WO2024010536A1 - Iron bending machine configuration - Google Patents

Iron bending machine configuration Download PDF

Info

Publication number
WO2024010536A1
WO2024010536A1 PCT/TR2022/050710 TR2022050710W WO2024010536A1 WO 2024010536 A1 WO2024010536 A1 WO 2024010536A1 TR 2022050710 W TR2022050710 W TR 2022050710W WO 2024010536 A1 WO2024010536 A1 WO 2024010536A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
bending machine
iron
iron bending
machine according
Prior art date
Application number
PCT/TR2022/050710
Other languages
French (fr)
Inventor
Omer AFACAN
Original Assignee
Afacan Makine Metal Sanayi Ve Ticaret Limited Sirketi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Afacan Makine Metal Sanayi Ve Ticaret Limited Sirketi filed Critical Afacan Makine Metal Sanayi Ve Ticaret Limited Sirketi
Priority to PCT/TR2022/050710 priority Critical patent/WO2024010536A1/en
Publication of WO2024010536A1 publication Critical patent/WO2024010536A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/04Asynchronous induction motors for single phase current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/02Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment
    • B21D7/022Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment over a stationary forming member only

Definitions

  • the subject of the invention is an innovation in iron bending machines and is related to the ability to bend iron by means of the capacitor structure that allows for using 220 volt asynchronous motors.
  • the present invention relates to the use of a new single-phase asynchronous motor in iron bending machines by preventing voltage fluctuations by using a single capacitor and avoiding inverter costs by not using an inverter.
  • Asynchronous motors/machines can be both magnetic field and conductor moving, provided that there is a speed difference. It is necessary to have the required magnetic field for the voltage to be induced. In three-phase motors, forming a magnetic field is inevitable. This magnetic field is the rotating magnetic field. In these motors, which have two regions as rotor and stator, three-phase alternating voltage is applied to the stator windings to create a voltage frequency. A magnetic field that rotates proportionally to the voltage frequency is created as a result thereof. The magnetic field induces a voltage on the rotor. As a result, rotor magnetic field is formed on the rotor. A rotational torque is formed as a result of the interaction of the rotor magnetic field and the stator magnetic field. A rotation movement is realized with this moment.
  • inverter or speed control have to be used for the three-phase asynchronous motor to work with single-phase electricity, and these devices cause problems at low or high voltages, burn out, or require the use of a phase protection relay and an additional contactor to prevent it from burning.
  • phase protection relay and an additional contactor to prevent it from burning.
  • This structure imposes a great financial burden on both producers and users, and also prevents efficient and continuous operation.
  • another motor used in iron bending machines is two capacitor motors. While the first capacitor in these is in continuous operation, the other capacitor is deactivated by the centrifugal switch after the rotor starts. The deactivated capacitor is utilized to increase the starting torque of the motor. Because it is about 5-10 times larger than the capacity of the capacitor that is constantly in operation. The ends of one of the main or auxiliary windings must be replaced in order to change the direction of rotation.
  • the use of 2 capacitors in these asynchronous motors makes it difficult to use asynchronous machines with two 220 volt capacitors in iron bending machines.
  • the start capacitor creates the first magnetic field and enables the other capacitor to act.
  • the iron bending process is a very short process, the process can be performed easily only when the start capacitor is activated. Operation of only the start capacitor is a problem due to the continuous stop and start operations. Because, in order for the second capacitor to be activated and the start capacitor to be deactivated, the motor must be activated by eighty percent. This is not possible due to the brevity of the process. This situation, on the other hand, is not preferred and not used since it causes both energy consumption and motor and capacitor failures.
  • the present invention aims to construct an iron bending machine that will enable the use of mono-phase (single-phase) asynchronous motors in iron bending machines.
  • the invention is an iron bending machine configuration, and the aim thereof is to use the motor only with its permanent capacitor, without the need for a centrifugal switch and start capacitor, without loss of motor power and without using an inverter.
  • Figure - 1 illustrates the Top Front General View of the Iron Bending Machine. Reference Numerals:
  • the iron bending machine of the invention is an iron bending machine configuration that provides 220 volt asynchronous single-phase motor movement and use thereof by using a single permanent capacitor with increased power.
  • the iron bending machine configuration which is the subject of the invention, is managed without using a centrifugal switch, by using a programmable logic control, which also enables the motor start capacitor to manage the iron bending machine, or by using another circuit board or time relay.
  • the single-use permanent capacitor capacity is increased by increasing it to at least 35 microfarads.
  • the invention aims to ensure that a structural iron (1) placed in the iron channel (8) is bent with an asynchronous motor using a permanent capacitor.
  • the present invention consists of a rotating drum (3), a bending pin (2) positioned on the top surface of the rotating drum (3), iron channel (8), a trigger shoe (4) positioned on the edge of the rotating drum (3), origin sensor (5), bending sensor (6), and bending sensor trigger pin (7).
  • the x distance seen in Figure - 1 is the distance that should be left between the bending pin (2) and the structural iron (1) at the starting point in order for the motor to lift under load. The distance the engine will travel in at least one second is x.
  • the rotating drum (3) rotates until the bending sensor (6) is triggered. Then the structural iron (1) begins to bend. Then the rotating drum (3) turns backwards to see the origin sensor (5). The rotating drum (3), which sees the origin sensor (5), stops. If the origin sensor (5) is triggered at any time during the bending of the structural iron (1), the iron bending machine stops directly. Because it is considered to have reached its initial position with the origin sensor (5). Thus, even if the motor loses its direction in case of bending or similar, it returns to the starting point. In this way, even if the motor loses its direction of rotation, the risk of constantly rotating is eliminated.
  • Rubber shoes (15) utilized to reduce motor vibration are positioned just above the single-phase asynchronous motor (16) and just below the motor connection plate (14).
  • the torque movement received by the worm gear reducer (10) is transmitted to the table and the reduction gear output shaft (9) through the gears, and the movement occurs.
  • the gears rotate 90 degrees horizontally as vertical movement.
  • Rubber shoes (15) are utilized to prevent the vibration of the motor from shaking as a result of the movement of the motor. Thus, the rotating table under the shaft will not be shaken.
  • Another method that can be employed to reduce engine vibration is to eliminate vibration during the transmission of torque from a single-phase asynchronous motor (16) with a vibration reducing coupling (17) in addition to vibration-reducing rubber shoes (15).

Abstract

The subject of the invention is an innovation in iron bending machines and is related to the ability to operate without loss of motor power by means of the single permanent capacitor structure that enables the use of 220 volt asynchronous motors. The present invention relates to the use of a new single-phase asynchronous motor (16) in iron bending machines by preventing voltage fluctuations by using a single capacitor and avoiding inverter costs by not using an inverter.

Description

DESCRIPTION
IRON BENDING MACHINE CONFIGURATION
Technical Field
The subject of the invention is an innovation in iron bending machines and is related to the ability to bend iron by means of the capacitor structure that allows for using 220 volt asynchronous motors.
The present invention relates to the use of a new single-phase asynchronous motor in iron bending machines by preventing voltage fluctuations by using a single capacitor and avoiding inverter costs by not using an inverter.
Prior Art
Asynchronous motors/machines can be both magnetic field and conductor moving, provided that there is a speed difference. It is necessary to have the required magnetic field for the voltage to be induced. In three-phase motors, forming a magnetic field is inevitable. This magnetic field is the rotating magnetic field. In these motors, which have two regions as rotor and stator, three-phase alternating voltage is applied to the stator windings to create a voltage frequency. A magnetic field that rotates proportionally to the voltage frequency is created as a result thereof. The magnetic field induces a voltage on the rotor. As a result, rotor magnetic field is formed on the rotor. A rotational torque is formed as a result of the interaction of the rotor magnetic field and the stator magnetic field. A rotation movement is realized with this moment.
In the state of the art, in the initial stage of iron bending machines, the rotating drum rotates until the twist sensor is triggered and the iron is bent. Afterwards, drum turns backwards to see the origin sensor and then stops. Even if the starting point sensor is triggered during the iron bending phase, the rotating drum continues to rotate until it sees the twist sensor. In this case, if the motor somehow loses its direction of rotation, it keeps rotating continuously, causing injury to the user, breaking the machine and bending the bent iron more than desired. In the state of the art, three-phase asynchronous motors are used in all machines that are commercially available, even if the input phase is single-phase in iron bending machines. Imported devices called inverter or speed control have to be used for the three-phase asynchronous motor to work with single-phase electricity, and these devices cause problems at low or high voltages, burn out, or require the use of a phase protection relay and an additional contactor to prevent it from burning. This structure imposes a great financial burden on both producers and users, and also prevents efficient and continuous operation.
In the prior art, another motor used in iron bending machines is two capacitor motors. While the first capacitor in these is in continuous operation, the other capacitor is deactivated by the centrifugal switch after the rotor starts. The deactivated capacitor is utilized to increase the starting torque of the motor. Because it is about 5-10 times larger than the capacity of the capacitor that is constantly in operation. The ends of one of the main or auxiliary windings must be replaced in order to change the direction of rotation. The use of 2 capacitors in these asynchronous motors makes it difficult to use asynchronous machines with two 220 volt capacitors in iron bending machines. The start capacitor creates the first magnetic field and enables the other capacitor to act. However, since the iron bending process is a very short process, the process can be performed easily only when the start capacitor is activated. Operation of only the start capacitor is a problem due to the continuous stop and start operations. Because, in order for the second capacitor to be activated and the start capacitor to be deactivated, the motor must be activated by eighty percent. This is not possible due to the brevity of the process. This situation, on the other hand, is not preferred and not used since it causes both energy consumption and motor and capacitor failures.
In the state of the art, although 220 volts is usually sufficient in iron bending machines, 380 volt asynchronous motors are preferred since they are disadvantageous and cannot be used. An inverter is required for 380 volt motors. This inverter is necessary for ease of operation by reducing the high voltage. However, speed control using an inverter causes a loss in motor power. It also causes inverter costs and the inverter is affected by voltage fluctuations. When the motor is overloaded, unexpected reversing problems of the motor, called rewind, also occur. In the prior art, single-phase asynchronous motors cannot be used directly in iron bending machines. Since the centrifugal switch, which disables the start capacitor in single-phase motors has a mechanical structure, iron bending machines that make start-stop (2000 - 3000 times a day) frequently fail and cause the engine to burn out. Again, if the circuit board is used by the motor manufacturers instead of the mechanical centrifugal switch, the relays on these circuit boards may malfunction in the engines that make start-stop frequently. For these reasons, the use of single-phase motors in iron bending machines could not move beyond trial studies.
Disadvantages such as loss of motor power in the state of the art, inverter costs, failure of the inverter by being affected by voltage fluctuations, motor rewind failures as a result of overloading the motor necessitated an R.&D study in this field.
Objects of the Invention
The present invention aims to construct an iron bending machine that will enable the use of mono-phase (single-phase) asynchronous motors in iron bending machines.
The invention is an iron bending machine configuration, and the aim thereof is to use the motor only with its permanent capacitor, without the need for a centrifugal switch and start capacitor, without loss of motor power and without using an inverter.
Detailed Description of the Invention
Figures of the iron bending machine configuration are given below.
Figure - 1 illustrates the Top Front General View of the Iron Bending Machine. Reference Numerals:
1. Structural Iron
2. Bending Pin
3. Rotating Drum
4. Trigger Shoe
5. Origin Sensor
6. Bending Sensor
7. Bending Sensor Trigger Pin
8. Iron Channel
9. Reduction Gear Output Shaft
10. Worm Gear Reducer
11. Reducer Flywheel
12. Engine Belt
13. Engine Flywheel
14. Motor Connection Plate
15. Rubber Shoes
16. Single Phase Asynchronous Motor
17. Vibration Reducing Coupling
In the iron bending machine of the invention, it is an iron bending machine configuration that provides 220 volt asynchronous single-phase motor movement and use thereof by using a single permanent capacitor with increased power. The iron bending machine configuration, which is the subject of the invention, is managed without using a centrifugal switch, by using a programmable logic control, which also enables the motor start capacitor to manage the iron bending machine, or by using another circuit board or time relay. The single-use permanent capacitor capacity is increased by increasing it to at least 35 microfarads. The vibration that will occur in the motor due to this increase in capacity is prevented by placing rubber shoes (15) under the motor, and by transmitting the motion transmitted from the motor to the reduction gear as a coupling or take-off- pul ley, the motor vibration is prevented from affecting the iron bending machine. (Figure - 2)
The invention aims to ensure that a structural iron (1) placed in the iron channel (8) is bent with an asynchronous motor using a permanent capacitor. The present invention consists of a rotating drum (3), a bending pin (2) positioned on the top surface of the rotating drum (3), iron channel (8), a trigger shoe (4) positioned on the edge of the rotating drum (3), origin sensor (5), bending sensor (6), and bending sensor trigger pin (7). The x distance seen in Figure - 1 is the distance that should be left between the bending pin (2) and the structural iron (1) at the starting point in order for the motor to lift under load. The distance the engine will travel in at least one second is x.
In the initial phase, the rotating drum (3) rotates until the bending sensor (6) is triggered. Then the structural iron (1) begins to bend. Then the rotating drum (3) turns backwards to see the origin sensor (5). The rotating drum (3), which sees the origin sensor (5), stops. If the origin sensor (5) is triggered at any time during the bending of the structural iron (1), the iron bending machine stops directly. Because it is considered to have reached its initial position with the origin sensor (5). Thus, even if the motor loses its direction in case of bending or similar, it returns to the starting point. In this way, even if the motor loses its direction of rotation, the risk of constantly rotating is eliminated.
Rubber shoes (15) utilized to reduce motor vibration are positioned just above the single-phase asynchronous motor (16) and just below the motor connection plate (14). The motor flywheel (13), which transmits the torque of the single-phase asynchronous motor (16), transmits this torque to the reducer flywheel (11) by means of the motor belt (12). The torque movement received by the worm gear reducer (10) is transmitted to the table and the reduction gear output shaft (9) through the gears, and the movement occurs. Here, the gears rotate 90 degrees horizontally as vertical movement. Rubber shoes (15) are utilized to prevent the vibration of the motor from shaking as a result of the movement of the motor. Thus, the rotating table under the shaft will not be shaken. Another method that can be employed to reduce engine vibration is to eliminate vibration during the transmission of torque from a single-phase asynchronous motor (16) with a vibration reducing coupling (17) in addition to vibration-reducing rubber shoes (15).

Claims

1. An iron bending machine, characterized by comprising; a single-phase asynchronous motor (16) that comprises a single permanent capacitor.
2. An iron bending machine according to Claim 1, characterized in that, the permanent capacitor is at least 50 microfarads.
3. An iron bending machine according to Claim 1, characterized by comprising a worm gear reducer (10) that transmits the torque of said single-phase asynchronous motor (16) to the rotating drum (3).
4. An iron bending machine according to Claim 1, characterized by comprising a motor belt (12) that prevents the vibration of said single-phase asynchronous motor (16) from affecting the iron bending machine while being transmitted to said worm gear reducer (10).
5. An iron bending machine according to Claim 1, characterized by comprising a bending sensor (6) that sees said rotating drum (3) that receives the movement transmitted by said motor belt (12) and enables said rotating drum to start its movement.
6. An iron bending machine according to Claim 1, characterized by comprising an origin sensor (5) ensuring that the movement ends after said bending sensor (6) sees the movement and that the motor returns to its starting position even if it loses its direction and continues to rotate.
7. An iron bending machine according to Claim 1, characterized by comprising a rubber shoe (15) that is positioned under the motor connecting plate (14), and that prevents the vibration caused by the operation of said single-phase asynchronous motor (16) from affecting the iron bending machine together with said motor belt (12).
8. An iron bending machine according to Claim 1, characterized by comprising a vibration reducing coupling (17) that, together with the rubber shoe (15), prevents the vibration caused by the operation of said single-phase asynchronous motor (16) from affecting the iron bending machine, and that is positioned between said single phase asynchronous motor (16) and said worm gear reducer
PCT/TR2022/050710 2022-07-06 2022-07-06 Iron bending machine configuration WO2024010536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/TR2022/050710 WO2024010536A1 (en) 2022-07-06 2022-07-06 Iron bending machine configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/TR2022/050710 WO2024010536A1 (en) 2022-07-06 2022-07-06 Iron bending machine configuration

Publications (1)

Publication Number Publication Date
WO2024010536A1 true WO2024010536A1 (en) 2024-01-11

Family

ID=89453913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2022/050710 WO2024010536A1 (en) 2022-07-06 2022-07-06 Iron bending machine configuration

Country Status (1)

Country Link
WO (1) WO2024010536A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189413A (en) * 1984-03-09 1985-09-26 Star Seiki:Kk Automatic removing device of injection molded article
JPS60196320A (en) * 1984-03-17 1985-10-04 Star Seiki:Kk Automatic take-out device of injection-molded article
US20060163956A1 (en) * 2002-11-29 2006-07-27 Mikio Sahashi Starting device for single-phase induction motor
CN214866473U (en) * 2021-07-26 2021-11-26 山东瑞博电机有限公司 Three-phase induction motor end cover punching machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189413A (en) * 1984-03-09 1985-09-26 Star Seiki:Kk Automatic removing device of injection molded article
JPS60196320A (en) * 1984-03-17 1985-10-04 Star Seiki:Kk Automatic take-out device of injection-molded article
US20060163956A1 (en) * 2002-11-29 2006-07-27 Mikio Sahashi Starting device for single-phase induction motor
CN214866473U (en) * 2021-07-26 2021-11-26 山东瑞博电机有限公司 Three-phase induction motor end cover punching machine

Similar Documents

Publication Publication Date Title
CN101988276B (en) Pulper with torque motor
EP1691479B1 (en) Variable speed motor
CA2026095A1 (en) Y-delta conversion switches on dual stator induction motor
US3347451A (en) Motor compressor particularly for small refrigeration machines
WO2024010536A1 (en) Iron bending machine configuration
US4803390A (en) Dual motor drive arrangement for a small domestic appliance
US4486697A (en) Reversing device for a two-pole single-phase synchronous motor
JPS63178800A (en) Variable-speed generator
US2743406A (en) Alternating current motor circuit
US5477115A (en) Apparatus and method for controlling start-up of electrically-powered machines
CN116951071A (en) Driving system
NL192553C (en) Oil-sealed rotary vane vacuum pump with drive motor in a housing.
US3379945A (en) Alternating current electric motors
US7415904B2 (en) Electromechanical actuators
GB458807A (en) Improvements in or relating to yarn or like winding machines
US20070209249A1 (en) Display rotating apparatus preventing slip by rotary inertia
US1060731A (en) Alternating-current motor.
US11852223B2 (en) Drive arrangement of a working machine to be driven with a variably adjustable speed and method for operating the drive arrangement
KR910001150A (en) PSC motor for automatic washing machine
US1092849A (en) Rotor construction for induction-motors.
Creedy Introductory notes to a lecture on “Variable-speed alternating-current motors without commutators”
SU832693A1 (en) Electric drive for working machine
RU2176848C2 (en) Dual-motor drive
KR100634801B1 (en) Washing machine controlling method
GB2289347A (en) Controlling compressor start-up

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950397

Country of ref document: EP

Kind code of ref document: A1