WO2004051836A1 - 単相誘導電動機の起動装置 - Google Patents

単相誘導電動機の起動装置 Download PDF

Info

Publication number
WO2004051836A1
WO2004051836A1 PCT/JP2003/015191 JP0315191W WO2004051836A1 WO 2004051836 A1 WO2004051836 A1 WO 2004051836A1 JP 0315191 W JP0315191 W JP 0315191W WO 2004051836 A1 WO2004051836 A1 WO 2004051836A1
Authority
WO
WIPO (PCT)
Prior art keywords
bimetal
auxiliary
positive characteristic
induction motor
phase induction
Prior art date
Application number
PCT/JP2003/015191
Other languages
English (en)
French (fr)
Inventor
Mikio Sahashi
Akihiko Matsuya
Shinichi Iwasaki
Motoi Okada
Kazuo Itoh
Original Assignee
Yamada Electric Mfg. Co., Ltd.
Matsushita Refrigeration Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002347810A external-priority patent/JP3737080B2/ja
Priority claimed from JP2003297296A external-priority patent/JP2005073330A/ja
Priority claimed from JP2003297295A external-priority patent/JP2005073329A/ja
Application filed by Yamada Electric Mfg. Co., Ltd., Matsushita Refrigeration Company filed Critical Yamada Electric Mfg. Co., Ltd.
Priority to US10/537,010 priority Critical patent/US7515029B2/en
Priority to AU2003302543A priority patent/AU2003302543A1/en
Priority to EP03812322A priority patent/EP1605580A4/en
Publication of WO2004051836A1 publication Critical patent/WO2004051836A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/002Structural combination of a time delay electrothermal relay with an electrothermal protective relay, e.g. a start relay
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/04Asynchronous induction motors for single phase current
    • H02K17/08Motors with auxiliary phase obtained by externally fed auxiliary windings, e.g. capacitor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/30Structural association of asynchronous induction motors with auxiliary electric devices influencing the characteristics of the motor or controlling the motor, e.g. with impedances or switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/504Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by thermal means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/002Structural combination of a time delay electrothermal relay with an electrothermal protective relay, e.g. a start relay
    • H01H2061/004PTC resistor in series with start winding, e.g. adapted for being switched off after starting for limiting power dissipation

Definitions

  • the present invention relates to a starting device for a single-phase induction motor such as an electric refrigerator (closed electric compressor) or a pump motor.
  • a single-phase induction motor such as an electric refrigerator (closed electric compressor) or a pump motor.
  • a starting device is often provided in a single-phase induction motor that drives a hermetic compressor such as a refrigerator or an air conditioner.
  • a conventional starting device of this type as shown in FIG. 27 (A), a positive characteristic thermistor is connected in series with an auxiliary winding S energized by an AC power supply 90 together with a main winding M. A configuration that connects the two is provided.
  • the starting current flows through the auxiliary winding S because the positive characteristic thermistor 312 exhibits a low electric resistance value.
  • the starting current increases the positive resistance of the positive characteristic resistor 312, limiting the current to the auxiliary winding S.
  • the power supply voltage is applied to the positive characteristic thermistor 312 and self-heating continues, so that about 2 to 4 W of power is always It consumes energy and has a problem in energy saving.
  • the conventional starting device has a problem that it is difficult to restart the single-phase induction motor 100 immediately after stopping it.
  • the temperature of the positive characteristic sensor for startup 312 is large, the heat capacity is large. If the temperature becomes high and the resistance becomes high during operation, after the motor 100 is stopped, the temperature drops to near normal temperature and it can be restarted. It takes tens of seconds to several minutes to reach the state, and if it is attempted to restart before that, since the positive characteristic thermistor 312 has a high resistance, only a small current flows through the auxiliary winding S. However, the motor 100 was in the rotor locked state, a large current was flowing through the main winding M, and the overload relay 50 was activated and could not be restarted.
  • the overload relay Since the return time of the overload relay is initially shorter than the cooling time before the positive characteristic thermistor 312 can be restarted, the overload relay is repeatedly operated and restored several times, and is sequentially performed. When returning to high temperature The interval becomes longer. Then, since the return time of the overload relay was longer than the positive characteristic thermistor 312, the electric motor 100 could be started. In such a situation, in the refrigerator compressor, the temperature inside the refrigerator decreases, and the thermostat turns off. This has occurred in cases such as In such a case, not only does restarting take time, but also the life of the overload relay described above is shortened.
  • Japanese Patent Application Laid-Open No. 6-38467 a starting device for a single-phase induction motor having a configuration shown in FIG. 27 (B) as Japanese Patent Application Laid-Open No. 6-38467.
  • a bimetal 218 is provided in series with the positive characteristic thermistor 310, and the bimetal 218 is provided in parallel with the positive characteristic thermistor 321.
  • the current to the positive characteristic thermistor 3 12 is cut off.
  • Positive characteristic thermistor The low power consumption was achieved by maintaining the off state of the bimetal 218 by using the resistance 2 14 that consumes less power than 312.
  • Japanese Utility Model Application Laid-Open No. 56-38276 discloses an activation device in which a characteristic thermistor is divided into two parts and arranged.
  • the starter with positive temperature coefficient thermistor has a socket terminal to connect to the connection pin provided on the single-phase induction motor side so that it can be easily mounted on the single-phase induction motor.
  • connection pin provided on the single-phase induction motor side so that it can be easily mounted on the single-phase induction motor.
  • connection pins protrude from the single-phase induction motor as shown in the actual open-ended 62-1115760, and electrical connection is made to the socket terminals of the starter.
  • FIG. 28 (A) shows a plan view of the socket terminal incorporated in the starting device according to the prior art
  • FIG. 28 (B) shows a cross section
  • FIG. 28 (C) shows a bottom view.
  • Japanese Patent Application Laid-Open Nos. 8-149970, 2001-33332159 and the like have been proposed.
  • Japanese Patent Application Laid-Open No. 8-149770 proposes a cylindrical socket terminal having grooves at four places along the insertion / removal direction of the connection pin.
  • a socket terminal is composed of a grip portion and a support portion, and when a grip force is generated in the grip portion, the socket terminal expands and absorbs stress.
  • a technology for providing a unit has been proposed.
  • Japanese Patent Application Laid-Open No. 2000-3312159 proposes a technique in which a convex portion for preventing the socket terminal from expanding is provided near the slit-shaped opening of the socket terminal. I have.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to minimize power consumption during steady-state operation due to a positive-characteristic thermistor for starting, thereby achieving energy saving. It is an object of the present invention to provide a starting device for a single-phase induction motor that can perform the operation.
  • the cylindrical socket terminal disclosed in Japanese Patent Application Laid-Open No. 8-149770 has a problem that the arc-shaped part divided by the groove concentrates stress partially due to the rib effect and is easily deformed. .
  • the socket terminal having the joint piece of Japanese Patent Application Laid-Open No. 8-149770 has a poor space efficiency because the joint piece protrudes to the side, so that it is difficult to use a starter. Difficult to accommodate.
  • the socket terminal disclosed in Japanese Patent Application Laid-Open No. 2001-3319259 has a problem that the space efficiency is deteriorated because the socket terminal is provided with a projection separately from the socket terminal, and it is difficult to accommodate the socket terminal in the starting device.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a highly reliable single-phase induction motor starting device capable of maintaining a holding force of a socket terminal for a long period of time. Is to do. Disclosure of the invention
  • the invention of claim 1 is directed to a starting device for a single-phase induction motor having a main winding and an auxiliary winding energized by an AC power supply,
  • An auxiliary positive characteristic thermistor connected in parallel with the positive characteristic thermistor; a series connection of the auxiliary winding and the positive characteristic thermistor connected in series to sense heat from the auxiliary positive characteristic thermistor; A snap action bimetal that turns off when this reaches the set temperature,
  • a technical feature is provided in the casing, comprising: a sealed chamber for sealing the snap function bimetal and the auxiliary positive characteristic ceramics.
  • a positive characteristic thermistor connected in series with the auxiliary winding
  • An auxiliary positive characteristic thermistor connected in parallel with the positive characteristic thermistor; a series connection of the auxiliary winding and the positive characteristic thermistor connected in series to sense heat from the auxiliary positive characteristic thermistor; Bimetal that turns off when this reaches the set temperature,
  • a closed chamber provided in the casing, for sealing the bimetal and the auxiliary positive temperature coefficient thermistor;
  • a magnet for applying a magnetic force to bias the contact to the on side with respect to the bimetal It is a technical feature that it is provided.
  • a starting device for a single-phase induction motor having a main winding and an auxiliary winding energized by an AC power supply
  • a positive characteristic thermistor connected in series with the auxiliary winding
  • An auxiliary positive characteristic thermistor connected in parallel with the positive characteristic thermistor; a temperature-sensitive magnet that senses heat from the auxiliary positive characteristic thermistor and demagnetizes the temperature to reach a set temperature;
  • the auxiliary winding and a positive characteristic thermistor are connected in series with each other in series, and are turned on by being attracted by the magnetic force of the temperature-sensitive magnet and turned off by demagnetization of the temperature-sensitive magnet. And a closed chamber for sealing the switch.
  • a starting device for a single-phase induction motor having a main winding and an auxiliary winding energized by an AC power supply
  • a positive characteristic thermistor connected in series with the auxiliary winding
  • An auxiliary positive characteristic thermistor connected in parallel with the positive characteristic sum; a temperature-sensitive magnet that senses heat from the auxiliary positive characteristic thermistor and demagnetizes it to a set temperature;
  • a lead switch connected in series with the series circuit of the auxiliary winding and the positive temperature coefficient thermistor, and turned on by the magnetic force of the temperature-sensitive magnet and turned off by demagnetization of the temperature-sensitive magnet.
  • the starting device for a single-phase induction motor when the single-phase induction motor is started, since the positive characteristic thermistor has a low resistance, the auxiliary winding is connected via a series circuit of the positive characteristic thermistor and the snap action bimetal. Starting current flows through the line, and the single-phase induction motor starts. When the start-up current flows, the positive characteristic thermistor self-heats and has a high resistance, and a large amount of current flows to the auxiliary positive characteristic thermistor connected in parallel with the positive characteristic thermistor.
  • the snap-action bimetal turns off, no current flows in the positive characteristic thermistor, and the single-phase induction motor completes startup and enters steady operation.
  • the snap action bimetal is turned off, current flows only to the auxiliary positive characteristic thermistor and heat is generated, and the generated heat keeps the snap action bimetal off.
  • the snap action bimetal and the auxiliary positive temperature coefficient thermistor are housed in a closed room inside the casing, so it is difficult for heat to escape to the outside, and the snap action bimetal is kept off with extremely low power consumption. be able to.
  • a flammable gas a hydrocarbon compound such as butane
  • the refrigerant for the hermetic compressor and the refrigerant leaks, it is housed in a closed chamber. Does not ignite due to sparks during opening and closing operations.
  • the starting positive temperature coefficient thermistor with a large heat capacity is cooled to room temperature.
  • the cooling is quick because the heat capacity is small. Therefore, even when the single-phase induction motor is restarted immediately after it stops, the auxiliary positive characteristic failure is immediately cooled down to near normal temperature, and the time required for restart is several seconds to several tens of seconds. As a result, the overload relay can be restarted quickly without repeating the operation and return to operation as in the conventional technology.
  • auxiliary positive temperature coefficient thermistor since a small auxiliary positive temperature coefficient thermistor is used for heating the bimetal, it is not affected by voltage fluctuations and has a correction effect on changes in ambient temperature.
  • the snap action bimetal includes a movable contact plate that swings a movable contact, a bimetal, and a half-section interposed between a first support point of the movable contact plate and a second support point of the bimetal. It consists of a circular panel panel. When the second support point is closer to the tip position of the bimetal at low temperature than the line connecting the fulcrum of the movable contact plate and the first support point, the panel panel moves so that the movable contact presses the movable contact against the fixed contact. contact Energize the board.
  • the panel panel separates the movable contact point from the fixed contact side.
  • the movable contact plate is urged as described above. This allows the snap action bimetal to break the contacts quickly. Therefore, the arc does not continue and there is no rough contact or noise.
  • the contact pressure becomes zero, the connection continues for a short period of time. As a result, the connection reliability of the contacts is high, and no failure occurs for a long time.
  • the snap action bimetal includes a drawn bimetal.
  • the snap action bimetal is provided with a bimetal that is formed in a substantially circular shape at a central portion. This allows the snap action bimetal to break the contacts quickly. Therefore, the arc does not continue and there is no rough contact or noise.
  • the connection is kept for a short time when the contact pressure is zero, and the contact does not open or close due to vibration. As a result, the connection reliability of the contacts is high, and no failure occurs over a long period of time.
  • the bimetal having the contact on the free end side is urged toward the contact on side by the magnetic force of the magnet.
  • the magnetic force from the magnet decreases in inverse proportion to the square of the distance.
  • Bimetal receives the strongest magnetic force when the contacts are on, and the magnetic force decreases rapidly after the contacts are separated, so the contacts can be disconnected quickly. Therefore, the arc does not continue and there is no rough contact or noise.
  • the time to continue connection when the contact pressure is zero is short, and the contact does not open or close due to vibration. As a result, the connection reliability of the contacts is high, and no failure occurs for a long time.
  • the auxiliary positive characteristic thermistor contacts the base of the bimetal. Therefore, heat from the auxiliary positive characteristic thermistor can be efficiently transmitted to the bimetal, and the bimetal can be kept off in the auxiliary positive characteristic thermistor with low power consumption.
  • a switch provided with a contact on a free end side of a panel made of a magnetic conductive member senses heat from the auxiliary positive characteristic sensor and demagnetizes when the temperature reaches a set temperature. It is energized by the magnetic force of the warm magnet. That is, when the temperature is lower than the set temperature, the switch is attracted and turned on by the magnetic force of the thermosensitive magnet against the elastic force of the panel board, and when the temperature exceeds the set temperature, the switch is demagnetized by the elastic force of the panel board due to demagnetization of the thermosensitive magnet. Turn off at. When turning off, the magnetic force from the thermosensitive magnet decreases in inverse proportion to the square of the distance.
  • the switch receives the strongest magnetic force when the contacts are on, and the magnetic force weakens rapidly after the contacts are separated, so the contacts can be disconnected quickly. Therefore, the arc does not continue and there is no rough contact or noise.
  • the time for which connection is continued when the contact pressure is zero is short, and the contact does not open or close due to vibration. As a result, the connection reliability of the contacts is high, and no failure occurs for a long time.
  • the lead switch is turned on and off by the magnetic force of the temperature-sensitive magnet which senses heat from the auxiliary positive-characteristic error sensor and demagnetizes when the temperature reaches the set temperature. That is, when the temperature is lower than the set temperature, the reed switch is turned on by the magnetic force of the temperature-sensitive magnet, and when the temperature exceeds the set temperature, the reed switch is turned off by the demagnetization of the temperature-sensitive magnet.
  • the magnetic force from the thermosensitive magnet decreases in inverse proportion to the square of the distance, so that the reed switch can cut the contact quickly. Therefore, the arc does not continue and there is no roughening of contacts and no noise. Connection time is short when the contact pressure is zero, and the contact does not open or close due to vibration. As a result, the connection reliability of the contact is high, and no failure occurs for a long time.
  • a through hole is formed at a predetermined position of a conductive plate having a panel portion for making electrical connection while holding the positive characteristic thermistor with a positive force, thereby reducing the width of the outer peripheral portion of the through hole.
  • a fuse section is provided. As a result, the fuse of the fuse section blows when the current rises due to abnormal heat generation and thermal runaway in the positive temperature coefficient thermistor. For this reason, burning of the starting winding and the starting relay can be prevented.
  • a long hole is provided at an abutment angle portion of the panel portion that holds the positive characteristic thermometer, which is bent at an obtuse angle to make contact with the positive characteristic thermometer.
  • a notch is provided at a contact angle portion of the panel portion holding the positive characteristic thermometer which is bent at an obtuse angle to make contact with the positive characteristic thermometer.
  • the contact point between the contact angle portion and the positive characteristic error is divided, thereby doubling the contact point and improving the contact reliability.
  • the resonance frequency of the contact angle portion differs between the inside and the outside of the notch.
  • the vibration of the compressor is transmitted to the starting device,
  • the positive characteristic thermistor spring member resonates, and if the positive characteristic thermistor electrode portion is hit with a panel member, the electrode is damaged or peeled off.
  • the inner and outer sides of the contact angle portion resonate. Since the frequencies are different, they do not resonate at the same time, the abutment part does not hit the positive characteristic thermistor, and there is no damage to the positive characteristic thermistor electrode.
  • the invention according to claim 12 has a positive characteristic thermistor connected in series to the auxiliary winding, and a socket terminal for making an electrical connection between a detachable connection pin.
  • the socket terminal is configured such that a pair of plate portions extending laterally in the axial direction of the connection pin are bent inward, and the ends are formed in an arc shape so as to match the cylindrical shape of the connection pin, and the ends are separated from each other.
  • Connection pin holding part
  • connection pin holding portion is divided into a first portion on the tip side and a second portion on the back side by a slit in a direction perpendicular to the axial direction of the connection pin.
  • the connection pin holding portion of the socket terminal is divided into a first portion on the front end side and a second portion on the back side, when a prying force is applied when the connection pin is inserted.
  • the first portion on the tip side of the connection pin holding portion spreads, and the second portion on the back side does not spread. Therefore, in the second portion, no fatigue occurs, a good contact state with the connection pin can be maintained, and no damage due to heating of the contact portion occurs.
  • the force required at the time of insertion is the largest at the beginning and almost flat afterwards because it is necessary to push a part narrower than the connection pin, but in the present invention, when the insertion of the connection pin is started, it is divided. Since only the first part on the distal end side needs to be expanded, the insertion work becomes easier compared to the prior art product in which the entire connection pin holding portion had to be expanded. Also, because it is the same size as the prior art product, it has high space efficiency and can be easily applied to existing startup equipment.
  • connection pin and the socket terminal even if there is an inclination between the connection pin and the socket terminal, the first portion on the distal end and the second portion on the back side independently contact the connection pin. Even if the socket terminal comes into point contact, the contact point is doubled, and the electrical connection between the connection pin and the socket terminal can be secured.
  • the casing is provided with a concave portion for accommodating the distal end portion of the connection pin penetrating the connection pin holding portion, the chamfered portion of the distal end of the connection pin penetrates through the connection pin holding portion. It will be located in the recess. That is, since the chamfered portion is not gripped by the connection pin holding portion, the gripping force of the connection pin by the connection pin holding portion can be increased, and the contact resistance can be reduced.
  • connection pin holding portion since the first portion on the distal end side of the connection pin holding portion is formed wider so as to hold the connection pin more gently than the second portion on the back side, it is necessary to start insertion of the connection pin. Power is small.
  • the second portion on the far side is formed narrow, so that the second portion can maintain a good contact state with the connection pin, and the contact portion is not damaged by heating.
  • the length of the first portion on the distal end side of the connection pin holding portion in the axial direction of the connection pin is formed to be longer than the second portion on the back side, when the connection pin is inserted.
  • the torsion force is received by the first portion, and the second portion can be prevented from being spread by the torsion.
  • a favorable contact state with the connection pin can be maintained at the second portion, and damage due to heating of the contact portion does not occur.
  • the second portion on the back side of the connection pin holding portion in the axial direction of the connection pin is formed to be longer than the first portion on the front side, the second portion is strong at the second portion.
  • connection pin holding portion since a V-shaped cut is provided at the front end of the second portion on the back side of the connection pin holding portion, the first portion on the tip side is inserted through the connection pin when inserted into the connection pin. Even when the tip of the connection pin reaches the second part on the back side, it can be easily inserted into the second part side, and the insertion work becomes easier.
  • the invention according to claim 19 is a starting device for a single-phase induction motor having a main winding and an auxiliary winding energized by an AC power supply, comprising: a casing;
  • a positive characteristic thermistor connected in series with the auxiliary winding
  • An auxiliary PTC thermistor connected in parallel to the PTC thermistor;
  • a slow-action bimetal that is connected in series to the series circuit of the auxiliary winding and the positive characteristic temperature sensor, detects heat from the auxiliary positive characteristic temperature sensor, and turns off when the temperature reaches a set temperature;
  • a closed chamber provided in the casing, for closing the slow-action bimetal and the auxiliary correction characteristics.
  • the positive-characteristic thermistor when the single-phase induction motor is started, the positive-characteristic thermistor has a low resistance, so that the positive-characteristic thermistor and the slow-action bimetal are connected in series.
  • the starting current flows through the auxiliary winding and starts the single-phase induction motor.
  • the PTC thermistor self-heats and becomes high resistance, and a large amount of current flows to the auxiliary PSC side connected in parallel with the PTC thermistor.
  • the slow-action bimetal turns off, no current flows in the positive-characteristic thermistor, and the single-phase induction motor completes startup and enters steady operation.
  • the slow action bimetal and the auxiliary positive characteristic summit are housed in a closed room inside the casing, so it is difficult for heat to escape to the outside, and the slow action bimetal can be turned off with extremely low power consumption. Can be maintained. Furthermore, even if a flammable gas (a hydrocarbon compound such as butane) is used as the refrigerant for the hermetic compressor and the refrigerant leaks, it is housed in a hermetically sealed chamber, so that the slow-action bimetal can be opened and closed. Does not ignite due to sparks during operation. Furthermore, since the slow action bimetal is used, the formed snack is It can withstand long-term use compared to Yongby Metal.
  • a flammable gas a hydrocarbon compound such as butane
  • the start-up positive temperature characteristic heater with a large heat capacity is cooled to room temperature.
  • the cooling is quick because the heat capacity is small. Therefore, even when the single-phase induction motor is restarted immediately after it is stopped, the auxiliary positive temperature characteristic thermistor is immediately cooled down to near normal temperature, and the time required for restarting becomes very short, from several seconds to several tens of seconds. As a result, the overload relay can be restarted quickly without repeating the operation and return to operation as in the conventional technology.
  • the auxiliary positive characteristic thermistor is in contact with the base of the slow action bimetal. For this reason, heat from the auxiliary positive characteristic thermometer can be efficiently transmitted to the slow-action bimetal, and the slow action bimetal can be kept off in the auxiliary positive characteristic thermometer with low power consumption.
  • a positive characteristic thermistor connected in series with the auxiliary winding
  • the auxiliary positive characteristic thermistor connected in parallel to the positive characteristic thermistor and the auxiliary winding and the series circuit of the positive characteristic thermistor connected in series to sense heat from the auxiliary positive characteristic thermistor and set.
  • a snap-action bimetal which is connected in series to the series circuit of the auxiliary winding, the positive characteristic thermometer, and the slow action bimetal and senses heat from the positive characteristic thermometer and turns off when the temperature reaches a predetermined high temperature; It is a technical feature that it comprises.
  • the positive-characteristic thermistor when the single-phase induction motor is started, the positive-characteristic thermistor has a low resistance, so that the positive-characteristic thermistor and the slow-action bimetal are connected in series.
  • the starting current flows through the auxiliary winding and starts the single-phase induction motor.
  • the positive characteristic thermistor self-heats and becomes high resistance, and a large current flows to the auxiliary positive characteristic thermistor connected in parallel with the positive characteristic thermistor.
  • the temperature of the auxiliary positive characteristic thermistor reaches the set temperature, the slow-action bimetal turns off, and no current flows in the positive characteristic thermistor. Therefore, the single-phase induction motor completes startup and enters steady operation.
  • the snap action bimetal is turned off, and the current to the auxiliary winding is cut off. This prevents a situation in which a large current flows through the wire and dielectric breakdown occurs.
  • the snap action bimetal is set so as not to return at normal temperature. For this reason, thermal runaway in the positive characteristic thermistor due to the return of the snap action bimetal can be completely prevented.
  • the contact of the slow action bimetal and the contact of the snap action bimetal come into direct contact.
  • the temperature rises it separates from the contact on the slow action bimetal side.
  • heat is applied and the slow action bimetal is turned off, heat is also applied to the snap action bimetal side and slightly moves away from the contact on the slow action bimetal side.
  • Even if a slow slow-action bimetal is used, the starting current can be cut off properly. That is, as the temperature rises, the bimetals move away from each other, and chattering hardly occurs.
  • both contacts are composed of movable contacts, the wiping phenomenon (rubbing) always occurs due to temperature changes, and the contact contacts are cleaned.
  • a stopper is provided in contact with the tip of the snap-action bimetal so as not to hinder the operation of the slot action bimetal. For this reason, after the start-up is completed, the positive temperature characteristic thermistor cools, and even if the snap action bimetal returns to room temperature, it can be prevented from bending to the slow-action bimetal side, and an appropriate contact interval can be maintained.
  • FIG. 1 (A) is an explanatory view showing the mounting of the starting device and the over-opening relay according to the first embodiment to a compressor
  • FIG. 1 (B) is a perspective view of a pin terminal.
  • FIG. 2 is a circuit diagram of the starting device and the overload relay according to the first embodiment.
  • FIG. 3 is a plan view of the overload relay according to the first embodiment.
  • FIGS. 4 (A) and 4 (B) are XX vertical sectional views of the overload relay shown in FIG. 3 with a cover attached thereto, and FIG. 4 (A) is a bimetallic cross-sectional view. The state before the inversion is shown, and FIG. 4 (B) shows the state after the inversion of the bimetal.
  • FIG. 5 (A) is a bottom view of the single-phase induction motor starting device according to the first embodiment of the present invention with the bottom cover removed
  • FIG. 5 (B) is a bottom view of FIG. ) Shows a B1-B1 section
  • FIG. 5 (C) shows a C1-C1 section of FIG. 5 (B).
  • FIG. 6 (A) is a plan view of FIG. 5 (B) on the side of arrow e
  • FIG. 6 (B) is a side view of FIG. 5 (C) on the side of arrow f
  • FIG. 6 (C) is a bottom view of FIG. 5 (B) viewed from the arrow.
  • FIG. 7 (A) is a plan view showing a state in which the overload relay is assembled to the starting device
  • FIG. 7 (B) is a side view
  • FIG. 7 (C) is a bottom view.
  • Fig. 8 (A) is a plan view of the snap action bimetal
  • Figs. 8 (B) and 8 (C) are enlarged cross-sectional views of the starting device shown in Fig. 5 (C).
  • Fig. 9 (A) is an enlarged view of the first connection plate in Fig. 5 (A)
  • Fig. 9 (B) is a view of Fig. 9 (A) from the arrow h
  • Fig. 9 (C) is a view taken in the direction of arrow j in FIG. 9 (A)
  • FIG. 9 (D) is an enlarged perspective view of a contact portion with the main PTC surrounded by a circle D in FIG. 9 (C). It is.
  • FIG. 10 (A) is a plan view of a snap action bimetal according to a modification of the first embodiment
  • FIGS. 10 (B) and 10 (C) are modifications of the first embodiment. It is sectional drawing which shows the starting device which concerns on an example.
  • FIG. 11 (A) is an enlarged view of a first connecting plate according to a modification of the first embodiment
  • FIG. 11 (B) is a view taken in the direction of arrow h in FIG. 11 (A).
  • Fig. 11 (C) is a view of arrow j in Fig. 11 (A)
  • Fig. 11 (D) is the main PTC surrounded by a circle D in Fig. 11 (C).
  • FIG. 6 is an enlarged perspective view of a contact portion with the contact member.
  • FIG. 12 (A) is a plan view of a snap action bimetal of the activation device according to the second embodiment
  • FIG. 12 (B) is a side view
  • FIG. 12 (C) is a plan view of a snap-action bimetal of a starting device of another example of the second embodiment
  • FIG. 12 (D) is a side view of another example
  • FIG. 12 (E) and FIG. 12 (F) are explanatory diagrams of the operation of the snap action bimetal according to the second embodiment.
  • FIG. 13 (A) is a plan view of a snap-action bimetal of a starting device according to a modification of the second embodiment
  • FIG. 13 (B) is a side view
  • FIGS. 13 (C) and 13 (D) are explanatory diagrams of the operation of the snap action bimetal according to the modification of the second embodiment.
  • FIGS. 14 (A) and 14 (B) are explanatory diagrams of the bimetal operation of the activation device according to the third embodiment.
  • FIGS. 15 (A) and 15 (B) are explanatory diagrams of the operation of the switch of the activation device according to the fourth embodiment.
  • FIG. 16 is an explanatory diagram of a reed switch of the activation device according to the fifth embodiment.
  • 17 (A), 17 (B), and 17 (C) are circuit diagrams of an application example of the starter according to the present embodiment.
  • FIG. 18 (A) is an enlarged view of a portion surrounded by a circle E in FIG. 5 (B), and FIG. 18 (B) is a sectional view taken along line B 3—B 3 of FIG. 18 (A).
  • Fig. 18 (C) is a cross-sectional view of C3-C3 in Fig. 18 (A) (a view of the front side cut from the center of the pin)
  • FIG. 18 (D) is a perspective view of the socket terminal with the pin inserted.
  • FIG. 19 (A) is a plan view of the terminal shown in FIG. 18 (A), and FIG. 19 (B) is a cross-sectional view of FIG. 19 (A) taken along line B4-B4. Yes, FIG. 19 (C) is a view on arrow k in FIG. 19 (A).
  • FIG. 20 (A) is a plan view of the terminal according to the second embodiment
  • FIG. 20 (B) is a cross-sectional view taken along B4-B4 of FIG. 20 (A).
  • FIG. 20 (C) is a view on arrow k of FIG. 20 (A).
  • FIG. 21 (A) is a plan view of the terminal according to the third embodiment
  • FIG. 21 (B) is a cross-sectional view taken along B4-B4 of FIG. 21 (A).
  • FIG. 21 (C) is a view on arrow k of FIG. 20 (A).
  • FIG. 22 is a graph comparing the insertion input of the socket terminal of the first embodiment with that of the conventional socket terminal.
  • FIG. 23 (B) is a plan view of the activation device according to the sixth embodiment of the present invention in a state where a lid is removed
  • FIG. 23 (A) is a plan view of A in FIG. 23 (B).
  • FIG. 23 (C) shows a C-C section of FIG. 23 (B).
  • FIGS. 24 (A) and 24 (B) are side views of the activation device of the sixth embodiment.
  • FIG. 25 (B) is a plan view of the activation device according to the seventh embodiment with the lid removed, and FIG. 25 (A) is a cross-sectional view taken along line AA of FIG. 25 (B).
  • FIG. 25 (C) shows a cross section C-C of FIG. 25 (B).
  • FIG. 26 is a circuit diagram of the activation device according to the seventh embodiment.
  • FIG. 27 (A) is a circuit diagram of a starting device according to the related art
  • FIG. 27 (B) is a circuit diagram of a starting device according to JP-A-6-38467.
  • FIG. 28 (A) is a plan view of a conventional socket terminal
  • FIG. 28 (B) is a cross section
  • FIG. 28 (C) is a bottom view
  • FIGS. FIG. 28 (E) is a cross-sectional view showing a state where the connection pin is inserted into the activation device.
  • FIGS. 28 (F) and 28 (G) show the state where the connection pin is inserted into the socket terminal. It is a perspective view showing a state.
  • the starting device 10 of the first embodiment and the over-opening drill 50 are integrally taken to the pin terminal 110 of the dome 104 of the compressor 102. And protected by a cover 106.
  • a motor 100 is housed inside the compressor 102.
  • FIG. 2 is a circuit diagram of a single-phase induction motor starting device and an overload relay 50 according to the first embodiment.
  • the power terminals 92 and 94 are connected to a 100 V single-phase AC power source 90, and one of the power terminals 92 is connected in series with an operation switch 97 and an overload relay 50.
  • the power supply line 96 is connected, and the other power supply terminal 94 is connected to the power supply line 98.
  • the overload relay 50 is composed of a bimetal 70 and a heater 76 for heating the bimetal 70, and when an overload is applied to the single-phase induction motor 100, the heat of the heater 76 is generated.
  • the bimetal 70 cuts off the current, and when the temperature drops to room temperature due to the cutoff of the current, the bimetal 70 automatically returns to the normal state and restarts the energization.
  • the single-phase induction motor 100 has a main winding M and an auxiliary winding S.
  • the main winding M is connected between the power supply lines 96 and 98, and one terminal of the auxiliary winding S is Connected to power line 96.
  • the single-phase induction motor 100 drives, for example, the hermetic compressor 102 described above with reference to FIG. 1 of a refrigeration cycle in a refrigerator.
  • the operation switch 97 is turned on and off by, for example, a temperature control device (not shown). The operation switch 97 turns on when the temperature in the refrigerator reaches the upper limit temperature, and turns off when the temperature in the refrigerator reaches the lower limit temperature. .
  • the other terminal of the auxiliary winding S is connected to a power supply line 98 through a series circuit of a positive characteristic thermistor (hereinafter referred to as a main PTC) 12 and a normally closed snap action bimetal 18. .
  • An auxiliary positive characteristic thermistor (hereinafter referred to as an auxiliary PTC) 14 is connected in parallel with the main PTC 12 and the snap action bimetal 18.
  • the main PTC 12 and the auxiliary PTC 14 are made of, for example, an oxide semiconductor ceramic mainly composed of nordium thiocyanate and have a Curie temperature, and the electric resistance value is the Curie temperature.
  • Rapidly increases from Have the property of Positive characteristic thermistors 12 are, for example, about 5 ⁇ at room temperature (around 25 ° C), about 0.1kQ at 120, and about 1k ⁇ at 140 ° C; L0k ⁇ .
  • the auxiliary PTC 14 has a higher resistance value than the main PTC 12, and has a heat capacity of 13 to 1/10 (optimally about 16) so that power consumption is 13 to 1/10.
  • the snap action bimetal 18 detects the heat generated by the auxiliary PTC 14 and turns on and off. When the detected heat reaches, for example, a set temperature of 140 ° C., the snap action bimetal 18 is turned off. .
  • the operation of the activation device 10 of the first embodiment will be described.
  • the operation switch 97 When the operation switch 97 is turned on, a starting current flows to the main winding M via the operation switch 97 and the overload relay 50.
  • the main PTC 12 since the main PTC 12 has a low electric resistance value (for example, about 5 ⁇ ) at room temperature, it can be used as a series circuit of the auxiliary winding S, the main PTC 12 and the snap-action bimetal 18, and a parallel circuit of the auxiliary PTC 14.
  • the starting current flows, so that the single-phase induction motor 100 starts.
  • the main PTC 12 and the auxiliary PTC 14 When the starting current of the auxiliary winding S flows through the main PTC 12, the main PTC 12 and the auxiliary PTC 14 generate heat and the electric resistance value increases rapidly. After a few seconds, the main PTC 12 and the auxiliary PTC 14 reach a temperature of 140 ° C., and the electric resistance of the main PTC 12 at this time is, for example, l kQ to 10 kQ, and the snap action bimetal 1 The current flowing through 8 decreases.
  • the snap action bimetal 18 senses this and turns off, so that no current flows through the series circuit of the main PTC 12 and the snap action bimetal 18, and Thus, the start of the single-phase induction motor 100 is completed, and the steady operation is performed.
  • the main PTC 12 having a large heat capacity is cooled to room temperature.
  • the auxiliary PTC 14 cools quickly because of its small heat capacity. Therefore, even when the single-phase induction motor 100 is restarted immediately after stopping, the auxiliary PTC 14 is immediately cooled to near normal temperature, and the time required for restart is several seconds to several tens of seconds. Very quickly, as in the prior art, the overload relay can be restarted quickly without repeating activation and return.
  • FIG. 3 is a plan view of the overload relay 50 with the cover removed
  • FIG. 4 is a cross-sectional view taken along the line XX in FIG. 3 with a cover attached.
  • the overload relay 50 is composed of a base 52 made of unsaturated polyester and a cover 54 made of PBT resin, and the upper surface of the overload relay 50 extends from the motor side.
  • a socket terminal 58 is provided for receiving a pin (not shown), and a tab terminal shown in FIG. 3 extends on the side surface and extends to the side to insert the power supply receptacle. 5 and 6 are arranged.
  • the bimetal 70 is sandwiched between the movable contact plate 60 and the movable terminal 74, and the heat sink is located below the bimetal 70. 6 are provided. Above the bimetal 70, a movable contact plate 60 is provided. One end of the movable contact plate 60 is welded and fixed to the reinforcing plate 78, and a movable contact 62 that is in contact with the fixed contact 64 is attached to a free end.
  • the mechanical configuration of the overload relay 50 will be described in more detail.
  • the tab terminal 56 connected to the power supply side receptacle is formed in a flat plate shape as shown in FIG. 3, and a connection plate 72 formed in a crank shape is spot-welded to the tab terminal 56. It is connected to the terminal 76 a of the heater 76 via the connection plate 72.
  • the heat sink 76 is made of, for example, a nichrome or iron chrome wire wound in a coil shape and housed in a recess 52 c formed in the base 52 (see FIG. 4 (A)).
  • the other end 76 b of the heater 76 is connected to a reinforcing plate 78 via a movable terminal 74.
  • the reinforcing plate 78 penetrates the hole of the movable contact plate 60 and the concave portion of the bimetal 70, and Welded to terminal 74.
  • the bimetal 70 includes a substantially rectangular snap portion 70a, and a pair of holding portions 70b and 7Ob for holding the snap portion 70a. It is formed (formed) in the same manner as a dish-shaped bimetal, and the curvature (concave / convex) is reversed at a predetermined temperature. As shown in FIG. 4 (A), the bimetal 70 is fixed by holding the holding portion 70 b between the movable contact plate 60 and the movable terminal 74. a is supported by a columnar supporting portion 52 a formed on the base 52. The heat generated in the heat sink 76 is efficiently transferred to the bimetal 7 by arranging the heat sink in a coil around the support portion 52 a and in the concave portion 52 c. It is made to tell 0.
  • the bimetal 70 is fixed by the holding portion 70b, and the snap portion 70a is supported by the support portion 52a, so that desired characteristics can be obtained only by assembly without adjustment. .
  • the holding portion 70b is smaller than the snap portion 70a, even if the holding portion 70b is fixed, the snap characteristics are the same as those of the conventional bimetal unit (unfixed bimetal). The required characteristics can be easily obtained.
  • the movable contact plate 60 is made of an elastic metal plate, has a movable contact 62 at a free end, and has a convex portion 60a in contact with the free end 70a 'of the bimetal 70 at a substantially central portion. It is set up.
  • the movable contact point 62 of the movable contact plate 60 fixed to the reinforcing plate 78 contacts the fixed contact 64 and the fixed contact on which the fixed contact 64 is placed.
  • the plate 66 has one end 66 a fixed to the base 52 side and the other end 66 b formed to a through hole or cutout formed in the cover 54. (Not shown) to the outside. The other end 66 b of the fixed contact plate and the socket terminal 58 are connected outside the cover 54.
  • a convex portion 54a is formed on the cover 54 of the overload relay 50 so that the movable contact plate 60 can swing upward.
  • the cover 54 is formed with an engaging portion 55 for connecting to the activation device 10.
  • the overload relay 50 is in contact with the movable contact 62 and the fixed contact 64.
  • the current from the power supply input through the terminal 56 is supplied to the motor M side.
  • the heat generated at the heater 76 will increase, and the bimetal 70 will reach a preset temperature (for example, 120 ° C).
  • a preset temperature for example, 120 ° C.
  • it snaps from a convex shape to a concave shape as shown in Fig. 4 (B) and pushes up the movable contact plate 60 to break the contact between the movable contact 62 and the fixed contact 64.
  • FIG. 5 (A) is a bottom view of the starting device of the single-phase induction motor according to the first embodiment of the present invention in a state where a bottom cover is removed
  • FIG. 5 (B) is a diagram illustrating a state where the bottom cover is attached.
  • FIG. 5 (A) shows a B1-B1 cross section in the state
  • FIG. 5 (C) shows a C1-C1 cross section of FIG. 5 (B).
  • FIG. 5 (B) corresponds to the section B2-B2 in FIG. 5 (C).
  • Fig. 6 (A) is a plan view on the side of arrow e in Fig. 5 (B)
  • Fig. 6 (B) is a side view of Fig. 5 (C) on the side of arrow f.
  • FIG. 6 (C) is a bottom view of FIG. 5 (B) as viewed from the direction of arrow g.
  • the starting device 10 includes a casing 40 and a bottom cover 46, and is formed with a flange 48 for externally attaching an over-opening / driller 50 shown in FIG. I have.
  • a terminal 22 connected to the auxiliary winding S shown in FIG. 2 is mounted inside the casing 40.
  • the terminal 22 is formed by integrally forming a tab terminal 22C, a socket terminal 22A, and a connecting portion 22B for connecting these.
  • a first connection plate 26 having a panel section 26B for holding the main PTC 12 is attached to the connection section 22B.
  • one end of the second connection plate 30 is connected to the tab terminal 22C of the terminal 22.
  • the spring portion 30a at the other end of the second connection plate 30 applies and holds panel pressure to the auxiliary PT C14.
  • Auxiliary PTC 14 snap action Contacting the base of Bimetal 18. That is, the spring portion 30 a of the second connection plate 30, the auxiliary PTC 14, the base of the snap-action bimetal 18 and one end of the third connection plate 32 are connected adjacently.
  • the other end of the third connection plate 32 is connected to a tab terminal 24 C of a terminal 24 for connecting to the power supply line 98 and the main winding M shown in FIG.
  • the terminal 24 has a tab terminal 24 C and a socket terminal 24 A.
  • a movable contact 18a is provided on the tip side of the snap action bimetal 18 and is in contact with the fixed contact 36a of the fixed contact plate 36 formed in a crank shape.
  • a stopper 49 for restricting the movement of the movable contact 18a is provided on the side wall of the casing 40 of the movable contact 18a.
  • the other end of the fixed contact plate 36 is connected to the fourth connection plate 33, and the other end of the fourth connection plate 33 is a terminal 25 having a tab terminal 25C and a socket terminal 25A. It is connected to the.
  • a fifth connection plate 34 including a panel portion 34B for holding the main PTC 12 is attached.
  • the fifth connection plate 34 is the same member as the first connection plate 26.
  • FIG. 7 (A) is a plan view showing a state where the over-opening relay 50 is assembled to the starting device 10
  • FIG. 7 (B) is a side view
  • FIG. 7 (C) is a bottom view. It is a figure. The assembling is performed by engaging the engaging portion 55 of the overload relay 50 with the flange 48 of the activation device 10.
  • the snap action bimetal 18 and the auxiliary PTC 14 are housed in the closed chamber 44 in the casing 40, so that heat is hardly escaping to the outside, and extremely low power consumption
  • the snap action bi-mail 18 can be kept off.
  • a flammable gas a hydrocarbon compound such as butane
  • it is stored in the closed chamber 44 because of the snap action It does not ignite due to sparks during opening and closing operation of Bimetal 18.
  • auxiliary PTC 14 is directly connected to the base of the snap action bimetal 18
  • the heat from the auxiliary PTC 14 can be efficiently transferred to the snap bimetal 18, and the low power consumption auxiliary PTC 14 can keep the snap bimetal 18 off. it can.
  • the snap-action bimetal 18 of the activation device 10 of the first embodiment will be described in more detail with reference to FIG.
  • FIG. 8 (A) is a plan view of the snap action bimetal 18, and FIGS. 8 (B) and 8 (C) are enlarged cross sections of the starting device shown in FIG. 5 (C).
  • FIG. 8 (B) and 8 (C) are enlarged cross sections of the starting device shown in FIG. 5 (C).
  • the snap action bimetal 18 has a substantially rectangular opening formed in the center, and has a movable contact plate 18b that swings the movable contact 18a, a bimetal 18c, and a first movable contact plate 18b. It consists of a panel panel 18d with a semicircular cross section interposed between the support point P1 and the second support point P2 of the bimetal 18c. The tip of the movable contact plate 18b is bifurcated to hold two movable contacts 18a.
  • the plate panel 18d is made of a spring material or bimetal, and is attached so as to bias the movable contact plate 18b. That is, as shown in FIG. 8 (B), the second support point P2 is lower in temperature than the line connecting the fulcrum P3 of the movable contact plate 18b and the first support point P1 to the lower temperature of the bimetal 18c.
  • the panel panel 18d urges the movable contact plate so that the movable contact 18a presses the movable contact 18a against the fixed contact 36a. For this reason, even before the snap action bimetal 18 is disconnected, the contact time between the movable contact 18a and the fixed contact 36a is short while the contact pressure is zero, and the movable contact 1 8a and fixed contact 36a do not open or close.
  • the second support point P2 is higher than the line connecting the fulcrum P3 of the movable contact plate 18b and the first support point P1 when the temperature of the bimetal 18c is high.
  • the movable panel 18b is urged so that the panel 18d separates the movable contact 18a from the fixed contact 36a. That is, from the state shown in FIG. 8 (B), the bimetal 18c curves upward, and the second support point P2 forces the fulcrum P3 of the movable contact plate 18b and the first support point P1.
  • FIG. 9 (A) is an enlarged view of the first connection plate 26 in FIG. 5 (A)
  • FIG. 9 (B) is a view of FIG. Fig. (C) is a view taken in the direction of arrow j in Fig. 9 (A)
  • Fig. 9 (D) is an enlarged perspective view of the contact portion with the main PTC surrounded by a circle D in Fig. 9 (C).
  • FIG. As described above, the fifth connection plate 34 is the same member as the first connection plate 26.
  • the first connection plate 26 is made of a conductive spring material such as stainless steel coated with copper or a copper alloy or a conductive metal material.
  • the first connecting plate 26 has a connecting portion 26A bent in a crank shape as shown in FIG. 9 (A) and a right angle to the bending direction of the connecting portion 26A as shown in FIG. 9 (B). It comprises a pair of spring portions 26B, 26B bent in a U-shape in each direction.
  • the panel sections 26B and 26B hold the main PTC 12 elastically and make electrical connections.
  • the spring portions 26B, 26B are formed by providing a rectangular opening at the center of a pair of rectangular plates extending laterally to form a pair of parallel portions 26c.
  • connection portion 26d connecting the parallel portions 26c, 26c to form a pair of U-shaped portions facing each other, and the pair of U-shaped portions are respectively inwardly directed in cross section. It is bent in a U-shape.
  • a contact angle portion 26f that contacts the main PCT 12 is formed by bending and projecting so that the connection portion 26d is on the inside.
  • the parallel portions 26c, 26c are provided with a constricted portion 26e for reducing the contact area with the casing 40 and preventing heat conduction.
  • a through hole 26h is formed in the bent portion of the connection portion 26A on the spring portion 26B side.
  • the width of the outer peripheral portion (fuse portion) 26j of the through hole 26h is set to 0.5 mm or less.
  • the fuse 26j on the outer periphery of the through hole 26h blows.
  • the fuse portion 26 j is blown by the current, thereby preventing the starting winding S and the starting device itself from burning.
  • the bent portion By forming the bent portion, the bent portion can be provided with an elastic force, and by maintaining the state where the elastic force is provided, it is possible to prevent re-welding of the blown portion when the fuse portion 26 j is blown. Can be.
  • a contact hole 26 f bent at an obtuse angle to make contact with the main PCT 12 of the parallel portion 26 c has an elongated hole 26 g. It is provided parallel to the extending direction of the parallel portion 26c.
  • the contact point of the contact angle part 26 f with the main PCT 12 is divided and doubled, and the entire panel part 26 B becomes the contact angle part 26 4 of four force places. And come into contact with the main PCT 12 at 8 places. Thereby, the contact reliability can be improved.
  • FIG. 18 ( ⁇ ) is an enlarged view of the part surrounded by a circle ⁇ in Fig. 5 ( ⁇ ), and Fig. 18 ( ⁇ ) is ⁇ 3- ⁇ of Fig. 18 ( ⁇ ).
  • Fig. 18 (C) is a sectional view taken along the line C3-C3 of Fig. 18 ( ⁇ ) (a view cut from the center of the pin and the near side).
  • Fig. 18 (D) ) Is a perspective view of the socket terminal 22 # with the pins 116 inserted.
  • FIG. 19 (A) is a plan view of the terminal 22 shown in FIG. 18 (A)
  • FIG. 19 (B) is a cross section taken along line B 4—B 4 of FIG. 19 (A).
  • FIG. 19 (C) is a view taken in the direction of arrow k in FIG. 19 (A).
  • the terminal 22 is made of a conductive spring material such as stainless steel plated with copper, a copper alloy, or a conductive metal material, like the first connection plate 26.
  • the terminal 22 is formed by integrally forming a tab terminal 22C, a socket terminal 22A, and a connecting portion 22B for connecting these.
  • the tab terminal 22C is formed by folding a pair of plate portions 22k, 22k extending inward in the axial direction of the connection pins inward to form a two-layer structure as shown in Fig. 19 (B). The structure is strong.
  • Tab terminal 2 2 C through the center? L2 2 1 has been drilled.
  • the connecting portion 22B is formed in a substantially crank shape, and a through hole 22m is formed in the center.
  • the socket terminal 22A is formed by bending a pair of plate portions 22d, 22d extending inward in the axial direction of the connection pin inward, and bending the tip end of the connection pin. It is formed in an arc shape so as to be able to conform to the cylindrical shape of the above, and is provided with a connection pin holding portion 22 e having the tips separated from each other.
  • Fig. 19 (A) As shown in (1), the connection pin is divided into a first portion 22g on the distal end side and a second portion 22h on the back side by a slit 22f in the axial direction and the vertical direction of the connection pin. On the opposite side (lower side in FIG.
  • connection pin holding portion 22 e a V-shaped groove 22 n is formed to make good contact with the connection pin.
  • a V-shaped notch 2 2j is formed at the tip of the first portion 22g, and a V-shaped notch 220 is formed at the tip of the V-shaped groove 22n. Have been.
  • the casing 40 that holds the terminal 22 has a connection that penetrates the connection pin holding portion 22 e.
  • a concave portion 40a for accommodating the tip portion 116a of the pin 116 is formed.
  • FIGS. 18 and 19 the socket terminal 22 A of the terminal 22 has been described, but the socket terminal 24 A of the terminal 24 and the socket terminal 58 of the overload relay 50 are also described. Similarly, it has a two-part structure.
  • the starting device 10 of the first embodiment has the overload relay 50 attached thereto as described above with reference to FIG. 7, and has the compressor 102 as described above with reference to FIG. Attached to pin 110.
  • FIG. 1 (B) shows a perspective view of the pin terminal 110.
  • Pin Terminal 110 has three connecting pins 1 1 2, 1 114, and 1 16 standing up. Socket pin 58 is connected to connecting pin 112 and socket is connected to connecting pin 114.
  • Terminal 24 A is connected to socket pin 22 A to connection pin 1 16.
  • connection pin holding portions 2 2 e of the socket terminals 22 A, 24 A, 58 are connected to the first portion 22 g on the distal end side. And the second part 2 2h on the back side, so that as shown in Fig. 18 (D), when the connecting pin 1 16 was inserted, a twisting force was exerted in the X direction and Z or Y direction. Even in this case, only the first portion 22 g on the tip side of the connection pin holding portion 22 e spreads, and the second portion 22 h on the far side does not spread. Therefore, in the second portion 22 h, no fatigue occurs, a good contact state with the connection pin can be maintained, and no damage is caused by heating of the contact portion.
  • Fig. 22 shows the required insertion force when connecting pins are inserted.
  • the vertical axis represents the ⁇ input
  • the horizontal axis represents the pin insertion stroke.
  • the chain line indicates the input when the connection pin 212 is inserted into the socket terminal 122 A of the conventional technique described above with reference to FIG.
  • the solid line indicates that the connection pin 1 16 is inserted into the socket terminal 22 A according to the first embodiment. Input when inputting.
  • the socket terminal 1 2 A of the prior art shown in FIG. 28 (F) is used to hold the connection pin holding section (plate section 1 2 2 d, 1 2 2 d Is bent inward, and the tip is formed in an arc shape so that it can match the cylindrical shape of the connection pin). For this reason, the insertion force is very large at the beginning and becomes constant thereafter.
  • the socket terminal 22A of the first embodiment when the socket terminal 22A of the first embodiment is inserted into the connection pin, first, the first portion 22g on the distal end side expands. Compared to the part 122 e, the first part 22 g, which is half the length of the first part 22 g, only needs to be expanded in the axial direction.
  • the tip of the connecting pin 1 16 reaches the second part 22 h on the far side (P 2 in the figure)
  • the second part 22 h starts to spread, but the connection of the socket terminal 1 2 A of the conventional technology Compared with the pin holding part 1 2 2 e, the second part 22 h, which is half the length in the axial direction, can be pushed and spread, so a large force is not required.
  • the first part 22 g No extra force is required because the applied force acts to insert the connection pins 1 16 vertically.
  • the socket terminal 22A of the first embodiment at the time of starting the insertion of the connection pin, only the divided first portion 22g of the distal end side needs to be expanded, so that the entire connection pin holding portion needs to be expanded. Insertion work becomes easier compared to the prior art products that had a problem.
  • socket terminal 22A of the first embodiment is the same size as the prior art product, it has high space efficiency and can be easily applied to an existing starting device.
  • connection pin 1 16 and the socket terminal 22 A even if there is an inclination between the connection pin 1 16 and the socket terminal 22 A, the first portion 22 g on the distal end and the second portion 22 h on the back side are independently connected to each other. Because it makes contact with 16, even if the contact pin 1 16 comes into point contact with the socket terminal 22 A, the contact point is doubled and the electrical connection between the connection pin and socket terminal is established. Can be maintained.
  • the distal end portion 1 16a of the connection pin 1 16 penetrating the connection pin holding portion 2 2e Since the recess 40a for accommodating the connection pin is provided in the casing 40, the chamfered tip 1 16a of the tip of the connection pin 116 passes through the connection pin holding portion 22e. It will be located in the recess 40a.
  • the chamfered tip 2 1 2a is inside the connection pin holding section 1 2 e. As a result, the distal end portion 212a could not be gripped, and the gripping force of the connection pin holding portion 122e was reduced.
  • connection pin holding portion 2 2 e since the distal end portion 1 16a of the chamfered connection pin 1 16 is not gripped by the connection pin holding portion 2 2 e, the connection pin holding portion 2 2 e The gripping force of the connection pin 1 16 can be increased.
  • the gripping force is reduced by the width of the slit 22 f shown in FIG. 21A, but by providing the concave portion 40 a, the same length as that of the conventional technology having no slit is provided. It is possible to obtain a gripping force equivalent to that of the connection pin holding portion 1 2 2e of FIG.
  • the socket terminal 2A of the first embodiment has a diameter ⁇ 1 of a first portion 22g on the distal end side of the connection pin holding portion 22e, and a second inner portion It is set slightly larger than 2 2 h diameter 2. That is, since the first portion 22 g on the tip side of the connection pin holding portion 22 e is formed wider so as to hold the connection pin 116 more loosely than the second portion 22 h on the back side, Less force is required at the start of connecting pin insertion. On the other hand, since the rear second portion 22h is formed to be narrow, the second portion 22 can maintain a good contact state with the connection pin 116, and damage due to heating of the contact portion can be prevented. Does not occur.
  • FIG. 10 (A) is a plan view of a snap-action bimetal according to a modification of the first embodiment
  • FIG. 10 (B) is a snap of a starting device according to a modification of the first embodiment
  • FIG. 10 is a cross-sectional view showing an on state of the action bimetal 18
  • FIG. 10 (C) is a cross-sectional view showing an off state. .
  • the snap-action bimetal 18 is made of a single bimetal, has an opening at the center, and has a movable contact 18a.
  • the contact panel 18 e and the bimetal portion 18 f provided at the center of the opening are provided.
  • the plate panel 18 d is connected to the first support point P of the movable contact plate 18 e. It is arranged so as to be interposed between 1 and the second support point P2 of the bimetal portion 18f.
  • FIGS. 10 (B) and 10 (C) the operation of the snap action bimetal 18 is the same as that described with reference to FIGS. 8 (B) and 8 (C).
  • FIG. 11 shows a first connection plate 26 according to a modification of the first embodiment.
  • FIG. 11 (A) is an enlarged view of the first connection plate 26
  • FIG. 11 (B) is a view taken on arrow h of FIG. 11 (A)
  • FIG. 11 (C) is a view of FIG. 11 (A) is a view taken in the direction of the arrow j.
  • FIG. 11 (D) is an enlarged perspective view of a contact portion with a main PTC surrounded by a circle D in FIG. 11 (C). .
  • the first connection plate 26 according to the modification of the first embodiment is the same as the first connection plate of the first embodiment described above with reference to FIG. However, in the first embodiment, the elongated hole 26 g is provided in the contact angle portion 26 f in parallel with the extending direction of the parallel portion 26 c. On the other hand, in the modification of the first embodiment, as shown in FIG. 11 (D), a notch 26m is provided in the contact corner 26f in parallel with the extending direction of the parallel portion 26c. It has been done.
  • a notch 26m is provided at a contact angle portion 26f of the panel portion 26B holding the main PCT 12 that is bent at an obtuse angle so as to make contact with the main PCT 12.
  • the contact point of the contact angle portion 26 f with the main PCT 12 is divided, thereby doubling the contact point, thereby improving the contact reliability.
  • the resonance frequency of the contact angle portion 26f differs between the inside and the outside of the notch 26m. The vibration of the compressor is transmitted to the starter 10, and the main PCT 12 and the panel section 26B resonate.If the main PCT 12 electrode section is hit with the panel section 26B, the electrodes are damaged or peeled off. Since the resonance frequency is different between the inside and outside of the contact angle portion 26f, no resonance occurs at the same time, and the contact angle portion 26f does not hit the main PCT 12, thereby damaging the electrodes of the main PCT 12. Does not occur.
  • FIG. 12 (A) is a plan view of the snap action bimetal 18 of the activation device of the second embodiment
  • FIG. 12 (B) is a side view
  • FIG. 12 (C) is a plan view of a snap action bimetal 18 of another example of the activation device of the second embodiment
  • FIG. 12 (D) is a side view of another example
  • FIG. 12 (E) is an explanatory diagram of the on state of the snap action bimetal 18 of the second embodiment
  • FIG. 12 (F) is an explanatory diagram of the off state. As shown in Fig.
  • the snap action bimetal 18 has an elongated hole near the center of the plate-shaped bimetal, and the central portion 18 h sandwiched between the elongated holes has no added Each side of the slot has 18 g of drawing at two places.
  • Fig. 12 (C) and Fig. 12 (D) are other examples in which 18 g of drawing was performed at one point.
  • the snap action bimetal 18 can realize a snap action by drawing.
  • the snap action bimetal 18 is made of the bimetal that has been subjected to the drawing 18 h, so that the contact can be quickly cut. Therefore, the arc does not continue and there is no rough contact or noise.
  • connection is kept for a short time when the contact pressure is zero, and the contact does not open or close due to vibration. As a result, the connection reliability of the contacts is high, and no failure occurs for a long time. Subsequently, the structure of the terminal 22 of the activation device 10 according to the second embodiment will be described with reference to FIG.
  • FIG. 20 (A) is a plan view of a terminal 22 of the activation device according to the second embodiment
  • FIG. 20 (B) is a cross section taken along line B4-B4 of FIG. 20 (A).
  • FIG. 20 (C) is a view on arrow k in FIG. 20 (A).
  • the activation device of the second embodiment is the same as the first embodiment described above with reference to FIGS. 5 and 6.
  • the length in the connection pin axial direction between the first portion 22 g on the distal end side of the connection pin holding portion 22 e of the socket terminal 22 A and the second portion 22 h on the back side of the socket terminal 22 a It was equal.
  • the length of the first portion 22 g on the distal end side of the connection pin holding portion 22 e in the connection pin axial direction is longer than the rear second portion 22 h. Is formed. For this reason, it is possible to receive the twist at the time of insertion of the connection pin at the first portion 22 g and prevent the second portion 22 h from being spread due to the twist. As a result, a favorable contact state with the connection pin 116 can be maintained at the second portion 22 h, and damage due to heating of the contact portion does not occur.
  • a snap action bimetal 18 of the activation device according to the modification of the second embodiment will be described with reference to FIG.
  • FIG. 13 (A) is a plan view of a snap-action bimetal 18 of a starter according to a modification of the second embodiment
  • FIG. 13 (B) is a side view.
  • FIG. (C) is an explanatory diagram of an ON state of a snap action bimetal 18 according to a modification of the second embodiment
  • FIG. 13 (D) is an explanatory diagram of an OFF state.
  • the snap action bimetal 18 has a flat bimetal with a light forming 18i at the center.
  • the snap action bimetal 18 can realize a snap action by forming.
  • the snap action bimetal 18 is made of a bimetal that has been subjected to the forming process 18i, so that the contact can be quickly cut. Therefore, the arc does not continue and there is no rough contact or noise.
  • the time to continue connection when the contact pressure is zero is short, and the contact does not open or close due to vibration. As a result, the connection reliability of the contacts is high and no failure occurs for a long time.
  • FIG. 14 (A) is an explanatory diagram of the on-state of the bimetal 18 of the third embodiment
  • FIG. 14 (B) is an explanatory diagram of the off-state of the bimetal 18.
  • the bimetal 18 of the third embodiment has an auxiliary PTC disposed on the base and a movable contact 18a on the free end side, similarly to the first and second embodiments. Further, a magnet 23 A that applies a magnetic force to bias the movable contact 18 a toward the fixed contact 36 a with respect to the bimetal 18 is provided near the bimetal 18.
  • Other configurations are the same as those of the first embodiment described above with reference to FIGS. 1 to 9, and thus description thereof is omitted.
  • the bimetal 18 having the movable contact 18a on the free end side is urged toward the contact on side by the magnetic force of the magnet 23A.
  • the magnetic force from magnet 23 A decreases in inverse proportion to the square of the distance.
  • the bimetal 18 receives the strongest magnetic force when the movable contact 18a is on as shown in FIG. 14 (A), and the movable contact 18a separates as shown in FIG. 14 (B). After that, the magnetic force suddenly weakens, so the movable contact 18a can be quickly disconnected from the fixed contact 36a. Therefore, the arc does not continue and there is no rough contact or noise.
  • Contact pressure When the connection is continued when the value is zero, the contact time is short, and the contact does not open or close due to vibration. As a result, the connection reliability of the contacts is high, and no failure occurs over a long period of time.
  • FIG. 21 (A) is a plan view of a terminal 22 of the activation device according to the third embodiment
  • FIG. 21 (B) is a cross section taken along line B 4-B 4 of FIG. 21 (A).
  • FIG. 21 (C) is a view taken in the direction of arrow k in FIG. 21 (A).
  • the activation device of the third embodiment is the same as that of the first embodiment described above with reference to FIGS. 5 and 6.
  • the length in the connection pin axial direction between the first portion 22 g on the distal end side of the connection pin holding portion 22 e of the socket terminal 22 A and the second portion 22 h on the back side of the socket terminal 22 a is not limited. It was equal.
  • the length of the second portion 22 h on the back side of the connection pin holding portion 22 e in the connection pin axial direction is longer than the length of the first portion 22 g on the near side. Is formed. Therefore, by firmly holding the connection pin 116 at the second part 22 h, no fatigue occurs, and a good contact state with the connection pin 116 can be maintained. There is no damage caused by heating.
  • a V-shaped notch 22p is provided at the front end of the second portion 22h on the back side of the connection pin holding portion 22e.
  • FIG. 15 (A) is an explanatory diagram of the ON state of the switch 18 of the fourth embodiment
  • FIG. 15 (B) is an explanatory diagram of the OFF state of the switch 18.
  • the switch 18 of the fourth embodiment is made of a magnetic conductive member, and has a movable contact 18a provided on the free end side.
  • a temperature-sensitive magnet 23 B for applying a magnetic force to the switch 18 to urge the movable contact 18 a toward the fixed contact 36 a is provided directly above the switch 18.
  • Auxiliary PTC is provided adjacent.
  • Other configurations are the same as those of the first embodiment described above with reference to FIGS. I do.
  • a switch 18 having a movable contact 18a on the free end side of a panel made of a magnetic conductive member senses heat from the auxiliary PTC, and the temperature reaches a set temperature. Then, it is energized by the magnetic force of the thermosensitive magnet 23 B, which is demagnetized. That is, as shown in FIG. 15 (A), when the temperature is lower than the set temperature, the switch 18 is attracted and turned on by the magnetic force of the thermosensitive magnet 23B against the elastic force of the panel board. On the other hand, when the temperature becomes equal to or higher than the set temperature as shown in FIG. 15 (B), the switch 18 is turned off by the force of the spring plate due to the demagnetization of the thermosensitive magnet 23B.
  • the magnetic force from the thermosensitive magnet 23 B decreases in inverse proportion to the square of the distance.
  • the switch 18 receives the strongest magnetic force when the contact is on, and the magnetic force decreases rapidly after the movable contact 18a is separated, so that the movable contact 18a can be quickly disconnected from the fixed contact 36a. Therefore, the arc does not continue and there is no rough contact or noise.
  • the time for which connection is continued when the contact pressure is zero is short, and the contact does not open or close due to vibration. As a result, the connection reliability of the contacts is high, and no failure occurs for a long time.
  • the switch 18 made of a magnetic conductive member is used, but in the fifth embodiment, a lead switch 19 is used instead of the switch.
  • a temperature-sensitive magnet 23 B for applying a magnetic force to the reed switch 19 to urge the contact ON side is provided immediately above the lead switch 19, and an auxiliary PTC is provided adjacent to the temperature-sensitive magnet 23 B. 16 are provided.
  • Other configurations are the same as those in the first embodiment described above with reference to FIGS. 1 to 9, and thus description thereof is omitted.
  • the reed switch 19 is turned on and off by the magnetic force of the thermosensitive magnet 23B which senses heat from the auxiliary PTC 16 and demagnetizes when the temperature reaches a set temperature. That is, when the temperature is lower than the set temperature, the reed switch 19 is turned on by the magnetic force of the temperature-sensitive magnet 23B, and when the temperature exceeds the set temperature, the reed switch 19 is turned off by the demagnetization of the temperature-sensitive magnet 23B.
  • the magnetic force from the thermosensitive magnet 23B decreases in inverse proportion to the square of the distance, so that the reed switch 19 can quickly cut the contact point. Therefore, the arc does not continue, causing rough contacts and noise. There is no life.
  • the time to continue connection when the contact pressure is zero is short, and the contact does not open or close due to vibration. As a result, the connection reliability of the contacts is high, and no failure occurs for a long time.
  • FIG. 17 shows a circuit in which the starting device 10 of the present embodiment is used.
  • the running capacitor C1 when the running capacitor C1 is connected in parallel to the starting device 10 as shown in FIG.
  • the starting capacitor C2 when the starting capacitor C2 is connected in series with the starting device 10 as shown in Fig. 17 (B), the running capacitor C is connected in parallel with the starting device 10 as shown in Fig. 17 (C).
  • the starting device 10 of the present embodiment can also be used preferably when the starting capacitor C2 is connected in series with the starting capacitor C1.
  • the configuration of the sixth embodiment is the same as that of the first embodiment, a description thereof will be omitted with reference to FIGS. 1 to 7.
  • the snapshot bimetal 18 is used, but in the sixth embodiment, the slow action bimetal 18 is used.
  • the operation of the activation device 10 according to the sixth embodiment will be described.
  • the operation switch 97 When the operation switch 97 is turned on, a start-up current flows to the main winding M via the operation switch 97 and the over-opening 50.
  • the main PTC 12 has a low electrical resistance value (for example, about 5 ⁇ ) at room temperature, the auxiliary winding S, the series circuit of the main PTC 12 and the slow action bimetal 18, and the parallel connection of the auxiliary PTC 14 A starting current also flows through the circuit, and the single-phase induction motor 100 starts.
  • the main PTC 12 and the auxiliary PTC 14 self-heat and the electric resistance value increases rapidly. After a few seconds, the main PTC 12 and the auxiliary PTC 14 reach a temperature of 140 ° C., and the electric resistance of the main PTC 12 at this time becomes, for example, 1 kQ to 10
  • the current flowing through action bimetal 18 decreases.
  • the temperature of the auxiliary PTC 14 reaches a temperature of 140 ° C
  • the slow-action bimetal 18 detects this and turns off, and the series circuit of the main PTC 12 and the slow-action bimetal 18
  • the current stops flowing, and thus the start of the single-phase induction motor 100 is completed, and the steady-state operation starts.
  • the slow action bimetal 18 is turned off, current flows only to the auxiliary PTC 14 side to generate heat, and the generated heat keeps the slow action bimetal 18 off.
  • the power consumption of the auxiliary PTC 14 is extremely small enough to generate heat for holding the switch bimetal 18 in the off state. Very few. Furthermore, since the slow action bimetal is used, it can withstand long-term use as compared to the formed snap action bimetal. Also, during the steady-state operation of the single-phase induction motor 100, the main PTC 12 having a large heat capacity is cooled to room temperature. On the other hand, the auxiliary PTC 14 has a small heat capacity, so it cools quickly.
  • the auxiliary PTC 14 is immediately cooled down to near room temperature, and the time required for restarting is very short, from several seconds to several tens of seconds.
  • the overload relay can be restarted quickly without repeating the operation and return.
  • the restart time can be shortened.
  • FIG. 23 (B) is a plan view of the single-phase induction motor starting device according to the sixth embodiment of the present invention with the lid removed, and FIG. 23 (A) is a plan view of FIG. 23 (B).
  • FIG. 23 (C) shows an A-A section of FIG. 23, and FIG. 23 (C) shows a C-C section of FIG. 23 (B).
  • FIG. 24 (A) is a side view of FIG. 23 (B) on the side of arrow e
  • FIG. 24 (B) is a side view of FIG. 23 (B) on the side of arrow d.
  • the starting device 10 includes a casing 40 and a lid 46, and is formed with a flange 48 for attaching an overload relay 50 to the outside.
  • a terminal 22 connected to the auxiliary winding S is mounted inside the casing 40.
  • the terminal 22 is formed by integrally forming a tab terminal 22a, a pin terminal 22c, and a connecting portion 22b for connecting these.
  • the A first connecting plate 26 having a panel portion 26 b for holding the main PTC 12 is attached to the connecting portion 22 b.
  • the first connection plate 26 has a central portion bent in a crank shape, and a bent portion to the screw portion 26b side has a through hole 26a formed therein. That is, the first connection plate 26 is narrowed in the through hole 26a, so that when a large current flows, the first connection plate 26 is melted at the outer periphery of the through hole 26a.
  • connection plate 30 One end of the second connection plate 30 is connected to the panel 26 b.
  • the spring portion 30a at the other end of the second connection plate 30 applies a spring pressure to the auxiliary PTC 14 and holds it.
  • Auxiliary PTC 14 is in contact with the base of slow action bimetal 18. That is, as shown in Figs. 23 (A) and 23 (B), the panel portion 30a of the second connection plate 30, the auxiliary PTC 14 and the base of the slow action bimetal 18 and the 3 One end of the connection plate 32 is connected adjacently.
  • the other end of the third connection plate 32 is connected to a connection portion 24 b of a terminal 24 for connection to the power supply line 98 and the main winding M (see FIG. 23 (A)).
  • the terminal 24 is formed by integrally forming a tab terminal 24a, a pin terminal 24c, and a connecting portion 24b for connecting these.
  • a movable contact 18a is provided on the distal end side of the slow action bimetal 18 and is in contact with the fixed contact 36a of the fixed contact plate 36 formed in a crank shape.
  • the other end of the fixed contact plate 36 is fixed to a second panel 35 for holding the main PTC 12.
  • the slow action bimetal 18 and the auxiliary PTC 14 are housed in a sealed chamber 44 formed by an L-shaped partition wall 42 provided inside the casing 40.
  • the closed chamber 4 4 has an airtight structure.
  • the second connecting plate 30 is through a through hole 42a provided in the partition wall 42
  • the third connecting plate 32 is through a through hole 42b
  • the fixed contact plate 36 is a through hole 42c.
  • the inside of the closed chamber 4 is routed through 4.
  • the slow action bimetal 18 and the auxiliary PTC 14 are housed in the closed chamber 44 inside the casing 40, so that heat is hard to escape to the outside and extremely low consumption is achieved. Power can keep slow action bimetal 18 off. Furthermore, even if a flammable gas (a hydrocarbon compound such as butane) is used as the refrigerant for the hermetic compressor and the refrigerant leaks, even if the refrigerant leaks, it is stored in the hermetic chamber 44 so that the slow action bimetal 1 There is no ignition by the spark at the time of opening and closing operation of 8.
  • a flammable gas a hydrocarbon compound such as butane
  • auxiliary PTC 14 since the auxiliary PTC 14 is in direct contact with the base of the slow-action bimetal 18, heat from the auxiliary PTC 14 can be efficiently transmitted to the slow-action bimetal 18, and the auxiliary PTC 14 with low power consumption can be used for slow action. Bimetal 18 can be kept off.
  • FIG. 26 is a circuit diagram of the activation device according to the seventh embodiment.
  • the circuit configuration of the activation device 10 of the seventh embodiment is the same as the activation device of the sixth embodiment described above.
  • a normally closed snap action bimetal 16 for thermal runaway protection of the main PTC 12 is provided in series with the main PTC 12 and the slow-action bimetal 18.
  • the operation switch 97 When the operation switch 97 is turned on, a starting current flows to the main winding M via the operation switch 97 and the overload relay 50. Also, since the main PTC 12 has a low electric resistance value (for example, about 5 ⁇ ) at room temperature, the auxiliary PTC 12 and the series circuit of the main PTC 12 and the slow action bimetal 18 and the parallel circuit of the auxiliary PTC 14 can be used. A starting current flows, and the single-phase induction motor 100 starts.
  • the main PTC 12 and the auxiliary PTC 14 When the starting current of the auxiliary winding S flows through the main PTC 12, the main PTC 12 and the auxiliary PTC 14 generate heat and the electric resistance value increases rapidly. As a result, the current flowing through the slow-action bimetal 18 decreases. When the auxiliary PTC 14 reaches the temperature at 140, the slow action bimetal 18 senses this and turns off, and current flows through the series circuit of the main PTC 12, the snap action bimetal 16 and the slow action bimetal 18. The flow stops, and the startup of the single-phase induction motor 100 is completed.
  • the main PTC 12 having a large heat capacity is cooled to room temperature.
  • the auxiliary PTC 14 has a small heat capacity, so it cools quickly. Therefore, even when the single-phase induction motor 100 is restarted immediately after stopping, the auxiliary PTC 14 is immediately cooled down to near normal temperature, and the time required for restarting is very short, from several seconds to several tens of seconds. .
  • the snap action bimetal 16 When the main PTC 12 abnormally generates heat and reaches a predetermined high temperature, the snap action bimetal 16 is turned off, and the current to the auxiliary winding S is cut off. For this reason, thermal runaway of the main PTC 12 results in low resistance at high temperature, and it is possible to prevent a situation in which a large current flows through the auxiliary winding S and causes dielectric breakdown. In particular, since the snap action bimetal 16 is set so as not to return at room temperature, thermal runaway of the main PTC 12 can be completely prevented.
  • FIG. 25 (B) is a plan view of the single-phase induction motor starting device according to the sixth embodiment of the present invention with the lid removed, and FIG. 25 (A) is a plan view of FIG. 25 (B).
  • Fig. 25 (C) shows a cross section taken along line A-A of Fig. 25, and Fig. 25 (C) shows a cross section taken along line CC of Fig. 25 (B).
  • FIG. 24 (A) is a side view of FIG. 25 (B) on the side of arrow e
  • FIG. 24 (B) is a side view of FIG. 25 (B) on the side of arrow d.
  • a terminal 22 connected to the auxiliary winding S shown in FIG. 26 is mounted inside the casing 40.
  • the terminal 22 includes a tab terminal 22a, a pin terminal 22c, and a connecting portion 22b for connecting the tab terminal 22a and the pin terminal 22c.
  • a first connection plate 26 having a panel portion 26b for holding the main PTC 12 is attached to the connection portion 22b.
  • the first connection plate 26 has a central The through-hole 26a is formed in the bent part toward the panel part 26b side. That is, the first connection plate 26 is narrowed at the through hole 26a, so that when a large current flows, the first connection plate 26 is melted at the outer periphery of the through hole 26a.
  • One end of the second connection plate 30 is connected to the panel 26 b.
  • Panel portion 30a formed at the other end of second connection plate 30 applies and applies a spring pressure to auxiliary PTC 14 and holds it.
  • the auxiliary PTC 14 is in contact with the base of the slow action bimetal 18. That is, as shown in FIGS. 25 (A) and 25 (B), the spring portion 30 & of the second connection plate 30, the auxiliary PTC 14, the base of the slow action bimetal 18 and the One end of the three connection plate 32 is connected adjacently.
  • the other end of the third connection plate 32 is connected to a connection part 24 b of a terminal 24 for connection to the power supply line 98 and the main winding M shown in FIG. 26 (FIG. 25 (A ) See).
  • the terminal 24 is formed by integrally forming a tab terminal 24a, a pin terminal 24c, and a connecting portion 24 connecting these terminals.
  • a movable contact 18 a is provided on the tip side of the slow action bimetal 18, and is in contact with the movable contact 16 a of the snap action bimetal 16.
  • the base of the snap action bimetal 16 is fixed to a second spring 35 for holding the main PTC 12.
  • the casing 40 is provided with a stopper 51 extending to the tip of the snap-action bimetal 16 so that the snap action bimetal 16 does not hinder the operation of the slow action bimetal 18. Have been.
  • the movable contact 18 a of the slow action bimetal 18 directly contacts the movable contact 16 a of the snap action bimetal 16, and the slow action bimetal 18 reaches the set temperature.
  • the snap action bimetal 16 reaches a predetermined high temperature, it moves away from the movable contact 18 a on the slow action bimetal 18 side.
  • heat is also applied to the snap action bimetal 16 side, which moves a little away from the movable contact 18 a of the slow action bimetal 18 side. Even if a slow-action bimetal with a long life but slow operation is used, the starting current can be properly cut off.
  • a stopper 51 is provided in contact with the tip end of the snap-action bimetal 16 so as not to hinder the operation of the slow-action bimetal 18. For this reason, the main PTC 12 cools down after the start is completed, and even if the snap bimetal 18 returns to room temperature, it can be prevented from bending to the slow function bimetal 16 side, and an appropriate contact interval can be maintained. Can be kept. Industrial applicability
  • the present invention can be applied not only to the drive of a closed type compressor of a refrigeration cycle in a refrigerator but also to the drive of a closed type compressor of a refrigeration cycle in an air conditioner.
  • the present invention can be implemented with appropriate modifications without departing from the gist, for example, it can be applied to all equipment using a phase induction motor as a driving source.

Abstract

補助巻線Sに起動電流が流れると、主PTC12、補助PTC14は自己発熱して電気抵抗値が増大する。補助PTC14が140℃に達すると、スナップアクションバイメタル18がオフし、主PTC12には電流が流れなくなり、単相誘導電動機70の起動が完了する。スナップアクションバイメタル18がオフされると、補助PTC14側にのみ微少電流が流れ、その発生熱によりスナップアクションバイメタル18がオフ状態に保持される。

Description

明 細 単相誘導電動機の起動装置 技術分野
本発明は、電気冷蔵庫用コ 一夕 (密閉形電動圧縮機)、或いは、 ポンプモータ等の単相誘導電動機の起動装置に関する。 背景技術
例えば、 冷蔵庫, 空気調和機等の密閉形コンプレッサを駆動する単相誘導電 動機において起動装置が設けられる場合が多い。 従来のこの種の起動装置とし ては、 第 2 7図 (A) に示すように、 主巻線 Mとともに交流電源 9 0によって 通電される補助卷線 Sに直列に正特性サーミス夕 3 1 2を接続する構成のもの が供されている。 このような起動装置においては、 単相誘導電動機 1 0 0の起 動時には、 正特性サーミス夕 3 1 2が低電気抵抗値を呈することから、 補助巻 線 Sに起動電流が流れる。 起動電流により正特性サ一ミス夕 3 1 2が高抵抗に なり、 補助巻線 Sへの電流が制限される。 この構成では、 単相誘導電動機の起 動完了後の定常運転中においても、 正特性サーミス夕 3 1 2は電源電圧が印加 されて自己発熱し続けるので、 常に、 2〜4 W程度の電力を消費するようにな り、 省エネルギー上問題がある。
更に、 従来の起動装置では、 単相誘導電動機 1 0 0の停止直後に再起動が困 難であるとの問題点があった。 即ち、 起動用の正特性サ一ミス夕 3 1 2は、 熱 容量が大きいため、 運転時に高温、 高抵抗になると、 電動機 1 0 0の停止後、 常温近くまで温度が下がり、 再起動可能な状態になるまでに数十秒から数分か かり、 もしもそれ以前に再起動させようとすると、 該正特性サーミス夕 3 1 2 が高抵抗なため、 補助卷線 Sに微少な電流しか流れず、 電動機 1 0 0が回転子 拘束状態となり、 主巻線 Mに大きな電流がながれ、 オーバロードリレー 5 0が 動作し再起動できなかった。 このォ一バロ一ドリレーの復帰時間は、 当初は正 特性サーミス夕 3 1 2が再起動可能になるまでの冷却時間より短いため、 該ォ 一バロ一ドリレーが作動、 復帰を数回繰り返し、 順次高温となってその復帰時 間が長くなる。 そして、 オーバロードリレーの復帰時間が正特性サーミス夕 3 1 2よりも長くなることで、 電動機 1 0 0が起動可能になった。 係る事態は、 冷蔵庫のコンプレッサモー夕においては、 庫内温度が下がり、 サーモスタット がオフして、 コンプレッサモー夕が停止した直後に、 ドアが開けられ、 庫内温 度が上昇してサーモスタットがオンになった場合等に生じていた。 このような 時には、 再起動に時間を要するだけでなく、 上述したオーバロードリレーの寿 命を縮める原因ともなった。
このため、 本出願人は、 特開平 6-38467号公報として、 第 2 7図 (B ) に示す 構成の単相誘導電動機の起動装置を提案した。 この回路では、 起動装置 2 1 0 内に、 正特性サーミス夕 3 1 2と直列にバイメタル 2 1 8を設け、 正特性サ一 ミス夕 3 1 2と並列に設けた抵抗 2 1 4により該バイメタル 2 1 8を加熱する ことで、 正特性サーミス夕 3 1 2への電流を遮断する。 正特性サーミス夕 3 1 2よりも小消費電力の抵抗 2 1 4により、 バイメタル 2 1 8のオフ状態を維持 することで、 小消費電力を図っていた。 更に、 実開昭 56- 38276公報では、 正特 性サーミス夕を 2分割して配置する起動装置が開示されている。
また、 正特性サーミス夕を備える起動装置には、 単相誘導電動機への取り付 けを容易に行えるよう、 単相誘導電動機側に設けられた接続ピンに対して接続 するためのソケット端子を備えるものがある。 例えば、 実開昭 6 2 - 1 1 5 7 6 0のように、 単相誘導電動機から接続ピンが 3本突出し、 これに対して、 起 動装置のソケット端子により電気接続を行っている。
モーター等によって電気機器は非常に大きな振動が生じ、 また機器の故障や 点検時の取り外し時、 及び取り外し後の再取付け時、 ソケット端子の把持強度 の弱いものは起動装置と電気機器との接触が不十分となる。 特に大型モーター 起動用の起動装置においては、 接触部が加熱して端子の損傷が生じ、 P T Cリ レー装置としての機能を発揮することができなくなる。 さらには、 火災等の発 生する可能性も否定できない。
従来技術に係る起動装置に内蔵されるソケット端子の平面図を第 2 8図(A) に、 断面を第 2 8図 (B ) に、 底面を第 2 8図 (C) に示す。 このソケット端 子 1 2 2は、 第 2 8図 (F ) に示すように接続ピン 2 1 2に装着する場合、 主 に X, Y 2方向のこじりによる応力 (以下、 こじり力という。 ) が加わる。 こ れにより、 ソケット端子 1 2 2 Aは、 第 2 8図 (G) に示すようにこじり力の 影響で拡開しもとの状態に復元しなくなることがある。 この結果、 ソケット端 子 1 2 2 Aによる接続ピン 2 1 2の把持力が大幅に低下し、 接触不良により接 触抵抗が大きくなるので、電流を流すと発熱して端子損傷等の問題が発生する。 係る課題に対応するため、 特開平 8— 1 4 9 7 7 0、 特開 2 0 0 1— 3 3 2 1 5 9等が提案されている。 特開平 8— 1 4 9 7 7 0では、 接続ピンの挿脱方 向に沿った 4力所の溝を有する筒形状のソケット端子が提案されている。また、 特開平 8— 1 4 9 7 7 0中には、 ソケット端子を把持部と支持部とで構成し、 把持部にこじり力が生じた場合に拡開し応力を吸収する一対の接合片部を具備 させる技術が提案されている。 一方、 特開 2 0 0 1— 3 3 2 1 5 9には、 ソケ ット端子のスリット状の開口部の近傍に、 ソケット端子の拡開を防ぐための凸 部を設ける技術が提案されている。
しかしながら、特開平 6- 38467号公報の起動装置では、抵抗 2 1 4によりバイ メタル 2 1 8のオフ状態を維持するため、 第 2 7図 (A) の回路構成と比べて 消費電力を 1ノ 3にするのが限界であった。 また、 実開昭 56- 38276公報では、 正特性サーミス夕を 2分割しているため'、 消費電力を 1 / 2までしか落とせな かった。
上述した消費電力ばかりでなく、特開平 6- 38467号公報の起動装置では、バイ メタル 2 1 8のオフ状態を維持する抵抗 2 1 4の熱容量が大きいため、 単相誘 導電動機の再起動を迅速に行い得なかった。同様に、実開昭 56-38276公報では、 正特性サーミス夕を 2分割しているため、 再起動時間を半減させることしかで きなかった。
本発明は、 上述した課題を解決するためになされたものであり、 その目的と するところは、 起動用の正特性サーミス夕による定常運転中の消費電力を極力 抑制し得て、 省エネルギー化を図ることができる単相誘導電動機の起動装置を 提供することを目的とする。
また、 特開平 8— 1 4 9 7 7 0の筒形状のソケット端子は、 溝により分割さ れた円弧形状の部分がリブ効果で一部に応力が集中し、 変形し易いという課題 があった。 一方、 特開平 8— 1 4 9 7 7 0の接合片部を具備するソケット端子 は、 接合片部が側方へ突出しているため、 スペース効率が悪くなり起動装置へ 収容し難い。 特開 2 0 0 1— 3 3 2 1 5 9のソケット端子は、 ソケット端子と は別体に凸部を設けるため、 スペース効率が悪くなり起動装置へ収容し難いと いう課題があった。
本発明は、 上述した課題を解決するためになされたものであり、 その目的と するところは、 長期にわたってソケット端子の把持力を維持でき、 信頼性の高 い単相誘導電動機の起動装置を提供することにある。 発明の開示
上記目的を達成するため、 請求項 1の発明は、 交流電源によって通電される 主卷線及び補助巻線を有する単相誘導電動機の起動装置において、
ケーシングと、
前記補助巻線に直列に接続された正特性サ一ミス夕と、
前記正特性サーミス夕に並列に接続された補助正特性サーミス夕と、 前記補助巻線及び正特性サ一ミス夕の直列回路に直列に接続され、 前記補助 正特性サーミス夕からの熱を感知してこれが設定温度になるとオフするスナツ プアクションバイメタルと、
前記ケーシング内に備えられ、 前記スナップァクションバイメタル及び前記 補助正特性サ一ミス夕を密閉する密閉室と、 を具備してなることを技術的特徴 とする。
上述した目的を達成するため、 請求項 5では、 交流電源によって通電される 主巻線及び補助卷線を有する単相誘導電動機の起動装置において、
ケーシングと、
前記補助巻線に直列に接続された正特性サーミス夕と、
前記正特性サーミス夕に並列に接続された補助正特性サーミス夕と、 前記補助巻線及び正特性サ一ミス夕の直列回路に直列に接続され、 前記補助 正特性サーミス夕からの熱を感知してこれが設定温度になるとオフするバイメ タルと、
前記ケーシング内に備えられ、 前記バイメタル及び前記補助正特性サーミス 夕を密閉する密閉室と、
前記バイメタルに対して、 接点をオン側に付勢する磁力を与える磁石と、 を 具備してなることを技術的特徴とする。
請求項 7では、 交流電源によって通電される主卷線及び補助巻線を有する単 相誘導電動機の起動装置において、
ケーシングと、
前記補助巻線に直列に接続された正特性サーミス夕と、
前記正特性サーミス夕に並列に接続された補助正特性サーミス夕と、 前記補助正特性サーミス夕からの熱を感知してこれが設定温度になる消磁す る感温磁石と、
前記補助巻線及び正特性サーミス夕の直列回路に直列に接続され、 前記感温 磁石の磁力により吸引されオンすると共に該感温磁石の消磁によりオフするス 前記ケ一シング内に備えられ、 前記スィッチを密閉する密閉室と、 を具備し てなることを技術的特徴とする。
請求項 8では、 交流電源によって通電される主巻線及び補助巻線を有する単 相誘導電動機の起動装置において、
前記補助巻線に直列に接続された正特性サーミス夕と、
前記正特性サ一ミス夕に並列に接続された補助正特性サーミス夕と、 前記補助正特性サ一ミス夕からの熱を感知してこれが設定温度になる消磁す る感温磁石と、
前記補助巻線及び正特性サーミス夕の直列回路に直列に接続され、 前記感温 磁石の磁力によりオンすると共に該感温磁石の消磁によりオフするリードスィ ツチと、 を具備してなることを技術的特徴とする。
請求項 1の単相誘導電動機の起動装置によれば、単相誘導電動機の起動時は、 正特性サーミス夕が低抵抗であるため、 正特性サーミス夕及びスナツプアクシ ョンバイメタルの直列回路を介して補助巻線に起動電流が流れ、 単相誘導電動 機を起動する。 起動電流が流れると、 正特性サーミス夕が自己発熱して、 高抵 抗になり、 正特性サ一ミス夕と並列に接続された補助正特性サーミス夕側に多 く電流が流れる。 補助正特性サーミス夕が設定温度になると、 スナップァクシ ヨンバイメタルがオフし、 正特性サーミス夕には電流は流れなくなり、 単相誘 導電動機は、 起動を完了して定常運転となる。 スナツプアクションバイメタルがオフされると、 補助正特性サーミス夕側に のみ電流が流れるようになって発熱し、 その発生熱によりスナップァクション バイメタルがオフ状態に保持される。
従って、 単相誘導電動機の定常運転中には、 正特性サーミス夕には電流は流 れず、 代りに、 補助正特性サ一ミス夕側に電流が流れるようになるが、 この補 助正特性サーミス夕に流れる電流は、 補助正特性サ一ミス夕にスナップァクシ ヨンバイメタルをオフ状態に保持するための熱を発生させる程度の極めて小な るものであり、 補助正特性サーミス夕による消費電力は従来の正特性サーミス 夕の消費電力よりも極めて少ない。
特に、 スナップアクションバイメタルと補助正特性サーミス夕とは、 ケ一シ ング内の密閉室に収容されているため、 熱が外部へ逃げにくく、 極めて少ない 消費電力でスナップァクションバイメタルのオフを維持することができる。 更 に、密閉形コンプレッサの冷媒として可燃性ガス (ブタン等の炭化水素化合物) が用いられて、 該冷媒が漏れる事態が発生しても、 密閉室に収容されているた め、 スナップアクションバイメタルの開閉動作時の火花により発火することが ない。
また、 単相誘導電動機の定常運転中に、 熱容量の大きな起動用正特性サーミ スタは冷却して常温になっている。 一方、 補助正特性サ一ミス夕は、 熱容量が 小さいため、 冷却が早い。 従って、 単相誘導電動機の停止直後に再起動する際 にも、 補助正特性サ一ミス夕は直ぐ常温近くまで冷却されるため、 再起動が可 能になるまでの時間は数秒から数十秒と非常に早く、 従来技術のようにオーバ ロードリレーが作動、 復帰を繰り返すことなく速やかに再起動することができ る。
更に、 バイメタルの加熱用に小型の補助正特性サーミス夕を用いるので、 電 圧変動の影響を受けず、 周囲温度の変化に対しても補正効果がある。
請求項 2では、 スナップアクションバイメタルは、 可動接点を揺動する可動 接点板と、 バイメタルと、 該可動接点板の第 1支持点と該バイメタルの第 2支 持点との間に介在する断面半円形状の板パネとからなる。 可動接点板の支点と 第 1支持点とを結ぶ線分よりも第 2支持点がバイメタルの低温時の先端位置側 寄りに有る際に、 板パネが可動接点を固定接点側に押しつけるように可動接点 板を付勢する。 そして、 可動接点板の支点と第 1支持点とを結ぶ線分よりも第 2支持点がバイメタルの高温時の先端位置側寄りに有る際に、 板パネが可動接 点を固定接点側から離すように可動接点板を付勢する。 これにより、 スナップ アクションバイメタルが、 接点を素早く切断できる。 従って、 アークが継続せ ず、 接点の荒れやノイズの発生がない。 接点圧がゼロになった状態で接続を続 ける時間が短ぐ振動により接点開閉状態となることがない。これらによって、 接点の接続信頼性が高く、 長期に渡り不良が生じない。
請求項 3では、 スナップアクションバイメタルは、 絞り加工の施されたバイ メタルを備える。 また、 請求項 4では、 スナップアクションバイメタルは、 中 央部に略円形状のフォーミング加工の施されたバイメタルを備える。 これによ り、 スナップアクションバイメタルが、 接点を素早く切断できる。 従って、 ァ —クが継続せず、 接点の荒れやノイズの発生がない。 接点圧がゼロになった状 態で接続を続ける時間が短く、 振動により接点開閉状態となることがない。 こ れらによって、 接点の接続信頼性が高く、 長期に渡り不良が生じない。
請求項 5では、 自由端側に接点を備えるバイメタルが、 接点オン側に磁石の 磁力により付勢される。 バイメタルがオフする際に、 磁石からの磁力は距離の 自乗に反比例して低下する。 バイメタルは、 接点オン状態で最も強い磁力を受 け、 接点が離れた後は磁力が急激に弱まるので、 接点を素早く切断できる。 従 つて、 アークが継続せず、 接点の荒れやノイズの発生がない。 接点圧がゼロに なった状態で接続を続ける時間が短く、 振動により接点開閉状態となることが ない。これらによって、接点の接続信頼性が高く、長期に渡り不良が生じない。 請求項 6では、 バイメタルの基部に補助正特性サーミス夕が接している。 こ のため、 補助正特性サーミス夕からの熱をバイメタルへ効率的に伝達でき、 少 ない消費電力の補助正特性サーミス夕で、 バイメタルのオフ状態を維持するこ とができる。
請求項 7では、 例えば、 磁性導電部材からなるパネ板の自由端側に接点を備 えてなるスィッチが、 補助正特性サ一ミス夕からの熱を感知してこれが設定温 度になると消磁する感温磁石の磁力により付勢される。 即ち、 設定温度未満で は、 スィッチがパネ板の弹性力に反して感温磁石の磁力により吸引されオン、 設定温度以上になると、 スィッチが、 該感温磁石の消磁によりパネ板の弾性力 にてオフする。 このオフする際に、 感温磁石からの磁力は距離の自乗に反比例 して低下する。 スィッチは接点オン状態で最も強い磁力を受け、 接点が離れた 後は磁力が急激に弱まるので、 接点を素早く切断できる。 従って、 アークが継 続せず、 接点の荒れやノイズの発生がない。 接点圧がゼロになった状態で接続 を続ける時間が短く、 振動により接点開閉状態となることがない。 これらによ つて、 接点の接続信頼性が高く、 長期に渡り不良が生じない。
請求項 8では、 リ一ドスイッチが、 補助正特性サ一ミス夕からの熱を感知し てこれが設定温度になると消磁する感温磁石の磁力によりオン、 オフされる。 即ち、 設定温度未満では、 リードスィッチが感温磁石の磁力によりオンし、 設 定温度以上になると、 リードスィッチが、 該感温磁石の消磁によりオフする。 このオフする際に、 感温磁石からの磁力は距離の自乗に反比例して低下するた め、 リードスィッチは接点を素早く切断できる。 従って、 アークが継続せず、 接点の荒れやノィズの発生がない。 接点圧がゼロになった状態で接続を続ける 時間が短く、 振動により接点開閉状態となることがない。 これらによって、 接 点の接続信頼性が高く、 長期に渡り不良が生じない。
請求項 9では、 前記正特性サ一ミスタを弹性力で保持すると共に電気接続を 取るパネ部を有する導電板の所定箇所に通孔を穿設することで、 通孔外周部の 幅を細くしてなるヒューズ部を設けてある。 このため、 正特性サーミス夕が異 常発熱、 熱暴走し、 抵抗値が下がりショートに近い状態になり電流が増加した 際に、 ヒューズ部が溶断する。 このため、 起動巻線や起動リレーの焼損を防ぐ ことができる。
請求項 1 0では、 正特性サーミス夕を保持するパネ部の正特性サ一ミス夕と 当接させるため鈍角に曲げられた当接角部に、 長孔が設けられている。 これに より、 当接角部の正特性サーミス夕との接触ボイントが分割されることで 2倍 になり、 接触信頼性を高めることができる。
請求項 1 1では、 正特性サーミス夕を保持するパネ部の正特性サ一ミス夕と 当接させるため鈍角に曲げられた当接角部に、 切り欠きが設けられている。 こ れにより、 当接角部の正特性サ一ミス夕との接触ボイントが分割されることで 2倍になり、 接触信頼性を高めることができる。 更に、 切り欠きの内側と外側 とで当接角部の共振周波数が異なる。コンプレッサの振動が起動装置に伝わり、 正特性サーミス夕ゃバネ部材が共振し、 正特性サーミス夕電極部がパネ部材で 叩かれると電極に損傷、 剥離が生じるが、 請求項 1 1では、 当接角部の内側と 外側とで共振周波数が異なるため同時に共振することがなく、 当接角部が正特 性サーミス夕を叩くことがなくなり、 正特性サーミス夕の電極に損傷が生じな い。
上記目的を達成するため、 請求項 1 2の発明は、 補助卷線に直列に接続され る正特性サーミス夕と、 揷脱可能な接続ピンとの間で電気的接続を行うソケッ ト端子とを有し、 主卷線及び補助卷線からなる単相誘導電動機の起動装置にお いて、
前記ソケット端子は、 接続ピンの軸方向の側方へ延在する一対の板部を内側 に折り曲げ、 先端を接続ピンの円柱形状に合致可能なよう円弧状に形成すると 共に、 先端を互いに離間させてなる接続ピン保持部を備え、
前記接続ピン保持部が、 接続ピンの軸方向と垂直方向のスリツトにより先端 側の第 1部位と奥側の第 2部位とに 2分割されていることを技術的特徴とする。 請求項 1 2の起動装置は、 ソケット端子の接続ピン保持部が、 先端側の第 1 部位と奥側の第 2部位とに 2分割されているので、 接続ピン挿入時にこじり力 が働いた場合でも、 広がるのは接続ピン保持部の先端側の第 1部位に留まり、 奥側の第 2部位は広がらない。 このため、 第 2部位では、 疲労が生じず、 接続 ピンとの良好な接触状態を保つことができ、 接触部の加熱による損傷が発生し ない。
更に、 接続ピンへの挿入時に、 先ず、 先端側の第 1部位が広がり挿入され、 接続ピン先端が奥側の第 2部位に達すると、 第 2部位が広がり始める。 即ち、 挿入時に必要な力は、 接続ピンより狭い部位を押し広げる必要から、 最初が最 も大きく、 その後はほぼ横ばいとなるが、 本発明では、 接続ピンの挿入開始時 には、 分割されている先端側第 1部位のみを広げればよいため、 接続ピン保持 部全体を広げる必要があった従来技術品と比較して、 挿入作業が楽になる。 ま た、 従来技術品と同じ大きさであるため、 スペース効率が高く、 既存の起動装 置への適用が容易である。
また、 接続ピンとソケット端子との間に傾きがあっても、 先端側の第 1部位 と奥側の第 2部位とが独立して接続ピンと接触するので、 例え、 接続ピンとソ ケット端子とが点接触することになつても、 接触点が 2倍になり、 接続ピンと ソケット端子との電気接続を確保できる。
請求項 1 3では、 接続ピン保持部を貫通した接続ピンの先端部を収容する凹 部をケーシングに設けてあるため、接続ピンの先端の面取りされている部位は、 接続ピン保持部を突き抜けて凹部内に位置することになる。 即ち、 面取りされ ている部位を接続ピン保持部で把持しないため、 接続ピン保持部での接続ピン の把持力を高めることができ、 接触抵抗を下げる効果もある。
請求項 1 4では、 接続ピン保持部の先端側の第 1部位が、 奥側第 2部位より も緩やかに接続ピンを保持するように広く形成されているため、 接続ピンの挿 入開始時に必要な力が小さくてすむ。 一方、 奥側第 2部位は狭く形成されてい るため、 当該第 2部位で、 接続ピンとの良好な接触状態.を保つことができ、 接 触部の加熱による損傷が発生しない。
請求項 1 5では、 接続ピン保持部の先端側の第 1部位の接続ピン軸方向の長 さが、 奥側第 2部位よりも長くなるように形成されているため、 接続ピンの挿 入時のこじれ力を第 1部位で受け止め、 第 2部位がこじれにより広がるのを防 ぐことができる。 これにより、 当該第 2部位で、 接続ピンとの良好な接触状態 を保つことができ、 接触部の加熱による損傷が発生しない。
請求項 1 6では、 接続ピン保持部の奥側の第 2部位の接続ピン軸方向の長さ が、 手前側第 1部位よりも長くなるように形成されているため、 当該第 2部位 で強固に接続ピンを保持することで、 疲労が生じず、 接続ピンとの良好な接触 状態を保つことができ、 接触部の加熱による損傷が発生しない。
請求項 1 7では、 接続ピン保持部の奥側の第 2部位の前端に V字状の切れ込 みを設けてあるため、 接続ピンへの挿入時に、 先端側の第 1部位を揷通した接 続ピン先端が奥側の第 2部位に達した際にも、 第 2部位側へ容易に挿入させる ことができ、 挿入作業が楽になる。
上述した課題を解決するため、 請求項 1 9の発明は、 交流電源によって通電 される主巻線及び補助卷線を有する単相誘導電動機の起動装置において、 ケーシングと、
前記補助卷線に直列に接続された正特性サーミス夕と、
前記正特性サーミスタに並列に接続された補助正特性サーミス夕と、 前記補助卷線及び正特性サ一ミス夕の直列回路に直列に接続され、 前記補助 正特性サーミス夕からの熱を感知してこれが設定温度になるとオフするスロー ァクションバイメタルと、
前記ケーシング内に備えられ、 前記スローァクションバイメタル及び前記補 助正特性サ一ミス夕を密閉する密閉室と、 を具備してなることを技術的特徴と する。
請求項 1 9の単相誘導電動機の起動装置によれば、 単相誘導電動機の起動時 は、 正特性サーミス夕が低抵抗であるため、 正特性サーミス夕及びスローァク ションバイメタルの直列回路を介して補助巻線に起動電流が流れ、 単相誘導電 動機を起動する。 起動電流が流れると、 正特性サーミス夕が自己発熱して、 高 抵抗になり、 正特性サーミス夕と並列に接続された補助正特性サ一ミス夕側に 多く電流が流れる。 補助正特性サーミス夕が設定温度になると、 スローァクシ ヨンバイメタルがオフし、 正特性サーミス夕には電流は流れなくなり、 単相誘 導電動機は、 起動を完了して定常運転となる。
スローアクションバイメタルがオフされると、 補助正特性サーミス夕側にの み電流が流れるようになって発熱し、 その発生熱によりスローァクションバイ メタルがオフ状態に保持される。
従って、 単相誘導電動機の定常運転中には、 正特性サーミス夕には電流は流 れず、 代りに、 補助正特性サ一ミス夕側に電流が流れるようになるが、 この補 助正特性サ一ミス夕に流れる電流は、 補助正特性サ一ミス夕にスローァクショ ンバイメタルをオフ状態に保持するための熱を発生させる程度の極めて小なる ものであり、 補助正特性サーミス夕による消費電力は従来の正特性サーミス夕 の消費電力よりも極めて少ない。
特に、 スローアクションバイメタルと補助正特性サ一ミス夕とは、 ケーシン グ内の密閉室に収容されているため、 .熱が外部へ逃げにくく、 極めて少ない消 費電力でスローァクションバイメタルのオフを維持することができる。 更に、 密閉形コンプレッサの冷媒として可燃性ガス (ブタン等の炭化水素化合物) が 用いられて、該冷媒が漏れる事態が発生しても、密閉室に収容されているため、 スローァクションバイメタルの開閉動作時の火花により発火することがない。 更に、 スローアクションバイメタルを用いるため、 フォーミングされたスナツ ヨンバイメタルと比較して、 長期の使用に耐え得る。
また、 単相誘導電動機の定常運転中に、 熱容量の大きな起動用正特性サ一ミ ス夕は冷却して常温になっている。 一方、 補助正特性サ一ミス夕は、 熱容量が 小さいため、 冷却が早い。 従って、 単相誘導電動機の停止直後に再起動する際 にも、 補助正特性サーミス夕は直ぐ常温近くまで冷却されるため、 再起動が可 能になるまでの時間は数秒から数十秒と非常に早く、 従来技術のようにオーバ ロードリレーが作動、 復帰を繰り返すことなく速やかに再起動することができ る。
請求項 2 0では、 スローアクションバイメタルの基部に補助正特性サーミス 夕が接している。 このため、 補助正特性サ一ミス夕からの熱をスローァクショ ンバイメタルへ効率的に伝達でき、少ない消費電力の補助正特性サーミス夕で、 スローアクションバイメタルのオフ状態を維持することができる。
上述した目的を達成するため、 請求項 2 1では、 交流電源によって通電され る主巻線及び補助卷線を有する単相誘導電動機の起動装置において、
前記補助巻線に直列に接続された正特性サーミス夕と、
前記正特性サーミス夕に並列に接続された補助正特性サーミス夕と、 前記補助巻線及び正特性サーミス夕の直列回路に直列に接続され前記補助正 特性サーミス夕からの熱を感知してこれが設定温度になるとオフするスローァ クションバイメタルと、
前記補助巻線、 正特性サ一ミス夕及びスローアクションバイメタルの直列回 路に直列に接続され前記正特性サーミス夕からの熱を感知してこれが所定高温 度になるとオフするスナップァクションバイメタルと、 を具備してなることを 技術的特徴とする。
請求項 2 1の単相誘導電動機の起動装置によれば、 単相誘導電動機の起動時 は、 正特性サーミス夕が低抵抗であるため、 正特性サーミス夕及びスローァク ションバイメタルの直列回路を介して補助巻線に起動電流が流れ、 単相誘導電 動機を起動する。 起動電流が流れると、 正特性サーミス夕が自己発熱して、 高 抵抗になり、 正特性サーミス夕と並列に接続された補助正特性サーミス夕側に 多く電流が流れる。 補助正特性サーミス夕が設定温度になると、 スローァグシ ヨンバイメタルがオフするようになり、 正特性サーミス夕には電流は流れなく なり、 単相誘導電動機は、 起動を完了して定常運転となる。
スローァクションバイメタルがオフされると、 補助正特性サーミス夕側にの み電流が流れるようになって発熱し、 その発生熱によりスローァクションバイ メ夕ルがォフ状態に保持される。
従って、 単相誘導電動機の定常運転中には、 正特性サ一ミス夕には電流は流 れず、 代りに、 補助正特性サ一ミス夕側に電流が流れるようになるが、 この補 助正特性サーミス夕に流れる電流は、 補助正特性サ一ミス夕にスローァクショ ンバイメタルをオフ状態に保持するための熱を発生させる程度の極めて小なる ものであり、 補助正特性サーミス夕による消費電力は従来の正特性サ一ミス夕 の消費電力よりも極めて少ない。 更に、 スローアクションバイメタルを用いる ため、 フォーミングされたスナップアクションバイメタルと比較して、 長期の 使用に耐え得る。
また、 正特性サーミス夕が異常発熱し所定高温度になるとスナツプアクショ ンバイメタルがオフし、 補助巻線への電流を遮断するため、 正特性サーミス夕 が熱暴走し高温で低抵抗になり、 補助巻線に大電流が流れて絶縁破壊する事態 を防ぐことができる。
請求項 2 2では、 スナップアクションバイメタルは、 常温で復帰しないよう に設定されている。 このため、 スナップアクションバイメタルの復帰による正 特性サーミス夕の熱暴走を完全に防止できる。
請求項 2 3では、 スローアクションバイメタルの接点とスナップアクション バイメタルの接点とが直接接触し、 スローァクションバイメタルが設定温度に なるとスナップァクションバイメ夕ル側の接点から離れ、 スナップアクション バイメタルが所定高温度になるとスローアクションバイメタル側の接点から離 れる。 熱が加わり、 スローアクションバイメタルがオフになる際には、 スナツ プアクシヨンバイメタル側にも熱が加わり、 スローアクションバイメタル側の 接点から離れる側に少し動いているため、 長寿命ではあるが動作の遅いスロー ァクションバイメタルを用いても、 適正に起動電流を遮断することができる。 即ち、 温度上昇につれて、 お互いのバイメタルが離れて行く方向にあるので、 チャタリングが発生し難い。 更に、 両接点共に可動接点からなるので、 温度変 化で常にワイビング現象 (こすれ合い) が起き、 接点接触部がクリーニングさ れ、 金メッキではなく銀接点を用いて長寿命を実現することができる。 更に、 スローァクションバイメ夕ルの接点とスナップァクションバイメタルの接点と を直接接触させているため、 双方に固定接点を設けた金属板等の端子部材を介 在させるのと比べて、 低コストと低抵抗とを実現できる。
請求項 2 4では、 スナップァクションバイメタルの先端に接するストッパー を設け、 スロ一アクションバイメタルの動作を妨げないようにしてある。 この ため、 起動が完了して正特性サーミス夕が冷却し、 スナップアクションバイメ タルが常温に戻ってもスローァクションバイメタル側へ湾曲するのを防止でき、 適正な接点間隔を保つことができる。 図面の簡単な説明
第 1図 (A) は、 第 1実施形態 係る起動装置及びオーバ口一ドリレーのコ ンプレッサへの取り付けを示す説明図であり、 第 1図 (B ) は、 ピン端子の斜 視図である。
第 2図は、 第 1実施形態に係る起動装置及びオーバロードリレーの回路図で ある。
第 3図は、 第 1実施形態に係るオーバロードリレーの平面図である。
第 4図 (A) 、 第 4図 (B ) は、 第 3図に示すオーバロードリレーのカバ一 を付けた状態の X— X縦断面図であり、 第 4図 (A) は、 バイメタルの反転前 の状態を、 第 4図 (B ) はバイメタルの反転後の状態を示している。
第 5図 (A) は、 本発明の第 1実施形態に係る単相誘導電動機の起動装置の 底蓋を外した状態の底面図であり、 第 5図 (B ) は、 第 5図 (A) の B 1— B 1断面を示し、 第 5図 (C ) は、 第 5図 (B ) の C 1一 C 1断面を示している。 第 6図 (A) は、 第 5図 (B ) の e矢視側の平面図であり、 第 6図 (B ) は、 第 5図 (C ) の f矢視側の側面図であり、 第 6図 (C) は、 第 5図 (B ) 矢視側の底面図である。
第 7図 (A) は、 起動装置にオーバロードリレーを組み付けた状態の平面図 であり、 第 7図 (B ) は側面図であり、 第 7図 (C) は底面図である。
第 8図( A)は、スナツプアクションバイメタルの平面図であり、第 8図( B )、 第 8図 (C ) は、 第 5図 (C ) に示す起動装置を拡大して示す断面図である。 第 9図 (A) は、 第 5図 (A) 中の第 1接続板の拡大図であり、 第 9図 (B) は第 9図 (A) の h矢視図であり、 第 9図 (C) は第 9図 (A) の j矢視図で あり、 第 9図 (D) は、 第 9図 (C) 中の円 Dで囲んだ主 PTCとの当接部の 拡大斜視図である。
第 10図 (A) は、 第 1実施形態の改変例に係るスナップアクションバイメ タルの平面図であり、 第 10図 (B) 、 第 10図 (C) は、 第 1実施形態の改 変例に係る起動装置を示す断面図である。
第 1 1図 (A) は、 第 1実施形態の改変例に係るの第 1接続板の拡大図であ り、 第 1 1図 (B) は第 11図 (A) の h矢視図であり、 第 1 1図 (C) は第 1 1図 (A) の j矢視図であり、 第 1 1図 (D) は、 第 1 1図 (C) 中の円 D で囲んだ主 PTCとの当接部の拡大斜視図である。
第 12図 (A) は、 第 2実施形態の起動装置のスナップアクションバイメタ ルの平面図であり、 第 12図 (B) は、 側面図である。 第 12図 (C) は、 第 2実施形態の別例の起動装置のスナップァクションバイメタルの平面図であり、 第 12図 (D) は別例の側面図である。 第 12図 (E)及び第 12図 (F) は、 第 2実施形態のスナツプアクションバイメタルの動作の説明図である。
第 13図 (A) は、 第 2実施形態の改変例に係る起動装置のスナップァクシ ヨンバイメタルの平面図であり、第 13図(B)は側面図である。第 13図(C) 及び第 13図 (D) は、 第 2実施形態の改変例に係るスナップアクションバイ メタルの動作の説明図である。
第 14図 (A) 、 第 14図 (B) は、 第 3実施形態に係る起動装置のバイメ タルの動作の説明図である。
第 15図 (A) 、 第 15図 (B) は、 第 4実施形態に係る起動装置のスイツ チの動作の説明図である。
第 16図は、第 5実施形態に係る起動装置のリードスィッチの説明図である。 第 17図 (A) 、 第 17図 (B) 、 第 17図 (C) は、 本実施形態に係る起 動装置の適用例の回路図である。
第 18図 (A) は、 第 5図 (B) 中の円 Eで囲んだ部位の拡大図であり、 第 18図 (B) は、 第 18図 (A) の B 3— B 3断面図であり、 第 18図 (C) は、 第 18図 (A) の C3— C 3断面図 (ピン中心から手前側をカットした図) であり、 第 1 8図 (D) は、 ピンが挿入された状態のソケット端子の斜視図で ある。
第 1 9図(A) は、第 1 8図(A) に示す端子の平面図であり、第 1 9図(B ) は、 第 1 9図 (A) の B 4— B 4断面図であり、 第 1 9図 (C ) は、 第 1 9図 (A) の k矢視図である。
第 2 0図 (A) は、 第 2実施形態に係る端子の平面図であり、 第 2 0図 (B ) は、 第 2 0図 (A) の B 4— B 4断面図であり、 第 2 0図 (C) は、 第 2 0図 (A) の k矢視図である。
第 2 1図 (A) は、 第 3実施形態に係る端子の平面図であり、 第 2 1図 (B ) は、 第 2 1図 (A) の B 4— B 4断面図であり、 第 2 1図 (C ) は、 第 2 0図 (A) の k矢視図である。
第 2 2図は、 第 1実施形態のソケット端子と従来技術のソケット端子との挿 入力を比較したグラフである。
第 2 3図 (B ) は、 本発明の第 6実施形態に係る起動装置の蓋を外した状態 の平面図であり、 第 2 3図 (A) は、 第 2 3図 (B ) の A— A断面を示し、 第 2 3図 (C) は、 第 2 3図 (B ) の C一 C断面を示している。
第 2 4図 (A) 、 第 2 4図 (B) は、 第 6実施形態の起動装置の側面図であ る。
第 2 5図 (B ) は、 第 7実施形態に係る起動装置の蓋を外した状態の平面図 であり、第 2 5図(A) は、第 2 5図 (B) の A— A断面を示し、第 2 5図(C) は、 第 2 5図 (B) の C一 C断面を示している。
第 2 6図は、 第 7実施形態に係る起動装置の回路図である。
第 2 7図 (A) は、 従来技術に係る起動装置の回路図であり、 第 2 7図 (B ) は特開平 6-38467号公報に係る起動装置の回路図である。
第 2 8図 (A) は従来技術に係るソケット端子の平面図を、 第 2 8図 (B ) は断面を、 第 2 8図 (C ) は底面を示し、 第 2 8図 (D) 、 第 2 8図 (E ) は、 起動装置への接続ピンの嵌入状態を示す断面図であり、 第 2 8図 (F ) 、 第 2 8図 (G) は、 ソケット端子への接続ピンの嵌入状態を示す斜視図である。 発明を実施するための最良の形態 [第 1実施形態]
以下、 本発明の第 1実施形態に係る起動装置及びオーバロードリレーについ て図を参照して説明する。
第 1図 (A) に示すように第 1実施態様の起動装置 1 0とオーバ口一ドリレ —5 0とは、 一体にコンプレッサ 1 0 2のドーム 1 0 4のピン端子 1 1 0に取 り付けられ、 カバ一 1 0 6により保護される。 該コンプレッサ 1 0 2の内部に はモータ 1 0 0が収容されている。
第 2図は、 第 1実施形態に係る単相誘導電動機の起動装置及びオーバロード リレー 5 0の回路図である。 電源端子 9 2、 9 4は 1 0 0 Vの単相交流電源 9 0に接続されており、 更に、 その一方の電源端子 9 2は運転スィッチ 9 7及び オーバロードリレー 5 0を直列に介して電源線 9 6に接続され、 他方の電源端 子 9 4は電源線 9 8に接続されている。 オーバロードリレー 5 0は、 バイメタ ル 7 0と、 該バイメタル 7 0を加熱するヒ一夕 7 6とから成り、 単相誘導電動 機 1 0 0に過負荷が掛かると、 ヒー夕 7 6の発熱によりバイメタル 7 0が電流 を遮断し、 電流の遮断により常温まで温度が下がると、 バイメタル 7 0が自動 復帰して通電を再開する。
単相誘導電動機 1 0 0は、 主卷線 M及び補助巻線 Sを有するもので、 その主 巻線 Mは電源線 9 6 , 9 8間に接続され、 補助巻線 Sの一方の端子は電源線 9 6に接続されている。 この単相誘導電動機 1 0 0は、 例えば、 冷蔵庫における 冷凍サイクルの第 1図を参照して上述した密閉形コンプレッサ 1 0 2を駆動す るようになっている。 そして、 運転スィッチ 9 7は、 例えば、 図示しない温度 制御装置によってオン, オフされるもので、 冷蔵庫内の温度が、 上限温度にな るとオンし、 下限温度になるとオフするようになっている。
前記補助巻線 Sの他方の端子は、 正特性サーミス夕 (以下、 主 P T Cとして 参照する) 1 2及び常閉形のスナップアクションバイメタル 1 8の直列回路を 介して電源線 9 8に接続されている。 該主 P T C 1 2及びスナップアクション バイメタル 1 8と並列に、 補助正特性サーミス夕 (以下、 補助 P T Cとして参 照する) 1 4が接続されている。ここで、主 P T C 1 2及び補助 P T C 1 4は、 例えば、 チ夕ン酸ノ 'リウムを主成分とした酸化物半導体セラミックで構成され ていて、 キュリー温度をもち、 電気抵抗値がこのキュリー温度から急激に増大 する特性を有する。 正特性サーミス夕 12は、 例えば、 常温 (25°C前後) で は 5Ω程度, 120ででは0. l kQ程度, 140 °Cでは 1 k Ω〜; L 0 k Ω程 度になる。 補助 PTC 14は、 主 PTC 12より高い抵抗値を有し、 1 3〜 1/10の消費電力となるように熱容量が 1 3〜 1/10 (最適には 1 6 程度) に設定されている。 そして、 スナップアクションバイメタル 18は、 補 助 PTC 14の発生熱を感知してオン,オフするようになっており、感知熱が、 例えば、 設定温度 140°Cになるとオフ動作するようになっている。
次に、 第 1実施形態の起動装置 10の作用について説明する。 運転スィッチ 97がオンされると、 運転スィッチ 97及びオーバロードリレー 50を介して 主巻線 Mに起動電流が流れる。 又、 主 PTC 12は常温では低電気抵抗値 (例 えば 5 Ω程度) を呈しているので、 補助巻線 S、 主 PTC 12及びスナップァ クションバイメタル 18の直列回路、 補助 PTC 14の並列回路とにも起動電 流が流れ、 以て、 単相誘導電動機 100は起動する。
主 PTC 12に補助巻線 Sの起動電流が流れると、 主 PTC 12、 補助 PT C 14は自己発熱して電気抵抗値が急激に増大する。 そして、 数秒後に、 主 P TC 12、 補助 PTC 14は 140°Cの温度に達し、 この時の主 PTC 12の 電気抵抗値は、 例えば、 l kQ〜10 kQになり、 スナップアクションバイメ タル 1 8に流れる電流は減少する。 補助 P T C 14が 140 °Cの温度に達する と、 スナップアクションバイメタル 18がこれを感知してオフ動作するように なり、 主 PTC 12及びスナップアクションバイメタル 18の直列回路には電 流が流れなくなり、 以て、 単相誘導電動機 100の起動が完了し、 定常運転を 行なうようになる。
スナップアクションバイメタル 18がオフされると、 補助 PTC 14側にの み電流が流れるようになって発熱し、 その発生熱によりスナップアクションバ ィメタル 18がオフ状態に保持される。
従って、 単相誘導電動機 100の定常運転中には、 主 PTC 12には電流は 流れず、 代りに、 補助 PTC 14側に電流が流れるようになる力 この補助 P TC 14に流れる電流は、 補助 PTC 14にスナップァクションバイメタル 1 8をオフ状態に保持するための熱を発生させる程度の極めて小なるものであり、 補助 PTC 14による消費電力は従来の正特性サーミス夕の消費電力よりも極 めて少ない。
また、 単相誘導電動機 1 0 0の定常運転中に、 熱容量の大きな主 P T C 1 2 は冷却して常温になっている。一方、補助 P T C 1 4は、熱容量が小さいため、 冷却が早い。 従って、 単相誘導電動機 1 0 0の停止直後に再起動する際にも、 補助 P T C 1 4は直ぐ常温近くまで冷却されるため、 再起動が可能になるまで の時間は数秒から数十秒と非常に早く、 従来技術のようにォ一バロ一ドリレー が作動、 復帰を繰り返すことなく速やかに再起動することができる。
引き続き、 第 1実施形態のオーバロードリレ一5 0の機械的構造について、 第 3図及び第 4図を参照して説明する。
第 3図は、 オーバロードリレー 5 0のカバ一を外した状態の平面図であり、 第 4図は、 カバーを付けた状態での第 3図中の X— X断面図である。 第 4図に 示すようにオーバロードリレー 5 0は、 不飽和ポリエステル製のベース 5 2と P B T樹脂製のカバ一 5 4とから成り、 ォ一バロードリレ一 5 0の上面には、 モータ側から延在するピン (図示せず) を嵌入するためのソケット端子 5 8が 配設され、 側面には、 側方へ延在し、 電源側レセプ夕クルを挿入するための第 3図に示すタブ端子 5 6が配設されている。
第 4図 (A) に示すようにオーバロードリレー 5 0は、 バイメタル 7 0が可 動接点板 6 0と可動側端子 7 4との間に挟持され、 該バイメタル 7 0の下方に ヒー夕 7 6が設けられている。 該バイメタル 7 0の上方には、 可動接点板 6 0 が配設されている。 可動接点板 6 0は、 一端が補強板 7 8に溶接固定され、 自 由端には、 固定接点 6 4と接触する可動接点 6 2が取り付けられている。 ォ一バロードリレー 5 0の機械的構成について更に詳細に説明する。
電源側レセプ夕クルへ接続されるタブ端子 5 6は、 第 3図に示すように平板 状に成形されており、 該タブ端子 5 6にはクランク状に成形された接続板 7 2 がスポット溶接され、 該接続板 7 2を介してヒー夕 7 6の端子 7 6 aに接続さ れている。 ヒー夕 7 6は、 例えば、 ニクロム、 或いは、 鉄クロム線をコイル状 に巻回してなり、 ベース 5 2に形成させた凹部 5 2 c (第 4図 (A) 参照) に 収容されている。 第 3図に示すようにヒータ 7 6の他端 7 6 bは、 可動側端子 7 4を介して補強板 7 8に接続されている。 第 4図 (A) に示すように該補強 板 7 8は、 可動接点板 6 0の穴部およびバイメタル 7 0の凹部を貫通し可動側 端子 7 4に溶接されている。
バイメタル 7 0は、 略矩形形状のスナップ部 7 0 aと、 該スナップ部 7 0 a を保持するための一対の保持部 7 0 b、 7 O bとからなり、 該スナップ部 7 0 aは、皿形バイメタルと同様に成形(フォーミング) され、所定温度で曲率(凹 凸) が反転するものである。 第 4図 (A) に示すようにバイメタル 7 0は、 保 持部 7 0 bが可動接点板 6 0と可動側端子 7 4との間に挟持されて固定される と共に、 該スナップ部 7 0 aが、 ベース 5 2に形成された支柱状の支持部 5 2 aに支持される。 該支持部 5 2 aの回りであって、 凹部 5 2 c内にヒー夕がコ ィル状に配設されていることで、 ヒ一夕 7 6に発生した熱を効率的にバイメタ ル 7 0へ伝えるようにされている。
バイメタル 7 0は、 保持部 7 0 bにて固定され、 スナップ部 7 0 aが支持部 5 2 aに支持されているため、 調整を行うことなく組立のみで所望の特性を得 ることができる。 特に、 保持部 7 0 bをスナップ部 7 0 aよりも小さくしてあ るので、 保持部 7 0 bを固定しても、 スナップ特性は従来技術のバイメタル単 体 (固定しないバイメタル) と変わらず、 容易に必要な特性が得られる。 一方、 可動接点板 6 0は、 弾性金属板製で、 自由端に可動接点 6 2を備え、 略中央部に上記バイメタル 7 0の自由端 7 0 a 'と接触する凸部 6 0 aが配設 されている。
第 4図 (A) に示すように補強板 7 8に固定された可動接点板 6 0の可動接 点 6 2は、 固定接点 6 4に接触し、 該固定接点 6 4を載置する固定接点板 6 6 は、 第 4図 (A) に示すように一端 6 6 aがべ一ス 5 2側に固定され、 他端 6 6 bが該カバー 5 4に形成された通孔又は切り欠き部 (図示せず) を通して外 部まで延在している。 そして、 該カバー 5 4の外部で固定接点板の他端 6 6 b とソケット端子 5 8とが接続されている。
第 4図 (B ) に示すようにォ一バロードリレー 5 0のカバ一 5 4には凸部 5 4 aが形成され、 可動接点板 6 0が上方へ揺動できるようにしている。 また、 該カバー 5 4には、 起動装置 1 0と連結するための係合部 5 5が形成されてい る。
オーバロードリレー 5 0は、 第 4図 (A) に示すようにバイメタル 7 0が反 転 (スナップ) する前は、 可動接点 6 2と固定接点 6 4とが接触しており、 夕 ブ端子 56を介して入力された電源からの電流をモー夕 M側へ供給する。 ここで、 モ一夕 Mが過負荷あるいは回転子拘束などで過電流が流れると、 ヒ —夕 76での発熱量が大きくなり、 バイメタル 70が予め設定された温度 (例 えば、 120°C) に達すると、 第 4図 (B) に示すように凸状から凹状へスナ ップし、 可動接点板 60を押し上げることで可動接点 62と固定接点 64との 接触を断つ。 これにより、 モー夕 Mへの給電が停止され、 モータの保護が図ら れる。 モー夕 Mへの給電の停止により、 ヒータ 76への電流が停止され、 バイ メタル 70の温度が低下する。 そして、 予め設定された温度に達すると凹状か ら凸状へスナップして、 第 4図 (A) に示すように、 可動接点板 60の弹性に より可動接点 62と固定接点 64との接触が回復し、 モー夕 Mへの給電が再開 される。
引き続き、 第 1実施形態の起動装置 10の機械的構造について、 第 5図及び 第 6図を参照して説明する。
第 5図 (A) は、 本発明の第 1実施形態に係る単相誘導電動機の起動装置の 底蓋を外した状態の底面図であり、 第 5図 (B) は、 底蓋を付けた状態での第 5図 (A) の B l— B 1断面を示し、 第 5図 (C) は、 第 5図 (B) の C 1一 C 1断面を示している。 なお、 第 5図 (B) は、 第 5図 (C) の B2— B 2断 面に相当する。 第 6図 (A) は、 第 5図 (B) の e矢視側の平面図であり、 第 6図 (B) は、 第 5図 (C) の: f矢視側の側面図であり、 第 6図 (C) は、 第 5図 (B) の g矢視側の底面図である。 第 6図 (B) に示すように起動装置 1 0は、 ケーシング 40と底蓋 46とを備え、 外部に第 6図中に示すオーバ口一 ドリレ一50を取り付けるためのフランジ 48が形成されている。
第 5図 (A) に示すようケーシング 40の内側には、 第 2図に示す補助巻線 S側に接続される端子 22が取り付けられている。 端子 22は、 タブ端子 22 Cと、 ソケット端子 22Aと、 これらを連結する連結部 22 Bとが一体に形成 されてなる。 該連結部 22 Bには、 主 PTC 12を保持するパネ部 26Bを備 える第 1接続板 26が取り付けられている。
第 5図 (C) に示すように端子 22のタブ端子 22 Cには、 第 2接続板 30 の一端が接続されている。 第 2接続板 30の他端のバネ部 30 aは、 補助 PT C 14にパネ圧を加え保持している。 補助 PTC 14は、 スナップアクション バイメタル 1 8の基部に接触している。即ち、第 2接続板 3 0のバネ部 3 0 a、 補助 P T C 1 4、 スナップァクションバイメタル 1 8の基部及び第 3接続板 3 2の一端が隣接接続されている。 該第 3接続板 3 2の他端は、 第 2図に示す電 源線 9 8側及び主巻線 Mへ接続するための端子 2 4のタブ端子 2 4 Cに接続さ れている。 端子 2 4は、 タブ端子 2 4 Cとソケット端子 2 4 Aとを有する。 一方、 スナップアクションバイメタル 1 8の先端側には、 可動接点 1 8 aが 設けられ、 クランク状に形成された固定接点板 3 6の固定接点 3 6 aと接して いる。 可動接点 1 8 aのケーシング 4 0側壁側には、 可動接点 1 8 aの移動を 規制するためのストッパー 4 9が設けられている。 一方、 固定接点板 3 6の他 端は、 第 4接続板 3 3が接続され、 第 4接続板 3 3の他端は、 タブ端子 2 5 C とソケット端子 2 5 Aとを備える端子 2 5に接続されている。 端子 2 5には、 主 P T C 1 2を保持するパネ部 3 4 Bを備える第 5接続板 3 4が取り付けられ ている。 該第 5接続板 3 4は、 第 1接続板 2 6と同一の部材である。
ここで、 スナップアクションバイメタル 1 8及び補助 P T C 1 4は、 ケーシ ング 4 0の内側に設けられた隔壁 4 2により形成される密閉室 4 4内に収容さ れている。 密閉室 4 4は気密構造となっている。 第 2接続板 3 0はケ一シング 4 0側壁に設けられた通孔 4 2 aを介して、 第 3接続板 3 2は通孔 4 2 bを介 して、第 4接続板 3 3は通孔 4 2 cを介して密閉室 4 4内に取り回されている。 第 7図 (A) は、 起動装置 1 0にオーバ口一ドリレー 5 0を組み付けた状態 を示す平面図であり、 第 7図 (B ) は側面図であり、 第 7図 (C ) は底面図で ある。 組み付けは、 起動装置 1 0のフランジ 4 8にオーバロードリレー 5 0の 係合部 5 5を係合させることにより行う。
第 1実施形態の起動装置 1 0においてスナップアクションバイメタル 1 8と 補助 P T C 1 4とは、 ケーシング 4 0内の密閉室 4 4に収容されているため、 熱が外部へ逃げにくく、 極めて少ない消費電力でスナップアクションバイメ夕 ル 1 8のオフを維持することができる。 更に、 密閉形コンプレッサの冷媒とし て可燃性ガス (ブタン等の炭化水素化合物) が用いられて、 該冷媒が漏れる事 態が発生しても、 密閉室 4 4に収容されているためスナップァクションバイメ タル 1 8の開閉動作時の火花により発火することがない。
更に、 スナップアクションバイメタル 1 8の基部に補助 P T C 1 4が直接接 しているため、 補助 P T C 1 4からの熱をスナップァクションバイメタル 1 8 へ効率的に伝達でき、 少ない消費電力の補助 P T C 1 4で、 スナップァクショ ンバイメタル 1 8のオフを維持することができる。
第 1実施形態の起動装置 1 0のスナップァクションバイメタル 1 8について 第 8図を参照して更に詳細に説明する。
第 8図 (A) は、 スナップアクションバイメタル 1 8の平面図であり、 第 8 図 (B ) 、 第 8図 (C ) は、 第 5図 (C ) に示す起動装置を拡大して示す断面 図である。
スナップアクションバイメタル 1 8は、 中央部に略矩形の開口が形成され可 動接点 1 8 aを揺動する可動接点板 1 8 bと、 バイメタル 1 8 cと、 可動接点 板 1 8 bの第 1支持点 P 1とバイメタル 1 8 cの第 2支持点 P 2との間に介在 する断面半円形状の板パネ 1 8 dとからなる。 可動接点板 1 8 bの先端は二股 に別れて 2個の可動接点 1 8 aを保持する。
ここで、 板パネ 1 8 dは、 バネ材又はバイメタルからなり、 可動接点板 1 8 bを付勢するように取り付けられている。 即ち、 第 8図 (B ) に示すように可 動接点板 1 8 bの支点 P 3と第 1支持点 P 1とを結ぶ線分よりも第 2支持点 P 2がバイメタル 1 8 cの低温時の先端位置側寄りに有る際に、 板パネ 1 8 dが 可動接点 1 8 aを固定接点 3 6 a側に押しつけるように可動接点板を付勢する。 このため、 スナップアクションバイメタル 1 8が断となる直前においても接点 圧がゼロになった状態で可動接点 1 8 aと固定接点 3 6 aとが接続し続ける時 間が短く、 振動により可動接点 1 8 aと固定接点 3 6 aとが接点開閉状態にな ることがない。
一方、 第 8図 (C ) に示すように可動接点板 1 8 bの支点 P 3と第 1支持点 P 1とを結ぶ線分よりも第 2支持点 P 2がバイメタル 1 8 cの高温時の先端位 置側寄りに有る際に、 板パネ 1 8 dが可動接点 1 8 aを固定接点 3 6 a側から 離すように可動接点板 1 8 bを付勢する。 即ち、 第 8図 (B ) に示す状態から バイメタル 1 8 cが上方へ湾曲して行き、 第 2支持点 P 2力 可動接点板 1 8 bの支点 P 3と第 1支持点 P 1とを結ぶ線分 (デットポイント) を越えて上側 に来ると、 板パネ 1 8 dの付勢方向が反転し、 第 8図 (C ) に示すようにスナ ップアクションバイメタル 1 8が可動接点 1 8 aを固定接点 3 6 aから切り離 す。 これにより、 接点を素早く切断できる。 従って、 アークが継続せず、 接点 の荒れやノイズの発生がない。 これらによって、 接点の接続信頼性が高く、 長 期に渡り不良が生じない。
第 1接続板 26の構成について、 第 9図を参照して更に詳細に説明する。 第 9図 (A) は、 第 5図 (A) 中の第 1接続板 26の拡大図であり、 第 9図 (B) は第 9図 (A) の h矢視図であり、 第 9図 (C) は第 9図 (A) の j矢視図で あり、 第 9図 (D) は、 第 9図 (C) 中の円 Dで囲んだ主 PTCとの当接部の 拡大斜視図である。 なお、 上述したように第 5接続板 34は、 第 1接続板 26 と同一の部材である。
第 1接続板 26は、 銅又は銅合金或いは導電性金属材料をめつきしたステン レス鋼等の導電性ばね材料から成る。 第 1接続板 26は、 第 9図 (A) に示す ようにクランク状に折り曲げられた接続部 26 Aと、 第 9図 (B) に示すよう に接続部 26 Aの曲げ方向に対して直角方向にそれぞれ U字状に曲げられた一 対のバネ部 26B、 26Bとからなる。 パネ部 26B、 26Bは、 主 PTC 1 2を弾性力で保持すると共に電気接続を取る。 第 9図 (C) に示すように、 バ ネ部 26 B、 26 Bは、 側方へ延在する一対の矩形の板の中央にそれぞれ矩形 の開口を設けることで、一対の平行部位 26 c、 26 c、と該平行部位 26 c、 26 cを連結する連結部位 26 dとからなる開口側が対向する一対のコ字状部 を形成し、 該一対のコ字状部をそれぞれ内側に向け断面 U字状に曲げてなる。 平行部位 26 cの先端近傍には、 連結部位 26 dが内側になるように曲げ突出 させることで、 主 PCT 12に当接する当接角部 26 fが形成されている。 第 9図 (B) に示すように平行部位 26 c、 26 cには、 ケ一シング 40との接 触面積を少なくし熱伝導を防止するための絞り部 26 eが形成されている。 接続部 26 Aのバネ部 26 B側の折り曲げ部には、 通孔 26 hが形成されて いる。 即ち、 第 1接続板 26は、 通孔 26 hの外周部 (ヒューズ部) 26 jの 幅をそれぞれ 0. 5mm以下にしてある。 起動巻線 Sの電流が一定時間 (例えば 30秒) 以上流れたときに通孔 26 hの外周のヒューズ部 26 jで溶断するよ うになつている。 これにより、 主 PCT 12が劣化し、 異常発熱、 熱暴走して ショートに近い状態になった場合に、ヒューズ部 26 jが電流により溶断され、 起動巻線 Sや起動装置自身の焼損を防止する。 特に、 折り曲げ部に通孔 26 h を形成することで、 当該折り曲げ部に弾性力を持たせることができ、 弾性力を 持たせた状態を保つことで、 ヒューズ部 2 6 jの溶断の際に、 溶断部の再溶着 を防ぐことができる。
更に、 第 9図 (D) に示すように、 平行部位 2 6 cの主 P C T 1 2と当接さ せるため鈍角に曲げられた当接角部 2 6 f には、 長孔 2 6 gが平行部位 2 6 c の延在方向に平行に設けられている。 これにより、 当接角部 2 6 f の主 P C T 1 2との接触ポイントが分割されることで 2倍になり、 パネ部 2 6 B全体とし て 4力所の当接角部 2 6 ίにて、 8力所で主 P C T 1 2と接触することになる。 これにより、 接触信頼性を高めることができる。
引き続き、 起動装置 1 0の端子 2 2の構造について第 1 8図及び第 1 9図を 参照して説明する。
第 1 8図 (Α) は、 第 5図 (Β ) 中の円 Εで囲んだ部位の拡大図であり、 第 1 8図 (Β ) は、 第 1 8図 (Α) の Β 3— Β 3断面図であり、 第 1 8図 (C) は、 第 1 8図 (Α) の C 3— C 3断面図 (ピン中心から手前側をカットした図) であり、 第 1 8図 (D) は、 ピン 1 1 6が挿入された状態のソケット端子 2 2 Αの斜視図である。 第 1 9図 (A) は、 第 1 8図 (A) に示す端子 2 2の平面 図であり、 第 1 9図 (B ) は、 第 1 9図 (A) の B 4— B 4断面図であり、 第 1 9図 (C) は、 第 1 9図 (A) の k矢視図である。
端子 2 2は、 第 1接続板 2 6と同様に銅又は銅合金或いは導電性金属材料を めっきしたステンレス鋼等の導電性ばね材料から成る。 第 1 9図 (A) に示す ように端子 2 2は、 タブ端子 2 2 Cと、 ソケット端子 2 2 Aと、 .これらを連結 する連結部 2 2 Bとが一体に形成されてなる。 タブ端子 2 2 Cは、 接続ピンの 軸方向の側方へ延在する一対の板部 2 2 k、 2 2 kを内側に折り畳むことで、 第 1 9図 (B ) に示すように 2層構造にして強度を得ている。 タブ端子 2 2 C の中央には通? L 2 2 1が穿設されている。連結部 2 2 Bは、略クランク状に形成 され、 中央には通孔 2 2 mが穿設されている。
第 1 9図 (C) に示すようにソケット端子 2 2 Aは、 接続ピンの軸方向の側 方へ延在する一対の板部 2 2 d、 2 2 dを内側に折り曲げ、 先端を接続ピンの 円柱形状に合致可能なよう円弧状に形成すると共に、 先端を互いに離間させて なる接続ピン保持部 2 2 eを備える。 接続ピン保持部 2 2 eは、 第 1 9図 (A) に示すように接続ピンの軸方向と垂直方向のスリツト 2 2 f により先端側の第 1部位 2 2 gと奥側の第 2部位 2 2 hとに 2分割されている。 接続ピン保持部 2 2 eの反対側 (第 1 9図 (C ) の下側) には、 接続ピンとの接触を良好にす るための V字状の溝 2 2 nが形成されている。 第 1部位 2 2 gの先端部には、 V字状の切れ込み 2 2 jが、 同様に V字状の溝 2 2 nの先端部には、 V字状の切 れ込み 2 2 0が形成されている。
第 1 8図 (A) 、 第 1 8図 (B) 、 第 1 8図 (C) に示すように端子 2 2を 保持するケーシング 4 0には、 接続ピン保持部 2 2 eを貫通した接続ピン 1 1 6の先端部 1 1 6 aを収容する凹部 4 0 aが穿設されている。
第 1 8図、 第 1 9図では、 端子 2 2のソケッ卜端子 2 2 Aについて説明した が、 端子 2 4のソケット端子 2 4 A、 及び、 オーバロードリレー 5 0のソケッ ト端子 5 8も同様に 2分割構造になっている。第 1実施態様の起動装置 1 0は、 第 7図を参照して上述したようにオーバロードリレー 5 0が取り付けられ、 第 1図 (A) を参照して上述したようにコンプレッサ 1 0 2のピン端子 1 1 0に 取り付けられられる。 第 1図 (B ) に、 ピン端子 1 1 0の斜視図を示す。 ピン 端子 1 1 0には、 3本の接続ピン 1 1 2、 1 1 4, 1 1 6が立設されており、 接続ピン 1 1 2にソケット端子 5 8が、 接続ピン 1 1 4にソケット端子 2 4 A が、 接続ピン 1 1 6にソケット端子 2 2 Aが接続される。
第 1実施形態の起動装置 1 0及びォ一バロードリレー 5 0は、 ソケット端子 2 2 A、 2 4 A、 5 8の接続ピン保持部 2 2 eが、 先端側の第 1部位 2 2 gと 奥側の第 2部位 2 2 hとに 2分割されているので、 第 1 8図 (D) に示すよう に接続ピン 1 1 6挿入時に X方向及び Z又は Y方向のこじり力が働いた場合で も、 広がるのは接続ピン保持部 2 2 eの先端側の第 1部位 2 2 gに留まり、 奥 側の第 2部位 2 2 hは広がらない。 このため、 第 2部位 2 2 hでは、 疲労が生 じず、 接続ピンとの良好な接触状態を保つことができ、 接触部の加熱による損 傷が発生しない。
接続ピン挿入時に必要とされる挿入力を第 2 2図に示す。図中縦軸は揷入力、 横軸はピン挿入ストロークを表す。 鎖線は第 2 8図を参照して上述した従来技 術のソケット端子 1 2 2 Aに接続ピン 2 1 2を揷入する際の揷入力を示してい る。 実線は第 1実施形態に係るソケット端子 2 2 Aに接続ピン 1 1 6を挿入す る際の揷入力を示している。 第 2 8図 (F ) に示す従来技術のソケット端子 1 2 2 Aは、 接続ピン 2 1 2の揷入を開始する際に、 接続ピン保持部 (板部 1 2 2 d、 1 2 2 dを内側に折り曲げ、 先端を接続ピンの円柱形状に合致可能なよ う円弧状に形成した部位) 1 2 2 eの全体を押し広げる必要がある。 このため 挿入力は最初が非常に大きく、 その後一定になる。
一方、第 1実施形態のソケッ卜端子 2 2 Aは、接続ピンへの挿入時に、先ず、 先端側の第 1部位 2 2 gが広がるが、 従来技術のソケット端子 1 2 2 Aの接続 ピン保持部 1 2 2 eと比較して、 軸方向に半分の長さの第 1部位 2 2 gを押し 広げればよいため、 約半分の挿入力で済む。 接続ピン 1 1 6の先端が奥側の第 2部位 2 2 hに達すると (図中の P 2 ) 、 第 2部位 2 2 hが広がり始めるが、 従来技術のソケット端子 1 2 2 Aの接続ピン保持部 1 2 2 eと比較して、 軸方 向に半分の長さの第 2部位 2 2 hを押し広げればよいため、 大きな力がいらな レ^ 加えて、 第 1部位 2 2 gに案内されるため、 加えられる力が接続ピン 1 1 6を垂直に挿入させるよう働くので、 余分な力を必要としない。 このように第 1実施形態のソケット端子 2 2 Aは、 接続ピンの挿入開始時に、 分割されてい る先端側第 1部位 2 2 gのみを広げればよいため、 接続ピン保持部全体を広げ る必要があった従来技術品と比較して、 挿入作業が楽になる。
また、 第 1実施形態のソケット端子 2 2 Aは、 従来技術品と同じ大きさであ るため、 スペース効率が高く、 既存の起動装置への適用が容易である。
また、 接続ピン 1 1 6とソケット端子 2 2 Aとの間に傾きがあっても、 先端 側の第 1部位 2 2 gと奥側の第 2部位 2 2 hとが独立して接続ピン 1 1 6と接 触するので、 例え、 接続ピン 1 1 6とソケット端子 2 2 Aとが点接触すること になっても、 接触点が 2倍になり、 接続ピンとソケット端子との電気接続を確 保できる。
更に、 第 1 8図 (A) を参照して上述したように第 1実施形態の起動装置 1 0では、 接続ピン保持部 2 2 eを貫通した接続ピン 1 1 6の先端部 1 1 6 aを 収容する凹部 4 0 aをケ一シング 4 0に設けてあるため、 接続ピン 1 1 6の先 端の面取りされている先端部 1 1 6 aは、 接続ピン保持部 2 2 eを突き抜けて 凹部 4 0 a内に位置することになる。 第 2 8図 (D) 、 第 2 8図 (E) に示す 従来技術では、 面取りされている先端部 2 1 2 aが接続ピン保持部 1 2 2 e内 に位置しているため、 当該先端部 2 1 2 aが把持できず、 接続ピン保持部 1 2 2 eの把持力が低下していた。 これに対して、 第 1実施形態の起動装置では、 面取りされている接続ピン 1 1 6の先端部 1 1 6 aを接続ピン保持部 2 2 eで 把持しないため、 接続ピン保持部 2 2 eでの接続ピン 1 1 6の把持力を高める ことができる。 特に、 第 1実施形態では、 第 2 1図 (A) に示すスリット 2 2 f の幅分、 把持力が低下するが、 凹部 4 0 aを設けることで、 スリットのない 従来技術の同じ長さの接続ピン保持部 1 2 2 eと同等の把持力を得ることがで さる。
第 1実施形態のソケット端子 2 Aは、 第 1 9図 (B ) に示すように接続ピン 保持部 2 2 eの先端側の第 1部位 2 2 gの径 Φ 1が、 奥側第 2部位 2 2 hの径 2よりも僅かに大きく設定されている。 即ち、 接続ピン保持部 2 2 eの先端 側の第 1部位 2 2 gが、 奥側第 2部位 2 2 hよりも緩やかに接続ピン 1 1 6を 保持するように広く形成されているため、 接続ピンの挿入開始時に必要な力が 小さくすむ。 一方、 奥側第 2部位 2 2 hは狭く形成されているため、 当該第 2 部位 2 2 で、 接続ピン 1 1 6との良好な接触状態を保つことができ、 接触部 の加熱による損傷が発生しない。
[第 1実施形態の改変例]
第 1 0図及び第 1 1図を参照して第 1実施形態の改変例に係る起動装置につ いて説明する。 第 1 0図 (A) は、 第 1実施形態の改変例に係るスナップァ クシヨンバイメタルの平面図であり、 第 1 0図 (B ) は、 第 1実施形態の改変 例に係る起動装置のスナップアクションバイメタル 1 8のオン状態を示す断面 図であり、 第 1 0図 (C ) は、 オフ状態を示す断面図である。 。
第 1 0図 (A) に示すように、 第 1実施形態の改変例では、 スナップァクシ ヨンバイメタル 1 8が、 1枚のバイメタルからなり、 中央に開口を設け可動接 点 1 8 aを保持する可動接点板部 1 8 eと、 開口中央に設けられたバイメタル 部 1 8 fからなり、 第 1実施形態と同様に、 板パネ 1 8 dが、 可動接点板部 1 8 eの第 1支持点 P 1とバイメタル部 1 8 f の第 2支持点 P 2との間に介在す るよう配置されている。 第 1 0図 (B ) 、 第 1 0図 (C) に示すようにスナツ プアクシヨンバイメタル 1 8の動作は、 第 8図 (B ) 、 第 8図 (C ) を参照し て上述した第 1実施形態と同様であるため説明を省略する。 第 1 1図は、 第 1実施形態の改変例に係る第 1接続板 26を示している。 第 11図 (A) は、 第 1接続板 26の拡大図であり、 第 11図 (B) は第 1 1図 (A) の h矢視図であり、 第 1 1図 (C) は第 1 1図 (A)の j矢視図であり、 第 1 1図 (D) は、 第 11図 (C) 中の円 Dで囲んだ主 PTCとの当接部の拡 大斜視図である。
第 1実施形態の改変例に係る第 1接続板 26は、 第 9図を参照して上述した 第 1実施形態の第 1接続板と同様である。 但し、 第 1実施形態では、 当接角部 26 f に長孔 26 gが平行部位 26 cの延在方向に平行に設けられていた。 こ れに対して、 第 1実施形態の改変例では、 第 1 1図 (D) に示すように、 当接 角部 26 f に切り欠き 26mが平行部位 26 cの延在方向に平行に設けられて いる。
第 1実施形態の改変例では、 主 PCT12を保持するパネ部 26 Bの主 PC T 12と当接させるため鈍角に曲げられた当接角部 26 f に、 切り欠き 26m が設けられている。 これにより、 当接角部 26 f の主 PCT 12との接触ボイ ントが分割されることで 2倍になり、接触信頼性を高めることができる。更に、 切り欠き 26mの内側と外側とで当接角部 26 f の共振周波数が異なる。 コン プレッサの振動が起動装置 10に伝わり、 主 PCT 12やパネ部 26 Bが共振 し、 主 PCT 12電極部がパネ部 26 Bで叩かれると電極に損傷、 剥離が生じ るが、 改変例では、 当接角部 26 f の内側と外側とで共振周波数が異なるため 同時に共振することがなく、 当接角部 26 fが主 PCT 12を叩くことがなく なり、 主 PCT 12の電極に損傷が生じない。
[第 2実施形態]
第 2実施形態の起動装置のスナップアクションバイメタル 18ついて第 12 図を参照して説明する。
第 12図 (A) は、 第 2実施形態の起動装置のスナップアクションバイメタ ル 18の平面図であり、 第 12図 (B) は、 側面図である。 第 12図 (C) は、 第 2実施形態の別例の起動装置のスナツプアクションバイメタル 18の平面図 であり、 第 12図 (D) は、 別例の側面図である。 第 12図 (E) は、 第 2実 施形態のスナップアクションバイメタル 18のオン状態の説明図であり、 第 1 2図 (F) はオフ状態の説明図である。 第 1 2図 (A) に示すように、 スナップアクションバイメタル 1 8は平板状 のバイメタルの中央付近に長孔を設け、 長孔に挟まれた中央部分 1 8 hには加 ェを施さず、長孔の両側部分にそれぞれ 2力所の絞り加工 1 8 gを施してある。 第 1 2図 (C) 、 第 1 2図 (D) は、 それぞれ 1力所の絞り加工 1 8 gを施し た別例である。 第 1 2図 (E ) 及び第 1 2図 (F ) に示すように、 スナップァ クシヨンバイメタル 1 8は、絞り加工によりスナップアクションを実現できる。 第 2実施形態の起動装置では、 スナップアクションバイメタル 1 8は、 絞り 加工 1 8 hが施されたバイメタルからなるため、 接点を素早く切断できる。 従 つて、 アークが継続せず、 接点の荒れやノイズの発生がない。 接点圧がゼロに なつた状態で接続を続ける時間が短く、 振動により接点開閉状態となることが ない。これらによって、接点の接続信頼性が高く、長期に渡り不良が生じない。 引き続き、 第 2実施形態に係る起動装置 1 0の端子 2 2の構造について第 2 0図を参照して説明する。
第 2 0図(A)は、第 2実施形態に係る起動装置の端子 2 2の平面図であり、 第 2 0図 (B ) は、 第 2 0図 (A) の B 4— B 4断面図であり、 第 2 0図 (C) は、 第 2 0図 (A) の k矢視図である。
第 2実施形態の起動装置は、 第 5図及び第 6図を参照して上述した第 1実施 形態と同様である。 但し、 第 1実施形態では、 ソケット端子 2 2 Aの接続ピン 保持部 2 2 eの先端側の第 1部位 2 2 gと奥側第 2部位 2 2 hとの接続ピン軸 方向の長さが等しかった。 これに対して第 2実施形態では、 接続ピン保持部 2 2 eの先端側の第 1部位 2 2 gの接続ピン軸方向の長さが、 奥側第 2部位 2 2 hよりも長くなるように形成されている。 このため、 接続ピンの挿入時のこじ れカを第 1部位 2 2 gで受け止め、 第 2部位 2 2 hがこじれにより広がるのを 防ぐことができる。 これにより、 当該第 2部位 2 2 hで、 接続ピン 1 1 6との 良好な接触状態を保つことができ、 接触部の加熱による損傷が発生しない。
[第 2実施形態の改変例]
第 2実施形態の改変例に係る起動装置のスナツプアクションバイメタル 1 8 ついて第 1 3図を参照して説明する。
第 1 3図 (A) は、 第 2実施形態の改変例に係る起動装置のスナップァクシ ヨンバイメタル 1 8の平面図であり、 第 1 3図 (B ) は側面図である。 第 1 3 図 (C ) は、 第 2実施形態の改変例に係るスナップアクションバイメタル 1 8 のオン状態の説明図であり、 第 1 3図 (D) はオフ状態の説明図である。 第 1 3図 (A) に示すように、 スナップアクションバイメタル 1 8は平板状 のバイメタルの中央に軽いフォーミング 1 8 iが施してある。 第 1 3図 (C ) 及び第 1 3図 (D) に示すように、 スナップアクションバイメタル 1 8は、 フ ォーミング加工によりスナップアクションを実現できる。
第 2実施形態の改変例に係る起動装置では、 スナツプアクションバイメタル 1 8は、 フォーミング加工 1 8 iが施されたバイメタルからなるため、 接点を 素早く切断できる。 従って、 アークが継続せず、 接点の荒れやノイズの発生が ない。 接点圧がゼロになった状態で接続を続ける時間が短く、 振動により接点 開閉状態となることがない。 これらによって、 接点の接続信頼性が高く、 長期 に渡り不良が生じない。
[第 3実施形態]
第 3実施形態の起動装置のバイメタル 1 8ついて第 1 4図を参照して説明す る。
第 1 4図(A)は第 3実施形態のバイメタル 1 8のオン状態の説明図であり、 第 1 4図 (B ) はバイメタル 1 8のオフ状態の説明図である。
第 3実施形態のバイメタル 1 8は、 第 1、 第 2実施形態と同様に基部に補助 P T Cが配置され、 自由端側に可動接点 1 8 aが設けられてなる。 そして、 バ ィメタル 1 8に対して可動接点 1 8 aを固定接点 3 6 a側に付勢する磁力を与 える磁石 2 3 Aが、 バイメタル 1 8に近接して設けられている。 他の構成は、 第 1図〜第 9図を参照して上述した第 1実施形態と同様であるため説明を省略 する。
第 3実施形態の起動装置では、 自由端側に可動接点 1 8 aを備えるバイメタ ル 1 8が、 接点オン側に磁石 2 3 Aの磁力により付勢される。 バイメタル 1 8 がオフする際に、 磁石 2 3 Aからの磁力は距離の自乗に反比例して低下する。 バイメタル 1 8は、 第 1 4図 (A) に示すように可動接点 1 8 aオン状態で最 も強い磁力を受け、 第 1 4図 (B ) に示すように可動接点 1 8 aが離れた後は 磁力が急激に弱まるので、 可動接点 1 8 aを固定接点 3 6 aから素早く切断で きる。 従って、 アークが継続せず、 接点の荒れやノイズの発生がない。 接点圧 がゼロになった状態で接続を続ける時閬が短く、 振動により接点開閉状態とな ることがない。 これらによって、 接点の接続信頼性が高く、 長期に渡り不良が 生じない。
引き続き、 第 3実施形態に係る起動装置 1 0の端子 2 2の構造について第 2 1図を参照して説明する。
第 2 1図(A)は、第 3実施形態に係る起動装置の端子 2 2の平面図であり、 第 2 1図 (B) は、 第 2 1図 (A) の B 4— B 4断面図であり、 第 2 1図 (C) は、 第 2 1図 (A) の k矢視図である。
第 3実施形態の起動装置は、 第 5図及び第 6図を参照して上述した第 1実施 形態と同様である。 但し、 第 1実施形態では、 ソケット端子 2 2 Aの接続ピン 保持部 2 2 eの先端側の第 1部位 2 2 gと奥側第 2部位 2 2 hとの接続ピン軸 方向の長さが等しかった。 これに対して第 3実施形態では、 接続ピン保持部 2 2 eの奥側の第 2部位 2 2 hの接続ピン軸方向の長さが、 手前側第 1部位 2 2 gよりも長くなるように形成されている。 このため、 当該第 2部位 2 2 hで強 固に接続ピン 1 1 6を保持することで、 疲労が生じず、 接続ピン 1 1 6との良 好な接触状態を保つことができ、 接触部の加熱による損傷が発生しない。
また、 第 3実施形態では、 接続ピン保持部 2 2 eの奥側の第 2部位 2 2 hの 前端に V字状の切れ込み 2 2 pを設けてある。 このため、 接続ピン 1 1 6への 挿入時に、 先端側の第 1部位 2 2 gを挿通した接続ピン 1 1 6先端が奥側の第 2部位 2 2 hに達した際にも、 第 2部位 2 2 h側へ容易に挿入させることがで き、 挿入作業が楽になる。
[第 4実施形態]
第 4実施形態の起動装置のスィッチ 1 8ついて第 1 5図を参照して説明する。 第 1 5図 (A) は第 4実施形態のスィッチ 1 8のオン状態の説明図であり、 第 1 5図 (B ) はスィッチ 1 8のオフ状態の説明図である。
第 4実施形態のスィッチ 1 8は、 磁性導電部材から成り自由端側に可動接点 1 8 aが設けられてなる。 スィッチ 1 8に対して、 可動接点 1 8 aを固定接点 3 6 a側に付勢する磁力を与える感温磁石 2 3 Bがスィツチ 1 8の直上に設け られ、該感温磁石 2 3 Bに隣接して補助 P T Cが設けられている。他の構成は、 第 1図〜第 9図を参照して上述した第 1実施形態と同様であるため説明を省略 する。
第 4実施形態の起動装置では、 磁性導電部材からなるパネ板の自由端側に可 動接点 1 8 aを備えてなるスィッチ 1 8が、 補助 P T Cからの熱を感知してこ れが設定温度になると消磁する感温磁石 2 3 Bの磁力により付勢される。即ち、 第 1 5図 (A) に示すように設定温度未満では、 スィッチ 1 8がパネ板の弾性 力に反して感温磁石 2 3 Bの磁力により吸引されオンする。一方、第 1 5図(B ) に示すように設定温度以上になると、 スィッチ 1 8が、 該感温磁石 2 3 Bの消 磁によりバネ板の弹性力にてオフする。 このオフする際に、 感温磁石 2 3 Bか らの磁力は距離の自乗に反比例して低下する。 スィッチ 1 8は接点オン状態で 最も強い磁力を受け、 可動接点 1 8 aが離れた後は磁力が急激に弱まるので、 可動接点 1 8 aを固定接点 3 6 aから素早く切断できる。 従って、 アークが継 続せず、 接点の荒れやノイズの発生がない。 接点圧がゼロになった状態で接続 を続ける時間が短く、 振動により接点開閉状態となることがない。 これらによ つて、 接点の接続信頼性が高く、 長期に渡り不良が生じない。
[第 5実施形態]
第 5実施形態の起動装置のリードスィッチ 1 9ついて第 1 6図を参照して説 明する。
第 4実施形態では磁性導電部材から成るスィッチ 1 8を用いたが、 第 5実施 形態では、 スィッチの代わりにリードスィッチ 1 9を用いる。 リードスィッチ 1 9に対して、 接点オン側に付勢する磁力を与える感温磁石 2 3 Bがリ一ドス イッチ 1 9の直上に設けられ、 該感温磁石 2 3 Bに隣接して補助 P T C 1 6が 設けられている。 他の構成は、 第 1図〜第 9図を参照して上述した第 1実施形 態と同様であるため説明を省略する。
第 5実施形態の起動装置では、 リードスィッチ 1 9が、 補助 P T C 1 6から の熱を感知してこれが設定温度になると消磁する感温磁石 2 3 Bの磁力により オン、 オフされる。 即ち、 設定温度未満では、 リードスィッチ 1 9が感温磁石 2 3 Bの磁力によりオンし、 設定温度以上になると、 リードスィッチ 1 9が、 該感温磁石 2 3 Bの消磁によりオフする。 このオフする際に、 感温磁石 2 3 B からの磁力は距離の自乗に反比例して低下するため、 リードスィッチ 1 9は接 点を素早く切断できる。 従って、 アークが継続せず、 接点の荒れやノイズの発 生がない。 接点圧がゼロになった状態で接続を続ける時間が短く、 振動により 接点開閉状態となることがない。 これらによって、 接点の接続信頼性が高く、 長期に渡り不良が生じない。
第 1 7図は、 本実施形態の起動装置 1 0が用いられる回路を示している。 第 2図を参照して上述したコンデンサを用いない回路のみでなく、第 1 7図(A) に示すように起動装置 1 0に並列にランニングコンデンサ C 1が接続された場 合、 また、 第 1 7図 (B ) に示すように起動装置 1 0に直列に起動用コンデン サ C 2が接続された場合、 第 1 7図 (C) に示すように起動装置 1 0に並列に ランニングコンデンサ C 1が直列に起動用コンデンサ C 2が接続された場合に も、 本実施形態の起動装置 1 0は好適に用いることができる。
[第 6実施形態]
第 6実施形態の構成は、 第 1実施形態と同様であるため、 第 1図〜第 7図を 参照すると共に説明を省略する。 なお、 第 1実施形態では、 スナップァクショ ンバイメタル 1 8が用いられたが、 第 6実施形態では、 スローアクションバイ メタル 1 8が用いられている。
第 6実施形態の起動装置 1 0の作用について説明する。 運転スィッチ 9 7が オンされると、 運転スィッチ 9 7及びオーバ口一ドリレ一5 0を介して主巻線 Mに起動電流が流れる。 又、 主 P T C 1 2は常温では低電気抵抗値 (例えば 5 Ω程度) を呈しているので、 補助巻線 S、 主 P T C 1 2及びスローアクション バイメタル 1 8の直列回路、補助 P T C 1 4の並列回路とにも起動電流が流れ、 以て、 単相誘導電動機 1 0 0は起動する。
主 P T C 1 2に補助巻線 Sの起動電流が流れると、 主 P T C 1 2、 補助 P T C 1 4は自己発熱して電気抵抗値が急激に増大する。 そして、 数秒後に、 主 P T C 1 2、 補助 P T C 1 4は 1 4 0 °Cの温度に達し、 この時の主 P T C 1 2の 電気抵抗値は、 例えば、 1 k Q〜l 0 になり、 スローアクションバイメタ ル 1 8に流れる電流は減少する。補助 P T C 1 4力 1 4 0 °Cの温度に達すると、 スローァクションバイメタル 1 8がこれを感知してオフ動作するようになり、 主 P T C 1 2及びスローアクションバイメタル 1 8の直列回路には電流が流れ なくなり、 以て、 単相誘導電動機 1 0 0の起動が完了し、 定常運転を行なうよ うになる。 スローアクションバイメタル 18がオフされると、 補助 PTC 14側にのみ 電流が流れるようになって発熱し、 その発生熱によりスローァクションバイメ タル 18がオフ状態に保持される。
従って、 単相誘導電動機 100の定常運転中には、 主 PTC 12には電流は 流れず、 代りに、 補助 PTC 14側に電流が流れるようになるが、 この補助 P TC 14に流れる電流は、 補助 PTC 14にス口一ァクションバイメタル 18 をオフ状態に保持するための熱を発生させる程度の極めて小なるものであり、 補助 PTC 14による消費電力は従来の正特性サ一ミス夕の消費電力よりも極 めて少ない。 更に、 スローアクションバイメタルを用いるため、 フォーミング されたスナップアクションバイメタルと比較して、 長期の使用に耐え得る。 また、 単相誘導電動機 100の定常運転中に、 熱容量の大きな主 PTC 12 は冷却して常温になっている。一方、補助 PTC 14は、熱容量が小さいため、 冷却が早い。 従って、 単相誘導電動機 100の停止直後に再起動する際にも、 補助 PTC 14は直ぐ常温近くまで冷却されるため、 再起動が可能になるまで の時間は数秒から数十秒と非常に早く、 従来技術のようにオーバロードリレ一 が作動、 復帰を繰り返すことなく速やかに再起動することができる。 また、 補 助 PTC 14の熱容量を小さく設定するため、 再起動時間を短くすることが可 能である。
引き続き、 第 6実施形態の起動装置 10の機械的構造について、 第 23図及 び第 24図を参照して説明する。
第 23図 (B) は、 本発明の第 6実施形態に係る単相誘導電動機の起動装置 の蓋を外した状態の平面図であり、 第 23図 (A) は、 第 23図 (B) の A— A断面を示し、 第 23図 (C)は、 第 23図 (B)の C— C断面を示している。 第 24図 (A) は、 第 23図 (B) の e矢視側の側面図であり、 第 24図 (B) は、 第 23図 (B) の d矢視側の側面図である。 第 24図 (B) に示すように 起動装置 10は、 ケーシング 40と蓋 46とを備え、 外部にオーバロードリレ 一 50を取り付けるためのフランジ 48が形成されている。
第 23図 (C) に示すようケーシング 40の内側には、 補助巻線 S側に接続 される端子 22が取り付けられている。 端子 22は、 タブ端子 22 aと、 ピン 端子 22 cと、 これらを連結する連結部 22 bとが一体に形成されてなる。 該 連結部 2 2 bには、 主 P T C 1 2を保持するパネ部 2 6 bを備える第 1接続板 2 6が取り付けられている。 該第 1接続板 2 6は、 中央部がクランク状に折り 曲げられ ネ部 2 6 b側への折り曲げ部には、通孔 2 6 aが形成されている。 即ち、 第 1接続板 2 6は、 通孔 2 6 aで細くなることで、 大電流が流れた際に 通孔 2 6 aの外周で溶断するようになっている。
パネ部 2 6 bには、 第 2接続板 3 0の一端が接続されている。 第 2接続板 3 0の他端のバネ部 3 0 aは、 補助 P T C 1 4にバネ圧を加え保持している。 補 助 P T C 1 4は、 スローアクションバイメタル 1 8の基部に接触している。 即 ち、 第 2 3図 (A) 及び第 2 3図 (B ) に示すように、 第 2接続板 3 0のパネ 部 3 0 a、 補助 P T C 1 4、 スローアクションバイメタル 1 8の基部及び第 3 接続板 3 2の一端が隣接接続されている。 該第 3接続板 3 2の他端は、 電源線 9 8側及び主巻線 Mへ接続するための端子 2 4の連結部 2 4 b (第 2 3図(A) 参照) に接続されている。端子 2 4は、 タブ端子 2 4 aと、 ピン端子 2 4 cと、 これらを連結する連結部 2 4 bとが一体に形成されてなる。
一方、 スローアクションバイメタル 1 8の先端側には、 可動接点 1 8 aが設 けられ、 クランク状に形成された固定接点板 3 6の固定接点 3 6 aと接してい る。 該固定接点板 3 6の他端は、 主 P T C 1 2を保持するための第 2パネ 3 5 に固定されている。
ここで、 スローアクションバイメタル 1 8及び補助 P T C 1 4は、 ケ一シン グ 4 0の内側に設けられた L字状の隔壁 4 2により形成される密閉室 4 4内に 収容されている。 密閉室 4 4は気密構造となっている。 第 2接続板 3 0は隔壁 4 2に設けられた通孔 4 2 aを介して、第 3接続板 3 2は通孔 4 2 bを介して、 固定接点板 3 6は通孔 4 2 cを介して密閉室 4 4内に取り回されている。
第 6実施形態の起動装置 1 0においてスローアクションバイメタル 1 8と補 助 P T C 1 4とは、 ケーシング 4 0内の密閉室 4 4に収容されているため、 熱 が外部へ逃げにくく、 極めて少ない消費電力でスローアクションバイメタル 1 8のオフを維持することができる。 更に、 密閉形コンプレッサの冷媒として可 燃性ガス (ブタン等の炭化水素化合物) が用いられて、 該冷媒が漏れる事態が 発生しても、 密閉室 4 4に収容されているためスローアクションバイメタル 1 8の開閉動作時の火花により発火することがない。 更に、 スローァクションバイメタル 18の基部に補助 PTC 14が直接接し ているため、 補助 PTC 14からの熱をスローアクションバイメタル 18へ効 率的に伝達でき、 少ない消費電力の補助 PTC 14で、 スローアクションバイ メタル 18のオフを維持することができる。
[第 7実施形態]
以下、 本発明の第 7実施形態につき、 第 25図及び第 26図を参照しながら 説明する。 第 26図は、 第 7実施形態に係る起動装置の回路図である。
第 7実施形態の起動装置 10の回路構成は、 上述した第 6実施形態の起動装 置と同様である。 ただし、 第 7実施形態では、 主 PTC 12及びスローァクシ ヨンバイメタル 18に直列に、 主 PTC 12の熱暴走保護用の常閉のスナップ アクションバイメタル 16が設けられている。
次に、 第 7実施形態に作用につき説明する。 運転スィッチ 97がオンされる と、 運転スィッチ 97及びオーバロードリレー 50.を介して主巻線 Mに起動電 流が流れる。 又、 主 PTC 12は常温では低電気抵抗値 (例えば 5 Ω程度) を 呈しているので、 補助巻線 S、 主 PTC 12及びスローアクションバイメタル 18の直列回路、 補助 PTC 14の並列回路とにも起動電流が流れ、 単相誘導 電動機 100は起動する。
主 P T C 12に補助巻線 Sの起動電流が流れると、 主 PTC 12、 補助 PT C 14は自己発熱して電気抵抗値が急激に増大する。 これにより、 スローァク シヨンバイメタル 18に流れる電流は減少する。 補助 PTC 14が 140での 温度に達すると、 スローアクションバイメタル 18がこれを感知してオフ動作 するようになり、 主 PTC 12、 スナップアクションバイメタル 16及びスロ 一アクションバイメタル 18の直列回路には電流が流れなくなり、 単相誘導電 動機 100の起動を完了する。
スローアクションバイメタル 18がオフされると、 補助 PTC 14側にのみ 電流が流れるようになり、 その発生熱によりスローァクションバイメタル 18 がオフ状態に保持される。
従って、 単相誘導電動機 100の定常運転中には、 主 PTC 12には電流は 流れず、 代りに、 補助 PTC 14側に電流が流れるようになるが、 この補助 P TC 14に流れる電流は、 補助 PTC 14にスローアクションバイメタル 18 をオフ状態に保持するための熱を発生させる程度の極めて小なるものであり、 補助 PTC 14による消費電力は従来の正特性サーミス夕の消費電力よりも極 めて少ない。
また、 単相誘導電動機 100の定常運転中に、 熱容量の大きな主 PTC 12 は冷却して常温になっている。一方、補助 PTC 14は、熱容量が小さいため、 冷却が早い。 従って、 単相誘導電動機 100の停止直後に再起動する際にも、 補助 PTC 14は直ぐ常温近くまで冷却されるため、 再起動が可能になるまで の時間は数秒から数十秒と非常に早い。
引き続き、 補助 PTC 14によるスローァクションバイメタル 18の動作以 前に、 主 PTC 12が異常発熱した際の作動について説明する。
主 PTC 12が異常発熱して所定高温度になると、 スナップアクションバイ メタル 16がオフし、 補助巻線 Sへの電流を遮断する。 このため、 主 PTC 1 2が熱暴走し高温で低抵抗になり、 補助巻線 Sに大電流が流れて絶縁破壊する 事態を防ぐことができる。 特に、 スナップアクションバイメタル 16は、 常温 で復帰しないように設定されているので、 主 PTC 12の熱暴走を完全に防止 できる。
更に、 第 7実施形態の起動装置 10の機械的構造について、 第 25図を参照 して説明する。 なお、 第 7実施形態の起動装置 10の側面は、 第 24図を参照 して上述した第 6実施形態と同様であるため、 同図を参照するとともに、 詳細 な説明を省略する。
第 25図 (B) は、 本発明の第 6実施形態に係る単相誘導電動機の起動装置 の蓋を外した状態の平面図であり、 第 25図 (A) は、 第 25図 (B) の A— A断面を示し、 第 25図 (C) は、 第 25図 (B) の C— C断面を示している。 第 24図 (A) は、 第 25図 (B) の e矢視側の側面図であり、 第 24図 (B) は、 第 25図 (B) の d矢視側の側面図である。
第 25図 (C) に示すようケーシング 40の内側には、 第 26図に示す補助 巻線 S側に接続される端子 22が取り付けられている。 端子 22は、 タブ端子 22 aと、 ピン端子 22 cとこれらを連結する連結部 22 bがー体に形成され てなる。 該連結部 22 bには、 主 PTC 12を保持するパネ部 26 bを備える 第 1接続板 26が取り付けられている。 該第 1接続板 26は、 中央部がクラン ク状に折り曲げられ、 パネ部 2 6 b側への折り曲げ部には、 通孔 2 6 aが形成 されている。 即ち、 第 1接続板 2 6は、 通孔 2 6 aで細くなることで、 大電流 が流れた際に通孔 2 6 aの外周で溶断するようになっている。
パネ部 2 6 bには、 第 2接続板 3 0の一端が接続されている。 第 2接続板 3 0の他端に形成されたパネ部 3 0 aは、 補助 P T C 1 4にバネ圧を加え保持し ている。 補助 P T C 1 4は、 スローアクションバイメタル 1 8の基部に接触し ている。 即ち、 第 2 5図 (A) 及び第 2 5図 (B) に示すように、 第 2接続板 3 0のバネ部3 0 &、 補助 P T C 1 4、 スローアクションバイメタル 1 8の基 部及び第 3接続板 3 2の一端が隣接接続されている。 該第 3接続板 3 2の他端 は、 第 2 6図に示す電源線 9 8側及び主卷線 Mへ接続するための端子 2 4の連 結部 2 4 b (第 2 5図 (A) 参照) に接続されている。 端子 2 4は、 タブ端子 2 4 aとピン端子 2 4 cとこれらを連結する連結部 2 4 とが一体に形成され てなる。
一方、 スローアクションバイメタル 1 8の先端側には、 可動接点 1 8 aが設 けられ、 スナップアクションバイメタル 1 6の可動接点 1 6 aと接している。 該スナップアクションバイメタル 1 6の基部は、 主 P T C 1 2を保持するため の第 2バネ 3 5に固定されている。 一方、 ケーシング 4 0には、 スナップァク シヨンバイメタル 1 6の先端部へ延在するストッパー 5 1が設けられ、 スナツ プアクシヨンバイメタル 1 6が、 スローアクションバイメタル 1 8の動作を妨 げないように構成されている。
第 7実施形態の起動装置 1 0では、 スローアクションバイメタル 1 8の可動 接点 1 8 aとスナップアクションバイメタル 1 6の可動接点 1 6 aとが直接接 触し、 スローアクションバイメタル 1 8が設定温度になるとスナップァクショ ンバイメタル 1 6側の可動接点 1 6 aから離れ、 スナップアクションバイメタ ル 1 6が所定高温度になるとスローアクションバイメタル 1 8側の可動接点 1 8 aから離れる。 熱が加わり、 スローアクションバイメタル 1 8がオフになる 際には、 スナップアクションバイメタル 1 6側にも熱が加わり、 スローァクシ ヨンバイメタル 1 8側の可動接点 1 8 aから離れる側に少し動いているため、 長寿命ではあるが動作の遅いスローアクションバイメタルを用いても、 適正に 起動電流を遮断することができる。 即ち、 温度上昇につれて、 お互いのバイメ タルが離れて行く方向にあるので、 チヤ夕リングが発生し難い。 更に、 両接点 共に可動接点からなるので、 温度変化で常にワイビング現象 (こすれ合い) が 起き、 可動接点 1 6 a、 1 8 aの接触部がクリーニングされ、 金メッキではな く銀接点を用いて長寿命を実現することができる。 更に、 スローアクションバ ィメタル 1 8の可動接点 1 8 aとスナップァクションバイメタル 1 6の可動接 点 1 6 aとを直接接触させているため、 双方に固定接点を設けた金属板等の端 子部材を介在させるのと比べて、 低コストと低抵抗とを実現できる。
第 7実施形態の起動装置 1 0では、 スナップァクションバイメタル 1 6の先 端に接するストッパー 5 1を設け、 スローァクションバイメタル 1 8の動作を 妨げないようにしてある。 このため、 起動が完了して主 P T C 1 2が冷却し、 スナップァクションバイメタル 1 8が常温に戻ってもスローァクションバイメ タル 1 6側へ湾曲するのを防止でき、 適正な接点間隔を保つことができる。 産業上の利用可能性
本発明は、 冷蔵庫における冷凍サイクルの密閉形コンプレッサ駆動用のみな らず、 空気調和機における冷凍サイクルの密閉形コンプレッサ駆動用としても 適用し得、 更には、 コンデンサ起動形或いは分相起動形の単相誘導電動機を駆 動源とする機器全般に適用し得る等、 要旨を逸脱しない範囲内で適宜変形して 実施し得る。

Claims

請 求 の 範 囲
1 . 交流電源によって通電される主卷線及び補助巻線を有する単相誘導電動 機の起動装置において、
ケーシングと、
前記補助巻線に直列に接続された正特性サーミス夕と、
前記正特性サーミス夕に並列に接続された補助正特性サーミス夕と、 前記補助巻線及び正特性サ一ミス夕の直列回路に直列に接続され、 前記補助 正特性サーミス夕からの熱を感知してこれが設定温度になるとオフするスナツ プアクシヨンバイメタルと、
前記ケ一シング内に備えられ、 前記スナップアクションバイメタル及び前記 補助正特性サーミス夕を密閉する密閉室と、 を具備してなる単相誘導電動機の
2 . 前記スナップアクションバイメタルは、 可動接点を揺動する可動接点板 と、 バイメタルと、 該可動接点板の第 1支持点と該バイメタルの第 2支持点と の間に介在する断面半円形状の板パネとからなり、
前記可動接点板の支点と前記第 1支持点とを結ぶ線分よりも第 2支持点がバ ィメタルの低温時の先端位置側寄りに有る際に、 前記板パネが前記可動接点を 固定接点側に押しつけるように前記可動接点板を付勢し、
前記可動接点板の支点と前記第 1支持点とを結ぶ線分よりも第 2支持点がバ ィメタルの高温時の先端位置側寄りに有る際に、 前記板パネが前記可動接点を 固定接点側から離すように前記可動接点板を付勢することを特徴とする請求項 1の単相誘導電動機の起動装置。
3 . 前記スナップアクションバイメタルは、 絞り加工の施されたバイメタル を備えることを特徴とする請求項 1の単相誘導電動機の起動装置。
4. 前記スナップアクションバイメタルは、 中央部に略円形状のフォーミン グ加工の施されたバイメタルを備えることを特徴とする請求項 1の単相誘導電 動機の起動装置。
5 . 交流電源によって通電される主卷線及び補助巻線を有する単相誘導電動 機の起動装置において、
ケーシングと、 前記補助巻線に直列に接続された正特性サーミス夕と、 前記正特性サ一ミスタに並列に接続された補助正特性サーミス夕と、 前記補助巻線及び正特性サ一ミス夕の直列回路に直列に接続され、 前記補助 正特性サーミス夕からの熱を感知してこれが設定温度になるとオフするバイメ タルと、
前記ケ一シング内に備えられ、 前記バイメタル及び前記補助正特性サーミス 夕を密閉する密閉室と、
前記バイメタルに対して、 接点をオン側に付勢する磁力を与える磁石と、 を 具備してなる単相誘導電動機の起動装置。
6 . 前記バイメタルの基部に前記補助正特性サ一ミス夕が接していることを 特徴とする請求項 1〜請求項 5のいずれかの単相誘導電動機の起動装置。
7 . 交流電源によって通電される主卷線及び補助巻線を有する単相誘導電動 機の起動装置において、
ケ一シングと、
前記補助巻線に直列に接続された正特性サ一ミス夕と、
前記正特性サーミス夕に並列に接続された補助正特性サーミス夕と、 前記補助正特性サーミス夕からの熱を感知してこれが設定温度になる消磁す る感温磁石と、
前記補助巻線及び正特性サーミス夕の直列回路に直列に接続され、 前記感温 磁石の磁力により吸引されオンすると共に該感温磁石の消磁によりオフするス 前記ケ一シング内に備えられ、 前記スィッチを密閉する密閉室と、 を具備し てなる単相誘導電動機の起動装置。
8 . 交流電源によって通電される主巻線及び補助巻線を有する単相誘導電動 機の起動装置において、
前記補助巻線に直列に接続された正特性サ一ミス夕と、
前記正特性サーミス夕に並列に接続された補助正特性サーミス夕と、 前記補助正特性サーミス夕からの熱を感知してこれが設定温度になる消磁す る感温磁石と、
前記補助巻線及び正特性サーミス夕の直列回路に直列に接続され、 前記感温 磁石の磁力によりオンすると共に該感温磁石の消磁によりオフするリ一ドスィ ツチと、 を具備してなる単相誘導電動機の起動装置。
9 . 前記正特性サーミス夕を弹性力で保持すると共に電気接続を取るパネ部 を有する導電板の所定箇所に通孔を穿設することで、 通孔外周部の幅を細くし てなるヒューズ部を設けたことを特徴とする請求項 1〜請求項 8のいずれか 1 の単相誘導電動機の起動装置。
1 0 . 前記正特性サ一ミス夕を弾性力で保持すると共に電気接続を取るパネ 部を有する導電板を備え、
前記パネ部は、 側方へ延在する一対の矩形の板の中央にそれぞれ矩形の開口 を設けることで、 一対の平行部位と該平行部位を連結する連結部位とからなる 開口側が対向する一対のコ字状部を形成し、 該一対のコ字状部をそれぞれ内側 に向け断面 U字状に曲げ、
前記平行部位の先端近傍を連結部位が内側になるように曲げ突出させること で、 正特性サーミス夕に当接する当接角部を形成してなり、
該当接角部に平行部位と平行な長孔を形成したことを特徴とする請求項 1〜 請求項 9のいずれか 1の単相誘導電動機の起動装置。
1 1 . 前記正特性サーミスタを弹性力で保持すると共に電気接続を取るパネ 部を有する導電板を備え、
前記パネ部は、 側方へ延在する一対の矩形の板の中央にそれぞれ矩形の開口 を設けることで、 一対の平行部位と該平行部位を連結する連結部位とからなる 開口側が対向する一対のコ字状部を形成し、 該一対のコ字状部をそれぞれ内側 に向け断面 U字状に曲げ、
前記平行部位の先端近傍を連結部位が内側になるように曲げ突出させること で、 正特性サ一ミス夕に当接する当接角部を形成してなり、
該当接角部に平行部位と平行な切り欠きを形成したことを特徴とする請求項 1〜請求項 9のいずれか 1の単相誘導電動機の起動装置。
1 2 . 補助巻線に直列に接続される正特性サーミス夕と、 挿脱可能な接続ピ ンとの間で電気的接続を行うソケット端子とを有し、 主卷線及び補助巻線から なる単相誘導電動機の起動装置において、
前記ソケット端子は、 接続ピンの軸方向の側方へ延在する一対の板部を内側 に折り曲げ、 先端を接続ピンの円柱形状に合致可能なよう円弧状に形成すると 共に、 先端を互いに離間させてなる接続ピン保持部を備え、
前記接続ピン保持部が、 接続ピンの軸方向と垂直方向のスリツトにより先端 側の第 1部位と奥側の第 2部位とに 2分割されていることを特徴とする単相誘
1 3 . 前記ソケッ卜端子を保持するケーシングに、 前記接続ピン保持部を貫 通した前記接続ピンの先端部を収容する凹部を設けたことを特徴とする請求項 1 2の単相誘導電動機の起動装置。
1 4 . 前記接続ピン保持部の先端側の第 1部位が、 奥側第 2部位よりも緩や かに接続ピンを保持するように形成したことを特徴とする請求項 1 2又は請求 項 1 3の単相誘導電動機の起動装置。
1 5 . 前記接続ピン保持部の先端側の第 1部位を、 接続ピン軸方向の長さが 奥側第 2部位よりも長くなるように形成したことを特徴とする請求項 1 2又は 請求項 1 4の単相誘導電動機の起動装置。
1 6 . 前記接続ピン保持部の奥側の第 2部位を、 接続ピン軸方向の長さが先 端側第 1部位よりも長くなるように形成したことを特徴とする請求項 1 2又は 請求項 1 4の単相誘導電動機の起動装置。
1 7 . 前記接続ピン保持部の奥側の第 2部位の前端であって、 前記一対の板 部の先端部に V字状の切れ込みを設けたことを特徴とする請求項 1 2〜請求項 1 6のいずれかの単相誘導電動機の起動装置。
1 8 . 請求項 1 2〜請求項 1 7のいずれか 1の起動装置に過負荷保護装置を 組み付けてなる単相誘導電動機の起動装置及び過負荷保護装置。
1 9 . 交流電源によって通電される主巻線及び補助卷線を有する単相誘導電 動機の起動装置において、
ケーシングと、
前記補助巻線に直列に接続された正特性サ一ミス夕と、
前記正特性サーミス夕に並列に接続された補助正特性サーミス夕と、 前記補助巻線及び正特性サ一ミス夕の直列回路に直列に接続され、 前記補助 正特性サーミス夕からの熱を感知してこれが設定温度になるとオフするスロー アクションバイメタルと、 前記ケーシング内に備えられ、 前記スロ一アクションバイメタル及び前記補 助正特性サーミス夕を密閉する密閉室と、 を具備してなる単相誘導電動機の起
2 0 . 前記ス口一アクションバイメタルの基部に前記補助正特性サーミス夕 が接していることを特徴とする請求項 1 9の単相誘導電動機の起動装置。
2 1 . 交流電源によって通電される主卷線及び補助巻線を有する単相誘導電 動機の起動装置において、
前記補助巻線に直列に接続された正特性サーミス夕と、
前記正特性サーミス夕に並列に接続された補助正特性サーミス夕と、 前記補助巻線及び正特性サーミス夕の直列回路に直列に接続され前記補助正 特性サ一ミス夕からの熱を感知してこれが設定温度になるとオフするスローァ クシヨンバイメタルと、
前記補助巻線、 正特性サーミス夕及びスローアクションバイメタルの直列回 路に直列に接続され前記正特性サ一ミス夕からの熱を感知してこれが所定高温 度になるとオフするスナップァクションバイメタルと、 を具備してなる単相誘
2 2 . 前記スナップアクションバイメタルは、 常温で復帰しないように設定 されていることを特徴とする請求項 2 1の単相誘導電動機の起動装置。
2 3 . 前記スローアクションバイメタルの接点と前記スナップアクションバ ィメタルの接点とが直接接触し、
前記スローアクションバイメタルが前記設定温度になると前記スナップアク ションバイメタル側の接点から離れ、
前記スナツプアクションバイメタルが前記所定高温度になると前記スローァ クションバイメタル側の接点から離れることを特徴とする請求項 2 1又は請求 項 2 2の単相誘導電動機の起動装置。
2 4. 前記スナップアクションバイメタルの先端に接するストッパーを設け、 スローアクションバイメタルの動作を妨げないようにしたことを特徴とする請 求項 2 3の単相誘導電動機の起動装置。
2 5 . 請求項 1 9〜請求項 2 4のいずれか 1の起動装置を用いた密閉形電動 圧縮機。
2 6 . 請求項 1 9〜請求項 2 4のいずれか 1の起動装置を用いた密閉形電動 圧縮機を用いる機器。
PCT/JP2003/015191 2002-11-29 2003-11-27 単相誘導電動機の起動装置 WO2004051836A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/537,010 US7515029B2 (en) 2002-11-29 2003-11-27 Starting device for single-phase induction motor
AU2003302543A AU2003302543A1 (en) 2002-11-29 2003-11-27 Starting device for single-phase induction motor
EP03812322A EP1605580A4 (en) 2002-11-29 2003-11-27 STARTING DEVICE FOR SINGLE PHASE INDUCTION MOTOR

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-347810 2002-11-29
JP2002347810A JP3737080B2 (ja) 2002-11-29 2002-11-29 単相誘導電動機の起動装置、起動装置を用いた密閉形電動圧縮機及びこれを用いる機器
JP2003297296A JP2005073330A (ja) 2003-08-21 2003-08-21 単相誘導電動機の起動装置、起動装置を用いた密閉形電動圧縮機及びこれを用いる機器
JP2003-297296 2003-08-21
JP2003-297295 2003-08-21
JP2003297295A JP2005073329A (ja) 2003-08-21 2003-08-21 単相誘導電動機の起動装置、単相誘導電動機の起動装置及び過負荷保護装置、及び、起動装置を用いた密閉形電動圧縮機

Publications (1)

Publication Number Publication Date
WO2004051836A1 true WO2004051836A1 (ja) 2004-06-17

Family

ID=32475216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015191 WO2004051836A1 (ja) 2002-11-29 2003-11-27 単相誘導電動機の起動装置

Country Status (5)

Country Link
US (1) US7515029B2 (ja)
EP (1) EP1605580A4 (ja)
KR (1) KR20050085204A (ja)
AU (1) AU2003302543A1 (ja)
WO (1) WO2004051836A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663335B2 (en) 2004-09-15 2010-02-16 Lg Electronics Inc. Single-phase induction motor
US9397590B2 (en) 2012-04-30 2016-07-19 Snu R&Db Foundation Double wound rotor type motor with constant alternating current or direct current power supply input and control method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705512B2 (en) * 2006-10-06 2010-04-27 Remy International, Inc. Dynamoelectric machine conductor
US7800477B1 (en) * 2007-03-20 2010-09-21 Thermtrol Corporation Thermal protector
KR101322316B1 (ko) * 2007-05-10 2013-10-25 엘지전자 주식회사 냉장고용 모터의 기동제어장치 및 방법
US7920044B2 (en) * 2007-05-16 2011-04-05 Group Dekko, Inc. Appliance assembly with thermal fuse and temperature sensing device assembly
US8288902B2 (en) * 2007-12-14 2012-10-16 Asmo Co., Ltd. Thermistor device preventing deformation of thermistor element, and preventing first conductive plate from directly conducted to second conductive plate
US7990005B2 (en) * 2008-02-07 2011-08-02 Atlas Dynamic Devices, Llc Power transmission tool and system
US7952461B2 (en) * 2008-05-08 2011-05-31 Cooper Technologies Company Sensor element for a fault interrupter and load break switch
US8013263B2 (en) * 2008-08-14 2011-09-06 Cooper Technologies Company Multi-deck transformer switch
ITPC20080011U1 (it) * 2008-09-02 2010-03-03 Electrica S R L Dispositivo di avviamento per motori elettrici
IT1392191B1 (it) * 2008-12-12 2012-02-22 Electrica Srl Protettore termico per motori elettrici, in particolare per motori eletrici per compressori
US8461956B2 (en) * 2011-07-20 2013-06-11 Polytronics Technology Corp. Over-current protection device
CN102646547B (zh) * 2012-04-23 2015-07-15 东莞市晶品电子科技有限公司 锂离子电池保护器
CN105934305B (zh) * 2013-09-06 2019-04-26 美国阿玛达米亚基有限责任公司 焊头
CN108799077A (zh) * 2017-05-03 2018-11-13 合肥美的电冰箱有限公司 用于压缩机的启动电路、压缩机及家居设备
CN113241286B (zh) * 2021-07-12 2021-10-22 广东电网有限责任公司东莞供电局 一种自动化设备超温自动断电保护装置
WO2024010536A1 (en) * 2022-07-06 2024-01-11 Afacan Makine Metal Sanayi Ve Ticaret Limited Sirketi Iron bending machine configuration

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366596A (en) * 1976-11-26 1978-06-14 Nippon Ceramic Kk Temperatureesensitive magnet
JPH0638467A (ja) * 1992-07-09 1994-02-10 Yamada Denki Seizo Kk 単相誘導電動機の起動装置
JPH0745171A (ja) * 1993-07-29 1995-02-14 Matsushita Refrig Co Ltd モータの過負荷保護装置
US5428493A (en) * 1992-10-02 1995-06-27 Tdk Corporation Motor starting relay device having PTC thermistors
JPH07170697A (ja) * 1994-08-02 1995-07-04 Toshiba Home Technol Corp モータの通電制御装置
JP3023047U (ja) * 1995-06-07 1996-04-12 池田 敏彦 家庭用電熱器具の過熱防止装置
US5977859A (en) * 1997-01-13 1999-11-02 Pacific Engineering Company Multielectrode type fuse element and multielectrode type fuse using the same
JP2000011829A (ja) * 1998-06-24 2000-01-14 Matsushita Refrig Co Ltd モータの起動リレー
JP2001068172A (ja) * 1999-08-24 2001-03-16 Taiko Denki Co Ltd ソケット端子
US20020018326A1 (en) * 2000-05-23 2002-02-14 Wataru Sugawara Electric power supply device and equipment using thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721937A (en) * 1968-06-11 1973-03-20 P Schuller Electric temperature regulator
US3718879A (en) * 1971-05-19 1973-02-27 Texas Instruments Inc Apparatus for starting and protecting of electrical motors
US3695054A (en) * 1971-05-25 1972-10-03 Carrier Corp Control circuit for an air conditioning system
US3921117A (en) * 1974-11-29 1975-11-18 Texas Instruments Inc Solid state electrical switch
US4042860A (en) * 1975-10-21 1977-08-16 General Electric Company Combination starter-protector device
USRE31367E (en) * 1975-12-22 1983-08-30 Texas Instruments Incorporated Motor starting and protecting apparatus
US4086558A (en) * 1976-02-09 1978-04-25 Texas Instruments Incorporated Motor protector and system
JPS56162985A (en) * 1980-05-17 1981-12-15 Murata Mfg Co Ltd Starter for motor
US4399423A (en) * 1982-03-29 1983-08-16 Texas Instruments Incorporated Miniature electric circuit protector
JPS6048201U (ja) * 1983-09-09 1985-04-04 ティーディーケイ株式会社 正特性サ−ミスタ装置
US4574229A (en) * 1983-10-20 1986-03-04 Kim In S Power efficient motor starter and circuit breaker for an induction motor
US4901186A (en) * 1988-06-06 1990-02-13 Therm-O-Disc, Incorporated Temperature compensated thermal protector
US4908595A (en) * 1989-05-12 1990-03-13 Yamada Electric Mfg. Co., Ltd. Motor protector
JPH04289786A (ja) * 1991-03-15 1992-10-14 Murata Mfg Co Ltd モーター起動回路
JPH05153791A (ja) * 1991-11-26 1993-06-18 Sanyo Electric Co Ltd 電動機の分相起動装置
CA2085202C (en) * 1992-03-24 1996-10-22 Ricky L. Bunch Positive temperature coefficient start winding protection
JPH0668759A (ja) * 1992-08-24 1994-03-11 Hitachi Ltd 2要素式サーマルプロテクタ
JP3186253B2 (ja) * 1992-10-16 2001-07-11 株式会社日立製作所 過負荷保護装置
JP3272493B2 (ja) * 1992-12-05 2002-04-08 山田電機製造株式会社 単相誘導電動機の起動装置
JP3023047B2 (ja) 1994-02-15 2000-03-21 新日軽株式会社 断熱ドアの枠体
US5729416A (en) * 1995-05-30 1998-03-17 General Electric Company Motor starter and protector module
JP2899550B2 (ja) * 1995-08-30 1999-06-02 ウチヤ・サーモスタット株式会社 サーマルプロテクタ
US5870014A (en) * 1996-10-11 1999-02-09 Texas Instruments Incorporated Thermally actuatable auxiliary electrical switch apparatus
JPH11111133A (ja) * 1997-10-02 1999-04-23 Tokin Corp 温度スイッチ
JPH11167852A (ja) * 1997-12-05 1999-06-22 Hitachi Ltd 継電器を備えた機器
JPH11303745A (ja) * 1998-04-21 1999-11-02 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP2001061285A (ja) * 1999-08-20 2001-03-06 Fujitsu General Ltd コンデンサ誘導電動機の始動装置
JP2002008502A (ja) * 2000-06-23 2002-01-11 Texas Instr Japan Ltd 起動スイッチ及びこれを備えた電動機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366596A (en) * 1976-11-26 1978-06-14 Nippon Ceramic Kk Temperatureesensitive magnet
JPH0638467A (ja) * 1992-07-09 1994-02-10 Yamada Denki Seizo Kk 単相誘導電動機の起動装置
US5428493A (en) * 1992-10-02 1995-06-27 Tdk Corporation Motor starting relay device having PTC thermistors
JPH0745171A (ja) * 1993-07-29 1995-02-14 Matsushita Refrig Co Ltd モータの過負荷保護装置
JPH07170697A (ja) * 1994-08-02 1995-07-04 Toshiba Home Technol Corp モータの通電制御装置
JP3023047U (ja) * 1995-06-07 1996-04-12 池田 敏彦 家庭用電熱器具の過熱防止装置
US5977859A (en) * 1997-01-13 1999-11-02 Pacific Engineering Company Multielectrode type fuse element and multielectrode type fuse using the same
JP2000011829A (ja) * 1998-06-24 2000-01-14 Matsushita Refrig Co Ltd モータの起動リレー
JP2001068172A (ja) * 1999-08-24 2001-03-16 Taiko Denki Co Ltd ソケット端子
US20020018326A1 (en) * 2000-05-23 2002-02-14 Wataru Sugawara Electric power supply device and equipment using thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1605580A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663335B2 (en) 2004-09-15 2010-02-16 Lg Electronics Inc. Single-phase induction motor
US9397590B2 (en) 2012-04-30 2016-07-19 Snu R&Db Foundation Double wound rotor type motor with constant alternating current or direct current power supply input and control method thereof

Also Published As

Publication number Publication date
AU2003302543A1 (en) 2004-06-23
US7515029B2 (en) 2009-04-07
EP1605580A4 (en) 2009-09-23
AU2003302543A8 (en) 2004-06-23
KR20050085204A (ko) 2005-08-29
EP1605580A1 (en) 2005-12-14
US20060163956A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
WO2004051836A1 (ja) 単相誘導電動機の起動装置
EP0571956B1 (en) Circuit for starting single-phase AC induction motor
WO2003105172A1 (ja) 直流電流遮断スイッチ
JPH10308150A (ja) モータプロテクタ
US5939970A (en) Thermally responsive switch
WO1998012716A1 (fr) Thyristor a coefficient de temperature positif
JP3737080B2 (ja) 単相誘導電動機の起動装置、起動装置を用いた密閉形電動圧縮機及びこれを用いる機器
WO2003105171A1 (ja) 直流電流遮断スイッチ
KR100258790B1 (ko) 일정 시간이 경과한 후에 모터 기동용 회로에 흐르는 전류를 차단하는 장치
JPH11353992A (ja) サーマルプロテクタ
JPH09294387A (ja) モータ起動用部品
JP2015035904A (ja) サーモスイッチ付過負荷保護装置及び冷媒圧縮機
JP2005073329A (ja) 単相誘導電動機の起動装置、単相誘導電動機の起動装置及び過負荷保護装置、及び、起動装置を用いた密閉形電動圧縮機
JP2005073330A (ja) 単相誘導電動機の起動装置、起動装置を用いた密閉形電動圧縮機及びこれを用いる機器
JP5274155B2 (ja) 過電流保護装置
JP4097511B2 (ja) サーマルプロテクタ、サーマルプロテクタを用いた密閉形電動圧縮機及びこれを用いる機器
JPH0638467A (ja) 単相誘導電動機の起動装置
JP5216481B2 (ja) 過電流保護装置
JP3946175B2 (ja) 省電力化モータ始動システム
JP2508580Y2 (ja) 正特性サ―ミスタ装置
JPH09273466A (ja) スタータのマグネットスイッチ励磁端子
JP2001057763A (ja) モータ制御装置
WO2005112229A1 (ja) 単相誘導電動機の起動装置
US20230283140A1 (en) Motor protector
KR200397437Y1 (ko) 세라믹소체 파괴시 진행성 방지를 위한 안전장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006163956

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020057009696

Country of ref document: KR

Ref document number: 10537010

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A46036

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003812322

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057009696

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003812322

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10537010

Country of ref document: US