control system 80 as in the case of the information recording device 60.
  • a polarizing beam splitter 14 is provided between a condenser lens 52 and a photodetector 12 as shown in FIG.
  • the return light condensed by the condensing lens 52 is a polarized beam splitter. Transmitted and reflected at 14
  • the return light transmitted by the polarization beam splitter 14 is detected by the photodetector 12 similarly to the information recording device 50, and is supplied to the control system 80 as a gap error signal.
  • the return light reflected by the polarization beam splitter 14 is detected by the photodetector 15 and becomes a reproduced signal.
  • step ST31 the light beam emitted from the laser diode 3 is applied to the information recording surface of the disk-shaped optical recording medium 51, and the reflected return light is detected by the position detection diode 64.
  • the runout error signal converted into a voltage value by the control signal conversion section 65 by the above-described off-axis method or the like is supplied to the runout control section 90 of the control system 80.
  • step ST32 the control system 80 operates the out-of-plane servo control section 90 and stops the operation of the gap support control section 40A. As a result, the servo control by the surface support control unit 90 is started.
  • step ST33 the controller 92 generates a control voltage V i that eliminates the deviation between the surface error signal calculated by the adder 91 and the control target voltage value, and the system controller Supply 4 6 A.
  • step ST34 the system controller 46A applies the control signal V i generated by the surface-floating servo controller 90 to the actuator 11 of the optical head 7, and performs the surface-floating control. I do.
  • step ST35 the control system 80 determines whether or not the absolute value of the runout error signal has become smaller than the threshold value TH2. If the surface error signal is smaller than the threshold value TH2, the process proceeds to step ST36. If the threshold value TH2 is larger than the surface error signal, the process returns to step ST31.
  • step ST36 the control system 80 holds the control signal V1 applied to the actuator 11 and controls it to continue applying the control signal V1. To stop.
  • the control system 20 stops the operation of the out-of-plane support control unit 90, the control system 20 subsequently operates the gap support control unit 40A.
  • step ST37 the gap servo control unit 40 # compares the total reflection return light amount voltage value output from the photodetector 12 with the threshold value T1 by the comparator 42. When the comparator 42 determines that the total reflection return light quantity voltage value is larger, the comparator 42 controls the switching signal such that the control signal Vh generated by the sub control unit 44 is output to the system controller 46 A. The signal is output to the signal switching circuit 45, and the process proceeds to step ST38.
  • the control signal Vg generated by the main control unit 43 is output to the system controller 46A.
  • the switching signal is output to the control signal switching circuit 45, and the process proceeds to Step ST39.
  • the voltage value of the total reflection return light amount is larger than the threshold value T1
  • the voltage value of the total reflection return light amount voltage is smaller than the threshold value T1. Indicates that SIL 9 is in the near field state.
  • step ST38 the gap support controller 40A outputs the control signal Vh generated by the sub-controller 44 to the system controller 46A via the control signal switching circuit 45.
  • the system controller 46 A is added to the control signal V i which is generated by the surface-floating servo control unit 90 and is held and applied to the function head 11 of the optical head 7.
  • the control signal Vh generated by the sub control unit 44 is applied. That is, the control signal V supplied to the actuator 11 of the optical head 7 has the following value.
  • V V i + V h
  • This step ST38 is repeatedly executed until the total reflection return light amount detected by the photodetector 12 becomes smaller than the threshold value T1 in the determination step of step ST37.
  • step ST39 in response to the total reflection return light amount voltage value becoming smaller than the threshold value T1, the control signal Vh 'of the sub control unit 44 at that time is held and the control signal
  • the switching circuit 45 switches so that the control signal V g from the main control section 43 is output.
  • the control signal Vg passes through the control signal switching circuit 45 and is supplied to the system controller 46A.
  • the system controller 46 A is a sub-controller in addition to the control signal V i generated by the surface control unit 90 and held by the actuator 11 of the optical head 7 and applied.
  • the control signal V h ′ held by the unit 44 and the control signal V g generated by the main control unit 43 are applied. That is, the control signal V supplied to the actuator 11 of the optical head 7 has the following value.
  • V V i + (V g + V h ')
  • the hold voltage V h ′ of the sub-control unit 44 may be held during control, or may be transferred to the main control unit 43 when switching to the main control unit 43.
  • the hold voltage of the sub-control unit 44 may be solved by copying the hold voltage of the sub-control unit 44, and the control may be performed only by the main control unit 43.
  • the two-stage control by the two-stage control units namely, the out-of-plane control unit 90 and the gap control unit 40 A included in the control system 80, has been detected by the photodetector 12.
  • the total reflection return light quantity is drawn into the control target value P, and the gap d, which is the distance between the end face of the SIL 9 of the optical head 7 and the information recording surface of the disc-shaped optical recording medium 51, is controlled to be constant. can do.
  • the information recording device 50 shown as the first embodiment of the present invention the information reproducing device 50 A shown as the second embodiment, the information recording device shown as the third embodiment 60, a rotation control system for controlling the operation of the spindle motor 16 included in the information reproducing apparatus 6 OA shown as the fourth embodiment will be described.
  • This rotation control system has exactly the same configuration when applied to any of the information recording device 50, the information reproducing device 50A, the information recording device 60, and the information reproducing device 60A. The description will be made using the information recording device 50 shown as the first embodiment.
  • the rotation control system 100 includes a frequency loop control unit 110, a PLL control unit 120, a frequency loop control unit 110, and a PLL control unit 120.
  • C- rotation control system 10 comprising a system controller 101 for controlling the rotation speed of the control signal, and an adder 102 for adding the control signals generated by the frequency loop control unit 110 and the PLL control unit 120.
  • the frequency loop control unit 110 includes an FV converter 111, an adder 112, and a controller 113.
  • the frequency loop control unit 110 is operated at a stage prior to executing the control based on the phase comparison in the PLL control unit 120, and locks the rotation frequency of the spindle motor 16.
  • the F-V converter 111 converts the FG signal supplied from the encoder 130 into a voltage VfV and outputs it to the adder 112.
  • the adder 1 1 2 adds the reference voltage V ref and the voltage V f V output from the F_V converter 1 1 1 with a negative sign to obtain a frequency loop error signal E f Is calculated.
  • the controller 113 generates the frequency loop control voltage Vr such that the frequency loop error signal Ef calculated by the adder 112 becomes zero, and the system controller 101 and the adder 110. Feed to spindle motor 16 via 2.
  • the PLL controller 120 includes a phase comparator 122 and a controller 122.
  • the PLL controller 120 is operated after the frequency of the spindle motor 16 is locked by the frequency loop controller 110, and locks the phase of the spindle motor 16 by phase comparison.
  • the phase comparison period 1 2 1 compares the phase of the FG signal supplied from the front end 3-3 with the phase of the reference clock, which is a signal having the same frequency as the FG signal, and calculates the phase difference ( Find the phase error signal Pe).
  • the controller 122 generates a control voltage Vp for rotating the spindle motor 16 so that the phase error signal Pe obtained by the phase comparator 122 becomes zero, and the system controller 101 The power is supplied to the spindle motor 16 via the adder 102.
  • the frequency control voltage Vr is changed over time as shown in FIG. It shows such characteristics.
  • the spindle motor 16 demands a voltage value higher than that required in the steady state due to the inertia that tries to keep the stopped state. Therefore, when the spindle motor 16 starts rotating, the above-mentioned voltage value becomes an excessive voltage due to the inertia of trying to continue the rotating state, and has an overlap as shown in FIG.
  • the disk-shaped optical recording medium 51 Due to the excessive frequency control voltage Vr supplied during the initial rotation of the disk-shaped optical recording medium 51, the disk-shaped optical recording medium 51 is rapidly accelerated. As a result, the rotation axis of the disk-shaped optical recording medium 51 is blurred, the disk is shaken, and as a result, the information recording surface is blurred.
  • phase error Pe which is the phase difference
  • FIG. 24 A control voltage corresponding to the phase error Pe is applied to the spindle motor 16. Therefore, as shown in Fig. 24, if the phase error Pe fluctuates greatly before reaching the steady state, the rotational speed of the spindle motor 16 will be rapidly accelerated and decelerated.
  • the rotation axis of the disk-shaped optical recording medium 51 is shaken, and the disk is shaken. As a result, the information recording surface is shaken.
  • control operation of the control system 20 included in the information recording device 50 and the information reproducing device 50A, and the control operation of the control system 80 included in the information recording device 60 and the information reproducing device 60A are performed by rotation control. It must be started when the runout caused by the rotation control of the spindle motor 16 of the system 100 does not affect the gap servo control.
  • the runout caused by the rotation control system 100 affects the gap support control in the near-field state.
  • the PLL control unit 120 when the phase error Pe becomes the threshold value TH3, if the information recording device 50 and the information reproducing device 5OA are the control system 20, the information recording device In the case of the information reproducing apparatus 60 A, the operation of the control system 80 is started in the case of the information reproducing apparatus 60 A, so that the runout caused by the rotation control system 100 can be avoided.
  • step ST41 rotation control of the spindle motor 16 by the rotation control system 100 is executed.
  • the system controller 101 controls the frequency loop control unit 110 to execute the frequency loop control until the spindle motor 16 reaches a predetermined rotation speed (step ST41). Is determined (step S T42). When the spindle motor 16 has reached the predetermined rotation speed, the frequency loop control voltage Vr is held, and the PLL controller 120 is operated (step ST42). If the spindle motor 16 has not reached the predetermined number of revolutions, the process from step ST41 is repeated.
  • the system controller 101 causes the PLL control unit 120 to execute the PLL control until the phase error Pe becomes smaller than a preset threshold TH3 (step ST43), and the phase error Pe Is smaller than the threshold value TH3 (step ST44), the control by the control system 20 is started (step ST45).
  • an apparatus for performing recording or reproduction using evanescent light detected by a near-field such as the information reproducing apparatus 600A shown as the embodiment
  • the surface fluctuation generated by the rotation control system 100 is caused by gap gap.
  • the control by the control system 20 or the control system 80 is executed.
  • a beam splitter, a collimating lens, etc. The arrangement can be changed as appropriate.
  • This information recording device 260 uses a detachable disk-shaped optical recording medium 200 as a recording medium.
  • the information recording surface of the mounted disk-shaped optical recording medium 200 has a near-field ( A near-field recording system that records information by irradiating evanescent light detected in the near field) and a far-field recording system that records information by irradiating a light beam emitted from a light source.
  • the information recording device 260 includes, as a near-field recording system, an information source 1 that supplies information to be recorded on a disc-shaped optical recording medium 200, an APC (Auto Power Controller) 2, and a laser diode (LD) 203. , Collimate overnight lens 204, beam splitter (BS) 205, dichroic mirror 201, mirror 207, condenser lens 208, photodetector (PD) 9, optical head 2 and a control system 230.
  • BS beam splitter
  • PD photodetector
  • the dichroic mirror 206, mirror 210, optical head 211, and control system 230 are functional units commonly used with the far-field recording system described in detail later. is there.
  • the AP C 20 2 is controlled to modulate the laser light emitted from the laser diode 2 0 3 which is provided at the rear stage in response to information supplied from the information source 2 0 1.
  • the laser diode 203 emits a laser beam having a predetermined wavelength under the control of the APC 202.
  • the laser diode 203 is a red semiconductor laser, a blue-violet semiconductor laser, or the like.
  • As the laser diode 203 a laser beam having a wavelength different from that of a laser diode of a far-field recording system described later is selected.
  • the collimating lens 204 emits the laser light emitted from the laser diode 203 as a light beam parallel to the optical axis.
  • the beam splitter 205 is the light beam emitted from the collimator lens 204. And exits to the dichroic mirror 206.
  • the beam split 205 reflects the return light from the head 21 transmitted through the dichroic mirror 206 and outputs the reflected light to the condenser lens 208.
  • the dichroic mirror 206 reflects or transmits the incident light beam according to the difference in wavelength.
  • the dichroic mirror 206 transmits the light beam emitted from the beam splitter 205 and emits the light beam to the mirror 207.
  • the mirror 207 reflects the light beam emitted from the dichroic mirror 206 and emits the light beam to the optical head 221.
  • the mirror 207 reflects the return light from the optical head 221 and emits it to the dichroic mirror 206.
  • the optical head 221 focuses the light beam emitted from the mirror 207 and irradiates the information recording surface of the disk-shaped optical recording medium 200.
  • the light emitted from the optical head 221 to the information recording surface is an aperture capable of recording and reproducing information with a spot size equal to or larger than the diffraction limit of the lens. Light.
  • the optical head 221 includes an objective lens 222, a SIL (Solid Immersion Lens) 223, a lens folder 224, and an actuator 225.
  • SIL Solid Immersion Lens
  • An aspheric lens is used as the objective lens 222, and the light beam emitted from the laser diode 203 is focused through the collimating lens 204, the beam splitter 205, the dichroic mirror 206, and the mirror 207 to be focused.
  • SIL 223 is a high-refractive-index lens having a shape obtained by cutting a part of a spherical lens into a plane.
  • the SIL 223 causes the light beam supplied by the objective lens 22 to enter from the spherical surface side and to be focused on the center of the surface (end surface) opposite to the spherical surface.
  • a SIM Solid Emersion Mirror
  • a reflecting mirror formed and having the same function as the SIL 223 may be used instead of the SIL 223, a SIM (Solid Emersion Mirror) having a reflecting mirror formed and having the same function as the SIL 223 may be used.
  • the lens folder 224 integrally holds the objective lens 222 and the SIL 223 in a predetermined positional relationship.
  • the SIL 223 is made up of the lens holder 224 so that the spherical surface faces the objective lens 222, and the surface opposite to the spherical surface (end surface) Are held so as to face the information recording surface of the disc-shaped optical recording medium 200.
  • the objective lens 222 can be obtained.
  • a numerical aperture larger than the numerical aperture of only 22 can be obtained.
  • the objective lens 222 and the SIL 223 can be used to reduce the spot size of the light beam. can do.
  • the actuator 225 drives the lens folder 224 in the focus direction and tracking direction according to the control voltage output as a control signal from the control system 230.
  • the evanescent light is light that has entered the end face of the SIL 2 23 at an angle equal to or greater than the critical angle and has oozed from the reflection boundary surface of the totally reflected light beam.
  • the end face of the SIL 223 is located within the field (near field) described later from the information recording face of the disc-shaped optical recording medium 200, the evanescent oozing from the end face of the SIL 223 Light will be applied to the information recording surface.
  • the near field is a region where the distance d from the light beam exit surface of the lens is d A / 2, where ⁇ is the wavelength of light incident on the lens.
  • the disc-shaped optical recording medium 200 can be seen from the end face of the SIL 2 23 provided in the optical head 2 21.
  • the area where the distance (gap) d to the information recording surface is defined as d ⁇ A / 2 by the wavelength ⁇ of the light beam incident on the SIL 223 is the near field.
  • the gap d defined by the distance between the information recording surface of the disk-shaped optical recording medium 200 and the end face of the SIL 223 satisfies d ⁇ AZ2, and the epanescent light is emitted from the end face of the SIL 223.
  • the state in which the information recording surface of the disc-shaped optical recording medium 200 oozes out is called the near-field state, and the state in which the gap d satisfies ⁇ > ⁇ / 2 and the evanescent light does not ooze out on the information recording surface is far. Field state.
  • the total reflection return light amount in the far-field state is a constant value.
  • the SIL 2 2 3 The gap between the end face of the optical recording medium 200 and the information recording surface of the disc-shaped optical recording medium 200 can be controlled to be constant. For example, as shown in FIG. 28, if control is performed so that the total reflected return light quantity becomes the control target value P, the gap is kept constant at the distance d.
  • the condenser lens 208 is totally reflected by the end face of the SIL 223 of the optical head 221, reflected by the mirror 207, transmitted by the dichroic mirror 206, and The return light reflected by the magnetic disk 205 is collected on the photo disk 209.
  • the photo disc 209 detects the amount of return light collected by the condenser lens 208 as a current value.
  • the current value detected by the photo disk 209 has already been converted to DC, and is output to the control system 230 as a voltage value of the total reflection return light quantity.
  • the information recording device 260 includes, as a far-field recording system, an information source 211 for supplying information to be recorded on the disc-shaped optical recording medium 200, an APC 212, and a laser diode 211. , Mira 1 214, Collimé lens 2 15, Concave lens 2 16, Beamsplitter (BS) 2 17 and Dichroic Mira 1 206, Mi 207, an optical head 221, a mirror 218, a condenser lens 210, a cylindrical lens 219, and a photodetector 220.
  • BS Beamsplitter
  • the dichroic mirror 206, the mirror 207, the optical head 221 and the control system 230 are functional units commonly used in the near-field recording system.
  • the APC 212 controls the laser beam emitted from the laser diode 213 provided at the subsequent stage to be modulated according to the information supplied from the information source 211.
  • the laser diode 2 13 emits a laser beam having a predetermined wavelength under the control of the APC 2 12.
  • the laser diode 2 13 is a red semiconductor laser, a blue-violet semiconductor laser, or the like.
  • the laser diode 2 13 selects a laser beam having a wavelength different from that of the above-described two-field recording laser diode 203.
  • the collimating lens 2 15 emits from the laser diode 2 13 The emitted laser light is emitted as a light beam parallel to the optical axis.
  • the concave lens 2 16 emits the light beam emitted from the collimator lens 2 15 to the beam splitter 2 17 with a slight divergence.
  • the beam splitter 217 transmits the light beam emitted from the concave lens 216 with a slight divergence and emits it to the dichroic mirror 206. Further, the beam splitter 217 reflects the return light from the head 221 reflected by the dichroic mirror 206 and emits it to the mirror 218.
  • the dichroic mirror 206 reflects or transmits the incident light beam according to the difference in wavelength.
  • the dichroic mirror 206 reflects the light beam emitted from the beam splitter 210 and emits it to the mirror 201.
  • the mirror 207 reflects the light beam emitted from the dichroic mirror 206 and emits it to the optical head 221.
  • the mirror 207 reflects the return light from the optical head 221 and emits it to the dichroic mirror 206.
  • the optical head 222 irradiates the light beam emitted from the mirror 207 onto the information recording surface of the disc-shaped optical recording medium 200.
  • the optical head 222 condenses the light beam on the information recording surface of the disk-shaped optical recording medium 200.
  • recording is performed using evanescent light. Therefore, as shown in FIG. 29A, light is emitted at the end face and the center of the SIL 223. The beam is focused.
  • the optical head 221 when used as a far-field recording system, the light beam emitted from the SIL 223 is applied to the information recording surface of the disc-shaped optical recording medium 200 as shown in FIG. 29B. And the information is recorded.
  • the concave lens 2 16 inserted between the collimating lens 2 15 of the far-field recording system and the beam splitter 2 17 emits a light beam to the objective lens 222 with a slight tendency to diverge. Even if an optical head 221 having a two-group lens consisting of the objective lens 222 and the SIL 223 is used, a light beam is applied to the information recording surface of the disc-shaped optical recording medium 200. Light can be collected.
  • the reflected light condensed and reflected from the optical head 222 on the information recording surface of the disc-shaped optical recording medium 200 is emitted again to the mirror 207 via the optical head 222.
  • This reflected light is reflected by mirror 201, reflected by dichroic mirror 206, reflected by beam splitter 217, and emitted to mirror 218.
  • the mirror 218 emits the reflected light emitted from the beam splitter 217 to the condenser lens 210.
  • the condenser lens 210 condenses the reflected light emitted from the mirror 218 onto the cylindrical lens 219.
  • the cylindrical lens 219 is a lens whose one surface has a cylindrical shape, and is a lens that causes astigmatism in the incident light beam.
  • the light beam having astigmatism caused by the cylindrical lens 2 19 is emitted to the photodetector 220.
  • the photodetector 220 detects the light beam emitted from the cylindrical lens 219, that is, the amount of light reflected by the information recording surface of the disc-shaped optical recording medium 200, and detects the amount of light as a focus error signal. Output to control system 230.
  • the astigmatism method generally applied to the focus servo of a CD or DVD is obtained from the reflected light reflected on the information recording surface of the disc-shaped optical recording medium 200. Is used to acquire the focus error signal. Subsequently, the control system 230 will be described with reference to FIG.
  • the control system 230 functions as a control unit of the far-field recording system, and the information recording surface of the disc-shaped optical recording medium 200 and the SIL 223 that can be used by the optical head 221 are used.
  • a gap support controller 241 for controlling the gap between the control unit 3 and the control unit 3.
  • the focus sensor control unit 2 31 includes an adder 2 32 and a controller 2 3 3, and uses the focus error signal output from the photodetector 2 20 described above to control the focus sensor. Execute the port control.
  • Figure 31 shows the pull-in signal detected by the photodetector 220 and the focus error signal when properly pulled into the thermoloop.
  • the focus support control is executed by using the linear part of the focus error signal.
  • the controller 2 3 3 generates a control voltage value V f for controlling the optical head 2 2 1 so that the value added by the adder 2 3 2 becomes 0, and sends the control voltage value V f to the system controller 2 4 7. Output.
  • the gap support controller 241 will be described.
  • the gap servo control section 241, the adder 242, the comparator 243, the main control section 2444, the sub-control section 2445, the control signal switching circuit 2464, and the system controller 2 4 7 is provided.
  • the total reflection return light amount voltage value output from the photo disk 209 is supplied to the adder 242 and the comparator 243.
  • Adder 2 4 2 the control target voltage value to the control target value P gap, t the control target voltage taking deviation by comparing the total reflection return light quantity voltage value output from the off Oto disk 2 0 9
  • the value is a preset constant voltage or the like.
  • the comparator 243 compares the voltage value of the total reflection return light amount output from the photo disc 209 with a threshold value T1, which is a predetermined voltage value.
  • the threshold value T 1 is a value selected so as to satisfy the relationship of the control target value P and T 1> P. If the voltage value of the total reflection return light amount is larger than the threshold value T 1, the SIL of the optical head 22 1 223 indicates that it is in the far-field state. Conversely, if the total reflection return light amount voltage value is less than or equal to the threshold value T1, it indicates that SIL 223 is in the two-field state.
  • the comparator 243 controls the control signal switching circuit 246 so that the control voltage value generated by the sub control unit 245 is selected.
  • the control signal switching circuit 246 is controlled so that the control voltage value generated by the main control unit 244 is selected. 1 is output.
  • the main control unit 244 generates a control signal Vg that is a control voltage for bringing the gap d closer to the control target value P when the SIL 223 is in the near-field state.
  • the main control unit 244 includes, for example, a phase compensation filter designed based on the frequency response, and generates a control signal Vg, which is a control voltage, from the deviation calculated by the adder 242.
  • the sub-control unit 245 generates a control signal Vh that causes the SIL 223 of the optical head 222 to approach the information recording surface of the disk-shaped optical recording medium 200 up to a distance where the optical head 222 enters the near-field state.
  • the control signal switching circuit 246 outputs the control signal Vh generated by the sub-control unit 245 or the control signal Vg generated by the main control unit 244 according to the switching signal output from the comparator 43. Or
  • the system controller 247 is a control unit that controls the control system 230 in its entirety.
  • the system controller 247 operates the focus servo control unit 231, the gap servo control unit 241, and generates a control signal.
  • the control signal generated in step (1) is supplied to the optical head 221 of the optical head 221 appropriately.
  • control voltage supplied from the system controller 247 to the optical head 22 25 of the optical head 22 1 is V
  • the controller 23 3 3 of the focus servo controller 23 1 The control voltage Vf is input to the control signal switching circuit 24 of the gap servo control unit 241, and the control voltage V is output from the control signal Vh or Vg from the control signal switching circuit 24.
  • V V f + V h (3)
  • V V f + V g
  • control system 230 Next, the operation of the control system 230 will be described with reference to the flowchart shown in FIG.
  • step S201 it is selected whether to use the information recording device 260 as a near-field recording system or a far-field recording system.
  • the gear control unit 241 of the control system 230 is started, the process proceeds to step S202, and when using as the far field recording system, Then, the focus error control unit 31 is activated, and the process proceeds to step S206.
  • Steps S202 to S205 are steps in the near-field recording system.
  • step S202 the photo disk 209 detects the total reflection return light amount of the light beam emitted from the laser diode 203 to the light head 21 via a predetermined optical system.
  • the detected total reflection return light amount is supplied to the control system 230 as a gap error signal.
  • step S203 the gap support controller 41 compares the total reflection return light quantity voltage value with the threshold value T1 using the comparator 243.
  • the comparator 243 determines that the total reflection return light amount voltage value is larger, the control signal Vh generated by the sub control unit 245 is output to the system controller 247 by the switching signal. To The signal is output to the control signal switching circuit 246, and the process proceeds to step S204.
  • the control signal Vg generated by the main control unit 244 is output to the system controller 247 by a switching signal. Is output to the control signal switching circuit 246, and the process proceeds to step S205.
  • the threshold value T1 when the voltage value of the total reflection return light amount is larger than the threshold value T1, it indicates that the SIL 2 23 is in the far field state, and when the voltage value of the total reflection return light amount is smaller than the threshold value T1. Indicates that SIL 222 is in the near field state.
  • step S204 the gap servo control unit 241 outputs the control signal Vh generated by the sub control unit 245 to the system controller 247 via the control signal switching circuit 246. .
  • This step of step S204 is repeatedly executed until the total amount of reflected light detected by the photodetector 220 becomes smaller than the threshold value T1 in the determination step of step S203.
  • step S205 the control signal Vh of the sub control unit 245 is held when the total reflection return light amount voltage value becomes smaller than the threshold value T1 (hereinafter, the hold voltage is At the same time, the control signal switching circuit 246 switches to output the control signal Vg from the main control section 244.
  • the control signal V g passes through the control signal switching circuit 246 and is supplied to the system controller 247.
  • the system controller 247 converts the held control signal V h ′ of the sub control unit 245 and the control signal V g generated by the main control unit 244 into an optical head 221. 2 2 5 That is, the control signal V supplied to the optical head 225 of the optical head 221 has the following value.
  • V V g + V h '
  • the hold voltage V h ′ of the sub control unit 245 may be held during control, or when the control is switched to the main control unit 244, the hold voltage V h ′ is transmitted to the main control unit 244.
  • the hold voltage of 45 may be copied, the hold voltage of sub-control unit 245 may be released, and control may be performed only by main control unit 244.
  • Steps S206 to S207 are steps in the far-field recording system.
  • step S206 the information recording surface of the disc-shaped optical recording medium 200 is irradiated from the laser diode 21 through a predetermined optical system and the optical head 221, and the reflected light is reflected. Detected by photodetector 220. The detected reflected light is supplied to the control system 230 as a focus error signal.
  • step S207 the focus support control unit 231 controls the control voltage Vf to eliminate the deviation between the supplied focus error signal and the target value ⁇ by the controller 233. Generate and supply to system controller 247.
  • the system controller 247 applies the supplied control voltage V f as the control voltage V to the optical head 225 of the optical head 221.
  • the optical system used and the focus server in the control system 230 are used depending on whether the information recording device 260 is used as a far-field recording system or a near-field recording system.
  • the optical system used and the focus server in the control system 230 are used.
  • the SIL 2 2 3 end face of the optical head 2 2 1 and the disk-shaped optical recording medium 2 Control can be performed so that the distance to the information recording surface of 00 is constant at a predetermined distance according to each recording method.
  • the information recording device 260 shown in FIG. 26 uses a concave lens 2 16 to cause the light beam emitted from the collimating lens 2 15 to be emitted with a slight divergence, thereby forming a disc-shaped optical recording medium.
  • the light beam was focused on the information recording surface of 200.
  • the concave lens 2 16 is removed from the information recording device 260 shown in FIG. 26, and the mirror 210 and the optical head 2 2 1 are removed.
  • the configuration is such that an expander 250 is inserted.
  • the expander 250 has a two-group lens consisting of a concave lens 251, and a collimating lens 252, and the distance between these two lenses becomes longer due to the actuating lens 253. , Shortening.
  • the actuator 253 operates when an adjustment voltage is supplied from the inter-lens adjustment voltage application unit 254.
  • the inter-lens adjustment voltage applying unit 255 receives the switching signal for switching between using the information recording device 261 as a two-field recording system and a far-field recording system. Apply an adjustment voltage to the actuator according to the requirements.
  • the information recording device 261 When the information recording device 261 is used as a far-field recording system, by appropriately adjusting the distance between the two lens groups of the expander 250, as shown in Figs. 34A and 34B. However, the beam diameter of the light beam (incident light) incident on the objective lens 222 of the optical head 222 decreases, and the light beam can be focused on the information recording surface of the disc-shaped optical recording medium 200. it can.
  • the concave lens 2 16 is removed from the information recording device 260 shown in FIG. 33, and the optical head 2 21 is The configuration is such that a mechanism is added to increase or decrease the distance between the two group lenses by the objective lens 22 2 provided in 22 1 and the SIL 2 23.
  • the objective lens 222 moves relative to the SIL 222, and the second lens unit The distance between them changes.
  • the inter-lens adjustment voltage applying unit 255 receives the switching signal for switching between using the information recording device 262 as a near-field recording system or a far-field recording system in response to input of a switching signal. Apply the adjustment voltage to 2 25 overnight.
  • the information reproducing device 270 reproduces predetermined information recorded on the disc-shaped optical recording medium 200.
  • the information reproducing apparatus 270 mounts the removable disk-shaped optical recording medium 200 on a mounting section (not shown), and detects the two-field (near field) on the mounted disk-shaped optical recording medium 200.
  • a near-field reproducing system that reproduces information by irradiating the evanescent light to be emitted, and a far-field reproducing system that reproduces information by irradiating a light beam emitted from a light source.
  • the near-field reproducing system of the information reproducing apparatus 270 is controlled such that the laser diode 203 is controlled by the APC 202 to emit a laser beam having a constant power. Except for obtaining the near-field reproduction signal from the return light of the light beam irradiated to the optical system, the control by the control system 230 is exactly the same as the two-field recording system of the information recording device 260 shown in Fig. 26. Therefore, the same reference numerals are given to the corresponding functional units, and the description is omitted.
  • the laser diode 213 is controlled by the APC 212 so that laser light of a constant power is emitted, and
  • the method of acquiring the reproducing signal from the return light includes a reproducing signal shown in FIG. 37 and a gap error signal. There is a method that uses the difference in frequency band between the two, and a method that uses the difference in the polarization plane shown in Fig. 38.
  • a band separation filter 256 is provided downstream of the photo disc 209 as shown in FIG.
  • the band separation filter 256 separates and extracts the near-field reproduction signal, which is the information to be reproduced, and the gap error signal used for the gap control from the detected value of the return light detected by the photo disk 209. I do.
  • the gap error signal is the information recording device 2 As in the case of 60, it is supplied to the control system 230.
  • a polarizing beam splitter 257 is provided between the condenser lens 208 and the photo disc 209 as shown in FIG. I have.
  • the return light condensed by the condenser lens 208 is transmitted and reflected by the polarization beam splitter 257 according to the difference in the polarization plane.
  • the return light transmitted through the polarization beam splitter 257 is detected by the photo disk 209 similarly to the information recording device 260, and is supplied to the control system 230 as a gap error signal.
  • the return light reflected by the polarization beam splitter 257 is detected by the photodetector 259 via the condenser lens 258 and becomes a near-field reproduction signal.
  • FIG. 39, FIG. 40, FIG. 41, and FIG. 42 show that in the far-field reproducing system, the light beam emitted from the optical head 221 is used to record information on the disc-shaped optical recording medium 200. Another method for condensing light on a surface will be described.
  • the collimator lens 2 uses the concave lens 2 16.
  • the light beam emitted from 15 is emitted with a slight tendency to diverge, so that the light beam is focused on the information recording surface of the disc-shaped optical recording medium 200.
  • the information reproducing device 271 shown in FIGS. 39 and 40, removes the concave lens 2 16 from the information reproducing device 270 shown in FIGS. 37 and 38, respectively.
  • the configuration is such that an expander 250 is inserted between the expander 221 and the node 221.
  • the expander 250 has a two-lens group consisting of a concave lens 251 and a collimating lens 252, and the distance between these two lenses can be extended by an actuating lens 253. , Or narrowed.
  • the actuator 253 operates when an adjustment voltage is supplied from the inter-lens adjustment voltage application unit 254.
  • the inter-lens adjustment voltage applying unit 254 responds to the input of a switching signal for switching whether the information recording device 261 is used as a near-field recording system or a far-field recording system. Apply the adjustment voltage to the actuator.
  • the information recording device 26 1 When using the information recording device 26 1 as a far-field recording system, By appropriately adjusting the distance between the two lens groups of the panda 250, the light enters the objective lens 222 of the optical head 221 as shown in FIGS. 36A and 36B described above. The beam diameter of the light beam (incident light) is reduced, and the light beam can be focused on the information recording surface of the disc-shaped optical recording medium 200.
  • the concave lens 2 16 is removed from the information reproducing device 270 shown in FIGS. 37 and 38, respectively, and the optical head 2 2 1
  • a configuration has been added to add a mechanism to increase or decrease the distance between the objective lens 222 provided in the optical head 222 and the second lens group by the SIL 222. I have.
  • the objective lens 222 moves relative to the SIL 223, The distance between the two lens groups changes.
  • the inter-lens adjustment voltage applying unit 255 receives the switching signal for switching whether the information recording device 272 is used as a near-field recording system or a far-field recording system in response to the input of a switching signal. Apply the adjustment voltage to 25 overnight.
  • the distance between the objective lens 222 and the SIL 223 when the optical head 221 is used as the near-field recording system is h 0.
  • the distance between the objective lens 2 2 2 and the SIL 2 2 3 is set to h 1 (h 1> h 0).
  • the information recording device 280 mounts a detachable disk-shaped optical recording medium 200 on a mounting portion (not shown), and detects the evanescent light detected in the near field on the mounted disk-shaped optical recording medium 200.
  • a two-field recording system that records information by irradiating light and a furfield that records information by irradiating a light beam emitted from a light source It has a record recording system.
  • the information recording device 260 shown in FIG. 26 has two light sources such as a laser diode 203 as a light source for a near-field recording system and a laser diode 213 as a light source for a far-field recording system. Configuration.
  • the information recording apparatus 280 shown in FIG. 43 has a configuration in which the light source of the near-field recording system and the light source of the far-field recording system are shared and only one is provided.
  • the information recording device 280 When the information recording device 280 is used as a near-field recording system, the information recording device 280 includes an information source 301 that supplies information to be recorded on the disc-shaped optical recording medium 200, and an APC 3. 0, an information source 303 for supplying information to be recorded on the disc-shaped optical recording medium 200 when used as a far-field recording system, an APC 304, a signal switch 300, Laser diode 306, collimator lens 307, lens block 308, beam splitter 310, mirror 207, optical head 221 and mirror block 3 1 1, Mira 3 1 3, Condensing lens 208, Photodisc 209, Condensing lens 210, Cylindrical lens 219, Photodetector 220, Control system 2 30.
  • an information source 301 that supplies information to be recorded on the disc-shaped optical recording medium 200
  • an APC 3.0 an information source 303 for supplying information to be recorded on the disc-shaped optical recording medium 200 when used as a far-field recording system
  • an APC 304
  • the APC 302 controls the laser light emitted from the laser diode 303 provided at the subsequent stage to be modulated according to the information supplied from the information source 301.
  • the APC 304 controls the laser light emitted from the laser diode 303 provided at the subsequent stage to be modulated according to the information supplied from the information source 303.
  • the signal switch 305 determines the APC 305 in response to a switch signal for switching whether the information recording device 280 is used as a near-field recording system or a far-field recording system. 2. Switch between the output of APC 304 and the output of APC 304 to the laser diode 306. For example, when using the information recording device 280 as a near-field recording system, the signal from the APC 302 is switched so as to be supplied to the laser diode 306, and is used with the far-field recording system. If the signal from the APC 304 is Switched to be supplied to 306.
  • the laser diode 310 emits a laser beam of a predetermined wavelength modulated according to a signal supplied from the APC 302 or 304.
  • the laser diode 3 is a red semiconductor laser, a blue-violet semiconductor laser, or the like.
  • the laser diode 203 is common to the two-field recording system and the far-field recording system.
  • the collimating lens 307 emits the laser light emitted from the laser diode 306 as a light beam parallel to the optical axis.
  • the lens block 308 is a block in which the concave lens 309 is incorporated, and the concave lens 309 is emitted from the collimator lens 307 when a far field switching signal or a near field switching signal is supplied. It is placed on the optical axis of the emitted light beam or excluded from the optical axis.
  • the concave lens 309 is a lens used in the far-field recording system, and makes the light beam enter the objective lens 222 with a slight divergence. That is, the concave lens 309 has the same function as the concave lens 216 in the information recording device 260 shown in FIG.
  • the concave lens 309 When the far field switching signal is supplied to the lens block 308, the concave lens 309 is arranged on the optical axis, and the light beam emitted from the collimating lens 307 is slightly transmitted by the concave lens 309. It is likely to diverge and enters beam splitter 310.
  • the concave lens 309 When a near-field switching signal is supplied to the lens block 308, the concave lens 309 is eliminated from the optical axis, and the light beam emitted from the collimating lens 307 is converted into a beam splitter. Incident at 10
  • the beam splitter 310 transmits the light beam emitted from the lens block 308 and emits it to the mirror 207.
  • the beam splitter 310 reflects the return light from the optical head 221 emitted from the mirror 207 or the reflected light from the information recording surface of the disc-shaped optical recording medium 200.
  • the light is emitted to the mirror block 3 1 1.
  • the light beam emitted to the objective lens 22 of the optical head 221 through the mirror 207 is returned as light returned from the optical head 221.
  • the reflected light from the information recording surface of the disc-shaped optical recording medium 200 is reflected again by the mirror 207 and emitted to the beam splitter 310. It is.
  • the mirror block 3 1 1 is a block in which the mirror 3 1 2 is incorporated, and is supplied with a far-field switching signal or a near-field switching signal. It is arranged on the optical axis of the light beam emitted from 0 or is excluded from the optical axis.
  • the mirror 312 is a mirror used in the far-field recording system, and is emitted from the beam splitter 310 when the information recording device 280 is used as the far-field recording system. It plays the role of guiding the reflected light from the information recording surface to the detector used in the far-field recording system.
  • the mirror 312 When the far field switching signal is supplied to the mirror block 311, the mirror 312 is arranged on the optical axis. Therefore, the light beam emitted from the beam splitter 310, that is, the light reflected on the information recording surface is reflected by the mirror 312 and emitted to the mirror 313.
  • the mirror 312 is removed from the optical axis, and the return light from the optical head 221 emitted from the beam splitter 310 is removed. The light is emitted to the condenser lens 208.
  • the mirror 3 13 reflects the light beam reflected by the mirror 3 12, that is, the light reflected on the information recording surface, and emits it to the condenser lens 210.
  • the reflected light from the information recording surface emitted to the condensing lens 210 is condensed by the condensing lens 210 as described above, and is passed through the cylindrical lens 219 to the photodetector 220. And supplied to the control system 230 as a focus error signal.
  • the return light from the head 221 emitted to the condenser lens 208 is condensed by the condenser lens 208 as described above, detected by the photo disc 209, and a gap error is generated. It is supplied to the control system 230 as a signal.
  • control of the optical head 221 by the gap error signal and the control of the optical head 221 by the focus error signal in the control system 230 are exactly the same as the control of the information recording device 260 described above. Therefore, the description is omitted.
  • the lens block 308 having the concave lens 309 is removed from the information recording device 280 shown in FIG. 43, and the mirror 207 and the optical head 22 are removed.
  • the configuration is such that an expander 250 is inserted between the two.
  • the expander 250 is operated by the inter-lens adjustment voltage applying unit 254.
  • FIGS. 33 and 34 The method for condensing the light beam on the information recording surface of the disk-shaped optical recording medium 200 using the expander 250 and the inter-lens adjustment voltage applying unit 254 is shown in FIGS. 33 and 34. Since the method is exactly the same as that described above, the description is omitted.
  • the lens block 308 provided with the concave lens 309 is removed from the information recording device 280 shown in FIG.
  • a mechanism is added to increase or decrease the distance between the two lens groups by the objective lens 22 provided in the optical head 2 21 and the SIL 2 23.
  • the distance between the objective lens 222 and the SIL 223 of the optical head 221 provided with such a mechanism and the SIL 223 is determined by the application of the adjustment voltage by the lens adjustment voltage application unit 255. Change.
  • FIGS. 35 and 36 The method of condensing a light beam on the information recording surface of the disc-shaped optical recording medium 200 using the optical head 2 21 and the inter-lens adjustment voltage applying unit 255 is shown in FIGS. 35 and 36. The description is omitted because it is exactly the same as that described above.
  • the information reproducing device 290 reproduces predetermined information recorded on the disc-shaped optical recording medium 200.
  • the information reproducing apparatus 290 mounts the detachable disc-shaped optical recording medium 200 on a mounting portion (not shown), and detects the disc-shaped optical recording medium 200 in the near field (near field).
  • a two-field reproducing system that reproduces information by irradiating evanescent light, and a far-field reproducing system that reproduces information by irradiating a light beam emitted from a light source.
  • the information reproducing apparatus 290 is controlled so that the laser diode 306 is controlled by the APC 302 or the APC 304 so that a laser beam having a constant power is emitted.
  • a method of acquiring a reproducing signal from the return light includes a reproducing signal shown in FIG. There is a method that uses the difference in the frequency band from the error signal, and a method that uses the difference in the polarization plane shown in Fig. 47.
  • a band separation filter 256 is provided downstream of the photodisc 209 as shown in FIG.
  • the band separation filter 256 separates a reproduction signal for two fields, which is information to be reproduced, from a return value detected by the photo disk 209 and a gap error signal used for gap control. To extract.
  • the gap error signal is supplied to the control system 230 as in the case of the information recording device 260.
  • a polarization beam splitter 257 is provided between the condenser lens 208 and the photo disc 209 as shown in FIG. ing.
  • the return light condensed by the condenser lens 208 is transmitted and reflected by the polarization beam splitter 257 according to the difference in the polarization plane.
  • the return light transmitted by the polarization beam splitter 257 is detected by the photo disk 209 similarly to the information recording device 280, and is supplied to the control system 230 as a gap error signal (
  • the return light reflected by the polarization beam splitter 257 is detected by the photodetector 259 via the condenser lens 258 and becomes a near-field reproduction signal.
  • FIGS. 48, 49, 50, and 51 show that in the far-field reproducing system, the light beam emitted from the optical head 221 is used to record information on the disc-shaped optical recording medium 200. Another method for condensing light on a surface will be described.
  • the information recording apparatus shown in FIG. Since the light beam emitted from the collimator lens 2 15 is slightly divergent using the concave lens 2 16, the information on the disc-shaped optical recording medium 200 A light beam is focused on the recording surface.
  • the information reproducing apparatus 291, shown in FIGS. 48 and 49, is replaced with a mirror 210, instead of the lens block 300 provided in the information reproducing apparatus 290 shown in FIGS. 46, 47, respectively.
  • the configuration is such that an expander 250 is inserted between the optical head 2 21.
  • the expander 250 has a two-group lens consisting of a concave lens 225 and a collimating lens 252, and the distance between these two lenses becomes longer due to the actuating lens 253. , Shortening.
  • the actuator 253 operates when an adjustment voltage is supplied from the inter-lens adjustment voltage application unit 254.
  • the inter-lens adjustment voltage applying unit 254 receives a switching signal for switching whether to use the information reproducing device 291 as a two-field reproducing system or a far-field reproducing system. Apply the adjustment voltage to the function overnight 25 3 according to.
  • the information reproducing apparatus 291 When the information reproducing apparatus 291 is used as a far-field recording system, by appropriately adjusting the distance between the two lens groups of the expander 50, as shown in FIGS. 34A and 34B described above, The beam diameter of the light beam (incident light) incident on the objective lens 22 of the optical head 222 decreases, and the light beam can be focused on the information recording surface of the disc-shaped optical recording medium 200. it can.
  • the information reproducing apparatus 292 shown in FIGS. 50 and 51 is replaced by an optical head instead of the lens block 308 provided in the information reproducing apparatus 290 shown in FIGS. 46 and 47, respectively.
  • a structure is added that adds or shortens the distance between the objective lens 2 2 of the optical head 2 2 1 and the 2 group lens by SIL 2 23. It has.
  • the objective lens 222 moves relative to the SIL 223, The distance between the two lens groups changes.
  • the inter-lens adjustment voltage applying unit 255 determines whether the information reproducing apparatus 292 is used as a near-field reproducing system or a far-field reproducing system. The adjustment voltage is applied to the actuator 25 in response to the input of the switching signal to be changed.
  • the adjustment voltage is adjusted so that the distance between the objective lens 2 2 and SIL 2 3 is h 1 (h 1> h 0).
  • the gap control unit 241 of the control system 230 it is attempted to control a biaxial device such as the optical head 221 at a certain distance in the near field from the information recording surface of the disk-shaped optical recording medium.
  • a very large DC gain is required for the controller, that is, the main control section 244.
  • the DC gain is actually about 260 dB unless the integration filter is included. It is the limit to be.
  • phase rotation is faster and it becomes more difficult to secure a sufficient DC gain, as compared to the analog-based sampler due to the sampling frequency.
  • the characteristics of the two-axis device are improved to lower the primary resonance frequency to make it easier to secure the DC gain, or to reduce the DC gain by adding an integral filter. Avoiding phase shifts due to digitization using analog servos, making it easier to increase the gain while ensuring stability, and increasing the sampling frequency to increase the phase shifts as high as possible. A method of constructing such a digital service system can be considered.
  • the deviation between the control target voltage value calculated by the adder 242 and the total reflection return light amount voltage value is input to the auxiliary control unit 320.
  • the auxiliary control unit 320 executes a predetermined process for the deviation and outputs the result to the adder 321.
  • the auxiliary control section 320 is, for example, an LPF (cut-off frequency fc: 10 Hz) having frequency characteristics as shown in FIG.
  • the auxiliary control unit 320 removes the high-frequency component of the deviation output from the adder 242 and outputs the result to the adder 321.
  • Fig. 54A shows the state of the control voltage generated by the gap control unit 41 connected to only the main control unit 244.
  • the gap control unit is connected when the auxiliary control unit 320 is connected.
  • the state of the control voltage generated in 241 is shown in Figure 51B.
  • FIG. 54A it can be seen that in the case of only the main controller 244, the control voltage contains a large amount of fluctuation components due to the residual error. Also, as shown in FIG. 54B, by connecting the auxiliary control unit 320, it can be seen that the fluctuation component is eliminated and the influence of the residual error is eliminated.
  • the adder 321 adds a value output from the auxiliary control unit 324 to the control voltage output from the main control unit 244 to generate a new control voltage.
  • Fig. 55 in the near-field state, the frequency characteristics of the gap servo control unit 241 when the auxiliary control unit 320 is connected in parallel to the main control unit 244, and only the main control unit 244 is connected The frequency characteristics of the gap servo control unit 241 are shown.
  • the DC gain is 80 dB, and only the main control unit 244 is connected. In the case (shown as (2)), it can be seen that the gain is 20 dB compared with the DC gain of 260 dB.
  • the cutoff frequency was about 1.7 kHz and there was no difference, indicating that the control response was stable and stable.
  • the phase rotates 180 degrees from around 35 Hz to around 250 Hz, and the DC gain at this time is also 0 d. B or more.
  • this frequency range is a conditionally unstable range because it is lower than the cutoff frequency of about 1.7 kHz, and is considered to be stable as a closed-loop transfer function.
  • the arrangement of the beam splitter, the collimator lens, and the like can be appropriately changed.
  • the present invention is not limited to the above-described embodiment described with reference to the drawings, and various changes, substitutions, or equivalents thereof may be made without departing from the scope and spirit of the appended claims. It will be apparent to those skilled in the art that INDUSTRIAL APPLICABILITY As described above, according to the present invention, after the first control means suppresses the runout of the optical recording medium, the second control means controls the near-field and the information recording surface of the optical recording medium. Since feedback control is performed so that the distance from the light emitting device is kept constant in the near field, it is possible to appropriately secure DC gain for each control means, so reproduction with insufficient DC gain is performed. It is possible to prevent a fatal error in recording or reproduction using near-field light such as deterioration of quality or breakdown of the near-field state.
  • the first control means suppresses the runout of the optical recording medium, it is possible to perform good recording and reproduction of the optical recording medium while maintaining the rim palability of the optical recording medium. Become.
  • the gap control is started after the operation of the rotation control system of the disk-shaped optical recording medium is in a steady state, so that the gap servo control can be executed reliably and stably.
  • the distance between the information recording surface of the optical recording medium and the emitting means is kept constant in the near field by the first control means.
  • the distance between the information recording surface and the emitting means is controlled by the second control means.
  • the system is controlled so that it is kept constant at a distance longer than the near field, so even if it is a simple device configuration with one emitting means, a system that uses near-field light for recording and a light beam By appropriately switching the system for condensing the light on the information recording surface and recording the information, it is possible to satisfactorily record predetermined information on the optical recording medium.
  • the present invention provides a method for reproducing information from an optical recording medium using near-field light, wherein the distance between the information recording surface of the optical recording medium and the emitting means is reduced by the first control means.
  • the distance between the information recording surface and the emitting means is kept constant at a distance longer than the near-field by the second control means. Control using a near-field light, and a light beam focused on the information recording surface for reproduction even with a simple device configuration with a single emission means. This makes it possible to appropriately reproduce the predetermined information recorded on the optical recording medium by appropriately switching the system.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

 本発明は、着脱自在なディスク状光記録媒体(51)を記録媒体に用いる情報記録及び/又は再生装置であり、回転駆動されるディスク状記録媒体の所定の半径位置での面ぶれ量を記憶する記憶部(31)と、光源(3)から出射された光ビームを集光し、ディスク状光記録媒体の情報記録面に対する近接場に配置された場合に集光した光ビームを近接場光として出射する近接場光出射部(7)と、記憶部から読み出された面ぶれ量に、所定のゲインを乗算することで制御信号を生成し、近接場光出射部をディスク状記録媒体の面ぶれ量に追従させるように制御する第1の制御部(30)と、近接場光の戻り光量の線形特性に基づいて、近接場光出射部を、情報記録面に対する近接場内において所定の距離を保つように制御する第2の制御部(40)とを備える。

Description

明細書 情報記録又は再生装置並びに記録又は再生制御方法 技術分野 本発明は、 ェパネセント光を利用して情報の記録又は再生を行う情報記録装置 及び情報記録制御方法に関し、 更に、 情報再生装置及び情報再生制御方法に関す る。
本出願は、 日本国において 2 0 0 3年 1月 1 7日に出願された日本特許出願番 号 2 0 0 3— 1 0 3 1 3を基礎として優先権を主張するものであり、 この出願は 参照することにより、 本出願に援用される。 背景技術 従来、 記録媒体のうち、 記録及び Z又は再生装置に着脱自在とされた光デイス クは、 記録及び Z又は再生装置に装着されたとき、 ディスクの中心部をディスク 回転駆動機構を構成するターンテーブルにクランプされることで夕一ンテ一ブル と一体に回転可能となる。 このように、 中心部をターンテーブルにクランプされ て回転する光ディスクは、 回転駆動されるとき、 クランプされた中心部を支点に して上下に揺れながら回転するいわゆる面ぶれを生じやすい。
記録及び Z又は再生装置に装着され、 ディスク回転駆動機構によって回転駆動 される光ディスクに面ぶれが生じると、 情報の記録又は再生時に、 主にフォー力 スエラーを生じやすくなる。
したがって、 記録及びノ又は再生装置に着脱自在とされた光ディスクは、 タ一 ンテーブルにクランプされるとき、 傾きを生じさせることなくターンテーブルに 水平に載置することが望ましいが、 正確にターンテーブルに対し水平に装着して クランプすることが困難である。
このような実情から、 着脱自在とされた光ディスクを記録媒体に用いる記録及 び/又は再生装置では、 ディスク回転駆動機構に装着して回転駆動されるときに ある程度の面ぶれが発生することを想定し、 光ディスクの回転駆動時に発生する 面ぶれに対して記録及び/又は再生装置側のフォーカスサーボ機構によって対処 するようにしている。 例えば、 D V D (D igi tal Versat i l e D i sc) などでは、 回 転平面に対し上下に土 3 0 0; mの面ぶれが発生しても、 記録及び/又は再生装 置側のフォーカスサーボ機構によりフォーカスエラーを生じないように対策が施 されている。
最近、 光ディスクのような光記録媒体に、 光ビームを照射することで所定の情 報を記録又は再生する装置において、 エバネセント光を利用することで、 光の回 折限界を超えて高密度な記録再生を可能とする技術が提案されている。
エバネセント光を利用して光記録媒体に情報の記録を行い、 光記録媒体に記録 された情報の再生を行うる技術として、 エバネセント光発生用レンズに S I L (Sol id Immers ion Lens) を用いたものがある。
エバネセント光を用いて光記録媒体に情報の記録又は再生を行うには、 光記録 媒体に照射される光ビームを集光する光学系として、 S I Lと非球面レンズとを 組み合わせた 2群レンズとして開口数 N Aを 1以上としたものを用い、 光学系の 光出射面と光記録媒体の情報記録面との間隔を、 S I Lに入射する光ビームの波 長の半分以下にする必要がある。 例えば、 上記間隔は、 光ビームの波長 λが 4 0 O n mであったならば、 2 0 0 n m以下とされる。
良好な記録又は再生を行うためには、 集光光学系の光出射面と光記録媒体の情 報記録面との間隔を一定に保つ必要がある。 そこで、 S I Lを搭載した光ヘッド においては、 光記録媒体からの戻り光量の違いをエラー信号として利用し、 この エラー信号に応じて光へッドのァクチユエ一夕を駆動制御することにより、 集光 光学系の光記録媒体に対する位置を制御するようにした技術が特開 2 0 0 1 - 7 6 3 5 8号公報において提案されている。
上述したように、 ェパネセント光を利用して良好な記録再生を実現するには、 ナノオーダの非常に短い間隔で集光光学系の光出射面と光記録媒体の情報記録面 との位置を制御しながら光へッドを記録媒体の情報記録面に追従させる必要があ る。 ディスク記録及び/又は再生装置に着脱自在とされた光記録媒体にあっては、 装置側のディスク回転駆動機構に高精度に水平に装着して回転駆動することが困 難であり、 回転駆動時の面ぶれの発生を抑えることが困難である。 特に、 面ぶれ の範囲を回転平面に対し上下に土 300 xm以下に抑えるようなことは極めて困 難である。 そのため、 光記録媒体に対する情報の記録又は再生時に、 集光光学系 の光出射面と光記録媒体の情報記録面との間隔を 2 0 0 nm以下とすることが要 求される波長を 40 0 nmとするエバネセント光を利用した記録及び Z又は再生 装置に適用することが極めて困難である。
例えば、 波長を 40 0 nmとするエバネセント光を利用した記録及び/又は再 生装置において、 集光光学系の光出射面と光記録媒体の情報記録面との間隔 (ギ ヤップ) を l O O nmであるとし、 許容ギャップエラ一を ± 1 %とすると、 ± 1 nm以下にギャップエラーを制御する必要がある。 このような装置で、 DVDな どで許容範囲となっている土 30 0 m程度の面ぶれが生じた場合には、 フォー カスサ一ポに必要となる D Cゲインが 1 0 0 d B以上になってしまう。 1 00 d B以上の D Cゲインを確保しつつ安定した制御系を設計することは、 非常に困難 である。
これに対処すべく、 回転駆動時の光記録媒体の面ぶれ量を予め、 例えば ± 1 0 /X m以下に抑えようとすると、 光記録媒体が回転駆動装置に着脱自在とされた装 置において実現することは極めて困難である。
また、 許容ギャップエラーの条件を緩めることも考えられるが、 再生 RF信号 の劣化を引き起こしてしまうなど、 良好な情報の記録又は再生を実現することが できなくなってしまう。
また、 上述したようなェパネセント光を用いて、 光記録媒体への記録及び/又 は再生を行う装置では、 CD (Compact Disc) や DVD (Digital Versatile Di sc) といった、 現在まで広く利用され、 情報資源としても膨大な量の記録メディ ァを利用することができなくなってしまうという問題がある。
エバネセント光を利用して情報の記録又は再生を行う記録及び/又は再生装置 と、 CDや DVDなどのようにレーザ光源からのレーザ光を集光し、 ディスクの 情報記録面に照射して記録又は再生する記録及び/又は再生装置とでは、 装置を 構成する光学系や、 光ヘッドの構成などが全く異なっている。 したがって、 エバ ネセント光を利用して記録及び Z又は再生を行う光記録媒体と C Dや D V Dとを 互換性をもって利用可能とする装置を構成するには、 各記録媒体に応じて用いる 光学系を切り替える必要がある。 各光記録媒体に応じて用いる光学系を切り替え るときに発生する光学系のズレをどのように対処するかといった問題や、 装置の 大型化、 装置の大型化に伴うコスト増といった種々の問題がある。 発明の開示 本発明の目的は、 上述したような従来の技術が有する問題点を解決することが できる新規な情報記録又は再生装置、 さらには記録又は再生制御方法を提供する しとにめ 。
本発明の他の目的は、 着脱自在となされた記録媒体を用いながら、 回転駆動時 に発生する記録媒体の面ぶれの発生を考慮して、 良好な特性をもって情報の記録 又は再生を行うことができる情報記録又は再生装置、 さらには記録又は再生制御 方法を提供することにある。
本発明のさらに他の目的は、 二ァフィ一ルドでの情報の記録又は再生、 ファー フィールドの情報の記録又は再生を簡便な機構で実現する情報記録又は再生装置、 さらには記録又は再生制御方法を提供することにある。
本発明に係る情報記録装置は、 着脱自在なディスク状光記録媒体を装着する装 着手段と、 装着手段に装着したディスク状光記録媒体を所定の回転数で回転させ る回転駆動手段と、 回転駆動手段によってディスク状光記録媒体が一回転する間 に所定の周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段 と、 パルス信号生成手段で生成される N個のパルス信号をカウントするカウント 手段と、 パルス信号生成手段でパルス信号が生成される夕イミングで検出される ディスク状記録媒体の所定の半径位置での面ぶれ量をカウント手段でのカウント 値と対応づけて記憶する記憶手段と、 ディスク状光記録媒体の情報記録面に記録 する記録情報によって変調された所定の波長の光ビームを出射する光源と、 光源 から出射された光ビームを集光し、 ディスク状光記録媒体の情報記録面に対する 近接場に配置された場合に集光した光ビームを近接場光として情報記録面に出射 する近接塲光出射手段と、 近接場光出射手段が光ビームを照射しているディスク 状光記録媒体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情 報検出手段と、 半径位置情報検出手段によって検出される半径位置情報に対応し た所定のゲインを生成するゲイン生成手段と、 カウント手段によってカウントさ れたパルス信号のカウント値に応じて、 記憶手段に記憶されている面ぶれ量を読 み出す面ぶれ量読み出し手段と、 面ぶれ量読み出し手段によって読み出された面 ぶれ量に、 ゲイン生成手段で生成される上記所定のゲインを乗算することで制御 信号を生成し、 近接場光出射手段を面ぶれ量に追従させるように制御する第 1の 制御手段と、 情報記録面に出射された近接場光の戻り光量を検出する戻り光量検 出手段と、 戻り光量検出手段によって検出された近接場光の戻り光量の線形特性 に基づいて、 近接場光出射手段を、 情報記録面に対する近接場内において所定の 距離を保つように制御する第 2の制御手段とを備える。
本発明に係る他の情報記録装置は、 着脱自在なディスク状光記録媒体を装着す る装着手段と、 装着手段に装着したディスク状光記録媒体を所定の回転数で回転 させる回転駆動手段と、 回転駆動手段によってディスク状光記録媒体が一回転す る間に所定の周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成 手段と、 上記パルス信号生成手段で生成される N個のパルス信号をカウントする カウント手段と、 パルス信号生成手段でパルス信号が生成されるタイミングで検 出される面ぶれ量を、 カウント手段でのカウント値と半径位置情報とに対応づけ て記憶する記憶手段と、 ディスク状光記録媒体の情報記録面に記録する記録情報 によって変調された所定の波長の光ビームを出射する光源と、 光源から出射され た光ビームを集光し、 ディスク状光記録媒体の情報記録面に対する近接場に配置 された場合に集光した光ビームを近接場光として情報記録面に出射する近接場光 出射手段と、 記近接場光出射手段が光ビームを照射しているディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出手段 と、 カウント手段によってカウントされたパルス信号のカウント値及び半径位置 情報検出手段によって検出される半径位置情報に応じて、 記憶手段に記憶されて いる面ぶれ量を読み出す面ぶれ量読み出し手段と、 面ぶれ量読み出し手段によつ て読み出された面ぶれ量に基づいて、 近接場光出射手段を面ぶれ量に追従させる ように制御する第 1の制御手段と、 情報記録面に出射された近接場光の戻り光量 を検出する戻り光量検出手段と、 戻り光量検出手段によって検出された近接場光 の戻り光量の線形特性に基づいて、 近接場光出射手段を、 情報記録面に対する近 接場内において所定の距離を保つように制御する第 2の制御手段とを備える。 本発明に係るさらに他の情報記録装置は、 着脱自在なディスク状光記録媒体を 装着する装着手段と、 ディスク状光記録媒体の情報記録面に記録する記録情報に よって変調された所定の波長の光ビームを出射する光源と、 光源から出射される 光ビームを集光し、 ディスク状光記録媒体の情報記録面に出射する光学手段と、 光学手段によって出射された光ビームの戻り光からディスク状光記録媒体の面ぶ れ量を検出する面ぶれ量検出手段と、 光源から出射された光ビームを集光し、 デ イスク状光記録媒体の情報記録面に対する近接場に配置された場合に集光した光 ビームを近接場光として情報記録面に出射する近接場光出射手段と、 情報記録面 に出射された近接場光の戻り光量を検出する戻り光量検出手段と、 面ぶれ量検出 手段によって検出された面ぶれ量が第 1の閾値以上である場合、 面ぶれ量に基づ いて近接場光出射手段を面ぶれ量に追従させるように制御する第 1の制御手段と、 面ぶれ量検出手段によって検出された面ぶれ量が第 1の閾値より小さい場合、 戻 り光量検出手段によって検出された近接場光の戻り光量の線形特性に基づいて、 近接場光出射手段を、 情報記録面に対する近接場内において所定の距離を保つよ うに制御する第 2の制御手段とを備える。
本発明に係る情報再生装置は、 着脱自在なディスク状光記録媒体を装着する装 着手段と、 装着手段に装着したディスク状光記録媒体を所定の回転数で回転させ る回転駆動手段と、 回転駆動手段によってディスク状光記録媒体が一回転する間 に所定の周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段 と、 パルス信号生成手段で生成される N個のパルス信号をカウントするカウント 手段と、 パルス信号生成手段でパルス信号が生成されるタイミングで検出される 面ぶれ量を、 カウン卜手段でのカウント値と、 半径位置情報とに対応づけて記憶 する記憶手段と、 ディスク状光記録媒体に記録された所定の情報を再生する所定 の波長の光ビームを出射する光源と、 光源から出射された光ビームを集光し、 デ イスク状光記録媒体の情報記録面に対する近接場に配置された場合に集光した光 ビームを近接場光として情報記録面に出射する近接場光出射手段と、 近接場光出 射手段が光ビームを照射しているディスク状光記録媒体の情報記録面の半径位置 を示す半径位置情報を検出する半径位置情報検出手段と、 カウント手段によって カウントされたパルス信号のカウント値及び半径位置情報検出手段によって検出 される半径位置情報に応じて、 記憶手段に記憶されている面ぶれ量を読み出す面 ぶれ量読み出し手段と、 面ぶれ量読み出し手段によって読み出された面ぶれ量に 基づいて、 近接場光出射手段を面ぶれ量に追従させるように制御する第 1の制御 手段と、 情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手 段と、 戻り光量検出手段によって検出された近接場光の戻り光量の線形特性に基 づいて、 近接場光出射手段を、 情報記録面に対する上記近接場内において所定の 距離を保つように制御する第 2の制御手段とを備える。
本発明に係る他の情報再生装置は、 着脱自在なディスク状光記録媒体を装着す る装着手段と、 装着手段に装着したディスク状光記録媒体を所定の回転数で回転 させる回転駆動手段と、 回転駆動手段によってディスク状光記録媒体が一回転す る間に所定の周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成 手段と、 パルス信号生成手段で生成される N個のパルス信号をカウントするカウ ント手段と、 パルス信号生成手段でパルス信号が生成される夕イミングで検出さ れるディスク状記録媒体の所定の半径位置での面ぶれ量を、 カウン卜手段での力 ゥント値と対応づけて記憶する記憶手段と、 ディスク状光記録媒体に記録された 所定の情報を再生する所定の波長の光ビームを出射する光源と、 光源から出射さ れた光ビームを集光し、 ディスク状光記録媒体の情報記録面に対する近接場に配 置された場合に集光した光ビームを近接場光として情報記録面に出射する近接場 光出射手段と、 近接場光出射手段が光ビームを照射しているディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出手段 と、 半径位置情報検出手段によって検出される半径位置情報に対応した所定のゲ インを生成するゲイン生成手段と、 カウント手段によってカウントされたパルス 信号のカウント値に応じて、 記憶手段に記憶されている面ぶれ量を読み出す面ぶ れ量読み出し手段と、 面ぶれ量読み出し手段によって読み出された面ぶれ量にゲ ィン生成手段で生成される上記所定のゲインを乗算することで制御信号を生成し、 近接場光出射手段を面ぶれ量に追従させるように制御する第 1の制御手段と、 情 報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段と、 戻り 光量検出手段によって検出された近接場光の戻り光量の線形特性に基づいて、 近 接場光出射手段を、 情報記録面に対する近接揚内において所定の距離を保つよう に制御する第 2の制御手段とを備える。
本発明に係るさらに他の情報再生装置は、 着脱自在なディスク状光記録媒体を 装着する装着手段と、 ディスク状光記録媒体の情報記録面に記録された所定の情 報を再生する所定の波長の光ビームを出射する光源と、 光源から出射される光ビ ームを集光し、 ディスク状光記録媒体の情報記録面に出射する光学手段と、 光学 手段によって出射された光ビームの戻り光からディスク状光記録媒体の面ぶれ量 を検出する面ぶれ量検出手段と、 光源から出射された光ビームを集光し、 デイス ク状光記録媒体の情報記録面に対する近接場に配置された場合に集光した光ビー ムを近接場光として情報記録面に出射する近接場光出射手段と、 情報記録面に出 射された近接場光の戻り光量を検出する戻り光量検出手段と、 面ぶれ量検出手段 によって検出された面ぶれ量が第 1の閾値以上である場合、 面ぶれ量に基づいて 駆動手段を制御する第 1の制御手段と、 面ぶれ量検出手段によって検出された面 ぶれ量が第 1の閾値より小さい場合、 戻り光量検出手段によって検出された近接 場光の戻り光量の線形特性に基づいて、 近接場光出射手段を情報記録面に対する 近接場内において所定の距離を保つように制御する第 2の制御手段とを備える。 本発明に係るさらに他の情報記録装置は、 着脱自在なディスク状光記録媒体を 装着する装着手段と、 装着手段に装着したディスク状光記録媒体を回転させる回 転駆動手段と、 回転駆動手段によってディスク状光記録媒体が一回転する間に所 定の周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段と、 上記パルス信号生成手段で生成されたパルス信号の周波数を電圧値に変換する電 圧値変換手段と、 電圧値変換手段で変換された電圧値と、 所定の基準電圧値とを 比較する電圧値比較手段と、 電圧値比較手段による比較結果に基づいて、 回転駆 動手段の回転数を制御する第 1の回転数制御手段と、 パルス信号生成手段で生成 されたパルス信号の位相と、 所定の基準信号の位相とを比較する位相比較手段と、 位相比較手段による比較結果に基づいて、 回転駆動手段の回転数を制御する第 2 の回転数制御手段と、 ディスク状光記録媒体の情報記録面に記録する記録情報に よって変調された所定の波長の光ビームを出射する光源と、 光源から出射された 光ビームを集光し、 ディスク状光記録媒体の情報記録面に対する近接場に配置さ れた場合に、 集光した光ビームを近接場光として上記情報記録面に出射する近接 場光出射手段と、 情報記録面に出射された近接場光の戻り光量を検出する戻り光 量検出手段と、 戻り光量検出手段によって検出された近接場光の戻り光量の線形 特性に基づいて、 近接場光出射手段を、 情報記録面に対する近接場内において所 定の距離を保つように制御する第 1のギヤップ制御手段と、 ディスク状光記録媒 体が所定の回転数で回転するように回転駆動手段を第 1の回転数制御手段によつ て制御させ、 所定の回転数となったことに応じて、 第 2の回転数制御手段による 制御を開始させ、 位相比較手段による位相比較結果が所定の閾値以下となったこ とに応じて第 1のギャップ制御手段による制御を開始させる制御手段とを備える 本発明に係るさらに他の情報再生装置は、 着脱自在なディスク状光記録媒体を 装着する装着手段と、 装着手段に装着したディスク状光記録媒体を回転させる回 転駆動手段と、 回転駆動手段によってディスク状光記録媒体が一回転する間に所 定の周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段と、 パルス信号生成手段で生成されたパルス信号の周波数を電圧値に変換する電圧値 変換手段と、 電圧値変換手段で変換された電圧値と、 所定の基準電圧値とを比較 する電圧値比較手段と、 電圧値比較手段による比較結果に基づいて、 回転駆動手 段の回転数を制御する第 1の回転数制御手段と、 パルス信号生成手段で生成され たパルス信号の位相と、 所定の基準信号の位相とを比較する位相比較手段と、 位 相比較手段による比較結果に基づいて、 回転駆動手段の回転数を制御する第 2の 回転数制御手段と、. ディスク状記録媒体に記録された所定の情報を再生する所定 の波長の光ビームを出射する光源と、 光源から出射された光ビームを集光し、 デ イスク状光記録媒体の情報記録面に対する近接場に配置された場合に、 集光した 光ビームを近接場光として情報記録面に出射する近接場光出射手段と、 記情報記 録面に出射された近接場光の戻り光量を検出する戻り光量検出手段と、 戻り光量 検出手段によって検出された近接塲光の戻り光量の線形特性に基づいて、 近接場 光出射手段を、 情報記録面に対する近接場内において所定の距離を保つように制 御する第 1のギャップ制御手段と、 ディスク状光記録媒体が所定の回転数で回転 するように回転駆動手段を第 1の回転数制御手段によって制御させ、 所定の回転 数となったことに応じて、 第 2の回転数制御手段による制御を開始させ、 位相比 較手段による位相比較結果が所定の閾値以下となったことに応じて第 1のギヤッ プ制御手段による制御を開始させる制御手段とを備える。
本発明に係るさらに他の情報記録装置は、 光記録媒体の情報記録面に記録する 記録情報によって変調された第 1の波長の光ビームを出射する第 1の光源と、 光 記録媒体の情報記録面に記録する記録情報によって変調された第 2の波長の光ビ —ムを出射する第 2の光源と、 第 1の光源から出射された第 1の波長の光ビーム を集光し、 光記録媒体の情報記録面に対する近接場に配置された場合に集光した 第 1の波長の光ビームを近接場光として情報記録面に出射し、 第 2の光源から出 射された第 2の波長の光ビームを情報記録面に集光させるように出射する出射手 段と、 情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、 情報記録面に集光された第 2の波長の光ビームの反射光の反射光量を検出す る反射光量検出手段と、 近接場光による記録時において、 戻り光量検出手段によ つて検出された近接塲光の戻り光量の線形特性に基づいて、 出射手段を上記情報 記録面に対する近接塲内において所定の距離を保つように制御する第 1の制御手 段と、 第 2の波長の光ビームによる記録時において、 反射光量検出手段によって 検出された反射光の反射光量の線形特性に基づいて出射手段を情報記録面に対す る近接場以上の距離において所定の距離を保つように制御する第 2の制御手段と を備える。
本発明に係るさらに他の情報再生装置は、 光記録媒体の情報記録面に記録され た所定の情報を再生する第 1の波長の光ビームを出射する第 1の光源と、 光記録 媒体の情報記録面に記録された所定の情報を再生する第 2の波長の光ビームを出 射する第 2の光源と、 第 1の光源から出射された第 1の波長の光ビームを集光し、 光記録媒体の情報記録面に対する近接場に配置された場合に集光した第 1の波長 の光ビームを近接場光として情報記録面に出射し、 第 2の光源から出射された第 2の波長の光ビームを情報記録面に集光させるように出射する出射手段と、 情報 記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段と、 情報記 録面に集光された第 2の波長の光ビームの反射光の反射光量を検出する反射光量 検出手段と、 近接場光による再生時において、 戻り光量検出手段によって検出さ れた近接場光の戻り光量の線形特性に基づいて、 出射手段を情報記録面に対する 近接場内において所定の距離を保つように制御する第 1の制御手段と、 第 2の波 長の光ビームによる再生時において、 反射光量検出手段によって検出された反射 光の反射光量の線形特性に基づいて出射手段を情報記録面に対する近接場以上の 距離において所定の距離を保つように制御する第 2の制御手段とを備える。 本発明に係るさらに他の情報記録装置は、 光記録媒体の情報記録面に記録する 記録情報によって変調された所定の波長の光ビームを出射する光源と、 光源から 出射された所定の波長の光ビームを集光し、 光記録媒体の情報記録面に対する近 接場に配置された場合に集光した所定の波長の光ビームを近接場光として情報記 録面に出射し、 光源から出射された所定の波長の光ビームを情報記録面に集光さ せるように出射する出射手段と、 情報記録面に出射された近接場光の戻り光量を 検出する戻り光量検出手段と、 情報記録面に集光された所定の波長の光ビームの 反射光の反射光量を検出する反射光量検出手段と、 近接場光による記録時におい て、 戻り光量検出手段によって検出された戻り光量の線形特性に基づいて、 出射 手段を情報記録面に対する近接場内において所定の距離を保つように制御する第 1の制御手段と、 所定の波長の光ビームによる記録時において、 反射光量検出手 段によって検出された反射光の反射光量の線形特性に基づいて出射手段を情報記 録面に対する近接場以上の距離において所定の距離を保つように制御する第 2の 制御手段とを備える。
本発明に係るさらに他の情報再生装置は、 光記録媒体の情報記録面に記録され た所定の情報を再生する所定の波長の光ビームを出射する光源と、 光源から出射 された所定の波長の光ビームを集光し、 光記録媒体の情報記録面に対する近接場 に配置された場合に集光した所定の波長の光ビームを近接場光として情報記録面 に出射し、 光源から出射された所定の波長の光ビームを情報記録面に集光させる ように出射する出射手段と、 情報記録面に出射された近接場光の戻り光量を検出 する戻り光量検出手段と、 情報記録面に集光された所定の波長の光ビームの反射 光の反射光量を検出する反射光量検出手段と、 近接場光による記録時において、 戻り光量検出手段によって検出された戻り光量の線形特性に基づいて、 出射手段 を情報記録面に対する近接場内において所定の距離を保つように制御する第 1の 制御手段と、 所定の波長の光ビームによる記録時において、 反射光量検出手段に よって検出された反射光の反射光量の線形特性に基づいて出射手段を情報記録面 に対する近接場以上の距離において所定の距離を保つように制御する第 2の制御 手段とを備える。
本発明の更に他の目的、 本発明によって得られる具体的な利点は、 以下におい て図面を参照して説明される実施の形態の説明から一層明らかにされるであろう。 図面の簡単な説明 図 1は、 本発明に係る第 1の実施の形態としての情報記録装置を示すブロック 図である。
図 2は、 情報記録装置が備える光へッドを示す側面図である。
図 3は、 戻り光量とギヤップ間距離との関係を示す図である。
図 4は、 情報記録装置が備える制御システムを示すブロック図である。
図 5は、 情報記録装置において、 光記録媒体の面ぶれ量を取得する機構を示す ブロック図である。
図 6は、 情報記録装置において、 離軸法を用いた面ぶれ量の検出について説明 するための図である。
図 7は、 情報記録装置において、 面ぶれエラ一信号と光記録媒体のポジション について示した図である。
図 8は、 情報記録装置において、 光記録媒体の半径と、 面ぶれピーク振幅値の 関係について示した第 1の図である。
図 9は、 情報記録装置において、 面ぶれ信号をメモリに記憶する際の動作につ いて説明するためのフローチヤ—トである。
図 1 0は、 情報記録装置において、 光記録媒体の半径と、 面ぶれピーク振幅値 の関係について示した第 2の図である。 図 1 1は、 本発明に係る第 2の実施の形態としての情報再生装置を示すブロッ ク図である。
図 1 2は本発明に係る第 2の実施の形態としての情報再生装置の他の構成を示 すブロック図である。
図 1 3は、 本発明に係る情報記録装置及び情報再生装置が備える制御システム による制御動作を示すフローチャートである。
図 1 4は、 制御システムの他の構成を示すプロック図である。
図 1 5は、 本発明に係る第 3の実施の形態としての情報記録装置を示すブロッ ク図である。
図 1 6は、 情報記録装置の制御システムを示すブロック図である。
図 1 7は、 情報記録装置の制御システムで設定する閾値について説明するため の図である。
図 1 8は、 本発明に係る第 4の実施の形態としての情報再生装置を示すブロッ ク図である。
図 1 9は、 本発明に係る第 4の実施の形態としての情報再生装置を示すブロッ ク図である。
図 2 0は、 本発明に係る情報記録装置及び情報再生装置が備える制御システム による制御動作について説明するためのフローチヤ一トである。
図 2 1は、 本発明に係る情報記録装置に搭載する回転制御システムを示すプロ ック図である。
図 2 2は、 回転制御システムの構成を示すブロック図である。
図 2 3は、 周波数ループ制御部で生成される周波数制御電圧の特性を示した図 である。
図 2 4は、 P L L制御部における位相エラ一信号の特性を示した図である。 図 2 5は、 回転制御システムでの制御と制御システムとの動作タイミングを示 すフ口一チヤ一卜である。
図 2 6は、 本発明に係る第 4の実施の形態としての情報記録装置を示すブロッ ク図である。
図 2 7は、 記情報記録装置が備える光へッドを示す側面図である。 図 2 8は、 戻り光量とギャップ間距離との関係について説明するための図であ る。
図 2 9 Aは光へッドからェパネセント光が出射される様子を示す側面図であり、 図 2 9 Bは光へッドから出射された光ビームが情報記録面に集光される様子を示 す側面図である。
図 3 0は、 本発明に係る第 4の実施の形態としての情報記録装置が備える制御 システムの構成を示すブロック図である。
図 3 1は、 プルイン信号と、 フォーカスエラー信号を示す図である。
図 3 2は、 本発明に係る情報記録装置が備える制御システムの動作を示すフロ
—チヤ一トである。
図 3 3は、 情報記録装置が備えるエキスパンダの構成を示すブロック図である 図 3 4 Aは光へッドからエバネセント光が出射される様子を示す側面図であり、 図 3 4 Bは光へッドから出射された光ビームが情報記録面に集光される様子を示 す側面図である。
図 3 5は、 情報記録装置において、 光ヘッドの 2群レンズ間距離を調整する構 成を示すブロック図である。
図 3 6 Aは光へッドからェパネセント光が出射される様子を示す側面図であり、 図 3 6 Bは光へッドから出射された光ビームが情報記録面に集光される様子を示 す側面図である。
図 3 7は、 本発明に係る第 5の実施の形態としての情報再生装置のブロック図 である。
同 3 8は、 本発明に係る第 6の実施の形態としての情報再生装置を示すブロッ ク図である。
図 3 9は、 情報再生装置が備えるエキスパンダの構成を示す第 1のブロック図 である。
図 4 0は、 情報再生装置が備えるエキスパンダの構成を示す第 2のプロック図 である。
図 4 1は、 情報再生装置において、 光ヘッドの 2群レンズ間距離を調整する構 成を示す第 1のブロック図である。 図 4 2は、 情報再生装置において、 光ヘッドの 2群レンズ間距離を調整する構 成を示す第 2のブロック図である。
図 4 3は、 本発明に係る第 6の実施の形態としての情報記録装置を示すプロッ ク図である。
図 4 4は、 情報記録装置が備えるエキスパンダの構成を示すブロック図である 図 4 5は、 情報記録装置において、 光ヘッドの 2群レンズ間距離を調整する構 成を示すブロック図である。
図 4 6は、 本発明に係る第 7の実施の形態としての情報再生装置を示すブロッ ク図である。
図 4 7は、 本発明に係る第 7の実施の形態として示す情報再生装置の他の構成 を示すプロック図である。
図 4 8は、 情報再生装置が備えるエキスパンダの構成を示すブロック図である c 図 4 9は、 情報再生装置が備えるエキスパンダの他の構成を示すブロック図で ある。
図 5 0は、 情報再生装置において、 光ヘッドの 2群レンズ間距離を調整する状 態を示すブロック図である。
図 5 1は、 情報再生装置において、 光ヘッドの 2群レンズ間距離を調整する他 の状態を示すブロック図である。
図 5 2は、 制御システムが備えるギャップサ一ポ制御部の他の構成を示すプロ ック図である。
図 5 3は、 ギャップサーポ制御部の主制御部に並列に接続された補助制御部の 周波数特性を示す図である。
図 5 4 Aは主制御部のみの場合の制御電圧の様子を示す図であり、 図 5 4 Bは 補助制御部を並列に接続させた場合の制御電圧の様子を示す図である。
図 5 5は、 主制御部に補助制御部を並列に接続させた場合の周波数特性を示し た図である 発明を実施するための最良の形態 以下、 本発明に係る情報記録装置及び情報記録制御方法、 情報再生装置及び情 報再生制御方を図面を参照して説明する。
まず、 本発明に係る第 1の実施の形態の情報記録装置 5 0を図 1を参照して説 明する。 図 1に示す情報記録装置 5 0は、 着脱自在とされたディスク状光記録媒 体 5 1を図示しない装着部に装着し、 装着したディスク状光記録媒体 5 1に、 二 ァフィールド (近接場) において検出されるエバネセント光を照射して情報を記 録する。
情報記録装置 5 0は、 ディスク状光記録媒体 5 1に記録する情報を供給する情 報源 1と、 A P C (Auto Power Cont rol l er) 2と、 レーザダイオード (L D ) 3 と、 コリメータレンズ 4と、 ビ一ムスプリッタ (B S ) 5と、 ミラー 6と、 光へ ッド 7と、 集光レンズ 5 2と、 フォトディテクタ (P D ) 1 2と、 スピンドルモ —夕 1 6と、 送り台 1 7と、 送りモ一タ 1 8と、 ポテンションメータ 1 9と、 制 御システム 2 0とを備えている。
A P C 2は、 記録時において、 情報源 1から供給される情報に応じて後段に備 えられたレーザダイォ一ド 3から出射されるレーザ光を変調させるように制御す る。
レーザダイオード 3は、 A P C 2からの制御に応じて、 所定の波長のレーザ光 を出射する。 例えば、 レーザダイオード 3は、 赤色半導体レーザ、 青紫色半導体 レーザなどである。
コリメ一タレンズ 4は、 レーザダイォード 3から出射されたレーザ光を光軸に 平行な光ビームとして出射する。
ビ一ムスプリッ夕 5は、 コリメ一夕レンズ 4から出射された光ビームを透過し てミラ一 6に出射する。 また、 ビームスプリツ夕 5は、 ミラ一 6で反射された光 ヘッド 7からの戻り光を反射して集光レンズ 5 2に出射する。
ミラー 6は、 ビームスプリツ夕 5から出射された光ビームを反射して、 光へッ ド 7へ出射する。 また、 ミラ一 6は、 光ヘッド 7からの戻り光を反射してビーム スプリツ夕 5に出射する。
光ヘッド 7は、 ミラ一 6から出射された光ビームを集束させ、 ディスク状光記 録媒体 5 1の情報記録面に照射する。 光へッド 7が情報記録面に照射する光は、 レンズの回折限界以上のスポットサイズで、 情報の記録又は再生が可能なエバネ セント光である。
図 2に示すように、 光ヘッド 7は、 対物レンズ 8と、 S I L (Solid I腿 ersio n Lens) 9と、 レンズフォルダ 10と、 ァクチユエ一夕 1 1とを備えている。 対物レンズ 8は、 レーザダイオード 3から出射され、 コリメ一夕レンズ 4、 ビ —ムスプリッタ 5、 ミラ一 6を介して入射された光ビームを集束して S I L 9に 供給する。
S I L 9は、 球形レンズの一部を平面にして切り取った形状をした高屈折率の レンズである。 S I L 9は、 対物レンズ 8を透過して集光された光ビームを、 球 面側から入射し、 球面と反対側の面 (端面) の中央部に集光させる。
また、 S I L 9に代えて、 反射ミラーが形成され、 S I L 9と同等の機能を有 する S I M (Solid Immersion Mirror) を用いてもよい。
レンズフォルダ 1 0は、 対物レンズ 8と S I L 9とを所定の位置関係で一体に 保持している。 S I L 9は、 レンズフォルダ 10によって、 球面側が対物レンズ 8と対向するように、 また、 球面と反対側の面 (端面) がディスク状光記録媒体 5 1の情報記録面と対向するように保持される。
このように、 レンズフォルダ 10を用いて、 対物レンズ 8とディスク状光記録 媒体 5 1の情報記録面との間に髙屈折率の S I L 9を配置することで、 対物レン ズ 8のみの開口数よりも大きな開口数を得ることができる。 一般に、 レンズから 照射される光ビームのスポットサイズは、 レンズの開口数に反比例することから、 対物レンズ 8、 S I L 9によって、 より一層、 微小なスポットサイズの光ビーム とすることができる。
ァクチユエ一夕 1 1は、 制御システム 20から制御信号として出力される制御 電流に応じてフォーカス方向及び/又はトラッキング方向にレンズフォルダ 10 を駆動変位する。
光ヘッド 7において、 エバネセント光は、 S I L 9の端面に臨界角以上の角度 で入射され全反射した光ビームの反射境界面から渗み出した光である。 S I L 9 の端面が、 ディスク状光記録媒体 5 1の情報記録面から、 後述する二ァフィ一ル ド (近接場) 内にある場合に、 S I L 9の端面より滲み出したエバネセント光は, 情報記録面に照射されることになる。
続いて、 ニァフィールドについて説明をする。 一般に、 ニァフィールドは、 レ ンズに入射される光の波長を λとすると、 上記レンズの光ビーム出射面からの距 離 dが、 d≤A Z 2までの領域である。
図 2に示す、 光ヘッド 7と、 ディスク状光記録媒体 5 1とで考えると、 光へッ ド 7が備える S I L 9の端面から、 ディスク状光記録媒体 5 1の情報記録面まで の距離 (ギャップ) dが、 S I L 9に入射された光ビームの波長えによって d≤ λ / 2と定義される領域がニァフィールドである。 ディスク状光記録媒体 5 1の 情報記録面と、 S I L 9の端面との距離で定義されるギャップ dが、 d≤ λ / 2 を満たし、 S I L 9の端面からエバネセント光がディスク状光記録媒体 5 1の情 報記録面に滲み出す状態をニァフィールド状態といい、 ギャップ dが、 d > A Z 2を満たし、 上記情報記録面にエバネセント光が滲み出さない状態をファーフィ ールド状態という。
ところで、 ファーフィ一ルド状態である場合、 S I L 9の端面に臨界角以上の 角度で入射された光ビームは、 全て、 全反射されて戻り光となる。 したがって、 図 3に示すようにファーフィ一ルド状態での全反射戻り光量は、 一定値となって いる。
一方、 ニァフィールド状態である場合、 S I L 9の端面に臨界角以上の角度で 入射された光ビームの一部は、 上述したように、 S I L 9の端面つまり反射境界 面において、 エバネセント光としてディスク状光記録媒体 5 1の情報記録面に滲 み出す。 したがって、 図 3に示すように全反射された光ビームの全反射戻り光量 は、 ファーフィ一ルド状態のときょり減少することになる。 図 3に示すように、 ニァフィールド状態における全反射戻り光量は、 ディスク状光記録媒体 5 1の情 報記録面に近づく程、 指数関数的に減少していることが分かる。
したがって、 S I L 9の端面の位置がニァフィールド状態にあるときは、'全反 射戻り光量がギャップ長に応じて変化するリニアな部分をギャップエラ一信号と してフィードパックサーポを行えば、 S I L 9の端面と、 ディスク状光記録媒体 5 1の情報記録面とのギャップを一定に制御することが可能となる。 例えば、 図 3に示すように全反射戻り光量が制御目標値 Pになるように制御を行えば、 ギヤ ップは dの距離に一定に保持されることになる。
再び、 図 1に示す情報記録装置 5 0の構成について説明をする。
集光レンズ 5 2は、 光ヘッド 7が備える S I L 9の端面で全反射され、 ミラ一
6で反射され、 ビームスプリッ夕 5で反射された戻り光をフォトディテク夕 1 2 に集光する。
フォトディテクタ 1 2は、 集光レンズ 5 2によって集光された戻り光の光量を 電流値として検出する。 なお、 フォトディテクタ 1 2で検出された電流値は、 既 に D C化されており、 全反射戻り光量電圧値として制御システム 2 0に供給され る。
スピンドルモータ 1 6には、 当該スピンドルモータ 1 6がー回転する間に一定 数の F G信号と呼ばれるパルス信号を発生する図示しないエンコーダが備えられ ている。 この図示しないエンコーダから発生される F G信号をカウン卜すること で、 光ヘッド 7からディスク状光記録媒体 5 1に照射されている光ビームが、 現 在、 ディスク状光記録媒体 5 1の情報記録面の円周方向のどの位置を照射してい るかが分かる。
このスピンドルモ一夕 1 6に備えられた、 図示しないエンコーダから出力され る F G信号を、 光ヘッド 7がディスク状光記録媒体 5 1の円周方向のどの位置に あるかを示す情報とする。 図示しない上記エンコーダから出力される F G信号は, 制御システム 2 0に供給される。
送り台 1 7は、 回転駆動系であるスピンドルモータ 1 6を搭載し、 図示しない 装着部に装着されたディスク状光記録媒体 5 1を半径方向に移動させる台である < 送り台 1 7は、 送りモー夕 1 8によってディスク状光記録媒体 5 1の半径方向へ 移動する。 送りモータ 1 8によって、 送り台を動作させることで、 ディスク状光 記録媒体 5 1のトラック間移動を行うことができる。
ポテンションメータ 1 9は、 上記送りモー夕 1 8に取り付けられており、 送り モータ 1 8の回転角度を検出することで、 上記送り台 1 7がどれだけ移動したか が分かる。 送り台 1 7の移動量は、 相対的に、 光ヘッド 7のディスク状光記録媒 体 5 1の半径方向に対する移動量と同じである。 したがって、 ポテンションメー 夕 1 9による検出値から、 光へッド 7がディスク状光記録媒体 5 1の半径方向の どの位置にあるかが分かる。
この、 ポテンションメータ 1 9から取得される検出値を光へッド 7がディスク 状光記録媒体 5 1の半径方向のどの位置にあるかを示す半径位置情報とする。 ポ テンションメータ 1 9から出力される半径位置情報は、 制御システム 2 0に供給 される。
続いて、 図 4を用いて制御システム 2 0について説明をする。 図 4に示すよう に制御システム 2 0は、 F G信号、 半径位置情報に基づいてディスク状光記録媒 体 5 1の情報記録面と、 光へッド 7が備える S I L 9との距離であるギヤップを 制御するフィードフォヮ一ド制御部 3 0と、 全反射戻り光量に基づいてギヤップ を制御するフィ一ドバック制御部 4 0とを備えている。
本発明に係る情報記録装置 5 0において用いるディスク状光記録媒体 5 1は、 当該情報記録装置 5 0に着脱自在な記録媒体である。 したがって、 装置内のディ スク回転駆動機構に予め固定された記録媒体などに比較し、 ディスク回転駆動機 構に対する装着精度を高精度に維持できない。 そのため、 ディスク回転駆動機構 に装着して回転駆動したとき、 面ぶれの発生を抑えることが困難である。
そこで、 制御システム 2 0のフィードフォワード制御部 3 0は、 主に、 この外 乱によって生ずる面ぶれに追従するために設けられた制御部である。 フィードフ ォヮード制御部 3 0では、 ディスク状光記録媒体 5 1をディスク回転駆動機構に クランプした後の、 所定の箇所における面ぶれ量を取得して記憶しておき、 再生 又は記録処理動作時に読み出して追従させるといった制御を実行する。
フィードフォワード制御部 3 0は、 メモリ 3 1と、 ゲイン部 3 2とを備えてい る。
メモリ 3 1は、 ディスク状光記録媒体 5 1を情報記録装置 5 0にクランプした 後に生ずる面ぶれエラー量を記憶する R A M (Random Acces s Memory) である。 図 5を用いて、 メモリ 3 1に記憶する面ぶれエラ一量を取得する機構について 説明をする。 面ぶれエラ一量とは、 光ヘッド 7をディスク状光記録媒体 5 1の情 報記録面に生じた面ぶれに追従させるために、 当該フィードフォワード制御部 3 0での制御処理のおいて使用する制御電圧値である。 光へッド 7のァクチユエ一 夕 1 1に面ぶれエラー信号が印加されると、 光へッド 7は、 ディスク状光記録媒 体 5 1の情報記録面に生じた面ぶれに追従するように動作する。
図 5に示すように、 情報記録装置 5 0は、 メモリ 3 1に格納するディスク状光 記録媒体 5 1の面ぶれエラー量を取得するために、 A P C 2、 レーザダイオード 3、 コリメ一夕レンズ 4の後段に、 絞り 6 1と、 ミラ一 6 2と、 対物レンズ 6 3 と、 位置検出ダイオード (P S D ) 6 4と、 制御信号変換部 6 5とを備えている c 絞り 6 1は、 コリメ一夕レンズ 4から入射された光ビームの光量を絞る。
ミラー 6 2は、 ピンホール 6 1を通過した光ビームを反射して対物レンズ 6 3 に出射する。
対物レンズ 6 3は、 ミラ一 6 2から出射された光ビームを集光してディスク状 光記録媒体 5 1の情報記録面にスポット状の光ビームを照射する。
位置検出ダイォ一ド 6 4は、 スポット状の光の位置を電流値として検出できる 光センサである。 位置検出ダイオードに 6 4には、 対物レンズ 6 3によってディ スク状光記録媒体 5 1の情報記録面に照射された光ビームの戻り光が照射され、 照射された光ビームの位置を電流値として検出する。
図 5に示した情報記録装置 5 0における面ぶれエラ一量を取得する機構は、 図 1に示した A P C 2、 レ一ザダイオード 3、 コリメータレンズ 4が機械的に可動 するなどして自動的に切り替えられたり、 光学的な手法によってレーザダイォ一 ド 3から出射される光ビームがピンホール 6 1を通過するようにして実現される c 図 5に示す面ぶれ量を取得する機構では、 一般に離軸法と呼ばれる手法が用い られる。 図 6、 図 7を用いて離軸法について説明をする。
図 6に示すように、 例えば、 ディスク状光記録媒体 5 1の情報記録面が位置 A にあった場合、 位置 Aにある情報記録面に対物レンズ 6 3を介して光ビームを照 射すると、 位置検出ダイオード 6 4では位置 A ' に戻り光が照射され、 照射され た戻り光のスポット位置が電流値として検出される。
また、 ディスク状光記録媒体 5 1の情報記録面が位置 Bであった場合、 位置 B にある情報記録面に対物レンズ 6 3を介して光ビームを照射すると、 位置検出ダ ィオード 6 4には位置 B ' に戻り光が照射され、 照射された戻り光のスポット位 置が電流値として検出される。
このように、 位置検出ダイオード 6 4には、 ディスク状光記録媒体 5 1の情報 記録面のフォーカス方向の位置の違いに応じて、 ディスク状光記録媒体 5 1に照 射した光ビームの戻り光が、 位置検出ダイオード 6 4の異なる位置に照射される。 したがって、 位置検出ダイォ一ド 6 4に照射された戻り光の位置を検出すること で、 ディスク状光記録媒体 5 1の情報記録面がフォーカス方向にどれだけ変動し ているかを取得することができる。 位置検出ダイォ一ド 6 4で電流値として検出 されたフォーカス方向の変動量は、 制御信号変換部 6 5によって所定の演算を施 され電圧値に変換され、 ディスク状光記録媒体 5 1の情報記録面の面ぶれを電圧 値で示した面ぶれエラ一信号を取得することができる。
図 7に、 位置検出ダイォード 6 4において戻り光のスポットが照射される位置 (ポジション) と、 面ぶれエラ一信号との関係を示す。
図 7によると、 図 6で示した位置 Aにディスク状光記録媒体 5 1の情報記録面 があり、 位置検出ダイオード 6 4の位置 A ' で戻り光のスポットが検出された場 合、 面ぶれエラ一信号が " 0 " を示しており、 位置 B ' で戻り光のスポットが検 出された場合、 所定量の面ぶれエラ一信号となっている。 つまり、 位置検出ダイ オード 6 4の位置 A ' に戻り光のスポットが照射されるような情報記録面の位置 Aが、 フィードフォワード制御部 3 0での制御目標となる位置であり、 この位置 より変動があった場合、 光ヘッド 7のァクチユエ一夕 1 1に印加する制御電圧で ある面ぶれエラ一信号が所定の値となつて取得される。
面ぶれエラー量を取得する手法としては、 上述した離軸法の他に、 一般的に知 られているマイケルソン干渉計による手法、 三角測量法などを用いることも可能 である。
このように、 位置検出ダイオード 6 4によって検出され、 制御信号変換部 6 5 における処理によって取得される面ぶれエラ一信号は、 フィードフォヮ一ド制御 部 3 0のメモリ 3 1に記憶される。
メモリ 3 1には、 ディスク状光記録媒体 5 1の所定の半径位置、 1周分の面ぶ れエラ一信号が記憶される。 情報記録装置 5 0に、 その中心部がクランプされて 装着されるリム一バルなディスク状光記録媒体 5 1の所定の半径、 1周分の面ぶ れエラ一信号は、 図 8に示すように、 ディスクの中心部から外周部に向かってほ ぼ比例して大きくなつている。 したがって、 ディスク状光記録媒体 5 1のある半径位置において、 1周分の面 ぶれエラー信号を取得してメモリ 3 1に記憶しておけば、 後は、 変化率が分かれ ば、 記憶した面ぶれエラ一信号と、 変化率とを掛け合わせることで、 任意の半径 位置での面ぶれエラ一信号を求めることができる。
次に、 図 9に示すフローチャートを用いて、 面ぶれエラ一信号を記憶させる際 の手順について説明をする。
メモリ 3 1には、 上述したようにディスク状光記録媒体 5 1の所定の半径位置 での円周方向の面ぶれエラー信号が記憶される。 また、 メモリ 3 1に記憶される 円周方向の面ぶれエラ一信号は、 スピンドルモータ 1 6に接続された図示しない エンコーダによって F G信号が出力されたときに、 光ヘッド 7に照射され、 位置 検出ダイオード 6 4で検出され、 制御信号変換部 6 5から取得される面ぶれエラ 一信号である。 したがって、 図示しないエンコーダは、 スピンドルモー夕 1 6が 一回転する毎にパルス信号である F G信号を所定の回数だけ出力するので、 メモ リ 3 1には、 ディスク状光記録媒体 5 1の所定の半径位置において、 F G信号に 対応した面ぶれエラー信号が記憶されることになる。
まず、 ステップ S T 1において、 スピンドルモー夕 1 6に取り付けられた図示 しないエンコーダから F G信号が出力され、 図示しない F Gカウンタによって力 ゥントアップされる。
このとき、 面ぶれエラー信号は、 位置検出ダイオード 6 4及び制御信号変換部 6 5から常に取得され続けている。
ステップ S T 2において、 図示しない F Gカウンタによって F G信号がカウン トアップされたことに応じて、 当該図示しない F Gカウン夕によってカウントさ れた F G信号のカウント値は、 メモリ 3 1に記憶させる面ぶれエラ一信号のアド レス値としてメモリ 3 1に記憶される。
さらに、 メモリ 3 1に記憶されたアドレス値に対応させて、 制御信号変換部 6 5から取得される面ぶれエラ一信号がメモリ 3 1に記憶される。
ステップ S T 3において、 図示しない F Gカウン夕が、 ディスク状光記録媒体 5 1の 1周分の F G信号をカウントしたかどうかが判定される。 1周分の F G信 号がカウントされていない場合は、 工程をステップ S T 1へと戻し、 1周分の F G信号がカウントされた場合は工程を終了する。
このようにして、 メモリ 3 1には、 F G信号のカウント値をアドレス値とし、 上記ァドレス値と、 F G信号が発生される位置における面ぶれエラ一信号とが 1 対 1で対応づけられて記憶されることになる。
メモリ 3 1に記憶された面ぶれエラー信号は、 情報記録装置 5 0での記録動作 時において、 スピンドルモ一夕 1 6に取り付けられた図示しないエンコーダより 出力される F G信号の値に応じて読み出され、 後段のゲイン部 3 2に供給される 続いて、 フィードフォワード制御部 3 0のゲイン部 3 2について説明をする。 ゲイン部 3 2は、 F G信号毎に、 メモリ 3 1に記憶させたディスク状光記録媒体 5 1の所定の半径位置における 1周分の面ぶれエラー信号から、 図 8で示した面 ぶれエラ一信号の比例関係を利用することで決まるゲインを乗算することで、 任 意の半径位置での面ぶれエラ一信号を算出する。
ゲイン部 3 2で乗算するゲインについて説明をする。 例えば、 メモリ 3 1には、 ディスク状光記録媒体 5 1の半径 R mにおける 1周分の面ぶれエラー信号が記憶 されているとする。 このメモリ 3 1に記憶させた面ぶれエラ一信号のうち最大の 面ぶれエラ一信号が取得されるディスク状光記録媒体 5 1の箇所における振幅の 最大値を面ぶれピーク振幅値 i3とする。 また、 ディスク状光記録媒体 5 1の任意 の半径 R nにおける面ぶれの最大振幅値である面ぶれピーク値をァとすると、 デ イスク状光記録媒体 5 1の半径と、 面ぶれピーク振幅値の関係は図 1 0に示すよ うな比例関係となっている。 ディスク状光記録媒体 5 1の中心は、 クランプされ ているので原理的に面ぶれが生じず、 面ぶれピーク振幅値は " 0 " となっている c これにより、 任意の半径 R nにおける面ぶれピーク振幅値ァは、 式 1によって 示される。
T = β ( R n / R m) · · · ( 1 )
式 1は、 任意の半径 R nをパラメ一夕として指定することで、 当該半径での面 ぶれピーク振幅値ァが求まること示している。
また、 メモリ 3 1に記憶された面ぶれエラ一信号を V f gとすると、 任意の半 径 R nでの面ぶれエラ一信号 V f を (2 ) 式から推定することができる。
V f = V f X r = V f g X { j3 X ( R n / R m) } · · · ( 2 ) 式 2では、 任意の半径 R nにおける面ぶれピーク振幅値ァをゲインとして、 メ モリ 3 1に記憶されている面ぶれエラ一信号 V f gに乗算している。 面ぶれピ一 ク振幅値をゲインとすることで、 任意の半径 R nの値に比例し、 且つ、 面ぶれ振 幅の最大変位を考慮した制御信号である、 面ぶれエラー信号 V f を生成すること ができる。
ゲイン部 3 2は、 当該情報記録装置 5 0での記録動作時において、 式 2を用い て、 メモリ 3 1から供給される半径 R mにおける面ぶれエラー信号 V f gに、 送 りモータ 1 8に取り付けられたポテンションメ一夕 1 9より出力される半径位置 情報から得られるゲインを乗算することで面ぶれエラー信号 V f を生成し、 制御 電圧としてシステム制御器 4 6に供給する。
再び図 4に戻り、 制御システム 2 0が備えるフィードバック制御部 4 0につい て説明をする。 フィードバック制御部 4 0は、 加算器 4 1と、 コンパレ一夕 4 2 と、 主制御部 4 3と、 副制御部 4 4と、 制御信号切替回路 4 5と、 システム制御 器 4 6とを傭える。
上述したフォトディテクタ 1 2から出力された全反射戻り光量電圧値は、 加算 器 4 1及びコンパレ一夕 4 2に供給される。
加算器 4 1は、 ギャップを制御目標値 Pとするための制御目標電圧値と、 フォ トディテクタ 1 2から出力された全反射戻り光量電圧値とを比較して偏差をとる t 制御目標電圧値は、 あらかじめ設定された定電圧などである。
コンパレー夕 4 2は、 フォトディテクタ 1 2から出力された全反射戻り光量電 圧値と、 所定の電圧値である閾値 T 1とを比較する。 閾値 T 1は、 制御目標値 P と、 T 1 > Pの関係を満たすよう選択された値であり、 全反射戻り光量電圧値が、 閾値 T 1より大きいと、 光へッド 7の S I L 9がファーフィールド状態にあるこ とを示しており、 逆に全反射戻り光量電圧値が閾値 T 1より小さいと S I L 9が 二ァフィ一ルド状態にあることを示している。
したがって、 コンパレータ 4 2は、 電圧値の比較結果よりファ一フィールド状 態となつている場合には、 副制御部 4 4で生成される制御電圧値が選択されるよ うに制御信号切替回路 4 5に、 例えば、 切替信号 " 0 " を出力し、 二ァフィ一ル ド状態となっている場合には、 主制御部 4 3で生成される制御電圧値が選択され るように制御信号切替回路 4 5に、 例えば、 切替信号 " 1 " を出力する。
主制御部 4 3は、 S I L 9が二ァフィ一ルド状態にあるときにギャップ dを制 御目標値 Pに近づけるための制御電圧である制御信号 V gを生成する。 主制御部 4 3は、 例えば、 周波数応答に基づいて設計された位相補償フィルタなどを備え ており、 加算器 4 1で算出された偏差から制御電圧である制御信号 V gを生成す る。
副制御部 4 4は、 光ヘッド 7の S I L 9をニァフィールド状態となる距離まで ディスク状光記録媒体 5 1の情報記録面に近づけるような制御信号 V hを生成す る。
制御信号切替回路 4 5は、 コンパレータ 4 2から出力される切替信号に応じて, 副制御部 4 4で生成された制御信号 V hを出力したり、 主制御部 4 3で生成され た制御信号 V gを出力したりする。
システム制御器 4 6は、 当該制御システム 2 0を統括的に制御する制御部であ り、 フィードフォワード制御部 3 0、 フィードバック制御部 4 0を動作させて制 御信号を生成させ、 各制御部で生成された制御信号を光へッド 7のァクチユエ一 夕 1 1に適切に供給する。
次に、 図 1 1及び図 1 2を用いて本発明に係る情報再生装置 5 0 Aについて説 明をする。
情報再生装置 5 O Aは、 ディスク状光記録媒体 5 1に記録された所定の情報を 再生する。 情報再生装置 5 O Aは、 再生時において、 レーザダイオード 3が A P C 2によって一定のパワーのレーザ光が出射されるように制御されること、 ディ スク状光記録媒体 5 1に照射した光ビームの戻り光から再生信号を取得すること 以外、 制御システム 2 0による制御など情報記録装置 5 0と全く同じであるため, 各機能部には同一の符号を付し説明を省略する。 また、 図 5などを用いて説明し た、 情報記録装置 5 0のメモリ 3 1に記憶する面ぶれエラー量を取得する機構に ついても、 情報再生装置 5 0 Aでも全く同様の構成となる。
戻り光から再生信号を取得する方法は、 図 1 1に示す再生信号と、 ギャップェ ラー信号との周波数帯域の違いを利用する手法と、 図 1 2に示す偏光面の違いを 利用する手法とがある。 周波数帯域の違いによって再生信号を取得する手法では、 図 1 1に示すように フォトディテク夕 1 2の後段に帯域分離フィルタ 1 3が設けられている。 帯域分 離フィルタ 1 3は、 フォトディテクタ 1 2で検出された戻り光の検出値から再生 すべき情報である再生信号と、 ギャップ制御に用いるギヤップエラー信号とを分 離して抽出する。 ギャップエラー信号は、 情報記録装置 5 0の場合と同様に、 制 御システム 2 0に供給される。
また、 偏光面の違いにより再生信号を取得する手法では、 図 1 2に示すように 集光レンズ 5 2と、 フォトディテクタ 1 2との間に偏光ビームスプリッタ 1 4が 設けられている。 集光レンズ 5 2で集光された戻り光は、 偏光ビ一ムスプリッ夕 1 4で偏光面の違いによって透過、 及び反射される。 偏光ビームスプリツ夕 1 4 で透過された戻り光は、 情報記録装置 5 0と同様にフォトディテクタ 1 2で検出 され、 ギャップエラー信号として制御システム 2 0に供給される。 また、 偏光ビ 一ムスプリッ夕 1 4で反射された戻り光は、 集光レンズ 5 3を介して、 フォトデ ィテク夕 1 5によって検出され、 再生信号となる。
続いて、 図 1 3に示すフローチャートを用いて、 制御システム 2 0による光へ ッド 7の制御動作について説明をする。
ステップ S T 1 1において、 制御システム 2 0のフィードフォワード制御部 3 0に、 F G信号と、 半径位置情報が供給される。
ステップ S T 1 2において、 制御システム 2 0は、 フィードフォワード制御部 3 0を動作させ、 フィードバック制御部 4 0の動作を停止させる。 これにより、 フィードフォヮ一ド制御部 3 0によるフィ一ドフォヮード制御が実行される。 ステップ S T 1 3において、 フィードフォワード制御部 3 0のゲイン部 3 2は, F G信号に対応する面ぶれエラー信号をメモリ 3 1から読み出す。
ステップ S T 1 4において、 ゲイン部 3 2は、 メモリ 3 1から読み出した面ぶ れエラー信号と、 供給された半径位置情報に基づいて、 上述した (2 ) 式に基づ いて所定のゲインを乗算し、 制御信号 V f を生成する。 生成された制御信号 V f は、 システム制御器 4 6に供給される。
ステップ S T 1 5において、 システム制御器 4 6は、 フィードフォワード制御 部 3 0で生成された制御信号 V f を、 光へッド 7のァクチユエ一夕 1 1に印加し, フィードフォワード制御を行う。
ステップ S T 1 6において、 制御システム 2 0は、 ァクチユエ一夕 1 1に印加 されている制御信号 V f をホールドして、 印加し続けるよう制御するとともに、 フィードフォワード制御部 3 0の動作を停止させる。 制御システム 2 0は、 フィ ードフォワード制御部 3 0の動作を停止させると、 続いてフィードバック制御部 4 0を動作させる。
ステップ S T 1 7において、 フィードバック制御部 4 0は、 コンパレ一夕 4 2 によって、 フォトディテクタ 1 2で検出された全反射戻り光量電圧値と、 閾値 T 1とを比較する。 コンパレータ 4 2は、 全反射戻り光量電圧値の方が大きいと判 断した場合、 副制御部 4 4で生成される制御信号 V hがシステム制御器 4 6に出 力されるような切替信号を制御信号切替回路 4 5に出力して、 工程をステップ S T 1 8へと進める。
また、 コンパレータ 4 2は、 閾値 T 1の方が大きいと判断した場合、 主制御部 4 3で生成される制御信号 V gが、 システム制御器 4 6に出力されるような切替 信号を制御信号切替回路 4 5に出力して、 工程をステップ S T 1 9へと進める。 上述したように、 全反射戻り光量電圧値が閾値 T 1より大きい場合は、 S I L 9がファーフィ一ルド状態にあることを示しており、 全反射戻り光量電圧値が閾 値 T 1より小さい場合は、 S I L 9がニァフィールド状態にあることを示してい る。
ステップ S T 1 8において、 フィードバック制御部 4 0は、 副制御部 4 4によ つて生成された制御信号 V hを制御信号切替回路 4 5を介してシステム制御器 4 6に出力する。
また、 システム制御器 4 6は、 フィードフォワード制御部 3 0で生成され、 光 へッド 7のァクチユエ一夕 1 1にホールドされて印加されている制御信号 V f に 加えて、 副制御部 4 4で生成された制御信号 V hを印加させる。 つまり、 光へッ ド 7のァクチユエ一夕 1 1に供給される制御信号 Vは、 以下に示すような値とな る。
V = V f + V h
このステップ S T 1 8の工程は、 フォトディテクタ 1 2で検出された全反射戻 り光量が、 ステップ S T 1 7の判断工程において閾値 T 1より小さくなるまで繰 り返し実行される。
ステップ S Τ 1 9において、 全反射戻り光量電圧値が閾値 Τ 1より小さくなつ たことに応じて、 その時点の副制御部 4 4の制御信号 V h ' をホ一ルドするとと もに、 制御信号切替回路 4 5により主制御部 4 3からの制御信号 V gが出力され るように切り替える。 制御信号 V gは、 制御信号切替回路 4 5を通過してシステ ム制御器 4 6に供給される。
システム制御器 4 6は、 フィードフォワード制御部 3 0で生成され、 光ヘッド 7のァクチユエ一夕 1 1にホールドされて印加されている制御信号 V f に加えて、 副制御部 4 4のホールドされた制御信号 V h ' と、 主制御部 4 3で生成された制 御信号 V gを印加させる。 つまり、 光ヘッド 7のァクチユエ一夕 1 1に供給され る制御信号 Vは、 以下に示すような値となる。
V = V f + ( V g + V h ' )
なお、 副制御部 4 4のホールド電圧 V h ' は、 制御中ホ一ルドしたままでもい いし、 又は、 主制御部 4 3への切替時に、 上記主制御部 4 3へ副制御部 4 4のホ 一ルド電圧をコピーして、 副制御部 4 4のホールド電圧を開放し、 主制御部 4 3 のみで制御してもよい。
このように、 制御システム 2 0が備えるフィードフォヮ一ド制御部 3 0、 及び フィードバック制御部 4 0の 2つの制御部による 2段階の制御によって、 フォト ディテクタ 1 2で検出された全反射戻り光量を制御目標値 Pに引き込み、 光へッ ド 7の S I L 9の端面と、 ディスク状光記録媒体 5 1の情報記録面との距離であ るギャップ dが一定となるように制御することができる。
また、 ディスク状光記録媒体 5 1を情報記録装置 5 0又は情報再生装置 5 0 A に装着する際、 ディスク状光記録媒体 5 1の中心部をクランプする構造をとらず に、 外周部もクランプしたり、 ディスク全面をクランプしたりする場合は、 図 8 , 図 1 0に示したようにディスク状光記録媒体 5 1の半径位置と、 半径位置での面 ぶれピーク振幅値とは比例関係にならない。 このような場合は、 情報記録装置 5 0、 情報再生装置 5 O Aの制御システム 2 0を図 1 4に示すようなフィードフォ ヮード制御部 3 0 Aを備える制御システム 2 0 Aのように変更し、 ディスク状光 記録媒体 5 1の情報記録面全面に対して面ぶれエラー信号を予め取得して、 半径 位置情報と、 F G信号とをアドレスとしてメモリ 3 1に記憶させておくことで対 処することができる。
フィードフォワード制御部 3 O Aでは、 半径位置情報と、 F G信号に基づいて メモリ 3 1から面ぶれエラー信号を読み出して、 フィードフォワード制御を実行 する。 フィードフォワード制御部 3 0での制御などは、 上述した図 4に示す制御 システム 2 0での制御手法と全く同様である。
したがって、 制御システム 2 0に替えて制御システム 2 0 ' を備えた情報記録 装置 5 0、 情報再生装置 5 0 Aにおいても、 同様に光へッド 7の S I L 9の端面 と、 ディスク状光記録媒体 5 1の情報記録面との距離であるギャップ dをから所 定のギャップ dが一定となるように制御することができる。
なお、 本発明に係る情報記録装置 5 0及び情報再生装置 5 0 Aでは、 送り台 1 7を送りモータ 1 8によって、 装着されたディスク状光記録媒体 5 1の半径方向 に移動させることでトラック間移動を実行しており、 送りモ一夕 1 8の回転角を 検出するポテンションメータ 1 9によって半径位置情報を取得していた。
情報記録装置 5 0、 情報再生装置 5 O Aでは、 レーザダイオード 3、 コリメ一 夕レンズ 4、 ビームスプリッ夕 5、 ミラ一 6、 光ヘッド 7、 集光レンズ 5 2、 フ オトディテクタ 1 2によって光ピックアップを構成し、 ディスク状光記録媒体 5 1のトラック間移動を当該光ピックアップによって行うようにしてもよい。 この ような場合は、 光ピックアップをトラック間移動させるリニアモー夕などにポテ ンションメ一夕を設置することで、 半径位置情報を取得するようにしてもよい。 また、 本発明は、 図 1 5に第 3の実施の形態として示す情報記録装置 6 0に適 用される。 情報記録装置 6 0は、 情報記録装置 5 0と同様にリムーパルなデイス ク状光記録媒体 5 1を装着し、 装着したディスク状光記録媒体 5 1に、 二ァフィ —ルドにおいて検出されるェパネセント光を照射して情報を記録する。
情報記録装置 6 0は、 図 1で示した情報記録装置 5 0のミラ一 6に替えて、 偏 光ビームスプリッ夕 7 0を設置し、 図 5に示したディスク状光記録媒体 5 1の面 ぶれエラー信号を検出する機構を備え、 さらに制御システム 2 0に替えて制御シ ステム 8 0を備えた構成となっている。 光ヘッド 7の対物レンズ 8と、 S I L 9との相対位置は固定されており、 また、 対物レンズ 6 3と、 光へッド 7の対物レンズ 8及び S I L 9の相対位置も固定さ れている。 このため、 対物レンズ 6 3にて検出された面ぶれエラ一信号にてサ一 ポ制御を行うことで、 対物レンズ 6 3のみならず、 対物レンズ 8、 S I L 9をデ イスク状光記録媒体 5 1の情報記録面に追従させることができる。
情報記録装置 6 0では、 偏光ビ一ムスプリッ夕 7 0、 制御システム 8 0以外の 各機能部については、 図 1及び図 5を用いて説明した情報記録装置 5 0において 同一符号を付して説明したものと全く同じであるため、 該当する箇所について詳 細な説明を省略する。
レーザダイオード 3から出射され、 コリメ一夕レンズ 4を介してビ一ムスプリ ッタ 5を透過した光ビームは、 偏光ビームスプリッタ 7 0に出射される。
偏光ビ一ムスプリッタ 7 0は、 ビームスプリッ夕 5から出射される光ビームを 偏光成分の違いによって反射及び透過させる。 例えば、 偏光ビームスプリツ夕 7 0は、 光ビームの P偏光成分を反射し、 S偏光成分を透過させる。 具体的には、 偏光ビームスプリッ夕 7 0は、 ビ一ムスプリッ夕 5から出射される光ビ一ムを反 射して光へッド 7に供給し、 ビームスプリッタ 5から出射される光ビームを透過 してピンホール 6 1、 ミラー 6 2を介して対物レンズ 6 3に供給する。
光へッド 7に供給されディスク状光記録媒体 5 1の情報記録面に照射された光 ビームの戻り光は、 偏光ピームスプリッ夕 7 0で反射され、 ビームスプリツ夕 5 でも反射され、 集光レンズ 5 2を介して、 フォトディテクタ 1 2で検出されギヤ ップエラー信号として制御システム 8 0に供給される。
また、 対物レンズ 6 3に供給されディスク状光記録媒体 5 1の情報記録面に照 射された光ビームの戻り光は、 位置検出ダイオード 6 4で検出され、 制御信号変 換部 6 5で面ぶれエラー信号に変換され制御システム 8 0に供給される。
制御システム 8 0は、 図 1 6に示すように面ぶれエラー信号、 又は全反射戻り 光量に基づいて、 光ヘッド 7を動作させることで、 S I L 9とディスク状光記録 媒体 5 1の情報記録面とのギャップを制御する面ぶれサーポ制御部 9 0と、 ギヤ ップサーポ制御部 4 0 Aとを備えている。
面ぶれサーポ制御部 9 0は、 加算器 9 1と、 制御器 9 2とを備えている。 加算器 9 1は、 位置検出ダイオード 6 4で検出され、 制御信号変換部 6 5で制 御電圧値に変換された面ぶれェラ一信号電圧値と、 制御目標値 Qとなるような面 ぶれエラ一信号の基準電圧値との偏差をとり、 制御器 9 2に供給する。
制御器 9 2は、 加算器 9 1から供給された面ぶれエラー信号に基づいて、 制御 信号 V 1を生成し、 システム制御器 4 6 Aに供給する。 また、 制御器 9 2は、 加 算器 9 1から供給された面ぶれエラ一信号の絶対値と、 閾値 T H 2とを比較し、 比較結果をシステム制御器 4 6 Aに通知する。 閾値 T H 2は、 S I L 9の端面が ファーフィールド状態と、 二ァフィ一ルド状態の境界にあるときに検出される面 ぶれエラ一信号である。 図 1 7に、 閾値 T H 2を示す。
加算器 9 2から供給された面ぶれエラ一信号が、 閾値 T H 2より大きい場合は、 面ぶれエラ一信号による制御が補償されており、 加算器 9 2から供給された面ぶ れエラ一信号が閾値 T H 2より小さい場合は、 全反射戻り光量を用いたギヤップ サ一ポ制御部 4 0 Aでの制御ができるようになる。
ギヤップサーポ制御部 4 0 Aは、 フィ一ドバック制御部 4 0が備えるシステム 制御器 4 6に替えて、 面ぶれサ一ポ制御部 9 0の制御器 9 2から供給される制御 信号 V 1が供給されるシステム制御器 4 6 Aを備えている以外、 フィードノ ック 制御部 4 0と全く同じ構成である。
フォトディテクタ 1 2で検出された全反射戻り光量、 つまり全反射戻り光量電 圧値は、 加算器 4 1及びコンパレ一夕 4 2に供給される。
コンパレータ 4 2による、 S I L 9の端面がファーフィールドに位置している のか、 二ァフィ一ルドに位置しているのかを判定する閾値 T H 1と、 全反射戻り 光量電圧との比較結果に応じて、 主制御部 4 3又は副制御部 4 4が選択され、 選 択された制御部で生成された制御電圧がシステム制御器 4 6 Aに供給される。 主制御部 4 3が選択された場合は、 全反射戻り光量電圧値を用いた二ァフィ一 ルドにおけるフィードバック制御が実行され、 副制御部 4 4が選択された場合は, S I L 9がファーフィ一ルドにあることを示しており、 光ヘッド 7をニァフィ一 ルド状態付近までゆつくり接近させる制御が実行される。
システム制御器 4 6 Aは、 当該制御システム 8 0を統括的に制御する制御部で あり、 面ぶれサ一ポ制御部 9 0、 ギャップサ一ポ制御部 4 0 Aを動作させて制御 信号を生成させ、 各制御部で生成された制御信号を光へッド 7のァクチユエ一夕 1 1に適切に供給する。 システム制御器 4 6 Aは、 制御器 9 2から、 出力される 面ぶれエラ一信号と、 閾値 T H 2との比較結果に応じて、 面ぶれサ一ポ制御部 9 0でのサーポ制御を停止又は動作させたり、 ギヤップサーポ制御部 4 0 Aのサー ポ制御を停止又は動作させたりする。
加算器 9 1から供給される面ぶれエラ一信号が閾値 T H 2より大きい場合は、 ギャップサーポ制御部 4 O Aを停止させ、 面ぶれサ一ポ制御部 9 0を動作させ、 面ぶれエラ一信号が閾値 T H 2より小さくなる場合は、 ギヤップサーポ制御部 4 O Aを動作させ、 面ぶれサーポ制御部 9 0を停止させる。
次に、 図 1 8、 図 1 9を用いて本発明の第 4の実施の形態として示す情報再生 装置 6 O Aについて説明をする。
情報再生装置 6 O Aは、 ディスク状光記録媒体 5 1に記録された所定の情報を 再生する。 情報再生装置 6 O Aは、 再生時において、 レーザダイオード 3が A P C 2によって一定のパワーのレーザ光が出射されるように制御されること、 ディ スク状光記録媒体 5 1に照射した光ビームの戻り光から再生信号を取得すること 以外、 制御システム 8 0による制御など情報記録装置 6 0と全く同じであるため. 各機能部には同一の符号を付し説明を省略する。
戻り光から再生信号を取得する方法は、 図 1 8に示す再生信号と、 ギャップェ ラ一信号との周波数帯域の違いを利用する手法と、 図 1 9に示す偏光面の違いを 利用する手法とがある。
周波数帯域の違いによって再生信号を取得する手法では、 図 1 8に示すように フォトディテクタ 1 2の後段に帯域分離フィル夕 1 3が設けられている。 帯域分 離フィルタ 1 3は、 フォトディテクタ 1 2で検出された戻り光の検出値から再生 すべき情報である再生信号と、 ギヤップ制御に用いるギャップエラ一信号とを分 離して抽出する。 ギャップエラー信号は、 情報記録装置 6 0の場合と同様に、 制 御システム 8 0に供給される。
また、 偏光面の違いにより再生信号を取得する手法では、 図 1 9に示すように 集光レンズ 5 2と、 フォトディテク夕 1 2との間に偏光ビームスプリッ夕 1 4が 設けられている。 集光レンズ 5 2で集光された戻り光は、 偏光ビ一ムスプリッタ 1 4で透過、 及び反射される。 偏光ビームスプリッタ 1 4で透過された戻り光は、 情報記録装置 5 0と同様にフォトディテクタ 1 2で検出され、 ギャップエラー信 号として制御システム 8 0に供給される。 また、 偏光ビームスプリツ夕 1 4で反 射された戻り光は、 フォトディテクタ 1 5によって検出され、 再生信号となる。 続いて、 図 2 0に示すフローチャートを用いて、 制御システム 8 0による光へ ッド 7の制御動作について説明をする。
ステップ S T 3 1において、 レーザダイォ一ド 3から出射された光ビームをデ イスク状光記録媒体 5 1の情報記録面に照射して反射された戻り光を位置検出ダ ィオード 6 4で検出して、 上述した離軸法などにより制御信号変換部 6 5で電圧 値に変換された面ぶれエラ一信号が制御システム 8 0の面ぶれサーポ制御部 9 0 に供給される。
ステップ S T 3 2において、 制御システム 8 0は、 面ぶれサーポ制御部 9 0を 動作させ、 ギャップサ一ポ制御部 4 0 Aの動作を停止させる。 これにより、 面ぶ れサ一ポ制御部 9 0によるサーポ制御が開始される。
ステップ S T 3 3において、 制御器 9 2は、 加算器 9 1で算出される面ぶれェ ラー信号と、 制御目標電圧値との偏差をなくすような制御電圧 V iを生成し、 シ ステム制御器 4 6 Aに供給する。
ステップ S T 3 4において、 システム制御器 4 6 Aは、 面ぶれサーポ制御器 9 0で生成された制御信号 V iを、 光ヘッド 7のァクチユエ一夕 1 1に印加し、 面 ぶれサ一ポ制御を行う。
ステップ S T 3 5において、 制御システム 8 0は、 面ぶれエラ一信号の絶対値 が閾値 T H 2より小さくなったかどうかを判断する。 面ぶれエラ一信号が閾値 T H 2より小さくなつた場合は工程をステップ S T 3 6へと進め、 閾値 T H 2の方 が面ぶれエラ一信号より大きい場合は工程をステップ S T 3 1へと戻す。
ステップ S T 3 6において、 制御システム 8 0は、 ァクチユエ一夕 1 1に印加 されている制御信号 V 1をホールドして、 印加し続けるよう制御するとともに、 面ぶれサ一ポ制御部 9 0の動作を停止させる。 制御システム 2 0は、 面ぶれサ一 ポ制御部 9 0の動作を停止させると、 続いてギャップサーポ制御部 4 O Aを動作 させる。 ステップ S T 3 7において、 ギャップサーポ制御部 4 0 Αは、 コンパレータ 4 2によって、 フォトディテクタ 1 2で 出された全反射戻り光量電圧値と、 閾値 T 1とを比較する。 コンパレータ 4 2は、 全反射戻り光量電圧値の方が大きいと 判断した場合、 副制御部 4 4で生成される制御信号 V hがシステム制御器 4 6 A に出力されるような切替信号を制御信号切替回路 4 5に出力して、 工程をステツ プ S T 3 8へと進める。
また、 コンパレ一夕 4 2は、 閾値 T 1の方が大きいと判断した場合、 主制御部 4 3.で生成される制御信号 V gが、 システム制御器 4 6 Aに出力されるような切 替信号を制御信号切替回路 4 5に出力して、 工程をステップ S T 3 9へと進める。 上述したように、 全反射戻り光量電圧値が閾値 T 1より大きい場合は、 S I L 9がファーフィ一ルド状態にあることを示しており、 全反射戻り光量電圧値が閾 値 T 1より小さい塲合は、 S I L 9がニァフィールド状態にあることを示してい る。
ステップ S T 3 8において、 ギャップサ一ポ制御部 4 0 Aは、 副制御部 4 4に よって生成された制御信号 V hを制御信号切替回路 4 5を介してシステム制御器 4 6 Aに出力する。
また、 システム制御器 4 6 Aは、 面ぶれサーポ制御部 9 0で生成され、 光へッ ド 7のァク fユエ一夕 1 1にホールドされて印加されている制御信号 V iに加え て、 副制御部 4 4で生成された制御信号 V hを印加させる。 つまり、 光ヘッド 7 のァクチユエ一夕 1 1に供給される制御信号 Vは、 以下に示すような値となる。
V = V i + V h
この、 ステップ S T 3 8の工程は、 フォトディテクタ 1 2で検出された全反射 戻り光量が、 ステップ S T 3 7の判断工程において閾値 T 1より小さくなるまで 繰り返し実行される。
ステップ S T 3 9において、 全反射戻り光量電圧値が閾値 T 1より小さくなつ たことに応じて、 その時点の副制御部 4 4の制御信号 V h ' をホ一ルドするとと もに、 制御信号切替回路 4 5により主制御部 4 3からの制御信号 V gが出力され るように切り替える。 制御信号 V gは、 制御信号切替回路 4 5を通過してシステ ム制御器 4 6 Aに供給される。 システム制御器 4 6 Aは、 面ぶれサ一ポ制御部 9 0で生成され、 光ヘッド 7の ァクチユエ一夕 1 1にホ一ルドされて印加されている制御信号 V iに加えて、 副 制御部 4 4のホールドされた制御信号 V h ' と、 主制御部 4 3で生成された制御 信号 V gを印加させる。 つまり、 光ヘッド 7のァクチユエ一夕 1 1に供給される 制御信号 Vは、 以下に示すような値となる。
V = V i + ( V g + V h ' )
なお、 副制御部 4 4のホールド電圧 V h ' は、 制御中ホ一ルドしたままでもい いし、 又は、 主制御部 4 3への切替時に、 上記主制御部 4 3へ副制御部 4 4のホ 一ルド電圧をコピーして、 副制御部 4 4のホールド電圧を解法し、 主制御部 4 3 のみで制御してもよい。
このように、 制御システム 8 0が備える面ぶれサーポ制御部 9 0、 及びギヤッ プサ一ポ制御部 4 0 Aの 2つの制御部による 2段階の制御によって、 フォトディ テクタ 1 2で検出された全反射戻り光量を制御目標値 Pに引き込み、 光へッド 7 の S I L 9の端面と、 ディスク状光記録媒体 5 1の情報記録面との距離であるギ ヤップ dが一定となるように制御することができる。
続いて、 本発明の第 1の実施の形態として示した情報記録装置 5 0、 第 2の実 施の形態として示した情報再生装置 5 0 A、 第 3の実施の形態として示した情報 記録装置 6 0、 第 4の実施の形態として示した情報再生装置 6 O Aが備えるスピ ンドルモー夕 1 6の動作を制御する回転制御システムついて説明をする。
この回転制御システムは、 情報記録装置 5 0、 情報再生装置 5 0 A、 情報記録 装置 6 0、 情報再生装置 6 0 Aのいずれに適用されても全く同じ構成となるため、 図 2 1に示すように第 1の実施の形態として示した情報記録装置 5 0を用いて説 明をする。
図 2 2に示すように、 回転制御システム 1 0 0は、 周波数ループ制御部 1 1 0 と、 P L L制御部 1 2 0と、 周波数ループ制御部 1 1 0及び P L L制御部 1 2 0 を統括的に制御するシステム制御器 1 0 1と、 周波数ループ制御部 1 1 0及び P L L制御部 1 2 0で生成された制御信号を加算する加算器 1 0 2とを備えている c 回転制御システム 1 0 0は、 周波数ループ制御部 1 1 0及び P L L制御部 1 2 0 によって、 スピンドルモータ 1 6の回転を安定化させる。 周波数ループ制御部 1 1 0は、 F— V変換器 1 1 1と、 加算器 1 1 2と、 制御 器 1 1 3とを備えている。 周波数ループ制御部 1 1 0は、 P LL制御部 1 2 0で の位相比較による制御を実行する前段で動作され、 スピンドルモータ 1 6の回転 周波数を口ックする。
F— V変換器 1 1 1は、 エンコーダ 1 3 0から供給される F G信号を電圧 V f Vに変換し、 加算器 1 1 2に出力する。
加算器 1 1 2は、 参照電圧 V r e f と、 F _ V変換器 1 1 1から出力される電 圧 V f Vに負の符号を付した値とを加算して、 周波数ループエラー信号 E f を算 出する。
制御器 1 1 3は、 加算器 1 1 2より算出された周波数ループエラー信号 E f が 0となるような周波数ループ制御電圧 V rを生成し、 システム制御器 1 0 1、 加 算器 1 0 2を介してスピンドルモータ 1 6に供給する。
P L L制御部 1 2 0は、 位相比較器 1 2 1と、 制御器 1 2 2とを備えている。 P L L制御部 1 20は、 周波数ループ制御部 1 1 0によって、 スピンドルモ一夕 1 6の回転数がロックされた後に動作され、 位相比較によってスピンドルモータ 1 6の位相を口ックする。
位相比較期 1 2 1は、 ェン: 3—ダ 1 3 0から供給される FG信号の位相と、 F G信号と同一の周波数を持つ信号である参照クロックの位相とを比較し、 位相差 (位相エラー信号 P e) を求める。
制御器 1 2 2は、 位相比較器 1 2 1によって求められた位相エラー信号 P eが ゼロとなるようにスピンドルモータ 1 6を回転させる制御電圧 V pを生成し、 シ ステム制御器 1 0 1、 加算器 1 0 2を介してスピンドルモータ 1 6に供給する。 周波数ループ制御部 1 1 0によって生成された周波数制御電圧 V rは、 P L L 制御部 1 20へ制御動作が移ると、 ホ一ルドされてスピンドルモータ 1 6に印加 され続ける。 したがって、 P L L制御部 1 2 0で制御電圧 V pが生成されること によって、 最終的にスピンドルモ一夕 1 6に印加されるスピンドルモ一夕制御電 圧 V sは、 V s =V r +Vpとなる。
上述した周波数ループ制御部 1 1 0によって、 所定の回転数となるように周波 数ループ制御をすると、 周波数制御電圧 V rは、 時間経過とともに図 23に示す ような特性を示す。
周波数ループ制御が開始された直後、 スピンドルモータ 1 6は、 停止した状態 を継続しょうとする慣性により、 定常状態で必要となる電圧よりも高い電圧値を 要求することになる。 したがって、 スピンドルモータ 1 6が、 回転を開始すると、 回転状態を継続しようとする慣性により上述した電圧値は、 過大な電圧となり図 2 3に示すようにォ一バシユートを持つようになる。
この、 ディスク状光記録媒体 5 1の初動回転時に供給される過大な周波数制御 電圧 V rによって、 当該ディスク状光記録媒体 5 1は急加速されることになる。 これにより、 ディスク状光記録媒体 5 1の回転軸にぶれが生じ、 ディスクが揺れ、 結果として情報記録面の面ぶれとなる。
また、 上述した P L L制御部 1 2 0によって P L L制御を実行すると、 位相差 である位相エラ一 P eは、 時間変化ともに図 2 4のような特性を示す。 スピンド ルモータ 1 6には、 位相エラ一 P eに応じた制御電圧が印加される。 したがって、 図 2 4に示すように、 位相エラ一 P eが定常状態となるまでの間に大きく変動す ると、 スピンドルモ一夕 1 6の回転速度は、 急加速、 急減速されることになり、 周波数ループ制御と同様にディスク状光記録媒体 5 1の回転軸にぶれが生じ、 デ イスクが揺れ、 結果として情報記録面の面ぶれとなる。
これは、 情報記録装置 5 0、 情報再生装置 5 0 A、 情報記録装置 6 0、 情報再 生装置 6 O Aのように、 ニァフィールド状態でのエバネセント光を利用した記録, 再生を行う装置では、 S I L 9と、 ディスク状光記録媒体 5 1の情報記録面とギ ャップが数 1 0ナノメートル程度であるため、 回転制御システム 1 0 0による制 御によって生ずる面ぶれは、 大きな外乱として作用してしまうことになる。
したがって、 情報記録装置 5 0、 情報再生装置 5 0 Aが備える制御システム 2 0での制御動作、 情報記録装置 6 0、 情報再生装置 6 0 Aが備える制御システム 8 0の制御動作は、 回転制御システム 1 0 0のスピンドルモータ 1 6の回転制御 によって生ずる面ぶれがギャップサーポ制御に影響を与えない程度となった時点 で開始される必要がある。
そこで、 図 2 4に示すように位相エラ一 P eに対して、 回転制御システム 1 0 0によって生じた面ぶれがニァフィールド状態でのギャップサ一ポ制御に影響を 与えることのない程度の位相エラー P eを示す閾値 TH 3を設定する。
これにより、 P L L制御部 120による P L L制御において、 位相エラー P e が閾値 TH 3となったことに応じて、 情報記録装置 5 0、 情報再生装置 5 OAで あれば制御システム 2 0、 情報記録装置 6 0、 情報再生装置 60 Aであれば制御 システム 8 0の動作が開始されるようにすることで、 回転制御システム 1 0 0に よって生じる面ぶれを回避することができる。
図 2 5に示すフローチャートを用いて、 回転制御システム 1 0 0と、 制御シス テム 2 0又は制御システム 8 0とによる制御が実行される夕イミングについて説 明をする。
まず、 回転制御システム 1 00によるスピンドルモータ 1 6の回転制御が実行 される。 システム制御器 1 0 1は、 周波数ループ制御部 1 1 0を制御してスピン ドルモー夕 1 6が所定の回転数となるまで周波数ループ制御を実行させ (ステツ プ ST41) 、 所定の回転数となったかどうか判断する (ステップ S T42) 。 スピンドルモ一夕 1 6が所定の回転数となった場合は、 周波数ループ制御電圧 V rをホールドして、 P L L制御部 1 20を動作させる (ステップ S T 42) 。 スピンドルモータ 1 6が所定の回転数となっていない場合は、 ステップ S T 41 からの工程を繰り返す。
次に、 システム制御器 1 0 1は、 位相エラ一 P eが、 あらかじめ設定した閾値 TH3より小さくなるまで PLL制御部 1 20による PLL制御を実行させ (ス テツプ S T43) 、 位相エラ一 P eが閾値 TH 3より小さくなつたことに応じて (ステップ S T 44) 、 上述した制御システム 2 0での制御を開始させる (ステ ップ S T 45 ) 。
このように、 第 1の実施の形態として示した情報記録装置 50、 第 2の実施の 形態として示した情報再生装置 50A、 第 3の実施の形態として示した情報記録 装置 6 0、 第 4の実施の形態として示した情報再生装置 6 0 Aのように、 ニァフ ィールドで検出されるエバネセント光を利用した記録、 又は、 再生を行う装置で は、 回転制御システム 1 0 0で生ずる面ぶれがギャップサーポ制御に影響を与え ることがなくなつてから制御システム 20又は制御システム 80による制御を実 行させる。 なお、 上述した第 1及び第 3の実施の形態として示した情報記録装置、 第 2及 び第 4の実施の形態として示した情報再生装置のそれぞれにおいて、 ビームスプ リツ夕、 コリメ一夕レンズ等の配置は適宜変更されうる。
次に、 本発明に係る情報記録装置 26 0の第 4の実施の形態を図 2 6を参照し て説明する。
この情報記録装置 2 6 0は、 着脱自在とされたディスク状光記録媒体 2 0 0を 記録媒体に用いるものであって、 装着されたディスク状光記録媒体 20 0の情報 記録面にニァフィールド (近接場) において検出されるエバネセント光を照射し て情報を記録するニァフィールド記録系と、 光源から出射される光ビームを照射 して情報を記録するファーフィ一ルド記録系と備えている。
まず、 ニァフィールド記録系について説明をする。
情報記録装置 26 0は、 ニァフィールド記録系として、 ディスク状光記録媒体 2 0 0に記録する情報を供給する情報源 1と、 AP C (Auto Power Controller) 2と、 レーザダイオード (LD) 20 3と、 コリメ一夕レンズ 204と、 ビーム スプリツ夕 (B S) 2 0 5と、 ダイクロイツクミラ一 20 6と、 ミラー 20 7と、 集光レンズ 2 0 8と、 フォトディテクタ (PD) 9と、 光ヘッド 2 1と、 制御シ ステム 2 3 0とを備えている。
なお、 ダイクロイツクミラー 20 6、 ミラ一 2 0 7、 光へッド 2 2 1、 制御シ ステム 2 3 0は、 後で詳細に説明をするファーフィールド記録系と共通で使用さ れる機能部である。
AP C 20 2は、 情報源 2 0 1から供給される情報に応じて後段に備えられた レーザダイオード 2 0 3から出射されるレーザ光を変調させるように制御する。 レーザダイオード 2 0 3は、 AP C 20 2からの制御に応じて、 所定の波長の レーザ光を出射する。 例えば、 レーザダイオード 2 0 3は、 赤色半導体レ一ザ、 青紫色半導体レーザなどである。 レーザダイオード 2 0 3は、 後述するファーフ ィールド記録系のレーザダイォ一ドとは異なる波長のレーザ光が選択される。 コリメ一夕レンズ 2 04は、 レーザダイオード 2 0 3から出射されたレーザ光 を光軸に平行な光ビームとして出射する。
ビームスプリッ夕 2 0 5は、 コリメ一夕レンズ 2 04から出射された光ビーム を透過してダイクロイツクミラ一 206に出射する。 また、 ビ一ムスプリッ夕 2 05は、 ダイクロイツクミラ一 206で透過された光へッド 2 1からの戻り光を 反射して集光レンズ 208に出射する。
ダイクロイツクミラー 206は、 入射される光ビームを、 波長の違いに応じて 反射させたり透過させたりする。 ダイクロイツクミラー 206は、 ビームスプリ ッタ 20 5から出射された光ビームを透過してミラー 207に出射する。
ミラ一 207は、 ダイクロイツクミラー 206から出射された光ビームを反射 して、 光へッド 221へ出射する。 また、 ミラ一 207は、 光へッド 221から 戻り光を反射してダイクロイックミラ一 206に出射する。
光ヘッド 221は、 ミラ一 207から出射された光ビームを集束させ、 デイス ク状光記録媒体 200の情報記録面に照射する。 ニァフィールド記録系として光 ヘッド 221を使用する場合、 当該光へッド 221が上記情報記録面に照射する 光は、 レンズの回折限界以上のスポットサイズで、 情報の記録、 再生が可能なェ パネセント光である。
図 27に示すように、 光ヘッド 221は、 対物レンズ 222と、 S I L (Soli d Immersion Lens) 223と、 レンズフォルダ 224と、 ァクチユエ一夕 225 とを備えている。
対物レンズ 222には非球面レンズが用いられ、 レーザダイオード 203から 出射され、 コリメ一夕レンズ 204、 ビームスプリツ夕 20 5、 ダイクロイツク ミラー 206、 ミラ一 207を介して入射された光ビームを集束して S I L 22 3に供給する。
S I L 223は、 球形レンズの一部を平面にして切り取った形状をした高屈折 率のレンズである。 S I L 223は、 対物レンズ 22によって供給された光ビ一 ムを、 球面側から入射し、 球面と反対側の面 (端面) の中央部に集束させる。 また、 S I L 223に替えて、 反射ミラーが形成され、 S I L 223と同等の 機能を有する S I M (Solid Emersion Mirror) を用いてもよい。
レンズフォルダ 224は、 対物レンズ 222と、 S I L 223とを所定の位置 関係で一体に保持している。 S I L 223は、 レンズフォルダ 224によって、 球面側が対物レンズ 222と対向するように、 また、 球面と反対側の面 (端面) がディスク状光記録媒体 2 0 0の情報記録面と対向するように保持される。
このように、 レンズフォルダ 2 2 4によって対物レンズ 2 2 2と、 ディスク状 光記録媒体 2 0 0の情報記録面との間に高屈折率の S I L 2 2 3を配置すること で、 対物レンズ 2 2 2のみの開口数よりも大きな開口数を得ることができる。 一 般に、 レンズから照射される光ビームのスポットサイズは、 レンズの開口数に反 比例することから、 対物レンズ 2 2 2、 S I L 2 2 3によって、 より一層、 微小 なスポットサイズの光ビームとすることができる。
ァクチユエ一夕 2 2 5は、 制御システム 2 3 0から制御信号として出力される 制御電圧に応じてフォーカス方向、 卜ラッキング方向に、 レンズフォルダ 2 2 4 を動作させる。
光へッド 2 2 1において、 エバネセント光は、 S I L 2 2 3の端面に臨界角以 上の角度で入射され全反射した光ビームの反射境界面から滲み出した光である。 S I L 2 2 3の端面が、 ディスク状光記録媒体 2 0 0の情報記録面から、 後述す る二ァフィ一ルド (近接場) 内にある場合に、 S I L 2 2 3の端面より滲み出し たエバネセント光は、 情報記録面に照射されることになる。
続いて、 ニァフィールドについて説明をする。 一般に、 ニァフィールドは、 レ ンズに入射される光の波長を λとすると、 上記レンズの光ビーム出射面からの距 離 dが、 d A / 2までの領域である。
図 2 7に示す、 光ヘッド 2 2 1と、 ディスク状光記録媒体 2 0 0とで考えると、 光ヘッド 2 2 1が備える S I L 2 2 3の端面から、 ディスク状光記録媒体 2 0 0 の情報記録面までの距離 (ギャップ) dが、 S I L 2 2 3に入射された光ビ一ム の波長 λによって d≤A / 2と定義される領域がニァフィールドである。 デイス ク状光記録媒体 2 0 0の情報記録面と、 S I L 2 2 3の端面との距離で定義され るギャップ dが、 d≤A Z 2を満たし、 S I L 2 2 3の端面からェパネセント光. がディスク状光記録媒体 2 0 0の情報記録面に滲み出す状態をニァフィールド状 態といい、 ギャップ dが、 ά > λ / 2を満たし、 上記情報記録面にエバネセント 光が滲み出さない状態をファーフィールド状態という。
ところで、 ファーフィ一ルド状態である場合、 S I L 2 2 3の端面に臨界角以 上の角度で入射された光ビームは、 全て、 全反射されて戻り光となる。 したがつ て、 図 2 8に示すようにファーフィ一ルド状態での全反射戻り光量は、 一定値と なっている。
一方、 ニァフィールド状態である場合、 S I L 2 2 3の端面に臨界角以上の角 度で入射された光ビームの一部は、 上述したように、 S I L 2 2 3の端面つまり 反射境界面において、 エバネセント光としてディスク状光記録媒体 2 0 0の情報 記録面に滲み出す。 したがって、 図 2 8に示すように全反射された光ビームの全 反射戻り光量は、 ファーフィ一ルド状態のときょり減少することになる。 図 2 8 に示すように、 ニァフィールド状態における全反射戻り光量は、 ディスク状光記 録媒体 2 0 0の情報記録面に近づく程、 指数関数的に減少していることが分かる したがって、 S I L 2 2 3の端面の位置がニァフィールド状態にあるときは、 全反射戻り光量がギヤップ長に応じて変化するリニアな部分をギャップエラ一信 号としてフィ一ドバックサ一ボを行えば、 S I L 2 2 3の端面と、 ディスク状光 記録媒体 2 0 0の情報記録面とのギャップを一定に制御するこどが可能となる。 例えば、 図 2 8に示すように全反射戻り光量が制御目標値 Pになるように制御を 行えば、 ギヤップは dの距離に一定に保持されることになる。
再び、 図 2 6に示す情報記録装置 2 6 0のニァフィールド記録系の構成につい て説明をする。
集光レンズ 2 0 8は、 光へッド 2 2 1が備える S I L 2 2 3の端面で全反射さ れ、 ミラ一 2 0 7で反射され、 ダイクロイツクミラー 2 0 6で透過し、 ビ一ムス プリッ夕 2 0 5で反射された戻り光をフォトディスク 2 0 9に集光する。
フォ トディスク 2 0 9は、 集光レンズ 2 0 8によって集光された戻り光の光量 を電流値として検出する。 なお、 フォ トディスク 2 0 9で検出された電流値は、 既に D C化されており、 全反射戻り光量電圧値として制御システム 2 3 0に出力 される。
次に、 ファーフィールド記録系について説明をする。
情報記録装置 2 6 0は、 ファーフィ一ルド記録系として、 ディスク状光記録媒 体 2 0 0に記録する情報を供給する情報源 2 1 1と、 A P C 2 1 2と、 レーザダ ィオード 2 1 3と、 ミラ一 2 1 4と、 コリメ一夕レンズ 2 1 5と、 凹レンズ 2 1 6と、 ビームスプリツ夕 (B S ) 2 1 7と、 ダイクロイツクミラ一 2 0 6と、 ミ ラー 2 0 7と、 光へッド 2 2 1と、 ミラー 2 1 8と、 集光レンズ 2 1 0と、 シリ ンドリカルレンズ 2 1 9と、 フォトディテクタ 2 2 0とを備えている。
上述したように、 ダイクロイツクミラー 2 0 6、 ミラー 2 0 7、 光ヘッド 2 2 1、 制御システム 2 3 0は、 ニァフィールド記録系と共通で使用される機能部で ある。
A P C 2 1 2は、 情報源 2 1 1から供給される情報に応じて後段に備えられた レ一ザダイォ一ド 2 1 3から出射されるレーザ光を変調させるように制御する。 レーザダイオード 2 1 3は、 A P C 2 1 2からの制御に応じて、 所定の波長の レーザ光を出射する。 例えば、 レーザダイオード 2 1 3は、 赤色半導体レーザ、 青紫色半導体レーザなどである。 レーザダイオード 2 1 3は、 上述した二ァフィ —ルド記録系のレーザダイオード 2 0 3とは異なる波長のレーザ光が選択される コリメ一夕レンズ 2 1 5は、 レ一ザダイオード 2 1 3から出射されたレーザ光 を光軸に平行な光ビームとして出射する。
凹レンズ 2 1 6は、 コリメータレンズ 2 1 5から出射された光ビームをやや発 散傾向でビームスプリッ夕 2 1 7に出射する。
ビームスプリッ夕 2 1 7は、 凹レンズ 2 1 6からやや発散傾向で出射された光 ビームを透過してダイクロイツクミラー 2 0 6に出射する。 また、 ビームスプリ ッ夕 2 1 7は、 ダイクロイツクミラー 2 0 6で反射された光へッド 2 2 1からの 戻り光を反射してミラ一 2 1 8に出射する。
ダイクロイツクミラー 2 0 6は、 入射される光ビームを、 波長の違いに応じて 反射させたり透過させたりする。 ダイクロイツクミラー 2 0 6は、 ビ一ムスプリ ッ夕 2 1 7から出射された光ビームを反射してミラ一 2 0 7に出射する。
ミラー 2 0 7は、 ダイクロイツクミラー 2 0 6から出射された光ビームを反射 して、 光へッド 2 2 1へ出射する。 また、 ミラ一 2 0 7は、 光へッド 2 2 1から の戻り光を反射してダイクロイツクミラ一 2 0 6に出射する。
光ヘッド 2 2 1は、 ミラ一 2 0 7から出射された光ビームを、 ディスク状光記 録媒体 2 0 0の情報記録面に照射する。 ファーフィ一ルド記録系として光へッド 2 2 1を使用する場合、 当該光ヘッド 2 2 1は、 光ビームをディスク状光記録媒 体 2 0 0の情報記録面に集光させる。 上述したように、 光ヘッド 2 2 1をニァフィールド記録系として使用する場合 は、 エバネセント光を利用して記録するため、 図 2 9 Aに示すように S I L 2 2 3の端面、 中央部で光ビームが集束される。
' 一方、 光ヘッド 2 2 1をファーフィールド記録系として使用する場合は、 図 2 9 Bに示すように S I L 2 2 3から出射した光ビームを、 ディスク状光記録媒体 2 0 0の情報記録面に集光させて情報を記録させることになる。
これは、 ファーフィ一ルド記録系のコリメ一夕レンズ 2 1 5と、 ピームスプリ ッタ 2 1 7との間に挿入された凹レンズ 2 1 6が、 やや発散傾向で対物レンズ 2 2 2に光ビームを入射させるため、 対物レンズ 2 2 2、 S I L 2 2 3からなる 2 群レンズを備える光へッド 2 2 1を使用した場合でも、 ディスク状光記録媒体 2 0 0の情報記録面に光ビームを集光させることができる。
光ヘッド 2 2 1からディスク状光記録媒体 2 0 0の情報記録面に集光され反射 された反射光は、 再び光ヘッド 2 2 1を介してミラー 2 0 7に出射される。 この 反射光は、 ミラ一 2 0 7で反射され、 ダイクロイツクミラー 2 0 6で反射され、 ビームスプリッタ 2 1 7でも反射され、 ミラ一 2 1 8に出射される。
ミラー 2 1 8は、 ビ一ムスプリッ夕 2 1 7から出射された反射光を集光レンズ 2 1 0に出射する。
集光レンズ 2 1 0は、 ミラ一 2 1 8から出射された反射光をシリンドリカルレ ンズ 2 1 9に集光する。 シリンドリカルレンズ 2 1 9は、 一方の面が円柱の形を したレンズであり、 入射された光ビームに非点収差を生じさせるレンズである。 シリンドリカルレンズ 2 1 9によって非点収差を生じた光ビームは、 フォトディ テク夕 2 2 0に出射される。
フォトディテクタ 2 2 0は、 シリンドリカルレンズ 2 1 9から出射された光ビ ーム、 つまり、 ディスク状光記録媒体 2 0 0の情報記録面で反射された反射光の 光量を検出し、 フォーカスエラー信号として制御システム 2 3 0に出力する。 このようにファーフィールド記録系では、 ディスク状光記録媒体 2 0 0の情報 記録面で反射された反射光から、 C Dや、 D V Dのフォーカスサーポにおいて一 般的に適用されている非点収差法を用いてフォーカスエラー信号を取得するよう にしている。 続いて、 図 3 0を用いて制御システム 2 3 0について説明をする。
制御システム 2 3 0は、 ファーフィ一ルド記録系の制御部として機能し、 ディ スク状光記録媒体 2 0 0の情報記録面と、 光へッド 2 2 1が傭える S I L 2 2 3 との距離を制御するフォーカスサ一ポ制御部 2 3 1と、 ニァフィールド記録系の 制御部として機能し、 ディスク状光記録媒体 2 0 0の情報記録面と、 光ヘッド 2 2 1が備える S I L 2 2 3とのギャップを制御するギャップサ一ポ制御部 2 4 1 とを備えている。
まず、 フォーカスサーポ制御部 2 3 1について説明をする。 フォーカスサ一ポ 制御部 2 3 1は、 加算機 2 3 2と、 制御器 2 3 3を備えており、 上述したフォト ディテクタ 2 2 0から出力されるフォーカスエラ一信号を用いて、 フォーカスサ —ポ制御を実行する。
図 3 1に、 サーポループに適切に引き込まれた際に、 フォトディテクタ 2 2 0 で検出されるプルイン信号と、 フォーカスエラ一信号の様子を示す。 図 3 1で示 したプルイン信号が観測される際に、 フォーカスエラー信号のリニアな部分を用 いることでフォーカスサ一ポ制御が実行される。
加算機 2 3 2は、 目標値 α ( = 0 ) と、 フォトディテクタ 2 2 0から出力され たフォーカスエラー信号に負の符号を付した値を加算して制御器 2 3 3に出力す る。
制御器 2 3 3は、 加算機 2 3 2で加算された値が 0となるように、 光へッド 2 2 1を制御する制御電圧値 V f を生成してシステム制御器 2 4 7に出力する。 続いて、 ギャップサ一ポ制御部 2 4 1について説明をする。 ギャップサーポ制 御部 2 4 1は、 加算器 2 4 2と、 コンパレータ 2 4 3と、 主制御部 2 4 4と、 副 制御部 2 4 5と、 制御信号切替回路 2 4 6と、 システム制御器 2 4 7とを備えて いる。
フォトディスク 2 0 9から出力された全反射戻り光量電圧値は、 加算器 2 4 2 及びコンパレー夕 2 4 3に供給される。
加算器 2 4 2は、 ギャップを制御目標値 Pとするための制御目標電圧値と、 フ オトディスク 2 0 9から出力された全反射戻り光量電圧値を比較して偏差をとる t 制御目標電圧値は、 あらかじめ設定された定電圧などである。 コンパレー夕 243は、 フォトディスク 20 9から出力された全反射戻り光量 電圧値と、 所定の電圧値である閾値 T 1とを比較する。 閾値 T 1は、 制御目標値 Pと、 T 1>Pの関係を満たすよう選択された値であり、 全反射戻り光量電圧値 が、 閾値 T 1より大きいと、 光へッド 22 1の S I L 22 3がファ一フィールド 状態にあることを示しており、 逆に全反射戻り光量電圧値が閾値 T 1より以下だ と S I L 22 3が二ァフィ一ルド状態にあることを示している。
したがって、 コンパレータ 243は、 電圧値の比較結果よりファーフィールド 状態となっている場合には、 副制御部 245で生成される制御電圧値が選択され るように制御信号切替回路 246に、 例えば、 切替信号 "0" を出力し、 ニァフ ィ一ルド状態となっている場合には、 主制御部 244で生成される制御電圧値が 選択されるように制御信号切替回路 246に、 例えば、 切替信号 " 1 " を出力す る。
主制御部 244は、 S I L 22 3がニァフィ一ルド状態にあるときにギャップ dを制御目標値 Pに近づけるための制御電圧である制御信号 V gを生成する。 主 制御部 244は、 例えば、 周波数応答に基づいて設計された位相補償フィル夕な どを備えており、 加算器 242で算出された偏差から制御電圧である制御信号 V gを生成する。
副制御部 245は、 光へッド 2 2 1の S I L 22 3を二ァフィールド状態とな る距離までディスク状光記録媒体 2 0 0の情報記録面に近づけるような制御信号 Vhを生成する。
制御信号切替回路 246は、 コンパレータ 43から出力される切替信号に応じ て、 副制御部 245で生成された制御信号 Vhを出力したり、 主制御部 244で 生成された制御信号 V gを出力したりする。
システム制御器 247は、 当該制御システム 23 0を統括的に制御する制御部 であり、 フォーカスサーポ制御部 2 3 1、 ギャップサーポ制御部 24 1を動作さ せて制御信号を生成させ、 各制御部で生成された制御信号を光へッド 22 1のァ クチユエ一夕 22 5に適切に供給する。
システム制御器 247から光へッド 22 1のァクチユエ一夕 2 2 5に供給され る制御電圧を Vとすると、 フォーカスサーボ制御部 2 3 1の制御器 2 3 3から出 力される制御電圧 V f 、 ギヤップサーポ制御部 2 4 1の制御信号切替回路 2 4 6 から出力される制御信号 V h、 又は V gを用いて制御電圧 Vを、 式 3又は式 4に 示すようにすることができる。
V = V f + V h · · · ( 3 )
V = V f + V g · ' · ( 4 )
システム制御器 2 4 7は、 当該情報記録装置 2 6 0をファ一フィールド記録系 として使用する場合、 V h = 0又は V g = 0として、 制御器 2 3 3から出力され る制御電圧 V f のみが出力されるように制御する。
また、 システム制御器 2 4 7は、 当該情報記録装置 2 6 0をニァフィールド記 録系として使用する場合、 V f = 0として、 制御信号切替回路 2 4 6から出力さ れる制御電圧 V h又は V gのみが出力されるように制御する。
続いて、 図 3 2に示すフローチヤ一トを用いて制御システム 2 3 0の動作につ いて説明をする。
まず、 ステップ S 2 0 1において、 情報記録装置 2 6 0をニァフィールド記録 系として使用するのか、 ファーフィ一ルド記録系として使用するのかが選択され る。 二ァフィ一ルド記録系として使用する場合は、 制御システム 2 3 0のギヤッ プ制御部 2 4 1が起動し、 ステップ S 2 0 2へと工程を進め、 ファーフィ一ルド 記録系として使用する場合は、 フォーカスエラ一制御部 3 1が起動し、 ステップ S 2 0 6へと工程を進める。
ステツプ S 2 0 2〜ステツプ S 2 0 5までは、 ニァフィールド記録系における 工程である。
ステップ S 2 0 2において、 レーザダイォード 2 0 3から所定の光学系を介し て光へッド 2 1へ出射された光ビームの全反射戻り光量を、 フォトディスク 2 0 9で検出する。 検出された全反射戻り光量は、 ギャップエラー信号として制御シ ステム 2 3 0に供給される。
ステップ S 2 0 3において、 ギャップサ一ポ制御部 4 1は、 コンパレータ 2 4 3によって、 全反射戻り光量電圧値と、 閾値 T 1とを比較する。 コンパレータ 2 4 3は、 全反射戻り光量電圧値の方が大きいと判断した場合、 副制御部 2 4 5で 生成される制御信号 V hがシステム制御器 2 4 7に出力されるような切替信号を 制御信号切替回路 2 4 6に出力して、 工程をステップ S 2 0 4へと進める。
また、 コンパレータ 2 4 3は、 閾値 T 1の方が大きいと判断した場合、 主制御 部 2 4 4で生成される制御信号 V gが、 システム制御器 2 4 7に出力されるよう な切替信号を制御信号切替回路 2 4 6に出力して、 工程をステップ S 2 0 5へと 進める。
上述したように、 全反射戻り光量電圧値が閾値 T 1より大きい場合は、 S I L 2 2 3がファーフィ一ルド状態にあることを示しており、 全反射戻り光量電圧値 が閾値 T 1より小さい場合は、 S I L 2 2 3がニァフィールド状態にあることを 示している。
ステップ S 2 0 4において、 ギャップサーポ制御部 2 4 1は、 副制御部 2 4 5 によって生成された制御信号 V hを制御信号切替回路 2 4 6を介してシステム制 御器 2 4 7に出力する。
この、 ステップ S 2 0 4の工程は、 フォ トディテクタ 2 2 0で検出された全反 射戻り光量が、 ステップ S 2 0 3の判断工程において閾値 T 1より小さくなるま で繰り返し実行される。
ステップ S 2 0 5において、 全反射戻り光量電圧値が閾値 T 1より小さくなつ たことに応じて、 その時点の副制御部 2 4 5の制御信号 V hをホールドする (以 下、 ホールド電圧を V h ' とする。 ) とともに、 制御信号切替回路 2 4 6により 主制御部 2 4 4からの制御信号 V gが出力されるように切り替える。 制御信号 V gは、 制御信号切替回路 2 4 6を通過してシステム制御器 2 4 7に供給される。 システム制御器 2 4 7は、 副制御部 2 4 5のホールドされた制御信号 V h ' と、 主制御部 2 4 4で生成された制御信号 V gを光へッド 2 2 1のァクチユエ一タ 2 2 5に印加する。 つまり、 光へッド 2 2 1のァクチユエ一夕 2 2 5に供給される 制御信号 Vは、 以下に示すような値となる。
V = V g + V h '
なお、 副制御部 2 4 5のホールド電圧 V h ' は、 制御中ホ一ルドしたままでも よいし、 又は主制御部 2 4 4への切替時に、 主制御部 2 4 4へ副制御部 2 4 5の ホールド電圧をコピーして、 副制御部 2 4 5のホールド電圧を開放し、 主制御部 2 4 4のみで制御してもよい。 ステップ S 2 0 6〜ステツプ S 2 0 7までは、 ファーフィ一ルド記録系におけ る工程である。
ステップ S 2 0 6において、 レーザダイオード 2 1 3から所定の光学系、 光へ ッド 2 2 1を介してディスク状光記録媒体 2 0 0の情報記録面に照射され、 反射 された反射光を、 フォトディテクタ 2 2 0で検出する。 検出された反射光は、 フ オーカスエラ一信号として制御システム 2 3 0に供給される。
ステップ S 2 0 7において、 フォーカスサ一ポ制御部 2 3 1は、 供給されたフ ォ一カスエラー信号と、 目標値 αとの偏差を解消するような制御電圧 V f を制御 器 2 3 3で生成し、 システム制御器 2 4 7に供給する。 システム制御器 2 4 7は 供給された制御電圧 V f を制御電圧 Vとして光へッド 2 2 1のァクチユエ一夕 2 2 5に印加する。
このように、 情報記録装置 2 6 0をファーフィ一ルド記録系として使用するの か、 ニァフィールド記録系として使用するのかに応じて、 使用される光学系及び、 制御システム 2 3 0でのフォーカスサーポ制御部 2 3 1、 ギャップサ一ポ制御部 2 4 1での制御処理が適切に選択されることで、 光へッド 2 2 1の S I L 2 2 3 の端面と、 ディスク状光記録媒体 2 0 0の情報記録面との距離が、 それぞれの記 録方式に準じた所定の距離で一定となるように制御することができる。
続いて、 情報記録装置 2 6 0のファーフィ一ルド記録系において、 光ヘッド 2 2 1から出射される光ビームをディスク状光記録媒体 2 0 0の情報記録面に集光 させる他の方法について説明をする。
図 2 6に示した情報記録装置 2 6 0では、 凹レンズ 2 1 6を用いて、 コリメ一 夕レンズ 2 1 5から出射された光ビームをやや発散傾向にして出射させることで ディスク状光記録媒体 2 0 0の情報記録面に光ビームを集光させていた。
図 3 3に示す情報記録装置 2 6 1では、 図 2 6に示す情報記録装置 2 6 0から 凹レンズ 2 1 6を取り外し、 ミラ一 2 0 7と、 光へッド 2 2 1との間にエキスパ ンダ 2 5 0を挿入した構成となっている。
エキスパンダ 2 5 0は、 凹レンズ 2 5 1と、 コリメ一夕レンズ 2 5 2による 2 群レンズを備えており、 この 2群レンズ間の距離がァクチユエ一夕 2 5 3によつ て長くなつたり、 短くなつたりする。 ァクチユエ一夕 2 5 3は、 レンズ間調整電圧印加部 2 5 4から調整電圧が供給 されることで動作する。 また、 レンズ間調整電圧印加部 2 5 4は、 当該情報記録 装置 2 6 1を二ァフィ一ルド記録系として使用するのか、 ファーフィールド記録 系として使用するのかを切り替える切替信号が入力されたことに応じてァクチュ エー夕 2 5 3に調整電圧を印加する。
情報記録装置 2 6 1をファーフィ一ルド記録系として使用する場合に、 エキス パンダ 2 5 0の 2群レンズ間を適切に調整することで、 図 3 4 A、 図 3 4 Bに示 すように、 光ヘッド 2 2 1の対物レンズ 2 2 2に入射される光ビーム (入射光) のビーム径が小さくなり、 ディスク状光記録媒体 2 0 0の情報記録面に光ビーム を集光させることができる。
また、 図 3 5に示す情報記録装置 2 6 2では、 図 3 3に示す情報記録装置 2 6 0から凹レンズ 2 1 6を取り外し、 光へッド 2 2 1に対して、 当該光へッド 2 2 1が備える対物レンズ 2 2 2と、 S I L 2 2 3とによる 2群レンズ間の距離を広 げたり、 狭めたりする機構を付加した構成となっている。
例えば、 ァクチユエ一夕 2 5にレンズ間調整電圧印加部 2 5 5から調整電圧が 供給されることで、 対物レンズ 2 2 2が S I L 2 2 3に対して相対的に移動する ことで 2群レンズ間の距離が変化する。
レンズ間調整電圧印加部 2 5 5は、 当該情報記録装置 2 6 2をニァフィールド 記録系として使用するのか、 ファーフィールド記録系として使用するのかを切り 替える切替信号が入力されたことに応じてァクチユエ一夕 2 2 5に調整電圧を印 加する。
図 3 6 A、 図 3 6 Bに示すように、 ニァフィールド記録系として光ヘッド 2 2 1を使用した場合の対物レンズ 2 2 2と、 S I L 2 2 3の端面との距離を h 0と すると、 光ヘッド 2 2 1をファーフィ一ルド記録系として使用した場合には、 対 物 ンズ 2 2 2と、 S I L 2 2 3との距離を h 1 ( h 1 > h 0 ) となるようにァ クチユエ一夕 2 2 5に調整電圧をレンズ間調整電圧印加部 2 5 5から印加するこ とで、 ディスク状光記録媒体 2 0 0の情報記録面に光ビームを集光させることが できる。
次に、 図 3 7、 図 3 8を参照して本発明の第 5の実施の形態としての情報再生 装置 2 7 0を説明する。
情報再生装置 2 7 0は、 ディスク状光記録媒体 2 0 0に記録された所定の情報 を再生する。 情報再生装置 2 7 0は、 リム一バルなディスク状光記録媒体 2 0 0 を図示しない装着部に装着し、 装着したディスク状光記録媒体 2 0 0に二ァフィ 一ルド (近接場) において検出されるエバネセント光を照射して情報を再生する ニァフィールド再生系と、 光源から出射される光ビームを照射して情報を再生す るファーフィールド再生系と備えている。
情報再生装置 2 7 0のニァフィールド再生系は、 レ一ザダイォード 2 0 3が A P C 2 0 2によって一定のパワーのレーザ光が出射されるように制御されること、 ディスク状光記録媒体 2 0 0に照射した光ビームの戻り光からニァフィールド用 再生信号を取得すること以外、 制御システム 2 3 0による制御など図 2 6に示し た情報記録装置 2 6 0の二ァフィ一ルド記録系と全く同じであるため、 該当する 機能部には同一の符号を付し説明を省略する。
また、 情報再生装置 2 7 0のファーフィ一ルド再生系も同様に、 レーザダイォ ード 2 1 3が A P C 2 1 2によって一定のパワーのレーザ光が出射されるように 制御されること、 ディスク状光記録媒体 2 0 0に集光した光ビームの反射光から フォトディテクタ 2 2 0を介してファーフィ一ルド用再生信号を取得すること以 外、 制御システム 2 3 0による制御など図 1に示した情報記録装置 2 6 0のファ 一フィ一ルド記録系と全く同じであるため、 該当する機能部には同一の符号を付 し説明を省略する。
本発明の第 6の実施の形態として示す情報再生装置 2 7 0が備える二ァフィ一 ルド再生系において、 戻り光から再生信号を取得する方法は、 図 3 7に示す再生 信号と、 ギャップエラー信号との周波数帯域の違いを利用する手法と、 図 3 8に 示す偏光面の違いを利用する手法とがある。
周波数帯域の違いによって再生信号を取得する手法では、 図 3 7に示すように フォトディスク 2 0 9の後段に帯域分離フィルタ 2 5 6が設けられている。 帯域 分離フィルタ 2 5 6は、 フォ トディスク 2 0 9で検出された戻り光の検出値から 再生すべき情報であるニァフィールド用再生信号と、 ギヤップ制御に用いるギヤ ップエラー信号とを分離して抽出する。 ギャップエラ一信号は、 情報記録装置 2 6 0の場合と同様に、 制御システム 2 3 0に供給される。
また、 偏光面の違いにより再生信号を取得する手法では、 図 3 8に示すように 集光レンズ 2 0 8と、 フォトディスク 2 0 9との間に偏光ビームスプリッ夕 2 5 7が設けられている。 集光レンズ 2 0 8で集光された戻り光は、 偏光ビームスプ リツ夕 2 5 7で偏光面の違いによって透過及び反射される。 偏光ビ一ムスプリッ 夕 2 5 7で透過された戻り光は、 情報記録装置 2 6 0と同様にフォ トディスク 2 0 9で検出され、 ギヤップエラ一信号として制御システム 2 3 0に供給される。 また、 偏光ビ一ムスプリッ夕 2 5 7で反射された戻り光は、 集光レンズ 2 5 8を 介して、 フォ トディテクタ 2 5 9によって検出され、 ニァフィールド用再生信号 となる。
続いて、 図 3 9、 図 4 0、 図 4 1、 図 4 2にファーフィ一ルド再生系において、 光ヘッド 2 2 1から出射される光ビームをディスク状光記録媒体 2 0 0の情報記 録面に集光させる別な手法について説明する。
図 3 7、 図 3 8に示した情報再生装置 2 7 0では、 図 2 6に示した情報記録装 置 2 6 0と同様な構成であるため、 凹レンズ 2 1 6を用いて、 コリメータレンズ 2 1 5から出射された光ビームをやや発散傾向にして出射させることでディスク 状光記録媒体 2 0 0の情報記録面に光ビームを集光させている。
図 3 9、 図 4 0に示す情報再生装置 2 7 1は、 それぞれ図 3 7、 図 3 8に示す 情報再生装置 2 7 0から凹レンズ 2 1 6を取り外し、 ミラー 2 0 7と、 光へッド 2 2 1との間にエキスパンダ 2 5 0を揷入した構成となっている。
エキスパンダ 2 5 0は、 凹レンズ 2 5 1と、 コリメ一夕レンズ 2 5 2による 2 群レンズを備えており、 この 2群レンズ間の距離がァクチユエ一夕 2 5 3によつ て広げられたり、 狭められたりする。
ァクチユエ一夕 2 5 3は、 レンズ間調整電圧印加部 2 5 4から調整電圧が供給 されることで動作する。 また、 レンズ間調整電圧印加部 2 5 4は、 当該情報記録 装置 2 6 1をニァフィールド記録系として使用するのか、 ファーフィ一ルド記録 系として使用するのかを切り替える切替信号が入力されたことに応じてァクチュ エー夕 2 5 3に調整電圧を印加する。
情報記録装置 2 6 1をファーフィールド記録系として使用する場合に、 エキス パンダ 2 5 0の 2群レンズ間を適切に調整することで、 上述した図 3 6 A、 図 3 6 Bに示すように、 光へッド 2 2 1の対物レンズ 2 2 2に入射される光ビーム (入射光) のビーム径が小さくなり、 ディスク状光記録媒体 2 0 0の情報記録面 に光ビームを集光させることができる。
また、 図 4 1、 図 4 2に示す情報記録装置 2 7 2では、 それぞれ図 3 7、 図 3 8に示す情報再生装置 2 7 0から凹レンズ 2 1 6を取り外し、 光へッド 2 2 1に 対して、 当該光ヘッド 2 2 1が備える対物レンズ 2 2 2と、 S I L 2 2 3とによ る 2群レンズ間の距離を長くしたり、 短くしたりする機構を付加した構成となつ ている。
例えば、 ァクチユエ一夕 2 2 5にレンズ間調整電圧印加部 2 5 5から調整電圧 が供給されることで、 対物レンズ 2 2 2が S I L 2 2 3に対して相対的に移動す ることで、 2群レンズ間の距離が変化する。
レンズ間調整電圧印加部 2 5 5は、 当該情報記録装置 2 7 2をニァフィールド 記録系として使用するのか、 ファーフィールド記録系として使用するのかを切り 替える切替信号が入力されたことに応じてァクチユエ一夕 2 5に調整電圧を印加 する。
上述した図 3 6 A、 図 3 6 Bに示すように、 ニァフィールド記録系として光へ ッド 2 2 1を使用した場合の対物レンズ 2 2 2と、 S I L 2 2 3との距離を h 0 とすると、 光へッド 2 2 1をファーフィールド記録系として使用した場合には、 対物レンズ 2 2 2と、 S I L 2 2 3との距離を h 1 ( h 1 > h 0 ) となるように 調整電圧をァクチユエ一夕 2 2 5にレンズ間調整電圧印加部 2 5 5から印加する ことで、 ディスク状光記録媒体 2 0 0の情報記録面に光ビームを集光させること ができる。
続いて、 図 4 3を用いて、 本発明に係る第 6の実施の形態としての情報記録装 置 2 8 0を説明する。
情報記録装置 2 8 0は、 着脱可能なディスク状光記録媒体 2 0 0を図示しない 装着部に装着し、 装着したディスク状光記録媒体 2 0 0にニァフィールド (近接 場) において検出されるェパネセント光を照射して情報を記録する二ァフィ一ル ド記録系と、 光源から出射される光ビームを照射して情報を記録するファーフィ ールド記録系と備えている。
図 2 6で示した情報記録装置 2 6 0では、 ニァフィールド記録系の光源として レーザダイォ—ド 2 0 3、 ファーフィールド記録系の光源としてレーザダイォ一 ド 2 1 3というように、 2つの光源を備えた構成であった。
本発明に係る図 4 3に示す情報記録装置 2 8 0は、 ニァフィールド記録系の光 源と、 ファーフィールド記録系の光源を共用とし 1つだけ備えた構成となってい る。
情報記録装置 2 8 0は、 当該情報記録装置 2 8 0をニァフィールド記録系とし て使用する場合にディスク状光記録媒体 2 0 0に記録する情報を供給する情報源 3 0 1と、 A P C 3 0 2と、 ファーフィールド記録系として使用する場合にディ スク状光記録媒体 2 0 0に記録する情報を供給する情報源 3 0 3と、 A P C 3 0 4と、 信号切替器 3 0 5と、 レーザダイォード 3 0 6と、 コリメータレンズ 3 0 7と、 レンズブロック 3 0 8と、 ビ一ムスプリッタ 3 1 0と、 ミラ一 2 0 7と、 光へッド 2 2 1と、 ミラ一ブロック 3 1 1、 ミラ一 3 1 3と、 集光レンズ 2 0 8 と、 フォトディスク 2 0 9と、 集光レンズ 2 1 0と、 シリンドリカルレンズ 2 1 9と、 フォトディテクタ 2 2 0と、 制御システム 2 3 0とを備えている。
なお、 図 2 6に示した情報記録装置 2 6 0と同じ機能をする機能部については 同一符号を付し、 説明を省略する。
A P C 3 0 2は、 情報源 3 0 1から供給される情報に応じて後段に備えられた レーザダイォード 3 0 6から出射されるレーザ光を変調させるように制御する。
A P C 3 0 4は、 情報源 3 0 3から供給される情報に応じて後段に備えられた レーザダイォ一ド 3 0 6から出射されるレーザ光を変調させるように制御する。 信号切替器 3 0 5は、 当該情報記録装置 2 8 0をニァフィールド記録系として 使用するのか、 ファーフィールド記録系として使用するのかを切り替える切替信 号が供給されたことに応じて、 A P C 3 0 2、 又は A P C 3 0 4のどちらの出力 をレーザダイオード 3 0 6に供給するのかを切り替える。 例えば、 当該情報記録 装置 2 8 0をニァフィールド記録系として使用する場合は、 A P C 3 0 2からの 信号が、 レーザダイオード 3 0 6に供給されるように切り替えられ、 ファーフィ 一ルド記録系と使用する場合は、 A P C 3 0 4からの信号が、 レーザダイオード 3 0 6に供給されるように切り替えられる。
レ—ザダイォ—ド 3 0 6は、 A P C 3 0 2又は 3 0 4から供給される信号に応 じて変調された、 所定の波長のレーザ光を出射する。 例えば、 レーザダイオード 3は、 赤色半導体レーザ、 青紫色半導体レーザなどである。 レーザダイオード 2 0 3は、 二ァフィ一ルド記録系、 ファーフィールド記録系において共通である。 コリメ一夕レンズ 3 0 7は、 レーザダイオード 3 0 6から出射されたレーザ光 を光軸に平行な光ビームとして出射する。
レンズブロック 3 0 8は、 凹レンズ 3 0 9が組み込まれたブロックであり、 フ ァーフィールド切替信号、 又は、 ニァフィールド切替信号が供給されることで、 凹レンズ 3 0 9をコリメ一タレンズ 3 0 7から出射された光ビームの光軸上に配 置させたり、 光軸上から排除したりする。
凹レンズ 3 0 9は、 ファーフィ一ルド記録系にて使用するレンズであり、 対物 レンズ 2 2 2に対して光ビームをやや発散傾向で入射させる。 つまり、 凹レンズ 3 0 9は、 図 2 6で示した情報記録装置 2 6 0における凹レンズ 2 1 6と同じ機 能を備えている。
レンズブロック 3 0 8にファーフィ一ルド切替信号が供給されると、 凹レンズ 3 0 9が光軸上に配置され、 コリメ一夕レンズ 3 0 7から出射された光ビームは, 凹レンズ 3 0 9でやや発散傾向となってビ一ムスプリッ夕 3 1 0に入射する。 また、 レンズブロック 3 0 8にニァフィールド切替信号が供給されると凹レン ズ 3 0 9が光軸上から排除され、 コリメ一夕レンズ 3 0 7から出射された光ビー ムは、 ビームスプリツ夕 3 1 0に入射する。
ビームスプリッ夕 3 1 0は、 レンズブロック 3 0 8から出射された光ビームを 透過してミラー 2 0 7に出射する。 また、 ビームスプリッタ 3 1 0は、 ミラ一 2 0 7から出射された光ヘッド 2 2 1からの戻り光、 又は、 ディスク状光記録媒体 2 0 0の情報記録面からの反射光を反射してミラーブロック 3 1 1に出射する。 ミラ一 2 0 7を介して、 光へッ ド 2 2 1の対物レンズ 2 2に出射された光ビ一 ムは、 ニァフィールド記録系の場合は、 光ヘッド 2 2 1からの戻り光として、 フ ァ一フィールド記録系の場合は、 ディスク状光記録媒体 2 0 0の情報記録面での 反射光として、 再びミラ一 2 0 7で反射され、 ビ一ムスプリッ夕 3 1 0に出射さ れる。
ミラ一ブロック 3 1 1は、 ミラー 3 1 2が組み込まれたブロックであり、 ファ 一フィールド切替信号、 又は、 ニァフィールド切替信号が供給されることで、 ミ ラ一 3 1 2をビームスプリッタ 3 1 0から出射された光ビームの光軸上に配置さ せたり、 光軸上から排除したりする。
ミラー 3 1 2は、 ファーフィールド記録系にて使用するミラ一であり、 当該情 報記録装置 2 8 0がファーフィールド記録系として使用されるとき、 ビ一ムスプ リツ夕 3 1 0から出射された情報記録面での反射光をファーフィールド記録系で 用いるディテクタへと導く役割をしている。
ミラーブロック 3 1 1にファーフィールド切替信号が供給されると、 ミラ一 3 1 2が光軸上に配置される。 したがって、 ビームスプリッタ 3 1 0から出射され た光ビーム、 つまり、 情報記録面での反射光は、 当該ミラー 3 1 2で反射され、 ミラ一 3 1 3に出射される。
また、 レンズブロック 3 0 8にニァフィールド切替信号が供給されるとミラー 3 1 2が光軸上から排除され、 ビ一ムスプリッ夕 3 1 0から出射された光ヘッド 2 2 1からの戻り光は、 集光レンズ 2 0 8に出射される。
ミラ一 3 1 3は、 ミラー 3 1 2で反射された光ビーム、 つまり情報記録面での 反射光を反射して、 集光レンズ 2 1 0に出射する。
集光レンズ 2 1 0に出射された情報記録面での反射光は、 上述したように当該 集光レンズ 2 1 0で集光され、 シリンドリカルレンズ 2 1 9を介してフォトディ テク夕 2 2 0で検出され、 フォーカスエラー信号として制御システム 2 3 0に供 給される。
集光レンズ 2 0 8に出射された光へッド 2 2 1からの戻り光は、 上述したよう に当該集光レンズ 2 0 8で集光され、 フォトディスク 2 0 9で検出され、 ギヤッ プエラー信号として制御システム 2 3 0に供給される。
制御システム 2 3 0での、 ギャップエラー信号による光へッド 2 2 1の制御、 フォーカスエラ一信号による光ヘッド 2 2 1の制御は、 上述した情報記録装置 2 6 0での制御と全く同様であるため説明を省略する。
前述した図 4 3に示す情報記録装置 2 8 0においても、 ファーフィールド記録 系において、 光ヘッド 2 2 1から出射される光ビームをディスク状光記録媒体 2 0 0の情報記録面に集光させる別の手法を適用することができる。
図 4 4に示す情報記録装置 2 8 1では、 図 4 3に示す情報記録装置 2 8 0から 凹レンズ 3 0 9を備えたレンズブロック 3 0 8を取り外し、 ミラー 2 0 7と、 光 ヘッド 2 2 1との間にエキスパンダ 2 5 0を揷入した構成となっている。 エキス パンダ 2 5 0は、 レンズ間調整電圧印加部 2 5 4によって動作する。
エキスパンダ 2 5 0、 レンズ間調整電圧印加部 2 5 4を用いた、 光ビームのデ イスク状光記録媒体 2 0 0の情報記録面へ集光させる手法は、 図 3 3、 図 3 4を 用いて説明をした手法と全く同様であるため説明を省略する。
また、 図 4 5に示す情報記録装置 2 8 2では、 図 4 3に示す情報記録装置 2 8 0から凹レンズ 3 0 9を備えたレンズブロック 3 0 8を取り外し、 光へッド 2 2 1に対して、 当該光へッド 2 2 1が備える対物レンズ 2 2と、 S I L 2 2 3とに よる 2群レンズ間の距離を長くしたり、 短くしたりする機構を付加した構成とな つている。 このような機構が付加された光へッド 2 2 1の対物レンズ 2 2 2と、 S I L 2 2 3とのレンズ間距離は、 レンズ間調整電圧印加部 2 5 5による調整電 圧の印加によって変化する。
光ヘッド 2 2 1、 レンズ間調整電圧印加部 2 5 5を用いた、 光ビームのデイス ク状光記録媒体 2 0 0の情報記録面へ集光させる手法は、 図 3 5、 図 3 6を用い て説明した事項と全く同様であるため説明を省略する。
続いて、 図 4 6、 図 4 7を用いて、 本発明に係る第 7の実施の形態としての情 報再生装置 2 9 0を説明する。
情報再生装置 2 9 0は、 ディスク状光記録媒体 2 0 0に記録された所定の情報 を再生する。 情報再生装置 2 9 0は、 着脱可能とされたディスク状光記録媒体 2 0 0を図示しない装着部に装着し、 装着したディスク状光記録媒体 2 0 0にニァ フィールド (近接場) において検出されるエバネセント光を照射して情報を再生 する二ァフィ一ルド再生系と、 光源から出射される光ビームを照射して情報を再 生するファーフィ一ルド再生系と備えている。
情報再生装置 2 9 0は、 レーザダイォ一ド 3 0 6が A P C 3 0 2又は A P C 3 0 4によって一定のパワーのレーザ光が出射されるように制御されること、 ディ スク状光記録媒体 2 0 0に照射した光ビームの戻り光からニァフィールド用再生 信号を取得すること、 又はディスク状光記録媒体 2 0 0に集光した光ビームの反 射光からフォトディテクタ 2 2 0を介してファーフィールド用再生信号を取得す ること以外、 制御システム 2 3 0による制御など図 4 3に示した情報記録装置 2 8 0と全く同じであるため、 該当する機能部には同一の符号を付し説明を省略す る。
本発明に係る第 7の実施の形態としての情報再生装置 2 9 0が備える二ァフィ 一ルド再生系において、 戻り光から再生信号を取得する方法は、 図 4 6に示す再 生信号と、 ギャップエラー信号との周波数帯域の違いを利用する手法と、 図 4 7 に示す偏光面の違いを利用する手法とがある。
周波数帯域の違いによって再生信号を取得する手法では、 図 4 6に示すように フォトディスク 2 0 9の後段に帯域分離フィルタ 2 5 6が設けられている。 帯域 分離フィルタ 2 5 6は、 フォ卜ディスク 2 0 9で検出された戻り光の検出値から 再生すべき情報である二ァフィ一ルド用再生信号と、 ギャップ制御に用いるギヤ ップエラー信号とを分離して抽出する。 ギャップエラー信号は、 情報記録装置 2 6 0の場合と同様に、 制御システム 2 3 0に供給される。
また、 偏光面の違いにより再生信号を取得する手法では、 図 4 7に示すように 集光レンズ 2 0 8と、 フォトディスク 2 0 9との間に偏光ビ一ムスプリッ夕 2 5 7が設けられている。 集光レンズ 2 0 8で集光された戻り光は、 偏光ビームスプ リツ夕 2 5 7で偏光面の違いによって透過、 及び反射される。 偏光ビ一ムスプリ ッタ 2 5 7で透過された戻り光は、 情報記録装置 2 8 0と同様にフォトディスク 2 0 9で検出され、 ギャップエラ一信号として制御システム 2 3 0に供給される ( また、 偏光ビ一ムスプリッ夕 2 5 7で反射された戻り光は、 集光レンズ 2 5 8を 介して、 フォトディテクタ 2 5 9によって検出され、 ニァフィールド用再生信号 となる。
続いて、 図 4 8、 図 4 9、 図 5 0、 図 5 1にファーフィ一ルド再生系において, 光ヘッド 2 2 1から出射される光ビームをディスク状光記録媒体 2 0 0の情報記 録面に集光させる別な手法について説明する。
図 4 6、 図 4 7に示す情報再生装置 2 9 0では、 図 4 3に示した情報記録装置 2 8 0と同様な構成であるため、 凹レンズ 2 1 6を用いて、 コリメータレンズ 2 1 5から出射された光ビームをやや発散傾向にして出射させることでディスク状 光記録媒体 2 0 0の情報記録面に光ビームを集光させている。
図 4 8、 図 4 9に示す情報再生装置 2 9 1は、 それぞれ図 4 6、 図 4 7に示す 情報再生装置 2 9 0が備えるレンズブロック 3 0 8に代えて、 ミラ一 2 0 7と光 ヘッド 2 2 1との間にエキスパンダ 2 5 0を揷入した構成となっている。
エキスパンダ 2 5 0は、 凹レンズ 2 2 5 1と、 コリメ一夕レンズ 2 5 2による 2群レンズを備えており、 この 2群レンズ間の距離がァクチユエ一夕 2 5 3によ つて長くなつたり、 短くなつたりする。
ァクチユエ一夕 2 5 3は、 レンズ間調整電圧印加部 2 5 4から調整電圧が供給 されることで動作する。 また、 レンズ間調整電圧印加部 2 5 4は、 当該情報再生 装置 2 9 1を二ァフィ一ルド再生系として使用するのか、 ファーフィ一ルド再生 系として使用するのかを切り替える切替信号が入力されたことに応じてァクチュ ェ一夕 2 5 3に調整電圧を印加する。
情報再生装置 2 9 1をファーフィールド記録系として使用する場合に、 エキス パンダ 5 0の 2群レンズ間を適切に調整することで、 上述した図 3 4 A、 図 3 4 Bに示すように、 光ヘッド 2 2 1の対物レンズ 2 2に入射される光ビーム (入射 光) のビーム径が小さくなり、 ディスク状光記録媒体 2 0 0の情報記録面に光ビ —ムを集光させることができる。
また、 図 5 0、 図 5 1に示す情報再生装置 2 9 2は、 それぞれ図 4 6、 図 4 7 に示す情報再生装置 2 9 0が備えるレンズブロック 3 0 8に代えて、 光へッド 2 2 1に対して、 当該光へッド 2 2 1が備える対物レンズ 2 2と、 S I L 2 2 3と による 2群レンズ間の距離を長くしたり、 短くしたりする機構を付加した構成と を備えている。
例えば、 ァクチユエ一夕 2 2 5にレンズ間調整電圧印加部 2 5 5から調整電圧 が供給されることで、 対物レンズ 2 2 2が S I L 2 2 3に対して相対的に移動す ることで、 2群レンズ間の距離が変化する。
レンズ間調整電圧印加部 2 5 5は、 当該情報再生装置 2 9 2をニァフィールド 再生系として使用するのか、 ファーフィ一ルド再生系として使用するのかを切り 替える切替信号が入力されたことに応じてァクチユエ一夕 2 5に調整電圧を印加 する。
上述した図 3 6に示すように、 ニァフィールド再生系として光へッド 2 2 1を 使用した場合の対物レンズ 2 2 2と、 S I L 2 2 3との距離を h 0とすると、 光 ヘッド 2 2 1をファーフィールド記録系として使用した場合には、 対物レンズ 2 2 2と、 S I L 2 2 3との距離を h 1 ( h 1 > h 0 ) となるように調整電圧をァ クチユエ一夕 2 2 5にレンズ間調整電圧印加部 2 5 5から印加することで、 ディ スク状光記録媒体 2 0 0の情報記録面に光ビームを集光させることができる。 ところで、 制御システム 2 3 0のギャップ制御部 2 4 1において、 光ヘッド 2 2 1のような 2軸デバイスをディスク状光記録媒体の情報記録面からの近接場内 で一定の距離に制御しょうとする場合、 制御器、 すなわち主制御部 2 4 4には非 常に大きな D Cゲインが要求されることになる。
例えば、 光ヘッド 2 2 1のァクチユエ一夕 2 5の一次共振周波数が、 2 0 0 H zと高い場合など、 積分フィル夕などを入れないと現実的には D Cゲインを 2 6 0 d Bくらいとするのが限界となっている。
また、 デジタル方式のサーポを用いる場合も、 サンプリング周波数の関係でァ ナログによるサ一ポと比較して、 位相回りが早く、 十分な D Cゲインを確保する のがさらに困難となる。
D Cゲインを 2 6 0 d B以上とするために、 2軸デバイスの特性を改良して一 次共振周波数を下げ、 D Cゲインを確保しやすくしたり、 あるいは積分フィル夕 を入れることで D Cゲインを確保したり、 アナログサーポを用いてデジタル化に よる位相の回りを回避し、 安定性を確保しながらゲインを上げやすくしたり、 サ ンプリング周波数を上げて、 位相の回りをできるだけ高域とするようなデジタル サーポ系を構築する手法などが考えられる。
上述したような手法を実行した場合でも、 2軸デバイスの特性を変えるには、 設計から見直す必要があり、 多大な労力及びコストを要してしまうといった問題, アナログサ一ポにした場合には、 温度変化の影響を受けやすく、 部品点数も増え, 装置が大型化してしまうといった問題、 デジタルサ一ポにおいて、 積分フィル夕 を入れると、 リセット · ワインドアップが生じて不安定になるおそれがある。 あ るいは、 A D変換や D A変換の処理時間の制約により、 サンプリング周波数を上 げるのにも限度がある。 このような理由により、 根本的な解決には至らない。 そこで、 制御システム 2 3 0のギャップサ一ポ制御部 2 4 1が備える主制御部 2 4 4に対して図 5 2に示すように補助制御部 3 2 0を並列に接続することで、 D Cゲインを上げることができる。
補助制御部 3 2 0は、 加算器 2 4 2で算出される制御目標電圧値と、 全反射戻 り光量電圧値との偏差が入力される。 補助制御部 3 2 0は、 上記偏差に所定の処 理を実行して加算器 3 2 1に出力する。
補助制御部 3 2 0は、 例えば、 図 5 3に示すような周波数特性を有する L P F (カツトオフ周波数 f c : 1 0 H z ) である。 補助制御部 3 2 0は、 加算器 2 4 2から出力された偏差の高域成分を除去して加算器 3 2 1に出力する。
主制御部 2 4 4のみが接続されたギャップサ一ポ制御部 4 1で生成される制御 電圧の様子を図 5 4 Aに示し、 補助制御部 3 2 0を接続した場合にギャップサ一 ポ制御部 2 4 1で生成される制御電圧の様子を図 5 1 Bに示す。
図 5 4 Aに示すように主制御部 2 4 4のみの場合は、 制御電圧には残差エラ一 による変動成分が多く含まれていることが分かる。 また、 図 5 4 Bに示すように 補助制御部 3 2 0を接続することで、 変動成分がなくなり、 残差エラーによる影 響が解消されているのが分かる。
加算器 3 2 1は、 主制御部 2 4 4から出力された制御電圧に、 補助制御部 3 2 0から出力された値を加算して新たな制御電圧を生成する。
図 5 5にニァフィールド状態において、 補助制御部 3 2 0を主制御部 2 4 4に 並列に接続した際のギャップサーポ制御部 2 4 1の周波数特性と、 主制御部 2 4 4だけが接続されたギャップサーポ制御部 2 4 1の周波数特性を示す。
図 5 5に示すように補助制御部 3 2 0を接続させた場合 ( (1 ) として図示) は、 D Cゲインが 8 0 d Bとなっており、 主制御部 2 4 4のみが接続された場合 ( ( 2 ) として図示) の D Cゲイン 2 6 0 d Bと比較して 2 0 d Bブ一ストされ ていることが分かる。
また、 どちらの場合も、 カットオフ周波数がおよそ 1 . 7 k H zとなり違いが ないため、 制御の応答も悪くなつておらず安定していることが分かる。 補助制御部 3 2 0を接続したギャップサーポ制御部 2 4 1では、 3 5 H z付近 から 2 5 0 H z付近にかけて位相が 1 8 0度、 回っており、 このときの D Cゲイ ンも 0 d B以上となっている。 しかし、 この周波数範囲は、 およそ 1 . 7 k H z とされるカツトオフ周波数よりも低いため条件付き不安定な範囲であり、 閉ル一 プ伝達関数としては安定していると考えられる。
なお、 上述した情報記録装置、 情報再生装置のそれぞれにおいて、 ビ一ムスプ リツ夕、 コリメ一夕レンズ等の配置は適宜変更されうる。
なお、 本発明は、 図面を参照して説明した上述の実施例に限定されるものでは なく、 添付の請求の範囲及びその主旨を逸脱することなく、 様々な変更、 置換又 はその同等のものを行うことができることは当業者にとって明らかである。 産業上の利用可能性 上述したように、 本発明は、 第 1の制御手段によって光記録媒体の面ぶれを抑 制してから、 第 2の制御手段によって光記録媒体の情報記録面と近接場光出射装 置との距離を、 近接場において一定に保持するようフィードバック制御を実行す るので、 それぞれの制御手段への D Cゲインを適切に確保することができるため, 不十分な D Cゲインによる再生品質の悪化や、 近接場状態の破綻といった近接場 光を利用した記録又は再生に致命的なエラ一を防止することが可能となる。
また、 第 1の制御手段で光記録媒体の面ぶれが抑制されることで、 光記録媒体 のリム一パル性を保持したまま、 光記録媒体の良好な記録、 再生を実行すること が可能となる。
さらに、 本発明は、 ディスク状光記録媒体の回転制御系の動作が定常状態とな つてからギヤップサーポ制御を開始させるため、 ギヤップサーポ制御を確実に安 定して実行することを可能とする。
また、 本発明は、 近接場光による光記録媒体への情報の記録時において、 第 1 の制御手段によって光記録媒体の情報記録面と、 出射手段との距離を、 近接場に おいて一定に保持するように制御し、 近接場光によらない光記録媒体への情報の 記録時において、 第 2の制御手段によって情報記録面と、 出射手段との距離を、 近接場以上の距離において一定に保持するように制御するようにしているので、 出射手段を 1つとした簡易な装置構成であっても、 近接場光を利用して記録させ る系と、 光ビームを情報記録面に集光させて記録する系とを適宜切り替えて、 光 記録媒体に所定の情報を良好に記録させることが可能となる。
また、 本発明は、 近接場光による光記録媒体からの情報の再生時において、 第 1の制御手段によつ.て光記録媒体の情報記録面と、 出射手段との距離を、 近接場 において一定に保持するように制御し、 近接場光によらない光記録媒体への情報 の記録時において、 第 2の制御手段によって、 情報記録面と出射手段との距離を 近接場以上の距離において一定に保持するように制御しているので、 出射手段を 1つとした簡易な装置構成であっても、 近接場光を利用して再生させる系と、 光 ビームを情報記録面に集光させて再生する系とを適宜切り替え、 光記録媒体に記 録された所定の情報を良好に再生させることが可能となる。

Claims

請求の範囲
1 . 着脱自在なディスク状光記録媒体を装着する装着手段と、
上記装着手段に装着したディスク状光記録媒体を所定の回転数で回転させる回 転駆動手段と、
上記回転駆動手段によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段と、 上記パルス信号生成手段で生成される N個のパルス信号をカウントするカウン ト手段と、
上記パルス信号生成手段でパルス信号が生成される夕イミングで検出される上 記ディスク状記録媒体の所定の半径位置での面ぶれ量を上記カウント手段での力 ゥント値と対応づけて記憶する記憶手段と、
上記ディスク状光記録媒体の情報記録面に記録する記録情報によって変調され た所定の波長の光ビームを出射する光源と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された場合に上記集光した光ビームを近接場光とし て上記情報記録面に出射する近接場光出射手段と、
上記近接場光出射手段が上記光ビームを照射している上記ディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出手段 と、
上記半径位置情報検出手段によって検出される半径位置情報に対応した所定の ゲインを生成するゲイン生成手段と、
上記カウント手段によってカウントされたパルス信号のカウント値に応じて、 上記記憶手段に記憶されている面ぶれ量を読み出す面ぶれ量読み出し手段と、 上記面ぶれ量読み出し手段によって読み出された面ぶれ量に、 上記ゲイン生成手 段で生成される上記所定のゲインを乗算することで制御信号を生成し、 上記近接 場光出射手段を上記面ぶれ量に追従させるように制御する第 1の制御手段と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、 上記戻り光量検出手段によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を上記情報記録面に対する上記近接場内において 所定の距離を保つように制御する第 2の制御手段と
を備えることを特徴とする情報記録装置。
2 . 上記戻り光量検出手段によって検出された戻り光量が、 所定の閾値よりも大 きい場合、 上記近接場光出射手段が上記ディスク状光記録媒体の情報記録面に対 する近接場に配置されるよう制御する第 3の制御手段を備えることを特徴とする 請求の範囲第 1項記載の情報記録装置。
3 . 上記光源から出射される光ビームを集光し、 上記ディスク状光記録媒体の情 報記録面に出射する光学手段と、
上記光学手段によって出射された光ビームの戻り光から上記ディスク状光記録 媒体の面ぶれ量を検出する面ぶれ量検出手段とを備え、
上記記憶手段は、 上記パルス信号生成手段でパルス信号が生成される夕イミン グで、 上記面ぶれ量検出手段によって検出される上記ディスク状光記録媒体の所 定の半径位置における面ぶれ量を上記カウント手段でのカウント値と対応づけて 記憶することを特徴とする請求の範囲第 1項記載の情報記録装置。
4 . 上記記憶手段は、 上記ディスク状光記録媒体の半径 R mにおける面ぶれ量を Li 1思し、
上記ゲイン生成手段は、 上記記憶手段に記憶されている半径 R mの面ぶれ量で 最も大きな面ぶれ量の振幅値^から、 半径位置情報検出手段で検出された半径位 置 R nでのゲインを、
β X ( R n / R m)
によって生成することを特徴とする請求の範囲第 1項記載の情報記録装置。
5 . 上記近接場光出射手段は、 S I L (Sol id Immers ion Lens) を有すること を特徴とする請求の範囲第 1項記載の情報記録装置。
6 . 上記近接場光出射手段は、 S I M (Sol id I匪 ers ion Mi rror) を有すること を特徴とする請求の範囲第 1項記載の情報記録装置。
7 . 着脱自在なディスク状光記録媒体を装着する装着工程と、
上記装着したディスク状光記録媒体を所定の回転数で回転させる回転駆動工程 と、
上記回転駆動工程によつて上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成工程と、 上記パルス信号生成工程で生成される N個のパルス信号をカウントするカウン ト工程と、
上記パルス信号生成工程でパルス信号が生成されるタイミングで検出される上 記ディスク状記録媒体の所定の半径位置での面ぶれ量を、 上記カウント工程での カウント値と対応づけて記憶手段に記憶する記憶工程と、
上記ディスク状光記録媒体の情報記録面に記録する記録情報によって変調され て光源から出射される所定の波長の光ビームを集光し、 上記ディスク状光記録媒 体の情報記録面に対する近接場に配置された近接場光出射手段が、 上記集光した 光ビームを近接場光として上記情報記録面に出射する近接場光出射工程と、 上記近接場光出射手段が上記光ビームを照射している上記ディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出工程 と、
上記半径位置情報検出工程によって検出される半径位置情報に対応した所定の ゲインを生成するゲイン生成工程と、
上記カウント工程によってカウントされたパルス信号のカウント値に応じて、 上記記憶工程に記憶されている面ぶれ量を読み出す面ぶれ量読み出し工程と、 上記面ぶれ量読み出し工程によって読み出された面ぶれ量に、 上記ゲイン生成 工程で生成される上記所定のゲインを乗算することで制御信号を生成し、 上記近 接場光出射手段を上記面ぶれ量に追従させるように制御する第 1の制御工程と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記戻り光量検出工程によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段と、 上記情報記録面とが上記近接場内において所 定の距離を保つように制御する第 2の制御工程と
を備えることを特徴とする情報記録制御方法。
8 . 着脱自在なディスク状光記録媒体を装着する装着手段と、 上記装着手段に装着したディスク状光記録媒体を所定の回転数で回転させる回 転駆動手段と、
上記回転駆動手段によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段と、 上記パルス信号生成手段で生成される N個のパルス信号をカウントするカウン 卜手段と、
上記パルス信号生成手段でパルス信号が生成される夕イミングで検出される面 ぶれ量を、 上記カウント手段でのカウント値と、 半径位置情報とに対応づけて記 憶する記憶手段と、
上記ディスク状光記録媒体の情報記録面に記録する記録情報によって変調され た所定の波長の光ビームを出射する光源と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された場合に上記集光した光ビームを近接場光とし て上記情報記録面に出射する近接場光出射手段と、
上記近接場光出射手段が上記光ビームを照射している上記ディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出手段 と、
上記カウント手段によってカウントされたパルス信号のカウント値、 及び、 上 記半径位置情報検出手段によって検出される半径位置情報に応じて、 上記記憶手 段に記憶されている面ぶれ量を読み出す面ぶれ量読み出し手段と、
上記面ぶれ量読み出し手段によって読み出された面ぶれ量に基づいて、 上記近 接場光出射手段を上記面ぶれ量に追従させるように制御する第 1の制御手段と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記戻り光量検出手段によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内におい て所定の距離を保つように制御する第 2の制御手段と
を備えることを特徴とする情報記録装置。
9 . 着脱自在なディスク状光記録媒体を装着する装着工程と、 上記装着したディスク状光記録媒体を所定の回転数で回転させる回転駆動工程 と、
上記回転駆動工程によつて上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成工程と、 上記パルス信号生成工程で生成される N個のパルス信号をカウントするカウン 卜工程と、
上記パルス信号生成工程でパルス信号が生成されるタイミングで検出される面 ぶれ量を、 上記カウント工程でのカウント値と、 半径位置情報とに対応づけて記 憶手段に記憶させる記憶工程と、
上記ディスク状光記録媒体の情報記録面に記録する記録情報によって変調され た光源から出射される所定の波長の光ビームを集光し、 上記ディスク状光記録媒 体の情報記録面に対する近接塲に配置された近接場光出射手段が、 上記集光した 光ビームを近接場光として上記情報記録面に出射する近接場光出射工程と、 上記近接場光出射手段が上記光ビームを照射している上記ディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出工程 と、
上記カウント工程によってカウントされたパルス信号のカウント値、 及び、 上 記半径位置情報検出工程によって検出される半径位置情報に応じて、 上記記憶ェ 程に記憶されている面ぶれ量を読み出す面ぶれ量読み出し工程と、
上記面ぶれ量読み出し工程によって読み出された面ぶれ量に基づいて、 上記近 接場光出射手段を上記面ぶれ量に追従させるように制御する第 1の制御工程と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記戻り光量検出工程によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内におい て所定の距離を保つように制御する第 2の制御工程と
を備えることを特徴とする情報記録制御方法。
1 0 . 着脱自在なディスク状光記録媒体を装着する装着手段と、
上記ディスク状光記録媒体の情報記録面に記録する記録情報によって変調され た所定の波長の光ビームを出射する光源と、
上記光源から出射される光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に出射する光学手段と、
上記光学手段によって出射された光ビームの戻り光から上記ディスク状光記録 媒体の面ぶれ量を検出する面ぶれ量検出手段と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された場合に上記集光した光ビームを近接場光とし て上記情報記録面に出射する近接場光出射手段と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記面ぶれ量検出手段によって検出された面ぶれ量が第 1の閾値以上である場 合、 上記面ぶれ量に基づいて上記近接場光出射手段を上記面ぶれ量に追従させる ように制御する第 1の制御手段と、
上記面ぶれ量検出手段によって検出された面ぶれ量が上記第 1の閾値より小さ い場合、 上記戻り光量検出手段によつて検出された近接場光の戻り光量の線形特 性に基づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内 において所定の距離を保つように制御する第 2の制御手段と
を備えることを特徴とする情報記録装置。
1 1 . 着脱自在なディスク状光記録媒体を装着する装着工程と、
上記ディスク状光記録媒体の情報記録面に記録する記録情報によって変調され た光源から出射される所定の波長の光ビームを集光し、 上記ディスク状光記録媒 体の情報記録面に出射された光ビームの戻り光から上記ディスク状光記録媒体の 面ぶれ量を検出する面ぶれ量検出工程と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された近接場光出射手段が、 上記集光した光ビーム を近接場光として上記情報記録面に出射する近接場光出射工程と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記面ぶれ量検出工程によって検出された面ぶれ量が第 1の閾値以上である場 合、 上記近接場光出射手段を上記面ぶれ量に追従させるように制御する第 1の制 御工程と、
上記面ぶれ量検出工程によって検出された面ぶれ量が上記第 1の閾値より小さ い場合、 上記戻り光量検出工程によつて検出された近接場光の戻り光量の線形特 性に基づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内 において所定の距離を保つように制御する第 2の制御工程と
を備えることを特徴とする情報記録制御方法。
1 2 . 着脱自在なディスク状光記録媒体を装着する装着手段と、
上記装着手段に装着したディスク状光記録媒体を所定の回転数で回転させる回 転駆動手段と、
上記回転駆動手段によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段と、 上記パルス信号生成手段で生成される N個のパルス信号をカウン卜するカウン ト手段と、
上記パルス信号生成手段でパルス信号が生成されるタイミングで検出される上 記ディスク状記録媒体の所定の半径位置での面ぶれ量を、 上記カウン卜手段での カウント値と対応づけて記憶する記憶手段と、
上記ディスク状光記録媒体に記録された所定の情報を再生する所定の波長の光 ビームを出射する光源と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された場合に上記集光した光ビームを近接場光とし て上記情報記録面に出射する近接場光出射手段と、
上記近接場光出射手段が上記光ビームを照射している上記ディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出手段 と、
上記半径位置情報検出手段によって検出される半径位置情報に対応した所定の ゲインを生成するゲイン生成手段と、
上記カウント手段によってカウントされたパルス信号のカウント値に応じて、 上記記憶手段に記憶されている面ぶれ量を読み出す面ぶれ量読み出し手段と、 上記面ぶれ量読み出し手段によって読み出された面ぶれ量に、 上記ゲイン生成 手段で生成される上記所定のゲインを乗算することで制御信号を生成し、 上記近 接場光出射手段を上記面ぶれ量に追従させるように制御する第 1の制御手段と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記戻り光量検出手段によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内におい て所定の距離を保つように制御する第 2の制御手段と
を備えることを特徴とする情報再生装置。
1 3 . 上記戻り光量検出手段によって検出された戻り光量を所定の周波数で分離 することで、 再生信号とギヤップエラ一信号とを抽出する信号抽出手段を備え、 上記第 2の制御手段は、 上記信号抽出手段で抽出されたギャップエラー信号の 線形特性に基づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近 接場内において所定の距離を保つように制御することを特徴とする請求の範囲第 1 2項記載の情報再生装置。
1 4 . 上記情報記録面に出射された近接場光の戻り光を偏光面の違いに応じて、 第 1の戻り光と第 2の戻り光とに分離する偏光分離手段と、
上記偏光分離手段で分離された第 1の戻り光を再生信号として検出する再生信 号検出手段を傭え、
上記戻り光量検出手段は、 上記偏光分離手段で分離された第 2の戻り光の戻り 光量を検出し、 上記第 2の制御手段は、 上記戻り光量検出手段で検出された第 2 の戻り光の戻り光量の線形特性に基づいて、 上記近接場光出射手段を上記情報記 録面に対する上記近接場内において所定の距離を保つように制御することを特徴 とする請求の範囲第 1 2項記載の情報再生装置。
1 5 . 着脱自在なディスク状光記録媒体を装着する装着工程と、
上記装着したディスク状光記録媒体を所定の回転数で回転させる回転駆動工程 と、
上記回転駆動工程によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成工程と、 上記パルス信号生成工程で生成される N個のパルス信号をカウントするカウン ト工程と、
上記パルス信号生成工程でパルス信号が生成されるタイミングで検出される上 記ディスク状記録媒体の所定の半径位置での面ぶれ量を、 上記カウント工程での カウント値と対応づけて記憶手段に記憶する記憶工程と、
上記ディスク状光記録媒体に記録された所定の情報を再生する光源から出射さ れる所定の波長の光ビームを集光し、 上記ディスク状光記録媒体の情報記録面に 対する近接場に配置された近接場光出射手段が、 上記集光した光ビームを近接場 光として上記情報記録面に出射する近接場光出射工程と、
上記近接場光出射手段が上記光ビームを照射している上記ディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出工程 と、
上記半径位置情報検出工程によって検出される半径位置情報に対応した所定の ゲインを生成するゲイン生成工程と、
上記カウント工程によってカウントされたパルス信号のカウント値に応じて、 上記記憶手段に記憶されている面ぶれ量を読み出す面ぶれ量読み出し工程と、 上記面ぶれ量読み出し工程によって読み出された面ぶれ量に、 上記ゲイン生成 工程で生成される上記所定のゲインを乗算することで制御信号を生成し、 上記近 接場光出射工程を上記面ぶれ量に追従させるように制御する第 1の制御工程と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記戻り光量検出工程によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を、 上記情報記録面に対する近接場内において所 定の距離を保つように制御する第 2の制御工程と
を備えることを特徴とする情報再生制御方法。
1 6 . 着脱自在なディスク状光記録媒体を装着する装着手段と、
上記装着手段に装着したディスク状光記録媒体を所定の回転数で回転させる回 転駆動手段と、
上記回転駆動手段によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段と、 上記パルス信号生成手段で生成される N個のパルス信号をカウントするカウン ト手段と、
上記パルス信号生成手段でパルス信号が生成される夕イミングで検出される面 ぶれ量を、 上記カウント手段でのカウント値と、 半径位置情報とに対応づけて記 憶する記憶手段と、
上記ディスク状光記録媒体に記録された所定の情報を再生する所定の波長の光 ビームを出射する光源と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された場合に上記集光した光ビームを近接場光とし て上記情報記録面に出射する近接場光出射手段と、
上記近接場光出射手段が上記光ビームを照射している上記ディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出手段 と、
上記カウント手段によってカウントされたパルス信号のカウント値、 及び、 上 記半径位置情報検出手段によって検出される半径位置情報に応じて、 上記記憶手 段に記憶されている面ぶれ量を読み出す面ぶれ量読み出し手段と、
上記面ぶれ量読み出し手段によって読み出された面ぶれ量に基づいて、 上記近 接場光出射手段を上記面ぶれ量に追従させるように制御する第 1の制御手段と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記戻り光量検出手段によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内におい て所定の距離を保つように制御する第 2の制御手段と
を備えることを特徴とする情報再生装置。
1 7 . 着脱自在なディスク状光記録媒体を装着する装着工程と、
上記装着したディスク状光記録媒体を所定の回転数で回転させる回転駆動工程 と、
上記回転駆動工程によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成工程と、 上記パルス信号生成工程で生成される N個のパルス信号をカウントするカウン 卜工程と、
上記パルス信号生成工程でパルス信号が生成されるタイミングで検出される面 ぶれ量を、 上記カウント工程でのカウント値と、 半径位置情報とに対応づけて記 憶手段に記憶させる記憶工程と、
上記ディスク状光記録媒体に記録された所定の情報を再生する光源から出射さ れる所定の波長の光ビームを集光し、 上記ディスク状光記録媒体の情報記録面に 対する近接場に配置された近接場光出射手段が、 上記集光した光ビームを近接場 光として上記情報記録面に出射する近接場光出射工程と、
上記近接場光出射工程が上記光ビームを照射している上記ディスク状光記録媒 体の情報記録面の半径位置を示す半径位置情報を検出する半径位置情報検出工程 と、
上記カウント工程によってカウントされたパルス信号のカウント値及び上記半 径位置情報検出工程によって検出される半径位置情報に応じて、 上記記憶工程に 記憶されている面ぶれ量を読み出す面ぶれ量読み出し工程と、
上記面ぶれ量読み出し工程によって読み出された面ぶれ量に基づいて、 上記近 接塲光出射工程を上記面ぶれ量に追従させるように制御する第 1の制御工程と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記戻り光量検出工程によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射工程を、 上記情報記録面に対する上記近接場内におい て所定の距離を保つように制御する第 2の制御工程と
を備えることを特徴とする情報再生制御方法。
1 8 . 着脱自在なディスク状光記録媒体を装着する装着手段と、
上記ディスク状光記録媒体の情報記録面に記録された所定の情報を再生する所 定の波長の光ビームを出射する光源と、
上記光源から出射される光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に出射する光学手段と、 上記光学手段によって出射された光ビームの戻り光から上記ディスク状光記録 媒体の面ぶれ量を検出する面ぶれ量検出手段と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された場合に上記集光した光ビームを近接場光とし て上記情報記録面に出射する近接場光出射手段と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記面ぶれ量検出手段によって検出された面ぶれ量が第 1の閾値以上である場 合、 上記面ぶれ量に基づいて上記駆動手段を制御する第 1の制御手段と、 上記面ぶれ量検出手段によって検出された面ぶれ量が上記第 1の閾値より小さ い場合、 上記戻り光量検出手段によって検出された近接場光の戻り光量の線形特 性に基づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内 において所定の距離を保つように制御する第 2の制御手段と
を備えることを特徴とする情報再生装置。
1 9 . 着脱自在なディスク状光記録媒体を装着する装着工程と、
上記ディスク状光記録媒体の情報記録面に記録された所定の情報を再生する光 源から出射される所定の波長の光ビームを集光し、 上記ディスク状光記録媒体の 情報記録面に出射された光ビームの戻り光から上記ディスク状光記録媒体の面ぶ れ量を検出する面ぶれ量検出工程と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された近接場光出射手段が、 上記集光した光ビーム を近接場光として上記情報記録面に出射する近接場光出射工程と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記面ぶれ量検出工程によって検出された面ぶれ量が第 1の閾値以上である場 合に、 上記近接場光出射手段を上記面ぶれ量に追従させるように制御する第 1の 制御工程と、
上記面ぶれ量検出工程によって検出された面ぶれ量が上記第 1の閾値より小さ い場合に、 上記戻り光量検出工程によって検出された近接場光の戻り光量の線形 特性に基づいて、 上記近接場光出射手段を上記情報記録面に対する上記近接場内 において所定の距離を保つように制御する第 2の制御工程と
を備えることを特徴とする情報再生制御方法。
2 0 . 着脱自在なディスク状光記録媒体を装着する装着手段と、
上記装着手段に装着したディスク状光記録媒体を回転させる回転駆動手段と、 上記回転駆動手段によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段と、 上記パルス信号生成手段で生成されたパルス信号の周波数を電圧値に変換する 電圧値変換手段と、
上記電圧値変換手段で変換された電圧値と、 所定の基準電圧値とを比較する電 圧値比較手段と、
上記電圧値比較手段による比較結果に基づいて、 上記回転駆動手段の回転数を 制御する第 1の回転数制御手段と、
上記パルス信号生成手段で生成されたパルス信号の位相と、 所定の基準信号の 位相とを比較する位相比較手段と、
上記位相比較手段による比較結果に基づいて、 上記回転駆動手段の回転数を制 御する第 2の回転数制御手段と、
上記ディスク状光記録媒体の情報記録面に記録する記録情報によって変調され た所定の波長の光ビームを出射する光源と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された場合に、 上記集光した光ビームを近接場光と して上記情報記録面に出射する近接場光出射手段と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記戻り光量検出手段によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内におい て所定の距離 (ギャップ) を保つように制御する第 1のギャップ制御手段と、 上記ディスク状光記録媒体が所定の回転数で回転するように上記回転駆動手段 を上記第 1の回転数制御手段によって制御し、 上記所定の回転数となったことに 応じて、 上記第 2の回転数制御手段による制御を開始させ、 上記位相比較手段に よる位相比較結果が所定の閾値以下となったことに応じて上記第 1のギヤップ制 御手段による制御を開始させる制御手段と
を備えることを特徴とする情報記録装置。
2 1 . 着脱自在なディスク状光記録媒体を装着する装着工程と、
上記装着したディスク状光記録媒体を回転駆動手段によって回転させる回転駆 動工程と、
上記回転駆動手段によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成工程と、 上記パルス信号生成工程で生成されたパルス信号の周波数を電圧値に変換する 電圧値変換工程と、
上記電圧値変換工程で変換された電圧値と、 所定の基準電圧値とを比較する電 圧値比較工程と、
上記電圧値比較工程による比較結果に基づいて、 上記回転駆動手段の回転数を 制御する第 1の回転数制御工程と、
上記パルス信号生成工程で生成されたパルス信号の位相と、 所定の基準信号の 位相とを比較する位相比較工程と、
上記位相比較工程による比較結果に基づいて、 上記回転駆動手段の回転数を制 御する第 2の回転数制御工程と、
上記ディスク状光記録媒体の情報記録面に記録する記録情報によって変調され て光源から出射される所定の波長の光ビームを集光し、 上記ディスク状光記録媒 体の情報記録面に対する近接塲に配置された近接場光出射手段が、 上記集光した 光ビームを近接塲光として上記情報記録面に出射する近接場光出射工程と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記戻り光量検出工程によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内におい て所定の距離 (ギャップ) を保つように制御する第 1のギャップ制御工程と、 上記ディスク状光記録媒体が所定の回転数で回転するように上記回転駆動手段 を上記第 1の回転数制御工程によって制御し、 上記所定の回転数となったことに 応じて、 上記第 2の回転数制御工程による制御を開始させ、 上記位相比較工程に よる位相比較結果が所定の閾値以下となったことに応じて上記第 1のギャップ制 御工程による制御を開始させる制御工程と
を備えることを特徴とする情報記録制御方法。
2 2 . 着脱自在なディスク状光記録媒体を装着する装着手段と、
上記装着手段に装着したディスク状光記録媒体を回転させる回転駆動手段と、 上記回転駆動手段によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成手段と、 上記パルス信号生成手段で生成されたパルス信号の周波数を電圧値に変換する 電圧値変換手段と、
上記電圧値変換手段で変換された電圧値と、 所定の基準電圧値とを比較する電 圧値比較手段と、
上記電圧値比較手段による比較結果に基づいて、 上記回転駆動手段の回転数を 制御する第 1の回転数制御手段と、
上記パルス信号生成手段で生成されたパルス信号の位相と、 所定の基準信号の 位相とを比較する位相比較手段と、
上記位相比較手段による比較結果に基づいて、 上記回転駆動手段の回転数を制 御する第 2の回転数制御手段と、
上記ディスク状記録媒体に記録された所定の情報を再生する所定の波長の光ビ —ムを出射する光源と、
上記光源から出射された光ビームを集光し、 上記ディスク状光記録媒体の情報 記録面に対する近接場に配置された場合に、 上記集光した光ビームを近接場光と して上記情報記録面に出射する近接場光出射手段と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記戻り光量検出手段によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内におい て所定の距離 (ギャップ) を保つように制御する第 1のギャップ制御手段と、 上記ディスク状光記録媒体が所定の回転数で回転するように上記回転駆動手段 を上記第 1の回転数制御手段によって制御させ、 上記所定の回転数となったこと に応じて、 上記第 2の回転数制御手段による制御を開始し、 上記位相比較手段に よる位相比較結果が所定の閾値以下となったことに応じて上記第 1のギヤップ制 御手段による制御を開始させる制御手段と
を備えることを特徴とする情報再生装置。
2 3 . 着脱自在なディスク状光記録媒体を装着する装着工程と、
上記装着したリム一バルなディスク状光記録媒体を回転駆動手段によって回転 させる回転駆動工程と、
上記回転駆動手段によって上記ディスク状光記録媒体が一回転する間に所定の 周期で N ( Nは自然数) 個のパルス信号を生成するパルス信号生成工程と、 上記パルス信号生成工程で生成されたパルス信号の周波数を電圧値に変換する 電圧値変換工程と、
上記電圧値変換工程で変換された電圧値と、 所定の基準電圧値とを比較する電 圧値比較工程と、
上記電圧値比較工程による比較結果に基づいて、 上記回転駆動手段の回転数を 制御する第 1の回転数制御工程と、
上記パルス信号生成工程で生成されたパルス信号の位相と、 所定の基準信号の 位相とを比較する位相比較工程と、
上記位相比較工程による比較結果に基づいて、 上記回転駆動手段の回転数を制 御する第 2の回転数制御工程と、
上記ディスク状記録媒体に記録された所定の情報を再生する光源から出射され る所定の波長の光ビームを集光し、 上記ディスク状光記録媒体の情報記録面に対 する近接場に配置された近接場光出射手段が、 上記集光した光ビームを近接塲光 として上記情報記録面に出射する近接場光出射工程と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記戻り光量検出工程によって検出された近接場光の戻り光量の線形特性に基 づいて、 上記近接場光出射手段を、 上記情報記録面に対する上記近接場内におい て所定の距離 (ギャップ) を保つように制御する第 1のギャップ制御工程と、 上記ディスク状光記録媒体が所定の回転数で回転するように上記回転駆動手段 を上記第 1の回転数制御工程によって制御し、 上記所定の回転数となったことに 応じて、 上記第 2の回転数制御工程による制御を開始し、 上記位相比較工程によ る位相比較結果が所定の閾値以下となったことに応じて上記第 1のギヤップ制御 工程による制御を開始させる制御工程と
を備えることを特徴とする情報再生制御方法。
2 4 . 光記録媒体の情報記録面に記録する記録情報によって変調された第 1の波 長の光ビームを出射する第 1の光源と、
上記光記録媒体の情報記録面に記録する記録情報によつて変調された第 2の波 長の光ビームを出射する第 2の光源と、
上記第 1の光源から出射ざれた上記第 1の波長の光ビームを集光し、 上記光記 録媒体の情報記録面に対する近接場に配置された場合に上記集光した第 1の波長 の光ビームを近接場光として上記情報記録面に出射し、 上記第 2の光源から出射 された第 2の波長の光ビームを上記情報記録面に集光させるように出射する出射 手段と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記情報記録面に集光された上記第 2の波長の光ビームの反射光の反射光量を 検出する反射光量検出手段と、
上記近接場光による記録時において、 上記戻り光量検出手段によって検出され た近接場光の戻り光量の線形特性に基づいて、 上記出射手段を上記情報記録面に 対する上記近接場内において所定の距離を保つように制御する第 1の制御手段と, 上記第 2の波長の光ビームによる記録時において、 上記反射光量検出手段によ つて検出された反射光の反射光量の線形特性に基づいて上記出射手段を上記情報 記録面に対する上記近接場以上の距離において所定の距離を保つように制御する 第 2の制御手段と
を備えることを特徴とする情報記録装置。
2 5 . 上記近接場光による記録時において、 上記戻り光量検出手段によって検出 された戻り光量が、 所定の閾値よりも大きい場合、 上記出射手段が上記光記録媒 体の情報記録面に対する近接場に配置されるよう制御する第 3の制御手段を備え ることを特徴とする請求の範囲第 2 4項記載の情報記録装置。
2 6 . 上記出射手段は、 S I L (Sol id Emers ion Lens) を有することを特徴と する請求の範囲第 2 4項記載の情報記録装置。
2 7 . 上記出射手段は、 S I M (Sol id Emers ion Mi rror) を有する
ことを特徴とする請求の範囲第 2 4項記載の情報記録装置。
2 8 . 第 2の光源から出射された第 2の波長の光ビームを発散傾向で上記出射手 段に出射する凹レンズを備え、
上記出射手段は、 上記凹レンズによって発散傾向で出射された上記第 2の波長 の光ビームを上記情報記録面に集光させることを特徴とする請求の範囲第 2 4項 記載の情報記録装置。
2 9 . 上記第 1の光源から出射された第 1の波長の光ビーム、 又は上記第 2の光 源から出射された第 2の波長の光ビームを上記出射手段に出射する凹レンズと、 コリメータレンズとからなる 2群レンズと、
上記 2群レンズの上記凹レンズと、 上記コリメ一夕レンズとのレンズ間距離を 制御するレンズ間距離制御手段とを備え、
上記レンズ間距離制御手段は、 上記近接塲光による記録時において、 上記出射 手段から近接場光が出射されるよう上記レンズ間距離を制御し、 上記第 2の波長 の光ビームによる記録時において、 上記出射手段から出射した光ビームが上記情 報記録面に集光されるよう上記レンズ間距離を制御することを特徴とする請求の 範囲第 2 4項記載の情報記録装置。
3 0 . 上記出射手段は、 非球面レンズと S I L (Sol id Immers ion Lens) とから なる 2群レンズからなり、 上記 2群レンズの上記非球面レンズと、 上記 S I Lと のレンズ間距離を制御するレンズ間距離制御手段を備え、
上記レンズ間距離制御手段は、 上記近接場光による記録時において、 上記出射 手段から近接場光が出射されるよう上記レンズ間距離を制御し、 上記第 2の波長 の光ビームによる記録時において、 上記出射手段から出射した光ビームが上記情 報記録面に集光されるよう上記レンズ間距離を制御することを特徴とする請求の 範囲第 2 4項記載の情報記録装置。
3 1 . 上記出射手段の 2群レンズは、 非球面レンズと S I M (Sol id Immers ion Mi rror) とからなることを特徴とする請求の範囲第 3 0項記載の情報記録装置。
3 2 . 上記出射手段は、 ァクチユエ一夕に所定の制御信号が印加されることで動 作し、
上記第 1の制御手段は、 上記情報記録面に対する上記近接場内において、 上記 出射手段を所定の距離に保つ際の目標制御値と、 上記戻り光量検出手段によって 検出された上記近接場光の戻り光量との偏差を算出する偏差算出部と、 上記偏差 算出部によって算出された上記偏差が 0となるように上記出射手段を制御する制 御信号を生成する制御信号生成部とを備えることを特徴とする請求の範囲第 2 4 項記載の情報記録装置。
3 3 . 上記制御信号生成部と並列に接続された上記偏差算出部によって算出され 上記偏差から所定の周波数帯域の信号成分を除去するフィルタ部と、
上記制御信号生成部で生成された制御信号と、 上記フィルタ部で所定の周波数 帯域の信号成分が除去された上記偏差とを加算する加算部とを備え、
上記加算部で加算された信号を制御信号として上記ァクチユエ一夕に印加して 上記出射手段を制御することを特徴とする請求の範囲第 3 2項記載の情報記録装 置。
3 4 . 光記録媒体の情報記録面に記録する記録情報によって変調されて第 1の光 源から出射される第 1の波長の光ビームを集光し、 上記光記録媒体の情報記録面 に対する近接場に配置された出射手段が、 上記集光した第 1の波長の光ビームを 近接場光として上記情報記録面に出射する第 1の出射工程と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記近接場光による記録時において、 上記戻り光量検出工程によって検出され た近接場光の戻り光量の線形特性に基づいて、 上記出射手段と、 上記情報記録面 とが上記近接場内において所定の距離を保つように制御する第 1の制御工程と、 光記録媒体の情報記録面に記録する記録情報によって変調された第 2の光源か ら出射される第 2の波長の光ビームを、 上記出射手段が、 上記情報記録面に集光 させるように出射する第 2の出射工程と、
上記情報記録面に集光された上記第 2の波長の光ビームの反射光の反射光量を 検出する反射光量検出工程と、
上記第 2の波長の光ビームによる記録時において、 上記反射光量検出工程によ つて検出された反射光の反射光量の線形特性に基づいて、 上記出射手段と、 上記 情報記録面とが上記近接場以上の距離において所定の距離を保つように制御する 第 2の制御工程と
を備えることを特徴とする情報記録制御方法。
3 5 . 光記録媒体の情報記録面に記録された所定の情報を再生する第 1の波長の 光ビームを出射する第 1の光源と、
上記光記録媒体の情報記録面に記録された所定の情報を再生する第 2の波長の 光ビームを出射する第 2の光源と、
上記第 1の光源から出射された上記第 1の波長の光ビームを集光し、 上記光記 録媒体の情報記録面に対する近接場に配置された場合に上記集光した第 1の波長 の光ビームを近接場光として上記情報記録面に出射し、 上記第 2の光源から出射 された第 2の波長の光ビームを上記情報記録面に集光させるように出射する出射 手段と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記情報記録面に集光された上記第 2の波長の光ビームの反射光の反射光量を 検出する反射光量検出手段と、
上記近接場光による再生時において、 上記戻り光量検出手段によって検出され た近接場光の戻り光量の線形特性に基づいて、 上記出射手段を上記情報記録面に 対する上記近接場内において所定の距離を保つように制御する第 1の制御手段と、 上記第 2の波長の光ビームによる再生時において、 上記反射光量検出手段によ つて検出された反射光の反射光量の線形特性に基づいて上記出射手段を上記情報 記録面に対する上記近接場以上の距離において所定の距離を保つように制御する 第 2の制御手段と
を備えることを特徴とする情報再生装置。
3 6 . 上記戻り光量検出手段によって検出された戻り光量を所定の周波数で分離 することで、 再生信号と、 ギャップエラ一信号とを抽出する信号抽出手段を備え、 上記第 1の制御手段は、 上記信号抽出手段で抽出されたギャップエラー信号の 線形特性に基づいて、 上記出射手段を、 上記情報記録面に対する上記近接場内に おいて所定の距離を保つように制御することを特徴とする請求の範囲第 3 5項記 載の情報再生装置。
3 7 . 上記情報記録面に出射された近接場光の戻り光を偏光面の違いに応じて、 第 1の戻り光と、 第 2の戻り光とに分離する偏光分離手段と、
上記偏光分離手段で分離された第 1の戻り光を再生信号として検出する再生信 号検出手段を傭え、
上記戻り光量検出手段は、 上記偏光分離手段で分離された第 2の戻り光の戻り 光量を検出し、 上記第 1の制御手段は、 上記戻り光量検出手段で検出された第 2 の戻り光の戻り光量の線形特性に基づいて、 上記出射手段を、 上記情報記録面に 対する上記近接場内において所定の距離を保つように制御することを特徴とする 請求の範囲第 3 5項記載の情報再生装置。
3 8 . 光記録媒体の情報記録面に記録された所定の情報を再生する第 1の光源か ら出射された第 1の波長の光ビームを集光し、 上記光記録媒体の情報記録面に対 する近接場に配置された出射手段が、 上記集光した第 1の波長の光ビームを近接 塲光として上記情報記録面に出射する第 1の出射工程と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記近接場光による再生時において、 上記戻り光量検出工程によって検出され た近接場光の戻り光量の線形特性に基づいて、 上記出射手段を上記情報記録面に 対する上記近接場内において所定の距離を保つように制御する第 1の制御工程と、 光記録媒体の情報記録面に記録された所定の情報再生する第 2の光源から出射 された第 2の波長の光ビームを、 上記出射手段が、 上記光記録媒体の情報記録面 に集光させるように出射する第 2の出射工程と、
上記情報記録面に集光された上記第 2の波長の光ビームの反射光の反射光量を 検出する反射光量検出工程と、 上記第 2の波長の光ビームによる再生時において、 上記反射光量検出工程によ つて検出された反射光の反射光量の線形特性に基づいて上記出射手段を上記情報 記録面に対する上記近接場以上の距離において所定の距離を保つように制御する '第 2の制御手段と '
を備えることを特徴とする情報再生制御方法。
3 9 . 光記録媒体の情報記録面に記録する記録情報によって変調された所定の波 長の光ビームを出射する光源と、
上記光源から出射された上記所定の波長の光ビームを集光し、 上記光記録媒体 の情報記録面に対する近接場に配置された場合に上記集光した所定の波長の光ビ —ムを近接場光として上記情報記録面に出射し、 上記光源から出射された上記所 定の波長の光ビームを上記情報記録面に集光させるように出射する出射手段と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記情報記録面に集光された上記所定の波長の光ビームの反射光の反射光量を 検出する反射光量検出手段と、
上記近接場光による記録時において、 上記戻り光量検出手段によって検出され た戻り光量の線形特性に基づいて、 上記出射手段を上記情報記録面に対する上記 近接場内において所定の距離を保つように制御する第 1の制御手段と、
上記所定の波長の光ビームによる記録時において、 上記反射光量検出手段によ つて検出された反射光の反射光量の線形特性に基づいて上記出射手段を上記情報 記録面に対する上記近接場以上の距離において所定の距離を保つように制御する 第 2の制御手段と
を備えることを特徴とする情報記録装置。
4 0 . 光記録媒体の情報記録面に記録する記録情報によって変調されて光源から 出射される所定の波長の光ビームを集光し、 上記光記録媒体の情報記録面に対す る近接場に配置された出射手段が、 上記集光した所定の波長の光ビームを近接場 光として上記情報記録面に出射する第 1の出射工程と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、 上記近接場光による記録時において、 上記戻り光量検出工程によって検出され た戻り光量の線形特性に基づいて、 上記出射手段を上記情報記録面に対する上記 近接場内において所定の距離を保つように制御する第 1の制御工程と、
光記録媒体の情報記録面に記録する記録情報によって変調されて上記光源から 出射される所定の波長の光ビームを、 上記出射手段が上記情報記録面に集光して 出射する第 2の出射工程と、
上記情報記録面に集光された上記所定の波長の光ビームの反射光の反射光量を 検出する反射光量検出工程と、
上記所定の波長の光ビームによる記録時において、 上記反射光量検出工程によ つて検出された反射光の反射光量の線形特性に基づいて上記出射手段を上記情報 記録面に対する上記近接場以上の距離において所定の距離を保つように制御する 第 2の制御工程と
を備えることを特徴とする情報記録制御方法。
4 1 . 光記録媒体の情報記録面に記録された所定の情報を再生する所定の波長の 光ビームを出射する光源と、
上記光源から出射された上記所定の波長の光ビームを集光し、 上記光記録媒体 の情報記録面に対する近接場に配置された場合に上記集光した所定の波長の光ビ —ムを近接場光として上記情報記録面に出射し、 上記光源から出射された上記所 定の波長の光ビームを上記情報記録面に集光させるように出射する出射手段と、 上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出手段 と、
上記情報記録面に集光された上記所定の波長の光ビームの反射光の反射光量を 検出する反射光量検出手段と、
上記近接場光による記録時において、 上記戻り光量検出手段によって検出され た戻り光量の線形特性に基づいて、 上記出射手段を上記情報記録面に対する上記 近接場内において所定の距離を保つように制御する第 1の制御手段と、
上記所定の波長の光ビームによる記録時において、 上記反射光量検出手段によ つて検出された反射光の反射光量の線形特性に基づいて上記出射手段を上記情報 記録面に対する上記近接場以上の距離において所定の距離を保つように制御する φ P¾T/JP2004/000303 O 2004/066290 PCT/JP2004/000303
88 第 2の制御手段と
を備えることを特徴とする情報再生装置。
4 2 . 光記録媒体の情報記録面に記録された所定の情報を再生する光源から出射 された所定の波長の光ビームを集光し、 上記光記録媒体の情報記録面に対する近 接塲に配置された出射手段が、 上記集光した所定の波長の光ビームを近接場光と して上記情報記録面に出射する第 1の出射工程と、
上記情報記録面に出射された近接場光の戻り光量を検出する戻り光量検出工程 と、
上記近接場光による再生時において、 上記戻り光量検出手段によって検出され た戻り光量の線形特性に基づいて、 上記出射手段を上記情報記録面に対する上記 近接場内において所定の距離を保つように制御する第 1の制御工程と、
光記録媒体の情報記録面に記録された所定の情報を再生する光源から出射され た所定の波長の光ビームを、 上記出射手段が、 上記光記録媒体の情報記録面に集 光させるように出射する第 2の出射工程と、
上記情報記録面に集光された上記所定の波長の光ビームの反射光の反射光量を 検出する反射光量検出工程と、
上記所定の波長の光ビームによる再生時において、 上記反射光量検出工程によ つて検出された反射光の反射光量の線形特性に基づいて上記出射手段を上記情報 記録面に対する上記近接場以上の距離において所定の距離を保つように制御する 第 2の制御工程と
を備えることを特徴とする情報再生制御方法。
PCT/JP2004/000303 2003-01-17 2004-01-16 情報記録又は再生装置並びに記録又は再生制御方法 WO2004066290A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/542,082 US7733747B2 (en) 2003-01-17 2004-01-16 Information recording or reproducing device and recording or reproducing method
JP2005508053A JP4513744B2 (ja) 2003-01-17 2004-01-16 情報記録又は再生装置並びに記録又は再生制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-010313 2003-01-17
JP2003010313 2003-01-17

Publications (1)

Publication Number Publication Date
WO2004066290A1 true WO2004066290A1 (ja) 2004-08-05

Family

ID=32767247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000303 WO2004066290A1 (ja) 2003-01-17 2004-01-16 情報記録又は再生装置並びに記録又は再生制御方法

Country Status (5)

Country Link
US (1) US7733747B2 (ja)
JP (1) JP4513744B2 (ja)
KR (1) KR101014291B1 (ja)
CN (1) CN100524480C (ja)
WO (1) WO2004066290A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122538A1 (en) * 2006-04-25 2007-11-01 Koninklijke Philips Electronics N.V. A near field optical recording device and a method of operating a near field optical recording device
JP2008532198A (ja) * 2005-02-28 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光ディスクドライブシステム内においてディスクの心振れを制御する装置および方法
WO2011004497A1 (ja) * 2009-07-10 2011-01-13 パイオニア株式会社 記録再生装置、ギャップ制御方法、ギャップ制御プログラム、並びに記憶媒体
JP2011065742A (ja) * 2009-09-15 2011-03-31 Thomson Licensing 近接場光記録装置、方法及び媒体
CN101471093B (zh) * 2007-12-26 2011-04-06 索尼株式会社 光学拾取设备、光学读/写设备、以及间隙控制方法
JP4891330B2 (ja) * 2006-11-01 2012-03-07 パナソニック株式会社 光情報装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100524480C (zh) * 2003-01-17 2009-08-05 索尼株式会社 信息记录或再现装置,以及记录或再现控制方法
WO2006013509A1 (en) * 2004-07-27 2006-02-09 Koninklijke Philips Electronics N.V. Initial focus optimization for an optical scanning device
KR20070050975A (ko) * 2004-08-23 2007-05-16 코닌클리케 필립스 일렉트로닉스 엔.브이. 광 주사 장치
JP2006114195A (ja) * 2004-09-14 2006-04-27 Sony Corp レンズ保持体とこれを用いた集光レンズ、光学ピックアップ装置及び光記録再生装置
TW200832380A (en) * 2006-08-11 2008-08-01 Koninkl Philips Electronics Nv Information carrier, and system for reading such an information carrier
JP4259566B2 (ja) * 2006-10-31 2009-04-30 船井電機株式会社 光ディスク装置
KR20090005620A (ko) * 2007-07-09 2009-01-14 삼성전자주식회사 근접장 광 디스크 장치 및 포커스 풀인 방법
KR20090024967A (ko) * 2007-09-05 2009-03-10 삼성전자주식회사 광 디스크 장치 및 그 구동방법
KR101346772B1 (ko) 2007-09-05 2013-12-31 연세대학교 산학협력단 광 디스크 장치 및 그 구동방법
JP4568773B2 (ja) * 2008-05-22 2010-10-27 シャープ株式会社 原稿読取装置及び画像形成装置
CN102087864A (zh) * 2009-12-04 2011-06-08 建兴电子科技股份有限公司 近场光学系统的倾斜调整控制方法
US20120200324A1 (en) * 2011-02-04 2012-08-09 Hui Wang Frequency Offset Tracking and Jitter Reduction Method Using Dual Frequency-locked Loop and Phase-locked Loop
JP2014049162A (ja) * 2012-08-31 2014-03-17 Hitachi-Lg Data Storage Inc 光情報記録装置
US11205857B2 (en) * 2018-12-04 2021-12-21 At&T Intellectual Property I, L.P. System and method for launching guided electromagnetic waves with channel feedback

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446240A (en) * 1987-08-14 1989-02-20 Toshiba Corp Disk device
JPH01184638A (ja) * 1988-01-11 1989-07-24 Matsushita Electric Ind Co Ltd 光ディスク装置
JPH01237936A (ja) * 1988-03-18 1989-09-22 Sony Corp 光ディスクに対するフォーカスサーボ方式
JPH10149614A (ja) * 1996-11-15 1998-06-02 Hitachi Ltd 光ディスク装置
JP2000090472A (ja) * 1998-09-11 2000-03-31 Ricoh Co Ltd 光ピックアップヘッド
JP2000339712A (ja) * 1999-06-02 2000-12-08 Ricoh Co Ltd 光ディスク装置
JP2001076358A (ja) * 1999-09-07 2001-03-23 Sony Corp 光記録装置、光記録及び/又は再生方法
JP2001319358A (ja) * 2000-05-09 2001-11-16 Olympus Optical Co Ltd 光ピックアップ
JP2002092906A (ja) * 2000-09-08 2002-03-29 Sony Corp 光記録及び/又は再生装置、並びに光記録及び/又は再生方法
JP2002319160A (ja) * 2001-04-23 2002-10-31 Sony Corp 信号記録装置及び信号記録方法、並びに、信号再生装置及び信号再生方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628274Y2 (ja) 1987-09-16 1994-08-03 株式会社リコー サーマルプリントヘッド
JP3632617B2 (ja) * 2001-05-24 2005-03-23 ヤマハ株式会社 光ディスク記録方法およびその装置
CN100524480C (zh) * 2003-01-17 2009-08-05 索尼株式会社 信息记录或再现装置,以及记录或再现控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446240A (en) * 1987-08-14 1989-02-20 Toshiba Corp Disk device
JPH01184638A (ja) * 1988-01-11 1989-07-24 Matsushita Electric Ind Co Ltd 光ディスク装置
JPH01237936A (ja) * 1988-03-18 1989-09-22 Sony Corp 光ディスクに対するフォーカスサーボ方式
JPH10149614A (ja) * 1996-11-15 1998-06-02 Hitachi Ltd 光ディスク装置
JP2000090472A (ja) * 1998-09-11 2000-03-31 Ricoh Co Ltd 光ピックアップヘッド
JP2000339712A (ja) * 1999-06-02 2000-12-08 Ricoh Co Ltd 光ディスク装置
JP2001076358A (ja) * 1999-09-07 2001-03-23 Sony Corp 光記録装置、光記録及び/又は再生方法
JP2001319358A (ja) * 2000-05-09 2001-11-16 Olympus Optical Co Ltd 光ピックアップ
JP2002092906A (ja) * 2000-09-08 2002-03-29 Sony Corp 光記録及び/又は再生装置、並びに光記録及び/又は再生方法
JP2002319160A (ja) * 2001-04-23 2002-10-31 Sony Corp 信号記録装置及び信号記録方法、並びに、信号再生装置及び信号再生方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532198A (ja) * 2005-02-28 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光ディスクドライブシステム内においてディスクの心振れを制御する装置および方法
WO2007122538A1 (en) * 2006-04-25 2007-11-01 Koninklijke Philips Electronics N.V. A near field optical recording device and a method of operating a near field optical recording device
JP4891330B2 (ja) * 2006-11-01 2012-03-07 パナソニック株式会社 光情報装置
CN101471093B (zh) * 2007-12-26 2011-04-06 索尼株式会社 光学拾取设备、光学读/写设备、以及间隙控制方法
WO2011004497A1 (ja) * 2009-07-10 2011-01-13 パイオニア株式会社 記録再生装置、ギャップ制御方法、ギャップ制御プログラム、並びに記憶媒体
JP2011065742A (ja) * 2009-09-15 2011-03-31 Thomson Licensing 近接場光記録装置、方法及び媒体

Also Published As

Publication number Publication date
JP4513744B2 (ja) 2010-07-28
US7733747B2 (en) 2010-06-08
KR20050092422A (ko) 2005-09-21
JPWO2004066290A1 (ja) 2006-05-18
US20060187773A1 (en) 2006-08-24
CN1739150A (zh) 2006-02-22
CN100524480C (zh) 2009-08-05
KR101014291B1 (ko) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4513744B2 (ja) 情報記録又は再生装置並びに記録又は再生制御方法
JP2004220743A (ja) 情報記録装置及び情報記録制御方法、並びに情報再生装置及び情報再生制御方法
JP4424256B2 (ja) 光ディスク駆動装置、光ディスク装置及びその駆動方法
JP2005209246A (ja) 光ディスク装置及びその制御方法
JP4788071B2 (ja) 光ピックアップ及び記録/再生装置
JP2005259329A (ja) チルト制御方法及び光ディスク装置。
JP2011048896A (ja) 対物レンズ及び対物レンズを備えた光ピックアップ
JP2008204562A (ja) 光情報記録再生装置
US20080304395A1 (en) Air Gap Servo For Optical Recording
JP4305043B2 (ja) 情報記録装置及び情報再生装置
JP2010044825A (ja) 光情報記録/再生装置
JP2008065931A (ja) 対物レンズとsilの制御方法及び光ディスク装置
JP2008146739A (ja) 光記録再生方法、光記録再生装置、及び光ヘッド
JP3975573B2 (ja) 記録媒体再生装置および記録媒体再生方法
JP4525470B2 (ja) 光ディスク駆動装置、光ディスク装置及びその駆動方法
JPH03203031A (ja) 光ディスクドライブ装置
JP2005209318A (ja) 光ディスク装置及びその制御方法
US8503273B2 (en) Optical disc device and recording method
JP2008293606A (ja) 光ピックアップ装置
JP4221729B2 (ja) 記録媒体再生装置
JPH08185637A (ja) フォーカス制御装置
JP2008310921A (ja) 光情報記録再生装置
JP2956298B2 (ja) 光記録装置
JPH1125473A (ja) 光ディスク装置および光軸補正方法
WO2011007415A1 (ja) 補正装置及び方法、並びに光ピックアップ及び記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508053

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006187773

Country of ref document: US

Ref document number: 10542082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057013206

Country of ref document: KR

Ref document number: 2004802258X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057013206

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10542082

Country of ref document: US