WO2004041458A1 - 液圧バルジ加工用異形素管、並びにこれを用いる液圧バルジ加工装置、液圧バルジ加工方法、および液圧バルジ加工品 - Google Patents

液圧バルジ加工用異形素管、並びにこれを用いる液圧バルジ加工装置、液圧バルジ加工方法、および液圧バルジ加工品 Download PDF

Info

Publication number
WO2004041458A1
WO2004041458A1 PCT/JP2003/014284 JP0314284W WO2004041458A1 WO 2004041458 A1 WO2004041458 A1 WO 2004041458A1 JP 0314284 W JP0314284 W JP 0314284W WO 2004041458 A1 WO2004041458 A1 WO 2004041458A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
deformed
pipe
hydraulic bulging
bulging
Prior art date
Application number
PCT/JP2003/014284
Other languages
English (en)
French (fr)
Inventor
Atsushi Tomizawa
Masayasu Kojima
Original Assignee
Sumitomo Metal Industries, Ltd.
Sumitomo Pipe & Tube Co., Ltd.
Mitsubishi Jidoshakogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd., Sumitomo Pipe & Tube Co., Ltd., Mitsubishi Jidoshakogyo Kabushiki Kaisha filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2004549651A priority Critical patent/JPWO2004041458A1/ja
Priority to AU2003277659A priority patent/AU2003277659A1/en
Priority to EP03810679A priority patent/EP1586392A4/en
Publication of WO2004041458A1 publication Critical patent/WO2004041458A1/ja
Priority to US11/123,196 priority patent/US20050257587A1/en
Priority to US11/806,531 priority patent/US20070234771A1/en
Priority to US12/003,389 priority patent/US7827839B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/045Closing or sealing means

Definitions

  • Hydraulic bulging profile pipe hydraulic bulging apparatus using the same, hydraulic bulging method, and hydraulic bulging product
  • the present invention relates to a deformed pipe for hydraulic bulging, a hydraulic bulging apparatus for performing hydraulic bulging using the deformed pipe, a hydraulic bulging method, and a hydraulic bulging machine. It relates to a bulge product.
  • Hydraulic bulging has many advantages over other forming methods. For example, since it can be added to a component having a complicated shape having a different cross-sectional shape in the longitudinal direction, it is possible to integrally process a machine component that required welding by a conventional method. In addition, since the work causes work hardening over the entire part to which the work is applied, a high-strength product can be obtained even with a soft raw tube.
  • Hydraulic bulging has been evaluated for its excellent features as described above, and has recently been adopted especially as a method of manufacturing automotive parts.
  • FIG. 1 is a view for explaining the final step of the hydraulic bulging process for obtaining a product using a conventional straight pipe.
  • the working fluid is injected into the straight pipe P1 set in the upper and lower molds 1 and 2 through the injection hole 3, and the internal pressure is increased. Load. Furthermore, in addition to the internal pressure load, the raw pipe P1 is pushed axially from both pipe ends by the axial pushing tools 4 and 5, which also serve as sealing tools (hereinafter referred to as "axial pushing").
  • products P2 having various cross-sectional shapes are manufactured by combining the application of the internal pressure and the axial pressing.
  • the axial pushing tools 4 and 5, which also serve as sealing tools, are connected to a hydraulic cylinder (not shown), and their axial position and axial pushing force are controlled during hydraulic bulging.
  • Axial pushing in the axial direction from the pipe end in hydraulic bulging has the effect of promoting the metal flow when the pipe bulges and improving the expansion limit of the pipe. Therefore, in hydraulic bulging, axial pressing from the pipe end in the axial direction is an extremely important processing step.
  • hydraulic bulging has a problem due to the shape of the raw tube.
  • a complex machining shape having a different cross-sectional shape in the axial direction can be obtained, there is a limit to the machining shape that can be obtained.
  • tapered pipe a substantially conical pipe
  • the use of a tapered tube makes it possible to increase the perimeter increase rate of parts that are difficult to form with a straight tube, for example, parts whose perimeter changes greatly along the axial direction. Can be suppressed, and a predetermined processed shape can be formed (see, for example, Japanese Patent Application Laid-Open No. 2001-321842, page 1, FIG. 2).
  • FIG. 2 is a diagram for explaining a problem that occurs when a conventional straight tube pressing tool is used to press a shaft onto a tapered tube.
  • the large-diameter side cannot push the tapered pipe TP1 itself, and the small-diameter side can push the tapered pipe TP1.
  • the tool 4 enters the upper and lower molds 1 and 2
  • the inner and outer surfaces of the tapered tube TP1 on the tool 4 are insufficiently restrained, and sealing leakage occurs.
  • Fig. 3 is a diagram illustrating a hydraulic bulging process using a conventional tapered pipe.
  • (A) shows a state before processing
  • (b) shows a state before an internal pressure load is applied
  • (c) shows a state before applying an internal pressure load. Indicates the state at the end of processing.
  • Fig. 3 shows the hydraulic bulging process using the conventional tapered pipe TP1.
  • TP 1 in Fig. 3 shows the tapered pipe after the pipe end is formed
  • TP 3 shows the product after hydraulic bulging (hydraulic bulged product).
  • FIG. 4 is a view for explaining a problem when joining a hydraulic bulge product having a rectangular cross section.
  • (A) shows the shape of the conventional hydraulic bulge product
  • (b) shows the shape of the hydraulic bulge product of the present invention, and shows the inclination of the pipe end with respect to the axial direction of each workpiece.
  • (C) shows the cross-sectional shape of the hydraulic bulge product of (a) and (b).
  • the product PT3 of a conventional tapered pipe made of hydraulic bulge using a raw material as a raw material has the pipe end inclined obliquely by 0. For this reason, when welding or joining with other members, accuracy cannot be ensured, and joining with other members is not easy.
  • the present invention has been made in view of the above-described conventional problems, and in hydraulic bulging using a deformed raw tube whose cross-sectional shape changes in the axial direction, in addition to the internal pressure load on the raw tube,
  • a hydraulic bulge deformable pipe capable of axially pushing from a pipe end in an axial direction and obtaining a large expansion ratio, a hydraulic bulge processing apparatus using the same, a hydraulic bulge processing method, and
  • the purpose is to provide hydraulic bulge products.
  • a deformed pipe for hydraulic bulging is a deformed pipe provided for hydraulic bulging, and has an outer diameter gradually increasing from one axial direction to the other. Alternatively, it has a reduced perimeter and has a parallel portion formed at least on one end side.
  • the length of the parallel portion is set to be equal to or greater than the total length of the axial pushing amount applied in the hydraulic bulging and the length required for sealing during the processing. Is desirable.
  • the radius of curvature R of the corner portion in the parallel portion is determined by the axial distance of the pipe end. It is desirable to change in accordance with the change in the circumferential length difference of the deformed pipe corresponding to the above.
  • the deformed raw tube of the present invention having such a configuration is provided with a parallel portion on at least one of the inner surfaces of the upper and lower mold bodies and the outer surface of the axial pushing tool corresponding to the inner surface of the end. If it is provided and set in the mold of the hydraulic bulging device of the present invention, it is possible to combine the internal pressure load and the axial pushing.
  • FIG. 1 is a view for explaining the final step of the hydraulic bulging process for obtaining a product using a conventional straight pipe.
  • FIG. 2 is a diagram for explaining a problem that occurs when a conventional taper pipe is axially pushed using a conventional straight pipe pushing tool.
  • FIGS. 3A and 3B are diagrams illustrating a hydraulic bulging process using a conventional tapered pipe.
  • FIG. 3A illustrates a state before machining
  • FIG. 3B illustrates a state before applying an internal pressure load
  • FIG. This shows the state at the end of processing.
  • Fig. 4 is a diagram for explaining the problem when joining a hydraulic bulged product having a rectangular cross section.
  • A is the shape of a hydraulic bulged product using a conventional tapered pipe
  • (b) is 1 shows the shapes of hydraulically processed bulge products of the present invention
  • (c) shows their cross-sectional shapes.
  • FIG. 5 is a cross-sectional view showing an example of the shape of a tapered tube constituting the deformed raw tube for hydraulic bulging of the present invention.
  • FIG. 6A and 6B are diagrams illustrating the entire configuration of the deformed pipe of the present invention.
  • FIG. 6A is an example in which parallel portions having a circular cross section are formed at both ends of a tapered portion having a circular cross section
  • FIG. An example is shown in which parallel portions having a rectangular cross section are provided at both ends of a tapered portion having a rectangular cross section.
  • FIG. 7 is a diagram exemplifying the entire configuration of another deformed raw tube of the present invention, and shows an example having a transition portion between a large diameter side parallel portion and a central tapered portion.
  • FIG. 8 is a view for explaining a method of manufacturing a deformed raw tube according to the present invention having a parallel portion at a large-diameter end portion, (a) is an overall perspective view, and (b) is a developed view. Yes, (c) is a diagram showing a trapezoidal shape close to the development shown in (b).
  • FIG. 9 shows another embodiment of the deformed pipe of the present invention and a shaft pushing used for the same. It is a figure which shows a tool, (a) is a whole perspective view, (b) is an enlarged view of a small diameter side,
  • (c) is an enlarged view of a shaft pushing tool used also as a small-diameter side sealing tool used for them.
  • FIG. 10 is a view showing the end face shape of the deformed pipe of the present invention used when the small-diameter side of the hydraulic bulged product has a rectangular cross section, and (a) shows ⁇ L in the axial direction from the small-diameter side end. A cross section at a position + L 0 apart, (c) is a cross section at the pipe end, and (b) is a cross section at an intermediate position between them.
  • FIG. 11 is a diagram showing the end face shape of the deformed pipe of the present invention used when the large-diameter side of the hydraulic bulge product has a rectangular cross section.
  • (C) is a cross-sectional view of the end of the pipe, and (b) is a cross-sectional view at an intermediate position between them.
  • FIG. 12 is a diagram exemplifying a cross-sectional shape when the hydraulic bulged product has a trapezoidal cross section.
  • FIG. 13 is a diagram exemplifying a cross-sectional shape when the hydraulic bulge product has an L-shaped cross section.
  • FIG. 14 is a view for explaining the first embodiment of the method of the present invention, and shows a case in which a parallel portion at the tube end of the deformed raw tube is formed prior to hydraulic bulging.
  • A is a cross-sectional view showing a setting state of a tapered tube to a mold body
  • (b) is a cross-sectional view showing a state where a parallel portion is formed before hydraulic bulging
  • (c) is a cross-sectional view.
  • FIG. 4 is a cross-sectional view showing a state after completion of hydraulic bulging.
  • Fig. 15 is a diagram showing the relationship between the upper die body on the small diameter side, the axial pushing tool also serving as a sealing tool, and the end of the deformed pipe, and (a) to (c) show the above-mentioned Fig. 14 ( It is a figure corresponding to a)-(c).
  • FIG. 16 is a diagram showing the relationship between the upper die body on the large diameter side, the axial pushing tool also serving as a sealing tool, and the end of the deformed element pipe, and (a) to (c) show the above-mentioned FIG. It is a figure corresponding to (a)-(c).
  • FIG. 17 is a view for explaining a second embodiment of the method of the present invention, and shows a case where the parallel portion of the tube end of the deformed raw tube is formed before setting to the mold body. I have.
  • (A) is a cross-sectional view showing a setting state of the deformed element tube to the mold body
  • (b) is a cross-sectional view showing a state before hydraulic bulging
  • (c) is a hydraulic bulging.
  • FIG. 18 is a view for explaining a third embodiment of the method of the present invention.
  • FIG. 18 An example is shown. (A) to (c) are the same as those in FIG.
  • FIG. 19 is an explanatory view showing a fourth embodiment of the method of the present invention, in which the cavity inside the parallel portion on the large diameter side monotonically increases in the axial direction based on the large diameter end. Is shown. (A) to (c) are the same as those in FIG.
  • FIG. 20 is a diagram showing a configuration example of a shaft pushing tool that also serves as a sealing tool, which is a component member of the hydraulic bulge processing apparatus of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of the shape of a tapered tube constituting the deformed raw tube of the present invention.
  • the deformed pipe 11 for hydraulic bulging according to the present invention is a deformed pipe provided for hydraulic bulging, and as shown in (a) and (b), from one side to the other in the axial direction. It has a perimeter whose outer diameter gradually increases or decreases, and forms parallel portions 11a and lib on at least one end (in the example shown in Fig. 5, both ends on the small diameter side and the large diameter side).
  • the length of the parallel portion 11a, lib is set to be equal to or more than the total length of the shaft pushing amount in hydraulic bulging and the length required for sealing. Is desirable.
  • FIG. 6 is a view exemplifying the entire configuration of the deformed pipe of the present invention.
  • (B) shows an example in which parallel portions having a rectangular cross section are provided at both ends of a tapered portion having a rectangular cross section. I have.
  • FIG. 6 (a) shows the most basic form, in which parallel portions 11a and 11b having a circular cross section are formed at both ends of a tapered portion having a circular cross section.
  • FIG. 6B shows a tapered portion having a rectangular cross section provided with parallel portions 11a and 11b having a rectangular cross section at both ends.
  • the parallel portion 11a and lib are cross-sectionally shown in FIG. 10 (a) described later on the small diameter side 11a over the entire length, and described later on the large diameter side 11b. It has the cross section shown in FIG. 11 (c).
  • FIG. 7 is a view exemplifying the entire configuration of another deformed raw tube of the present invention. Compared to the configuration of FIG. 6, a transition portion is provided between the parallel portion on the large diameter side and the taper portion at the center. 2 shows a configuration example of a deformed element tube having the same.
  • FIG. 7 (a) shows a parallel section 11a, 11b having a circular cross section formed at both ends of a tapered section having a circular section. And a transition portion 1 1c between them.
  • FIG. 7 (b) shows a configuration in which parallel portions 11a and 11b having rectangular cross sections are provided at both ends of a tapered portion having a rectangular cross section.
  • a transition portion 11c is provided between the tapered portion and the central tapered portion.
  • the shape of the parallel parts 1 la and 11 b formed at both ends is simply a rectangular cross section, but the parallel parts 11 a and 1 lb
  • the shape may be a trapezoidal cross-sectional shape as shown in FIG. 12 described later, an L-shaped cross-sectional shape as shown in FIG. 13 described later, or a multi-shape not shown. It may have a rectangular cross section.
  • FIG. 6 (b) and 7 (b) show that the center taper is also a rectangular cross section, but there is no particular reason why the center has a rectangular cross section. Or a circular cross section as shown in Fig. 7 (a), or may be one that has been bent or crushed from the top, bottom, left and right so that it can be inserted into a hydraulic bulging die.
  • FIGS. 8A and 8B are views for explaining a method of manufacturing a deformed raw tube having a parallel portion at a large-diameter end according to the present invention, wherein FIG. 8A is an overall perspective view, and FIG. (C) is a diagram showing a trapezoidal shape close to the developed view shown in (b).
  • the deformed pipe 11 shown in Fig. 8 (a) is obtained by simply bending a plate having the shape shown in Fig. 8 (b), and a_b and a-b, c-d and c-d, b-e And c—e, b ′ 1 e and c′_e are joined together, as shown in FIG. 8 (a), a deformed tube 1 1b having a parallel portion 1 1b at the large-diameter end. Can be obtained.
  • FIG. 8 (c) is indicated by a broken line, and a trapezoidal shape close to this is indicated by a solid line.
  • tapered pipe means a taper pipe which is a material of the deformed raw pipe of the present invention and has not yet formed a parallel portion at one end or both ends.
  • the inner diameter may be expanded on both the small diameter side and the large diameter side using a “simple tapered pipe” as a material.
  • a “simple tapered pipe” as a material.
  • FIG. 9 is a view showing another embodiment of the deformed pipe of the present invention and a shaft pushing tool used for the same, (a) is an overall perspective view, (b) is an enlarged view of a small diameter side, (C) is an enlarged view of a shaft pushing tool used also as a small-diameter side sealing tool used for them.
  • parallel portions 11a and 11b having a rectangular cross section are formed at both ends of a tapered portion having a rectangular cross section.
  • the parallel portion 11a of the small-diameter side of the mere taper tube corresponds to ⁇ L + L0 at the portion corresponding to ⁇ L + L0, and the parallel portion 11b of the large-diameter side has ⁇ L ′ + L.
  • a rectangular cross section having the same width and height dimensions as the product is formed.
  • the axial pushing tools 14, 15 which also function as the seal body and the mold body 12 and 13 in the lug machining, eliminate the buckling etc. by the axial pushing in the hydraulic bulge processing, and extremely smooth material Pushing becomes possible.
  • FIG. 10 is a diagram showing an end face shape of a deformed pipe of the present invention used when the small diameter side of the hydraulic bulge product has a rectangular cross section.
  • A shows a cross section at a position ⁇ L + L 0 in the axial direction from the small diameter end
  • (c) shows a cross section at the pipe end
  • (b) shows a cross section at an intermediate position between them. I have.
  • FIG. 10 is a view for explaining the shape of each cross section of the parallel portion 11a on the small diameter side of the deformed tube of the present invention.
  • HO is almost constant.
  • the radius of curvature R of the corner is changed stepwise by preforming.
  • the radius of curvature of the corner at the small-diameter end is R0, and the corner at a position ⁇ L + L0 axially away from the small-diameter end.
  • R be the radius of curvature of the corner
  • R (X) be the radius of curvature of the corner located at a distance X in the axial direction from the small-diameter end, these are given by the following equation (1).
  • a circumferential difference ⁇ d (x) at a position X from the end of the pipe, where both ends of the simple tapered pipe are set as reference circumferences is obtained by the following (2).
  • DO indicates the small-diameter outer diameter
  • DO ' indicates the large-diameter outer diameter
  • LT indicates the length of the tapered tube.
  • FIG. 11 is a diagram showing an end face shape of a deformed raw tube of the present invention used when a large-diameter side of a hydraulic bulge product has a rectangular cross section.
  • (A) is a cross-sectional view at a position axially separated by SL '+ L0' from the large-diameter end
  • (c) is a cross-sectional view of the pipe end
  • (b) is an intermediate part between them. It is sectional drawing in a position. That is, FIG. 11 is a view for explaining the shape of the parallel section 11 b on the large diameter side of the deformed tube of the present invention in each cross section.
  • HO ' is almost constant.
  • the radius of curvature R 'of the corner is changed stepwise by preforming.
  • the radius of curvature of the corner at the large-diameter end is R0 '
  • the radius of curvature is ⁇ L' + L0 'in the axial direction from the large-diameter end.
  • ⁇ d (x) ⁇ ⁇ (D 0 '-DO)-X / LT (2')
  • the deformed raw tube of the present invention is not limited to this. And polygonal shapes, enabling extremely stable axial pushing during hydraulic bulging.
  • FIG. 12 is a diagram exemplifying a cross-sectional shape when the hydraulic bulged product has a trapezoidal cross section.
  • FIG. 13 is a view exemplifying a cross-sectional shape when the hydraulic bulge product has an L-shaped cross section.
  • Each is an example of a cross-sectional shape preformed on the large diameter side, and (a) is a cross-sectional view at a position ⁇ L '4 -L 0' away from the large diameter end in the axial direction.
  • c) is a cross-sectional view of the pipe end, and (b) is a cross-sectional view at an intermediate position between them.
  • FIG. 14 is a view for explaining the first embodiment of the method of the present invention, and shows a case in which a parallel portion at the tube end of the deformed raw tube is formed prior to hydraulic bulging.
  • A is a cross-sectional view showing a setting state of a tapered tube to a mold body
  • (b) is a cross-sectional view showing a state in which a parallel portion is formed before hydraulic bulging
  • (c) is () Is a cross-sectional view showing a state after the completion of the hydraulic bulging.
  • FIG. 15 is a diagram showing the relationship between the upper die body on the small diameter side, the axial pushing tool also serving as a sealing tool, and the end of the deformed element pipe.
  • FIGS. It is a figure corresponding to (a)-(c).
  • FIG. 16 is a diagram showing the relationship between the upper die body on the large diameter side, the axial pushing tool also serving as a sealing tool, and the end of the deformed raw tube, wherein ( a ) to ( c ) show the relationship in FIG. 4 is a diagram corresponding to (a) to (c).
  • FIG. 17 is a view for explaining a second embodiment of the method of the present invention, and shows a case where the parallel portion of the tube end of the deformed raw tube is formed before setting to the mold body.
  • A is a cross-sectional view showing a setting state of the deformed raw tube to the mold body
  • (b) is a cross-sectional view showing a state before hydraulic bulging
  • (c) is a cross-sectional view.
  • FIG. 4 is a cross-sectional view showing a state after completion of pressure bulging. You.
  • FIG. 18 is a view for explaining a third embodiment of the method of the present invention.
  • FIG. 18 An example is shown.
  • (A) is a cross-sectional view showing a setting state of the deformed raw tube to the mold body
  • (b) is a cross-sectional view showing a state before hydraulic bulge processing
  • (c) is a cross-sectional view.
  • FIG. 5 is a cross-sectional view showing a state after the completion of bulging.
  • the hydraulic bulge processing apparatus of the present invention includes, for example, upper and lower mold bodies 12 and 13 forming cavities as shown in FIGS. 14, 17 and 18, and both mold bodies 12 and Axial pushing tools 14 and 15 also serving as sealers for inserting the tip into each end of 13 are provided.
  • the two mold bodies 12 and 13 and the shaft pushing tools 14 and 15 are configured so as to sandwich and hold both ends of the deformed tube 11 of the present invention.
  • a working fluid injection hole is provided in any of the axial pushing tools, and at least one end side of the die body (the small diameter side in the examples shown in FIGS. 14, 17, and 18).
  • the inner surface and the outer surface of the axle tool corresponding to the inner surface of this end surface have parallel parts 12a, 12b, 13a, 13b, 14a, and 15a, respectively. Provided.
  • the parallel portions 14a and 15a on the outer surface of the axial pushing tools 14 and 15 restrain the raw tube from the inner surface when the axial pushing is performed, and exert an action of enabling smooth deformation.
  • the axial pressing amount on the small diameter side is ⁇ L
  • the axial pressing amount on the large diameter side is SL '
  • the length required for sealing on the small diameter side is L0
  • the length required for the seal is L0 '
  • at least one end side of both mold bodies 12 and 13 the small diameter side in the examples shown in Figs. 14, 17, and 18
  • both ends of the large diameter side The length of the parallel parts 12a, I2b, 13a, and 13b provided on the inner surface is SL + LO or more, and when provided on the large diameter side, it is desirable to be ⁇ L '+ L0' or more.
  • the parallel parts 1 4a of the axial pushing tools 14 and 15 corresponding to the parallel parts 12a, 12b, 13a and 13b provided on the mold bodies 12 and 13 , 15a is preferably ⁇ L + L0 or more when provided on the small-diameter portion side, and is preferably L0 ′ or more when provided on the large-diameter portion side.
  • the tip of the axial pushing tool 14 also serving as the sealing tool on the small diameter side (large diameter side) has a simple shape, which is a material for all the deformed elements. It must be able to be inserted into the tapered pipe ⁇ or the small-diameter end (large-diameter end) of the shaped pipe 11.
  • the parallel part 1 4a is a simple shape, which is a material for all the deformed elements. It must be able to be inserted into the tapered pipe ⁇ or the small-diameter end (large-diameter end) of the shaped pipe 11.
  • Axial pressing tool 14 also serves as sealing tool on the small diameter side (see Fig. 15)
  • the axial pressing tools 14, 15 also serving as a sealing tool are moved in the axial direction, and the taper held between the mold bodies 12, 13, and the axial pressing tools 14, 15 As shown in FIG. 14 (b), parallel sections 11a and lib are formed at the pipe ends or both ends of the pipe PT, and are formed into the deformed pipe 11 according to the present invention.
  • both ends of the tapered tube PT have L 0 or more on the small diameter side, preferably ⁇ L Parallel portions 11a and 11 having a length of + L0 or more and a length of L0 'or more are formed on the large-diameter side, and the shaped pipe 11 of the present invention is obtained. Thereafter, an internal pressure is applied to the deformed tube 11 in a state where the working fluid is completely sealed. Next, while increasing the internal pressure of the working fluid, the axial pushing tools 14 and 15 are further moved in the axial direction to perform hydraulic bulging, and as shown in FIG. 14 (c), the method of the present invention is used. A hydraulic bulge 17 is formed.
  • Fig. 1.9 is an explanatory view showing a fourth embodiment of the method of the present invention, in which the cavity inside the parallel portion on the large diameter side monotonically increases in the axial direction with respect to the large diameter end. Is shown.
  • (A) is a cross-sectional view showing a setting state of the tapered tube to the mold body
  • (b) is a cross-sectional view showing a state where a parallel portion is formed before hydraulic bulging
  • c) is a cross-sectional view showing a state after the completion of the hydraulic bulging.
  • FIG. 19 is different from the embodiment shown in FIGS. 14, 17 and 18 described above. In other words, it is the same as having both parallel parts 12a, 12b, 13a, and 13b at both ends of both mold bodies 12 and 13.
  • the cabin force inside the large-diameter parallel portions 1 2b and 13 b of the main bodies 1 and 13 The parallel portions 1 2b without being locally narrowed as in the example shown in FIG. 14 etc.
  • the cavities inside, 13b decrease monotonically in the axial direction with respect to the large diameter end.
  • the axial pushing resistance is small, which is advantageous for metal flow, so that the formable range (expansion limit) can be expanded. Therefore, in the hydraulic bulge processing apparatus of the present invention, it is desirable to design the cavities of the mold bodies 12 and 13 to have the shape shown in FIG.
  • FIG. 18 is a diagram showing an embodiment in which the deformed body tube 11 of the present invention shown in FIG. 9 (a) is used, and FIG. 9 (a) ) Set the deformed element tube 11 shown in) in the mold bodies 12 and 13.
  • FIG. 9 (b) is an enlarged view of the deformed tube 11 of the present invention on the small diameter side.
  • the cross-sectional shape of the small diameter side parallel portion 11a is as shown in FIG.
  • the deformed raw tube 11 having such a cross-sectional shape is formed by using the axial pushing tools 14 and 15 which also serve as a sealing tool according to an example of the present invention.
  • Fig. 9 (c) shows the axial pushing tool 14 which also serves as the sealing tool on the small diameter side, but has a width W0-2t, a height HO-2t, and a radius of curvature of the corner portion of R1. It has part 14a.
  • the forming of the parallel portions 11a and 11b at the pipe end prior to the hydraulic bulging may be performed at a preforming stage or at an earlier stage. It can be performed by existing processing methods such as drawing, hole expansion, swaging, and spinning, or by a combination of them.
  • FIG. 20 is a diagram showing a configuration example of a shaft pushing tool that also serves as a sealing tool, which is a component member of the hydraulic bulge processing apparatus of the present invention.
  • A is a configuration example in which sealing is performed at end surfaces 14b and 15b that are in contact with the end surface of the deformed base tube 11, and (b) is a projection at the end surface 14b and ⁇ .
  • 15 c, and (c) is a configuration example in which steps 14 d, 15 d are provided at the boundary between the parallel parts 14 a, 15 a and the end faces 14 b, 15 b.
  • D shows a configuration example in which a ring 18 is added to the parallel portions 14a, 15 &.
  • FIGS. 20 (a) to (d) satisfies the relationship between the parallel parts 14a and 15a and the tip circumference shown in the above-mentioned equations (3) to (6). is there.
  • the axial pressing is performed from both the small diameter side and the large diameter side.
  • it is applied to either one side, and the other is conventionally performed.
  • a method without shaft pushing as shown in Fig.] May be adopted. Since the effect of axial pressing changes depending on the product shape, the applicable range of the present invention may be determined according to the case.
  • the material of the deformed pipe 11 is mainly used as a single material.
  • a pure taper tube shape is described, even when welding is performed by combining a simple taper tube shape, or when a taper tube is combined with a normal straight tube, both ends are simple taper tubes. Since it can be approximated to a part, it can be applied as a material for the deformed pipe 11 of the present invention.
  • the deformed pipe for hydraulic bulging of the present invention has a circumferential length whose outer diameter gradually increases or decreases from one axial direction to the other, and forms a parallel portion at least on one end side.
  • parallel portions are provided on at least one end inner surface of the upper and lower mold main bodies and the outer surface of the axle pushing tool corresponding to the end inner surface, respectively. If it is set in a mold, it will be possible to combine internal pressure loading and axial pressing in the axial direction. As a result, it is possible to obtain a larger pipe expansion ratio than before with hydraulic bulged products that have been subjected to hydraulic bulging, and it is also possible to easily join with other parts. It can be widely applied to automobiles and industrial machines.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Forging (AREA)

Abstract

本発明の液圧バルジ加工用異形素管は、軸方向の一方から他方にかけて外径が漸次増加または減少する周長を有し、少なくとも一方端側に平行部を形成する。この異形素管を用いた加工装置、加工方法によれば、例えば、テーパ管のように軸方向に横断面形状が変化する異形鋼管の液圧バルジ加工を行う場合でも、内圧負荷および軸方向への押し込みを組み合わせた加工が可能になり、従来以上に大きな拡管率を得ることができ、また、他の部品との接合や差し込み結合も容易に行なえるようになる。

Description

明 細 書
液圧バルジ加工用異形素管、 並びにこれを用いる液圧バルジ加工装置、 液圧バルジ加工方法、 および液圧バルジ加工品 技術分野
本発明は、 液圧バルジ加工に供する異形素管、 並びにこの異形素管を 用いて液圧バルジ加工する液圧バルジ加工装置、 液圧バルジ加工方法、 および液圧バルジ加工を施された液圧バルジ加工品に関するものである。 背景技術
液圧バルジ加工は、 他の成形加工方法に比べ、 多くの特長を備えてい る。 例えば、 長手方向に断面形状の異なるような複雑な形状の部品に加 ェできるため、 従来方法では溶接接合が必要であった機械部品を、 一体 成形で加工することができる。 また、 当該加工は、 加工を付与した部位 の全体に亘つて加工硬化を生じさせるため、 軟質な素管を用いても高強 度の製品を得ることができる。
さらに、 加工後のスプリングバックが少なく、 製品の寸法精度が良好 である (形状凍結性が良好である)。 このため、 製品寸法の手直しのェ 程を必要とせず、 工程の省略が図れる。
液圧バルジ加工は、 上述の優れた特長が評価され、 最近では、 特に自 動車用部品の製造方法として採用されるようになっている。
通常、 液圧バルジ加工によって管を成形加工する場合には、 長手方向 に均一な円断面を有するス ト レートな管 (以下、 「ス ト レート素管」 と いう) を素材として用い、 当該素材に 「予成形」 として曲げ加工および 押し潰し加工を施した後、 加工工程の最終工程として液圧バルジ加工が 施される。 このような一連の加工工程を経ることによって、 ス ト レート 素管から所定の形状に加工された液圧バルジ加工品を製造できる。 図 1は、 従来のストレート素管を用いて製品を得る液圧バルジ加工の 加工工程のうち最終工程を説明する図である。 同図で示すように、 最終 工程となる液圧バルジ加工では、 上下の金型 1、 2内にセッ トされたス トレート素管 P 1の中に注入孔 3を通じて加工液を注入し、 内圧を負荷 する。 さらに、 内圧負荷に加えて、 シール工具を兼ねた軸押し工具 4、 5によって、 両管端から軸方向に素管 P 1を押し込む (以下、 「軸押し」 という)。
液圧バルジ加工では、 内圧を負荷することおよび軸押しすることを組 み合わせて、 種々の断面形状を有する製品 P 2を製造する。 なお、 シー ル工具を兼ねた軸押し工具 4、 5は、 図示しない油圧シリンダに接続さ れており、 液圧バルジ加工中においては、 その軸方向位置および軸押し 力が制御されている。
液圧バルジ加工における、 管端から軸方向への軸押しは、 素管の膨出 時のメタルフローを促進させ、素管の拡管限界を向上させる効果がある。 このため、 液圧バルジ加工では、 管端から軸方向への軸押しは、 極めて 重要な加工工程である。
具体的には、 液圧バルジ加工において、 軸押しを実施することなく内 圧負荷のみで加工を行うと、 ス ト レート素管 P 1は膨出にともなって板 厚が著しく減少する。 このため、 ス ト レート素管 P 1は、 液圧バルジ加 ェの途中で破断に至る。 つまり、 ス トレート素管 P 1の成形可能な範囲 (拡管限界) が制限されることになる。
さらに、 液圧バルジ加工には、 素管形状に起因する問題がある。 前述 の通り、 当該加工の特長の一つとして、 軸方向に断面形状の異なる複雑 な加工形状を得ることができるとしても、 得ることができる加工形状に 制限がある。
例えば、 周長増加率 (拡管率) = { (当該部位の加工品の外周長/素 管の円周長) 一 1 } X 1 0 0 %と定義した場合に、 加工品に要求される 形状特性や使用する素管条件 (材質、 板厚) にもよるが、 軸押しが有効 な管端部領域を除いて、 周長増加率 (拡管率) は高々 2 5 %程度である。 この限界の周長増加率 (拡管率) を超えて、 液圧バルジ加工を施すこ とができない。 このような周長増加率 (拡管率) の制約条件のもとで、 加工品の形状設計の自由度を上げ、 より複雑な断面形状を有する加工品 を得るためには、 素管形状に工夫を施す必要がある。
この問題に対応するため、 ストレート素管に代えて略円錐状の素管(以 下、 「テーパ素管」 という) を用いることが提案されている。 すなわち、 テーパ素管を用いることによって、 ス トレート素管での成形が困難な部 品、 例えば、 軸方向に沿って大きく周長が変化する部品に対しても、 加 ェに伴う周長増加率を低く抑えることができ、 所定の加工形状を形成で きるとしている (例えば、 特開 2 0 0 1— 3 2 1 8 4 2号公報、 第 1頁、 図 2参照)。
しかしながら、 軸方向に断面形状が変化するテーパ素管を用いて液圧 バルジ加工を行う場合に、 前記図 1に示すス トレート素管用の軸押しェ 具を使用した場合には、 テーパ素管に軸押しを施すことが困難である。 図 2は、 従来のストレート素管用軸押し工具でテーパ素管への軸押し を行った場合に生じる問題を説明する図である。 同図に示すように、 大 径側ではテーパ素管 T P 1への軸押し自体ができず、 また、 小径側では テーパ素管 T P 1への軸押しを行うことができるが、 軸押しに伴い、 軸 押し工具 4が上下の金型 1、 2の内部へ進入するにつれて、 軸押し工具 4側のテーパ素管 T P 1の内外面の拘束が不十分となり、 シール漏れが 発生するようになる。
図 3は、 従来のテーパ素管を用いた液圧バルジ加工工程を説明する図 であり、 同 (a ) は加工前の状態を、 (b ) は内圧負荷加前の状態を、 (c ) は加工終了時の状態を示している。
従来のテーパ素管 T P 1を用いた液圧バルジ加工では、 図 3に示すよ うに、 先端部がテーパ状の軸押し工具 6、 7を使用するが、 軸押しを実 施することができないため、 内圧負荷のみで液圧バルジ加工を完了させ るのが一般的である。 なお、 図 3中の T P 2は管端部を成形した後のテ ーパ素管、 T P 3は液圧バルジ加工後の製品 (液圧バルジ加工品) を示 す。
図 3に示す加工工程では、 テーパ素管 T P 2の軸押しを実施できない ので、 前述の通り、 液圧バルジ加工の段階で破断を生じない程度の限ら れた成形範囲でしか加工できない。 したがって、 液圧バルジ加工おいて テーパ素管を用いることの効果が十分に発揮されないのが実情である。 このため、 テーパ素管を用いて液圧バルジ加工を行う場合に、 素管へ の内圧負荷に加えて、 管端からの軸方向への軸押しを可能にする技術開 発が望まれている。
従来のテ一パ素管に液圧バルジ加工を施した場合に、 軸押しが困難で あるとの問題とは別に、 液圧バルジ加工品を他の部材と接合する場合の 問題もある。
図 4は、 長方形断面を持つ液圧バルジ加工品を接合する場合の問題を 説明する図である。 同 (a ) は従来の液圧バルジ加工品の形状を示し、
( b ) は本発明の液圧バルジ加工品の形状を示しており、 それぞれの加 ェ品の軸方向に対して管端部の傾きを示している。 (c ) は、 前記 (a ) および (b ) の液圧バルジ加工品の断面形状を示している。
従来のテーパ素管を素材として液圧バルジ加工した製品 P T 3は、 図 4 ( a ) に示すように、 管端部が斜めに 0だけ傾いている。 このため、 他の部材との溶接、 接合の際に、 精度が確保できないため、 他の部材と の接合等は容易ではない。
さらに、 管端を他部品に差し込んで結合する、 差し込み結合の際に、 同様に精度が確保できないため、 位置決めが困難になる。 そのため、 液 圧バルジ加工後で液圧バルジ加工品の端部を切り落とす等の仕上加工を 必要とする。 発明の開示
本発明は、 上記した従来の問題点に鑑みてなされたものであり、 軸方 向に横断面形状が変化する異形素管を用いた液圧バルジ加工において、 素管への内圧負荷に加えて、 管端から軸方向への軸押しを可能にし、 大 きな拡管率を得ることができる液圧バルジ加工用異形素管、 並びにこれ を用いる液圧バルジ加工装置、 液圧バルジ加工方法、 および液圧バルジ 加工品を提供することを目的としている。
上記した目的を達成するため、本発明の液圧バルジ加工用異形素管は、 液圧バルジ加工に供される異形素管であって、 軸方向の一方から他方に かけて外径が漸次増加または減少する周長を有し、 少なく とも一方端側 に平行部を形成することにしている。
本発明の液圧バルジ加工用異形素管では、 前記平行部の長さは、 液圧 バルジ加工で施される軸押し量と加工時のシールに必要な長さとの合計 長さ以上にするのが望ましい。
さらに、 矩形断面、 または多角形状断面を有する液圧バルジ加工品の 製造に供される異形素管にあっては、 前記平行部におけるコーナ部の曲 率半径 Rを、 管端部の軸方向距離に対応する異形素管の周長差の変化に 対応して変化させるのが望ましい。
そして、 このような構成からなる本発明の異形素管を、 上下の両金型 本体の少なく とも一方の端側内面と、 この端側内面に対応する軸押しェ 具の外面にそれぞれ平行部を設けて、 本発明の液圧バルジ加工装置の金 型内にセッ トすれば、 内圧負荷および軸押しを組み合わせることが可能 になる。
これにより、 液圧バルジ加工において、 従来以上に大きな拡管率を得 ることが可能になり、 また、 他の部品との接合も容易に行なえるように なる。 図面の簡単な説明
図 1は、 従来のストレート素管を用いて製品を得る液圧バルジ加工の 加工工程のうち最終工程を説明する図である。
図 2は、 従来のス トレー ト素管用の軸押し工具を用いて、 従来のテー パ素管の軸押しを行った場合に生じる問題を説明する図である。
図 3は、 従来のテーパ素管を用いた液圧バルジ加工工程を説明する図 であり、 (a ) は加工前の状態を、 (b ) は内圧負荷加前の状態を、 (c ) は加工終了時の状態を示している。
図 4は、 長方形断面を持つ液圧バルジ加工品を接合する場合の問題を 説明する図であり、 (a ) は従来のテーパ素管を用いた液圧バルジ加工 品の形状、 (b ) は本発明の液圧バルジ加工品の形状を示し、 (c ) は、 これらの断面形状を示している。
図 5は、 本発明の液圧バルジ加工用異形素管を構成するテーパ管の形 状例を示す断面図である。
図 6は、 本発明の異形素管の全体構成を例示する図であり、 (a ) は 円断面を有するテーパ部の両端に円断面を有する平行部を形成した例で あり、 (b ) は長方形断面を有するテーパ部の両端に長方形断面を有す る平行部を設けた例を示している。
図 7は、 本発明の他の異形素管の全体構成を例示する図であり、 大径 側の平行部と中央のテーパ部との間に移行部を有した例を示している。 図 8は、 大径側端部に平行部を有する本発明に係る異形素管を製造す る方法について説明する図であり、 (a ) は全体斜視図であり、 (b ) は 展開図であり、 (c ) は (b ) に示した展開図に近い台形形状を示す図 である。
図 9は、 本発明の異形素管の他の実施例とそれらに用いられる軸押し 工具を示す図であり、 (a) は全体斜視図を、 (b) は小径側の拡大図を、
( c ) はそれらに用いられる小径側のシール工具を兼ねた軸押し工具の 拡大図である。
図 1 0は、 液圧バルジ加工品の小径側が矩形断面を有する場合に用い られる本発明の異形素管の端面形状を示す図であり、 (a ) は小径側端 部より軸方向に δ L + L 0だけ離れた位置の断面図、 (c ) は管端部の 断面図、 (b) はそれらの中間位置での断面図である。
図 1 1は、 液圧バルジ加工品の大径側が矩形断面を有する場合に用い る本発明の異形素管の端面形状示す図であり、 (a ) は大径側端部より 軸方向に S L ' + L 0 ' だけ離れた位置の断面図、 (c ) は管端部の断 面図、 (b) はそれらの中間位置での断面図である。
図 1 2は、 液圧バルジ加工品が台形断面を有する場合にその断面形状 を例示する図である。
図 1 3は、 液圧バルジ加工品が L字型の断面を有する場合にその断面 形状を例示する図である。
図 1 4は、 本発明方法の第 1の実施例を説明する図であり、 異形素管 の管端部の平行部を、 液圧バルジ加工に先立って形成する場合を示して いる。 (a ) はテーパ管の金型本体へのセッティング状態を示した断面 図であり、 (b) は液圧バルジ加工前に平行部を形成した状態を示した 断面図であり、 (c ) は液圧バルジ加工終了後の状態を示した断面図で ある。
図 1 5は、 小径側の上金型本体、 シール工具を兼ねた軸押し工具およ び異形素管端部の関係を示す図であり、 (a ) 〜 (c) は前記図 1 4 (a ) 〜 (c ) に相当する図である。
図 1 6は、 大径側の上金型本体、 シール工具を兼ねた軸押し工具およ び異形素管端部の関係を示す図であり、 ( a ) 〜 ( c ) は前記図 1 4 (a ) 〜 (c ) に相当する図である。 図 1 7は、 本発明方法の第 2の実施例を説明する図であり、 異形素管 の管端部の平行部を金型本体へのセッティング前に、 予め形成してある 場合を示している。 (a ) は異形素管の金型本体へのセッティング状態 を示した断面図であり、 (b) は液圧バルジ加工前の状態を示した断面 図であり、 (c) は液圧バルジ加工終了後の状態を示した断面図である。 図 1 8は、 本発明方法の第 3の実施例を説明する図であり、 異形素管 の管端部の平行部を金型本体へのセッティング前に、 予め形成してある 場合の他の例を示している。 (a ) 〜 (c ) は前記図 1 7の場合と同じ である。
図 1 9は、 本発明方法の第 4の実施例を示す説明図であり、 大径側の 平行部の内側のキヤビティが大径端を基準にして軸方向に単調に増加す る構成例を示している。 (a ) 〜 ( c ) は前記図 1 7の場合と同じであ る。
図 2 0は、 本発明の液圧バルジ加工装置の構成部材であるシール工具 を兼ねた軸押し工具の構成例を示す図である。 発明を実施するための最良の形態
図 5は、 本発明の異形素管を構成するテーパ管の形状例を示す断面図 である。 本発明の液圧バルジ加工用異形素管 1 1は、 液圧バルジ加工に 供される異形素管であって、 同 (a ) (b) に示すように、 軸方向の一 方から他方にかけて外径が漸次増加または減少する周長を有し、 少なく とも一方端 (図 5に示した例では小径側および大径側の両端) 側に平行 部 1 1 a、 l i bを形成している。
本発明の液圧バルジ加工用異形素管では、 前記平行部 1 1 a、 l i b の長さは、 液圧バルジ加工での軸押し量とシールに必要な長さの合計長 さ以上にするのが望ましい。
図 6は、 本発明の異形素管の全体構成を例示する図であり、 同 (a ) は円断面を有するテーパ部の両端に円断面を有する平行部を形成した例 であり、 (b) は長方形断面を有するテーパ部の両端に長方形断面を有 する平行部を設けた例を示している。
前記図 5 ( a ) に示す実施例を図 6 ( a ) (b ) を用いて、 さらに詳 細に説明する。 図 6 (a ) は最も基本的な形態を示すもので、 円断面を 有するテーパ部の両端に円断面を有する平行部 1 1 a、 1 1 bを形成し たものである。
また、 図 6 (b) は長方形断面を有するテーパ部の両端に長方形断面 を有する平行部 1 1 a、 1 1 bを設けたものである。 この図 6 (b) に 示す例では、 平行部 1 1 a、 l i bは全長に亘り小径側 1 1 aでは後述 する図 1 0 (a ) に示す断面、 および大径側 1 1 bでは後述する図 1 1 (c) に示す断面を有している。
図 7は、 本発明の他の異形素管の全体構成を例示する図であり、 前記 図 6の構成に比べ、 大径側の平行部と中央のテ一パ部との間に移行部を 有した異形素管の構成例を示している。
次に、 前記図 5 ( b) に示す実施例の詳細を図 7 ( a ) (b) を用い て説明する。 図 7 (a ) は、 円断面を有するテーパ部の両端に円断面を 有する平行部 1 1 a、 1 1 bを形成したものであり、 大径側の平行部 1 1 bと中央のテーパ部との間に移行部 1 1 cを有している。
また、 図 7 (b) は、 長方形断面を有するテーパ部の両端に長方形断 面を有する平行部 1 1 a、 1 1 bを設けたものであ'り、 大径側の平行部 1 1 bと中央のテーパ部との間に前記と同様に移行部 1 1 cを有してい る。
前記図 6 (b) や図 7 (b) では、 両端部に形成した平行部 1 l a、 1 1 bの形状が単に長方形断面を有するものを示したが、平行部 1 1 a、 1 l bの形状は、 後述する図 1 2に示すような台形の断面形状や、 後述 する図 1 3に示すような L字型の断面形状、 または、 図示していない多 角形の断面形状などであってもよい。
この場合に、 液圧バルジ加工後の最終端面形状が製品の端面形状と一 致するように設計していれば、 材料歩留りが向上することになり、 好適 である。
また、 図 6 (b) や図 7 (b) においては中央のテーパ部も長方形断 面としたものを示しているが、 中央部は特に長方形断面である理由はな く、 図 6 (a ) や図 7 (a ) のような円断面でもあってもよく、 液圧バ ルジ加工の金型に挿入できるように曲げ加工や上下左右からの押し潰し 加工を行ったものでもよい。
図 8は、 大径側端部に平行部を有する本発明に係る異形素管を製造す る方法について説明する図であり、 同 (a) は全体斜視図であり、 (b) は展開図、 (c ) は (b ) に示した展開図に近い台形形状を示す図であ る。
図 8 (a ) に示すような円断面を有するテーパ部の大径側端部に平行 部 1 1 bを有する本発明に係る異形素管 1 1の製造方法について説明す ると、 次のようになる。
図 8 (a ) に示す異形素管 1 1は、 図 8 (b) に示した形状の板を単 純曲げし、 a _ bと a ― b 、 c— dと c ― d 、 b— eと c— e、 b ' 一 eと c ' _ eの端部を接合すれば、 図 8 (a ) に示すように、 大 径側端部に平行部 1 1 bを有する異形素管 1 1を得ることができる。 一方、 図 8 (c ) には、 同 (b) を破線で併記するとともに、 これに 近い台形形状を実線で示している。
実線と破線との比較で明らかなように、 図 8 (c ) に実線で示す台形 を単純曲げした場合には、 b— c— eの領域と b ' - c ' - e ' の領域 に肉余りを生じてしまう。 すなわち、 台形形状を素材とした板卷き工程 では、 本発明に係る異形素管 1 1のように、 端部に平行部 l i bを有す る異形素管の製造は困難である。 最も単純な方法は、 図 8を用いて説明したように、 本発明に係る異形 素管 1 1の展開形状を有する板を単純曲げして接合する方法であるが、 次に、 これ以外の方法で、 前述の図 6、 図 7に示す形状の本発明に係る 異形素管 1 1を製造する方法について説明する。
前記図 6 ( a ) に示す形状の場合は、 例えば、 「単なるテーパ管」 を 素材として小径側は内径拡げ加工、 大径側は外径絞り加工を行うことに よって得ることができる。 また、 図 6 ( b ) に示す形状の場合は、 上記 に加えて中央の胴長部に押し潰し加工を行うことによって得ることがで きる。
本発明の説明において、 「単なるテーパ管」 とは、 本発明の異形素管 の素材であって、 未だ一方端側または両端に平行部を形成していないテ 一パ管を意味する。
前記図 7 ( a ) に示す形状の場合は、 例えば、 「単なるテーパ管」 を 素材として小径側、 大径側共に内径拡げ加工を行えばよい。 また、 図 7 ( b ) に示す形状の場合は、 上記に加えて中央の胴長部に押し潰し加工 を行うことによって得ることができる。
図 9は、 本発明の異形素管の他の実施例とそれらに用いられる軸押し 工具を示す図であり、 同 (a ) は全体斜視図を、 (b ) は小径側の拡大 図を、 ( c ) はそれらに用いられる小径側のシール工具を兼ねた軸押し 工具の拡大図である。 図 9に示す実施例では、 同 (a ) に示した態様は 長方形断面のテーパ部の両端に長方形断面の平行部 1 1 a、 1 1 bを形 成している。
さらに、 図 9に示した実施例では、 単なるテーパ管に小径側の平行部 1 1 aでは δ L + L 0に対応する部分に、 大径側の平行部 1 1 bでは δ L ' + L 0 ' に対応する部分に、 製品と略同一の幅、 高さの寸法を有 する矩形断面を形成している。
また、 コーナ部の曲率半径 Rを後述のように決定することで、 液圧バ ルジ加工で金型本体 1 2、 1 3とシール工具を兼ねた軸押し工具 14、 1 5により、 液圧バルジ加工時の軸押しで座屈などを発生させることな く、 極めてスムーズな材料の押し込みが可能になる。
図 10は、 液圧バルジ加工品の小径側が矩形断面を有する場合に用い られる本発明の異形素管の端面形状を示す図である。 同 (a ) は小径側 端部より軸方向に δ L+ L 0だけ離れた位置の断面を、 (c) は管端部 の断面を、 (b) はそれらの中間位置での断面を示している。
すなわち、 図 10は、 本発明の異形素管の小径側の平行部 1 1 aの各 断面における形状を説明する図であり、 .(a ) から (c) の断面の幅 W 0と高さ HOはほぼ一定である。 また、 コーナ部の曲率半径 Rを予成形 により段階的に変化させている。
図 10 (a) 〜 (c ) に示すように、 小径側端部でのコーナ部の曲率 半径を R 0、 小径側端部より軸方向に δ L + L 0だけ離れた位置のコー ナ部の曲率半径を R し 小径側端部より軸方向に Xだけ離れた位置のコ ーナ部の曲率半径を R ( X ) とすると、 これらは下記 (1) 式の関係に なる。
R 0 ≥ R (x) ≥ R 1 · · · (1) 図 10に示す実施例では、 各断面における 4つのコーナ部の曲率半径 を同一にしたが、 これらを同一にする必要はなく、 コーナ部ごと異なつ た曲率半径としてもよい。
さらに詳細には、 単なるテーパ管の両端部を基準周長とした、 管端部 からの位置 Xにおける周長差 δ d (x) は、 下記 (2) により得られる。 ただし、 DOは小径側外径、 DO ' は大径側外径、 および LTはテーパ 管の長さを示している。
8 d (χ) =π · (ϋθ' -DO) - X/LT · · · (2) 予成形で端部の断面を幅 W0、 高さ HOの矩形に形成する際、 上記周 長差 S d (x) に対応して、 図 1 0に示すように、 コーナ部の曲率半径 R (x) の寸法を軸方向位置で変化させることによって、 適正な予成形 の形状を決定することができる。
図 1 1は、 液圧バルジ加工品の大径側が矩形断面を有する場合に用い られる本発明の異形素管の端面形状示す図である。 同 (a) は大径側端 部より軸方向に S L' + L 0 ' だけ離れた位置の断面図であり、 (c) は管端部の断面図であり、 (b) はそれらの中間位置での断面図である。 すなわち、 図 1 1は、 本発明の異形素管の大径側の平行部 1 1 bの各 断面における形状を説明する図であり、 (a) から (c) の断面の幅 W0 ' と高さ HO ' はほぼ一定である。 また、 コーナ部の曲率半径 R' を予成形により段階的に変化させている。
図 1 1 (a) 〜 (c) に示すように、 大径側端部でのコーナ部の曲率 半径を R 0'、 大径側端部より軸方向に δ L' + L 0 ' だけ離れた位置 のコーナ部の曲率半径を R 1 '、 大径側端部より軸方向に X だけ離れた 位置のコーナ部の曲率半径を R' ( X ) とすると、 これらは下記 (1 ') 式の関係になる。
R 0' ≤ R' (x) ≤ R 1 ' · · · (1,) また、 単なるテーパ管の両端部を基準周長とした、 端部からの位置 X における周長差 S d ( X ) は、 下記 (2 ') により得られる。 ただし、 DOは小径側外径、 D O' は大径側外径、 および L Tはテーパ管の長さ を示している。
δ d (x) = π ■ (D 0 ' -DO) - X/LT · · · (2 ') 端部の断面を幅 WO'、 高さ HO ' の矩形に形成する際、 上記周長差 δ d (x) に対応して、 図 1 1に示すように、 コーナ部の曲率半径
R' (x) の寸法を軸方向位置で変化させることによって、 適正な形状 の決定が可能である。
上述の通り、 液圧バルジ加工品が矩形断面を有する場合について説明 したが、 本発明の異形素管はこれに限定されず、 矩形の組み合わせ形状 や多角形形状でも採用でき、 液圧バルジ加工時の極めて安定した軸押し が可能になる。
図 1 2は、 液圧バルジ加工品が台形断面を有する場合にその断面形状 を例示する図である。 図 1 3は、 液圧バルジ加工品が L字型断面を有す る場合にその断面形状を例示する図である。 いずれも、 大径側で予成形 された断面形状の例であり、 (a ) は大径側端部より軸方向に δ L' 4- L 0 ' だけ離れた位置の断面図であり、 (c) は管端部の断面図であり、 (b) はそれらの中間位置での断面図である。
次に、 本発明の液圧バルジ加工装置、 およびそれを用いた液圧バルジ 加工方法を、 図面に基づいて説明する。
図 1 4は、 本発明方法の第 1の実施例を説明する図であり、 異形素管 の管端部の平行部を、 液圧バルジ加工に先立って形成する場合を示して いる。 同 (a ) はテーパ管の金型本体へのセッティング状態を示した断 面図であり、 (b) は液圧バルジ加工前に平行部を形成した状態を示し た断面図であり、 (c ) は液圧バルジ加工終了後の状態を示した断面図 である。
図 1 5は、 小径側の上金型本体、 シール工具を兼ねた軸押し工具およ び異形素管端部の関係を示す図であり、 同 (a ) 〜 (c ) は前記図 1 4 (a ) 〜 (c ) に相当する図である。
図 1 6は、 大径側の上金型本体、 シール工具を兼ねた軸押し工具およ び異形素管端部の関係を示す図であり、 同 (a) 〜 (c) は前記図 1 4 (a ) 〜 (c ) に相当する図である。
図 1 7は、 本発明方法の第 2の実施例を説明する図であり、 異形素管 の管端部の平行部を金型本体へのセッティング前に、 予め形成してある 場合を示している。 同 (a ) は異形素管の金型本体へのセッティング状 態を示した断面図であり、 (b ) は液圧バルジ加工前の状態を示した断 面図であり、 (c ) は液圧バルジ加工終了後の状態を示した断面図であ る。
図 1 8は、 本発明方法の第 3の実施例を説明する図であり、 異形素管 の管端部の平行部を金型本体へのセッティング前に、 予め形成してある 場合の他の例を示している。 同 (a) は異形素管の金型本体へのセッテ イング状態を示した断面図であり、 (b ) は液圧バルジ加工前の状態を 示した断面図であり、 (c ) は液圧バルジ加工終了後の状態を示した断 面図である。
本発明の液圧バルジ加工装置は、 例えば、 図 1 4、 図 1 7および図 1 8に示すようなキヤビティを形成した上下の金型本体 1 2、 1 3と、 両金型本体 1 2、 1 3のそれぞれの端部に先端部を挿入されるシールェ 具を兼ねた軸押し工具 1 4、 1 5とを備えている。 そして、 両金型本体 1 2、 1 3と軸押し工具 1 4、 1 5は、 両者によって本発明の異形素管 1 1の両端部を挟持し、 保持するように構成されている。
さらに、 前記軸押し工具のいずれかに加工液の注入孔が設けられ、 前 記金型本体の少なくとも一方の端側 (図 1 4、 図 1 7および図 1 8に示 した例では小径側および大径側の両端側) 内面と、 この端面内面に対応 する軸押し工具の外面に、 それぞれ平行部 1 2 a、 1 2 b, 1 3 a、 1 3 b、 1 4 a、 1 5 aが設けられる。
この軸押し工具 1 4、 1 5の外面の平行部 1 4 a、 1 5 aは、 軸押し 時に内面から素管を拘束し、 スムーズな変形を可能ならしめる作用を発 揮する。
この液圧バルジ加工装置において、 小径部側の軸押し量を δ L、 大径 部側の軸押し量を S L '、 小径部側のシールに必要な長さを L 0、 大径 部側のシールに必要な長さを L 0 ' とした場合に、 両金型本体 1 2、 1 3の少なくとも一方の端側 (図 1 4、 図 1 7および図 1 8図に示した 例では小径側および大径側の両端側) 内面に設けられた平行部 1 2 a、 I 2 b、 1 3 a、 1 3 bの長さは、 小径部側に設けられている場合に S L + L O以上にし、 大径部側に設けられている場合には δ L' + L 0 ' 以上にするのが望ましい。
同様に、 この金型本体 1 2、 1 3に設けられた平行部 1 2 a、 1 2 b、 1 3 a、 1 3 bに対応する軸押し工具 1 4、 1 5の平行部 1 4 a、 1 5 aの長さは、 小径部側に設けられる場合には δ L+ L 0以上にし、 大径 部側に設けられる場合には L 0' 以上にするのが望ましい。
ところで、 本発明の液圧バルジ加工装置では、 小径側 (大径側) のシ ール工具を兼ねた軸押し工具 14 (1 5) の先端部は、 異形素皆 1 1の 素材となる単なるテーパ管 ΡΤまたは異形素管 1 1の小径側端部 (大径 側端部) に挿入可能でなければならない。 これと同時に、 平行部 1 4 a
(1 5 a) は、 軸押し完了時における平行部 1 4 a ( 1 5 a) の最先端 部分と異形素管 1 1の内面との間に隙間が生じないことが必要である。 このため、 例えば、 図 1 4に示すように、 異形素管 1 1の素材となる 単なるテーパ管 P Tを上下の金型本体 1 2、 1 3にセットした後、 管端 部に形成する平行部 1 1 a、 1 1 bを液圧バルジ加工を実施するのに先 立って、 上下の金型本体 1 2、 1 3内で形成する場合には、 シール工具 を兼ねた軸押し工具は、 下記 A、 Bの条件を満足する必要がある。
A. 小径側のシール工具を兼ねた軸押し工具 14 (図 1 5参照)
先端の局部的凹部を無視した包絡線の周長 S D 0は、 下記 (3) 式を 满足する。
SD 0 ≤ (DO- 2 t/c o s Θ ) X π · · ' (3) 伹し、 DO :小径部の外径
t :異形素管 1 1の肉厚
0 = t a n— 1 {(DO' —D O) / (2 - LT)}
LT :テーパ管 P Tの長さ
DO' :大径部の外径
B. 大径側のシール工具を兼ねた軸押し工具 1 5 (図 1 6参照) 先端の局部的凹部を無視した包絡線の周長 SD 0 ' は、 下記 (4) 式 を満足する。
SDO' ≤ (DO' - 2 t/c o s 0) Χ π · · · (4) 一方、 前記図 1 7に示したように、 異形素管 1 1の管端部に形成する 平行部 l l a、 l i bを、 上下の金型本体 1 2、 1 3にセットする前に、 予め形成してある場合には、 シール工具を兼ねた軸押し工具は、 下記 C、 Dの条件を満足する。
C. 小径側のシール工具を兼ねた軸押し工具 14 (図 1 7参照)
先端部の周長 S DOは、 下記 (5) 式を満足する。
SD0 ≤ 平行部 14 aの周長 SD ■ · · (5)
D. 大径側のシール工具を兼ねた軸押し工具 1 5 (図 1 7参照)
先端部の周長 SD0' は、 下記 (6) 式を満足する。
SD0' ≤ 平行部 1 5 aの周長 SD' · · · (6) 本発明の液圧バルジ加工装置を用いて、 液圧バルジ加工品 1 7を成形 する場合には、 例えば、 本発明の異形素管 1 1の素材である単なるテー パ管 PTを、 前記図 1 4 (a) に示すように、 液圧バルジ加工装置の一 対の金型本体 1 2、 1 3内にセットする。
次に、 液圧バルジ加工に先立ち、 シール工具を兼ねた軸押し工具 14、 1 5を軸方向に移動させ、 金型本体 1 2、 1 3と軸押し工具 14、 1 5 に挟持されたテーパ管 PTの管端、 または両端に、 図 14 (b) に示す ように、 平行部 1 1 a、 l i bを形成し、 本発明に係る異形素管 1 1に 成形する。
このとき、 軸押し工具 14、 1 5による異形素管 1 1の軸押しのタイ ミングを同じにする必要はなく、 例えば、 軸押し工具 1 5をある程度押 し付けた段階で軸押し工具 1 4の押し付けを開始してもよい。 したがつ て、 異形素管 1 1が金型本体 1 2、 1 3内で安定する軸押しタイミング を選定すればい。 この場合に、 上述の寸法を基準にして金型本体 1 2、 1 3とシールェ 具を兼ねた軸押し工具 14、 1 5の寸法設計を行えば、 軸押し工具 14、 1 5をテーパ管 T Pにスムーズに挿入することができる。
前記図 14 (b) の状態では、 図 1 5 (b) および図 1 6 (b) に示 すように、 テーパ管 PTの両管端には、 小径側に L 0以上、 望ましくは δ L + L 0以上、 大径側に L 0 ' 以上の長さの平行部 1 1 a、 1 1 が 形成され、 本発明の異形素管 1 1が得られている。 その後、 その異形素 管 1 1には、加工液のシールが完全に行われる状態で内圧が負荷される。 次いで、 加工液の内圧を上昇させつつ、 さらに軸押し工具 14、 1 5 を軸方向に移動せしめ、 液圧バルジ加工を施し、 前記図 1 4 (c ) に示 すように、 本発明方法による液圧バルジ加工品 1 7を形成する。
すなわち、 本発明の異形素管 1 1を本発明の液圧バルジ加工装置にセ ッ トして行う液圧バルジ加工では、 軸押しが可能になる結果、 本発明方 法による液圧バルジ加工品 1 7にあっては、 従来以上に大きな拡管率を 得ることができる。
また、 液圧バルジ加工品 1 7の端面は、 前記図 4 (b) に示すように、 軸心に対して垂直であるので、 他の部品、 部材との接合溶接も容易に行 なえるようになり、 差し込み結合の位置決めが可能になる。
図 1. 9は、 本発明方法の第 4の実施例を示す説明図であり、 大径側の 平行部の内側のキヤビティが大径端を基準にして軸方向に単調に増加す る構成例を示している。 同 (a) はテーパ管の金型本体へのセッティン グ状態を示した断面図であり、 (b) は液圧バルジ加工前に平行部を形 成した状態を示した断面図であり、 (c ) は液圧バルジ加工終了後の状 態を示した断面図である。
図 1 9に示す実施例は、 前記図 1 4、 図 1 7および図 1 8に示す実施 例と別の形態である。 すなわち、 両金型本体 1 2、 1 3の両端部に平行 部 1 2 a、 1 2 b、 1 3 a、 1 3 bを有するのは同様であるが、 両金型 本体 1 2、 1 3の大径側の平行部 1 2 b、 1 3 bの内側のキヤビティ力 前記図 1 4等に示した例のように局部的に狭めることなく、 前記平行部 1 2 b, 1 3 bの内側のキヤビティが大径端を基準にして、 軸方向に単 調に減少している。
図 1 9に示す構成例では、 軸押しの抵抗が小さく、 メタルフローに対 して有利であるため、 成形可能な範囲 (拡管限界) を拡大させることが できる。 したがって、 本発明の液圧バルジ加工装置にあっては、 金型本 体 1 2、 1 3のキヤビティ形状を図 1 9に示す形状に設計することが望 ましい。
一方、 自動車部品においては、 製品の端部の断面形状が矩形に近いも のや矩形の組み合わせ、 または多角形等の形状のものなど、 複雑な形状 が多い。
前述の通り、 前記図 1 8は、 図 9 ( a ) に示す本発明の異形素管 1 1 を用いた場合の実施例を示す図であり、 それを用いた加工に際し、 前記 図 9 ( a ) に示す異形素管 1 1を金型本体 1 2、 1 3内にセットする。 図 9 (b) に本発明の異形素管 1 1の小径側の拡大図を示している。 一 方、 その小径側平行部 1 1 aの断面形状は、 前記図 1 0に示すとおりで ある。
このような断面形状の異形素管 1 1に対し、 本発明の一例を示すシー ル工具を兼ねた軸押し工具 1 4、 1 5を用いて成形を行う。 すなわち、 図 9 ( c) は小径側のシール工具を兼ねた軸押し工具 1 4を示している が、 幅 W0 - 2 t、 高さ H O— 2 t、 コーナ部の曲率半径は R 1の平行 部 1 4 aを有している。
前記図 1 8 (a ) の状態から端部に軸押し工具 1 4、 1 5を押し込み、 図 1 8 ( b )の段階で異形素管 1 1の端部の成形が終了し、前記図 9 (b) に示す異形素管 1 1を得ることができると同時に、 内圧が負荷された加 ェ液のシールが完全に行われた状態になっている。 その後、 加工液の内圧を上昇させつつ、 さらに軸押し工具 1 4、 1 5 を軸方向に移動せしめ、 液圧バルジ加工を施した本発明方法による液圧 バルジ加工品 1 7を得ることができる。
なお、 液圧バルジ加工に先立って行う管端の平行部 1 1 a、 1 1 bの 成形を、 予成形やそれ以前の段階で行ってもよい。 絞り加工、 穴拡げ加 ェ、 スウェージング加工、 スピンニング加工など既存の加工法やその組 み合わせによって実施できる。
図 2 0は、 本発明の液圧バルジ加工装置の構成部材であるシール工具 を兼ねた軸押し工具の構成例を示す図である。 同 (a ) は異形素管 1 1 の端面と接する端面 1 4 b、 1 5 bでシールする場合の構成例、 (b) は同じく端面 1 4 b、 丄 に突起丄 。、 1 5 cを付与した構成例、 ( c ) は平行部 1 4 a、 1 5 aの端面 1 4 b、 1 5 bとの境界部に段差 1 4 d、 1 5 dを付与した構成例、 (d ) は平行部 1 4 a、 1 5 &に〇 リング 1 8を付与した構成例をそれぞれ示している。
図 20 (a ) 〜 (d) に示すいずれの構成例も、 前述の (3) 〜 (6) 式に示す平行部 1 4 a、 1 5 aと先端周長との関係を満足するものであ る。
上述した実施例は、 あくまでも本発明の 1つの具体例を示すものであ り、 金型本体 1 2、 1 3のキヤビティの形状も比較的簡単な形状のもの を示しているが、 当然、 通常の自動事部品に代表される 3次元の複雑な 形状でも良い。
また、 上述した実施例では、 小径側と大径側の両方から軸押しするも のを示しているが、 本発明ではどちらか片側に適用し、 他方は従来から 行われている、 例えば、 前記図 ].に示すような軸押しが無い方式を採用 してもよい。 軸押しの効果は、 製品形状によって変化するため、 その場 合に応じて本発明の適用範囲を決定すればよい。
さらに、 上述した実施例では、 主として異形素管 1 1の素材として単 純なテーパ管形状の場合を記述したが、 単純なテーパ管形状を組み合わ せて溶接したものや、 テーパ管と通常のストレート管を組み合わせた場 合にも、 両端部それぞれが単純なテーパ管の一部と近似できるため、 本 発明の異形素管 1 1の素材として適用できる。 産業上の利用の可能性
本発明の液圧バルジ加工用異形素管は、 軸方向の一方から他方にかけ て外径が漸次増加または減少する周長を有し、 少なく とも一方端側に平 行部を形成する。 この異形素管を用いた加工装置、 加工方法では、 上下 の両金型本体の少なくとも一方の端側内面と、 この端側内面に対応する 軸押し工具の外面にそれぞれ平行部を設けて、 金型内にセッ トすれば、 内圧負荷および軸方向への軸押しを組み合わせた加工が可能になる。 こ れにより、 液圧バルジ加工が施された液圧バルジ加工品では、 従来以上 に大きな拡管率を得ることが可能になり、 また、 他の部品との接合も容 易に行なえるようになり、 自動車用として、 さらに広く産業機械用とし て適用することができる。

Claims

請 求 の 範 囲
1 . 液圧バルジ加工に供される異形素管であって、 軸方向の一方から他 方にかけて外径が漸次増加または減少する周長を有し、 少なくとも一方 端側に平行部を形成したことを特徴とする液圧バルジ加工用異形素管。
2 . 前記平行部の長さは、 液圧バルジ加工で施される軸押し量と液圧バ ルジ加工時のシールに必要な長さとの合計長さ以上であることを特徴と する請求項 1記載の液圧バルジ加工用異形素管。
3 . 矩形断面、 または多角形状断面を有する液圧バルジ加工品の製造に 供される異形素管であって、 前記平行部におけるコーナ部の曲率半径 R を、 管端部の軸方向距離に対応する異形素管の周長差の変化に対応して 変化させることを特徴とする請求項 1または 2に記載の液圧バルジ加工 用異形素管。
4 . 一対の金型本体と、 請求項 1〜3のいずれかに記載の異形素管を前 記金型本体とで挟んで保持すべく、 前記金型本体の両端に先端部が挿入 されるシール工具を兼ねた軸押し工具とを備え、
前記軸押し工具のいずれかに加工液の注入孔が設けられ、 前記金型本 体の少なく とも一方の端側内面と、 この端側内面に対応する前記軸押し 工具の外面とに、 それぞれ平行部が設けられていることを特徴とする液 圧バルジ加工装置。
5 . 請求項 4に記載の液圧バルジ加工装置において、 小径部側の軸押し 量を S L、 大径部側の軸押し量を δ L '、 小径部側のシールに必要な長 さを L O、 大径部側のシールに必要な長さを L 0 ' とした場合に、 前記金型本体の小径部側に設けられる平行部の長さは δ L + L 0以上 であり、 前記金型本体の大径部側に設けられる平行部の長さは δ L ' + L 0 ' 以上であり、 かつ、 軸押し工具の小径部側に設けられる平行部の 長さは δ L + L 0以上であり、 軸押し工具の大径部側に設けられる平行 部の長さは L 0 ' 以上であることを特徴とする液圧バルジ加工装置。
6 . 請求項 4または 5に記載の液圧バルジ加工装置を用い、 請求項 1〜 3のいずれかに記載の異形素管を製造したのち、 前記異形素管に内圧負 荷と押し込みとを組み合わせた液圧バルジ加工を施したことを特徴とす る液圧バルジ加工方法。
7 . 請求項 1〜3のいずれかに記載の異形素管を請求項 4または 5に記 載の液圧バルジ加工装置の金型内にセッ トし、 前記異形素管に内圧負荷 と押し込みとを組み合わせた液圧バルジ加工を施したことを特徴とする バルジ加工品。
PCT/JP2003/014284 2002-11-08 2003-11-10 液圧バルジ加工用異形素管、並びにこれを用いる液圧バルジ加工装置、液圧バルジ加工方法、および液圧バルジ加工品 WO2004041458A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004549651A JPWO2004041458A1 (ja) 2002-11-08 2003-11-10 液圧バルジ加工用異形素管、並びにこれを用いる液圧バルジ加工装置、液圧バルジ加工方法、および液圧バルジ加工品
AU2003277659A AU2003277659A1 (en) 2002-11-08 2003-11-10 Deformed element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulic-bulged product
EP03810679A EP1586392A4 (en) 2002-11-08 2003-11-10 SINGLE DEFORMATION PIPE FOR HYDRAULIC SWITCHING, HYDRAULIC SWELLING DEVICE USING ELEMENT PIPE, HYDRAULIC SWELLING METHOD USING ELEMENT PIPE, AND HYDRAULICALLY CONTROLLED SWELL ARTICLE
US11/123,196 US20050257587A1 (en) 2002-11-08 2005-05-06 Profile element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulically bulged product
US11/806,531 US20070234771A1 (en) 2002-11-08 2007-06-01 Method of Hydraulic bulging and shaft pressing profile element pipe to make hydraulically bulged product
US12/003,389 US7827839B2 (en) 2002-11-08 2007-12-21 Profile element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulically bulged product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-325801 2002-11-08
JP2002325801 2002-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/123,196 Continuation US20050257587A1 (en) 2002-11-08 2005-05-06 Profile element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulically bulged product

Publications (1)

Publication Number Publication Date
WO2004041458A1 true WO2004041458A1 (ja) 2004-05-21

Family

ID=32310483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014284 WO2004041458A1 (ja) 2002-11-08 2003-11-10 液圧バルジ加工用異形素管、並びにこれを用いる液圧バルジ加工装置、液圧バルジ加工方法、および液圧バルジ加工品

Country Status (8)

Country Link
US (2) US20050257587A1 (ja)
EP (1) EP1586392A4 (ja)
JP (1) JPWO2004041458A1 (ja)
KR (1) KR100634917B1 (ja)
CN (1) CN100400189C (ja)
AU (1) AU2003277659A1 (ja)
TW (1) TWI267410B (ja)
WO (1) WO2004041458A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018846A1 (de) * 2003-08-13 2005-03-03 Thyssenkrupp Steel Ag Verfahren zum innenhochdruckumformen von konischen rohren aus metall
CN102527875A (zh) * 2011-08-22 2012-07-04 张志平 带有轴头的整体汽车桥壳的加工方法
CN109570318A (zh) * 2018-10-23 2019-04-05 上海航天设备制造总厂有限公司 一种燃气涡轮排气道支承壁用钣金件流体成形方法
CN110773954A (zh) * 2019-10-16 2020-02-11 中北大学 一种变壁厚双鼓形回转体筒形构件成形的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7484298B2 (en) * 2006-02-21 2009-02-03 Gm Global Technology Operations, Inc. Method for forming a complex-shaped tubular structure
DE102007043316B4 (de) * 2007-09-12 2009-08-20 Schulze, Bernd, Dr.-Ing. Verfahren und Vorrichtung zur Herstellung eines Ausbuchtungen aufweisenden Werkstückes mittels eines Druckmediums
JP6251178B2 (ja) * 2011-11-11 2017-12-20 アディソンマッキー インコーポレイテッド チューブ先端部の形状を変更する装置および方法
TWI472386B (zh) * 2012-03-15 2015-02-11 Metal Ind Res & Dev Ct 製造金屬殼件的模具及方法
CN105081046B (zh) * 2014-05-05 2017-11-28 上海宝钢高新技术零部件有限公司 液压成形柔性密封装置
CN105772566A (zh) * 2016-05-05 2016-07-20 广东思豪液压机械有限公司 三通铜管一体成型模具
CN108160797B (zh) * 2018-03-01 2024-03-29 凌云吉恩斯科技有限公司 一种敞口管件气胀热成型模具及工艺
CN112469597A (zh) * 2018-08-01 2021-03-09 住友重机械工业株式会社 车辆用加固部件及其制造方法
CN110270620B (zh) * 2019-06-26 2021-02-19 青岛昌辉管业有限公司 一种管件内高压成形方法
CN112620468A (zh) * 2020-11-17 2021-04-09 浙江青山钢管有限公司 无缝锥管生产装置
CN114247802B (zh) * 2021-12-14 2024-02-02 上海航天精密机械研究所 一种球形多通件多工艺联合整体成形方法及球形多通件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147567A (en) * 1974-10-23 1976-04-23 Honda Motor Co Ltd Sozaikantanbuno ekiatsuseikeiho
JPS5273168A (en) * 1975-12-15 1977-06-18 Shinwa Baruji Kk Method of producing couplings
JPS6137327A (ja) * 1984-07-30 1986-02-22 Hitachi Ltd テ−パ管の製作方法
JPH0939864A (ja) * 1995-07-28 1997-02-10 Honda Motor Co Ltd 自動二輪車等の燃料タンクの製造方法
JP2000045767A (ja) * 1998-07-27 2000-02-15 Calsonic Corp バルジ成形型とバルジ成形方法
EP1022073A1 (en) * 1999-01-14 2000-07-26 Nissan Motor Company, Limited Nozzle for hydrostatic forming and hydrostatic forming device using such a nozzle
JP2001321842A (ja) * 2000-05-10 2001-11-20 Mitsubishi Motors Corp ハイドロフォーム成形品、同成形品のハイドロフォーム成形方法およびハイドロフォーム成形品を用いた車体部材
JP2002035855A (ja) * 2000-07-18 2002-02-05 Nissan Motor Co Ltd ハイドロフォーム法による張出部の成形方法
JP2002045924A (ja) * 2000-08-08 2002-02-12 Sumitomo Metal Ind Ltd ハイドロフォーム成形品、同成形品のハイドロフォーム成形方法およびハイドロフォーム成形品を用いた車体部材
JP2003001336A (ja) * 2001-06-25 2003-01-07 Aisin Takaoka Ltd ハイドロフォーム法による偏芯管の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486703A (en) * 1966-10-03 1969-12-30 Whirlpool Co Food waste grinder hopper
US3572073A (en) * 1969-03-10 1971-03-23 Walter B Dean Method of shaping a thin-walled body
US3958437A (en) * 1975-01-24 1976-05-25 Seew Barorian Process for manufacturing metal poles
US5203190A (en) * 1990-05-30 1993-04-20 Sivco, Inc. Method and apparatus for making a hydrocyclone separation chamber
US5333775A (en) * 1993-04-16 1994-08-02 General Motors Corporation Hydroforming of compound tubes
US5419791A (en) * 1993-07-21 1995-05-30 Folmer; Carroll W. Method of heat assisted sheet metal forming in 360 degree shapes
US5445001A (en) * 1994-08-10 1995-08-29 General Motors Corporation Method and apparatus for forming and cutting tubing
GB2334472B (en) * 1998-02-18 1999-12-29 Nippon Oxygen Co Ltd Metal vessel and fabrication method for the same
US6216509B1 (en) * 1998-08-25 2001-04-17 R.J. Tower Corporation Hydroformed tubular member and method of hydroforming tubular members
US6519855B1 (en) * 1999-08-31 2003-02-18 Dana Corporation Method of manufacturing a vehicle body and frame assembly
US20020162224A1 (en) * 2001-05-01 2002-11-07 Gianfranco Gabbianelli Hydroformed vehicle frame assembly and method
DE10337383B4 (de) * 2003-08-13 2005-12-08 Thyssenkrupp Drauz Gmbh Verfahren zum Innenhochdruckumformen von konischen Rohren aus Metall
US6941786B1 (en) * 2004-03-25 2005-09-13 Ford Global Technologies, Llc Component specific tube blanks for hydroforming body structure components

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147567A (en) * 1974-10-23 1976-04-23 Honda Motor Co Ltd Sozaikantanbuno ekiatsuseikeiho
JPS5273168A (en) * 1975-12-15 1977-06-18 Shinwa Baruji Kk Method of producing couplings
JPS6137327A (ja) * 1984-07-30 1986-02-22 Hitachi Ltd テ−パ管の製作方法
JPH0939864A (ja) * 1995-07-28 1997-02-10 Honda Motor Co Ltd 自動二輪車等の燃料タンクの製造方法
JP2000045767A (ja) * 1998-07-27 2000-02-15 Calsonic Corp バルジ成形型とバルジ成形方法
EP1022073A1 (en) * 1999-01-14 2000-07-26 Nissan Motor Company, Limited Nozzle for hydrostatic forming and hydrostatic forming device using such a nozzle
JP2001321842A (ja) * 2000-05-10 2001-11-20 Mitsubishi Motors Corp ハイドロフォーム成形品、同成形品のハイドロフォーム成形方法およびハイドロフォーム成形品を用いた車体部材
JP2002035855A (ja) * 2000-07-18 2002-02-05 Nissan Motor Co Ltd ハイドロフォーム法による張出部の成形方法
JP2002045924A (ja) * 2000-08-08 2002-02-12 Sumitomo Metal Ind Ltd ハイドロフォーム成形品、同成形品のハイドロフォーム成形方法およびハイドロフォーム成形品を用いた車体部材
JP2003001336A (ja) * 2001-06-25 2003-01-07 Aisin Takaoka Ltd ハイドロフォーム法による偏芯管の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1586392A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018846A1 (de) * 2003-08-13 2005-03-03 Thyssenkrupp Steel Ag Verfahren zum innenhochdruckumformen von konischen rohren aus metall
US7797806B2 (en) 2003-08-13 2010-09-21 Thyssenkrupp Steel Europe Ag Internal high-pressure shaping method for shaping conical tubes made of metal
CN102527875A (zh) * 2011-08-22 2012-07-04 张志平 带有轴头的整体汽车桥壳的加工方法
CN109570318A (zh) * 2018-10-23 2019-04-05 上海航天设备制造总厂有限公司 一种燃气涡轮排气道支承壁用钣金件流体成形方法
CN110773954A (zh) * 2019-10-16 2020-02-11 中北大学 一种变壁厚双鼓形回转体筒形构件成形的方法
CN110773954B (zh) * 2019-10-16 2021-10-01 中北大学 一种变壁厚双鼓形回转体筒形构件成形的方法

Also Published As

Publication number Publication date
EP1586392A1 (en) 2005-10-19
AU2003277659A8 (en) 2004-06-07
TWI267410B (en) 2006-12-01
AU2003277659A1 (en) 2004-06-07
TW200417427A (en) 2004-09-16
JPWO2004041458A1 (ja) 2006-03-02
CN100400189C (zh) 2008-07-09
KR20050071669A (ko) 2005-07-07
EP1586392A4 (en) 2009-08-26
CN1711142A (zh) 2005-12-21
US20070234771A1 (en) 2007-10-11
US20050257587A1 (en) 2005-11-24
KR100634917B1 (ko) 2006-10-18

Similar Documents

Publication Publication Date Title
US20070234771A1 (en) Method of Hydraulic bulging and shaft pressing profile element pipe to make hydraulically bulged product
JP5435190B2 (ja) 管体の加工方法及びシリンダ装置の製造方法
US4567743A (en) Method of forming box-section frame members
JP5136998B2 (ja) 液圧バルジ方法および液圧バルジ製品
US7051768B2 (en) Hydroform process and hydroform product
US7827839B2 (en) Profile element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulically bulged product
US8176763B2 (en) Steering rack
JP5352965B2 (ja) ラックの製造方法
WO2008130056A1 (ja) ハイドロフォーム加工品
JP4631130B2 (ja) 異形管状製品およびその製造方法
JP4873402B2 (ja) 液圧バルジ加工用異形素管、並びにこれを用いる液圧バルジ加工装置、液圧バルジ加工方法、および液圧バルジ加工品
JP4060723B2 (ja) 液圧バルジ加工装置及び液圧バルジ加工方法
JP2007533462A (ja) フランジを有する構成要素の内部高圧成形による製造
JP2010046709A (ja) 接合構造体の製造方法及び接合構造体
JPH10249459A (ja) 金属製パイプの縮管方法
JP4270921B2 (ja) 有底管およびその成形方法
JP4906849B2 (ja) 鋼管の拡管成形方法および鋼管の拡管成形装置
JP2007075844A (ja) 液圧バルジ加工製品およびその液圧バルジ成形方法
JP3736865B2 (ja) インストルメントパネル用リインホースメント及びインストルメントパネル用リインホースメントの製法
JP4060722B2 (ja) 液圧バルジ金型及び液圧バルジ加工装置、異形管の液圧バルジ加工方法
JP4234224B2 (ja) 自動車のステアリングメインシャフトの溝加工方法および製造方法
JP2007501714A (ja) 金属製管のプレス成形方法
WO2024111215A1 (ja) 中実部分を有する差厚パイプの押出成形方法及び押出成形装置
JP4664521B2 (ja) 自動車用ホイールディスクの加工方法
JPH05237578A (ja) 歯車付中空軸の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004549651

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11123196

Country of ref document: US

Ref document number: 1020057008028

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A28470

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003810679

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057008028

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003810679

Country of ref document: EP