WO2004052987A1 - フッ素樹脂組成物、フッ素樹脂組成物製造方法、半導体製造装置及び被覆電線 - Google Patents

フッ素樹脂組成物、フッ素樹脂組成物製造方法、半導体製造装置及び被覆電線 Download PDF

Info

Publication number
WO2004052987A1
WO2004052987A1 PCT/JP2003/015761 JP0315761W WO2004052987A1 WO 2004052987 A1 WO2004052987 A1 WO 2004052987A1 JP 0315761 W JP0315761 W JP 0315761W WO 2004052987 A1 WO2004052987 A1 WO 2004052987A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
tetrafluoroethylene
fluororesin composition
melt
fluorine
Prior art date
Application number
PCT/JP2003/015761
Other languages
English (en)
French (fr)
Inventor
Norihiko Miki
Hitoshi Imamura
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2003288997A priority Critical patent/AU2003288997A1/en
Priority to JP2004558450A priority patent/JP4876395B2/ja
Publication of WO2004052987A1 publication Critical patent/WO2004052987A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • Fluororesin composition Fluororesin composition, fluororesin composition production method, semiconductor production equipment and coated electric wire
  • the present invention relates to a fluororesin composition, a method for producing a fluororesin composition, a semiconductor manufacturing apparatus, and a covered electric wire.
  • Tetrafluoroethylene // fluoroalkoxytrifluoroethylene copolymer (PFA) is a fluororesin with excellent chemical resistance, heat resistance, and moldability. Used for tubes and bottles for transport lines that come into contact with (gas, liquid), and as members of semiconductor manufacturing equipment, tubes for flowing ozone-containing media, tubes for sending slurry containing abrasives, etc. It is used for
  • the surface of the tube obtained from PFA does not have sufficient smoothness, especially when slurry containing an abrasive is sent, polishing mixes the tube material into the feed line and lowers the polishing efficiency. In addition, it causes polishing abnormalities and lowers the electrical characteristics of the obtained semiconductor, which greatly reduces the product yield. In addition, when the ozone-containing medium is distributed, the deposition of pollutants easily proceeds, and there is a problem in terms of maintainability. A tube used as a member of a semiconductor manufacturing apparatus is required to be hardly deteriorated and to have a smooth inner surface.
  • PFA is used not only as a tube material but also as a wire coating material.However, due to its high melting point, it is difficult to increase the line speed during molding.If it is raised, cracks will occur on the outer surface of the coating material. There was a major problem in moldability.
  • One object of the present invention is to provide, in view of the above situation, excellent ozone resistance and surface smoothness.
  • a second object of the present invention is to provide a member relating to a semiconductor manufacturing apparatus, and a fluororesin composition comprising a tetrafluoroethylene fluoroalkoxytrifluoroethylene copolymer excellent in moldability. Is to provide.
  • the present invention is a fluororesin composition
  • a fluororesin composition comprising a tetrafluoroethylene z fluoroalkoxytrifluoroethylene copolymer and a tetrafluoroethylenenohexafluoropropylene copolymer
  • the tetrafluoroethylenenohexafluoro mouth propylene copolymer includes the above tetrafluoroethylenenohexafluoropropylene copolymer and the above tetrafluoroethylenefluoroalkoxytrifluoroethylene copolymer
  • melt-kneading of a mixed composition consisting of a tetrafluoroethylene Z fluoroalkoxy trifluoroethylene copolymer and a tetrafluoroethylene / hexafluoropropylene copolymer is performed.
  • a method for producing a fluororesin composition for producing the above fluororesin composition comprising a melt kneading step and a purification step of performing a purification treatment using a fluorine-containing gas in this order, wherein the melt kneading is performed by a cylinder
  • the process is performed until the viscosity of the mixed composition no longer changes using an extruder in which the temperature of the mixed composition is controlled at 350 to 3995 ° C.
  • the refining treatment comprises exposing the extrudate obtained by the melt-kneading step to the fluorine-containing gas to decompose and remove low molecular weight substances.
  • the fluororesin composition of the present invention is a molded tube for measurement comprising a tetrafluoroethylene / fluoroalkoxy trifluoroethylene copolymer and a tetrafluoroethylene // hexafluoropropylene copolymer.
  • the inner surface has an average roughness [Ra] of not more than 0.035 ⁇ .
  • the average roughness of the inner surface [Ra] is If a fluid containing abrasives is allowed to flow through a tube exceeding 0.035 ⁇ m for a long period of time, it will be easily worn, and if it comes into contact with a fluid that has a strong chemical deterioration for a long time, contaminants and the like will be exposed inside the tube. Almost accumulates on the deteriorated part of A preferred upper limit of the average roughness [R a] is 0.03 ⁇ . If the average roughness [R a] is within the above range, the lower limit can be set to 0.005 ⁇ due to the restrictions on the production method of the tube-formed body for measurement.
  • the fluororesin composition of the present invention is a molded tube for measurement comprising a tetrafluoroethylene / fluoroalkoxy trifluoroethylene copolymer and a tetrafluoroethylene / hexafluoropropylene copolymer,
  • the average roughness [R a] is within the above range, and the maximum roughness [R t] is less than 0. If it is 0.3 / zm or more, it does not satisfy the standard level required for various products, which is not preferable.
  • a preferred upper limit is 0.25 zm. If the maximum roughness [R a] is within the above range, the lower limit can be set to 0.1 ⁇ due to restrictions on the production method of the molded tube for measurement.
  • the average roughness [R a] and the maximum roughness [R t] are values obtained by measuring according to JIS SB 06,01.
  • the average roughness [R a] and the maximum roughness [R t] of the inner surface of the molded tube for measurement usually increase in the presence of a low molecular weight substance described later.
  • the above-mentioned molded tube for measurement is obtained by molding and cooling by extruding the outer surface while contacting the outer surface with an external object such as a mold, similarly to a normal tube.
  • the surface irregularities are relatively smooth, governed by the smoothness of the surface of the mold, etc., Force The inner surface does not keep contact with the jigs etc. during cooling, but the surface irregularities are reduced by the external objects such as molds.
  • the spherulites are easily formed and the surface is liable to be rough.
  • the molded tube for measurement obtained by using the fluororesin composition of the present invention has surface smoothness even on the inner surface thereof, and has an average roughness [Ra] and a maximum roughness.
  • the roughness [R t] satisfies the above range.
  • the fluororesin composition of the present invention is sufficient for other general molded bodies. It can have excellent smoothness.
  • the other general molded body is not particularly limited.
  • a conventional one whose surface is easily roughened for example, a covering material of an electric wire obtained using a cone, a cast product A film or the like obtained by a film may be used.
  • the fluororesin composition of the present invention comprises a tetrafluoroethylene / fluoroalkoxy trifluoroethylene copolymer CT FEZFTE copolymer].
  • the TFEZFTE copolymer is a copolymer in which fluoroalkoxytrifluoroethylene [FTE] is a comonomer of tetrafluoroethylene [TFE].
  • FTE fluoroalkoxytrifluoroethylene
  • TFE comonomer of tetrafluoroethylene
  • E means 1 to 15% by mass of the total mass of TFE and FTE.
  • the amount represented by mass% of the total amount of the comonomer is such that the comonomer unit derived from the comonomer is “monomer” in the molecular structure of the copolymer.
  • the “comonomer unit” described above is, for example, represented by one CF 2 —CF (CF 3 ) when derived from HFP described below.
  • the fluoroalkoxyl group in the above fluoroalkoxy trifluoroethylene may be a perfluoroalkoxyl group in which all carbon-hydrogen bonds of the alkoxyl group are carbon-fluorine bonds, An alkoxyl group in which hydrogen of a hydrogen bond is partially substituted by fluorine may be used.
  • the TFE / FTE copolymer preferably has a melt flow rate [MFR] of 9 (g / l 0 min) or less.
  • the amount exceeds 9 ( g / lO content), the molecular weight is too low, and the ozone resistance and heat resistance of the obtained molded article are liable to decrease.
  • a more preferred upper limit is 4 (g / 10 minutes), and a still more preferred upper limit is 3.5 (gZlO content). If the MFR is within the above range, the lower limit can be set to, for example, 0.5 (g / 10 minutes) in terms of moldability.
  • the MFR is a value obtained by measuring under a load of 5 kg at 372 ° C. in accordance with ASTM D 3307 (1998).
  • the fluororesin composition of the present invention comprises the above TFE / FTE copolymer and a tetrafluoroethylene / hexafluoropropylene copolymer [TFE / HFP copolymer].
  • TFE / HFP copolymer a tetrafluoroethylene / hexafluoropropylene copolymer
  • the ozone resistance can be enhanced by adding the TFEZHFP copolymer.
  • the TFE / HFP copolymer is a copolymer having hexafluoropropylene (HFP) as a comonomer of TFE, and the HFP includes TFE and HFP.
  • HFP hexafluoropropylene
  • the TFEZHFP copolymer may be a tertiary or higher copolymer obtained by using HFP as a comonomer of TFE and, if desired, butyl ether.
  • the T FE / HF P copolymer is a ternary or more copolymer above
  • the Bulle ether is usually a 1 mass 0/0 hereinafter the total mass of TFE and HFP and Bulle ether
  • the total weight of TFE, HFP and butyl ether may exceed 1% by mass, and if it exceeds 1% by mass, a preferable upper limit is, for example, 2.5% by mass. / 0 , a more preferable upper limit can be set to 2% by mass.
  • Y 1 and Y 2 are the same or different and each represent a hydrogen atom or a fluorine atom.
  • R is an ether in which a part or all of the hydrogen atoms bonded to the carbon atoms may be substituted with a fluorine atom.
  • the TFE / HFP copolymer preferably has a melt flow rate [MFR] of 9 (g / l 0 min) or less. If the amount exceeds 9 (g / 10 minutes), the molecular weight is too low, and the ozone resistance and heat resistance of the obtained molded article are likely to be reduced. A more preferred upper limit is 4 (gZlO content), and a still more preferred upper limit is 3 (g / 10 minutes). If the MFR is within the above range, the lower limit can be set to, for example, 0.5 (g / l 0 minutes) in terms of moldability.
  • the average roughness (Ra) and the maximum roughness (Rt) of the inner surface of the molded tube for measurement can be adjusted as described above. Range.
  • the average roughness [Ra] and the maximum roughness [Rt] of the inner surface of the molded tube for measurement can be further reduced by performing a purification treatment using a fluorine-containing gas described later.
  • the TFEZFTE having an MFR of 1.0 to 3.5 (gZ10 minutes) is used.
  • the average roughness [Ra] and the maximum roughness of the inner surface of the molded tube for measurement are obtained.
  • the [R t] can be in the above-mentioned range.
  • the TFEZHFP copolymer accounts for 0.5 to 60% by mass of the total solid content of the TFEZHFP copolymer and the TFE / FTE copolymer.
  • the molded product obtained using the fluororesin composition of the present invention may have poor surface smoothness. May have poor mechanical properties at high temperatures.
  • the preferable upper limit is 50% by mass, and the dimensional stability is not impaired even when used at a practical washing temperature without lowering the heat resistance of the obtained molded body.
  • a more preferable upper limit is 30% by mass.
  • the upper limit is more preferably 10% by mass from the viewpoint of exhibiting a high melting point as described later, but the optimum composition should be set for each application in view of the balance between moldability and developed performance.
  • the TFEZFTE copolymer is It is preferable to carry out melt-kneading with the TFE / HFP copolymer.
  • a mixture of the above TFE / FTE copolymer and the above TFE / HFP copolymer, which is before and during the above-mentioned melt-kneading, is referred to as a ⁇ mixture composition ''. There is.
  • melt kneading is carried out using an extruder as described below.
  • what is melt-kneaded with the above mixed composition and extruded from the extruder may be referred to as an “extrudate”.
  • the proportion of the TFEZH FP copolymer in the total solid mass of the mixed composition is 0. 5% to about 10% is most preferred.
  • the extrudate has a melting point higher or equal to the melting point of the TFE ZFTE copolymer alone before melt kneading according to the differential scanning calorimeter analysis, so that the heat resistance is high. Can be improved.
  • the TFE_HFP copolymer when the TFE_HFP copolymer is in a range of more than 10% by mass and not more than approximately 35% by mass of the total solid content of the mixed composition, the TFE before melt-kneading is used. It shows a higher heat of fusion than the FEZHF P copolymer, and shows a lower heat of fusion than the TFE / HFP copolymer before melt kneading in the region exceeding about 35% by mass.
  • the fluororesin composition of the present invention can exhibit such specific thermal characteristics by being melt-kneaded.
  • the amount of heat of fusion can be adjusted as described above, and the average molecular weight and the melt viscosity can be controlled.
  • the melt kneading will be described later.
  • the fluororesin composition of the present invention can also adjust the heat of fusion, the average molecular weight, and the melt viscosity as described above by performing a treatment of pressurizing and pulverizing the mixed composition. It is conceivable that.
  • a screw having a high kneading effect of a screw mounted on a molding apparatus is used.
  • Fluororesin composition of the present invention, a TFE / / FTE copolymer and TFE / HFP copolymer polymer may be made from a tetrafluoropropoxy O b ethylene polymer.
  • the tetrochloroethylene polymer when added, has the effect of improving the moldability during molding as described below, and thus has the significance of being used as a molding aid.
  • the ⁇ tetrafluoroethylene polymer '' is a homopolymer of tetrafluoroethylene, and Z or a copolymer of the tetrafluoroethylene and another comonomer
  • the above-mentioned other comonomer means one which is less than 1% by mass of the total mass of tetrafluoroethylene and the above-mentioned other comonomer.
  • the tetrafluoroethylene polymer is different from the TFEZFTE copolymer and the TFEZHF P copolymer in that the content of the copolymer component other than tetrafluoroethylene is limited to less than 1% by mass. It is a distinct concept.
  • the other comonomer is not particularly limited, and examples thereof include trifluoroethylene [CTFE], HFP, and perfluoro (alkyl vinyl ether) [p AVE].
  • the above tetrafluoroethylene polymer preferably has a heat of fusion of 60 J / g or more.
  • a fluororesin composition having excellent bending resistance and crack resistance as described above and having good moldability when melt-molded to obtain a molded article can be obtained.
  • the above-mentioned tetrafluoroethylene polymer may have a heat of fusion of less than 6 jJg.For example, even if a polymer having a heat of fusion of 35 to 48 j / g is used, there is a slight Improvement in bending resistance and crack resistance.
  • the fluororesin composition of the present invention is composed of the tetrafluoroethylene polymer
  • the tetrafluoroethylene polymer is 0.2 to 5% by mass of the solid content of the fluororesin composition. %. If the amount is less than 0.2% by mass, the improvement in moldability due to the use of the above-mentioned tetrafluoroethylene polymer may not be remarkably exhibited. If the amount exceeds 5% by mass, the surface of the obtained molded body becomes smooth. May deteriorate. A more preferred lower limit is 0.5% by mass, and a more preferred upper limit is 3% by mass.
  • the fluororesin composition of the present invention in addition to the TFE / FTE copolymer, the TFE / HFP copolymer and the tetrafluoroethylene polymer used as desired, It may contain additives.
  • the additives are not particularly limited, and include, for example, fillers, lubricants, molding aids, pigments, and the like.
  • fillers for example, fillers, lubricants, molding aids, pigments, and the like.
  • the TFEZFTE copolymer and the TFEZHFP copolymer are preferably prepared by adjusting the number of terminal functional groups.
  • the number of the terminal functional groups is adjusted prior to the melt-kneading. Adjustment of the number of terminal functional groups will be described later.
  • the fluororesin composition is preferably one that has been treated with a fluorine-containing gas.
  • treatment using a fluorine-containing gas refers to not only adjusting the number of terminal functional groups before melt-kneading, suppressing foaming during molding, but also extrudate obtained after melt-kneading.
  • the purpose is to decompose and remove the low molecular weight substances contained in.
  • the treatment using the fluorine-containing gas is a purification treatment using a fluorine-containing gas.
  • exposing to a fluorine-containing gas it is possible to decompose and remove low-molecular-weight substances contained in the extrudate obtained after the above-mentioned melt-kneading.
  • the fluororesin composition of the present invention preferably has a molecular weight distribution of from 1.0 to 2.2.
  • the value in monodispersion is immediately set to 1.0, and is a value indicating the degree of variation therefrom.
  • the molecular weight distribution exceeds 2.2, the molecular weight varies greatly and low molecular weight substances may be present, and when molding a molded article whose surface irregularities such as the inner surface of the tube are not restricted by a mold, etc. Low molecular weight compounds bleed out on the surface and surface smoothness tends to decrease.
  • a more preferred upper limit is 1.6.
  • the molecular weight distribution is a value for the fluororesin composition of the present invention as described above, and when the fluororesin composition of the present invention is obtained by performing a purification treatment using a fluorine-containing gas, This is the value after performing the purification treatment using the contained gas.
  • By performing the purification treatment using the above-mentioned fluorine-containing gas low molecular weight substances can be removed, and the molecular weight distribution within the above range can be suppressed.
  • Fluorine-containing gas In the case where the purification treatment is carried out using the above, the value of the molecular weight distribution before performing the above-mentioned purification treatment may exceed the above range.
  • the removal of the low molecular weight substance can be determined by the fact that the value of the above molecular weight distribution has decreased and the MFR has decreased through the purification treatment using a fluorine-containing gas.
  • the reason that the low molecular weight substance cannot be determined based on only the decrease in the molecular weight distribution described above is that the result of the melt viscoelasticity measurement is fitted to a normal distribution curve to make it closer to the ideal curve, so that the spread of the distribution is expanded. This is because even if it is an indicator, it cannot evaluate the uneven distribution.
  • the method for measuring the MFR of the fluororesin composition after melt-kneading is the same as described above.
  • At least one terminal functional group selected from the group consisting of one CF 2 —CH 2 OH, one CONH 2 , —COOH, and one COF has less than 10 per 10 6 carbon atoms. Preferably, there is. If it is 10 or more, foaming is likely to occur during melt molding.
  • the fluororesin composition of the present invention may have no terminal functional group.
  • the number of the terminal functional groups is a value obtained by measurement by infrared spectroscopy.
  • the number of the terminal functional groups is a value in the fluororesin composition of the present invention, and is obtained by performing the purification treatment using the above-described fluorine-containing gas on the fluororesin composition of the present invention. In some cases, it is the value after this purification process.
  • the carbon number is the sum of the carbon number of the TFE / FTE copolymer and the carbon number of the TFEZHFP copolymer.
  • the number of carbon atoms and the number of the terminal functional groups are, when the fluororesin composition of the present invention is composed of the above-mentioned tetrafluoroethylene polymer, the number of carbon atoms and the terminal functional groups of the tetrafluoroethylene polymer Including the number of
  • the above-mentioned terminal functional group is the same as the above-mentioned TF EZF den E copolymer and / or TF EZHF P It exists at the molecular chain terminal of the polymer.
  • the molecular chain terminal may be a main chain terminal or a side chain terminal.
  • the terminal functional group is formed by using a monohydric lower alcohol or the like as a chain transfer agent at the time of polymerization of the TFEZFTE copolymer or TFE / HFP copolymer, thereby forming the main chain terminal and / or the side chain terminal. Can be introduced.
  • the method for producing a fluororesin composition of the present invention is for producing the above fluororesin composition.
  • the method for producing a fluororesin composition of the present invention includes a melt-kneading step of melt-kneading a mixed composition comprising a TFE / FTE copolymer and a TFE / HFP copolymer, and a purification treatment using a fluorine-containing gas. And a purification step for performing the above steps in this order.
  • the terminal functional groups of the molecular chains of the TFE / FTE copolymer, the TFE / HFP copolymer and the optional tetrafluoroethylene polymer in the mixed composition are bonded to each other. (Hereinafter referred to as a coupling reaction).
  • the melt-kneading step is a step for generating a coupling body by a coupling reaction of the terminal functional groups, thereby enabling to obtain a molded article having excellent ozone resistance.
  • the shearing force applied to the mixed composition temporarily increases, and the molecular chains are locally cut. , Avoids lowering of melt viscosity and formation of low molecular weight Was not.
  • the melt kneading step is performed by adjusting parameters such as the time required for melt kneading, the temperature at which the melt kneading is performed, the shear rate, and the number of terminal functional groups. Since the progress of the coupling reaction can be controlled, even a molecular chain whose molecular weight has been reduced by shearing once due to shearing is bonded to another molecular chain by the coupling reaction, and the same molecular level as before the molecular chain was cut. Therefore, it is possible to suppress the abundance of the low-molecular-weight product and obtain a molded product having excellent ozone resistance.
  • the melt-kneading step controls the coupling reaction so that the melt reaction does not excessively increase due to the progress of the coupling reaction proceeding at a rate exceeding the breaking of molecular chains by shearing. It is thought that deterioration of sex can be prevented.
  • the melt-kneading step the melt-kneading is performed until the viscosity of the mixed composition no longer changes. The change in viscosity during melt-kneading of the above mixed composition is observed through the change over time of the rotational torque by a torque meter via a screw.
  • the expression “until the viscosity change of the mixed composition disappears” means that the process is performed until the viscosity of the mixed composition does not change.
  • the above-mentioned “state in which the viscosity of the mixed composition does not change” means a state in which the fluctuation of the value of the rotational torque is within 5% of the center value for a certain period of time or more.
  • the “constant time” is, for example, 10 minutes.
  • the time required for the melt-kneading may vary depending on the temperature at which the melt-kneading described below is performed, the mixing ratio of the mixed composition, the screw shape, and the like, but is generally 2 minutes or more.
  • the upper limit of the time required for the melt kneading can be set to, for example, 10 minutes in terms of economy and productivity.
  • the TF EZF TE copolymer having 17 terminal functional groups When the active group TFE ZH FP copolymer is kneaded at a mass ratio of 90: 1.0, the mixing time is about 4 to 9 minutes at 390 ° C.
  • this corresponds to a transit time of about 2.5 to 5 minutes.
  • the passage time is set based on data of the time-dependent change of the viscosity measured beforehand using a batch-type kneader.
  • the melt-kneading is performed by setting the temperature of the mixed composition of the TFE / FTE copolymer and the TFE / HFP copolymer in the cylinder to 350 to 3995 ° C. It is controlled using an extruder.
  • the kneading temperature is within the above range, it is possible to obtain a fluororesin composition in which the surface of the molded article can be easily smoothed during molding.
  • a preferred lower limit of the above kneading temperature is 360 ° C.
  • the temperature in the cylinder of the extruder is kept constant after inputting the control conditions in a state where the above-mentioned mixed composition is not put into the cylinder.
  • the measurement can be performed by using a plurality of thermocouples over a period of time, and it can be controlled by confirming that the temperature is the target.
  • a single-screw extruder equipped with a screw having a high kneading effect may be used, but it is more preferable to use a twin-screw extruder.
  • the shear rate is preferably set in the above-mentioned temperature range according to the composition ratio of the above-mentioned mixed composition.
  • the TFE / FTE copolymer and the TFE / HFP copolymer used are preferably powders after polymerization, and the powders preferably have a small particle diameter. This is because, when the number of terminal functional groups is adjusted with a fluorine-containing gas prior to melt-kneading, as described later, not only the treatment is facilitated but also a uniform melt-kneaded state is obtained.
  • the above-mentioned powder after polymerization is a powder obtained by drying after completion of the polymerization reaction.
  • the powder of the TFE-no-FTE copolymer and the powder of the TFE-HFP copolymer are mixed without heating.
  • the mixing of the powder can be performed using a conventionally known device.
  • the TF EZF TE copolymer and the TFE / HFP copolymer are preferably prepared by adjusting the number of terminal functional groups. Adjustment of the number of terminal functional groups is achieved by mixing in melt-kneading while maintaining the number of terminal functional groups to such an extent that a force-pulling body capable of obtaining a molded article having excellent ozone resistance is formed in melt-kneading. This is for suppressing the number of terminal functional groups to such an extent that the excessive increase in the shearing force applied to the composition and the accompanying generation of low molecular weight substances are suppressed.
  • the number of the terminal functional groups is adjusted such that the number of the terminal functional groups is 4 to 100 per 10 6 in total of the carbon number of the TFE / FTE copolymer and the carbon number of the TFE / HFP copolymer. It is preferable that the process be performed as follows. A more preferred upper limit is 70, and a still more preferred lower limit is 50. In the case where a tetrafluoroethylene polymer is used, the number of the terminal functional groups is preferably adjusted prior to the melt-kneading step also in the case of using the tetrafluoroethylene polymer.
  • the number and the number of terminal functional groups are values of a combination of the above-mentioned TFEZFTE copolymer, the above-mentioned TFE-no-HFP copolymer and the above-mentioned tetrafluoroethylene polymer.
  • the number of the terminal functional groups is adjusted as follows: (A) in which the number of the terminal functional groups is originally 0 in the polymerization stage or 0 due to the inactivation of the terminal functional groups described later; By mixing with (B) which has not been completely deactivated in the terminal functional group, it is possible to apparently adjust the number, but this is not preferred. This is because the above (B) can cause an increase in the molecular weight due to the coupling reaction when performing the melt kneading, whereas the above (A) causes only the degradation due to the main chain fragmentation. This is because the generation amount of the dimer cannot be avoided.
  • the number of the terminal functional groups is adjusted so that the mixture of the TFE / FTE copolymer, the TFE / HFP copolymer, and the tetrafluoroethylene polymer is adjusted so as to be uniform between molecules. It is preferable to perform it uniformly on the object.
  • the refining step in the method for producing a fluororesin composition of the present invention is performed so that the fluororesin composition of the present invention has a uniform composition by removing low molecular weight substances generated by the melt-kneading step. You.
  • the fluorine-containing gas contains fluorine in an amount of 5% by mass or more.
  • a preferred lower limit is 10% by mass, and a more preferred lower limit is 20% by mass.
  • the fluorine-containing gas may contain 100% by mass or less of fluorine as long as it is within the above range, or may be fluorine gas itself.
  • the refining treatment in the refining step comprises exposing the extrudate obtained in the melt-kneading step to the fluorine-containing gas to remove low molecular weight substances.
  • the above-mentioned purification treatment involves removing low-molecular-weight substances as described above, and In some cases, the terminal functional group may be inactivated.
  • the fluororesin composition of the present invention obtained through the above-described melt-kneading step and the above-described purification step is subjected to melt molding.
  • foaming due to the remaining terminal functional groups may occur. May occur. Therefore, in order to suppress the foaming during melt molding, it is preferable to inactivate the remaining terminal functional groups after the above-described melt-kneading step.
  • the method of inactivating the terminal functional group is not particularly limited.For example, a method of changing the terminal to a trifluoromethyl group by exposure to the above-mentioned fluorine-containing gas, immersion in a methanol solution of aniline, There is a method of substituting a phenyl group by treating at high temperature and high pressure in an autoclave. However, the method is not limited as long as it is changed to a terminal that does not decompose during molding at high temperature. Since the fluororesin composition of the present invention has the above-described composition and is produced by the above-described production method, a molded article having excellent ozone resistance and surface smoothness can be obtained. It is possible to get.
  • the fluororesin composition of the present invention can remove low-molecular-weight substances by performing a purification treatment using a fluorine-containing gas. Even when a molded article having a surface such as a surface is obtained, it is considered that a low molecular weight substance hardly bleeds out on the surface of the molded article, and the surface smoothness of the obtained molded article is improved.
  • the fluororesin composition of the present invention is further characterized in that a low-molecular-weight substance is hardly generated by controlling the force coupling reaction between the terminal functional groups in the melt-kneading as described above.
  • the fluororesin composition of the present invention is composed of a TFE / HFP copolymer component which is hardly susceptible to ozonolysis, it suppresses a decrease in the crack resistance and the like of the molded article after exposure to ozone, and causes slight deterioration.
  • the fluororesin composition of the present invention may also be one in which the remaining terminal functional groups have been inactivated after purification treatment using a fluorine-containing gas.
  • inactivating the terminal functional groups it is possible to suppress the decomposition of the terminal functional groups and the foaming accompanying the coupling reaction of the terminal functional groups when performing melt molding in order to obtain a molded product, which is obtained. It is thought to contribute to the improvement of the surface smoothness of the molded body.
  • a molded article characterized by being obtained from the above-mentioned fluororesin composition is also one of the present invention.
  • a semiconductor manufacturing apparatus comprising the above-mentioned molded article, wherein an ozone-containing medium containing 10% by volume or more of ozone is used at 60 ° C. or more. This is one of the inventions.
  • the ozone-containing medium is not particularly limited, and may be a liquid such as ozone water or a gas such as an ozone-containing gas.
  • the molded body used in the semiconductor manufacturing apparatus is not particularly limited, and examples thereof include tubes and the like.
  • Tubes obtained from the above-mentioned fluororesin composition have high ozone resistance, and therefore, when used in a semiconductor manufacturing apparatus using an ozone-containing medium such as ozone-containing water or ozone gas, compared to existing fluororesin tubes. Because of its high durability, it can reduce the frequency of equipment maintenance, increase the equipment operation rate, and reduce maintenance costs, contributing to the manufacture of less expensive semiconductors.
  • the tube obtained from the fluororesin composition of the present invention has a low average roughness [R a] and a maximum roughness [R t] of the inner surface, and therefore has excellent surface smoothness and abrasion resistance. Even when used in a polishing line in the semiconductor manufacturing process, it has high durability and can contribute to the manufacture of less expensive semiconductors.
  • a semiconductor manufacturing apparatus comprising the above-mentioned molded body, wherein the particle-containing slurry is used at 15 ° C or more, and the particle-containing slurry contains particles made of alumina and / or silica.
  • the above-mentioned joint for a cylindrical molded product is a member for joining cylindrical molded products or for joining a cylindrical molded product to other members.
  • the cylindrical molded product to be joined by the cylindrical molded product joint is preferably made of a fluororesin composition similarly to the cylindrical molded product joint, and has a seamless cylindrical shape. Therefore, there is no dimensional restriction such as thickness, thickness, length, cross-sectional shape, etc., provided that the use of the above fluororesin composition can show superiority in physical properties.
  • the use is not particularly limited.
  • Examples of the cylindrical molded article include various shapes such as a heat-shrinkable tube and a thick-walled tube, and are preferably used in a semiconductor manufacturing apparatus.
  • the cylindrical molded product exhibits excellent surface smoothness, crack resistance, and ozone resistance as compared with the cylindrical molded product obtained using only the TFEZF TE copolymer.
  • a covered electric wire wherein the electric wire is covered with a covering material obtained from the fluororesin composition, is also one of the present invention.
  • the fluororesin-coated electric wire can be manufactured at a high speed.
  • the fluororesin composition also has a lower melt viscosity, and therefore has better moldability than a covered electric wire obtained using only the TFE / HFP copolymer. Also, since it contains a TFE / FTE copolymer component, it exhibits higher volume resistivity at high temperatures than a covered wire obtained using only the TFE / HFP copolymer.
  • the molded product obtained from the fluororesin composition of the present invention generally has smaller spherulites formed on the surface of the molded product than the molded product obtained using only the TF EZ FTE copolymer. It will be.
  • a smaller spherulite means a smaller grain boundary area, and a smaller grain boundary reduces the local concentration of stress, resulting in durability against fatigue rupture ⁇ bending resistance. It is considered to be improved, and is suitable for use in the above-mentioned covered electric wires and the like.
  • FIG. 1 is an electron microscope image of the surface of the inside of the measurement tube molded body after the slurry liquid transfer test in Example 1.
  • FIG. 2 is an electron microscope image of the surface of the inside of the molded tube for measurement after the slurry transfer test in Comparative Example 1.
  • FIG. 3 is a cross-sectional view in the thickness direction of a joint in which cracks occurred after an ozone exposure test in Comparative Example 5. Explanation of reference numerals
  • Example 1
  • the number of terminal functional groups in the above-mentioned mixed composition was determined based on TF EZF TE copolymer and T FE / HFP Copolymer totaled 17 Number 10 6 per carbon in.
  • the molecular weight distribution (CMWD) of the obtained fluororesin composition was 1.45, which was reduced from 1.63, which was the value before the purification treatment, and the MFR was the value before the purification treatment. From 2.1 (gZlO content), it decreased to 1.7 (gZlO content) after purification. It was determined that low molecular weight substances were removed from the extrudate based on the decrease in the MWD and the decrease in the MFR. The number of terminal functional groups contained in the fluororesin composition was confirmed by this time infrared spectroscopy, was between 4-10 several 10 6 per carbon.
  • the MFR was measured at 372 ° C. under a load of 5 kg according to ASTM D 3307 (1998).
  • melt compression molding was performed at a hot plate temperature of 360 ° C to obtain a 2 mm thick sheet, and the obtained sheet was preheated to 370 ° C. The presence or absence of foaming when left in the oven for 2 hours was visually checked, but no foaming was observed.
  • the average roughness [Ra] and the maximum roughness [Rt] of the inner surface of the molded tube for measurement molded by the above-described method using the fluororesin composition were measured in accordance with JIS B0601.
  • a slurry (particles: alumina, concentration: 50 gZL) was passed through the above molded tube for measurement at a flow rate of 10 L / min and a temperature of 25 ° C for 800 hours.
  • the inner surface of the molded tube for measurement before and after sending the slurry was observed using an electron microscope. The results are shown in Figure 1. There were few particles adhered to the inner surface, and no scratches were seen.
  • Example 2
  • Example 3 0.8 parts by mass of tetrafluoroethylene polymer (comonomer: HFP, 0.08% by mass, heat of fusion 45 j / g, molecular weight of about 180 with respect to 100 parts by mass of the raw material of Example 1)
  • HFP tetrafluoroethylene polymer
  • Example 3 A fluororesin composition was obtained in the same manner as in Example 1 except that (10,000) was added, and evaluations other than the slurry feeding test were performed.
  • a fluororesin composition was obtained in the same manner as in Example 1 except that the obtained extrudate was not exposed to a fluorine-containing gas, and evaluations other than the slurry liquid sending test were performed. Comparative Example 1
  • Example 2 A fluororesin composition was obtained in the same manner as in Example 1 except that only the TFE / FTE copolymer resin was used as the raw material, and the same evaluation was performed.
  • Fig. 2 shows electron microscope images of the inner surface of the molded tube for measurement before and after the slurry feeding test. A more remarkable streak-like wear mark was observed as compared with the tube obtained in Example 1. Comparative Example 2
  • a fluororesin composition was obtained in the same manner as in Example 1 except that the temperature of the mixed composition was set to 405 ° C. in the melt kneading, and evaluations other than the slurry feeding test were performed.
  • Example 3 90 10 Not performed 2.1 0.031 0.256 Comparative example 1 100 Before 2
  • Comparative Example 2 90 10 0.101 0.637
  • Table 2.8 shows that Examples 1 to 3 have smaller average roughness and maximum roughness of the inner surface of the molded tube for measurement than Comparative Examples 1 and 2.
  • Example 4
  • Example 2 Melt kneading was performed in the same manner as in Example 1 except that the TFE / HFP copolymer component ratio in the mixed composition was set to 50% by mass, followed by treatment using a fluorine-containing gas to obtain a fluororesin composition.
  • the calorie of fusion was measured from the endothermic peak area near 292 ° C. using DSC.
  • the above fluororesin composition was prepared using a cylinder with a diameter of ⁇ 3 Omm, a screw.
  • the molding speed of the wire coating was about 1.2 times that of Comparative Example 3 below, confirming an improvement in productivity.
  • the volume resistivity of the obtained wire coating at 120 ° C. is 1 ⁇ 10 18 ⁇ ⁇ cm or more, and the volume resistivity of ordinary TFEZHF P copolymer (10 17 ⁇ ⁇ cm). cm or less). Comparative Example 3
  • an electric wire covering was manufactured to have the same coating thickness as that manufactured in Example 4, and was evaluated by the same evaluation method as in Example 4.
  • Example 5 From Table 2, it was found that, in Example 4 in which the TFE / HFP copolymer was added, a fluororesin composition having a low heat of fusion was obtained while having the same electrical properties as Comparative Example 3 in which no TFE / HFP copolymer was added. .
  • Example 5 From Table 2, it was found that, in Example 4 in which the TFE / HFP copolymer was added, a fluororesin composition having a low heat of fusion was obtained while having the same electrical properties as Comparative Example 3 in which no TFE / HFP copolymer was added. .
  • Example 5 Example 5
  • a fluororesin composition obtained by the same method as in Example 1 except that the raw material was used as a raw material a joint capable of connecting the two molded tube articles for measurement obtained in Example 1 was obtained by injection molding. .
  • a set obtained by connecting the above two molded tube for measurement to the above-mentioned joint was assembled into a chemical circulation line, and a slurry liquid sending test was performed under the same conditions as in Example 1.
  • Comparative Example 4 The set obtained by connecting the joint obtained from the composition of Comparative Example 1 to the two molded tube articles for measurement obtained in Example 1 was incorporated into the same chemical circulation line as in Example 5, and The same slurry feeding test as in 5 was performed. An electron microscope was used to observe the inner surface of the joint after the slurry feeding test. As a result, deposition of alumina was observed on the inner surface of the joint, and streak-like wear marks were observed around the alumina deposition portion.
  • Example 5 The joint obtained in Example 5 was subjected to an ozone 1-dew test. No crack as shown in Fig. 3 was observed on the cross section of the joint after the ozone exposure test.
  • the fluororesin composition of the present invention has the above-mentioned constitution, it has excellent ozone resistance and surface smoothness while maintaining excellent heat resistance and electric characteristics inherently possessed by the TFE / FTE copolymer. A molded article can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 本発明は、耐オゾン性及び表面平滑性に優れた半導体製造装置に関わる部材、並びに、成型加工性に優れたテトラフルオロエチレン/フルオロアルコキシトリフルオロエチレン共重合体からなるフッ素樹脂組成物を提供する。 テトラフルオロエチレン/フルオロアルコキシトリフルオロエチレン共重合体とテトラフルオロエチレン/ヘキサフルオロプロピレン共重合体とからなるフッ素樹脂組成物であって、上記テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体は、上記テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体と上記テトラフルオロエチレン/フルオロアルコキシトリフルオロエチレン共重合体との合計固形分質量の0.5~60質量%であり、上記フッ素樹脂組成物からなる測定用チューブ成形体は、その内面について、平均粗さ〔Ra〕が0.035μm以下であり、最大粗さ〔Rt〕が0.3μm未満であることを特徴とするフッ素樹脂組成物である。

Description

明細書
フッ素樹脂組成物、 フッ素樹脂組成物製造方法、 半導体製造装置及び被覆電線 技術分野
本発明は、 フッ素樹脂組成物、 フッ素樹脂組成物 造方法、 半導体製造装置及 び被覆電線に関する。 背景技術
テトラフルォロエチレン/ /フルォロアルコキシトリフルォロエチレン共重合体 〔P F A〕 は耐薬品性、 耐熱性、 成形性に優れるフッ素樹脂であり、 その特性を 活かして、 強い劣化作用を有する流体 (気体、 液体) に接触する搬送ライン用の チューブ、 ボトル等に用いられており、 半導体製造装置の部材としては、 オゾン 含有媒体を流通させるチューブ、 研磨剤を含有するスラリーを送液するチューブ 等に用いられている。
近年、 半導体製造の高速化の要請に対応するため、 チューブを流通するオゾン 含有媒体中のオゾンが高濃度化してきたが、 P F Aから得られる部材は劣化が速 く進行し、 装置のメンテナンス頻度を上げることが生産性の面で問題となってい る。
P F Aから得られる部材は従来、 チューブ內面が充分な平滑性を有さず、 特に 研磨剤を含むスラリーを送液する場合、 研磨により送液ライン内にチューブ材が 混入し、 研磨効率の低下、 研磨異常、 得られる半導体の電気特性低下の原因とな り、 製品歩留まりを大きく低下させていた。 また、 オゾン含有媒体を流通する場 合、 汚染物質の堆積が進みやすく、 メンテナンス性の点でも問題があった。 半導体製造装置の部材として用いられるチューブは、 このように劣化しにくく、 内面が平滑な性質を有する.ことが求められる。
従来、 P F Aの成形時に気泡を発生し平滑性悪化の一因となり得る不安定な末 端官能基を、 ペレツト製造段階でフッ素含有ガスと接触させることにより安定ィ匕 する試みがある (例えば、 特公平 8— 3 0 0 9 7号公報参照。 ) 。 しかしながら、 P F A単独では耐ォゾン性に劣るという問題があつた。 熱的に安定で、 高温の溶融状態に長時間保持しても溶融粘度低下が起こらない PFAとして、 一 CH2OH末端基を炭素数 1 06個あたり 7〜40個程度残存 させ、 その他の不安定末端基は安定化したものも提案されている (例えば、 特開 平 10— 1 7621号公報参照。 ) 。 しかしながら、 このような PFAであって も、 依然として耐オゾン性の点で難があった。
劣化に強いチューブの材料として、 PFAと FEPとの混合物を用いたものも いくつか提案されている (例えば、 特開平 1 1— 210942号公報、 特開 20 02— 17357◦号公報参照。.) 。 しかしながら、 ? 八と £?とからなる 混合物を溶融混練し相溶物を製造する際、 溶融粘度が増加するとともに剪断力が 一時的に上昇する現象が観測され、 そのような現象が観測される相溶物から得ら れるチューブは、 内面の最大粗さを 0. 3 m未満にすることは困難であり、 ま た、 フッ素含有ガスと接触させることも行われていない 9
得られる成形体の内面の平滑性を向上するために、 PFAにポリテトラフルォ 口エチレンを添加してなる組成物が提案されている (例えば、 特開平 7— 703 97号公報参照。 ) 。 し力、しながら、 この組成物を製造する際、 フッ素含有ガス と接触させることは行われず、 また、 溶融粘度の増加と剪断力の一時的な上昇に 関する記载も示唆もない。
PF Aはチューブ材としての用途以外に、 電線被覆材としても用いられるが、 融点が高いこと等から成形時にライン速度を上げ難く、 上げた場合には被覆材の 外表面に亀裂を生じる等、 成形加工性に大きな問題があった。
成形加工性が良好なものとして FEPを被覆材に用いた場合、 耐熱性、 電気特 性の面では PF Aに劣り、 近年では電線被覆材として要求される絶縁性、 耐熱性 等の性能水準を満たし得ない事例が増加してきているという問題があった。 電線被覆材として用いることを主とする PFA、 FEP及ぴ変性PTFEから なる組成物が開示されているが (例えば、 米国特許第 531 7061号公報明細 書参照。 ) 、 この組成物をフッ素含有ガスと接触させることは行われていない。 発明の要約
本発明の 1つの目的は、 上記現状に鑑み、 耐オゾン性及び表面平滑性に優れた 半導体製造装置に関わる部材を提供することにあり、 本発明の 2つめの目的は、 成形加工性に優れたテトラフルォロエチレン フルォロアルコキシトリフルォロ ェチレン共重合体からなるフッ素樹脂組成物を提供することにある。
本発明は、 テトラフルォロエチレン zフルォロアルコキシトリフルォロェチレ ン共重合体とテトラフルォロエチレンノへキサフルォロプロピレン共重合体とか らなるフッ素樹脂組成物であって、 上記テトラフルォロエチレンノへキサフルォ 口プロピレン共重合体は、 上記テトラフルォロエチレンノへキサフルォロプロピ レン共重合体と上記テトラフルォロエチレン フルォロアルコキシトリフルォロ エチレン共重合体との合計固形分質量の 0 . 5〜6 0質量%であり、 上記フッ素 樹脂組成物からなる測定用チューブ成形体は、 その内面について、 平均粗さ 〔R a〕 が 0 . 0 3 5 μ ηι以下であり、 最大粗さ 〔R t〕 が 0 . 3 /z m未満であるこ とを特徴とするフッ素樹脂組成物である。
本努明は、 テトララルォロエチレン Zフルォロアルコキシトリフルォロェチレ ン共重合体とテトラフルォロエチレン/へキサフルォロプロピレン共重合体とか らなる混合組成物の溶融混練を行う溶融混練工程と、 フッ素含有ガスを用いた精 製処理を行う精製工程とをこの順で有する上記フッ素樹脂組成物を製造するため のフッ素樹脂組成物製造方法であって、 上記溶融混練は、 シリンダー内における 上記混合組成物の温度を 3 5 0〜3 9 5 °Cに制御した押出成形機を用いて上記混 合組成物の粘度変化がなくなるまで行うものであり、 上記フッ素含有ガスは、 フ ッ素を 5質量%以上含有するものであり、 上記精製処理は、 上記溶融混練工程に より得られた押出物を上記フッ素含有ガスに曝露させて低分子量体を分解除去す ることよりなるものであることを特徴とするフッ素樹脂組成物製造方法である。 発明の詳細な開示
以下に本発明を詳細に説明する。 _ 本発明のフッ素樹脂組成物は、 テトラフルォロエチレン/フルォロアルコキシ トリフルォロエチレン共重合体とテトラフルォロエチレン//へキサフルォロプロ ピレン共重合体とからなる測定用チューブ成形体が、 その内面について、 平均粗 さ 〔R a〕 が 0 . 0 3 5 μ πι以下であるものである。 内面の平均粗さ 〔R a〕 が 0. 0 3 5 μ mを超えるようなチューブに研磨剤等を含む流体を長時間流通させ ると、 摩耗しやすく、 化学的に劣化作用の強い流体に長時間接触すると汚染物質 等がチューブ内面の劣化部分に堆積しやすい。 平均粗さ 〔R a〕 の好ましい上限 は、 0. 0 3 μπιである。 平均粗さ 〔R a〕 は、 上記範囲内であれば、 測定用チ ユーブ成形体の製造方法上の制約から、 下限を 0. 0 0 5 μπιとすることができ る。
本発明のフッ素樹脂組成物は、 テトラフルォロエチレン/フルォロアルコキシ トリフルォロエチレン共重合体とテトラフルォロエチレン/へキサフルォロプロ ピレン共重合体とからなる測定用チューブ成形体が、 その内面について、 平均粗 さ 〔R a〕 が上記範囲内であるとともに、 最大粗さ 〔R t〕 が 0. 未満で あるものである。 0. 3 /z m以上であると、 各種製品において求められる規格水 準を満たさないので好ましくない。 好ましい上限は、 0. 2 5 zmである。 最大 粗さ 〔R a〕 は、 上記範囲内であれば、 測定用チューブ成形体の製造方法上の制 約から、 下限を 0. 1 μ πιとすることができる。
上記平均粗さ 〔R a〕 及び上記最大粗さ 〔R t〕 は、 J I S B 0 6,0 1に 準拠して測定することにより得られる値である。
上記測定用チューブ成形体内面の平均粗さ 〔R a〕 及び最大粗さ 〔R t〕 は、 通常、 後述の低分子量体が存在すると大きくなる。 このことは、 γ線照射により 分子量を低下させた数種のテトラフルォロエチレン フルォロアルコキシトリフ ルォロエチレン共重合体及び/又はテトラフルォロエチレン//へキサフルォロプ ロピレン共重合体を溶融混練し、 チューブ成形することにより得られたチューブ の内面を観察することにより確認することができる。
上記測定用チューブは、 テトラフルォロエチレン フルォロアルコキシトリフ ルォロエチレン共重合体とテトラフルォロエチレン/へキサフルォロプロピレン 共重合体との混合物を、 シリンダー径 3 0mm、 L/D= 2 2、 ダイ Zチップ = 2 Omm ψ/l 2mm φの押出成形機を用いて溶融混練して、 チューブ成形用金 型を用いて 4 0 c m/分の引取り速度で押し出すことにより得られる内径 9. 5 mm、 外径 1 1. 5mmのチューブである。 上記溶融混練は、 上記混合物のシリ ンダー内における温度を 3 4 0°C〜 3 9 5°Cになるように制御し、 スクリユー回 転数 8 r: mで 8〜 10分間行うものである。
上記測定用チューブ成形体は、 上述のように通常のチューブと同様に、 押出成 形により外表面を金型等の外的物体に接触させながら成形 ·冷却して得られるも のであるので、 外表面の凹凸は金型等の表面の平滑さに律され比較的平滑になる , 力 内表面は冷却時に冶具等に接触し続けるのではなく、 表面の凹凸を金型等の. 外的物体により律されることがないので、 球晶ができやすく表面が粗くなりやす い。 し力 しながら、 本発明のフッ素樹脂組成物を用いて得られた上記測定用チュ —ブ成形体は、 その内面であつても表面平滑性を有し、 平均粗さ 〔R a〕 及び最 大粗さ 〔R t〕 が上述の範囲を満たすものである。
本発明のフッ素樹脂組成物は、 上記測定用チューブ成形体内面の平均粗さ 〔R a〕 及び最大粗さ 〔R t〕 が上述の範囲を満たす場合、 その他の一般的な成形体 についても充分な平滑性を有することができる。 その他の一般的な成形体として は特に限定されず、 例えば、 上記チューブ内面と同様に、 従来、 表面が粗くなり やすかつたもの、 例えば、 コーンを用いて得られた電線の被覆材、 キャスト製膜 により得られたフィルム等であってもよい。
本発明のフッ素樹脂組成物は、 テトラフルォロエチレン/フルォロアルコキシ トリフルォロエチレン共重合体 CT FEZFTE共重合体〕 からなるものである。 本明細書において、 上記 TFEZFTE共重合体とは、 フルォロアルコキシト リフルォロエチレン 〔FTE〕 をテトラフルォロエチレン 〔TFE〕 の共単量体 とする共重合体であって、 上記 FT Eは、 TFEと FTEとの合計質量の 1〜1 5質量%であるものを意味する。 本明細書において、 共単量体の全単量体におけ る質量%で表す量は、 共重合体の分子構造中、 その共単量体に由来する共単量体 単位が 「単量体に由来する単位全" 」 中に占める質量%である。 上記 「共単量体 単位」 は、 例えば、 後述の HFPに由来するものである場合、 一 CF2— CF ( CF3) 一で表される。 上記フルォロアルコキシトリフルォロエチレンにおける フルォロアルコキシル基は、 アルコキシル基の炭素—水素結合が、 すべて炭素一 フッ素結合になっているパーフルォロアルコキシル基であってもよいし、 炭素一 水素結合の水素が部分的にフッ素に置換されているアルコキシル基であってもよ レ、。 上記 TFE/FTE共重合体は、 メルトフローレート 〔MFR〕 が 9 (g/l 0分) 以下であるものが好ましい。 9 (g/ l O分) を超えるものは、 分子量が 低すぎて、 得られる成形体の耐オゾン性や耐熱性が低下しやすい。 より好ましい 上限は、 4 (g/10分) であり、 更に好ましい上限は、 3. 5 (gZl O分) である。 上記 MFRは、 上記範囲内であれば、 成形加工性の点で下限を例えば 0. 5 (g/10分) とすることができる。
本明細書において、 MFRは、 ASTM D 3307 (1998年) に準拠 して 372°Cにおいて 5 k gの荷重を加えて測定することにより得られる値であ る。
本発明のフッ素樹脂組成物は、 上記 TFE/FTE共重合体と、 テトラフルォ 口エチレン/へキサフルォロプロピレン共重合体 〔TFE/HFP共重合体〕 と からなるものである。 上記 TFEZHF P共重合体を加えることにより耐オゾン 性を強化することができる。
本明細書において、 上記 TFE/HFP共重合体とは、 へキサフルォロプロピ レン 〔HFP〕 を TFEの共単量体とする共重合体であって、 上記 HFPは、 T F Eと HF Pとの合計質量の 1〜 20質量%以上であるものを意味する。
上記 TFEZHF P共重合体は、 TFEの共単量体として HF Pと、 更に所望 によりビュルエーテルとを用いて得られる 3元以上の共重合体であってもよい。 上記 T FE/HF P共重合体が上記 3元以上の共重合体である場合、 上記ビュル エーテルは、 通常、 TFEと HFPとビュルエーテルとの合計質量の 1質量0 /0以 下であるが、 TFEと HFPとビュルエーテルとの合計質量の 1質量%を超えて もよく、 1質量%を超える場合、 好ましい上限を、 例えば、 2. 5質量。 /0、 より 好ましい上限を 2質量%とすることができる。
上記ビニルエーテルとしては特に限定されず、 例えば、 下記一般式 (I) CY1 2 = CY2-OR (I)
(式中、 Y1及び Y2は、 同一若しくは異なり、 水素原子又はフッ素原子を表 す。 Rは、 炭素原子に結合する水素原子の一部又は全部がフッ素原子に置換され ていてもよくエーテル酸素を有していてもよい有機基を表す。 ) で表されるエー テル酸素含有化合物等が挙げられる。 上記有機基としては、 経済面で、 炭素数 1 〜 4のアルキル基が好ましく、 耐オゾン性の観点では、 炭素数 2〜 4のアルキル 基がより好ましい。
上記 TF E/HF P共重合体は、 メルトフローレート 〔MFR〕 が 9 (g/l 0分) 以下であるものが好ましい。 9 (g/10分) を超えるものは、 分子量が 低すぎて、 得られる成形体の耐オゾン性や耐熱性が低下しやすい。 より好ましい 上限は、 4 (gZlO分) であり、 更に好ましい上限は、 3 (g/10分) であ る。 上記 MFRは、 上記範囲内であれば、'成形加工性の点で下限を例えば 0. 5 (g/l 0分) とすることができる。
上記範囲の MF Rを有する T F E/H P共重合体と T F E/F T E共重合体 とを組み合わせることにより、 測定用チューブ成形体の内面の平均粗さ 〔Ra〕 及び最大粗さ 〔R t〕 を上述の範囲にすることができる。 測定用チューブ成形体 の内面の平均粗さ 〔Ra〕 及び最大粗さ 〔R t〕 は、 後述のフッ素含有ガスを用 いた精製処理を行うことにより、 更に小さくすることができる。
本発明のフッ素樹脂組成物は、 後述のフッ素含有ガスを用いた精製処理を行わ ずに得たものであっても、 MFRが 1. 0〜3. 5 ( g Z 10分) の TFEZF TE共重合体と、 MFRが 0. 5〜3 (g/10分) の T F E/HF P共重合体 とを用いることにより、 上記測定用チューブ成形体の内面の平均粗さ 〔Ra〕 及 ぴ最大粗さ 〔R t〕 を上述の範囲にすることができる。
上記 TFEZHFP共重合体は、 上記 TFEZHF P共重合体と上述の TFE /FTE共重合体との合計固形分質量の 0. 5〜60質量%である。 0. 5質量 %未満であると、 本発明のフッ素樹脂組成物を用いて得られる成形体は表面平滑 性に劣る場合があり、 60質量%を超えると、 得られる成形体は耐屈曲性や高温 での機械的特性に劣る場合がある。 成形速度を向上し得るという利点がある点で、 好ましい上限は、 50質量%であり、 得られる成形体の耐熱性を低下させず実用 的洗浄温度下で使用しても寸法安定性を損なわない点で、 より好ましい上限は、 30質量%でぁる。 後述の高い融点を示す点で、 更に好ましい上限は、 10質量 %であるが、 最適組成は、 成形性、 発現される性能とのバランスから、 用途毎に 設定されるべきものである。
本発明のフッ素樹脂組成物において、 上述の TFEZFTE共重合体は、 上記 TFE/HF P共重合体と溶融混練を行うものであることが好ましい。
本明細書において、 上記 TFE/FTE共重合体と上記 TFE/HF P共重合 体との混合物であって、 上記溶融混練を行う前及び上記溶融混練中のものを 「混 合組成物」 ということがある。
溶融混練は、 後述のように押出成形機を用いて行う力 本明細書において、 上 記混合組成物に対して溶融混練を行い、 押出成形機から押し出したものを 「押出 物」 ということがある。 - ' 上記 TFEノ HFP共重合体は、 上記 TFEZFTE共重合体と溶融混練を行 つた後の耐熱性の点から、 上記混合組成物の合計固形分質量に占める TFEZH FP共重合体の割合が 0. 5〜約 10寳量%が最も好ましい。 上記範囲内である と、 上記押出物は、 示差走査型熱量計分析によれば、 溶融混練を行う前の TFE ZFTE共重合体単独の融点と比べ高い、 又は、 同等の融点を有するので耐熱性 を向上させることができる。 なお、 上記押出物は、 上記 TFE_ HF P共重合体 が上記混合組成物の合計固形分質量の 10質量%を超え、 約 35質量%以下であ る範囲においては、 溶融混練を行う前の T FEZHF P共重合体よりも高い融解 熱量を示し、 約 35質量%を超える領域においては、 溶融混練を行う前の TFE ノ HFP共重合体よりも低い融解熱量を示す。 本発明のフッ素樹脂組成物は、 溶 融混練を行つたものであることにより、 このように特異的な熱特性を示すことが できる。
本発明のフッ素樹脂組成物は、 溶融混練を行うことにより、 上述のように融解 熱量を調整することができるとともに、 平均分子量や溶融粘度を制御することが できる。 上記溶融混練については、 ·後述する。
本発明のフッ素樹脂組成物は、 また、 加圧し粉砕する処理を上記混合組成物に 対して行うことによつても、 融解熱量、 平均分子量及び溶融粘度を上述のように 調整することができるものと考えられる。 上記加圧し粉碎する処理を行う場合、 成形装置に搭載されるスクリユーの混練効果が高いものを用いる。
.本発明のフッ素樹脂組成物は、 TFE//FTE共重合体とTFE/ HFP共重 合体と、 更に、 テトラフルォロエチレン重合体とからなるものであってもよい。 テトラフルォロエチレン重合体からなるものであることにより、 得られる成形体 の耐屈曲性ゃ耐クラック性をより改善することができる。 上記テトラブルォロェ チレン重合体は、 また、 添加すると後述のように成形時に成形加工性を改善する 効果を有することから、 成形助剤として用いる意味合いもある。
本明細書において、 上記 「テトラフルォロエチレン重合体」 とは、 テトラフル ォロエチレンの単独重合体、 及び Z又は、 上記テトラフルォロエチレンとその他 の共単量体との共重合体であり、 上記その他の共単量体は、 テトラフルォロェチ レンと上記その他の共単量体との合計質量の 1質量%未満であるものを意味する。 上記テトラフルォロエチレン重合体は、 テ卜ラフルォロエチレン以外の共重合 成分の含有率が 1質量%未満に限定される点で、 上記 TFEZFTE共重合体や 上記 TFEZHF P共重合体とは区別される概念である。
上記その他の共単量体としては特に限定されず、 例えば、 クロ口トリフルォロ エチレン 〔CTFE〕 、 HFP、 パーフルォロ (アルキルビニルエーテル) 〔p AVE) 等が挙げられる。
上記テトラフルォロエチレン重合体は、 融解熱量が 60 J /g以上のものを用 いることが好ましい。 上記範囲内であると、 上述の耐屈曲性及ぴ耐クラック性に 優れ、 成形体を得るために溶融成形する際良好な成形加工性を有するフッ素樹脂 組成物が得られる。 上記テトラフルォロエチレン重合体としては、 融解熱量が 6 ひ jZg未満のものであってもよく、 例えば、 融解熱量が 35〜48 j/gのも のを用いても、 若干の成形加工性の改善と耐屈曲性ゃ耐クラック性の改善がなさ れる。
本発明のフッ素樹脂組成物が上記テトラフルォロェチレン重合体からなるもの である場合、 上記テトラフルォロエチレン重合体は、 上記フッ素樹脂組成物の固 形分質量の 0. 2〜 5質量%であることが好ましい。 0. 2質量%未満であると、 上記テトラフルォロエチレン重合体を用いることによる成形加工性の改善が顕著 に現れない場合があり、 5質量%を超えると、 得られる成形体の表面平滑性が悪 化する場合がある。 より好ましい下限は、 0. 5質量%であり、 より好ましい上 限は、 3質量%である。
本発明のフッ素樹脂組成物は、 上記TFE/FTE共重合体、 上記 TFE/H F P共重合体及び所望により用いる上記テトラフルォロェチレン重合体のほかに、 添加剤類を含有していてもよい。
上記添加剤類としては特に限定されず、 例えば、 充填剤、 潤滑剤、 成形助剤、 顔料等が挙げられるが、 得られる成形体を半導体製造装置に用いる場合、 純度を 損なわない点から、 添加剤類はできるだけ用いないことが好ましい。
記 T F EZ F T E共重合体及び上記 T F EZH F P共重合体は、 末端官能基 の数の調整を行ったものであることが好ましい。 上記末端官能基の数の調整は、 上記溶融混練に先立って行う。 末端官能基の数の調整については、 後述する。 上記フッ素樹脂組成物は、 フッ素含有ガスを用いた処理を行ったものであるこ とが好ましい。
本明細書において、 上記 「フッ素含有ガスを用いた処理」 は、 溶融混練前に末 端官能基の数を調整すること、 成形時に発泡 抑制することに加えて、 溶融混練 後に得られた押出物に含まれる低分子量体を分解除去することを目的として行う ものである。
上記フッ素含有ガスを用いた処理は、 フッ素含有ガスを用いた精製処理からな るものである。 フッ素含有ガスに曝露することにより、 上記溶融混練後に得られ た押出物に含まれる低分子量体を分解除去することができる。
本発明のフッ素樹脂組成物は、 分子量分布が 1 . 0〜2 . 2であることが好ま しい。
上記分子量分布は、 ある特定の分子量のもののみから構成されている場合、 即 ち単分散における値を 1 . 0としてそこからのばらつきの度合いを表す値である。 上記分子量分布が 2 . 2を超えると、 分子量のばらつきが大きく、 低分子量体が 存在している場合があり、 チューブ内面等の表面の凹凸が金型等に律されない成 形体の成形時に、 上記表面に低分子量体がブリードアウトし表面平滑性を低下さ せやすい。 より好ましい上限は、 1 . 6である。
上記分子量分布は、 上述のように本発明のフッ素樹脂組成物についての値であ り、 本発明のフッ素樹脂組成物がフッ素含有ガスを用いた精製処理を行ってなる ものである場合、 上記フッ素含有ガスを用いた精製処理を行つた後の値である。 上述のフッ素含有ガスを用いた精製処理を行うことにより、 低分子量体を除去す ることができ、 上記範囲内の分子量分布に抑えることができる。 フッ素含有ガス を用いた精製処理を行ってなるものである場合、 上記精製処理を行う前の分子量 分布の値が、 上記範囲を超えるものであってもよい。
上述の低分子量体を除去したことは、 フッ素含有ガスを用いた精製処理を経て 上述の分子量分布の値が減少し、 かつ、 MFRが低下したことにより判断するこ とができる。 上述の分子量分布の減少のみに基づいて低分子量体が除去されたと 判断できないのは、 溶融粘弾性測定の結果を正規分布曲線にフィッティングする ことで理想曲線に近づける操作を行うので、 分布の広がりを示す指標とはなって も、 分布の偏在を評価することができないからである。
溶融混練後のフッ素樹脂組成物の M F Rの測定方法は、 上述したものと同じで ある。
上記分子量分布は、 P o l ym. En g. S c i . , 29 (1989) , 64 5 (W. Η. Τ um i η e 1 1 ο) , 及び、 Ma c r omo l . , 26 (1 99 3) , 499 (W. Η. Tum i n e l l o e t . a 1. ) に記載の方法に従 つて測定することにより得られる値である。
本発明のフッ素樹脂組成物においては、 一 CF2— CH2OH、 一 CONH2、 — COOH、 一COFからなる群より選択される少なくとも 1つの末端官能基が 炭素数 106あたり 10個未満であることが好ましい。 10個以上であると、 溶 融成形時に発泡を生じやすい。 本発明のフッ素樹脂組成物は、 上記末端官能基が 存在しないものであってもよい。
上記末端官能基の数は、 赤外分光法により測定し得られた値である。
上記末端官能基の数は、 上述のように、 本発明のフッ素樹脂組成物における値 であり、 本発明のフッ素樹脂組成物が、 上述のフッ素含有ガスを用いた精製処理 を行ってなるものである場合、 この精製処理の後における値である。
上記炭素数は、 上記 TFE/FTE共重合体の炭素数及び上記 TFEZHFP 共重合体の炭素数の合計である。 上記炭素数及び上記末端官能基の数は、 本発明 のフッ素樹脂組成物が上述のテトラフルォロェチレン重合体からなるものである 場合、 テトラフルォロエチレン重合体の炭素数及び末端官能基の数を含むもので あ 。
上記末端官能基は、 上記 T F EZF丁 E共重合体及び/又は T F EZHF P共 重合体の分子鎖末端に存在するものである。 上記分子鎖末端は、 主鎖末端であつ てもよいし、 側鎖末端であってもよい。 上記末端官能基は、 上記 TFEZFTE 共重合体 ¾び 又は T F E/HF P共重合体の重合時に連鎖移動剤として 1価の 低級アルコール等を用いることにより、 上記主鎖末端及び/又は上記側鎖末端に 導入することができる。
本発明のフッ素樹脂組成物製造方法は、 上記フッ素樹脂組成物を製造するため のものである。
本発明のフッ素樹脂組成物製造方法は、 T F E/F T E共重合体と T FE/H F P共重合体とからなる混合組成物の溶融混練を行う溶融混練工程と、 フッ素含 有ガスを用いた精製処理を行う精製工程とをこの順で有することを特徴とするも のである。
上記溶融混練工程において、 上記混合組成物中の上記 T F E/F T E共重合体、 上記 TFE/HFP共重合体及び所望により用いる上記テトラフルォロエチレン 重合体の分子鎖が有する末端官能基同士が結合する反応 (以下、 カップリング反 応という。 ) が起きる。
上記混合組成物における上記 TFEZFTE共重合体、 上記 TFE/HF P共 重合体の各分子の少なくとも一部が末端官能基間の力ップリング反応により転化 することは、 ①示差走査型熱量分析 〔DSC〕 により得られた熱収支曲線の概形 が溶融混練前後で大きく変化する、 ② D S Cにより観測される溶融混練前の T F EZHF.P共重合体由来の 264 °C付近の吸熱ピークが溶融混練後に完全に消失 する、 ③ D S Cにより観測される溶融混練前の T F E Z F T E共重合体由来の 2 つの吸熱ピークの形状及び位置が溶融混練を行うと変化する、 ④高温の状態で長 時間保持しても PF Aの溶融粘度の低下が抑制されている、 という 4つの現象か ら総合的に判断して、 確認することができる。
上記溶融混練工程は、 上記末端官能基のカップリング反応により、 カップリン グ体を生成し、 耐オゾン性に優れた成形体を得ることを可能にする工程である。 樹脂の溶融混練においては、 従来、 上記カップリング反応が進行して分子量及 び溶融粘度が増加するにつれて、 混合組成物にかかる剪断力が一時的に上昇して 局部的に分子鎖の切断が起こり、 溶融粘度の低下及び低分子量体の生成が避けら れなかった。 しかしながら、 本発明において、 上記溶融混練工程は、 後述する溶 融混練にかける時間、 溶融混練を行う温度、 剪断速度、 末端官能基の数等のパラ メータを調整することにより上記末端官能基の力ップリング反応の進行を制御し 得るものであるので、 剪断により一旦切断され分子量が低下した分子鎖であって も、 カップリング反応により他の分子鎖と結合し、 切断される前と同程度の分子 量を有しているものと考えられ、 結果的に低分子量体の存在率を抑え耐オゾン性 に優れた成形体を得ることが可能である。
本発明において、 上記溶融混練工程は、 また、 上記カップリング反応が剪断に よる分子鎖の切断を上回るペースで進行し溶融粘度が過度に上昇しないように制 御するので、 溶融成形時の成形加工性の悪化を防ぐことができると考えられる。 上記溶融混練工程において、 榕融混練は、 上記混合組成物の粘度変化がなくな るまで行うものである。 上記混合組成物の溶融混練中の粘度変化は、 スクリュー を介してトルクメータによる回転トルクの経時変化を通して観測する。 上記 「混 合組成物の粘度変化がなくなるまで」 とは、 上記混合組成物の粘度変化がない状 態となるまで行うことを意味する。 上記 「混合組成物の粘度変化がない状態」 と は、 回転トルクの値の変動が一定時間以上中心値から 5 %以内にある状態を意味 する。
上記 「一定時間」 は、 例えば、 1 0分とすれば充分である。
上記溶融混練に要する時間は、 後述の溶融混練を行う温度、 上記混合組成物の 混合比率、 スクリュー形状等により変わり得るが、 一般的には 2分以上である。 上記溶融混練に要する時間は、 経済性と生産性の点で、 上限を例えば 1 0分と することができ、 例えば、 末端官能基を 1 7個有する T F EZF T E共重合体と、 末端が全て活性基である T F E ZH F P共重合体とを質量比 9 0 : 1 .0の割合で 混練する場合、 3 9 0 °Cでおよそ 4〜9分であり、 上記混練にラボプラストミル 型二軸押出機 (東洋精機社製) を用いた場合、 およそ 2 . 5〜 5分の通過時間に 相当する。 上記通過時間は、 バッチ式の混練機を用いて粘度の経時変化を予め測 定しておき、 その経時変化のデータに基づき設定される。
上記溶融混練工程において、 溶融混練は、 シリンダー内における T F E/ F T E共重合体と T F E/H F P共重合体との混合組成物の温度を 3 5 0〜3 9 5 °C に制御し、 押出成形機を用いて行うものである。 混練温度が上記範囲内であると、 成形時に成形体表面の平滑化が容易なフッ素樹脂組成物を得ることができる。 上 記混練温度の好ましい下限は、 3 6 0 °Cである。
上記溶融混練工程において、 上記押出成形機のシリンダー内における温度は、 上記混合組成物を入れない状態下に制御条件を入力したのち、 安定状態で、 一定 内径シリンダ一の 1 0 %以上の長さにわたって熱電対を複数用いて測定を行い目 的の温度にあることを確認することにより制御することができる。
上記溶融混練工程には、 混練効果の高いスクリューを備えた一軸型の押出成形 機を用いてもよいが、 二軸型の押出成形機を用いることがより好ましい。
二軸型の押出成形機を用いる場合であっても、 スクリューの構成は充分な混練 効果を備えつつ、 混合組成物に過剰な剪断力を与えないものを選択することが望 ましい。
剪断速度は、 上述の温度範囲において、 上記混合組成物の組成比率に応じて設 定することが好ましい。
上記溶融混練工程において、 用いる上記 T F E/ F T E共重合体及び上記 T F E/H F P共重合体としては、 重合上がりの粉体が好ましく、 上記粉体としては、 粒子径の小さいものが好ましい。 これは、 溶融混練に先立ちフッ素含有ガスによ り後述のように末端官能基の数の調整を行う際、 処理を容易に行うためだけでな く、 均一な溶融混練状態を得るためである。 上記重合上がりの粉体とは、 重合反 応終了後に乾燥を経て得られた粉体である。
上記溶融混練工程に先立ち、 上記 T F Eノ F T E共重合体の粉体と上記 T F E H F P共重合体の粉体とを、 加熱せずに混合しておくことが好ましい。 上記粉 体の混合は、 従来公知の装置を用いて行うことができる。
上記溶融混練工程に先立ち、 上記 T F EZF T E共重合体及ぴ上記 T F E/H F P共重合体は、 末端官能基の数の調整を行ったものであることが好ましい。 上記末端官能基の数の調整は、 耐オゾン性に優れた成形体を得ることを可能にす る力ップリング体を溶融混練において生成する程度に末端官能基の数を保ちつつ、 溶融混練において混合組成物にかかる剪断力の過度の上昇とそれに伴う低分子量 体の発生を抑制する程度に末端官能基の数を抑えるためのものである。 上記末端官能基の数の調整は、 上記末端官能基の数が上記 T F E/F T E共重 合体の炭素数及び上記 TFE/HFP共重合体の炭素数の合計 106個あたり 4 〜100個であるように行うものであることが好ましい。 より好ましい上限は、 70個であり、 更に好ましい下限は、 50個である。 上記末端官能基の数の調整 は、 テトラフルォロエチレン重合体を用いる場合、 このテトラフルォロエチレン 重合体についても溶融混練工程に先立ち行うことが好ましく、 この場合、 上記調 整後の炭素数と末端官能基の数は、 上記 TFEZFTE共重合体と上記 TFEノ HF P共重合体と上記テトラフルォロエチレン重合体とを合わせたものについて の値であることが好ましい。
上記末端官能基の数の調整は、 上記末端官能基の数が、 元来重合段階で 0であ るもの又は後述の末端官能基の不活性化により 0になったもの (A) と、 後述の 末端官能基の不活性化を全ぐ経ていないもの (B) とを混合することにより、 見 掛け上、'数を調整することも可能であるが好ましくはない。 なぜならば、 溶融混 練を行う際、 上記 (B) はカップリング反応により分子量の増大が生じ得るのに 対して、 上記 (A) は主鎖分断による劣化のみが生じるので、 結果として、 低分 子量体の発生量が多くなることを免れないからである。 従って、 上記末端官能基 の数の調整は、 分子間で均一になるように、 上記 TFE/FTE共重合体と上記 TFE/HF P共重合体と上記テトラフルォロエチレン重合体との混合組成物に 対して一様に行うことが好ましい。
本発明のフッ素樹脂組成物製造方法における上記精製工程は、 上記溶融混練ェ 程により生じた低分子量体を除去することにより、 本発明のフッ素樹脂組成物が 均一な組成を有するように行うもので る。
上記精製工程において、 上記フッ素含有ガスは、 フッ素を 5質量%以上含有す るものである。 好ましい下限は、 10質量%であり、 より好ましい下限は、 20 質量%である。 上記フッ素含有ガスは、 上記範囲内であればフッ素を 100質量 %以下含有するものであってもよく、 フッ素ガスそのものであってもよい。 上記精製工程における精製処理は、 上記溶融混練工程により得られた押出物を 上記フッ素含有ガスに曝露させて低分子量体を分 除去することよりなるもので ある。 上記精製処理は、 上述のように低分子量体を除去することとともに、 後述 する末端官能基の不活性化をも行い得る場合がある。
上記低分子量体の除去は、 欧州特許第 4 7 2 9 0 8号明細書 (1 9 9 2年) 、 特開平 0 4— 0 8 5 3 0 5号公報、 及び、 特許 3 0 0 6 0 4 9号公報に開示され ているように、 クロ口フルォロカーボン類等の含フッ素溶媒を用いて行うことも できるが、 工程が煩雑になるので、 上述のフッ素含有ガスを用いる方法が好まし い。
上述の溶融混練工程及び上述の精製工程を経て得られた本発明のフッ素樹脂組 成物は、 溶融成形に供されるものであるが、 成形条件によっては、 残存する末端 官能基に起因する発泡が発生することがある。 従って、 溶融成形時に上記発泡を 抑制するためには、 上述の溶融混練工程ののち、 残存している末端官能基を不活 性化しておくことが好ましい。
上記末端官能基の不活性化の方法としては特に限定されず、 例えば、 上記フッ 素含有ガスに曝露することにより末端をトリフルォロメチル基に変化させる方法、 ァニリンのメタノール溶液に浸漬したのち、 オートクレープ内で高温高圧下で処 理することによりフエニル基に置換する方法等が挙げられるが、 高温下での成形 において分解しない末端に変えるものであれば、 その手法は限定されない。 本発明のフッ素樹脂組成物は、 上述のような組成を有し、 上述のような製造方 法によつて製造されるものであるので、 耐ォゾン性と表面平滑性とに優れた成形 体を得ることが可能である。
本発明のフッ素樹脂組成物がこのように優れた効果を奏する機構としては、 明 確ではないが、 以下のように考えられる。 即ち、 本発明のフッ素樹脂組成物は、 フッ素含有ガスを用いた精製処理を行うことにより低分子量体を除去することが できるものであるので、 金型等の外的物体により律されないチューブの内表面等 の表面を有する成形体を得る場合であっても、 成形体表面に低分子量体がブリー ドアウトしにくく、 得られる成形体の表面平滑性が向上するものと考えられる。 本発明のフッ素樹脂組成物は、 更に、 上述のように溶融混練において、 末端官 能基間の力ップリング反応を制御することにより低分子量体が生成しにくいもの であり、 仮に低分子量体が生じたとしても上記溶融混練の後に上記フッ素含有ガ スを用いた精製処理を行うことにより低分子量体を除去することができる。 本発明のフッ素樹脂組成物は、 また、 オゾン分解を受け難い T F E/H F P共 重合体成分からなるものであるので、 ォゾン曝露を行った後における成形体の耐 クラック性等の低下を抑制し軽微にすることができる。
本発明のフッ素樹脂組成物は、 また、 フッ素含有ガスを用いた精製処理の後、 残存している末端官能基を不活性化したものであってもよい。 末端官能基の不活 性化により、 成形体を得るために溶融成形を行う際、 末端官能基の分解及びノ又 は末端官能基のカップリング反応に伴う発泡を抑止することができ、 得られる成 形体の表面平滑性の向上に寄与するものと考えられる。
上述のフッ素樹脂組成物から^^られたものであることを特徴とする成形体もま た、 本発明の一つである。
上記成形体からなる半導体製造装置であって、 オゾンを 1 0体積%以上含有す るォゾン含有媒体を 6 0 °C以上で使用するものであることを特徴とする半導体製 造装置もまた、 本発明の一つである。
オゾン含有媒体としては特に限定されず、 オゾン水等の液体であってもよいし、 オゾン含有ガス等の気体であってもよい。
半導体製造装置で用いられる成形体としては特に限定されないが、 例えば、 チ ユーブ等が挙げられる。
上述のフッ素樹脂組成物から得られるチユーブは、 耐ォゾン性が高いことから、 含オゾン水又は含オゾンガス等のオゾン含有媒体を用いる半導体製造装置に用い た場合、 既存のフッ素樹脂製のチューブに比べ耐久性が高いので、 装置のメンテ ナンスの頻度を下げ、 装置の稼働率を高め、 更にメンテナンスに要するコストを 削減することができ、 より安価な半導体の製造に寄与する。 また、 本発明のフッ 素樹脂組成物から得られるチューブは、 内面の平均粗さ 〔R a〕 及び最大粗さ 〔 R t〕 が低いものであるので、 表面平滑性、 耐摩耗性に優れ、 半導体製造工程に おける研磨ラインに使用した場合でも耐久性が高く、 より安価な半導体の製造に 資することができる。
上記成形体からなる半導体製造装置であって、 粒子含有スラリーを 1 5 °C以上 で使用するものであり、 上記粒子含有スラリーは、 アルミナ及び/又はシリカか らなる粒子を含有するものであることを特徴とする半導体製造装置もまた、 本発 明の一つである。
上述のフッ素樹脂組成物から得られたものであることを特徴とする円筒状成形 物用継手もまた、 本発明の一つである。
上記円筒状成形物用継手は、 円筒状成形物同士を接合したり、 円筒状成形物と その他の部材とを接合したりする部材である。
上記円筒状成形物用継手によって接合される上記円筒状成形物は、 上記円筒状 成形物用継手と同様にフッ素樹脂組成物からなるものであることが好ましく、 継 ぎ目がなく円筒状のものであれば、 厚みの厚薄、 長さの長短、 断面形状等の寸法 的な制約はなく、 上記フツ素樹脂組成物を使用することにより物性面での優位性 を示すことができるものであれば、 用途は特に限定されない。 上記円筒状成形物 としては、 熱収縮チューブ、 厚肉チューブ等様々な形状のものが挙げられ、 半導 体製造装置に用いることが好適である。
上記円筒状成形物は、 T F EZF T E共重合体のみを用いて得られた円筒状成 形物に比較して、 優れた表面平滑性、 耐クラック性、 耐オゾン性を示す。
上記円筒状成形物用継手として、 上記フッ素樹脂組成物を用いないと、 表面平 滑性に劣るので、 研磨剤を含有するスラリーを送液した場合には、 継手部で集中 的な摩耗が生じ、 次いで摩耗により生じた歪みから円筒状成形物内面にも通常以 上の摩擦がスラリーとの間で新たに生じ、 所望の耐摩耗性を癸揮し得ないことが ある 0
上記フッ素樹脂組成物から得られた被覆材により電線が被覆されてなることを 特徴とする被覆電線もまた、 本発明の一つである。
上記フッ素樹脂組成物は、 上述のように上記溶融混練を行う前の T F EZH F P共重合体よりも低い融解熱量を示すので、 高速でフッ素樹脂被覆電線を製造す ることができる。 上記フッ素樹脂組成物は、 また、 溶融粘度が低いので、 T F E /H F P共重合体のみを用いて得られた被覆電線に比べて、 成形加工性に優れて いる。 また、 T F E/ F T E共重合体成分を含有するので T F E/H F P共重合 体のみを用いて得られた被覆電線に比べて、 高温でより高い体積抵抗率を示す。 本発明のフッ素樹脂組成物から得られた成形体は、 一般に、 T F EZ F T E共 重合体のみを用いて得られた成形体に比べて成形体表面に生成する球晶が小さな ものとなる。 球晶が小さくなることは、 粒界の面積が小さくなることを意味し、 粒界の大きさが小さくなることにより応力の局所集中が少なくなり、 疲労破壌に 対する耐久性ゃ耐屈曲性が向上するものと考えられ、 上記被覆電線等への利用に 好適である。 図面の簡単な説明
図 1は、 実施例 1におけるスラリ一送液試験後の測定用チューブ成形体内表面 の電子顕微鏡像である。 図 2は、 比較例 1におけるスラリ一送液試験後の測定用チューブ成形体内表面 の電子顕微鏡像である。 図 3は、 比較例 5において、 オゾン曝露試験後クラックを生じた継手の厚み方 向の断面図である。 符号の説明
2 クラック影
3 バルタ 発明を実施するための最良の形態
以下に実施例を挙げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。 実施例 1
表 1に示す通りの組成比にて予め粉体混合し T F E/F T E共重合体 (メルト フローレート 〔MFR〕 =2. O g/l O分) と TFE/HFP共重合体 (MF R= l. 9 g/l 0分) とからなる混合組成物を素原料として用いた。 上記混合 組成物における末端官能基の数は、 T F EZF T E共重合体及び T FE/HFP 共重合体の合計炭素数 106個あたり 17個であった。 φ 15 mmのスクリユー を備えた二軸型溶融混練機を用いて、 上記混合組成物の温度を 380〜390°C の範囲に保って混練、 次いで押出を行い、 ペレッ ト状の押出物を得た。 得られた 押出物をオートクレープ内で 20質量。/。のフッ素含有ガスに 185 °Cで 2時間曝 露することにより精製処理し、 フッ素樹脂組成物を得た。
得られたフッ素樹脂組成物の分子量分布 CMWD) は 1. 45であり、 精製処 理を行う前の値である 1. 63に比べて減少したほか、 MFRも精製処理を行う 前の値である 2. 1 (gZl O分) から精製処理後は 1. 7 (gZl O分) へと 低下した。 上記 MWDの減少と上記 MF Rの低下を以つて上記押出物から低分子 量体の除去が行われたと判断した。 このとき赤外線分光法にて確認されたフッ素 樹脂組成物に含まれる末端官能基の数は、 炭素数 106個あたり 4〜10個の間 であった。
上記 MFRについては、 ASTM D 3307 ( 1998年) に準拠して 3 72 °Cにて荷重 5 k gで測定した。
得られたペレッ ト状のフッ素樹脂組成物を原料とし、 熱板温度 360 °Cにて溶 融圧縮成形を行い厚さ 2 mmのシートを得、 得られたシートを 370°Cに予熱し たオーブン内に 2時間静置した際の発泡の有無を目視で確認したが発泡は見られ なかった。
上記フッ素樹脂組成物を用いて、 測定用チューブ成形体及びシートを成形し、 以下の評価を行った。
表面粗さ
フッ素樹脂組成物を用いて上述の製法により成形した測定用チューブ成形体の 内面の平均粗さ 〔Ra〕 及び最大粗さ 〔R t〕 を、 J I S B 0601に準拠 して測定した。
スラリ一送液試験
上記測定用チューブ成形体にスラリー (粒子:アルミナ、 濃度 50gZL) を、 流速 10 L/分、 温度 25 °Cで 800時間流通させた。 スラリ一送液前後の、 測 定用チューブ成形体の内面を電子顕微鏡を用いて観察した。 結果を図 1に示す。 内表面に付着した粒子は少なく、 また、 傷等は見られなかった。 実施例 2
実施例 1の素原料 100質量部に対して 0. 8質量部のテトラフルォロェチレ ン重合体 (共単量体: HFP、 0. 08質量%、 融解熱量 45 j/g、 分子量約 180万) を添加した以外は実施例 1と同じ方法によりフッ素樹脂組成物を得、 スラリー送液試験以外の評価を行った。 実施例 3
得られた押出物をフッ素含有ガスに曝露をしなかった以外は実施例 1と同じ方 法によりフッ素樹脂組成物を得、 スラリー送液試験以外の評価を行った。 比較例 1
素原料として TFE/FTE共重合体樹脂のみを用いた以外は、 実施例 1と同 じ方法によりフッ素樹脂組成物を得、 同様の評価を行った。 スラリー送液試験前 後の測定用チューブ成形体内面の電子顕微鏡像を図 2に示す。 実施例 1で得られ たチューブに比べてより顕著に筋状の摩耗痕が観察された。 比較例 2
溶融混練において混合組成物の温度が 405°Cになるように設定した以外は、 実施例 1と同じ方法によりフッ素樹脂組成物を得、 スラリー送液試験以外の評価 を行った。
TFE/FTE TFE/HFP TFE系
子量メルトフ P -レ-ト平均粗さ最大粗さ 共重合体 共重合体 難 分
重合体 [Rt
分布 ( RaJ
g/10分) L 〕
(質量部) (質量部) (質量部) 処理 (jUm) ( m) 実施例 1 9 一 163 21
0 10 0.023 0.161
俊 1.45 1.7
実施例 2 刖 1.5
90 10 0.8 0.024 0.144
俊 1.1
実施例 3 90 10 行わず 2.1 0.031 0.256 比較例 1 100 前 2
0.050 0.329 後 1.9
3.7
比較例 2 90 10 0.101 0.637
後 一 2.8 表ュから、 実施例 1〜3は、 比較例 1〜2に比べて測定用チューブ成形体の 内面の平均粗さ及び最大粗さが小さいことがわかった。 実施例 4
混合組成物における T F E/HF P共重合体成分率を 50質量%にした以外は 実施例 1と同じ方法により溶融混練、 次いでフッ素含有ガスを用いた処理を行い、 フッ素樹脂組成物を得た。 得られたフッ素樹脂組成物に対して、 DSCを用いて 292°C付近の吸熱ピーク面積から融解熱量測定を行った。 また、 上記フッ素樹 脂組成物をシリンダ—径 φ 3 Omm、 スクリュー. L/D = 22、 ダイ/チップ = φ 13πιπι/ 7 mm, 押出し温度 340°C〜395°C、 スクリユー回転数 48 r pm、 引取り速度 6 lmZ分で溶融押出成形したところ、 0. 3 mmの被覆厚 みを有する電線被覆物を得た。 得られた電線被覆物の誘電率及び誘電正接を A S TM D 150 (1987年) に準拠して測定周波数 106 H zにて測定した。 上記融解熱量、 上記誘電率及び上記誘電正接の測定結果、 並び 、 上記電線被 覆物を得る際の引取り速度を表 2に示す。
電線被覆物の成形速度は下記比較例 3のそれに比べ 1. 2倍程度であり、 生産 性の向上が確認された。
また、 得られた電線被覆物の 1 20°Cにおける体積抵抗率は、 1 X 1018 Ω · cm以上であり、 通常の TFEZHF P共重合体の体積抵抗率 (1017Ω · cm以下) に比べて、 絶縁性の点でより優れていることが分かった。 比較例 3
T FEZ FT E共重合体ペレツトのみを用いて、 実施例 4で製造したものと同 じ被覆厚みとなるように電線被覆物を製造し、 実施例 4と同様の評価方法により 評価を行った。
結果を表 2に示す。 表 2
Figure imgf000025_0001
表 2から、 TFE/HFP共重合体を添加した実施例 4は、 添加しない比較例 3に比べ同等の電気特性を有しながら、 融解熱量が低いフッ素樹脂組成物が得ら れることがわかった。 実施例 5
TFEZFTE共重合体 (MFR=3. 5〜8. 5 g/10分) と TFE/H 共重合体 (]^?1 = 4. 3〜8. 7 g l 0分) とからなる混合組成物を素 原料とした以外は実施例 1と同じ方法により得られたフッ素樹脂組成物を用い、 実施例 1において得られた測定用チューブ成形体 2本を接続しうる継手を射出成 形により得た。 上記測定用チューブ成形体 2本を上記継手と接続し得られたセッ トを薬液循環ラインに組み込み、 実施例 1と同じ条件でスラリー送液試験を行つ た。 スラリ一送液試験後の継手内面を、 電子顕微鏡を用いて観察したところ、 継 手部近辺には、 アルミナの沈降や付着は見られず、 継手やチューブに顕著な摩耗 は見られなかった。 比較例 4 実施例 1において得られた測定用チューブ成形体 2本に、 比較例 1の組成物か ら得られた継手を接続し得られたセットを実施例 5と同じ薬液循環ラインに組み 込み、 実施例 5と同様のスラリー送液試験を行った。 スラリー送液試験後の継手 内面の電子顕微鏡を用いて観察したところ、 継手内面にアルミナの堆積が見られ、 アルミナ堆積部分の周囲に筋状の摩耗痕が見られた。 実施例 6
実施例 5で得られた継手に対しオゾン 1§露試験を行った。 オゾン曝露試験後の 継手断面には図 3に見られるようなクラックは観察されなかった。
オゾン曝露試験
オゾン曝露試験は、 直列につないだ内径 5 O mmのパイプ内に上記継手を静置 し、 オゾン発生装置 (商品名: S G X— A l 1 MN、 住友精密社製) を用い、 ォ ゾンガス濃度 1 2体積%のウエットガスを流量 0 . 7 Lノ分で 2 1 0日間パイプ 内に流通することにより行った。 なお、 上記ウエットガスは、 ドライオゾンガス をイオン交換水のトラップに通すことにより得た。 比較例 5
比較例 1の組成物から得られた継手に対して、 実施例 6と同様のオゾン曝露試 験を行った。 オゾン曝露試験後の継手断面には図 3に見られるようなクラックが 観察された。 産業上の利用可能性
本発明のフッ素樹脂組成物は、 上述の構成よりなるので、 T F E / F T E共重 合体が元来有する、 優れた耐熱性と電気特性を保持しながら、 耐オゾン性及び表 面平滑性に優れた成形体を得ることができる。

Claims

請求の範囲
1. テトラフルォロエチレン/フルォロアルコキシトリフルォロエチレン共重 合体とテトラフルォロエチレン/へキサフルォロプロピレン共重合体とからなる フッ素樹脂組成物であって、
前記テトラフルォロエチレンノへキサフルォロプロピレン共重合体は、 前記テト ラフルォロェチレン /へキサフルォ口プロピレン共重合体と前記テトラフルォ口 エチレン/フルォロアルコキシトリフルォロエチレン共重合体との合計固形分質 量の 0. 5〜60質量%であり、
前記フッ素樹脂組成物からなる測定用チューブ成形体は、 その内面について、 平 均粗き 〔R a〕 が 0. 035 μ m以下であり、 最大粗さ 〔R t〕 力 0 · 3 m未 満である
ことを特徴とするフッ素樹脂組成物。 : - :
2. テトラフルォロエチレン/フルォロアルコキシトリフルォロエチレン共重 合体は、 テトラフルォ口ェチレンノへキサフルォ口プロピレン共重合体と溶融混 練を行うものである請求の範囲第 1項記載のフッ素樹脂組成物。
3. フッ素含有ガスを用いた処理を行ったものである請求の範囲第 1又は 2項 記載のフッ素樹脂組成物。
4. フッ素含有ガスを用いた処理は、 フッ素含有ガスを用いた精製処理からな るものである請求の範囲第 3項記載のフッ素樹脂組成物。
5. 分子量分布が 1. 0〜.2. 2である請求の範囲第 1、 2、 3又は 4項記载 のフッ素樹脂組成物。
6. —CF。一 CH2OH、 一 CONH2、 一 C O O H及ぴ一 C O Fからなる群 より選択される少なくとも 1つの末端官能基が炭素数 106個あたり 10個未満 であり、
前記末端官能基は、 テトラフルォロエチレン/フルォロアルコキシトリフルォロ ェチレン共重合体の分子鎖末端及び Z又はテトラフルォロェチレン /へキサフル ォロプロピレン共重合体の分子鎖末端に存在するものであり、
前記炭素数は、 前記テトラフルォロエチレン フルォロアルコキシトリフルォロ ェチレン共重合体の炭素数及び前記テトラフルォロェチレン へキサフルォ口プ ロピレン共重合体の炭素数の合計である請求の範囲第 1、 2、 3、 4又は 5項記 載のフッ素樹脂組成物。
7. テトラフルォロエチレン //フルォロアルコキシトリフルォロエチレン共重 合体は、 メルトフローレートが 9 (gZl O分) 以下であるものであり、 テトラフルォロエチレン/へキサフルォロプロピレン共重合体は、 メルトフロー レートが 9 (gZl O分) 以下であるものである請求の範囲第 1、 2、 3、 4、 5又は 6項記載のフッ素樹脂組成物。
8. テトラフルォロエチレン フルォロアルコキシトリフルォロエチレン共重 合体は、 メルトフローレートが 1. 0〜3. 5 (gZl O分) であるものであり、 テトラフルォロエチレン/へキサフルォロプロピレン共重合体は、 メルトフロー レートが 0. 5〜3 (gZl O分) であるものである請求の範囲第 1、 2、 3、 4、 5又は 6項記載のフッ素樹脂組成物。
9. テトラフルォロエチレンノフルォロアルコキシトリフルォロエチレン共重 合体とテトラフルォロエチレン へキサフルォロプロピレン共重合体と、 更に、 テトラフルォロエチレン重合体とからなる請求の範囲第 1、 2、 3、 4、 5、 6、 7又は 8項記載のフッ素樹脂組成物であって、
前記テトラフルォロエチレン重合体は、 前記フッ素樹脂組成物の固形分質量の 0. 2〜 5質量%であるフッ素樹脂組成物。
1 0 . テトラフルォロエチレン/フルォロアルコキシトリフスレオ口エチレン共 重合体とテトラフルォロエチレンノへキサフルォロプロピレン共重合体とからな る混合組成物の溶融混練を行う溶融混練工程と、 フッ素含有ガスを用いた精製処 理を行う精製工程とをこの順で有する請求の範囲第 1、 2、 3、 4、 5、 6、 7 又は 9項記載のフッ素樹脂組成物を製造するためのフッ素樹脂組成物製造方法で あって、 ' 前記溶融混練は、 シリンダー内における前記混合組成物の温度を 3 5 0〜3 9 5 °Cに制御した押出成形機を用いて前記混合糸且成物の粘度変化がなくなるまで行う ものであり、
前記フッ素含有ガスは、 フッ素を 5質量%以上含有するものであり、 前記精製処理は、 前記溶融混練工程により得られた押出物を前記フッ素含有ガス に曝露させて低分子量体を分解除去することよりなるものである
ことを特徴とするフッ素樹脂組成物製造方法。
1 1 . テトラフルォロエチレンノフルォロアルコキシトリフルォロエチレン共 重合体及びテトラフルォロエチレン/へキサフルォロプロピレン共重合体は、 末 端官能基の数の調整を行ったものであり、
前記末端官能基の数の調整は、 前記末端官能基の数が前記テトラフルォロェチレ ン フルォロアルコキシトリフルォロェチレン共重合体の炭素数及び前記テトラ フルォロエチレン/へキサフルォロプロピレン共重合体の炭素数の合計 1 0 6個 あたり 4〜 1 0 0個であるように行うものである
請求の範囲第 1 0項記載のフッ素樹脂組成物製造方法。
1 2 . 請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8又は 9項記載のフッ素樹 脂組成物から得られたものである
ことを特徴とする成形体。
1 3 . 請求の範囲第 1 2項記載の成形体からなる半導体製造装置であって、 オゾンを 1 0体積%以上含有するオゾン含有媒体を 6 0 °C以上で使用するもので ある
ことを特徴とする半導体製造装置。
1 4 . 請求の範囲第 1 2項記載の成形体からなる半導体製造装置であって、, 粒子含有スラリーを 1 5 °C以上で使用するものであり、
前記粒子含有スラリーは、 アルミナ及び/"又はシリカからなる粒子を含有するも のである
ことを特徴とする半導体製造装置。
1 5 . 請求の範囲第 1、 2、 3、 4、 5、 6、 7 8又は 9項記載のフッ素樹 脂組成物から得られたものである
ことを特徴とする円筒状成形物用継手。
1 6 . 請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8又は 9項記載のフッ素樹 脂組成物から得られた被覆材により電線が被覆されてなる
ことを特徴とする被覆電線。
PCT/JP2003/015761 2002-12-11 2003-12-10 フッ素樹脂組成物、フッ素樹脂組成物製造方法、半導体製造装置及び被覆電線 WO2004052987A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003288997A AU2003288997A1 (en) 2002-12-11 2003-12-10 Fluororesin composition, process for producing the same, semiconductor producing apparatus and coated wire
JP2004558450A JP4876395B2 (ja) 2002-12-11 2003-12-10 フッ素樹脂組成物、フッ素樹脂組成物製造方法、半導体製造装置及び被覆電線

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-359737 2002-12-11
JP2002359737 2002-12-11

Publications (1)

Publication Number Publication Date
WO2004052987A1 true WO2004052987A1 (ja) 2004-06-24

Family

ID=32500953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015761 WO2004052987A1 (ja) 2002-12-11 2003-12-10 フッ素樹脂組成物、フッ素樹脂組成物製造方法、半導体製造装置及び被覆電線

Country Status (4)

Country Link
JP (1) JP4876395B2 (ja)
AU (1) AU2003288997A1 (ja)
TW (1) TWI256955B (ja)
WO (1) WO2004052987A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137994A (ja) * 2005-11-17 2007-06-07 Yunimatekku Kk 含フッ素アロイ化共重合体
WO2009044753A1 (en) 2007-10-03 2009-04-09 Daikin Industries, Ltd. Fluororesin composition and covered electric wire
JP2013514435A (ja) * 2009-12-18 2013-04-25 ウィットフォード コーポレーション 複数の溶融加工可能なフルオロポリマーを含有するブレンドフルオロポリマー組成物
WO2022181845A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 含フッ素共重合体
JP2022132101A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 共重合体、成形体、射出成形体および被覆電線

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869241A (ja) * 1981-10-22 1983-04-25 Hitachi Cable Ltd 四フツ化エチレン−六フツ化プロピレン共重合体樹脂組成物
JPH02102248A (ja) * 1988-10-07 1990-04-13 Daikin Ind Ltd 異種溶融型フッ素樹脂ブレンド組成物
JPH03250008A (ja) * 1985-10-21 1991-11-07 E I Du Pont De Nemours & Co 安定なテトラフルオルエチレン共重合体粒子の製造法
JPH05154961A (ja) * 1991-12-02 1993-06-22 Sumitomo Electric Ind Ltd 弗素樹脂被覆物及びその製造方法
JPH07292200A (ja) * 1994-03-03 1995-11-07 Du Pont Mitsui Fluorochem Co Ltd 液体移送用成形品
JPH0825504A (ja) * 1994-07-15 1996-01-30 Chichibu Onoda Cement Corp 薬液搬送用含フッ素高分子製チューブ
JPH09316266A (ja) * 1996-05-24 1997-12-09 Asahi Glass Co Ltd テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体組成物
JPH1017621A (ja) * 1996-07-05 1998-01-20 Asahi Glass Co Ltd テトラフルオロエチレン共重合体
JPH11210942A (ja) * 1998-01-21 1999-08-06 Asahi Glass Co Ltd チューブ
JP2002173570A (ja) * 2000-12-06 2002-06-21 Du Pont Mitsui Fluorochem Co Ltd 熱溶融性フッ素樹脂組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559062B2 (ja) * 1993-06-30 2004-08-25 三井・デュポンフロロケミカル株式会社 テトラフルオロエチレン/フルオロアルコキシトリフルオロエチレン共重合体組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869241A (ja) * 1981-10-22 1983-04-25 Hitachi Cable Ltd 四フツ化エチレン−六フツ化プロピレン共重合体樹脂組成物
JPH03250008A (ja) * 1985-10-21 1991-11-07 E I Du Pont De Nemours & Co 安定なテトラフルオルエチレン共重合体粒子の製造法
JPH02102248A (ja) * 1988-10-07 1990-04-13 Daikin Ind Ltd 異種溶融型フッ素樹脂ブレンド組成物
JPH05154961A (ja) * 1991-12-02 1993-06-22 Sumitomo Electric Ind Ltd 弗素樹脂被覆物及びその製造方法
JPH07292200A (ja) * 1994-03-03 1995-11-07 Du Pont Mitsui Fluorochem Co Ltd 液体移送用成形品
JPH0825504A (ja) * 1994-07-15 1996-01-30 Chichibu Onoda Cement Corp 薬液搬送用含フッ素高分子製チューブ
JPH09316266A (ja) * 1996-05-24 1997-12-09 Asahi Glass Co Ltd テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体組成物
JPH1017621A (ja) * 1996-07-05 1998-01-20 Asahi Glass Co Ltd テトラフルオロエチレン共重合体
JPH11210942A (ja) * 1998-01-21 1999-08-06 Asahi Glass Co Ltd チューブ
JP2002173570A (ja) * 2000-12-06 2002-06-21 Du Pont Mitsui Fluorochem Co Ltd 熱溶融性フッ素樹脂組成物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137994A (ja) * 2005-11-17 2007-06-07 Yunimatekku Kk 含フッ素アロイ化共重合体
WO2009044753A1 (en) 2007-10-03 2009-04-09 Daikin Industries, Ltd. Fluororesin composition and covered electric wire
EP2185648A4 (en) * 2007-10-03 2011-07-06 Daikin Ind Ltd FLUORO-RESIN COMPOSITION AND ISOLATED ELECTRO-WIRE
US8143351B2 (en) 2007-10-03 2012-03-27 Daikin Industries, Ltd. Fluororesin composition and covered electric wire
JP2013514435A (ja) * 2009-12-18 2013-04-25 ウィットフォード コーポレーション 複数の溶融加工可能なフルオロポリマーを含有するブレンドフルオロポリマー組成物
WO2022181845A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 含フッ素共重合体
JP2022132229A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 含フッ素共重合体
JP2022132101A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 共重合体、成形体、射出成形体および被覆電線
JP7185171B2 (ja) 2021-02-26 2022-12-07 ダイキン工業株式会社 含フッ素共重合体

Also Published As

Publication number Publication date
AU2003288997A1 (en) 2004-06-30
TW200416231A (en) 2004-09-01
JPWO2004052987A1 (ja) 2006-04-13
JP4876395B2 (ja) 2012-02-15
TWI256955B (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP3296542B2 (ja) 加工可能性が改良されたポリマーのブレンド組成物
JP5298853B2 (ja) 含フッ素共重合体及び成形品
JP4252210B2 (ja) 熱可塑性フルオロポリマーの混合物
JP4798131B2 (ja) フッ素樹脂組成物及び電線
JPS58174407A (ja) 押出性の改良された含フツ素共重合体
JP2010539252A (ja) フッ素樹脂組成物及び被覆電線
JP2006193741A (ja) 摩耗低減性添加剤含有フルオロカーボンエラストマー組成物
WO2003044093A1 (fr) Composition de resine et procede de fabrication de moules
JP7335685B2 (ja) 熱溶融性フッ素樹脂組成物及びこれから成る射出成形品
JP7476802B2 (ja) 粒子の製造方法および成形体の製造方法
JP2010533231A (ja) 熱可塑性フルオロポリマー溶融加工のための方法
TW201008995A (en) Creep resistant fluoropolymer
WO2003022923A1 (fr) Composition de resine contenant de la fluorine, procede de production associe et revetement de cable la contenant
CA3174335A1 (en) Articles formed from fluorine-containing elastomer compositions using an additive manufacturing method and additive manufacturing methods for thermoset elastomer compositions
JP6292093B2 (ja) 成形品の製造方法および電線の製造方法
WO2004052987A1 (ja) フッ素樹脂組成物、フッ素樹脂組成物製造方法、半導体製造装置及び被覆電線
JP6213691B2 (ja) フッ素樹脂のペレット、電線及びその製造方法
JP7505480B2 (ja) 含フッ素エラストマー組成物、フッ素ゴム成形体、含フッ素エラストマー溶液の製造方法、及び含フッ素エラストマー組成物の製造方法
JP2008223019A (ja) ポリテトラフルオロエチレンファインパウダー、ポリテトラフルオロエチレン製造方法
EP1464660B1 (en) Chlorotrifluoroethylene-based thermoprocessable compositions
JP2003127203A (ja) シラン架橋ポリエチレン成形体の成形方法
WO2004076151A2 (en) Process and an extrusion die for eliminating surface melt fracture during extrusion of thermoplastic polymers
JP2024132585A (ja) 架橋ポリオレフィン成形体及びその製造方法
JP2001072882A (ja) 含フッ素樹脂組成物
JP2003306573A (ja) Ptfe多孔体製造方法及びptfe多孔体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004558450

Country of ref document: JP

122 Ep: pct application non-entry in european phase