WO2011007415A1 - 補正装置及び方法、並びに光ピックアップ及び記録再生装置 - Google Patents

補正装置及び方法、並びに光ピックアップ及び記録再生装置 Download PDF

Info

Publication number
WO2011007415A1
WO2011007415A1 PCT/JP2009/062722 JP2009062722W WO2011007415A1 WO 2011007415 A1 WO2011007415 A1 WO 2011007415A1 JP 2009062722 W JP2009062722 W JP 2009062722W WO 2011007415 A1 WO2011007415 A1 WO 2011007415A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical disk
lens
optical disc
amount
rotational speed
Prior art date
Application number
PCT/JP2009/062722
Other languages
English (en)
French (fr)
Inventor
博之 田中
正浩 加藤
英作 川野
徹 鐘江
正憲 堀田
裕 松井
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2009/062722 priority Critical patent/WO2011007415A1/ja
Priority to JP2011522642A priority patent/JPWO2011007415A1/ja
Publication of WO2011007415A1 publication Critical patent/WO2011007415A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Definitions

  • the present invention relates to, for example, a correction apparatus and method for correcting the influence of surface wobbling of an optical disk when optically recording information on the optical disk or reproducing information recorded on the optical disk, and an optical pickup and recording / reproducing apparatus.
  • a correction apparatus and method for correcting the influence of surface wobbling of an optical disk when optically recording information on the optical disk or reproducing information recorded on the optical disk and an optical pickup and recording / reproducing apparatus.
  • Patent Document 1 when focus is pulled into the information recording surface of the optical disc, first, the focus servo is drawn into the substrate surface of the optical disc, and is necessary for tracking the surface shake while the servo is set.
  • An apparatus that stores a surface blur follow-up signal, which is a simple drive signal, and performs focus pull-in on the information recording surface of the optical disc based on a signal obtained by superimposing the surface shake follow-up signal and the focus search drive signal is disclosed.
  • Patent Document 2 stores the amount of surface blurring at a predetermined radial position of a disk-shaped recording medium that is rotationally driven, and multiplies the stored surface blurring amount by a predetermined gain to connect the optical head to the disk.
  • An apparatus for controlling to follow the amount of surface deflection of the recording medium is disclosed.
  • the count value of an FG (Frequency Generator) signal is used as an address value, and the address value and the surface blur error signal at the position where the FG signal is generated are stored in a one-to-one correspondence. Has been.
  • Patent Document 1 assumes a far-field optical system. For this reason, in order to apply the technique disclosed in Patent Document 1 to an apparatus having a near-field optical system that records or reproduces information via evanescent light, a far-field optical system must be separately added. Then, for example, there are technical problems such as an increase in scale and cost of an optical system and a circuit system.
  • Patent Document 2 there is no disclosure regarding processing (that is, return operation processing) in a case where the disk-shaped recording medium is temporarily stopped and then rotated again. For this reason, in the return operation processing, for example, there is a possibility that the amount of surface shake must be stored again. Then, there is a technical problem that the time required for the return operation processing becomes relatively long.
  • the present invention has been made in view of the above problems, for example, and includes a correction apparatus and method that can cause a lens to follow a surface blur of an optical disc, and an optical pickup and recording / reproducing apparatus, relatively easily and appropriately.
  • the challenge is to propose.
  • the correction apparatus of the present invention includes a rotation driving unit capable of rotating and driving an optical disc, a lens capable of condensing light on the optical disc, and a distance between the optical disc and the lens.
  • a lens driving unit that can be driven to change a learning unit that learns a surface blur amount generated in the optical disc, and the lens driving unit that drives the lens according to the learned surface blur amount.
  • Control means and when the learning means learns the amount of surface blur, the control means is smaller than the number of rotations when information is recorded on the optical disc or information recorded on the optical disc is reproduced.
  • the rotation driving means is controlled to rotate the optical disk at the number of rotations.
  • the rotation driving means such as a spindle motor can rotate the optical disk.
  • the optical disk can be attached to and detached from a rotation drive mechanism (for example, a turntable) including rotation drive means.
  • a lens driving means such as a lens actuator can drive a lens capable of condensing light on the optical disc so that the distance between the optical disc and the lens changes.
  • the lens may be, for example, a solid immersion lens (SIL) that can generate evanescent light.
  • SIL solid immersion lens
  • a learning means including a memory, a processor, etc. learns the amount of surface blurring generated on the optical disc.
  • Learning is a concept that comprehensively stores a value to be learned (here, the amount of surface blur) in an updatable manner together with some condition for which the value should be taken. Conditions such as the position in the direction, the rotational speed of the optical disk, and the amount of surface shake may be stored in association with each other in an updatable manner. Note that the learning of the amount of surface blur is typically performed on the inner peripheral side of the optical disc having a relatively small amount of surface blur.
  • control means including a memory, a processor, etc. controls the lens driving means so as to drive the lens according to the learned surface blur amount.
  • the control unit rotationally drives the optical disk at a rotation number smaller than the number of rotations when information is recorded on the optical disk or information recorded on the optical disk is reproduced.
  • the rotation driving means is controlled.
  • the number of rotations smaller than the number of rotations when information is recorded on an optical disk or information recorded on an optical disk is reproduced refers to the position on the optical disk on which the light collected by the lens is hit (that is, In the case where information is recorded on or reproduced from the focused spot position on the optical disc, this means a rotational speed smaller than the rotational speed at which the optical disk is to be rotated.
  • the evanescent light is generated in a region where the distance (that is, the gap) from the information recording surface of the optical disk is half or less of the wavelength of the light incident on the SIL, it is necessary to control the gap in this region.
  • the wavelength of light is 400 nm (nanometers)
  • the gap is set to 200 nm or less.
  • the region where the evanescent light is generated may be a minimum of about 50 nm depending on the conditions of the SIL, the optical disk, or the like.
  • the control means rotates the optical disc at a rotational speed smaller than the rotational speed when information is recorded on the optical disc or information recorded on the optical disc is reproduced.
  • the rotational drive means is controlled to drive. Specifically, for example, when the learning unit learns the amount of surface shake, the control unit controls the rotation driving unit so as to rotate the optical disk at 80 rpm. Then, since the servo gain at the rotation frequency is generally about 100 dB (that is, 100,000 times), the residual error is ⁇ 3 nm. For this reason, even if the capture range is 50 nm, the servo can be closed appropriately. As a result, the learning means can appropriately learn the amount of surface shake.
  • the lens driving means is controlled by the control means so as to drive the lens in accordance with the learned surface blur amount.
  • the lens can follow the optical disc while controlling the gap, for example, in nano order (that is, the gap can be kept constant).
  • good recording or reproduction can be realized using evanescent light.
  • the amount of surface blur can be learned only by the near-field optical system. That is, in the present invention, it is not necessary to add a far field optical system, for example, in order to learn the amount of surface blur. As a result, for example, it is possible to avoid an increase in scale or cost of an optical system or a circuit system. Further, if the learned surface shake amount is stored in association with the relationship with the reference position on the optical disc, for example, the time required for the return operation process can be shortened.
  • control means controls the lens driving means, the rotational speed is smaller than the rotational speed when information is recorded on the optical disc or information recorded on the optical disc is reproduced. This is the number of rotations that can be controlled so as to follow the fluctuation of the surface shake amount.
  • the learning means can appropriately learn the amount of surface shake.
  • the rotational speed at which the control means can control the lens driving means so as to follow the fluctuation of the surface blur amount means the rotational speed at which the servo gain can be increased sufficiently, in other words, the capture range or the servo. The number of rotations that can sufficiently reduce the residual error with respect to the gap that closes.
  • control unit may record information on the optical disc or reproduce information recorded on the optical disc when the learning unit learns the surface blur amount.
  • the rotational driving means is controlled so as to increase the rotational speed stepwise from a rotational speed smaller than the rotational speed to a rotational speed for recording information on the optical disc or reproducing information recorded on the optical disc. .
  • the lens is compared with the case where the number of rotations is increased at a time up to the number of rotations when the information is recorded on the optical disk or the information recorded on the optical disk is reproduced after learning the surface blur amount.
  • the learning means learns the amount of surface shake every time the rotational speed increases, for example.
  • the control means controls the lens driving means according to the amount of surface blur learned at the rotation speed before the increase, for example, the collision between the lens and the optical disk can be avoided even at the rotation speed after the increase. it can.
  • the control means controls the rotational drive means so as to increase the rotational speed stepwise, for example, without recording the information on the optical disk without the lens colliding with the optical disk. It is possible to increase the number of rotations when reproducing information recorded on the optical disk.
  • the learning unit may include a reference position determining unit that determines a reference position of the optical disc.
  • This configuration can reduce the time required for the return operation process. Unless the optical disk is removed from the rotational drive mechanism (in other words, unless the relative positional relationship between the optical disk and the rotational drive mechanism is changed), the position on the optical disk when the pulse signal is generated does not change. Therefore, if the learned surface shake amount and the reference position of the optical disc are stored in association with each other, the learned surface shake amount and the phase of the optical disc will not be shifted. No need to learn. As a result, the time required for the return operation process can be shortened.
  • the “reference position of the optical disk” is determined by the reference position determining means (that is, by the correction device) as one reference position on the optical disk. That is, the optical disc is not provided with information or structure indicating the reference position, and the reference position is arbitrarily determined by the reference position determining means.
  • the reference position determining means includes pulse signal generating means for generating a pulse signal once while the optical disk is rotated once by the rotation driving means, and the pulse signal is generated when the pulse signal is generated.
  • the position on the optical disc may be determined as the reference position.
  • the reference position can be determined relatively easily, which is very advantageous in practice.
  • the learning unit includes a storage unit that stores the learned surface deflection amount, and the rotational speed of the optical disc is changed.
  • the surface shake amount may be learned using the stored surface shake amount as an initial value.
  • the correction method of the present invention includes a rotation driving unit capable of rotating the optical disk, a lens capable of condensing light on the optical disk, and a distance between the optical disk and the lens.
  • a correction method in a correction apparatus comprising: a lens driving unit that can be driven to change; and a learning unit that learns the amount of surface blur that occurs on the optical disc, wherein when the learning unit learns the amount of surface blur
  • the lens it is possible to cause the lens to follow the surface blur of the optical disc in a relatively simple and appropriate manner, similarly to the correction device of the present invention described above.
  • an optical pickup is arranged on a light source for irradiating light to an optical disk and an optical path of the irradiated light, and the irradiated light can be condensed on the optical disk.
  • a lens a rotation driving means capable of rotating the optical disk, a lens driving means capable of driving the lens so that a distance between the optical disk and the lens changes, and a surface blurring amount generated in the optical disk
  • learning means for controlling the lens driving means to drive the lens in accordance with the learned surface blur amount, and the control means controls the lens shake amount by the learning means.
  • the optical disk is driven to rotate at a rotational speed smaller than the rotational speed for recording information on the optical disk or reproducing the information recorded on the optical disk. Controlling said drive means so that.
  • the optical pickup according to the present invention includes a light source, a lens, rotation driving means, lens driving means, learning means, and control means.
  • the optical pickup according to the present invention includes the above-described correction device according to the present invention. Therefore, according to the optical pickup of the present invention, it is possible to cause the lens to follow the surface blur of the optical disc in a relatively simple and appropriate manner, similarly to the correction device of the present invention described above.
  • optical pickup of the present invention can also adopt various aspects similar to the various aspects of the correction apparatus of the present invention described above.
  • a recording / reproducing apparatus of the present invention is arranged on a light source for irradiating light to an optical disc and an optical path of the emitted light, and condenses the emitted light on the optical disc.
  • a lens capable of rotating the optical disk, a lens driving means capable of driving the lens so that a distance between the optical disk and the lens changes, and a surface blurring amount generated in the optical disk.
  • a reading unit capable of reading the recorded information; and a reproducing unit for reproducing the read information.
  • the control unit learns the amount of surface blur by the learning unit. When that, with a small rotational speed than the rotational speed of reproducing the information recorded on or the optical disc for recording information on the optical disc, controls the drive means so as to rotationally drive the optical disc.
  • the recording / reproducing apparatus of the present invention comprises a light source, a lens, rotation driving means, lens driving means, learning means, control means, reading means, and reproducing means. That is, the recording / reproducing apparatus of the present invention includes the above-described optical pickup of the present invention (including various aspects thereof). Therefore, according to the recording / reproducing apparatus of the present invention, like the optical pickup of the present invention described above, the lens can follow the surface blur of the optical disc relatively easily and appropriately.
  • 4 is a flowchart showing a surface blur correction process executed in the recording / reproducing apparatus according to the first embodiment. It is a flowchart which shows the return operation
  • FIG. 1 is a block diagram showing the configuration of the recording / reproducing apparatus according to the present embodiment.
  • the arrow in a figure has shown the flow of a signal (same also in subsequent figures).
  • a recording / reproducing apparatus 1 includes an optical pickup 10 for recording information on an optical disc 50 or reading information recorded on the optical disc 50, a spindle motor 20 capable of rotationally driving the optical disc 50, and an optical pickup. 10 and a servo system 30 for controlling the spindle motor 20 and a signal recording / reproducing means 40 for recording information by the optical pickup 10 or reproducing information read by the optical pickup 10.
  • FIG. 2 is a block diagram showing a configuration of the optical pickup according to the present embodiment. Note that a dotted line L in the figure indicates an optical path.
  • an optical pickup 10 includes a semiconductor laser 101, a collimator lens 102, a diffraction grating 103, a non-polarizing beam splitter 104, a polarizing beam splitter 105, a beam expander 106, a quarter-wave plate 107, a mirror 108, and a SIL 110. It includes an SIL assembly 109, lenses 111 and 113, an RF (Radio Frequency) light receiving element 112, a GE (Gap Error) light receiving element 114, a front monitor (FM) 115, and a lens actuator 120.
  • RF Radio Frequency
  • GE Gap Error
  • the light L emitted from the semiconductor laser 101 enters the diffraction grating 103 through the collimator lens 102.
  • the light L separated into a plurality of diffracted lights by the diffraction grating 103 is sent to the SIL assembly 109 via the non-polarizing beam splitter 104, the polarizing beam splitter 105, the beam expander 106, the quarter wavelength 107 and the mirror 108.
  • the wavelength of the light L emitted from the semiconductor laser 101 is, for example, 400 nm.
  • a power comparison circuit (not shown) is electrically connected to the front monitor 115.
  • a signal indicating the intensity of the light L transmitted from the front monitor 115 is compared with a reference signal.
  • the power comparison circuit transmits a signal indicating the result of the comparison to a laser driver (not shown).
  • the laser driver controls the output of the semiconductor laser 101 based on the transmitted signal.
  • the reflected light from the optical disk 50 enters the SIL 110 again, and enters the polarization beam splitter 105 via the mirror 108, the quarter-wave plate 107, and the beam expander 106.
  • the reflected light from the optical disk 50 passes through the lens 111 and is RF.
  • the RF light receiving element 112 is, for example, a two-divided or four-divided light receiving element.
  • an RF signal generation circuit (not shown) is electrically connected to the RF light receiving element 112, and an RF signal caused by reflected light incident on the RF light receiving element 112 is generated.
  • the generated RF signal is transmitted to a signal recording / reproducing means 40 including, for example, a demodulation circuit, an error correction circuit, a decoding circuit, and the like.
  • a signal recording / reproducing means 40 including, for example, a demodulation circuit, an error correction circuit, a decoding circuit, and the like.
  • it is transmitted to the servo system 30.
  • the servo system 30 generates a tracking error signal based on the transmitted RF signal.
  • the servo system 30 further controls the lens actuator 120 based on the generated tracking error signal so that the spot position on the optical disc 50 becomes a predetermined position (that is, performs tracking servo).
  • the light reflected at the bottom of the SIL 110 enters the non-polarizing beam splitter 104 via the mirror 108, the quarter-wave plate 107, the beam expander 106, and the polarizing beam splitter 105.
  • Part of the light reflected from the bottom of the SIL 110 enters the GE light receiving element 114 via the lens 113.
  • the servo system 30 is electrically connected to the light receiving element 114 for GE.
  • the servo system 30 generates a gap error signal based on a signal resulting from light incident on the light receiving element 114 for GE.
  • the servo system 30 further controls the lens actuator 120 based on the generated gap error signal so that the distance between the bottom of the SIL 110 and the surface of the optical disc 50 (ie, the gap) becomes a predetermined distance (ie, the gap). , Do gap servo).
  • FIG. 3 is a block diagram showing the configuration of the servo system according to the present embodiment.
  • the servo system 30 includes a CPU (Central Processing Unit) 310, subtracters 320 and 350, a learning control unit 330, and compensators 340 and 360.
  • the learning control unit 330 includes an adder 331, a low-pass filter (LPF) 332, and a learning memory 333.
  • LPF low-pass filter
  • the CPU 310, the subtractor 320, the learning control unit 330, and the compensator 340 are configured to control the gap.
  • the CPU 310, the subtractor 350, and the compensator 360 are configured to control the spindle motor 20 (that is, the rotational speed of the optical disc 50).
  • the servo system 30 further has a configuration for tracking servo, but the illustration is omitted here.
  • the subtractor 320 uses the actual control amount output from the GE light receiving element 114 from the signal R (s) indicating the target value for controlling the lens actuator 120 output from the CPU 310.
  • the difference obtained by subtracting the signal Y (s) indicating the control error is output as the signal E (s) indicating the control error.
  • the output signal E (s) is input to the learning control unit 330.
  • the learning control unit 330 adds the signal E (s) and the signal output from the adder 331 and input to the adder 331 again via the low-pass filter 332 and the learning memory 333, and the added signal is obtained. It is output to the compensator 340.
  • the compensator 340 outputs the output signal to the lens actuator 120 as a signal U (s) indicating a control input.
  • the learning control unit 330 delays the signal E (s) indicating the control error by the rotation period of the optical disc 50 so that the feedback control gain at an arbitrary rotation frequency of the optical disc 50 can be increased.
  • the learning memory 333 is used as an element that delays the signal E (s) by a time corresponding to the rotation period of the optical disc 50.
  • the inventor's research it has been found that if the signal obtained by delaying the signal E (s) is added to the original signal E (s) that is not delayed as it is, the stability of the control is easily lost. For this reason, in this embodiment, the high-frequency component of the signal E (s) is removed by the low-pass filter 332, and the signal E (s) from which the high-frequency component has been removed is delayed to ensure control stability. is doing.
  • the subtractor 350 subtracts the difference obtained by subtracting the signal indicating the actual number of rotations output from the spindle motor 20 from the signal indicating the target value for controlling the spindle motor 20 output from the CPU 310, and calculating the control error. Output as a signal.
  • the output signal indicating the control error is input to the compensator 360.
  • the compensator 360 outputs the input signal to the spindle motor 20 as a signal indicating a control input.
  • a signal indicating the actual rotational speed is output from a sensor (not shown) that detects the rotational speed of the spindle motor 20.
  • a sensor not shown
  • Various known modes can be applied to the sensor, and the description is omitted here for the purpose of preventing the explanation from being complicated.
  • the “learning control unit 330” includes “rotation driving unit”, “correction device”, “light source”, “lens”, “reading unit”, “lens driving unit”, “control unit”, and “learning” according to the present invention, respectively. It is an example of “means”.
  • the “signal recording / reproducing means 40” according to the present embodiment is an example of the “recording means” and “reproducing means” according to the present invention.
  • the recording / reproducing apparatus 1 configured as described above, in order to cause the SIL assembly 109 to follow the surface blur generated in the optical disc 50, before the information is actually recorded on the optical disc 50 or the recorded information is reproduced, the surface is reproduced. The amount of blur is learned.
  • the optical disc 50 when the optical disc 50 is rotated at the number of revolutions when information is recorded on the optical disc 50 or when recorded information is reproduced, learning of the amount of surface blur is performed. It has been found that there is. That is, if the rotational speed when information is recorded on or reproduced from the optical disc 50 is, for example, 1000 rpm, the servo gain is about 80 dB as shown in FIG. Here, if the allowable surface shake amount is ⁇ 300 ⁇ m, the residual error is ⁇ 30 nm.
  • the gap When information is recorded on the optical disk 50 using evanescent light or when the recorded information is reproduced, the gap needs to be less than half the wavelength of light incident on the SIL 210 (ie, 200 nm or less). Depending on the conditions of the optical disk 50 and the like, the gap may be 50 nm or less. Then, it becomes difficult to close the gap servo without causing the SIL 210 to collide with the optical disk 50. As a result, it is difficult to appropriately learn the amount of surface blur.
  • FIG. 4 is a conceptual diagram showing an example of the relationship between the rotation frequency of the optical disk and the servo gain.
  • the “rotation frequency” means the number of rotations that the optical disk rotates per second.
  • the rotation frequency is displayed in logarithm.
  • the CPU 310 of the servo system 30 records information on the optical disc 50 or reproduces the recorded information at a rotational speed smaller than the rotational speed (for example, The lens actuator 120 is controlled to rotate the optical disk 50 at 80 rpm.
  • the number of rotations smaller than the number of rotations when information is recorded on the optical disk 50 or when recorded information is reproduced means that the lens actuator 120 (that is, the SIL assembly 109) is subject to fluctuations in the amount of surface blur. This is the number of rotations that can be controlled to follow. In other words, the rotational speed is a residual error that can close the gap servo without causing the SIL 210 to collide with the optical disk 50.
  • the servo gain is about 100 dB as shown in FIG. Then, since the residual error becomes ⁇ 3 nm, the gap servo can be closed without causing the SIL 210 to collide with the optical disc 50. As a result, it is possible to appropriately learn the amount of surface blur.
  • the amount of surface blur has a correlation between the inner and outer peripheral sides of the optical disc 50. For this reason, the amount of surface blur at a position along the arbitrary radial direction of the optical disc 50 can be obtained from the learned surface blur amount and the correlation.
  • the spindle motor 20 is controlled so as to rotate the optical disk 50 at a rotation speed that causes a residual error that can close the gap servo without causing the SIL 210 to collide with the optical disk 50 (step).
  • the lens actuator 120 is controlled so that the gap becomes a predetermined gap, and the gap servo is turned on (step S102).
  • step S103 learning of the surface shake amount is started (step S103).
  • the amount of surface blur is indicated by a voltage applied to the lens actuator 120 in order to control the lens actuator 120 so as to maintain a predetermined gap, for example.
  • step S104 it is determined whether or not the surface shake amount for N rotations (where N is an integer equal to or greater than 1) of the optical disk 50 has been sampled at one rotation number (step S104).
  • N is an integer equal to or greater than 1
  • the surface shake amount for a plurality of rotations typically, the average value of the sampled surface shake amounts is learned as the surface shake amount (hereinafter referred to as “surface shake learning data” as appropriate).
  • step S104 If it is determined that the surface shake amount for N rotations has been sampled (step S104: Yes), then the current rotation number of the optical disc 50 is a desired rotation number (for example, information recorded on the optical disc 50 is reproduced). In step S105). On the other hand, when it is determined that the surface shake amount for N rotations is not sampled (step S104: No), the process of step S103 is executed.
  • step S105 If it is determined in step S105 that the current rotation speed is the desired rotation speed (step S105: Yes), the surface blur correction process ends. After the surface blur correction process is completed, the servo system 30 controls the lens actuator 120 according to the surface blur learning data. On the other hand, when it is determined that the current rotational speed is not the desired rotational speed (step S105: No), the spindle motor 20 is controlled so that the rotational speed of the optical disc 50 becomes the desired rotational speed (step S106). The process of step S103 is executed.
  • step S201 it is determined whether or not the surface shake learning data exists.
  • the phase of the amount of surface blur in the surface blur learning data is determined based on the FG pulse obtained from the spindle motor 20.
  • the spindle motor 20 is configured to generate an FG pulse only once during one rotation of the optical disk 50. For this reason, the relationship between the surface shake learning data and the FG pulse is as shown in FIG.
  • FIG. 7 is a conceptual diagram showing an example of the relationship between the surface shake amount and the FG pulse according to the present embodiment.
  • step S201: Yes it is determined whether or not the optical disc 50 is re-clamped (step S202). On the other hand, when it is determined that the surface shake learning data does not exist (step S201: No), the surface shake correction process described above is executed, and the return operation process ends.
  • step S202 If it is determined in the process of step S201 that the clamp has been re-clamped (step S202: Yes), the above-described surface blur correction process is executed, and the return operation process ends. This is because the position on the optical disc 50 when the FG pulse is generated changes (that is, the relationship between the FG pulse and the phase in the surface shake learning data changes). On the other hand, if it is determined that it has not been re-clamped (step S202: No), the spindle motor 20 is controlled to rotate the optical disc 50 at the rotational speed before the optical disc 50 is stopped (step S203). .
  • phase alignment between the surface shake actually occurring on the optical disc 50 and the stored surface shake learning data is executed (step S204).
  • the FG pulse is generated only once during one rotation of the optical disk 50, the surface actually generated in the optical disk 50 is easily generated based on the generated FG pulse.
  • the phase of blur and the phase of the amount of surface blur in the stored surface blur learning data can be matched.
  • the gap servo is turned on (step S205), and the return operation processing is completed.
  • the gap servo is turned on (step S205), and the return operation processing is completed.
  • the “spindle motor 20” according to the present embodiment is an example of the “pulse signal generation unit” and the “reference position determination unit” according to the present invention.
  • FIG. 8 is a conceptual diagram showing an example of the relationship between the surface blur amount and the FG pulse according to the comparative example of the present embodiment, which has the same meaning as FIG.
  • the FG pulse is generated a plurality of times during one rotation of the optical disk.
  • the phase of the amount of surface blur in the surface blur learning data is one FG pulse (for example, FIG. 8) among a plurality of FG pulses generated during one rotation of the optical disc. FG pulse indicated by “a” in FIG.
  • the pulse width and the amplitude of the generated FG pulse are all the same.
  • the FG pulse used as the reference before stopping the optical disk and the FG pulse used as the reference after the optical disk is rotated again are not necessarily the same.
  • the FG pulse used as a reference before stopping the optical disk is the FG pulse indicated by “a” in FIG. 8
  • the FG pulse used as the reference after the optical disk is rotated again is indicated by “b” in FIG.
  • the FG pulse is shown. Then, since the reference FG pulse is different between before the optical disc is stopped and after the optical disc is rotated again, the phase of the surface shake actually occurring on the optical disc and the stored surface shake learning data It becomes extremely difficult to match the phase of the surface blur amount.
  • FIG. 9 is a block diagram showing the configuration of a servo system according to this modification having the same concept as in FIG.
  • a learning control unit 330 is arranged at the subsequent stage of the compensator 340. It has been found by the inventor's research that even with this configuration, the same operations and effects as those of the recording / reproducing apparatus according to the first embodiment described above can be obtained.
  • FIG. 10 is a conceptual diagram showing an example of the relationship between the surface shake amount and the FG pulse according to the second modification of the present embodiment having the same meaning as in FIG.
  • FG pulses are generated a plurality of times while the optical disk 50 rotates once.
  • an FG pulse having a pulse width different from the pulse width of the other FG pulses is generated only once during one rotation of the optical disc 50. Therefore, if the phase of the surface blur amount in the surface blur learning data is determined on the basis of the FG pulse having a pulse width different from the pulse width of other FG pulses, the same operations and effects as those in the first embodiment described above are obtained. Obtainable.
  • FIG. 11 and FIG. 12 A second embodiment of the recording / reproducing apparatus of the present invention will be described with reference to FIG. 11 and FIG.
  • the second embodiment is the same as the configuration of the first embodiment except that part of the surface blur correction process is different. Therefore, in the second embodiment, the description overlapping with that of the first embodiment is omitted, and the common portions in the drawing are denoted by the same reference numerals and only FIGS. 11 and 12 are basically different only. The description will be given with reference.
  • information is recorded or recorded on the optical disc 50 from the number of rotations that causes a residual error that can close the gap servo without causing the SIL 210 to collide with the optical disc 50 during the surface blur correction process.
  • the number of rotations is increased step by step up to the number of rotations when reproducing the information. Each time the rotational speed is increased, the amount of surface shake is learned.
  • factors that cause surface deflection include a plurality of factors such as the formation accuracy of the disk clamp portion of the rotational drive mechanism, warpage of the optical disk, and imbalance of the optical disk.
  • the surface blur due to the warp of the optical disk tends to decrease as the rotation speed of the optical disk increases. This is because the warp of the optical disk is reduced by the centrifugal force.
  • the runout due to the imbalance of the optical disc tends to increase because the disc runaway increases as the rotational speed of the optical disc increases. Therefore, the relationship between the rotation speed of the optical disk and the amount of surface blur differs for each optical disk as shown in FIG. 11, for example.
  • FIG. 11 shows experimental values showing the relationship between the rotational speed of the optical disk and the amount of surface blur.
  • the recording / reproducing apparatus 1 records the information on the optical disc 50 more safely by learning the surface shake amount every time the rotation number is increased while gradually increasing the rotation number of the optical disc 50.
  • the rotational speed can be increased up to the rotational speed when the recorded information is reproduced.
  • step S105 when it is determined in the process of step S105 that the current rotational speed is not the desired rotational speed (step S105: No), it is determined whether or not the amount of surface blur is greater than or equal to a threshold value (step S301). ). When it is determined that the surface shake amount is equal to or greater than the threshold value (step S301: Yes), it is determined whether or not the current rotational speed is smaller than the desired rotational speed (step S302). On the other hand, if it is determined that the amount of surface blur is less than the threshold value (step S301: No), the spindle motor 20 is controlled so that the rotational speed of the optical disc 50 becomes the desired rotational speed (step S304), and step S103. Processing is executed.
  • the “threshold value” is a value that determines whether or not the rotation speed of the optical disc 50 is set to a desired rotation speed, and is previously set as a fixed value or variable according to some physical quantity or parameter. It is a value set as a value.
  • a threshold value is obtained, for example, by calculating the relationship between the amount of surface blurring and the rotation speed of the optical disk, experimentally or empirically, or by simulation, and setting the rotation speed of the optical disk to a desired rotation speed based on the determined relationship
  • the variation in the amount of surface blur when increasing to the extent that the SIL 110 is predicted to be small enough to prevent the SIL 110 from colliding with the optical disc 50 may be set.
  • step S301 when it is determined in step S301 that the amount of surface blur is less than the threshold value, the number of rotations of the optical disk 50 is increased to the desired number of rotations at a time until information is recorded on the optical disk 50. Or the time until the information recorded on the optical disc 50 is reproduced can be shortened.
  • step S302 If it is determined in step S302 that the current rotational speed is smaller than the desired rotational speed (step S302: Yes), the rotational speed of the optical disc 50 is increased by X% (for example, 10%) from the current rotational speed. Thus, the spindle motor 20 is controlled (step S303), and the process of step S103 is executed. On the other hand, when it is determined that the current rotational speed is greater than the desired rotational speed (step S302: No), the spindle motor 20 is controlled so that the rotational speed of the optical disc 50 becomes the desired rotational speed (step S304). The process of step S103 is executed.
  • X% for example, 10%
  • a third embodiment of the recording / reproducing apparatus of the present invention will be described with reference to FIG.
  • the third embodiment is the same as the configuration of the second embodiment except that a process is added when the rotation speed of the optical disk becomes necessary due to a search or the like. Therefore, the description of the third embodiment that is the same as that of the second embodiment is omitted, and common portions in the drawing are denoted by the same reference numerals, and only the points that are basically different are described with reference to FIG. explain.
  • the inner circumference of the optical disc has the highest rotational speed and the outer circumference has the lowest rotational speed. Therefore, by performing the surface blur learning at the inner peripheral position of the optical disc, the surface blur data corresponding to the number of rotations from the inner periphery to the outer periphery of the optical disc is learned. Therefore, by storing the learning data for each rotation speed and using it at the time of searching in the optical disk surface, it is possible to reduce the surface shake learning time at the search position and shorten the search time itself.
  • CLV constant linear velocity
  • the surface blur learning data according to the number of rotations is stored in a predetermined area of the optical disc 50, a volatile or nonvolatile memory, or a storage device such as a hard disk.
  • the recording / reproducing apparatus 1 after the start-up operation of the optical disc 50 is completed (that is, after the information can be recorded on the optical disc 50 or the information recorded on the optical disc 50 can be reproduced), For example, when it is necessary to change the rotation speed of the optical disc 50 due to a search or the like, the rotation speed closest to the rotation speed after the rotation speed of the optical disc 50 is changed in the stored surface shake learning data. Corresponding surface shake learning data is used as an initial value.
  • the lens actuator 120 can be controlled in a state close to the amount of surface blur actually occurring in the optical disc 50, so that the SIL assembly 109 can be operated faster than the optical disc 50 compared to starting the surface blur learning from the beginning. Can be followed.
  • step S401 it is determined whether or not the desired number of rotations related to the optical disc 50 has been changed.
  • step S401: Yes out of the stored face shake learning data, face shake learning data corresponding to the rotation speed closest to the changed desired rotation speed is read out.
  • step S403 learning of the amount of surface blur is executed using the read surface blur learning data as an initial value.
  • step S401 determines that the desired rotation speed has not been changed (step S401: No).
  • the learning data at that position may be stored. If learning data of a predetermined rotational speed at the radial position is stored, when the search is performed again at the same position, the surface shake data that is substantially the same as the surface shake that actually occurs is used as an initial value, further reducing the learning time. be able to.
  • the contents of the present embodiment are not limited to the search, but can also be applied to the case where only the rotational speed is changed and recorded or reproduced at the same radial position.
  • the output of the displacement sensor or the like is output. It may be used.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

 本発明の補正装置(30)は、光ディスク(50)を回転駆動可能な回転駆動手段(20)と、光ディスク上に光を集光可能なレンズ(110)を、光ディスクとレンズとの間の距離が変わるように駆動可能なレンズ駆動手段(120)と、光ディスクに生じる面ぶれ量を学習する学習手段(330)と、学習された面ぶれ量に応じて、レンズを駆動するようにレンズ駆動手段を制御する制御手段(310)とを備える。制御手段は、学習手段が面ぶれ量を学習する際に、光ディスクに情報を記録又は光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、光ディスクを回転駆動するように回転駆動手段を制御する。

Description

補正装置及び方法、並びに光ピックアップ及び記録再生装置
 本発明は、例えば、光ディスクに光学的に情報を記録する、又は光ディスクに記録された情報を再生する際に、光ディスクの面ぶれの影響を補正する補正装置及び方法、並びに光ピックアップ及び記録再生装置の技術分野に関する。
 この種の装置として、例えば、特許文献1には、光ディスクの情報記録面へのフォーカス引き込みに際し、先ず光ディスクの基材表面に対してフォーカスサーボを引き込み、サーボが整定した状態で面ぶれ追従に必要な駆動信号である面ぶれ追従信号を記憶し、この面ぶれ追従信号とフォーカスサーチ駆動信号とを重畳した信号に基づいて光ディスクの情報記録面に対するフォーカス引き込みを行う装置が開示されている。
 或いは、特許文献2には、回転駆動されるディスク状記録媒体の所定の半径位置での面ぶれ量を記憶し、該記憶された面ぶれ量に所定のゲインを乗算して、光ヘッドをディスク状記録媒体の面ぶれ量に追従させるように制御する装置が開示されている。ここでは特に、FG(Frequency Generator)信号のカウント値をアドレス値として、該アドレス値と、FG信号が発生される位置における面ぶれエラー信号とが一対一で対応づけられて記憶されることが開示されている。
特開2008-181639号公報 国際公開WO2004/066290号公報
 しかしながら特許文献1に開示された技術では、ファーフィールド光学系を想定している。このため、エバネッセント光を介して情報の記録又は再生を行うニアフィールド光学系を有する装置に、特許文献1に開示された技術を適用するには、ファーフィールド光学系を別途追加しなければならない。すると、例えば光学系や回路系等の大規模化やコストアップ等の技術的問題点がある。
 また、特許文献2によれば、ディスク状記録媒体を一旦停止した後に再び回転駆動させた場合の処理(即ち、復帰動作処理)については開示されていない。このため、復帰動作処理において、例えば再度面ぶれ量を記憶しなければならない可能性がある。すると、復帰動作処理にかかる時間が比較的長くなるという技術的問題点がある。
 本発明は、例えば上記問題点に鑑みてなされたものであり、比較的簡便、且つ適切に、光ディスクの面ぶれにレンズを追従させることができる補正装置及び方法、並びに光ピックアップ及び記録再生装置を提案することを課題とする。
 本発明の補正装置は、上記課題を解決するために、光ディスクを回転駆動可能な回転駆動手段と、前記光ディスク上に光を集光可能なレンズを、前記光ディスクと前記レンズとの間の距離が変わるように駆動可能なレンズ駆動手段と、前記光ディスクに生じる面ぶれ量を学習する学習手段と、前記学習された面ぶれ量に応じて、前記レンズを駆動するように前記レンズ駆動手段を制御する制御手段とを備え、前記制御手段は、前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、前記光ディスクを回転駆動するように前記回転駆動手段を制御する。
 本発明の補正装置によれば、例えばスピンドルモータ等の回転駆動手段は、光ディスクを回転可能である。尚、光ディスクは、回転駆動手段を含む、回転駆動機構(例えば、ターンテーブル)に着脱可能である。例えばレンズアクチュエータ等のレンズ駆動手段は、光ディスク上に光を集光可能なレンズを、光ディスクとレンズとの間の距離が変わるように駆動可能である。尚、レンズは、例えばエバネッセント光を発生可能な固体浸レンズ(Solid Immersion Lens:SIL)等であってよい。
 例えばメモリ、プロセッサ等を備えてなる学習手段は、光ディスクに生じる面ぶれ量を学習する。本発明に係る「学習」とは、学習対象となる値(ここでは、面ぶれ量)を、その値を採るべき何らかの条件と共に更新可能に記憶することを包括する概念であり、例えば光ディスクの半径方向における位置、光ディスクの回転数等の条件と、面ぶれ量とを対応付けて更新可能に記憶してもよい。尚、面ぶれ量の学習は、典型的には、面ぶれ量の比較的小さい光ディスクの内周側で実行される。
 例えばメモリ、プロセッサ等を備えてなる制御手段は、学習された面ぶれ量に応じて、レンズを駆動するようにレンズ駆動手段を制御する。また、制御手段は、学習手段が面ぶれ量を学習する際に、光ディスクに情報を記録する又は光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、光ディスクを回転駆動するように回転駆動手段を制御する。
 ここで、「光ディスクに情報を記録する又は光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数」とは、レンズにより集光された光が当っている光ディスク上の位置(即ち、光ディスク上の集光スポット位置)に情報を記録する又は記録された情報を再生する場合に、該光ディスクを回転させるべき回転数よりも小さい回転数を意味する。
 本願発明者の研究によれば、以下の事項が判明している。エバネッセント光を用いて光ディスクに情報を記録する又は記録された情報の再生を行う場合、例えば固体浸レンズ(以下、適宜“SIL”と称する)の底面(即ち、SILの光ディスクに対向する面)と光ディスクの情報記録面との間の距離(即ち、ギャップ)が、SILに入射する光の波長の半分以下となる領域にエバネッセント光が発生するため、この領域内にギャップを制御する必要がある。例えば、光の波長が400nm(ナノメートル)である場合、上記ギャップは200nm以下とされる。ここで、エバネッセント光が発生する領域(即ち、キャプチャーレンジ)は、SILや光ディスク等の条件によっては、最小で50nm程度になる場合がある。
 他方、例えば、回転駆動機構のディスククランプ部の形成精度、光ディスクの反り、光ディスクのインバランス等に起因して、光ディスクの回転駆動時に面ぶれが生じる。例えば、光ディスクの回転数を1000rpm(rotation per minutes)とすると、回転周波数におけるサーボゲインは、一般に、80dB(即ち、10000倍)程度である。この場合、許容面ぶれ量を、例えばDVD等と同じ、±300μm(マイクロメートル)とすると、残留誤差は±30nmとなる。すると、キャプチャーレンジが50nmである場合、残留誤差が±30nmでは、安全にサーボをクローズすることはできない。
 仮にサーボをクローズすることができたとしても、面ぶれ量の学習前では、面ぶれ量の変動にSILを追従させることが非常に困難である。このため、例えばSIL及び光ディスクの衝突、サーボ外れ等を回避することは極めて困難である。
 しかるに本発明では、学習手段が面ぶれ量を学習する際に、制御手段により、光ディスクに情報を記録又は光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、光ディスクを回転駆動するように回転駆動手段が制御される。具体的には例えば、学習手段が面ぶれ量を学習する際、制御手段は、80rpmで光ディスクを回転駆動するように回転駆動手段を制御する。すると、回転周波数におけるサーボゲインは、一般に、100dB(即ち、100000倍)程度であるので、残留誤差は±3nmとなる。このため、キャプチャーレンジが50nmであったとしても、適切にサーボをクローズすることができる。この結果、学習手段が適切に面ぶれ量を学習することができる。
 加えて、本発明では、制御手段により、学習された面ぶれ量に応じて、レンズを駆動するようにレンズ駆動手段が制御される。このため、例えばナノオーダで、ギャップを制御しながらレンズを光ディスクに追従させることができる(即ち、ギャップを一定に保つことができる)。この結果、エバネッセント光を用いて良好な記録又は再生を実現することができる。
 また、本発明では、キャプチャーレンジが、例えば50nmであっても、ニアフィールド光学系のみで面ぶれ量を学習することができる。即ち、本発明では、面ぶれ量を学習するために、例えばファーフィールド光学系を追加する必要はない。この結果、例えば光学系や回路系等の大規模化やコストアップ等を回避することができる。更に、学習された面ぶれ量を、例えば光ディスクにおける基準位置との関係と対応付けて記憶すれば、復帰動作処理にかかる時間を短縮することができる。
 本発明の補正装置の一態様では、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数は、前記制御手段が前記レンズ駆動手段を、前記面ぶれ量の変動に追従するように制御可能な回転数である。
 この態様によれば、学習手段が適切に面ぶれ量を学習することができる。ここで、「制御手段がレンズ駆動手段を、面ぶれ量の変動に追従するように制御可能な回転数」とは、サーボゲインを十分大きくすることができる回転数、言い換えれば、キャプチャーレンジ又はサーボをクローズするギャップに対する残留誤差を十分小さくすることができる回転数を意味する。
 本発明の補正装置の他の態様では、前記制御手段は、前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数から、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数まで、段階的に回転数を増加するように前記回転駆動手段を制御する。
 この態様によれば、例えば、面ぶれ量を学習した後に、光ディスクに情報を記録する又は光ディスクに記録された情報を再生する場合の回転数まで一度に回転数を増加させる場合に比べて、レンズが光ディスクに衝突する可能性を著しく低下させることができる。尚、学習手段は、例えば回転数が増加する毎に、面ぶれ量を学習する。
 本願発明者の研究によれば、増加後の回転数と増加前の回転数との差が少しだけ(例えば10%等)であれば、増加後の回転数における面ぶれ量が、増加前の回転数における面ぶれ量から大きくは変動しないことが判明している。このため、制御手段が、増加前の回転数において学習された面ぶれ量に応じて、レンズ駆動手段を制御すれば、増加後の回転数においても、例えばレンズ及び光ディスクの衝突を回避することができる。この結果、制御手段が、段階的に回転数を増加するように回転駆動手段を制御することによって、例えばレンズが光ディスクに衝突することなく、光ディスクの回転数を、該光ディスクに情報を記録する又は光ディスクに記録された情報を再生する場合の回転数まで増加させることができる。
 この段階的に回転数を増加するように回転駆動手段が制御される態様では、前記学習手段は、前記光ディスクの基準位置を決定する基準位置決定手段を有してよい。
 このように構成すれば、復帰動作処理にかかる時間を短縮することができる。光ディスクを回転駆動機構から取り外さない限り(言い換えれば、光ディスクと回転駆動機構との相対的な位置関係を変更しない限り)、パルス信号が生成された際の光ディスク上の位置は変わらない。このため、学習された面ぶれ量と、光ディスクの基準位置とを対応付けて記憶すれば、学習された面ぶれ量と光ディスクの位相とがずれることがないので、復帰動作において、再度面ぶれ量を学習する必要がなくなる。この結果、復帰動作処理にかかる時間を短縮することができる。
 尚、本発明に係る「光ディスクの基準位置」は、基準位置決定手段により(即ち、当該補正装置により)光ディスク上の一の位置が基準位置として決定される。つまり、光ディスクには、基準位置を示す情報又は構造等は設けられておらず、基準位置決定手段により任意に基準位置が決定される。
 この態様では、前記基準位置決定手段は、前記回転駆動手段により前記光ディスクが一回転される間に一回パルス信号を生成するパルス信号生成手段を有し、前記パルス信号が生成された際の前記光ディスク上の位置を基準位置として決定してよい。
 このように構成すれば、比較的容易にして基準位置を決定することができ、実用上非常に有利である。
 或いは、段階的に回転数を増加するように回転駆動手段が制御される態様では、前記学習手段は、前記学習された面ぶれ量を格納する格納手段を有し、前記光ディスクの回転数が変更された際に、前記格納された面ぶれ量を初期値として、前記面ぶれ量を学習してよい。
 このように構成すれば、光ディスクの回転数が変更された際に、レンズを光ディスクに適切に追従させるまでにかかる期間(即ち、学習手段が面ぶれ量を学習する期間)を短縮することができる。
 本発明の補正方法は、上記課題を解決するために、光ディスクを回転駆動可能な回転駆動手段と、前記光ディスク上に光を集光可能なレンズを、前記光ディスクと前記レンズとの間の距離が変わるように駆動可能なレンズ駆動手段と、前記光ディスクに生じる面ぶれ量を学習する学習手段とを備える補正装置における補正方法であって、前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、前記光ディスクを回転駆動するように前記駆動手段を制御する第1制御工程と、前記学習された面ぶれ量に応じて、前記レンズを駆動するように前記レンズ駆動手段を制御する第2制御工程とを備える。
 本発明の補正方法によれば、上述した本発明の補正装置と同様に、比較的簡便、且つ適切に、光ディスクの面ぶれにレンズを追従させることができる。
 尚、本発明の補正方法においても、上述した本発明の補正装置における各種態様と同様の各種態様を採ることが可能である。
 本発明の光ピックアップは、上記課題を解決するために、光ディスクに対し光を照射する光源と、前記照射された光の光路上に配置され、前記照射された光を前記光ディスク上に集光可能なレンズと、前記光ディスクを回転駆動可能な回転駆動手段と、前記レンズを前記光ディスクと前記レンズとの間の距離が変わるように駆動可能なレンズ駆動手段と、前記光ディスクに生じる面ぶれ量を学習する学習手段と、前記学習された面ぶれ量に応じて、前記レンズを駆動するように前記レンズ駆動手段を制御する制御手段とを備え、前記制御手段は、前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、前記光ディスクを回転駆動するように前記駆動手段を制御する。
 本発明の光ピックアップによれば、光源、レンズ、回転駆動手段、レンズ駆動手段、学習手段及び制御手段を備えて構成されている。即ち、本発明の光ピックアップは、上述した本発明の補正装置を備えて構成されている。従って、本発明の光ピックアップによれば、上述した本発明の補正装置と同様に、比較的簡便、且つ適切に、光ディスクの面ぶれにレンズを追従させることができる。
 尚、本発明の光ピックアップにおいても、上述した本発明の補正装置における各種態様と同様の各種態様を採ることが可能である。
 本発明の記録再生装置は、上記課題を解決するために、光ディスクに対し光を照射する光源と、前記照射された光の光路上に配置され、前記照射された光を前記光ディスク上に集光可能なレンズと、前記光ディスクを回転駆動可能な回転駆動手段と、前記レンズを前記光ディスクと前記レンズとの間の距離が変わるように駆動可能なレンズ駆動手段と、前記光ディスクに生じる面ぶれ量を学習する学習手段と、前記学習された面ぶれ量に応じて、前記レンズを駆動するように前記レンズ駆動手段を制御する制御手段と、前記光ディスクに情報を記録可能な記録手段と、前記光ディスクに記録された情報を読み取り可能な読取手段と、前記読み取られた情報を再生する再生手段とを備え、前記制御手段は、前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、前記光ディスクを回転駆動するように前記駆動手段を制御する。
 本発明の記録再生装置によれば、光源、レンズ、回転駆動手段、レンズ駆動手段、学習手段、制御手段、読取手段及び再生手段を備えて構成されている。即ち、本発明の記録再生装置は、上述した本発明の光ピックアップ(但し、その各種態様を含む)を備えて構成されている。従って、本発明の記録再生装置によれば、上述した本発明の光ピックアップと同様に、比較的簡便、且つ適切に、光ディスクの面ぶれにレンズを追従させることができる。
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
第1実施形態に係る記録再生装置の構成を示すブロック図である。 第1実施形態に係る光ピックアップの構成を示すブロック図である。 第1実施形態に係るサーボシステムの構成を示すブロック図である。 光ディスクの回転周波数とサーボゲインとの関係の一例を示す概念図である。 第1実施形態に係る記録再生装置において実行される面ぶれ補正処理を示すフローチャートである。 第1実施形態に係る記録再生装置において実行される復帰動作処理を示すフローチャートである。 第1実施形態に係る面ぶれ量とFGパルスとの関係の一例を示す概念図である。 第1実施形態の比較例に係る面ぶれ量とFGパルスとの関係の一例を示す概念図である。 第1実施形態の第1変形例に係るサーボシステムの構成を示すブロック図である。 第1実施形態の第2変形例に係る面ぶれ量とFGパルスとの関係の一例を示す概念図である。 光ディスクの回転数と面ぶれ量との関係を示す実験値である。 第2実施形態に係る記録再生装置において実行される面ぶれ補正処理を示すフローチャートである。 第3実施形態に係る記録再生装置において実行される回転数変更処理を示すフローチャートである。
 以下、本発明の補正装置及び方法、並びに光ピックアップ及び記録再生装置に係る実施形態を図面に基づいて説明する。
 <第1実施形態>
 本発明の記録再生装置に係る第1実施形態を、図1乃至図8を参照して説明する。
 先ず、本実施形態に係る記録再生装置の構成について、図1乃至図3を参照して説明する。図1は、本実施形態に係る記録再生装置の構成を示すブロック図である。尚、図中の矢印は信号の流れを示している(以降の図においても同様である)。
 図1において、記録再生装置1は、光ディスク50に情報を記録する又は該光ディスク50に記録されている情報を読み取るための光ピックアップ10と、光ディスク50を回転駆動可能なスピンドルモータ20と、光ピックアップ10及びスピンドルモータ20を夫々制御するサーボシステム30と、光ピックアップ10により情報を記録する又は該光ピックアップ10により読み取られた情報を再生する信号記録再生手段40とを備えて構成されている。
 次に、光ピックアップ10の詳細な構成について、図2を参照して説明する。図2は、本実施形態に係る光ピックアップの構成を示すブロック図である。尚、図中の点線Lは光路を示している。
 図2において、光ピックアップ10は、半導体レーザ101、コリメータレンズ102、回折格子103、無偏光ビームスプリッタ104、偏光ビームスプリッタ105、ビーム拡大器106、4分の1波長板107、ミラー108、SIL110を有するSILアッセンブリ109、レンズ111及び113、RF(Radio Frequency)用受光素子112、GE(Gap Error)用受光素子114、フロントモニタ(FM)115並びにレンズアクチュエータ120を備えて構成されている。
 半導体レーザ101から出射された光Lは、コリメータレンズ102を介して回折格子103に入射する。該回折格子103によって複数の回折光に分離された光Lは、無偏光ビームスプリッタ104、偏光ビームスプリッタ105、ビーム拡大器106、4分の1波長107及びミラー108を介して、SILアッセンブリ109に入射する。尚、半導体レーザ101から出射される光Lの波長は、例えば400nmである。
 尚、無偏光ビームスプリッタ105に入射した光Lの一部は、フロントモニタ115によって受光される。該フロントモニタ115には、例えば、図示しないパワー比較回路等が電気的に接続されている。該パワー比較回路では、フロントモニタ115から送信された光Lの強度を示す信号と基準信号とが比較される。パワー比較回路は、該比較の結果を示す信号を、図示しないレーザドライバに送信する。該レーザドライバは、送信された信号に基づいて半導体レーザ101の出力を制御する。
 SIL110に入射した光Lの一部は、エバネッセント光として光ディスク50に出射され、他の一部はSIL110の底部で反射される。光ディスク50からの反射光は、再びSIL110に入射し、ミラー108、4分の1波長板107及びビーム拡大器106を介して、偏光ビームスプリッタ105に入射する。ここで、半導体レーザ101から出射される光Lの偏光方向と、光ディスク50からの反射光の偏光方向とは互いに90度異なっているため、光ディスク50からの反射光は、レンズ111を介してRF用受光素子112に入射する。尚、RF用受光素子112は、例えば2分割又は4分割受光素子である。
 尚、RF用受光素子112には、例えば、図示しないRF信号生成回路が電気的に接続されており、RF用受光素子112に入射した反射光に起因するRF信号が生成される。該生成されたRF信号は、例えば復調回路、エラー訂正回路、デコード回路等を含んで構成される信号記録再生手段40に送信される。或いは、サーボシステム30に送信される。該サーボシステム30は、送信されたRF信号に基づいてトラッキングエラー信号を生成する。サーボシステム30は、更に、該生成されたトラッキングエラー信号に基づいて、光ディスク50上のスポットの位置が所定の位置となるように、レンズアクチュエータ120を制御する(即ち、トラッキングサーボを行う)。
 他方、SIL110の底部で反射した光は、ミラー108、4分の1波長板107、ビーム拡大器106及び偏光ビームスプリッタ105を介して、無偏光ビームスプリッタ104に入射する。SIL110の底部で反射した光の一部は、レンズ113を介して、GE用受光素子114に入射する。
 GE用受光素子114には、サーボシステム30が電気的に接続されている。該サーボシステム30は、GE用受光素子114に入射した光に起因する信号に基づいてギャップエラー信号を生成する。サーボシステム30は、更に、該生成されたギャップエラー信号に基づいて、SIL110の底部及び光ディスク50の表面間の距離(即ち、ギャップ)が所定距離となるように、レンズアクチュエータ120を制御する(即ち、ギャップサーボを行う)。
 次に、サーボシステム30の詳細な構成について、図3を参照して説明する。図3は、本実施形態に係るサーボシステムの構成を示すブロック図である。
 図3において、サーボシステム30は、CPU(Central Processing Unit)310、減算器320及び350、学習制御部330並びに補償器340及び360を備えて構成されている。学習制御部330は、加算器331、ローパスフィルタ(LPF)332及び学習メモリ333を備えて構成されている。
 ここで、CPU310、減算器320、学習制御部330及び補償器340は、ギャップを制御するための構成である。他方、CPU310、減算器350及び補償器360は、スピンドルモータ20(即ち、光ディスク50の回転数)を制御するための構成である。尚、サーボシステム30は、更に、トラッキングサーボのための構成を有しているが、ここでは図示を省略する。
 記録再生装置1の動作時には、減算器320は、CPU310から出力されたレンズアクチュエータ120を制御するための目標値を示す信号R(s)から、GE用受光素子114から出力された実際の制御量を示す信号Y(s)を引いた差分を、制御誤差を示す信号E(s)として出力する。該出力された信号E(s)は、学習制御部330に入力される。
 学習制御部330では、信号E(s)と、加算器331から出力されローパスフィルタ332及び学習メモリ333を介して、再び加算器331に入力された信号とが加算され、該加算された信号が補償器340へ出力される。補償器340は、該出力された信号を、制御入力を示す信号U(s)として、レンズアクチュエータ120へ出力する。
 ここで、本実施形態に係る学習制御部330は、光ディスク50の任意の回転周波数におけるフィードバック制御ゲインを大きく採れるように、制御誤差を示す信号E(s)を光ディスク50の回転周期分遅延して、遅延されていない元の信号E(s)に加算している。尚、本実施形態では、学習メモリ333を、光ディスク50の回転周期に対応する時間だけ信号E(s)を遅延させる要素として用いている。
 本願発明者の研究によれば、信号E(s)を遅延させた信号を、遅延させない元の信号E(s)にそのまま加算すると、制御の安定性が失われ易いことが判明している。このため、本実施形態では、ローパスフィルタ332により、信号E(s)の高周波成分を除去して、該高周波成分が除去された信号E(s)を遅延させることによって、制御の安定性を確保している。
 他方、減算器350は、CPU310から出力されたスピンドルモータ20を制御するための目標値を示す信号から、スピンドルモータ20から出力された実際の回転数を示す信号を引いた差分を、制御誤差を示す信号として出力する。該出力された制御誤差を示す信号は、補償器360に入力される。該補償器360は、入力された信号を、制御入力を示す信号として、スピンドルモータ20へ出力する。
 尚、実際の回転数を示す信号は、厳密には、スピンドルモータ20の回転数を検出するセンサ(図示せず)から出力される。該センサは、公知の各種態様を適用可能であり、ここでは、説明の煩雑さを防ぐ目的から説明を省略する。
 尚、本実施形態に係る「スピンドルモータ20」、「サーボシステム30」、「半導体レーザ101」、「SILアッセンブリ109」、「RF用受光素子112」、「レンズアクチュエータ120」、「CPU310」及び「学習制御部330」は、夫々、本発明に係る「回転駆動手段」、「補正装置」、「光源」、「レンズ」、「読取手段」、「レンズ駆動手段」、「制御手段」及び「学習手段」の一例である。また、本実施形態に係る「信号記録再生手段40」は、本発明に係る「記録手段」及び「再生手段」の一例である。
 以上のように構成された記録再生装置1では、光ディスク50に生じる面ぶれにSILアッセンブリ109を追従させるために、実際に光ディスク50に情報を記録する又は記録された情報を再生する前に、面ぶれ量の学習が実行される。
 本願発明者の研究によれば、光ディスク50を、該光ディスク50に情報を記録する又は記録された情報を再生する場合の回転数で回転させながら、面ぶれ量の学習を実行すると以下の問題点があることが判明している。即ち、光ディスク50に情報を記録する又は記録された情報を再生する場合の回転数が、例えば1000rpmであるとすると、図4に示すように、サーボゲインは約80dBとなる。ここで、許容面ぶれ量を±300μmとすると、残留誤差は±30nmとなる。
 エバネッセント光を用いて光ディスク50に情報を記録する又は記録された情報の再生を行う場合、ギャップを、SIL210に入射する光の波長の半分以下(即ち、200nm以下)にする必要があり、SIL210や光ディスク50等の条件によっては、該ギャップは、50nm以下になる場合がある。すると、SIL210を光ディスク50に衝突させることなく、ギャップサーボをクローズすることが困難となる。この結果、適切に面ぶれ量の学習を実行することが困難となる。
 尚、図4は、光ディスクの回転周波数とサーボゲインとの関係の一例を示す概念図である。ここで、「回転周波数」とは、1秒間に光ディスクが回転する回転数を意味する。また、図4は、回転周波数が対数表示となっている。
 本実施形態では、面ぶれ量の学習が実行される際に、サーボシステム30のCPU310によって、光ディスク50に情報を記録する又は記録された情報を再生する場合の回転数よりも小さい回転数(例えば80rpm)で、光ディスク50を回転駆動するようにレンズアクチュエータ120が制御される。
 本実施形態において「光ディスク50に情報を記録する又は記録された情報を再生する場合の回転数よりも小さい回転数」は、レンズアクチュエータ120(即ち、SILアッセンブリ109)を、面ぶれ量の変動に追従するように制御可能な回転数である。言い換えれば、SIL210を光ディスク50に衝突させることなく、ギャップサーボをクローズすることが可能な残留誤差となる回転数である。
 面ぶれ量の学習が実行される際の回転数を、例えば80rpmとすれば、図4に示すように、サーボゲインは約100dBとなる。すると、残留誤差は±3nmとなるので、SIL210を光ディスク50に衝突させることなく、ギャップサーボをクローズすることができる。この結果、適切に面ぶれ量の学習を実行することができる。
 尚、本実施形態では、典型的には、面ぶれ量の比較的小さい光ディスク50の内周側で面ぶれ量の学習が実行される。面ぶれ量は、光ディスク50の内周側と外周側とで相関があることが、本願発明者の研究により判明している。このため、学習された面ぶれ量と該相関とから光ディスク50の任意の半径方向に沿った位置における面ぶれ量を求めることができる。
 次に、以上のように構成された記録再生装置1において実行される面ぶれ補正処理について、図5のフローチャートを参照して説明する。
 図5において、先ず、SIL210を光ディスク50に衝突させることなく、ギャップサーボをクローズすることが可能な残留誤差となる回転数で、光ディスク50を回転させるように、スピンドルモータ20が制御される(ステップS101)。次に、ギャップが所定のギャップとなるようにレンズアクチュエータ120が制御され、ギャップサーボがON状態とされる(ステップS102)。
 次に、面ぶれ量の学習が開始される(ステップS103)。面ぶれ量は、例えば所定のギャップを維持するように、レンズアクチュエータ120を制御するために、該レンズアクチュエータ120に印加される電圧により示される。
 次に、一の回転数において、光ディスク50のN回転分(ここで、Nは1以上の整数である)の面ぶれ量がサンプリングされたか否かが判定される(ステップS104)。尚、複数回転分の面ぶれ量がサンプリングされた場合、典型的には、サンプリングされた面ぶれ量の平均値が学習された面ぶれ量(以下、適宜“面ぶれ学習データ”と称する)として記憶される。
 N回転分の面ぶれ量がサンプリングされたと判定された場合(ステップS104:Yes)、続いて、光ディスク50の現在の回転数が所望の回転数(例えば、光ディスク50に記録された情報を再生する場合の回転数)であるか否かが判定される(ステップS105)。他方、N回転分の面ぶれ量がサンプリングされていないと判定された場合(ステップS104:No)、ステップS103の処理が実行される。
 ステップS105の処理において、現在の回転数が所望の回転数であると判定された場合(ステップS105:Yes)、当該面ぶれ補正処理は終了となる。面ぶれ補正処理が終了となった後、サーボシステム30は、面ぶれ学習データに応じて、レンズアクチュエータ120を制御する。他方、現在の回転数が所望の回転数でないと判定された場合(ステップS105:No)、光ディスク50の回転数が所望の回転数となるように、スピンドルモータ20が制御され(ステップS106)、ステップS103の処理が実行される。
 次に、上述した面ぶれ補正処理が終了した後に、光ディスク50が停止され、再度光ディスク50が回転される際に、記録再生装置1において実行される復帰動作処理について、図6のフローチャートを参照して説明する。
 図6において、先ず、面ぶれ学習データが存在するか否かが判定される(ステップS201)。ここで、本実施形態では、面ぶれ学習データにおける面ぶれ量の位相は、スピンドルモータ20から得られるFGパルスを基準に決定されている。本実施形態では特に、スピンドルモータ20は、光ディスク50が一回転する間に一回だけFGパルスを生成するように構成されている。このため、面ぶれ学習データとFGパルスとの関係は、図7のようになる。図7は、本実施形態に係る面ぶれ量とFGパルスとの関係の一例を示す概念図である。
 再び、図6に戻り、面ぶれ学習データが存在すると判定された場合(ステップS201:Yes)、光ディスク50がクランプし直されたか否かが判定される(ステップS202)。他方、面ぶれ学習データが存在しないと判定された場合(ステップS201:No)、上述した面ぶれ補正処理が実行され、当該復帰動作処理は終了となる。
 ステップS201の処理において、クランプし直されたと判定された場合(ステップS202:Yes)、上述した面ぶれ補正処理が実行され、当該復帰動作処理は終了となる。これは、FGパルスが生成される際の光ディスク50上の位置が変化する(即ち、FGパルスと面ぶれ学習データにおける位相との関係が変化する)からである。他方、クランプし直されていないと判定された場合(ステップS202:No)、光ディスク50が停止される前の回転数で、光ディスク50を回転するようにスピンドルモータ20が制御される(ステップS203)。
 次に、生成されたFGパルスに基づいて、実際に光ディスク50に生じている面ぶれと、記憶された面ぶれ学習データとの位相合わせが実行される(ステップS204)。上述の如く、本実施形態では、光ディスク50が一回転する間に一回だけFGパルスが生成されるので、該生成されたFGパルスに基づいて、容易に、実際に光ディスク50に生じている面ぶれの位相と、記憶された面ぶれ学習データにおける面ぶれ量の位相とを一致させることができる。
 次に、ギャップサーボがON状態とされ(ステップS205)、当該復帰動作処理が終了する。このように、本実施形態では、光ディスク50がクランプし直されない限り、復帰動作時に再度面ぶれを学習する必要はない。従って、復帰動作処理にかかる時間を短縮することができる。尚、本実施形態に係る「スピンドルモータ20」は、本発明に係る「パルス信号生成手段」及び「基準位置決定手段」の一例である。
 次に、本実施形態に係る記録再生装置の比較例について、図8を参照して説明する。図8は、図7と同趣旨の、本実施形態の比較例に係る面ぶれ量とFGパルスとの関係の一例を示す概念図である。
 比較例に係る記録再生装置では、光ディスクが一回転する間に複数回FGパルスが生成される。このため、比較例に係る記録再生装置では、面ぶれ学習データにおける面ぶれ量の位相は、光ディスクが一回転する間に生成される複数個のFGパルスのうち一のFGパルス(例えば、図8において“a”で示されるFGパルス)を基準に決定されている。
 図8に示すように、生成されるFGパルスのパルス幅及び振幅は、全て同じである。このため、光ディスクを停止する前に基準としていたFGパルスと、該光ディスクを再び回転させた後に基準とされるFGパルスとが、同じになるとは限らない。例えば、光ディスクを停止する前に基準としていたFGパルスが図8において“a”で示されるFGパルスであり、該光ディスクを再び回転させた後に基準とされるFGパルスが図8において“b”で示されるFGパルスであるとする。すると、光ディスクを停止する前と、該光ディスクを再び回転させた後とで、基準となるFGパルスが異なるので、実際に光ディスクに生じている面ぶれの位相と、記憶された面ぶれ学習データにおける面ぶれ量の位相とを合わせることは極めて困難となる。
 この結果、比較例に係る記録再生装置では、復帰動作時に再度面ぶれを学習する必要があり、復帰動作処理にかかる時間が比較的長くなってしまう。
 <第1変形例>
 次に、本実施形態に係る記録再生装置の第1変形例について、図9を参照して説明する。図9は、図3と同趣旨の、本変形例に係るサーボシステムの構成を示すブロック図である。
 図9に示すように、本変形例に係るサーボシステム30では、補償器340の後段に学習制御部330が配置されている。このように構成しても、上述した第1実施形態に係る記録再生装置と同様の作用及び効果を得られることが、本願発明者の研究により判明している。
 <第2変形例>
 次に、本実施形態に係る記録再生装置の第2変形例について、図10を参照して説明する。図10は、図7と同趣旨の、本実施形態の第2変形例に係る面ぶれ量とFGパルスとの関係の一例を示す概念図である。
 図10に示すように、本変形例では、光ディスク50が一回転する間に複数回FGパルスが生成される。本変形例では特に、光ディスク50が一回転する間に一回だけ、他のFGパルスのパルス幅とは異なるパルス幅を有するFGパルスが生成される。従って、他のFGパルスのパルス幅とは異なるパルス幅を有するFGパルスを基準として、面ぶれ学習データにおける面ぶれ量の位相を決定すれば、上述した第1実施形態と同様の作用及び効果を得ることができる。
 <第2実施形態>
 本発明の記録再生装置に係る第2実施形態を、図11及び図12を参照して説明する。第2実施形態では、面ぶれ補正処理の一部が異なる以外は、第1実施形態の構成と同様である。よって、第2実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図11及び図12を参照して説明する。
 本実施形態では、面ぶれ補正処理の際に、SIL210を光ディスク50に衝突させることなく、ギャップサーボをクローズすることが可能な残留誤差となる回転数から、光ディスク50に情報を記録する又は記録された情報を再生する場合の回転数まで、回転数が段階的に増加される。そして、回転数が増加される毎に、面ぶれ量が学習される。
 本願発明者の研究によれば以下のことが判明している。即ち、面ぶれが発生する要因には、例えば回転駆動機構のディスククランプ部の形成精度、光ディスクの反り、光ディスクのインバランス等の複数の要因がある。光ディスクの反りに起因する面ぶれは、光ディスクの回転数が増加するにつれて、小さくなる傾向がある。これは、遠心力によって光ディスクの反りが軽減されるためである。他方、光ディスクのインバランスに起因する面ぶれは、光ディスクの回転数が増加するにつれて、ディスク暴れが大きくなるため、大きくなる傾向がある。従って、光ディスクの回転数と面ぶれ量との関係は、例えば図11に示すように、光ディスク毎に異なる。図11は、光ディスクの回転数と面ぶれ量との関係を示す実験値である。
 以上の結果、記録再生装置1が、光ディスク50の回転数を段階的に増加しつつ、回転数を増加する毎に面ぶれ量を学習することによって、より安全に、光ディスク50に情報を記録する又は記録された情報を再生する場合の回転数まで回転数を増加することができる。
 次に、以上のように構成された記録再生装置1において実行される面ぶれ補正処理について、図12のフローチャートを参照して説明する。
 図12において、ステップS105の処理において、現在の回転数が所望の回転数でないと判定された場合(ステップS105:No)、面ぶれ量が閾値以上であるか否かが判定される(ステップS301)。面ぶれ量が閾値以上であると判定された場合(ステップS301:Yes)、現在の回転数が所望の回転数より小さいか否かが判定される(ステップS302)。他方、面ぶれ量が閾値未満であると判定された場合(ステップS301:No)、光ディスク50の回転数が所望の回転数となるようにスピンドルモータ20が制御され(ステップS304)、ステップS103の処理が実行される。
 ここで、本実施形態に係る「閾値」は、光ディスク50の回転数を所望の回転数に設定するか否かを決定する値であり、予め固定値として、又は何らかの物理量若しくはパラメータに応じた可変値として設定される値である。このような閾値は、実験的若しくは経験的に、又はシミュレーションにより、例えば面ぶれ量と光ディスクの回転数との関係を求め、該求められた関係に基づいて、光ディスクの回転数を所望の回転数まで増加させる際の面ぶれ量の変動が、SIL110が光ディスク50に衝突しない程度に小さいと予測される面ぶれ量として設定すればよい。
 このため、ステップS301の処理において面ぶれ量が閾値未満であると判定された場合に、光ディスク50の回転数を所望の回転数まで一度に増加させることにより、光ディスク50に情報が記録されるまでの時間又は光ディスク50に記録されている情報が再生されるまでの時間を短縮することができる。
 ステップS302の処理において、現在の回転数が所望の回転数よりも小さいと判定された場合(ステップS302:Yes)、光ディスク50の回転数を現在の回転数よりも
X%(例えば10%)増加するようにスピンドルモータ20が制御され(ステップS303)、ステップS103の処理が実行される。他方、現在の回転数が所望の回転数より大きいと判定された場合(ステップS302:No)、光ディスク50の回転数が所望の回転数となるようにスピンドルモータ20が制御され(ステップS304)、ステップS103の処理が実行される。
 <第3実施形態>
 本発明の記録再生装置に係る第3実施形態を、図13を参照して説明する。第3実施形態では、サーチ等に起因して光ディスクの回転数の変更が必要になった場合の処理が追加されている以外は、第2実施形態の構成と同様である。よって、第3実施形態について、第2実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図13を参照して説明する。
 一般的に、CLV(線速度一定)で光ディスクを回転させる場合、光ディスクの内周が最も回転数が高く、外周が最も回転数が低い。従って、光ディスク内周位置で面ぶれ学習を行うことにより、光ディスク内周から外周までの回転数に応じた面ぶれデータが学習されることになる。よって、回転数毎の学習データを記憶しておき、光ディスク面内でのサーチ時に利用することにより、サーチ位置での面ぶれ学習時間を短縮してサーチ時間そのものを短くすることが可能となる。
 本実施形態では、回転数に応じた面ぶれ学習データは、例えば、光ディスク50の所定の領域、或いは揮発性若しくは不揮発性メモリ、又はハードディスク等の記憶装置に格納されている。本実施形態に係る記録再生装置1では、光ディスク50の立ち上げ動作が完了した後(即ち、光ディスク50に情報を記録できる状態又は光ディスク50に記録された情報を再生できる状態になった後)、例えばサーチ等の要因により、光ディスク50の回転数の変更が必要となった場合、格納された面ぶれ学習データのうち、光ディスク50の回転数が変更された後の回転数に最も近い回転数に対応する面ぶれ学習データを、初期値として使用する。
 この結果、実際に光ディスク50に生じている面ぶれ量に近い状態で、レンズアクチュエータ120を制御することができるので、面ぶれ学習を最初から開始するのと比べて、SILアッセンブリ109を早く光ディスク50に追従させることができる。
 以上のように構成された記録再生装置1において実行される回転数変更処理について、図13のフローチャートを参照して説明する。
 図13において、先ず、光ディスク50に係る所望の回転数が変更されたか否かが判定される(ステップS401)。所望の回転数が変更されたと判定された場合(ステップS401:Yes)、格納された面ぶれ学習データのうち、変更された所望の回転数に最も近い回転数に対応する面ぶれ学習データが読み出される(ステップS402)。続いて、読み出された面ぶれ学習データを初期値として、面ぶれ量の学習が実行される(ステップS403)。
 他方、ステップS401の処理において、所望の回転数が変更されていないと判定された場合(ステップS401:No)、当該回転数変更処理は終了する。
 尚、サーチ位置での学習が終了した時点で、その位置での学習データを記憶してもよい。半径位置の所定回転数の学習データが格納されていれば、再度同じ位置にサーチされる場合に、実際に生じる面ぶれとほぼ同じ面ぶれデータが初期値として用いられ、学習時間を更に短縮することができる。
 また、本実施形態の内容は、サーチ時に限ったものではなく、同じ半径位置で回転数のみを変更して記録又は再生する場合にも適用可能である。
 尚、本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨、或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う補正装置及び方法、並びに光ピックアップ及び記録再生装置もまた、本発明の技術的範囲に含まれるものである。
 具体的には例えば、光ディスク50が一回転する間に一回だけ生成されるFGパルスを基準として、面ぶれ学習データにおける面ぶれ量の位相を決定することに代えて、変位センサ等の出力を用いてもよい。
1 記録再生装置
10 光ピックアップ
20 スピンドルモータ
30 サーボシステム
40 信号記録再生手段
50 光ディスク
101 半導体レーザ
109 SILアッセンブリ
110 SIL
120 レンズアクチュエータ
310 CPU
330 学習制御部

Claims (9)

  1.  光ディスクを回転駆動可能な回転駆動手段と、
     前記光ディスク上に光を集光可能なレンズを、前記光ディスクと前記レンズとの間の距離が変わるように駆動可能なレンズ駆動手段と、
     前記光ディスクに生じる面ぶれ量を学習する学習手段と、
     前記学習された面ぶれ量に応じて、前記レンズを駆動するように前記レンズ駆動手段を制御する制御手段と
     を備え、
     前記制御手段は、前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、前記光ディスクを回転駆動するように前記回転駆動手段を制御する
     ことを特徴とする補正装置。
  2.  前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数は、前記制御手段が前記レンズ駆動手段を、前記面ぶれ量の変動に追従するように制御可能な回転数であることを特徴とする請求項1に記載の補正装置。
  3.  前記制御手段は、前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数から、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数まで、段階的に回転数を増加するように前記回転駆動手段を制御することを特徴とする請求項1に記載の補正装置。
  4.  前記学習手段は、前記光ディスクの基準位置を決定する基準位置決定手段を有することを特徴とする請求項3に記載の補正装置。
  5.  前記基準位置決定手段は、
     前記回転駆動手段により前記光ディスクが一回転される間に一回パルス信号を生成するパルス信号生成手段を有し、
     前記パルス信号が生成された際の前記光ディスク上の位置を基準位置として決定する
     ことを特徴とする請求項4に記載の補正装置。
  6.  前記学習手段は、
     前記学習された面ぶれ量を格納する格納手段を有し、
     前記光ディスクの回転数が変更された際に、前記格納された面ぶれ量を初期値として、前記面ぶれ量を学習する
     ことを特徴とする請求項3に記載の補正手段。
  7.  光ディスクを回転駆動可能な回転駆動手段と、前記光ディスク上に光を集光可能なレンズを、前記光ディスクと前記レンズとの間の距離が変わるように駆動可能なレンズ駆動手段と、前記光ディスクに生じる面ぶれ量を学習する学習手段とを備える補正装置における補正方法であって、
     前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、前記光ディスクを回転駆動するように前記回転駆動手段を制御する第1制御工程と、
     前記学習された面ぶれ量に応じて、前記レンズを駆動するように前記レンズ駆動手段を制御する第2制御工程と
     を備えることを特徴とする補正方法。
  8.  光ディスクに対し光を照射する光源と、
     前記照射された光の光路上に配置され、前記照射された光を前記光ディスク上に集光可能なレンズと、
     前記光ディスクを回転駆動可能な回転駆動手段と、
     前記レンズを前記光ディスクと及び前記レンズとの間の距離が変わるように駆動可能なレンズ駆動手段と、
     前記光ディスクに生じる面ぶれ量を学習する学習手段と、
     前記学習された面ぶれ量に応じて、前記レンズを駆動するように前記レンズ駆動手段を制御する制御手段と
     を備え、
     前記制御手段は、前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、前記光ディスクを回転駆動するように前記回転駆動手段を制御する
     ことを特徴とする光ピックアップ。
  9.  光ディスクに対し光を照射する光源と、
     前記照射された光の光路上に配置され、前記照射された光を前記光ディスク上に集光可能なレンズと、
     前記光ディスクを回転駆動可能な回転駆動手段と、
     前記レンズを前記光ディスクと前記レンズとの間の距離が変わるように駆動可能なレンズ駆動手段と、
     前記光ディスクに生じる面ぶれ量を学習する学習手段と、
     前記学習された面ぶれ量に応じて、前記レンズを駆動するように前記レンズ駆動手段を制御する制御手段と、
     前記光ディスクに情報を記録可能な記録手段と、
     前記光ディスクに記録された情報を読み取り可能な読取手段と、
     前記読み取られた情報を再生する再生手段と
     を備え、
     前記制御手段は、前記学習手段が前記面ぶれ量を学習する際に、前記光ディスクに情報を記録する又は前記光ディスクに記録された情報を再生する場合の回転数よりも小さい回転数で、前記光ディスクを回転駆動するように前記回転駆動手段を制御する
     ことを特徴とする記録再生装置。
PCT/JP2009/062722 2009-07-14 2009-07-14 補正装置及び方法、並びに光ピックアップ及び記録再生装置 WO2011007415A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/062722 WO2011007415A1 (ja) 2009-07-14 2009-07-14 補正装置及び方法、並びに光ピックアップ及び記録再生装置
JP2011522642A JPWO2011007415A1 (ja) 2009-07-14 2009-07-14 補正装置及び方法、並びに光ピックアップ及び記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062722 WO2011007415A1 (ja) 2009-07-14 2009-07-14 補正装置及び方法、並びに光ピックアップ及び記録再生装置

Publications (1)

Publication Number Publication Date
WO2011007415A1 true WO2011007415A1 (ja) 2011-01-20

Family

ID=43449032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062722 WO2011007415A1 (ja) 2009-07-14 2009-07-14 補正装置及び方法、並びに光ピックアップ及び記録再生装置

Country Status (2)

Country Link
JP (1) JPWO2011007415A1 (ja)
WO (1) WO2011007415A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161705U (ja) * 1985-03-29 1986-10-07
JP2001067778A (ja) * 1999-08-31 2001-03-16 Ricoh Co Ltd 光ディスク装置
JP2005259248A (ja) * 2004-03-11 2005-09-22 Funai Electric Co Ltd 光ディスク記録再生装置
WO2007123192A1 (ja) * 2006-04-21 2007-11-01 Panasonic Corporation 光ディスク装置
JP2009146537A (ja) * 2007-12-17 2009-07-02 Kenwood Corp データ読取装置、焦点距離の再調整方法およびプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525818B2 (ja) * 1999-08-24 2004-05-10 宇部興産株式会社 ポリエチレン粉体およびこれを用いた粉体成形物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161705U (ja) * 1985-03-29 1986-10-07
JP2001067778A (ja) * 1999-08-31 2001-03-16 Ricoh Co Ltd 光ディスク装置
JP2005259248A (ja) * 2004-03-11 2005-09-22 Funai Electric Co Ltd 光ディスク記録再生装置
WO2007123192A1 (ja) * 2006-04-21 2007-11-01 Panasonic Corporation 光ディスク装置
JP2009146537A (ja) * 2007-12-17 2009-07-02 Kenwood Corp データ読取装置、焦点距離の再調整方法およびプログラム

Also Published As

Publication number Publication date
JPWO2011007415A1 (ja) 2012-12-20

Similar Documents

Publication Publication Date Title
JP4410177B2 (ja) 情報記録再生方法及び情報記録再生装置
JP4420920B2 (ja) 光記録媒体駆動装置、フォーカスオン方法
US8189433B2 (en) Optical disk drive device and additional recording method
JP4891394B2 (ja) 再生装置、及びギャップ制御方法
WO2002035530A1 (fr) Dispositif de commande de focalisation et procede de commande de focalisation
WO2011007415A1 (ja) 補正装置及び方法、並びに光ピックアップ及び記録再生装置
JP2010015655A (ja) 光ディスク装置及びそのチルト制御方法
KR100708205B1 (ko) 재생모드에서 기록 모드로 전환시 발생하는 색수차를보정하는 방법 및 이를 적용한 기록 방법 및 기록 및재생장치
JP4329772B2 (ja) 光ディスク装置
JP2008146714A (ja) 光ディスク装置およびフォーカス引き込み方法
JP2007080423A (ja) 光ピックアップ及びその調整方法
US8130605B2 (en) Driving device and method, program, and recording medium
JP4524957B2 (ja) 光ディスク装置
JP2010113750A (ja) 光ディスク装置
JP4520906B2 (ja) タンジェンシャルチルト検出装置および光ディスク装置
US8077574B2 (en) Drive device and method for controlling the same
JP2005332501A (ja) 情報再生装置、情報再生方法、情報再生プログラム及び情報記録媒体
JP5965161B2 (ja) 光ディスク装置、ギャップサーボ装置及びギャップ引き込み制御方法
JP2005203018A (ja) ディスク装置
JP5397395B2 (ja) 光ディスク装置
JPH1125473A (ja) 光ディスク装置および光軸補正方法
JP2011159369A (ja) 光学ドライブ装置、レンズシフト量検出方法
JP2002182174A (ja) 収差補正装置及び方法
WO2009118859A1 (ja) 情報記録再生装置及び方法
JP2003068012A (ja) 光ディスク、光ディスク記録装置、光ディスク記録方法、光ディスク再生装置、及び光ディスク再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522642

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847313

Country of ref document: EP

Kind code of ref document: A1