WO2004060597A1 - 電子カム方式ロータリーカッター制御の逆転防止電子カム曲線生成方法およびその制御装置 - Google Patents

電子カム方式ロータリーカッター制御の逆転防止電子カム曲線生成方法およびその制御装置 Download PDF

Info

Publication number
WO2004060597A1
WO2004060597A1 PCT/JP2003/016462 JP0316462W WO2004060597A1 WO 2004060597 A1 WO2004060597 A1 WO 2004060597A1 JP 0316462 W JP0316462 W JP 0316462W WO 2004060597 A1 WO2004060597 A1 WO 2004060597A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic cam
cam curve
jag
reverse rotation
speed
Prior art date
Application number
PCT/JP2003/016462
Other languages
English (en)
French (fr)
Inventor
Makoto Akama
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to US10/540,865 priority Critical patent/US7191031B2/en
Publication of WO2004060597A1 publication Critical patent/WO2004060597A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed

Definitions

  • the present invention relates to a method for generating an electronic cam curve for preventing reverse rotation of an electronic cam type rotary force control, and a control device therefor.
  • Patent Document 1 As a conventional electronic cam type rotary cutter control method, for example, an electronic cam type rotary force cutter control method disclosed in Japanese Patent Application Laid-Open No. 12-1989 (Patent Document 1) Generation method ". As shown in Fig. 6, this consists of a non-cut section and a cut section of a rotary cutter that cuts intermittently web-shaped paper, iron plate, etc. to a set length continuously without stopping. A device in which the movement of a specific portion in a cycle is defined is controlled by generating an electronic cam curve including a prediction for the next cycle using a servomotor. In this case, the electronic cam curve is, for example, Expressed by the velocity pattern in Fig. 8 (a) and the position pattern in Fig.
  • the position curve in Fig. 8 (b) is represented by a cubic function, and by subdividing the position curve, A speed curve is represented.
  • the same algorithm can automatically be applied to the cam curve in the case where the cutting length is longer than the circumference of the force cutter and in the case where the cutting length is shorter than the circumference.
  • electronic cam control using such speed and position cam curves is performed by measuring pulses from roll 2 to detect the travel of a workpiece such as paper or iron plate. , And integration is performed by counter A15. From this, the triangular wave generation circuit 17 repeatedly obtains the phase 0 in one cycle with the maximum pulse amount 0 M corresponding to the cutting length. This is input to the position pattern generation circuit 21 and the speed pattern generation circuit 19 for one cycle based on the above-described cam curve. Obtain instantaneous position commands and speed commands. As for the position command, once one cycle is completed, the rotary cutter is continuously rotated in the same direction by adding the maximum value of the position in that one cycle (the rotation pulse amount of the servo motor 3 corresponding to the cutting length). Is controlled.
  • feed-pack control is performed based on the pulse count value from PG 4 of the servo motor 3, and position control is performed so that the position deviation approaches 0.
  • position control is performed so that the position deviation approaches 0.
  • perform cam control for the speed pattern, the speed obtained by the differentiating circuit 16 is multiplied by the output from the speed pattern generating circuit 19 to be used as a feedforward corresponding to the actual running speed of the workpiece, and I am raising the character.
  • the present invention forms a speed pattern in advance so that the speed pattern does not become negative, and does not stop the cutter or interrupt the operation even in the case of a very long cutting length.
  • the present invention 1 provides a method for generating a reverse rotation-preventing electronic cam curve of an electronic cam type rotary single-rotor control for preventing reverse rotation of a rotary cutter when a cutting length is long.
  • the diameter r and the number of blades M installed at equal intervals on the rotor and the synchronous speed coefficient for adjusting the synchronous speed at cutting, 1, / 3 2 and the synchronous angle S From the settings of 1, 0 and 2, the cutting length L jag at the limit where the electronic cam curve passing through the point of acceleration 0 and velocity 0 can be obtained is calculated in advance, and the set cutting length L set of the workpiece set by the operator is When the set cutting length L set is longer, an electronic cam curve pattern for preventing reverse rotation is generated to perform reverse rotation prevention control.
  • the cutting length L jag at which the rotary power motor reversely rotates is calculated in advance, and when the cutting length L set of the work is longer than the length. Since the electronic cam curve is created and controlled to avoid reverse rotation, reverse rotation of the cutter can be automatically and completely prevented.
  • the second aspect of the present invention based on the rotor diameter 1: the number of teeth M, the synchronous speed coefficient / 31/1, 3; and the synchronous angle 0 1 ⁇ 2,
  • the electronic cam curve generation method of the reverse rotation prevention electronic cam type rotary cutter control it is possible to accurately calculate the limit cutting length. Further, in the present invention 3, when the result of comparison between the limit cutting length L jag and the set cutting length L set is L jag> L set or L jag ⁇ L set, an electron for preventing reversal
  • the cam curve pattern has the following parameters,
  • the feature is that it is created by setting one.
  • the electronic cam curve pattern for preventing the reverse rotation by changing only the six parameters in the above equation, and an arbitrary pattern can be algorithmized. Can be generated freely without changing.
  • the correction coefficients A and A ja of the velocity function and the position function, and T jag and the stop phase angle ⁇ corresponding to L jag are: A correction factor A jag that generates an electronic cam curve passing through the points of acceleration 0 and velocity 0,
  • an electronic cam curve pattern for preventing reverse rotation of the cutter can be created as an effective command using actual cutter data.
  • the electronic cam curve may be obtained by dividing a reference one cutting / control cycle into a number of sections, and for each section, a velocity function pattern and a position function pattern represented by a near-order expression by a trigonometric function. Are calculated by the same algorithm to synthesize and generate the whole.
  • one cutting cycle period Tc which is a control unit of the controller, is subdivided (for example, divided into five sections of 1 to 5), and each of the sections is divided into five sections.
  • the speed function and position function are calculated for each section using a trigonometric function approximation formula, and the whole is combined to generate an electronic cam curve pattern. It is possible to draw a smooth electronic cam curve pattern that does not cause shock due to acceleration changes, including the electronic force curve pattern of FIG.
  • the present invention 6 is characterized in that the limit cutting length L jag is determined by one calculation.
  • the present invention 7 provides a counter for measuring the amount of movement of a work from a major roll PG of a mechanical device for performing a cutting operation or the like of a work provided with a measure roll, a cutter roll, and a feed roller, and a counter for differentiating the count value.
  • a triangular wave generator for converting the power counter value into a triangular wave having a certain amplitude; and the triangular wave
  • a speed function generator for generating a cam curve speed pattern from the corrected output of the generator, a position function generator for generating a cam curve position pattern from the corrected output of the triangular wave generator, and a corrected output of the position function generator.
  • a / D conversion of a position loop that constitutes feedback control based on the amount of motor movement, the speed feedforward output of the multiplier, and the position loop output
  • a speed controller that reads the value of the motor PG and reads the value of the motor PG to control the speed of the motor.
  • An operating device for inputting the set cutting length L set to the comparator, the power cutter roll radius r, the number of teeth M, the synchronous speed coefficient 1, j3 2, the synchronous angle 01, and ⁇ 2 to the first computing unit;
  • An electronic device comprising: a calculator; and a setting device that writes to the speed function generator and the position function generator so as to generate an electronic cam curve that prevents reverse rotation from each parameter output by the second calculator.
  • a cam curve parameter setting device
  • a controller can be configured to execute the operation of the cutter reverse rotation prevention method by using an operation device, first and second operation devices, a comparator, and a setting device.
  • FIG. 1 is a configuration diagram of a rotary force cutter machine to which a reverse rotation prevention electronic cam curve generation method according to an embodiment of the present invention is applied.
  • FIG. 2 is a control block diagram of the rotary power meter shown in FIG.
  • FIG. 3 is a diagram showing a graph of the velocity function and the position function pattern shown in FIG.
  • FIG. 4 is a diagram showing another graph of the velocity function and the position function pattern shown in FIG.
  • FIG. 5 is a flowchart of the reverse rotation prevention process of the control device shown in FIG.
  • FIG. 6 is a block diagram of a control device of a conventional rotary power meter.
  • FIG. 7 is a diagram showing a graph of the velocity function and the position function pattern shown in FIG.
  • FIG. 8 is a diagram showing another graph of the velocity function and the position function pattern shown in FIG.
  • 1 is a major roll
  • 2 is a major roll PG
  • 3 is a motor
  • 4 is a motor PGA
  • 5 is a cutter roll
  • 6 is a cutter
  • 7 A is a cutter
  • 7 B is the synchronous angle 1
  • 7 C is the synchronous angle 2
  • 7 D is the workpiece feed speed
  • 8 is the mark sensor
  • 9 is the cutting mark
  • 10 is the motor B
  • 1 1 is the motor P GB
  • 1 2 is the feed roll
  • 1 3 is a speed controller
  • 14 is a controller
  • 15 is a counter A
  • 16 is a differentiator
  • 17 is a triangular wave generator
  • 18 is an adder A
  • 19 is a speed function generator
  • 20 is a multiplication.
  • 2 1 is a position function generator
  • 2 2 is an adder B
  • 2 3 is a comparator
  • 24 is I
  • 25 is an adder C
  • 2 6 is 0/8
  • 2 7 is a counter B
  • 2 8 is An electronic cam curve parameter setting device
  • 29 is an operating device
  • 30 is a computing device A
  • 31 is a comparator
  • 32 is a computing device B
  • 33 is a setting device.
  • FIG. 1 is a configuration diagram of a rotary power machine to which a reverse rotation prevention electronic cam curve generation method according to an embodiment of the present invention is applied.
  • Fig. 1 (a) shows the configuration of the rotary cutter machine
  • Fig. 1 (b) Fig. 1 (a) is an explanatory view of the cutter roll.
  • the machine shown in Fig. 1 (a) is a mechanical device consisting of a major roll 1, a power roll 5, and a feed roll 12, and a major roll PG2 and a motor A 3, a motor PG 4, a mark sensor 8, a motor B 10, a motor PG 11, a speed controller 13, and a controller 14.
  • Fig. 1 (b) is a cross-sectional view of the cutter roll 5.
  • the cutter roll radius r7A, the peak feed speed VL7D, the synchronous angle of the synchronous section (cutting section) 10 17B, the synchronous angle 2 2 7C is shown.
  • the control device 14 includes a power counter A 15, a differentiating circuit 16, a triangular wave generating circuit 17, an adder A 18, a speed function 19, a multiplier 20, and a position.
  • Function 21 adder B 22, comparator 23, PI 24, adder C 25, A / D converter 26, counter B 27, and actuator 29
  • an electronic cam curve parameter setting device 28 The configuration excluding the operation device 29 and the electronic cam curve parameter setting device 28 is the same as that of the conventional technology shown in FIG. 6 in terms of each block itself.
  • the electronic cam curve parameter setting device 28 and The operation unit 29 is added.
  • the electronic cam curve parameter setting device 28 includes a computing device A 30, a comparator B 31, a computing device B 32, and a setting device 33. Next, the operation will be described.
  • the counter A 15 counts the amount of movement of the work from the measure port PG 2 and outputs it to the differentiating circuit 16 and the triangular wave generating circuit 17.
  • the differentiating circuit 16 differentiates the value received from the force counter A 15, calculates the moving speed of the work, and outputs the result to the multiplier 20.
  • the triangular wave generating circuit 17 converts the value received from the counter A 15 into a triangular wave having a certain fixed amount (for example, ⁇ ⁇ ⁇ corresponding to the cutting length) and outputs the result to the adder A 18.
  • the adder A 18 adds the mark correction amount based on the output of the triangular wave generation circuit 17 and the detection value of the line mark sensor 8, and outputs the result to the velocity function 19 and the position function 21.
  • the speed function 19 outputs the speed pattern corresponding to the output of the adder A 18 to the multiplier 20.
  • the multiplier 20 multiplies the output of the differentiator 16 by the output of the speed function 19 and then the adder 2 Output to 5. This is so-called feed forward.
  • the position function 21 outputs a position pattern corresponding to the output of the adder A 18 to the adder B 22, and the adder B 22 compares the position pattern output of the position function 21 with the correction value after adding the correction value
  • the comparator 23 outputs the difference between the output of the adder 22 and the motor movement amount of the counter B 27 (the value of the motor PG 4), and then outputs the difference to the PI 24. Configure so-called position loop control.
  • PI 24 calculates the correction value from the difference between comparators 23 and outputs it to adder 25.
  • Adder 25 adds the feed-forward output of multiplier 20 and the correction value of PI 24 and then D / A Output to converter 26.
  • the DZA converter 26 outputs a voltage value proportional to the output of the adder 25 to the speed controller 13.
  • the speed controller 13 reads the value of the motor PG4 and controls the motor A3.
  • the counter B 27 measures the amount of cutter roll movement detected by the motor PG 4 and outputs it to the comparator 23.
  • the algorithm for generating the electronic cam curve which is created in advance as shown in the speed function / position function graph as shown in Fig. 3 for the speed function 19 and the position function 21, is as follows:
  • the position curve is represented by a cubic function and the velocity curve is represented by a quadratic function, and the calculation is performed by dividing the section (2) (non-cut section) and the section (3) (cut section) into rough sections.
  • the velocity / position cam curve is represented by a known curve expression based on an approximation formula of a trigonometric function which is easy to calculate, as shown in FIG. 3 and FIG.
  • the display is divided into three sections (1) to (3) according to T1 to T3 in the conventional example, but is further divided into five sections (1) to (5) as ⁇ 1 to ⁇ 5. Then, by using the respective arithmetic expressions for the sections (1), (2), (3), (4), and (5), the entire Smooth cam curve is improved so as to obtain.
  • ⁇ 5 ⁇ 01 + ⁇ 12 + ⁇ 23 + ⁇ 34 + ⁇ 45
  • V ref N rl
  • V ref A [l- COS (tT ⁇ ] ⁇ N rl - ⁇ [l- C0 2 ( t — T!) ⁇ ]
  • V ref A [l-cos ⁇ 1 (tT 3 + T 2 -T l ) ⁇ ] + N rl
  • V ref N r2
  • the operating device 29 adjusts the cutting length L set to the comparator 31, adjusts the power cutter bit diameter r, the number of blades M provided at equal intervals on the rotor, and the synchronous speed during cutting.
  • synchronization angles 0 1 and 0 2 To the computing unit A30.
  • the computing unit A30 outputs the force meter roll radius r , the number of teeth M provided at equal intervals on the rotor, the synchronous speed coefficients 1, 2 for adjusting the synchronous speed at cutting, and the synchronous angle.
  • the comparator 3 1 compares the set cutting length L set received from the setting unit 29 with the cutting length L jag received from the computing unit A 30, and compares the comparison result with the computing unit Output to B32, and the arithmetic unit B32
  • the arithmetic unit A30 calculates the limit cutting length Ljag, the correction coefficient A and Ajag, Tjaga, (S100).
  • the comparator 31 compares the cutting length Ljag obtained in S100 with the set cutting length Lset from the controller 29, and determines whether Ljag is less than Lsett. If the comparison result is true, the arithmetic unit B 32
  • ⁇ 1 2 ⁇ / ⁇ j a g
  • T 1 2 ( ⁇ — ⁇ ) / ⁇ 2
  • T 34 T jag _T 1 2
  • T 2 3 T c— TO 1-T 1 2 -T 3 4 -T 4 5
  • T 1 2 (T c- 1 T 0 1—T 4 5) / 2,
  • T 3 4 (T c -T 0 1 -T 4 5) / 2,
  • ⁇ 1 2 ⁇ / ( ⁇ 1 2 + ⁇ 3 4),
  • ⁇ 2 ⁇ / ( ⁇ 1 2 + ⁇ 3 4)
  • the setting unit 33 receives the T01, T12, T23, T34, T45, Nrl, Nr2, ⁇ 1, ⁇ 2 received from the computing unit B32. , A, are written into the speed function 19 and the position function 21 at the turn-back timing of the triangular wave generation to obtain the short, long, and reverse-prevention long electronic cam-type rotary force-one electronic cam curve.
  • the set cutting length Lset set by the operator does not reverse even if the setting is long.
  • the electronic cam curve of the present invention can be used with the same algorithm without changing the basic algorithm of the speed function and the position function based on the trigonometric function approximation even if it is a short, long, or ultra-long cut longer than L jag. Since calculations can be performed, calculation processing is simplified and speeded up.
  • the points passing through the points of acceleration 0 and velocity 0 are passed.
  • the limit cutting length L jag at which the electronic cam curve to be determined is obtained is derived, and reverse rotation is prevented when the set cutting length is longer than the set cutting length L set by the operator.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Control Of Cutting Processes (AREA)
  • Control Of Velocity Or Acceleration (AREA)

Abstract

本発明の課題は、カッタの逆転を防止する電子カム方式ロータリカッタ制御の逆転防止電子カム曲線生成方法を提供する。本発明によれば、電子カム方式ロータリーカッター制御の逆転防止電子カム曲線生成方法で、ロータリーカッター5のロータ径rとロータに等間隔に設置される刃数Mと切断時の同期速度を調整する同期速度係数β1、β2と同期角度θ1、θ2の設定から、加速度0・速度0の点を通過する電子カム曲線が求まる限界の切断長Ljagを予め演算し、操作者が設定した加工品の設定切断長Lsetとを比較し、設定切断長Lsetの方が長い場合に、逆転を防止する電子カム曲線パターンを生成する電子カム曲線パラメータ設定器28を備えた。

Description

明細書 電子カム方式ロータリ一力ッター制御の逆転防止電子カム曲線生成方法おょぴそ の制御装置
〈技術分野〉
本発明は、 電子カム方式ロータリ力ッタ制御の逆転防止電子カム曲線の生成方 法とその制御装置に関するものである。
〈背景技術〉
従来の電子カム方式ロータリカッタ制御方法としては、 例えば、 特開平 1 2— 1 9 8 0 94号公報 (特許文献 1 ) に開示の 「電子カム方式ロータリ力ッタ制御 方法おょぴ電子カム曲線生成方法」 がある。 これは、 図 6に示すように、 違続的 に流されるウェブ状の紙、 鉄板等を静止させずに連続的に設定長に切断するロー タリカツタの、 非切断区間と切断区間で構成する 1サイクル内の特定部分の動き が規定される装置をサーポモータを利用して、 次サイクルに亙る予測を含む電子 カム曲線を生成して制御するものであって、 この場合の電子カム曲線は、 例えば、 図 8 (a ) の速度パターンと、 図 8 (b ) の位置パターンで表され、 区間 (2) = T 1→T 2 =T 1 2、 が非切断区間で、 区間 (3) =Τ 2→Τ 3 =Τ 2 3、 は 切断区間であり、 図 8 (b ) の位置曲線は 3次関数で表され、 その位置曲線を微 分することで図 8 (a) に示す 2次関数により速度曲線が表される。
また、 この場合のカム曲線は切断長が力ッタの周長より も長い長尺の場合も、 周長よりも短い短尺の場合も同一のアルゴリズムで自動的に対応できる。
このような速度、 位置のカム曲線を使用して行う電子カム制御は、 図 6に示す ように、 紙、 又は鉄板などの加工品の走行量を検出するためのメジャーリング ' ロール 2からのパルスを取り込み、 カウンタ A 1 5により積算が行われる。 これ から、 三角波発生回路 1 7により、 切断長に相当するパルス量 0 Mを最大値とす る 1サイクル内の位相 0が繰返し得られる。 これを先述のカム曲線による 1サイ クル分の位置パターン発生回路 2 1、 速度パターン発生回路 1 9へ入力し、 時々 刻々の位置指令と速度指令を得る。 なお、 位置指令については 1サイクル終了す れば、 その 1サイクルの位置の最大値 (切断長に相当するサーポモータ 3の回転 パルス量) を加算することにより、 ロータリーカツタは連続的に同方向へ回転す るように制御される。
このよ うに生成された位置指令に対して、 サーボモ一タ 3の P G 4からのパル スカウント値によりフィードパック制御を行い、 位置偏差を 0に近付けるように 位置制御を行って、 時々刻々の電子カム制御を行う。 一方、 速度パターンについ ては、 微分回路 1 6によって求めた速度を、 速度パターン発生回路 1 9からの出 力に掛けることで実際の加工品の走行速度に応じたフィードフォワードとして使 用し、 追従性を上げている。
しかしながら、 上記従来の技術においては、 切断長をカツタの周長より極端に 長くすると、 速度パターンにおける非切断区間の 2次曲線の減少度が大きくなつ て、 図 7 ( a ) の長尺の場合の速度パターンに示すように速度パターンがカツタ 逆転区間のようにマイナスとなる区間が発生して、 カツタロールが 1回転以上逆 転する場合があり、 「切断物と逆回転して来た刃が激突する」 という機械トラブ ルが発生するという問題があった。 そこで、 本発明は、 速度パターンがマイナスにならないような速度パターンを 予め形成して、 超長尺の切断長の場合にもカッターを停止させたり操業を中断さ せるようなことが無く、 カツタの逆転を防止して、 切断物と逆回転して来た刃が 激突するという機械トラブルを回避できる電子カム方式ロータリカッタ制御の逆 転防止電子カム曲線生成方法おょぴその制御装置を提供することを目的としてい る。 く発明の開示〉
上記目的を達成するため、 本発明 1は、 切断長が長尺時にロータリーカッター の逆転を防止する電子カム方式ロータリ一力ッター制御の逆転防止電子カム曲線 生成方法において、 ロータ リー力ッターの口一タ径 r とロータに等間隔に設置さ れる刃数 Mと切断時の同期速度を調整する同期速度係数 1、 /3 2と同期角度 S 1、 0 2の設定から、 加速度 0 ·速度 0の点を通過する電子カム曲線が求まる限 界の切断長 L j a gを予め演算して、 操作者が設定した加工品の設定切断長 L s e t とを比較し、 前記設定切断長 L s e tの方が長い場合には、 逆転を防止する 電子カム曲線パターンを生成して逆転防止制御を行うことを特徴としている。 この電子カム方式ロータリー力ッター制御の逆転防止電子カム曲線生成方法に よれば、 予め、 演算により ロータリ一力ッターが逆転する切断長 L j a gを求め て、 ワークの切断長 L s e tがそれより長い場合には逆転を回避する電子カム曲 線を作成して制御されるのでカッターの逆転を自動的に、 完全に防止できる。 また、 本発明 2は、 前記限界の切断長 L j a gは、 ロータ径 1:、 刃数 M、 同期 速度係数 /3 1、 ;3 2と、 同期角度 0 1 Θ 2を基に、 次式
Figure imgf000005_0001
により求めることを特徴としている。
この電子力ム方式ロータリ一カッター制御の逆転防止電子カム曲線生成方法に よれば、 正確に限界となる切断長を演算できる。 ' また、 本発明 3は、 前記限界切断長 L j a gと設定切断長 L s e tの比較の結 果が、 L j a g > L s e t、 又は、 L j a g < L s e tの場合は、 逆転を防止す る電子カム曲線パターンは、 以下のパラメータ、
Ljag> の時
12 2
T23=0
了 一 τ— τ -
Figure imgf000006_0001
τ + τ Τ
π
τ +τ
Α=Α
Ljagく の時
2 π
jag
π
ω.
Figure imgf000006_0002
τ
— τ — Τ — — 一丁 を設定して作成されることを特徴としている。
この電子カム方式ロータリ力ッタ制御の逆転防止電子カム曲線生成方法によれ ば、 上式の 6個のパラメータを変更するのみで逆転を回避させる電子カム曲線パ ターンを始め、 任意のパターンをアルゴリズムを変えずに自由に生成することが 可能になる。
また、 本発明 4は、 前記速度関数および位置関数の補正係数 Aおよび A j a 、 と L j a gに対応する T j a gおよび停止位相角 αは、 加速度 0,速度 0の点を通過する電子カム曲線を生成する補正係数 Ajag
Figure imgf000007_0001
操作ノ ネルに設定した切断長から補正係数 A
Figure imgf000007_0002
Lsetに設定された値が Ljagと同じときの Tjag'
Figure imgf000007_0003
として求めることを特徴としている。
この電子カム方式ロータリ一力ッター制御の逆転防止電子カム曲線生成方法に よれば、 カツタ一の逆転を防止する電子カム曲線パターンを、 実際のカッターの データを用いて、 実効的な指令として作成できる。
また、 本発明 5は、 前記電子カム曲線は、 基準の 1切断 ·制御サイクルを多数 の区間に分割して、 前記各区間毎に三角関数による近次式によって表わす速度関 数パターンおよび位置関数パターンを同一アルゴリズムにより夫々演算して全体 を合成 ·生成することを特徴としている。
この電子カム方式ロータ リーカッター制御の逆転防止電子カム曲線生成方法に よれば、 コンローラの制御単位となる 1切断サイクル期間 T cを細分 (例えば、 1〜 5区間に 5分割) して、 その各区間毎に速度関数、 位置関数、 共に三角関数 近似式を用いて演算し、 全体を合成して電子カム曲線パターンを生成するので、 アルゴリズムを変える必要のない簡単で迅速な演算により、 逆転防止用の電子力 ム曲線パターンを含めて、 加速度変化によるショ ック等が発生しない滑らかな電 子カム曲線パターンを描くことができる。 また、 本発明 6は、 前記限界切断長の L j a gは、 1回の演算により決定され ることを特徴としている。
この電子カム方式ロータ リ一力ッター制御の逆転防止電子カム曲線生成方法に よれば、 限界の切断長 L j a gを求める場合に、 逆転が起こるであろう と思われ る予測領域を往復探索するような試行錯誤的な多数の演算は必要なく、 瞬時に求 めることができる。
また、 本発明 7は、 メジャーロールとカッターロールとフィードローノレを備え てワークの切断作業等を行う機械装置のメジャーロール P Gからワークの移動量 をパルス力ゥントするカウンタと、 該カウント値を微分してワークの移動速度を 演算し乗算器へ出力してフィード · フォヮ一ドを構成する微分回路と、 前記力ゥ ンタ値を一定量の振幅を持つ三角波に変換する三角波発生器と、 前記三角波発生 器の補正出力よりカム曲線速度パターンを発生する速度関数発生器と、 前記三角 波発生器の補正出力よりカム曲線位置パターンを発生する位置関数発生器と該位 置関数発生器の補正出力とモータ移動量によりフィードパック制御を構成する位 置ループと、 前記乗算器の速度フィードフォワード出力と、 前記位置ループ出力 を A/D変換して入力しモータ P Gの値を読込みモータの速度制御を行う速度制 御器を有し、 ワークの切断長が長い場合のロータリー力ッターの逆転を防止する 電子カム方式ロータリ一力ッター制御装置において、 設定切断長 L s e tを比較 器に、 力ッターロール半径 r、 刃数 M、 同期速度係数 1、 j3 2、 同期角度 0 1、 Θ 2を第 1の演算器へ入力する操作器と、 前記操作器からの入力値を基に限界の 切断長 L j a gを演算する第 1の演算器と、 前記演算した切断長 L j a gと前記 設定切断長 L s e tを比較する比較器と、 前記比較器の比較結果より、 L j a g > L s e tの場合は、 A = Aとして、 T 1 2、 Τ 2 3、 Τ 3 4、 ω 1、 ω 2、 の 各パラメータを、 L j a gく L s e t、 の場合は、 A = A j a g として、 ω 1、 ω 2、 Τ 1 2、 Τ 3 4、 Τ 2 3、 の各パラメータを演算出力する第 2の演算器と、 前記第 2の演算器が出力する各パラメータより逆転を防止する電子カム曲線を生 成するように前記速度関数発生器および位置関数発生器に書込む設定器と、 を有 する電子カム曲線パラメータ設定器を備えたことを特徴としている。
この電子カム方式ロータ リ一力ッター制御装置によれば、 請求項 1〜 6に記載 のカッター逆転防止方法の演算を、 操作器、 第 1 · 第 2の演算器、 比較器、 設定 器により実行する制御装置を構成できる。
<図面の簡単な説明 >
図 1は、 本発明の実施の形態に係る逆転防止電子カム曲線生成方法が適用され るロータリー力ッター機械の構成図である。
図 2は、 図 1に示すロータリー力ッターの制御ブロック図である。
図 3は、 図 2に示す速度関数、 位置関数パターンのグラフを示す図である。 図 4は、 図 2に示す速度関数、 位置関数パターンの他のグラフを示す図である。 図 5は、 図 2に示す制御装置の逆転防止処理のフローチヤ一トである。
図 6は、 従来のロータリ一力ッター.の制御装置のブロック図である。
図 7は、 図 6に示す速度関数、 位置関数パタ一ンのグラフを示す図である。 図 8は、 図 6に示す速度関数、 位置関数パターンの他のグラフを示す図である。 なお、 図中の符号、 1はメジャーロール、 2はメジャーロール P G、 3はモ 一タ 、 4はモ一タ P GA、 5はカッターロール、 6はカッター、 7 Aはカツタ 一半径 r、 7 Bは同期角度 1、 7 Cは同期角度 2、 7 Dはワーク送り速度、 8は マークセンサ、 9は切断マーク、 1 0はモータ B、 1 1はモータ P GB、 1 2は フィードロール、 1 3は速度制御器、 1 4は制御装置、 1 5はカウンタ A、 1 6 は微分回路、 1 7は三角波発生器、 1 8は加算器 A、 1 9は速度関数発生器、 2 0は乗算器、 2 1は位置関数発生器、 2 2は加算器 B、 2 3は比較器、 24は I、 2 5は加算器 C、 2 6は0/八、 2 7はカウンタ B、 2 8は電子カム曲線パ ラメータ設定器、 2 9は操作器、 3 0は演算器 A、 3 1は比較器、 3 2は演算器 B、 3 3は設定器である。 く発明を実施するための最良の形態〉
次に、 本発明の実施の形態について図面を参照して説明する。
図 1は本発明の実施の形態に係る逆転防止電子カム曲線生成方法を適用する口 ータリ一力ッタ機械の構成図である。
図 1において、 図 1 (a ) はロータリーカッター機械の構成図を、 図 1 (b) はカッターロールの説明図であり、 図 1 ( a ) の機械は、 メジャーロール 1 と力 ッターロール 5と、 フィードロール 1 2で構成されている機械装置において、 メ ジャ一ロール P G 2 と、 モータ A 3と、 モータ P G 4と、 マークセンサー 8 と、 モータ B 1 0 と、 モータ P G 1 1 と、 速度制御器 1 3と、 制御装置 1 4を設けて いる。
図 1 ( b ) は、 カツタロール 5の断面図で、 カッターロール半径 r 7 A、 ヮー クの送り速度 V L 7 D、 同期区間 (切断区間) の同期角度 1 0 1 7 B、 同期角度 2 Θ 2 7 Cを示している。
図 2において、 制御装置 1 4は、 力ゥンタ A 1 5 と、 微分回路 1 6 と、 三角波 発生回路 1 7 と、 加算器 A 1 8 と、 速度関数 1 9 と、 乗算器 2 0と、 位置関数 2 1 と、 加算器 B 2 2と、 比較器 2 3と、 P I 2 4と、 加算器 C 2 5 と、 A / D変 換器 2 6 と、 カウンタ B 2 7と、 操作器 2 9 と、 電子カム曲線パラメータ設定器 2 8を備えている。 なお、 操作器 2 9 と電子カム曲線パラメータ設定器 2 8を除 いた構成は従来技術の図 6の構成と各プロック自体は同一であり、 新構成として は電子カム曲線パラメータ設定器 2 8 と、 操作器 2 9が追加された構成となって いる。 そして、 電子カム曲線パラメータ設定器 2 8は、 演算器 A 3 0 と、 比較器 B 3 1 と、 演算器 B 3 2と、 設定器 3 3から構成されている。 つぎに動作について説明する。
カウンタ A 1 5はメジャー口ール P G 2から、 ワークの移動量をパルス力ゥン トし微分回路 1 6 と三角波発生回路 1 7へ出力する。 微分回路 1 6は力ゥンタ A 1 5から受け取った値を微分し、 ワークの移動速度を演算して乗算器 2 0に出力 する。 また、 三角波発生回路 1 7はカウンタ A 1 5から受け取った値を、 ある一 定量 (例えば、 切断長に相当する Θ Μ) の振幅を持つ三角波に変換後加算器 A 1 8へ出力する。 加算器 A 1 8は三角波発生回路 1 7の出力と、 ラインのマークセ ンサー 8の検出値を基に、 マーク補正量を加算後に速度関数 1 9 と位置関数 2 1 へ出力する。 速度関数 1 9は加算器 A 1 8の出力に見合った速度パターンを乗算 器 2 0へ出力し、 乗算器 2 0は微分回路 1 6の出力と速度関数 1 9の出力を乗算 後加算器 2 5へ出力する。 いわゆるフィードフォワードである。 一方、 位置関数 2 1は加算器 A 1 8の出力に見合った位置パターンを加算器 B 2 2に出力し、 加算器 B 2 2は位置関数 2 1の位置パターン出力と補正値を加算 後に比較器 2 3へ出力し、 比較器 2 3は加算器 2 2の出力とカウンタ B 2 7のモ ータ移動量 (モータ P G 4の値) と比較後その差を P I 2 4へ出力する。 いわゆ る位置ループ制御を構成する。 P I 2 4は比較器 2 3の差から補正値を演算後に 加算器 2 5へ出力し、 加算器 2 5は乗算器 2 0のフィードフォワード出力と P I 2 4の補正値を加算後 D/A変換器 2 6へ出力する。 DZA変換器 2 6は加算器 2 5の出力に比例した電圧値を速度制御器 1 3へ出力し、 速度制御器 1 3はモー タ PG4の値を読込み、 モータ A 3の制御を行う。 カウンタ B 2 7はモータ P G 4の検出したカッターロール移動量を計測し、 比較器 2 3へ出力する。
速度関数 1 9 と位置関数 2 1の、 予め、 図 3に示すような速度関数 ·位置関数 のグラフのよ うに作成する電子カム曲線生成のアルゴリズムは、 従来例の特許文 献 1の場合は、 位置曲線を 3次関数、 速度曲線を 2次関数による曲線式で表し、 区間 (2) (非切断区間) と、 区間 ( 3) (切断区間) の大まかな区間に分割して 演算を行ったのに対し、 本実施の形態では、 速度 ·位置カム曲線を以下のような、 演算が簡単な三角関数の近似式による公知の曲線式により表し、 図 3、 図 4に示 すように各区間表示は、 従来例が T 1〜T 3による ( 1 ) 〜 ( 3) の 3区間に分 割表示したのに対し、 Τ 1〜Τ 5として更に ( 1 ) ~ (5) の 5区間に細分して、 (1)、 (2)、 ( 3)、 (4)、 (5) 区間について夫々の演算式による演算を行って、 全体を合成することにより滑らかなカム曲線が得られるように改善している。
Τ Αι = Τ Αοι
Τ = τ +
12 Α01 1 ι\2
Τ3— Τ01+ Τ12+ Τ23
Τ4一 Τ01+ Τ12+ Τ23+ Τ34
τ50112233445
① TQ ^ tく Tt^区間
Vref=Nrl
Pref=Nrlt
② η≤ t<T2区間
Vref= A[l- COS (t-T }]† N rl - ^^ [l- C0 2(t— T!)}]
Pref二 A t一 Ύ -— sin o^t- Tt)} + Nrl(t- T1)
ω
_ N i rl一 _ N r2
2
Figure imgf000012_0001
+ NrlTt
③ T2 ≤ tく T3区間
vref = o
Pref― A T2- -— sin ^^T,- Tj + Nrl(T2-Ta)
Nrl-Nr2
T2- T-— sin ^2(T2- T,)}
2
+ NrlTx
④ T3≤t<T4区間
Vref=A[l-cos^1(t-T3+T2-Tl)}]+Nrl
一 ^^^[1一∞si¾(t— T3+T2— 1;)}] p f ref +Nrl(t-T3+T2-T1)
Figure imgf000012_0002
Nrl-Nr2 1
t― T3+ T2— T-一 sin pJ2 (t - T3+ T2— Ύχ
O.,
+NrlTt
©T4≤t<T5区間
Vref=Nr2
Pref=Nr2(t-T4)
+A(T4— T3+T2— T )+Nri(T4— T3+T2
L,r2 (T4-T3+T2-T1)
2
+Nr,T,
となり、 Τ01· Τ12· τ23· τ34· Τ45· ωχ- ω2· Nrl- Nr2- Αの各種パラメ一夕は任意の 設定が可能とする。 なお、 ω17ω2は角速度、 Αは後述の補正係数である。 また、 パラメ一夕 T23の値が 0になる時、 ②区間と④区間は Vref=A[l-cos^(t-T1)}]+Nrl
Figure imgf000013_0001
を基本式とした一本の演算式として繋がり、 つまり、 T 2 3 = 0、 より (4) 区間の V r e f 、 P r e f 共に、 パラメータの項が ( t一 T 3 +T 2— T 1 ) → ( t -T 1 ) と同一になり同一演算式で繋げて ( 3) 区間を無く し、 図 4のよう に逆転を無く した改善されたグラフとして描くことができるように制御するもの である。
具体的には、 操作器 2 9は切断長 L s e tを比較器 3 1に、 力ッタ一口一ル半 径 r とロータに等間隔に備えられる刃数 Mと、 切断時の同期速度を調整する同期 速度係数 |3 1、 β 2 (後述の N r 1 = j3 1 V L/ r、 N r 2 = /3 2 V L / rに示 されるような係数) と、 同期角度 0 1 , 0 2を演算器 A 3 0へ出力し、 演算器 A 3 0は力ッターロール半径 r とロータに等間隔に備えられる刃数 Mと、 切断時の 同期速度を調整する同期速度係数 1、 2と同期角度 s i、 e 2を用いて、
Figure imgf000013_0002
の演算を処理し、 加速度 = 0、 速度 = 0の点を通過する電子カム曲線が求まる切 断長 L j a gを求め (つまり、 逆転が発生する限界の切断長)、 その演算結果を 比較器 3 1へ出力して、 比較器 3 1は設定器 2 9から受け取った設定切断長 L s e t と、 演算器 A 3 0から受け取った切断長 L j a gを比較し、 その比較結果を 演算器 B 3 2に出力し、 演算器 B 3 2は、
Figure imgf000014_0001
と加速度 0,速度 0の点を通過する電子力ム曲線を生成する補正係数 Ajagと、
Figure imgf000014_0002
操作ノ ネルに設定した切断長から補正係数 Aと
Figure imgf000014_0003
Lseiに設定された値が Ljagと同じときの Tjag' aを
Figure imgf000014_0004
求めて、
比較器 31の出力結果が LJま Ljagより小さいとき、
Τ —
—— T—
C 101 Τ Α45
12
2
Figure imgf000015_0001
π
ω
Τ1234
Α A
比較器 31の出力結果が ま Ljagより大きい時、
Figure imgf000015_0002
π
ω
2 τ j.ag
τ _7t~
12 丁、 ~
Α34 jag Α12
τ ― —— Τ ― Τ ― Τ ~" τ
Α23 1C Α01 Α12 Α34 Α45
A = Aiag を演算器 Β 3 2は処理し、 その結果を設定器 3 3に出力する。
この間の処理を、 図 5に示す電子カム曲線パラメータ設定器の処理のフローチ ャ一トに基づいて纏めて説明すれば、
先ず、 演算器 A 3 0は限界切断長 L j a g , 補正係数 A及び A j a g , T j a g a、 を演算する (S 1 00)。
次に、 比較器 3 1は、 S 1 0 0で求めた切断長 L j a g と操作器 2 9からの設 定切断長 L s e tを比較して、 L j a gく L s e tか?を判断する S 1 0 1 比較結果が真の場合、 演算器 B 3 2は、
ω 1 = 2 π / Γ j a g
ω 2 = π /T j a g
T 1 2 = ( π— α ) /ω 2
T 34 = T j a g _T 1 2 T 2 3 = T c— T O 1 - T 1 2 -T 3 4 -T 4 5
A= A j a g ,
を演算して設定器 3 3へ出力する (S 1 0 2)。
S 1 0 1の判断で偽の場合、 演算器 B 3 2は、
T 1 2 = (T c一 T 0 1—T 4 5 ) / 2、
T 2 3 = 0、
T 3 4 = (T c -T 0 1 -T 4 5) /2、
ω 1 = 2 π / (Τ 1 2 + Τ 3 4)、
ω 2 = π / (Τ 1 2 +Τ 3 4 )
Α= Α、
を演算して設定器 3 3へ出力する (S 1 0 3)。 と言う処理となる。
このようにして、 設定器 3 3は演算器 B 3 2から受け取った T 0 1、 T 1 2、 T 2 3、 T 3 4、 T 4 5、 N r l、 N r 2、 ω 1、 ω 2、 A、 を速度関数 1 9、 位置関数 2 1に、 三角波発生の折り返しタイミングで書込むことによって、 短尺 •長尺 ·逆転防止長尺の電子カム方式ロータリー力ッタ一電子カム曲線を求め、 制御することで、 カッターロールが 1回転以上逆転し 「切断物と逆回転してきた 刃が激突する」 という機械トラブルを防止することが可能になる。
また、 本発明の電子カム曲線は L j a gの設定によって、 操作者が設定した設 定切断長 L s e tが、 どんなに長い設定でも逆転することが無くなる。
また、 本発明の電子カム曲線は、 短尺、 長尺、 L j a gより長い超長尺切断で あっても、 三角関数近似式による速度関数、 位置関数の基本アルゴリズムを変更 する必要が無く同一アルゴリズムで演算可能なので、 演算処理が簡単化されスピ ードアップされる。 く産業上の利用可能性 >
以上説明したように、 本発明によれば、 ロータリーカッターのロータ径と、 同 期速度補正係数 ]3 1、 J3 2、 同期角度 0 1、 0 2の設定から加速度 0 ·速度 0の 点を通過する電子カム曲線が求まる限界切断長 L j a gを予め導き、 操作者が設 定した設定切断長 L s e t と比較して、 設定切断長の方が長い時に逆転を防止す る電子カム曲線のパラメータを演算し、 位置指令、 速度指令に反映することで逆 転防止電子カム曲線の生成を可能にして、 「切断物と逆回転してきた刃の両者が 激突する」 という機械トラブルを無くすことができるという効果がある。

Claims

請 求 の 範 囲
1 . 切断長が長尺時にロータリーカッターの逆転を防止する電子カム方式口 ータリ一力ッター制御の逆転防止電子カム曲線生成方法において、
ロータリーカッターのロータ径 r とロータに等間隔に設置される刃数 Mと切断 時の同期速度を調整する同期速度係数 13 1、 3 2と同期角度 9 1、 0 2の設定か ら、 加速度 0 ·速度 0の点を通過する電子カム曲線が求まる限界の切断長 L j a gを予め演算して、 操作者が設定した加工品の設定切断長 L s e t とを比較し、 前記設定切断長 L s e tの方が長い場合には、 逆転を防止する電子カム曲線パタ ーンを生成して逆転防止制御を行うことを特徴とする電子カム方式ロータリ一力 ッター制御の逆転防止電子カム曲線生成方法。
2 . 前記限界の切断長 L j a gは、 ロータ径 r、 刃数 M、 同期速度係数 1、 i3 2と、 同期角度 Θ 1、 0 2を基に、 次式
Figure imgf000018_0001
により求めることを特徴とする請求項 1に記載の電子力ム方式口一タリーカツ タ制御の逆転防止電子カム曲線生成方法。
3 . 前記限界切断長 L j a gと設定切断長 L s e tの比較の結果が、 L j a g > L s e t s 又は、 L j a g < L s e tの場合は、 逆転を防止する電子カム曲 線パターンは、 以下のパラメータ、 >Lsetの時
丁 T— T
丄12—一 101— T A 5
2
T A23 =0 u
Η ο
Figure imgf000019_0001
1
Α = Α
set
Figure imgf000019_0002
ω2=
τ jag
7 — a
τ12=
τ34= τ 1 j.ag— τ Α12
τ 二
■45
Α = を設定して作成されることを特徴とする請求項 1又は 2のいずれか 1項に記載 の電子カム方式ロータリ力ッタ制御の逆転防止電子カム曲線生成方法。
4 . 前記速度関数および位置関数の補正係数 Aおよび A j a g、 と L j a g に対応する T j a gおよび停止位相角 αは、 - 加速度 0,速度 0の点を通過する電子カム曲線を生成する補正係数 A 'j i;agヽ
Figure imgf000020_0001
操作ノ ネルに設定した切断長から補正係数 A
Figure imgf000020_0002
Lsetに設定された値が Ljagと同じときの Tj
Figure imgf000020_0003
として求めることを特徴とする請求項 3に記載の電子カム方式ロータリーカツ ター制御の逆転防止電子カム曲線生成方法。
5 . 前記電子カム曲線は、 基準の 1切断 ·制御サイクルを多数の区間に分割 して、 前記各区間毎に三角関数による近次式によって表わす速度関数パターンお ょぴ位置関数パターンを同一アルゴリズムにより夫々演算して全体を合成 · 生成 することを特徴とする請求項 1乃至 4のいずれか 1項に記載の電子カム方式ロー タリー力ッター制御の逆転防止電子カム曲線生成方法。
6 . 前記限界切断長の L j a gは、 1回の演算により决定されることを特徴 とする請求項 2に記載の電子力ム方式ロータリ一力ッター制御の逆転防止電子力 ム曲線生成方法。
7 . メジャーロールとカッターロールとフィードロールを備えてワークの切 断作業等を行う機械装置のメジャーロール P Gからワークの移動量をパルスカウ ン トするカウンタと、 該カウン卜値を微分してワークの移動速度を演算し乗算器 へ出力してフィード ' フォヮ一ドを構成する微分回路と、 前記力ゥンタ値を一定 量の振幅を持つ三角波に変換する三角波発生器と、 前記三角波発生器の補正出力 よりカム曲線速度パターンを発生する速度関数発生器と、 前記三角波発生器の補 正出力よりカム曲線位置パターンを発生する位置関数発生器と該位置関数発生器 の補正出力とモータ移動量によりフィードパック制御を構成する位置ループと、 前記乗算器の速度フィードフォヮード出力と、 前記位置ループ出力を A/D変換 して入力しモータ P Gの値を読込みモータの速度制御を行う速度制御器を有し、 ワークの切断長が長い場合のロータリー力ッターの逆転を防止する電子カム方式 ロータリーカッター制御装置において、 設定切断長 L s e tを比較器に、 カツタ 一ロール半径 r、 刃数 M、 同期速度係数 j3 1、 /3 2、 同期角度 0 1、 0 2を第1 の演算器へ入力する操作器と、 前記操作器からの入力値を基に限界の切断長 L j a gを演算する第 1の演算器と、 前記演算した切断長 L j a g と前記設定切断長 L s e tを比較する比較器と、 前記比較器の比較結果より.、 L j a g > L s e t の場合は、 A = Aとして、 Τ 1 2、 Τ 2 3、 Τ 34、 ω 1、 ω 2の各パラメータ を、 L j a gく L s e t、 の場合は、 A = A j a gとして、 ω 1、 ω 2、 Τ 1 2、 Τ 34、 Τ 2 3、 の各パラメータを演算出力する第 2の演算器と、 前記第 2の演 算器が出力する各パラメータより逆転を防止する電子カム曲線を生成するように 前記速度関数発生器および位置関数発生器に書込む設定器と、 を有する電子カム 曲線パラメータ設定器を備えたことを特徴とする電子カム方式ロータリーカツタ 一制御装置。
PCT/JP2003/016462 2002-12-27 2003-12-22 電子カム方式ロータリーカッター制御の逆転防止電子カム曲線生成方法およびその制御装置 WO2004060597A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/540,865 US7191031B2 (en) 2002-12-27 2003-12-22 Reverse rotation preventing electronic cam curve generating method based on electronic cam type rotary cutter control and control device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002382409A JP3775503B2 (ja) 2002-12-27 2002-12-27 電子カム方式ロータリーカッター制御の逆転防止電子カム曲線生成方法およびその制御装置
JP2002-382409 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004060597A1 true WO2004060597A1 (ja) 2004-07-22

Family

ID=32708595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016462 WO2004060597A1 (ja) 2002-12-27 2003-12-22 電子カム方式ロータリーカッター制御の逆転防止電子カム曲線生成方法およびその制御装置

Country Status (6)

Country Link
US (1) US7191031B2 (ja)
JP (1) JP3775503B2 (ja)
KR (1) KR100726532B1 (ja)
CN (1) CN100519024C (ja)
TW (1) TW200503869A (ja)
WO (1) WO2004060597A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556532A (zh) * 2018-11-22 2019-04-02 中国科学院西安光学精密机械研究所 一种凸轮曲线自动检测系统及方法
CN114669791A (zh) * 2022-04-29 2022-06-28 西门子工厂自动化工程有限公司 剪切控制系统、方法及剪板设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003792B2 (ja) * 2004-11-17 2007-11-07 オムロン株式会社 サーボモータ制御システム
DE102007034834A1 (de) * 2007-07-26 2009-01-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Optimieren von Querbearbeitungsvorgängen
FR2934370B1 (fr) * 2008-07-25 2010-09-03 Snecma Procede de determination des conditions d'une phase d'usinage d'une piece avec modulation de la vitesse de coupe
CN103163822B (zh) * 2011-12-19 2015-09-16 苏州汇川技术有限公司 电子凸轮控制装置及方法
JP5143318B1 (ja) * 2012-05-24 2013-02-13 三菱電機株式会社 電子カム制御装置および電子カム曲線生成方法
DE102013202445A1 (de) * 2013-02-14 2014-08-14 Hilti Aktiengesellschaft Verfahren zur Steuerung eines Gerätesystems beim Trennen eines Werkstückes entlang einer Trennlinie
JP5512015B1 (ja) * 2013-04-26 2014-06-04 ホリゾン・インターナショナル株式会社 ローラー式打抜き機
CN103744346B (zh) * 2013-12-30 2016-09-14 南京埃斯顿自动化股份有限公司 一种电子凸轮曲线生成方法
CN105739430B (zh) * 2016-05-10 2018-07-20 苏州新代数控设备有限公司 电子凸轮控制装置及其电子凸轮曲线生成方法
CN106406219B (zh) * 2016-12-16 2018-10-02 威科达(东莞)智能控制有限公司 一种用于横切的免编程电子凸轮曲线生成方法
CN110825025B (zh) * 2019-10-24 2022-06-17 威科达(东莞)智能控制有限公司 一种用于瓦楞纸前缘送纸的免编程电子凸轮曲线生成方法
CN111638733B (zh) * 2020-05-15 2023-08-29 浙江国迈技术有限公司 一种枕式包装机控制系统及其控制方法
CN111830909A (zh) * 2020-07-15 2020-10-27 珠海格力智能装备有限公司 同步控制方法及装置
CN112536841B (zh) * 2020-11-15 2022-07-29 杭州利鹏科技有限公司 一种横切飞剪控制系统及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255309A (ja) * 1984-05-31 1985-12-17 Mitsubishi Heavy Ind Ltd 切断装置用制御装置
JPS6471614A (en) * 1987-09-08 1989-03-16 Nippon Reliance Kk Rotary cutter acceleration and deceleration rate variably optimizing method and control device therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2720584B2 (ja) * 1990-07-20 1998-03-04 株式会社安川電機 サーボシステムの同調位相制御装置
JP2737609B2 (ja) * 1993-08-03 1998-04-08 株式会社デンソー 切断機
JP3756960B2 (ja) * 1993-12-01 2006-03-22 東芝機械株式会社 コレクト機構付折機
JPH08118096A (ja) * 1994-10-26 1996-05-14 Aida Eng Ltd プレス機械の駆動装置
SG66474A1 (en) * 1997-05-28 1999-07-20 Apic Yamada Corp Electric press machine
JP2000198084A (ja) 1999-01-11 2000-07-18 Makita Corp 釘打ち機
JP3387842B2 (ja) * 1999-01-11 2003-03-17 株式会社安川電機 電子カム方式ロータリカッタ制御方法および電子カム曲線生成方法
JP4461667B2 (ja) * 2002-07-10 2010-05-12 株式会社安川電機 電子カム方式ロータリカッタ制御方法及び装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255309A (ja) * 1984-05-31 1985-12-17 Mitsubishi Heavy Ind Ltd 切断装置用制御装置
JPS6471614A (en) * 1987-09-08 1989-03-16 Nippon Reliance Kk Rotary cutter acceleration and deceleration rate variably optimizing method and control device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556532A (zh) * 2018-11-22 2019-04-02 中国科学院西安光学精密机械研究所 一种凸轮曲线自动检测系统及方法
CN114669791A (zh) * 2022-04-29 2022-06-28 西门子工厂自动化工程有限公司 剪切控制系统、方法及剪板设备
CN114669791B (zh) * 2022-04-29 2024-01-26 西门子工厂自动化工程有限公司 剪切控制系统、方法及剪板设备

Also Published As

Publication number Publication date
KR20050088235A (ko) 2005-09-02
CN100519024C (zh) 2009-07-29
TWI295600B (ja) 2008-04-11
JP3775503B2 (ja) 2006-05-17
JP2004209600A (ja) 2004-07-29
TW200503869A (en) 2005-02-01
US20060055359A1 (en) 2006-03-16
CN1732062A (zh) 2006-02-08
KR100726532B1 (ko) 2007-06-11
US7191031B2 (en) 2007-03-13

Similar Documents

Publication Publication Date Title
WO2004060597A1 (ja) 電子カム方式ロータリーカッター制御の逆転防止電子カム曲線生成方法およびその制御装置
KR100635660B1 (ko) 전자캠방식 로터리커터 제어방법 및 전자캠곡선 생성방법
JP3822565B2 (ja) サーボ制御装置
CN102455685B (zh) 机床中的旋转轴旋转速度变动监视方法和监视装置、机床
JP2006323361A5 (ja)
CN105710881A (zh) 一种机器人末端连续轨迹规划过渡方法
JP2010045914A (ja) 同期モータ駆動制御装置
JP2005086841A (ja) モータ制御装置
JP4827678B2 (ja) アクチュエータの位置変動抑制方法
JP6661676B2 (ja) ロボット制御装置
JP2010064875A (ja) 速度張力制御装置
Inoan et al. Control of an induction motor using the relay method approach
JPH05346359A (ja) 負荷イナーシャ測定装置
JP4449693B2 (ja) ロボット制御装置およびその制御方法
JP5633268B2 (ja) ロボットの制御装置
JP4302549B2 (ja) 巻出し巻取装置
JP3504201B2 (ja) ロータリーカッタの制御装置
JP2007221937A (ja) システム同定装置およびそのシステム同定方法
EP0469347B1 (en) Apparatus for reversibly controlling a motor
JP2022102921A (ja) 駆動指令生成装置、同期制御システム及び学習装置
JP3782007B2 (ja) ロータリカッタ制御装置
JPH05337729A (ja) モーションコントローラ
JP2009062134A (ja) エレベータの制御装置
JP4330896B2 (ja) サーボ制御システム
JP2004102556A (ja) 位置決め制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 20038A75946

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006055359

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020057012138

Country of ref document: KR

Ref document number: 10540865

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057012138

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10540865

Country of ref document: US