WO2024111215A1 - 中実部分を有する差厚パイプの押出成形方法及び押出成形装置 - Google Patents

中実部分を有する差厚パイプの押出成形方法及び押出成形装置 Download PDF

Info

Publication number
WO2024111215A1
WO2024111215A1 PCT/JP2023/032371 JP2023032371W WO2024111215A1 WO 2024111215 A1 WO2024111215 A1 WO 2024111215A1 JP 2023032371 W JP2023032371 W JP 2023032371W WO 2024111215 A1 WO2024111215 A1 WO 2024111215A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner diameter
mandrel
hollow
tip
outer diameter
Prior art date
Application number
PCT/JP2023/032371
Other languages
English (en)
French (fr)
Inventor
喬志 木村
健太郎 野津
Original Assignee
株式会社三五
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三五 filed Critical 株式会社三五
Publication of WO2024111215A1 publication Critical patent/WO2024111215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/08Dies or mandrels with section variable during extruding, e.g. for making tapered work; Controlling variation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/08Shaping hollow articles with different cross-section in longitudinal direction, e.g. nozzles, spark-plugs

Definitions

  • the present invention relates to an extrusion molding method and extrusion molding device for making pipes with different thicknesses and solid portions.
  • a differential thickness pipe also called a “butted pipe” or “butted tube” in which a thick-walled portion is formed in a portion of the axial direction of the pipe for the purpose of achieving a desired mechanical strength in the thick-walled portion while reducing the weight of the thin-walled portion (portion other than the thick-walled portion).
  • a differential thickness pipe that is hollow over its entire length can be integrally molded from a cylindrical blank tube by extrusion molding, as disclosed in Patent Document 1 (Patent Publication No. 6933762), for example.
  • differential thickness pipes in the field of shafts, for example, but rather than making them hollow over their entire length, it may be required to provide a solid portion having a certain length in the axial direction at one end.
  • differential thickness pipes with solid portions cannot be molded by the above-mentioned method.
  • Patent Document 2 JP Patent Publication 49-035497 discloses a method of manufacturing a bottomed hollow metal product by combining a piercing and compression process in which a punch is inserted into a roughly cylindrical, solid material to form a hollow hole, and a subsequent process in which a separate punch is used to press the bottom of the hollow hole while extruding the entire material to form a hollow portion (thickness difference portion) and a solid portion (bottom portion).
  • Patent Document 3 JP Patent Publication 58-048264 discloses a method in which a material having a flange and a hollow hole (and bottom) in a specified positional relationship is formed in advance in a forging process, and in the next process the tip of a center punch is used to press against the bottom of the hollow hole to form an intermediate material with corners, and in the next process the end of the intermediate material opposite the bottom is pressed with a sleeve punch to form a hollow portion (differential thickness portion) and a solid portion (bottom).
  • Patent No. 6933762 Japanese Patent Publication No. 49-035497 Japanese Patent Publication No. 58-048264
  • Patent Document 1 a material having a hollow portion and a solid portion was pressed into a container (die) with a small inner diameter at the tip side to reduce the diameter, in order to extrude a pipe with a different thickness and a solid portion.
  • a crack tended to occur around the entire circumference at the boundary between the bottom of the hollow hole and the side wall, as illustrated by the thick solid line in Figure 6(a).
  • the inventor conducted further research and discovered that the above problem can be solved by appropriately controlling the positional relationship between the tip of the mandrel and the bottom of the hollow hole in the material, as well as the movement of the sleeve and mandrel.
  • the extrusion molding method of the present invention for producing a pipe with a hollow portion having a different thickness is an extrusion molding method in which a material having a predetermined shape is extruded to produce a pipe with a hollow portion having a different thickness in an extrusion molding device.
  • the extrusion molding device includes a mandrel having a predetermined shape, a sleeve having a predetermined shape, a container having a container hole that is a through hole having a predetermined shape, and a drive mechanism configured to push the mandrel into the container hole.
  • the material is a member consisting of a first hollow portion and a first solid portion, and has a cylindrical outer shape with a first outer diameter that is a predetermined outer diameter overall.
  • the first hollow portion is a cylindrical portion having a first wall thickness that is a predetermined thickness, in which a first hollow hole is formed, which is a cylindrical space having a first inner diameter that is a predetermined inner diameter, and which opens to the end face on the base end side that is the upstream side in the extrusion direction.
  • the first solid portion is a cylindrical portion located between the end face on the tip end side that is the downstream side in the extrusion direction and the first hollow portion.
  • the differential thickness pipe is a member consisting of a second hollow portion, a third hollow portion, a fourth hollow portion, and a second solid portion.
  • the second hollow portion is a cylindrical portion having a first outer diameter and a first wall thickness.
  • the third hollow portion is a tubular portion adjacent to the tip side of the second hollow portion, in which the outer diameter changes from the first outer diameter to a second outer diameter, which is a predetermined outer diameter smaller than the first outer diameter, from the base end side toward the tip side, and the wall thickness changes from the first wall thickness to a second wall thickness, which is a predetermined wall thickness smaller than the first wall thickness.
  • the fourth hollow portion is a cylindrical portion adjacent to the tip side of the third hollow portion, having a second outer diameter and a second wall thickness.
  • the second solid portion is a cylindrical portion located between the end on the tip side and the fourth hollow portion, and has a second outer diameter. Furthermore, a second hollow hole, which is a cylindrical space having a first inner diameter and opens to the end face on the base end side, is continuously formed from the second hollow portion to the fourth hollow portion.
  • the mandrel is a cylindrical member that is fitted coaxially and axially slidably into the sleeve and has a third outer diameter that is a predetermined outer diameter corresponding to the first inner diameter.
  • the sleeve is a cylindrical member that is fitted coaxially and axially slidably into the mandrel and has a second inner diameter that is a predetermined inner diameter corresponding to the third outer diameter and a first outer diameter.
  • the container hole consists of a large inner diameter portion, a small inner diameter portion, and a reduced inner diameter portion.
  • the large inner diameter portion is formed on the base end side and has a third inner diameter, which is an inner diameter corresponding to the first outer diameter.
  • the small inner diameter portion is formed on the tip end side and has a fourth inner diameter, which is an inner diameter corresponding to the second outer diameter.
  • the reduced inner diameter portion is formed between the large inner diameter portion and the small inner diameter portion and has an inner diameter that decreases from the third inner diameter to the fourth inner diameter as it approaches the small inner diameter portion.
  • the method of the present invention includes the following first to third steps.
  • the first step is a step of inserting a raw material into the large inner diameter portion of the container hole, abutting the tip end of the raw material into the reduced inner diameter portion of the container hole, abutting the base end of the raw material with a sleeve, inserting a mandrel into a first hollow hole in the raw material, and fixing the tip-to-tip distance, which is the relative distance in the extrusion direction between the tip end of the sleeve and the tip end of the mandrel, to a predetermined first distance.
  • the second step is a step of advancing the sleeve and mandrel in the extrusion direction while maintaining the tip-to-tip distance at a first distance, thereby forcing the material through the reduced inner diameter portion of the container hole and into the smaller inner diameter portion, thereby performing an extrusion process, and continuing to advance the sleeve and mandrel until the first point in time at which the tip end of the mandrel reaches the base end of the reduced inner diameter portion of the container hole.
  • the third step is a step of advancing the sleeve and the mandrel in the extrusion direction while maintaining the tip-to-tip distance at the first distance after the first point in time.
  • the present invention also relates to an extrusion molding device for forming a pipe with a hollow portion having a different thickness by carrying out the above-mentioned method of the present invention (hereinafter, this may be referred to as the "device of the present invention").
  • a variable thickness pipe with a hollow portion can be precisely and easily formed from a material having a simple structure.
  • a manufacturing method and manufacturing device for a variable thickness pipe with a solid portion which can reduce the occurrence of defects such as cracks and/or material pockets without requiring a material with a complex shape.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a raw material that is the source of the material used in an extrusion molding method (first method) for a differential thickness pipe having a solid portion according to a first embodiment of the present invention, the material, and a differential thickness pipe having a solid portion molded from the material.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a mandrel, a sleeve, and a container used in the first method.
  • 4 is a flowchart illustrating a flow of first to third steps executed in a first method.
  • 1 is a schematic cross-sectional view illustrating a problem observed when attempting to extrude a pipe having a solid portion with a different thickness based on the prior art.
  • the first method is an extrusion molding method in which a material having a predetermined shape is extruded to form a hollow pipe having a different thickness.
  • the extrusion molding apparatus includes a mandrel having a predetermined shape, a sleeve having a predetermined shape, a container having a container hole which is a through hole having a predetermined shape, and a drive mechanism configured to push the mandrel into the container hole.
  • the basic configuration of such an extrusion molding apparatus is well known to those skilled in the art, and detailed description will be omitted.
  • the components including the mandrel, the sleeve, and the container are made of materials having properties (e.g., mechanical strength and durability) that can withstand processing conditions such as load acting on the components in the extrusion process described below.
  • the drive mechanism for pushing the mandrel into the container hole can be appropriately selected from various drive mechanisms well known in the art according to the properties (e.g., mechanical strength and hardness) of the material constituting the material to be subjected to the extrusion process.
  • a press machine such as a hydraulic press machine is used as the drive mechanism.
  • FIG. 1A, 1B, and 1C are schematic cross-sectional views showing an example of the configuration of an original material 11, a material 21, and a differential thickness pipe 31 having a solid portion formed from the material 21, which are used in the first method.
  • the material 21 is a member having a cylindrical outer shape consisting of a first hollow portion PH1 and a first solid portion PS1, and having a first outer diameter DO1, which is a predetermined outer diameter overall.
  • the first hollow portion PH1 is a cylindrical portion having a first wall thickness T1, in which a first hollow hole HH1, which is a cylindrical space having a first inner diameter DI1, is formed and opens to the end face on the base end side, which is the upstream side in the extrusion direction, and is a cylindrical space having a first inner diameter DI1, which is a predetermined inner diameter.
  • the first solid portion PS1 is a cylindrical portion located between the end face on the tip side, which is the downstream side in the extrusion direction, and the first hollow portion PH1.
  • the material 21 has a relatively simple structure, and therefore can be easily manufactured by forming a first hollow hole HH1 in the raw material 11, which is a cylindrical member having a first outer diameter DO1 as exemplified in FIG. 1(a).
  • the specific method for forming the first hollow hole HH1 in the raw material 11 is not particularly limited, but the first hollow hole HH1 can be easily formed in the raw material 11 by a method such as cutting, for example.
  • the material constituting the raw material 11 is not particularly limited as long as it can be formed into a desired shape by plastic deformation in the extrusion process.
  • the material constituting the raw material 11 is a metal such as lead, tin, aluminum, copper, zirconium, titanium, molybdenum, vanadium, niobium, and steel.
  • the differential thickness pipe 31 is a member consisting of a second hollow portion PH2, a third hollow portion PH3, a fourth hollow portion PH4, and a second solid portion PS2.
  • the second hollow portion PH2 is a cylindrical portion having a first outer diameter DO1 and a first wall thickness T1.
  • the third hollow portion PH3 is a cylindrical portion adjacent to the tip side of the second hollow portion PH2, the outer diameter of which changes from the first outer diameter DO1 to a second outer diameter DO2, which is a predetermined outer diameter smaller than the first outer diameter DO1, from the base end side to the tip side, and the wall thickness of which changes from the first wall thickness T1 to a second wall thickness T2, which is a predetermined wall thickness smaller than the first wall thickness T1.
  • the fourth hollow portion PH4 is a cylindrical portion adjacent to the tip side of the third hollow portion PH3, and has a second outer diameter DO2 and a second wall thickness T2.
  • the second solid portion PS2 is a cylindrical portion located between the tip end and the fourth hollow portion PH4 and has a second outer diameter DO2.
  • a second hollow hole HH2 which is a cylindrical space that opens to the end face on the base end side and has a first inner diameter DI1, is formed continuously from the second hollow portion PH2 to the fourth hollow portion PH4.
  • the rate of change in the outer diameter of the third hollow portion PH3 increases from the base end to the tip end, and the contour of the outer diameter of the third hollow portion PH3 is a curve that is convex outward in the radial direction.
  • the pattern of the change in the outer diameter of the third hollow portion PH3 from the first outer diameter DO1 to the second outer diameter DO2 is not limited to this.
  • the contour of the outer diameter of the third hollow portion PH3 may be a curve that is concave outward in the radial direction, or the rate of change in the outer diameter of the third hollow portion PH3 may be constant from the base end to the tip end, and the contour of the outer diameter of the third hollow portion PH3 may be a straight line.
  • the bottom (end portion on the tip side) of the second hollow hole HH2 has a conical shape.
  • the shape of the bottom of the second hollow hole HH2 is not limited to this, and can be various shapes depending on, for example, the use of the differential thickness pipe 31.
  • the shape of the bottom of the second hollow hole HH2 may be a plane perpendicular to the axial direction of the differential thickness pipe 31, or may be a convex curved surface (e.g., a spherical surface) on the tip side.
  • Such a shape of the bottom of the second hollow hole HH2 can be achieved, for example, by making the shape of the end portion on the tip side of the mandrel a shape corresponding to the shape of the bottom of the second hollow hole HH2.
  • the mandrel 41 is a cylindrical member that is coaxially and axially slidably fitted into the sleeve 51 and has a third outer diameter DO3 that is a predetermined outer diameter corresponding to the first inner diameter DI1 that is the inner diameter of the first hollow portion PH1 of the material 21.
  • the sleeve 51 is coaxially and axially slidably fitted into the mandrel 41 and has a cylindrical member that has a second inner diameter DI2 that is a predetermined inner diameter corresponding to the third outer diameter DO3 that is the outer diameter of the mandrel 41, and a first outer diameter DO1 that is the outer diameter of the material 21.
  • the base end portion of the mandrel 41 and the sleeve 51 can be provided with a structure and/or mechanism suitable for driving by a driving mechanism provided in the extrusion molding device and/or for attachment and detachment from the driving mechanism.
  • the container hole HC1 formed in the container 61 is composed of a large inner diameter portion PDIL, a small inner diameter portion PDIS, and an inner diameter decreasing portion PDIT.
  • the large inner diameter portion PDIL is a portion formed on the base end side and has a third inner diameter DI3, which is an inner diameter corresponding to the first outer diameter DO1, which is the outer diameter of the material 21.
  • the small inner diameter portion PDIS is a portion formed on the tip end side and has a fourth inner diameter DI4, which is an inner diameter corresponding to the second outer diameter DO2, which is the outer diameter of the fourth hollow portion PH2 and the second solid portion PS2 of the differential thickness pipe 31.
  • the inner diameter decreasing portion PDIT is a portion formed between the large inner diameter portion PDIL and the small inner diameter portion PDIS, and the inner diameter decreases from the third inner diameter DI3 to the fourth inner diameter DI4 as it approaches the small inner diameter portion PDIS from the large inner diameter portion PDIL.
  • the large inner diameter portion PDIL is made up of two members, the inner diameter reducing portion PDIT and the most proximal portion of the small inner diameter portion PDIS are integrally formed from one member, and the remaining portion of the small inner diameter portion PDIS is made up of two members. That is, the container 61 illustrated in FIG. 2(b) is made up of five members as a whole.
  • the configuration of the container 61 is not limited to this, and may be made up of one member as a whole, or the large inner diameter portion PDIL, the small inner diameter portion PDIS, and the inner diameter reducing portion PDIT may each be made up of one member, and the container 61 may be made up of three members as a whole.
  • the first method includes steps 1 to 3 listed below, as illustrated by the flowchart in FIG. 3.
  • the first process executed in step S01 is to insert a material into the large inner diameter portion of the container hole, abut the tip end of the material against the reduced inner diameter portion of the container hole, abut the base end of the material against a sleeve, insert a mandrel into the first hollow hole of the material, and fix the tip-to-tip distance, which is the relative distance in the extrusion direction between the tip end of the sleeve and the tip end of the mandrel, to a predetermined first distance. That is, in the first process, the material, mandrel, sleeve, and container are set in predetermined positions.
  • the second process executed in step S02 is a process of advancing the sleeve and mandrel in the extrusion direction while maintaining the tip-to-tip distance at the first distance, thereby forcing the material into the small inner diameter portion through the reduced inner diameter portion of the container hole, and continuing to advance the sleeve and mandrel until the first time point, which is the time point when the tip end of the mandrel reaches the base end of the reduced inner diameter portion of the container hole.
  • the mandrel and sleeve are driven in cooperation to maintain the tip-to-tip distance at the first distance, and the sleeve and mandrel are advanced in the extrusion direction until the tip end of the mandrel reaches the base end of the reduced inner diameter portion of the container hole. This performs extrusion from the first solid portion of the material to the second solid portion of the differential thickness pipe.
  • the third process executed in step S03 is a process of advancing the sleeve and mandrel in the extrusion direction while maintaining the tip-to-tip distance at the first distance even after the first time point. That is, even in the third process, which is a process executed after the first time point, the tip-to-tip distance is maintained at the first distance by coordinated driving of the mandrel and sleeve, and the sleeve and mandrel are advanced in the extrusion direction, thereby performing extrusion processing from a part on the tip side of the first hollow portion of the material to the third hollow portion and the fourth hollow portion of the differential thickness pipe. The part of the first hollow portion of the material that was not subjected to extrusion processing in the third process becomes the second hollow portion of the differential thickness pipe.
  • FIG. 4 is a schematic cross-sectional view showing an example of the shape of the material 21 at the end of the first process and the positional relationship between the material 21 and the mandrel 41, sleeve 51, and container 61.
  • FIG. 4 in order to simplify the drawing, only some of the reference symbols given to the various parts shown in FIG. 1 and FIG. 2 are shown. However, in the following explanation of FIG. 4, the reference symbols shown in FIG. 1 and FIG. 2 will be used for accuracy, so please refer to FIG. 1 and FIG. 2 as necessary.
  • the blank 21 is inserted into the large inner diameter portion PDIL of the container hole HC1, and the tip end of the blank 21 abuts against the reduced inner diameter portion PDIT of the container hole HC1. This holds the blank 21 in a predetermined position inside the container hole HC1.
  • a sleeve 51 abuts against the base end of the blank 21, and a mandrel 41 is inserted into a first hollow hole HH1 formed in the blank 21.
  • the mandrel 51 and the sleeve 41 are driven in a coordinated manner to advance the sleeve 51 and the mandrel 41 in the extrusion direction (the downward direction in FIG. 4) while maintaining the tip-to-tip distance DT at the first distance D1.
  • the first solid portion PS1 of the material 21 is pushed from the tip side through the reduced inner diameter portion PDIT of the container hole HC1 into the small inner diameter portion PDIS, and the first solid portion PS1 of the material 21 is extruded into the second solid portion PS2 of the differential thickness pipe 31.
  • the second outer diameter DO2, which is the outer diameter of the second solid portion PS2 of the differential thickness pipe 31, is smaller than the first outer diameter DO1, which is the outer diameter of the first solid portion PS1 of the raw material 21 (DO2 ⁇ DO1).
  • the cross-sectional area of the second solid portion PS2 of the differential thickness pipe 31 is smaller than the cross-sectional area of the first solid portion PS1 of the raw material 21. Therefore, the length in the extrusion direction of the second solid portion PS2 of the differential thickness pipe 31 extruded from the first solid portion PS1 of the raw material 21 is greater than the length in the extrusion direction of the first solid portion PS1 of the raw material 21 (details will be described later).
  • the base end side end of the material 21 is pressed in the extrusion direction by the sleeve 51, but the bottom of the first hollow hole HH1 is not pressed by the mandrel 41.
  • This state can be achieved, for example, by not bringing the bottom of the first hollow hole HH1 of the material 21 into contact with the mandrel 41 at the second time point, or by providing a gap of a predetermined size between the bottom of the first hollow hole HH1 of the material 21 and the tip end of the mandrel 41 at the second time point (this will be described in detail later).
  • the so-called "upsetting phenomenon” may occur as the extrusion process proceeds.
  • the raw material expands radially outward and contracts axially due to the plastic flow of the material constituting the raw material and/or the elastic deformation of the container, and the bottom of the first hollow hole formed in the raw material is slightly displaced toward the base end. Therefore, even if there is a gap between the bottom of the first hollow hole in the raw material and the tip end of the mandrel at the second point in time, the gap may disappear or shrink due to the upsetting phenomenon.
  • the tip end of the mandrel 41 eventually reaches the base end of the reduced inner diameter portion PDIT of the container hole HC1.
  • the period up to the first point in time when the tip end of the mandrel 41 reaches the base end of the reduced inner diameter portion PDIT of the container hole HC1 corresponds to the second process, and the period after the first point in time corresponds to the third process.
  • FIG. 4 is a schematic cross-sectional view showing an example of the shape of the material 21 immediately after the end of the second step, i.e., immediately after the start of the third step, and the positional relationship between the material 21 and the mandrel 41, sleeve 51, and container 61.
  • the sleeve 51 and mandrel 41 continue to move in the extrusion direction while maintaining the tip-to-tip distance DT at the first distance D1 even after the first time point.
  • the first hollow portion PH1 of the material 21 is pushed from the tip side into the small inner diameter portion PDIS through the inner diameter reduction portion PDIT of the container hole HC1, and extrusion processing is performed from a part of the tip side of the first hollow portion PH1 of the material 21 to the fourth hollow portion PH4 and the third hollow portion PH3 of the differential thickness pipe 31. Also, as described above, the part of the first hollow portion PH1 of the material 21 that was not subjected to extrusion processing in the third step becomes the second hollow portion PH2 of the differential thickness pipe 31.
  • the second outer diameter DO2, which is the outer diameter of the fourth hollow portion PH4 of the differential thickness pipe 31, is smaller than the first outer diameter DO1, which is the outer diameter of the first hollow portion PH1 of the material 21 (DO2 ⁇ DO1).
  • the inner diameter of the second hollow hole HH2 of the differential thickness pipe 31 is maintained at the first inner diameter DI1, which is the inner diameter of the first hollow portion PH1 of the material 21, by the mandrel 41. That is, the cross-sectional area of the fourth hollow portion PH4 of the differential thickness pipe 31 is smaller than the cross-sectional area of the first hollow portion PH1 of the material 21.
  • the outer diameter of the third hollow portion PH3 of the differential thickness pipe 31 changes from the first outer diameter DO1 to the second outer diameter DO2, which is smaller than the first outer diameter DO1, from the base end side to the tip end side as described above, the inner diameter of the third hollow portion PH3 of the differential thickness pipe 31 is also maintained at the first inner diameter DI1 by the mandrel 41. That is, the cross-sectional area of the third hollow portion PH3 of the differential thickness pipe 31 is also smaller than the cross-sectional area of the first hollow portion PH1 of the raw material 21.
  • the length in the extrusion direction of the fourth hollow portion PH4 and the third hollow portion PH3 of the differential thickness pipe 31 extruded from the first hollow portion PH1 of the raw material 21 is greater than the length in the extrusion direction of the portion of the first hollow portion PH1 of the raw material 21 that is subjected to the extrusion process (details will be described later).
  • FIG. 4 is a schematic cross-sectional view showing an example of the shape of the differential thickness pipe 31 at the end of the third step, and the positional relationship between the mandrel 41, sleeve 51, and container 61 and the differential thickness pipe 31.
  • a differential thickness pipe 31 having a desired shape and consisting of the second hollow portion PH2, the third hollow portion PH3, the fourth hollow portion PH4, and the second solid portion PS2 can be easily formed from a material 21 having a simple shape.
  • the tip-to-tip distance DT which is the relative distance in the extrusion direction between the tip end of the sleeve and the tip end of the mandrel, is maintained at a predetermined first distance D1 while the sleeve 51 and the mandrel 41 are advanced in the extrusion direction, so that the first solid portion PS1 of the material 21 is pushed through the reduced inner diameter portion PDIT of the container hole HC1 into the small inner diameter portion PDIS, thereby performing extrusion processing from the first solid portion PS1 of the material 21 to the second solid portion PS2 of the differential thickness pipe 31.
  • the mandrel 41 does not contribute to the extrusion process, but rather serves the function of maintaining the cross-sectional shape of the second hollow hole HH2 formed in the differential thickness pipe 31 identical to that of the first hollow hole HH1 formed in the material 21 during the process in which a portion of the tip side of the first hollow portion PH1 of the material 21 changes into the fourth hollow portion PH4 and third hollow portion PH3 of the differential thickness pipe 31.
  • the second hollow portion PH2, the third hollow portion PH3, and the fourth hollow portion PH4 of the differential thickness pipe 31 are formed from the first hollow portion PH1 of the material 21, and the second solid portion PS2 of the differential thickness pipe 31 is formed from the first solid portion PS1 of the material 21. Therefore, the following relationships are established between the axial length of each portion of the material 21 (hereinafter, may be simply referred to as "length") and the axial length of each portion of the differential thickness pipe 31.
  • the length (LPH2) of the second hollow portion PH2 of the differential thickness pipe 31 is the length of the portion that has not been subjected to extrusion processing and remains in an unprocessed state as the raw material 21 at the time the third process is completed. Therefore, as long as it is smaller than the length (LPH1) of the first hollow portion PH1 of the raw material 21, LPH2 can be set to any size depending on the timing of completing the third process.
  • the length (LPH3) of the third hollow portion PH3 of the differential thickness pipe 31 is automatically determined by the length (LPDIT) of the reduced inner diameter portion PDIT of the container hole HC1 formed in the container 61. Therefore, LPH3 can be set to any size by adjusting the LPDIT in the container hole HC1 formed in the container 61.
  • the length (LPH4) of the fourth hollow portion PH4 of the differential thickness pipe 31 can be calculated by subtracting the volume (VPH2+VPH3) of the material constituting the second hollow portion PH2 and the third hollow portion PH3 of the differential thickness pipe 31 from the volume (VPH1) of the material constituting the first hollow portion PH1 of the blank 21, and dividing the remaining volume by the area (APH4) of the annular cross section of the fourth hollow portion PH4. Therefore, in order to obtain the desired LPH4, it is necessary to configure the container hole HC1 formed in the blank 21, the differential thickness pipe 31, and the third container 61 so that the following formula (1) is established.
  • VPH1, VPH2, and APH4 can be expressed by the following formulas (2) to (4).
  • VPH3 changes depending on the pattern of change in the outer diameter of the third hollow portion PH3 (i.e., the shape of the outline), so it is necessary to calculate it according to the shape of the third hollow portion PH3.
  • the relationship between the length (LPS1) of the first solid portion PS1 of the material 21 and the length (LPS2) of the solid portion PS2 of the differential thickness pipe 31 can be expressed by the following formula (5).
  • the first method is a manufacturing method for a differential thickness pipe having a solid portion, which can reduce the occurrence of defects such as cracks and/or material pools without requiring a material having a complex shape.
  • Such a differential thickness pipe with a solid portion is useful as a part that is required to achieve the desired mechanical strength in the thick portion while reducing the weight in the thin portion (portion other than the thick portion).
  • a differential thickness pipe with a solid portion as described above is used as a shaft-type part that requires an oil stopper, a plug for the oil stopper is not required, which increases design freedom and reduces manufacturing costs.
  • the tip-to-tip distance which is the relative distance in the extrusion direction between the tip end of the sleeve and the tip end of the mandrel, is maintained at a predetermined first distance while the sleeve and mandrel are advanced in the extrusion direction, forcing the material into the small inner diameter portion through the reduced inner diameter portion of the container hole to perform the extrusion process.
  • the third step in which a part of the tip side of the first hollow portion PH1 of the material 21 is extruded into the fourth hollow portion PH4 and the third hollow portion PH3 of the differential thickness pipe 31, the bottom of the first hollow hole of the material and the tip end of the mandrel are separated from each other.
  • the mandrel does not contribute to the extrusion process, but rather has the function of maintaining the cross-sectional shape of the hollow hole in the process in which the first hollow hole formed in the material changes into the second hollow hole formed in the differential thickness pipe 31.
  • a pipe with a hollow portion can be precisely and easily formed from a material with a simple structure.
  • the first method makes it possible to easily manufacture a pipe with a hollow portion while reducing the occurrence of defects such as cracks and/or solid portions, without the need for a material with a complex shape.
  • the so-called "upsetting phenomenon” may occur at the time when the blank starts to be pushed into the small inner diameter portion through the reduced inner diameter portion of the container hole formed in the container (i.e., at the start of the extrusion processing).
  • the blank expands radially outward and contracts axially, causing the bottom of the first hollow hole formed in the blank to be slightly displaced toward the base end.
  • the tip end of the mandrel is pressed toward the base end by the bottom of the first hollow hole, and the reaction to this applies stress to the bottom of the first hollow hole, which may cause a crack to form at the boundary between the bottom of the first hollow hole and the side wall portion.
  • the second method is the above-mentioned first method, which is an extrusion molding method for a differential thickness pipe having a hollow portion, characterized in that at least at the second point in time, which is the start point of the extrusion processing in the second step, the bottom of the first hollow hole in the material is not in contact with the mandrel.
  • FIG. 5 is a schematic cross-sectional view showing an example of the positional relationship between the bottom of the first hollow hole in the material near the bottom of the first hollow hole and the mandrel at the start of the second step included in the second method, and is an enlarged view of the area surrounded by the thick dashed line in FIG. 4(a).
  • the bottom of the first hollow hole HH1 in the material 21 and the mandrel 41 are not in contact.
  • a gap G is provided between the bottom of the first hollow hole HH1 in the material 21 and the mandrel 41.
  • the bottom (end on the tip side) of the first hollow hole HH1 has a conical shape. Therefore, in the example shown in FIG. 5, the gap G between the bottom of the first hollow hole HH1 of the material 21 and the mandrel 41 is determined by the distance between the average position in the axial direction of the bottom surface of the first hollow hole HH1 of the material 21 and the tip surface of the mandrel 41.
  • the shape of the bottom of the first hollow hole HH1 is not limited to this, and can be various shapes depending on, for example, the use of the differential thickness pipe 31 and/or the shape of the end on the tip side of the mandrel.
  • the shape of the bottom of the first hollow hole HH1 may be a plane perpendicular to the axial direction of the material 21, or a curved surface (e.g., a spherical surface) that is convex toward the tip side.
  • the bottom of the first hollow hole in the material is not in contact with the mandrel. Therefore, according to the second method, even if the upsetting phenomenon occurs at the start of the extrusion process in the second step and the bottom of the first hollow hole formed in the material is displaced toward the base end, it is possible to reduce the possibility that the bottom of the hollow hole will press against the tip of the mandrel. As a result, it is possible to reduce the risk of cracks occurring at the boundary between the bottom of the first hollow hole and the side wall portion due to the reaction of the bottom of the first hollow hole pressing against the tip of the mandrel.
  • the gap G initial gap
  • the gap G (initial gap) between the bottom of the first hollow hole of the material and the mandrel at the second time point
  • the third method is the above-mentioned second method, which is a method for extrusion molding a pipe having a hollow portion with a different thickness, characterized in that the initial length, which is the length of the initial gap in the extrusion direction, is equal to or greater than a first predetermined length and is less than a second predetermined length longer than the first length.
  • the initial gap is a gap between the bottom of the first hollow hole of the material at the second point in time and the end of the mandrel on the tip side.
  • the first length can be determined based on the magnitude of the dimensional change of the material during the period from the second time point to the third time point, which is the time point when the tip end of the material starts to enter the portion of the container hole that has a reduced inner diameter.
  • the first length can be determined based on the magnitude of the displacement of the bottom of the first hollow hole toward the base end during the period from the second time point to the third time point.
  • the magnitude of the dimensional change of the material such as the displacement of the bottom of the first hollow hole toward the base end, can be determined, for example, by verification through a preliminary experiment and/or a computer simulation such as a flow analysis.
  • the second length can be set to a predetermined length that is equal to or less than the maximum length at which the material constituting the blank does not flow into the first gap during the period from the second point in time (which is a predetermined point in time after the tip end of the mandrel passes through the part of the container hole that reduces the inner diameter).
  • a second length can also be determined, for example, by verification through preliminary experiments and/or computer simulations such as flow analysis.
  • the initial gap is set in a suitable range to sufficiently reduce the risk of cracks occurring at the boundary between the bottom and sidewall of the first hollow hole at the time when the sleeve and mandrel start to move in the extrusion direction (the second time point).
  • the risk of cracks occurring at the boundary between the bottom and sidewall of the first hollow hole in the material can be more reliably reduced.
  • the present invention relates not only to the extrusion molding method of a pipe having a different thickness and a solid portion, including the above-mentioned first to third methods, but also to an extrusion molding device of a pipe having a different thickness and a solid portion. Therefore, the extrusion molding device of a pipe having a different thickness and a solid portion according to various embodiments of the present invention will be described below.
  • an extrusion molding device for differential thickness pipes (hereinafter, sometimes referred to as the "fourth device").
  • the fourth apparatus is an extrusion molding apparatus for a differential thickness pipe having a solid portion, the extrusion molding apparatus comprising a mandrel having a predetermined shape, a sleeve having a predetermined shape, a container having a container hole which is a through hole having a predetermined shape, and a drive mechanism configured to push the mandrel into the container hole.
  • the basic configuration of such an extrusion molding apparatus is well known to those skilled in the art, and the components including the mandrel, sleeve, and container are made of materials having properties (e.g., mechanical strength, durability, etc.) that can withstand processing conditions such as the load acting on the components in the above-mentioned extrusion processing.
  • the fourth device is configured to perform the first to third steps listed below to form a pipe of different thicknesses having a hollow portion from a material having a predetermined shape by extrusion processing.
  • the first step is a step of inserting a raw material into the large inner diameter portion of the container hole, abutting the tip end of the raw material into the reduced inner diameter portion of the container hole, abutting the base end of the raw material with a sleeve, inserting a mandrel into a first hollow hole in the raw material, and fixing the tip-to-tip distance, which is the relative distance in the extrusion direction between the tip end of the sleeve and the tip end of the mandrel, to a predetermined first distance.
  • the second step is a step of advancing the sleeve and mandrel in the extrusion direction while maintaining the tip-to-tip distance at a first distance, thereby forcing the material through the reduced inner diameter portion of the container hole and into the smaller inner diameter portion, thereby performing an extrusion process, and continuing to advance the sleeve and mandrel until the first point in time at which the tip end of the mandrel reaches the base end of the reduced inner diameter portion of the container hole.
  • the third step is a step of advancing the sleeve and the mandrel in the extrusion direction while maintaining the tip-to-tip distance at the first distance after the first point in time.
  • the material 21 is a member consisting of a first hollow portion PH1 and a first solid portion PS1, and has a cylindrical outer shape with a first outer diameter DO1, which is a predetermined outer diameter overall.
  • the first hollow portion PH1 is a cylindrical portion having a first thickness T1, in which a first hollow hole HH1, which is a cylindrical space with a first inner diameter DI1, which is a predetermined inner diameter, is formed and opens to the end face on the base end side, which is the upstream side in the extrusion direction.
  • the first solid portion PS1 is a cylindrical portion located between the end face on the tip side, which is the downstream side in the extrusion direction, and the first hollow portion PH1.
  • the differential thickness pipe 31 is a member consisting of a second hollow portion PH2, a third hollow portion PH3, a fourth hollow portion PH4, and a second solid portion PS2.
  • the second hollow portion PH2 is a cylindrical portion having a first outer diameter DO1 and a first wall thickness T1.
  • the third hollow portion PH3 is a cylindrical portion adjacent to the tip side of the second hollow portion PH2, and the outer diameter changes from the first outer diameter DO1 to a second outer diameter DO2, which is a predetermined outer diameter smaller than the first outer diameter DO1, from the base end side to the tip side, and the wall thickness changes from the first wall thickness T1 to a second wall thickness T2, which is a predetermined wall thickness smaller than the first wall thickness T1.
  • the fourth hollow portion PH4 is a cylindrical portion adjacent to the tip side of the third hollow portion PH3, and has a second outer diameter DO2 and a second wall thickness T2.
  • the second solid portion PS2 is a cylindrical portion located between the tip end and the fourth hollow portion PH4 and has a second outer diameter DO2.
  • a second hollow hole HH2 which is a cylindrical space that opens to the end face on the base end side and has a first inner diameter DI1, is formed continuously from the second hollow portion PH2 to the fourth hollow portion PH4.
  • the mandrel 41 is fitted coaxially and axially slidably into the sleeve 51, and is a cylindrical member having a third outer diameter DO3 which is a predetermined outer diameter corresponding to the first inner diameter DI1 which is the inner diameter of the first hollow portion PH1 of the material 21.
  • the sleeve 51 is fitted coaxially and axially slidably into the mandrel 41, and is a cylindrical member having a second inner diameter DI2 which is a predetermined inner diameter corresponding to the third outer diameter DO3 which is the outer diameter of the mandrel 41, and a first outer diameter DO1 which is the outer diameter of the material 21.
  • the container hole HC1 formed in the container 61 is composed of a large inner diameter portion PDIL, a small inner diameter portion PDIS, and an inner diameter decreasing portion PDIT.
  • the large inner diameter portion PDIL is a portion formed on the base end side and has a third inner diameter DI3, which is an inner diameter corresponding to the first outer diameter DO1, which is the outer diameter of the material 21.
  • the small inner diameter portion PDIS is a portion formed on the tip end side and has a fourth inner diameter DI4, which is an inner diameter corresponding to the second outer diameter DO2, which is the outer diameter of the fourth hollow portion PH2 and the second solid portion PS2 of the differential thickness pipe 31.
  • the inner diameter decreasing portion PDIT is a portion formed between the large inner diameter portion PDIL and the small inner diameter portion PDIS, and the inner diameter decreases from the third inner diameter DI3 to the fourth inner diameter DI4 as it approaches the small inner diameter portion PDIS from the large inner diameter portion PDIL.
  • the fourth device is an extrusion molding device for differential thickness pipes having solid portions, which corresponds to the first method described above. Therefore, the differential thickness pipes formed by the fourth device, the raw materials from which the differential thickness pipes are formed and the raw materials from which the raw materials are derived, as well as the mandrel, sleeve, and container that constitute the fourth device, are clear from the explanation of the first method described above, so a description thereof will be omitted here.
  • the fourth apparatus is an apparatus for manufacturing a pipe with a hollow portion and a different thickness, which can reduce the occurrence of defects such as cracks and/or solid portions without requiring a material with a complex shape.
  • an extrusion molding apparatus for a variable thickness pipe having a solid portion according to a fifth embodiment of the present invention (hereinafter, sometimes referred to as the "fifth apparatus") will be described.
  • the fifth apparatus is the fourth apparatus described above, which is an extrusion molding apparatus for a differential thickness pipe having a hollow portion, characterized in that at least at the second point in time, which is the start point of the extrusion processing in the second step, the bottom of the first hollow hole in the material is not in contact with the mandrel.
  • the fifth device is an extrusion molding device for a pipe with a solid portion and a different thickness, which corresponds to the second method described above. Therefore, the details of the configuration and operation of the fifth device are clear from the explanation of the second method, so a detailed explanation will be omitted here.
  • the fifth device even if the upsetting phenomenon occurs at the start of the extrusion process in the second step and the bottom of the first hollow hole formed in the material is displaced toward the base end, the possibility of the bottom of the hollow hole pressing against the tip of the mandrel can be reduced, thereby reducing the risk of cracks occurring at the boundary between the bottom of the first hollow hole and the side wall portion due to the reaction of the pressing of the bottom of the first hollow hole against the tip of the mandrel.
  • an extrusion molding apparatus for a variable thickness pipe having a solid portion according to a sixth embodiment of the present invention (hereinafter, sometimes referred to as the "sixth apparatus") will be described.
  • a sixth device is the fifth device described above, which is an extrusion molding method for a differential thickness pipe having a hollow portion, characterized in that an initial length, which is the length of the initial gap in the extrusion direction, is equal to or greater than a predetermined first length and less than a predetermined second length longer than the first length.
  • the initial gap is a gap between a bottom of the first hollow hole in the raw material at a second time point and the tip end of the mandrel.
  • the first length can be determined based on the magnitude of dimensional change of the raw material during the period from the second time point to a third time point at which the tip end of the raw material begins to enter the reduced inner diameter portion of the container hole.
  • the second length can be determined to a predetermined length equal to or less than a maximum length at which the material constituting the raw material does not flow into the first gap during the period from the second time point to the first time point (which is a predetermined time point after the tip end of the mandrel has passed through the reduced inner diameter portion of the container hole).
  • the sixth device is an extrusion molding device for a pipe with a solid portion and a different thickness, which corresponds to the third method described above. Therefore, the details of the configuration and operation of the sixth device are clear from the explanation of the third method, so a detailed explanation will be omitted here.
  • the initial gap is set in a suitable range to sufficiently reduce the risk of cracks occurring at the boundary between the bottom and the side wall of the first hollow hole at the time (second time point) when the sleeve and mandrel start to move in the extrusion direction, and as a result, the sixth device can more reliably reduce the risk of cracks occurring at the boundary between the bottom and the side wall of the first hollow hole in the material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)

Abstract

中実部分を有する差厚パイプの製造において、基端側が中空であり先端側が中実である円柱状の素材をコンテナ孔の大内径部分に挿入しコンテナ孔の内径減少部分に素材の先端側の端部を当接させ素材の基端側の端部にスリーブを当接させ素材の中空孔にマンドレルを挿入しスリーブの先端とマンドレルの先端との間の距離である先端間距離を所定の距離に固定する第1工程、マンドレルの先端がコンテナ孔の内径減少部分に到達するまでの期間において先端間距離を維持しつつスリーブ及びマンドレルを押出方向に進行させることによりコンテナ孔の内径減少部分を介して小内径部分へと素材を押し込む第2工程及び先端間距離を維持しつつスリーブ及びマンドレルの進行を更に継続する第3工程を実行する。これにより、複雑な形状を有する素材を必要とせず亀裂及び/又は肉溜まり等の欠陥の発生を低減することができる。

Description

中実部分を有する差厚パイプの押出成形方法及び押出成形装置
 本発明は、中実部分を有する差厚パイプの押出成形方法及び押出成形装置に関する。
 当該技術分野においては、例えば厚肉部において所望の機械的強度を達成しつつ薄肉部(厚肉部以外の部分)において軽量化を図ること等を目的としてパイプの軸方向における一部分に厚肉部が形成された差厚パイプ(「バテッドパイプ」及び「バテッドチューブ」等とも称呼される)が知られている。このような全長に亘って中空の差厚パイプは、例えば特許文献1(特許第6933762号公報)において開示されているように、円筒状の素管から押出成形によって一体的に成形することができる。
 また、例えばシャフト類等の分野においても差厚パイプを適用するニーズがあるが、全長に亘って中空とするのではなく、軸方向において所定の長さを有する中実部分を一方の端部側に設けることが求められる場合がある。例えば製造コストの削減等の観点からは、このような中実部分を有する差厚パイプもまた押出成形によって一体的に成形することが望ましい。しかしながら、このような中実部分を有する差厚パイプを上記工法によって成形することはできない。
 一方、当該技術分野においては、軸方向の長さは短いながらも中実部分を一端に有する差厚パイプである底付中空金属製品を押出成形によって製造する工法が知られている。例えば特許文献2(特公昭49-035497号公報)には、略円柱状且つ中実の素材にパンチを挿し込んで中空孔を形成する穿孔圧縮工程と、次工程において別個のパンチにより中空孔の底部を押圧しながら全体を押し出すことにより中空部分(差厚部)及び中実部分(底部)を形成する工程との組合せによって底付中空金属製品を製造する工法が開示されている。
 また、特許文献3(特公昭58-048264号公報)には、所定の位置関係にある鍔部と中空孔(と底部)とを有する素材を鍛造工程にて予め形成しておき、次工程においてセンターパンチの先端によって中空孔の底を押圧して角を付けた中間素材を成形し、次工程において中間素材の底部とは反対側の端部をスリーブパンチによって押圧することにより中空部分(差厚部)及び中実部分(底部)を形成する工法が開示されている。
 しかしながら、上述した何れの工法においても、特定の要件を満たす比較的複雑な形状を有する素材を用意する必要がある。また、これらの工法によって製造される底付中空金属製品は所謂「有底筒状部材」であり、前述したような軸方向において所定の長さを有する中実部分を有する差厚パイプには該当しない。更に、後者の工法においては、センターパンチの先端によって中空孔の底を押圧して角を付ける工程において素材の底部と側壁部との境界に亀裂が生じ易いため、センターパンチによる押圧力を強く設定することができないという問題がある。
特許第6933762号公報 特公昭49-035497号公報 特公昭58-048264号公報
 そこで、本発明者は、前述したような先行技術における問題点を勘案し、特許文献1に記載された技術をベースとして、中空部分と中実部分とを有する素材の中空孔にマンドレル(芯金)を挿通した状態にて先端側に小内径部を有するコンテナ(ダイス)に当該素材を押し込んで縮径を行うことにより中実部分を有する差厚パイプを押出成形する実験を試みた。ところが、マンドレルの先端によって素材の中空孔の底部(中実部分の最上部)を押出方向へ押圧すると、図6の(a)において太い実線によって例示するように、中空孔の底部と側壁部との境界に全周に亘る亀裂が発生し易いことが確認された。
 一方、上記のような亀裂の発生を防ぐべく、マンドレルの先端と中空孔の底部との間に空間を維持しながら押出成形をすると、図6の(b)において黒い半円形によって例示するように、当該素材が径方向における内側に向かって圧縮されるのに伴い、当該素材の肉(形成材料)が当該空間に向かって塑性流動し、当該空間内の全周に渡って肉溜まりができてしまい、所望の中空形状を実現することができないことが確認された。
 即ち、当該技術分野においては、複雑な形状を有する素材を必要とすること無く上述したような亀裂及び/又は肉溜まり等の欠陥の発生を低減することができる、中実部分を有する差厚パイプの製造方法並びに製造装置に対する需要が存在する。
 上述した知見に基づき、本発明者は、更なる鋭意研究の結果、マンドレルの先端と素材の中空孔の底部との位置関係並びにスリーブ及びマンドレルの動きを適切に制御することにより、上記課題を解決することができることを見出した。
 具体的には、本発明に係る中空部分を有する差厚パイプの押出成形方法(以降、「本発明方法」と称呼される場合がある。)は、押出成形装置において、所定の形状を有する素材から中空部分を有する差厚パイプを押出加工によって成形する、押出成形方法である。押出成形装置は、所定の形状を有するマンドレルと、所定の形状を有するスリーブと、所定の形状を有する貫通孔であるコンテナ孔が形成されたコンテナと、コンテナ孔にマンドレルを押し込むように構成された駆動機構と、を備える。
 素材は、第1中空部分及び第1中実部分からなり、全体として所定の外径である第1外径を有する円柱状の外形を有する部材である。第1中空部分は、押出方向における上流側である基端側の端面に開口し所定の内径である第1内径を有する円柱状の空間である第1中空孔が形成され所定の肉厚である第1肉厚を有する円筒状の部分である。第1中実部分は、押出方向における下流側である先端側の端面と第1中空部分との間に位置する円柱状の部分である。
 差厚パイプは、第2中空部分と、第3中空部分と、第4中空部分と、第2中実部分からなる部材である。第2中空部分は、第1外径及び第1肉厚を有する円筒状の部分である。第3中空部分は、第2中空部分の先端側に隣接し基端側から先端側に向かって第1外径から第1外径よりも小さい所定の外径である第2外径へと外径が変化し且つ第1肉厚から第1肉厚よりも小さい所定の肉厚である第2肉厚へと肉厚が変化する筒状の部分である。第4中空部分は、第3中空部分の先端側に隣接し第2外径及び第2肉厚を有する円筒状の部分である。第2中実部分は、先端側の端部と第4中空部分との間に位置し第2外径を有する円柱状の部分である。更に、基端側の端面に開口し第1内径を有する円柱状の空間である第2中空孔が第2中空部分から第4中空部分に亘って連続的に形成されている。
 マンドレルは、スリーブに同軸状且つ軸方向において摺動可能に内嵌され第1内径に対応する所定の外径である第3外径を有する円柱状の形状を有する部材である。スリーブは、マンドレルに同軸状且つ軸方向において摺動可能に外嵌され第3外径に対応する所定の内径である第2内径及び第1外径を有する円筒状の形状を有する部材である。
 コンテナ孔は、大内径部分と、小内径部分と、内径減少部分と、からなる。大内径部分は、基端側に形成され且つ第1外径に対応する内径である第3内径を有する部分である。小内径部分は、先端側に形成され且つ第2外径に対応する内径である第4内径を有する部分である。内径減少部分は、大内径部分と小内径部分との間に形成され且つ大内径部分から小内径部分へと近付くにつれて第3内径から第4内径へと内径が減少する部分である。
 本発明方法は、以下に列挙する第1工程乃至第3工程を含む。
 第1工程は、コンテナ孔の大内径部分に素材を挿入しコンテナ孔の内径減少部分に素材の先端側の端部を当接させ、素材の基端側の端部にスリーブを当接させ、素材の第1中空孔にマンドレルを挿入し、スリーブの先端側の端部とマンドレルの先端側の端部との間の押出方向における相対的な距離である先端間距離を所定の距離である第1距離に固定する工程である。
 第2工程は、先端間距離を第1距離に維持しつつスリーブ及びマンドレルを押出方向に向かって進行させることによりコンテナ孔の内径減少部分を介して小内径部分へと素材を押し込んで押出加工を行い、マンドレルの先端側の端部がコンテナ孔の内径減少部分の基端側の端部に到達する時点である第1時点までスリーブ及びマンドレルの進行を継続する工程である。
 第3工程は、第1時点以降も先端間距離を第1距離に維持しつつスリーブ及びマンドレルを押出方向に向かって進行させる工程である。
 また、本発明は、上述した本発明方法を実行することにより中空部分を有する差厚パイプを成形する、中空部分を有する差厚パイプの押出成形装置(以降、「本発明装置」と称呼される場合がある。)にも関する。
 上述した構成を有する本発明装置において上述した第1工程乃至第3工程を含む本発明方法を実行することにより、単純な構造を有する素材から中空部分を有する差厚パイプを精度良く且つ容易に成形することができる。即ち、本発明によれば、複雑な形状を有する素材を必要とすること無く亀裂及び/又は肉溜まり等の欠陥の発生を低減することができる、中実部分を有する差厚パイプの製造方法並びに製造装置を提供することができる。
 本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
本発明の第1実施形態に係る、中実部分を有する差厚パイプの押出成形方法(第1方法)において使用される素材の元となる原素材、素材及び素材から成形される中実部を有する差厚パイプの構成の一例を示す模式的な断面図である。 第1方法において使用されるマンドレル及びスリーブ並びにコンテナの構成の一例を示す模式的な断面図である。 第1方法において実行される第1工程乃至第3工程の流れを例示するフローチャートである。 第1方法において実行される第1工程の終了時並びに第3工程の開始時及び終了時における素材及び差厚パイプの形状並びにマンドレル、スリーブ及びコンテナと素材及び差厚パイプとの位置関係の一例を示す模式的な断面図である。 本発明の第2実施形態に係る、中実部分を有する差厚パイプの押出成形方法(第2方法)に含まれる第2工程の開始時点における素材の第1中空孔の底部の近傍における第1中空孔の底部とマンドレルとの位置関係の一例を示す模式的な断面図である。 従来技術をベースとして中実部分を有する差厚パイプを押出成形する実験を試みた際に認められた問題を例示する模式的な断面図である。
《第1実施形態》
 以下、図面を参照しながら、本発明の第1実施形態に係る、中実部分を有する差厚パイプの押出成形方法(以降、「第1方法」と称呼される場合がある。)について説明する。
〈構成〉
 第1方法は、押出成形装置において、所定の形状を有する素材から中空部分を有する差厚パイプを押出加工によって成形する、押出成形方法である。押出成形装置は、所定の形状を有するマンドレルと、所定の形状を有するスリーブと、所定の形状を有する貫通孔であるコンテナ孔が形成されたコンテナと、コンテナ孔にマンドレルを押し込むように構成された駆動機構と、を備える。このような押出成形装置の基本的な構成については当業者に周知であるので詳細な説明は省略するが、マンドレル、スリーブ及びコンテナを始めとする構成要素は、例えば後述する押出加工において構成要素に作用する荷重等の加工条件に耐え得る性質(例えば、機械的強度及び耐久性等)を有する材料によって構成される。また、コンテナ孔にマンドレルを押し込むための駆動機構は、押出加工に付される素材を構成する材料の性質(例えば、機械的強度及び硬度等)に応じて、当該技術分野において周知の種々の駆動機構の中から適宜選択することができる。典型的には、例えば油圧式プレス機等のプレス機が駆動機構として採用される。
 図1の(a)、(b)及び(c)は、それぞれ、第1方法において使用される素材の元となる原素材11、素材21及び素材21から成形される中実部を有する差厚パイプ31の構成の一例を示す模式的な断面図である。図1の(b)に例示するように、素材21は、第1中空部分PH1及び第1中実部分PS1からなり、全体として所定の外径である第1外径DO1を有する円柱状の外形を有する部材である。第1中空部分PH1は、押出方向における上流側である基端側の端面に開口し所定の内径である第1内径DI1を有する円柱状の空間である第1中空孔HH1が形成され所定の肉厚である第1肉厚T1を有する円筒状の部分である。第1中実部分PS1は、押出方向における下流側である先端側の端面と第1中空部分PH1との間に位置する円柱状の部分である。
 上記のように素材21は比較的単純な構造を有するので、図1の(a)に例示するような第1外径DO1を有する円柱状の部材である原素材11に第1中空孔HH1を形成することにより容易に製造することができる。原素材11に第1中空孔HH1を形成するための具体的な手法は特に限定されないが、例えば切削加工等の手法により原素材11に第1中空孔HH1を容易に形成することができる。
 尚、原素材11を構成する材料は、押出加工における塑性変形により所望の形状に成形することが可能である限り、特に限定されない。典型的には、原素材11を構成する材料は、例えば、鉛、スズ、アルミニウム、銅、ジルコニウム、チタン、モリブデン、バナジウム、ニオブ、及び鋼等を始めとする金属である。
 図1の(c)に例示するように、差厚パイプ31は、第2中空部分PH2と、第3中空部分PH3と、第4中空部分PH4と、第2中実部分PS2からなる部材である。第2中空部分PH2は、第1外径DO1及び第1肉厚T1を有する円筒状の部分である。第3中空部分PH3は、第2中空部分PH2の先端側に隣接し基端側から先端側に向かって第1外径DO1から第1外径DO1よりも小さい所定の外径である第2外径DO2へと外径が変化し且つ第1肉厚T1から第1肉厚T1よりも小さい所定の肉厚である第2肉厚T2へと肉厚が変化する筒状の部分である。第4中空部分PH4は、第3中空部分PH3の先端側に隣接し第2外径DO2及び第2肉厚T2を有する円筒状の部分である。第2中実部分PS2は、先端側の端部と第4中空部分PH4との間に位置し第2外径DO2を有する円柱状の部分である。更に、基端側の端面に開口し第1内径DI1を有する円柱状の空間である第2中空孔HH2が第2中空部分PH2から第4中空部分PH4に亘って連続的に形成されている。
 尚、図1の(c)に例示した差厚パイプ31においては、第3中空部分PH3の外径の変化率が基端側から先端側に向かうほど大きくなっており、第3中空部分PH3の外径の輪郭が径方向における外側に凸状の曲線となっている。しかしながら、第3中空部分PH3の外径の第1外径DO1から第2外径DO2への変化のパターンはこれに限定されない。例えば、第3中空部分PH3の外径の輪郭が、径方向における外側に凹状の曲線となっていてもよく、或いは、第3中空部分PH3の外径の変化率が基端側の端部から先端側の端部まで一定であり、第3中空部分PH3の外径の輪郭が直線となっていてもよい。
 また、図1の(c)に例示した差厚パイプ31においては、第2中空孔HH2の底部(先端側の端部)が円錐形の形状を有している。しかしながら、第2中空孔HH2の底部の形状はこれに限定されず、例えば差厚パイプ31の用途等に応じて様々な形状とすることができる。例えば、第2中空孔HH2の底部の形状は、差厚パイプ31の軸方向に垂直な平面であってもよく、先端側に凸状の曲面(例えば、球面等)であってもよい。このような第2中空孔HH2の底部の形状は、例えばマンドレルの先端側の端部の形状を第2中空孔HH2の底部の形状に対応した形状とすることによって達成することができる。
 図2の(a)及び(b)は、それぞれ、第1方法において使用されるマンドレル41及びスリーブ51並びにコンテナ61の構成の一例を示す模式的な断面図である。図2の(a)に例示するように、マンドレル41は、スリーブ51に同軸状且つ軸方向において摺動可能に内嵌され、素材21の第1中空部分PH1の内径である第1内径DI1に対応する所定の外径である第3外径DO3を有する円柱状の形状を有する部材である。スリーブ51は、マンドレル41に同軸状且つ軸方向において摺動可能に外嵌され、マンドレル41の外径である第3外径DO3に対応する所定の内径である第2内径DI2及び素材21の外径である第1外径DO1を有する円筒状の形状を有する部材である。
 尚、図2には描かれていないが、マンドレル41及びスリーブ51の基端側の部分は、押出成形装置が備える駆動機構による駆動及び/又は駆動装置からの脱着等に好適な構造及び/又は機構を備えることができる。
 図2の(b)に例示するように、コンテナ61に形成されたコンテナ孔HC1は、大内径部分PDILと、小内径部分PDISと、内径減少部分PDITと、からなる。大内径部分PDILは、基端側に形成され且つ素材21の外径である第1外径DO1に対応する内径である第3内径DI3を有する部分である。小内径部分PDISは、先端側に形成され且つ差厚パイプ31の第4中空部分PH2及び第2中実部分PS2の外径である第2外径DO2に対応する内径である第4内径DI4を有する部分である。内径減少部分PDITは、大内径部分PDILと小内径部分PDISとの間に形成され且つ大内径部分PDILから小内径部分PDISへと近付くにつれて第3内径DI3から第4内径DI4へと内径が減少する部分である。
 尚、図2の(b)に例示したコンテナ61においては、大内径部分PDILが2つの部材によって構成され、内径減少部分PDIT及び小内径部分PDISの最も基端側の部分が1つの部材によって一体的に構成され、小内径部分PDISの残りの部分が2つの部材によって構成されている。即ち、図2の(b)に例示したコンテナ61は、全体として5つの部材によって構成されている。しかしながら、コンテナ61の構成はこれに限定されず、例えば、全体として1つの部材によって構成されていてもよく、或いは、大内径部分PDIL、小内径部分PDIS及び内径減少部分PDITがそれぞれ1つの部材によって構成され、全体として3つの部材によって構成されていてもよい。
 第1方法は、図3のフローチャートによって例示されるように、以下に列挙する第1工程乃至第3工程を含む。
 ステップS01において実行される第1工程は、コンテナ孔の大内径部分に素材を挿入しコンテナ孔の内径減少部分に素材の先端側の端部を当接させ、素材の基端側の端部にスリーブを当接させ、素材の第1中空孔にマンドレルを挿入し、スリーブの先端側の端部とマンドレルの先端側の端部との間の押出方向における相対的な距離である先端間距離を所定の距離である第1距離に固定する工程である。即ち、第1工程においては、素材、マンドレル、スリーブ及びコンテナが所定の位置にセットされる。
 ステップS02において実行される第2工程は、先端間距離を第1距離に維持しつつスリーブ及びマンドレルを押出方向に向かって進行させることによりコンテナ孔の内径減少部分を介して小内径部分へと素材を押し込んで押出加工を行い、マンドレルの先端側の端部がコンテナ孔の内径減少部分の基端側の端部に到達する時点である第1時点までスリーブ及びマンドレルの進行を継続する工程である。即ち、第2工程においては、マンドレルの先端側の端部がコンテナ孔の内径減少部分の基端側の端部に到達するまで、マンドレル及びスリーブの協調駆動により先端間距離を第1距離に維持しつつ、スリーブ及びマンドレルを押出方向に向かって進行させる。これにより、素材の第1中実部分から差厚パイプの第2中実部分への押出加工が行われる。
 ステップS03において実行される第3工程は、第1時点以降も先端間距離を第1距離に維持しつつスリーブ及びマンドレルを押出方向に向かって進行させる工程である。即ち、第1時点以降に実行される工程である第3工程においても、マンドレル及びスリーブの協調駆動により先端間距離を第1距離に維持しつつ、スリーブ及びマンドレルを押出方向に向かって進行させることにより、素材の第1中空部分の先端側の一部から差厚パイプの第3中空部分及び第4中空部分への押出加工が行われる。尚、素材の第1中空部分のうち第3工程において押出加工に付されなかった部分が差厚パイプの第2中空部分となる。
 図4の(a)は、第1工程の終了時における素材21の形状並びにマンドレル41、スリーブ51及びコンテナ61と素材21との位置関係の一例を示す模式的な断面図である。尚、図4においては、図面を簡潔なものとするため、図1及び図2において示した各部位に付された符号の一部のみが表示されている。しかしながら、図4に関する以下の説明においては、正確を期すため、図1及び図2において示した符号を使用するので、必要に応じて図1及び図2を参照されたい。
 図4の(a)に例示するように、コンテナ孔HC1の大内径部分PDILに素材21が挿入され、コンテナ孔HC1の内径減少部分PDITに素材21の先端側の端部が当接している。これにより、コンテナ孔HC1の内部における所定の位置に素材21が保持されている。また、素材21の基端側の端部にスリーブ51が当接しており、素材21に形成された第1中空孔HH1にマンドレル41が挿入されている。更に、スリーブ51の先端側の端部とマンドレル41の先端側の端部との間の押出方向における相対的な距離である先端間距離DTが所定の距離である第1距離D1となるようにスリーブ51及びマンドレル41が配置されている(即ち、DT=D1)。
 その後、図示しないが、第1工程に続く第2工程においては、マンドレル51及びスリーブ41の協調駆動により先端間距離DTを第1距離D1に維持しつつスリーブ51及びマンドレル41を押出方向(図4における下向きの方向)に向かって進行させる。これにより、素材21の第1中実部分PS1が先端側からコンテナ孔HC1の内径減少部分PDITを介して小内径部分PDISへと押し込まれ、素材21の第1中実部分PS1から差厚パイプ31の第2中実部分PS2への押出加工が行われる。
 尚、差厚パイプ31の第2中実部分PS2の外径である第2外径DO2は素材21の第1中実部分PS1の外径である第1外径DO1よりも小さい(DO2<DO1)。即ち、差厚パイプ31の第2中実部分PS2の横断面積は素材21の第1中実部分PS1の横断面積よりも小さい。従って、素材21の第1中実部分PS1から押出加工される差厚パイプ31の第2中実部分PS2の押出方向における長さは素材21の第1中実部分PS1の押出方向における長さよりも大きい(詳しくは後述する)。
 ところで、例えば図6の(a)に例示したような亀裂の発生等の問題を回避する観点からは、少なくとも第2工程における上記押出方向の開始時点である第2時点においては、素材21の基端側の端部はスリーブ51によって押出方向に向かって押圧されるものの第1中空孔HH1の底部はマンドレル41によって押圧されない状態にあることが好ましい。このような状態は、例えば、第2時点において素材21の第1中空孔HH1の底部とマンドレル41とを接触させないこと或いは第2時点において素材21の第1中空孔HH1の底部とマンドレル41の先端側の端部との間に所定の大きさを有する空隙を設けること等によって達成することができる(詳しくは後述する)。
 但し、図示しないが、例えば素材、マンドレル、スリーブ及び/又はコンテナを構成する材料並びに例えば押圧荷重及び又は押圧速度等の押出加工の条件等によっては、上記押出加工の進行に伴って、所謂「据え込み現象」が発生する場合がある。この場合、素材を構成する材料の塑性流動及び/又はコンテナの弾性変形等により径方向における外側に向かって素材が膨張すると共に軸方向において収縮し、素材に形成された第1中空孔の底部が基端側へと僅かに変位する。従って、第2時点において素材の第1中空孔の底部とマンドレルの先端側の端部との間に空隙があったとしても、上記据え込み現象によって当該空隙が消失又は縮小する場合がある。
 上記押出加工の進行に伴い、やがてマンドレル41の先端側の端部がコンテナ孔HC1の内径減少部分PDITの基端側の端部に到達する。このようにマンドレル41の先端側の端部がコンテナ孔HC1の内径減少部分PDITの基端側の端部に到達した時点である第1時点までの期間が第2工程に該当し、第1時点以降の期間が第3工程に該当する。
 図4の(b)は、第2工程の終了直後、即ち第3工程の開始直後における素材21の形状並びにマンドレル41、スリーブ51及びコンテナ61と素材21との位置関係の一例を示す模式的な断面図である。第3工程においては、第1時点以降も先端間距離DTを第1距離D1に維持しつつスリーブ51及びマンドレル41の押出方向への進行が継続される。これにより、素材21の第1中空部分PH1が先端側からコンテナ孔HC1の内径減少部分PDITを介して小内径部分PDISへと押し込まれ、素材21の第1中空部分PH1の先端側の一部から差厚パイプ31の第4中空部分PH4及び第3中空部分PH3への押出加工が行われる。また、上述したように、素材21の第1中空部分PH1のうち第3工程において押出加工に付されなかった部分が差厚パイプ31の第2中空部分PH2となる。
 尚、差厚パイプ31の第4中空部分PH4の外径である第2外径DO2は素材21の第1中空部分PH1の外径である第1外径DO1よりも小さい(DO2<DO1)。また、差厚パイプ31の第2中空孔HH2の内径はマンドレル41により素材21の第1中空部分PH1の内径である第1内径DI1のまま維持される。即ち、差厚パイプ31の第4中空部分PH4の横断面積は素材21の第1中空部分PH1の横断面積よりも小さい。一方、差厚パイプ31の第3中空部分PH3の外径は、前述したように基端側から先端側に向かって第1外径DO1から第1外径DO1よりも小さい第2外径DO2へと変化するものの、差厚パイプ31の第3中空部分PH3の内径もまたマンドレル41により第1内径DI1のまま維持される。即ち、差厚パイプ31の第3中空部分PH3の横断面積もまた素材21の第1中空部分PH1の横断面積よりも小さい。従って、素材21の第1中空部分PH1から押出加工される差厚パイプ31の第4中空部分PH4及び第3中空部分PH3の押出方向における長さは素材21の第1中空部分PH1の押出加工に付された部分の押出方向における長さよりも大きくなる(詳しくは後述する)。
 従って、図4の(b)において太い破線によって囲まれている領域に示すように、第3工程において素材21の第1中空部分PH1から差厚パイプ31の第4中空部分PH4及び第3中空部分PH3への押出加工が開始されると、素材の第1中空孔の底部とマンドレルの先端側の端部とが互いに離隔し始める。
 図4の(c)は、第3工程の終了時における差厚パイプ31の形状並びにマンドレル41、スリーブ51及びコンテナ61と差厚パイプ31との位置関係の一例を示す模式的な断面図である。図4の(c)に例示するように、上述した第1工程乃至第3工程の実行により、所期の形状を有する第2中空部分PH2と第3中空部分PH3と第4中空部分PH4と第2中実部分PS2からなる差厚パイプ31を、単純な形状を有する素材21から、容易に成形することができる。
 尚、第1方法に含まれる第2工程おいては、上述したように、スリーブの先端側の端部とマンドレルの先端側の端部との間の押出方向における相対的な距離である先端間距離DTを所定の距離である第1距離D1に維持しつつスリーブ51及びマンドレル41を押出方向に向かって進行させることによりコンテナ孔HC1の内径減少部分PDITを介して小内径部分PDISへと素材21の第1中実部分PS1を押し込んで素材21の第1中実部分PS1から差厚パイプ31の第2中実部分PS2への押出加工を行う。
 一方、第3工程においては、上述したように、素材の第1中空孔の底部とマンドレルの先端側の端部とが互いに離隔している。即ち、第3工程においては、マンドレル41は押出加工には寄与せず、素材21の第1中空部分PH1の先端側の一部が差厚パイプ31の第4中空部分PH4及び第3中空部分PH3へと変化する過程において差厚パイプ31に形成された第2中空孔HH2の横断面形状を素材21に形成された第1中空孔HH1と同一に維持する機能を担っている。
 ここで、先に言及した素材21及び差厚パイプ31の各部分の押出方向(素材21の軸方向に同じ)における長さについて以下に詳しく説明する。但し、以下の説明においては、理解を容易にすることを目的として、素材21に形成された第1中空孔HH1及び差厚パイプ31に形成された第2中空孔HH2の底部の形状が何れも軸方向に垂直な平面であることを前提としている。従って、これらの底部の形状が軸方向に垂直な平面ではない場合は、当該形状に応じた修正が必要とされることは言うまでも無い。
 差厚パイプ31の第2中空部分PH2、第3中空部分PH3及び第4中空部分PH4は素材21の第1中空部分PH1から成形され、差厚パイプ31の第2中実部分PS2は素材21の第1中実部分PS1から成形される。従って、素材21の各部分の軸方向における長さ(以降、単に「長さ」と称呼される場合がある。)と差厚パイプ31の各部分の軸方向における長さとの間には以下に列挙するような関係が成立する。
 先ず、差厚パイプ31の第2中空部分PH2の長さ(LPH2)は、第3工程を終了する時点において押出加工に付されずに素材21のまま未加工の状態にて残る部分の長さである。従って、素材21の第1中空部分PH1の長さ(LPH1)よりも小さい限り、第3工程を終了するタイミングによってLPH2を任意の大きさに定めることができる。
 次に、差厚パイプ31の第3中空部分PH3の長さ(LPH3)は、コンテナ61に形成されたコンテナ孔HC1の内径減少部分PDITの長さ(LPDIT)によって自ずと定まる。従って、コンテナ61に形成されたコンテナ孔HC1におけるLPDITを調整することによりLPH3を任意の大きさに定めることができる。
 次に、差厚パイプ31の第4中空部分PH4の長さ(LPH4)は、素材21の第1中空部分PH1を構成している材料の体積(VPH1)から差厚パイプ31の第2中空部分PH2及び第3中空部分PH3を構成している材料の体積(VPH2+VPH3)を減算した残りの体積を第4中空部分PH4の環状の横断面の面積(APH4)によって除算することによって算出することができる。従って、所期のLPH4を得るためには、以下の式(1)が成立するように素材21、差厚パイプ31及び第3コンテナ61に形成されるコンテナ孔HC1を構成する必要がある。尚、VPH1、VPH2、及びAPH4は以下の式(2)乃至式(4)によって表すことができる。尚、VPH3は第3中空部分PH3の外径の変化のパターン(即ち輪郭の形状)によって変化するので、第3中空部分PH3の形状に応じて算出する必要がある。
Figure JPOXMLDOC01-appb-M000001
 素材21の第1中実部分PS1の長さ(LPS1)と差厚パイプ31の中実部分PS2の長さ(LPS2)との関係は以下の式(5)によって表すことができる。
Figure JPOXMLDOC01-appb-M000002
 従って、所期のLPS2を得るためには、以下の式(6)が成立するように素材21の第1外径DO1並びに差厚パイプ31の第2外径DO2に応じて素材21の第1中実部分の長さ(LPS1)を定める必要がある。
Figure JPOXMLDOC01-appb-M000003
〈効果〉
 以上説明してきたように、上述した構成を有するマンドレル、スリーブ及びコンテナ並びに駆動機構を備える押出成形装置において上述した第1工程乃至第3工程を含む第1方法を実行することにより、単純な構造を有する素材から中空部分を有する差厚パイプを精度良く且つ容易に成形することができる。即ち、第1方法は、複雑な形状を有する素材を必要とすること無く亀裂及び/又は肉溜まり等の欠陥の発生を低減することができる、中実部分を有する差厚パイプの製造方法である。
 このような中実部分を有する差厚パイプは、厚肉部において所望の機械的強度を達成しつつ薄肉部(厚肉部以外の部分)において軽量化を図ることが求められる部品として有用である。また、例えば、シャフト系の部品のうち油止めが必要とされる部品として上記のような中実部分を有する差厚パイプを採用すれば、油止めのための栓が不要となり、設計上の自由度を高めたり製造コストを削減したりすることができる。
《第2実施形態》
 以下、図面を参照しながら、本発明の第2実施形態に係る、中実部分を有する差厚パイプの押出成形方法(以降、「第2方法」と称呼される場合がある。)について説明する。
 前述したように、第1方法においては、スリーブの先端側の端部とマンドレルの先端側の端部との間の押出方向における相対的な距離である先端間距離を所定の距離である第1距離に維持しつつスリーブ及びマンドレルを押出方向に向かって進行させることによりコンテナ孔の内径減少部分を介して小内径部分へと素材を押し込んで押出加工を行う。その結果、素材21の第1中空部分PH1の先端側の一部が差厚パイプ31の第4中空部分PH4及び第3中空部分PH3へと押出加工される第3工程においては、素材の第1中空孔の底部とマンドレルの先端側の端部とが互いに離隔する。即ち、第3工程においては、マンドレルは押出加工には寄与せず、素材に形成された第1中空孔が差厚パイプ31に形成された第2中空孔へと変化する過程において当該中空孔の横断面形状を維持する機能を担っている。
 その結果、単純な構造を有する素材から中空部分を有する差厚パイプを精度良く且つ容易に成形することができる。即ち、第1方法によれば、複雑な形状を有する素材を必要とすること無く、亀裂及び/又は肉溜まり等の欠陥の発生を低減しつつ、中実部分を有する差厚パイプを容易に製造することができる。
 しかしながら、前述したように、例えば素材、マンドレル、スリーブ及び/又はコンテナを構成する材料並びに例えば押圧荷重及び又は押圧速度等の押出加工の条件等によっては、コンテナに形成されたコンテナ孔の内径減少部分を介して小内径部分へと素材を押し込み始める時点(即ち、押出加工の開始時点)において所謂「据え込み現象」が発生する場合がある。この場合、素材を構成する材料の塑性流動及び/又はコンテナの弾性変形等により径方向における外側に向かって素材が膨張すると共に軸方向において収縮し、素材に形成された第1中空孔の底部が基端側へと僅かに変位する。その結果、第1中空孔の底部によってマンドレルの先端側の端部が基端側に向かって押圧され、その反作用により第1中空孔の底部に応力が作用して、第1中空孔の底部と側壁部との境界に亀裂が生ずる場合がある。
〈構成〉
 そこで、第2方法は、上述した第1方法であって、少なくとも第2工程における押出加工の開始時点である第2時点においては素材の第1中空孔の底部とマンドレルとが接触していないことを特徴とする、中空部分を有する差厚パイプの押出成形方法である。
 図5は、第2方法に含まれる第2工程の開始時点における素材の第1中空孔の底部の近傍における第1中空孔の底部とマンドレルとの位置関係の一例を示す模式的な断面図であり、図4の(a)において太い破線によって囲まれている領域の拡大図である。図5に例示するように、第2方法においては、少なくとも(図示しない)スリーブ51及びマンドレル41を押出方向に向かって進行させ始める時点(第2時点)において、素材21の第1中空孔HH1の底部とマンドレル41とが接触していない。具体的には、図5に示す例においては、素材21の第1中空孔HH1の底部とマンドレル41との間に空隙Gが設けられている。
 上記により、上述したように第2工程における押出加工の開始時点において据え込み現象が発生して素材に形成された第1中空孔の底部が基端側へと変位する場合であっても、マンドレルの先端を中空孔の底部が押圧する可能性を低減することができる。その結果、第1中空孔の底部によるマンドレルの先端への押圧の反作用により第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を低減することができる。
 尚、図5に例示した素材21においては、第1中空孔HH1の底部(先端側の端部)が円錐形の形状を有している。このため、図5に示した例においては、素材21の第1中空孔HH1の底部とマンドレル41との間の空隙Gとして、素材21の第1中空孔HH1の底面の軸方向における平均的な位置とマンドレル41の先端面との間の距離が採用されている。しかしながら、第1中空孔HH1の底部の形状はこれに限定されず、例えば差厚パイプ31の用途及び/又はマンドレルの先端側の端部の形状等に応じて様々な形状とすることができる。例えば、第1中空孔HH1の底部の形状は、素材21の軸方向に垂直な平面であってもよく、先端側に凸状の曲面(例えば、球面等)であってもよい。
〈効果〉
 以上のように、第2方法によれば、第2工程における押出加工の開始時点において据え込み現象が発生して素材に形成された第1中空孔の底部が基端側へと変位する場合であっても、マンドレルの先端を中空孔の底部が押圧する可能性を低減することができる。その結果、第1中空孔の底部によるマンドレルの先端への押圧の反作用により第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を低減することができる。
《第3実施形態》
 以下、図面を参照しながら、本発明の第3実施形態に係る、中実部分を有する差厚パイプの押出成形方法(以降、「第3方法」と称呼される場合がある。)について説明する。
 前述したように、第2方法においては、少なくともスリーブ及びマンドレルを押出方向に向かって進行させ始める時点(第2時点)において、素材の第1中空孔の底部とマンドレルとが接触していない。従って、第2方法によれば、第2工程における押出加工の開始時点において据え込み現象が発生して素材に形成された第1中空孔の底部が基端側へと変位する場合であっても、マンドレルの先端を中空孔の底部が押圧する可能性を低減することができる。その結果、第1中空孔の底部によるマンドレルの先端への押圧の反作用により第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を低減することができる。
 しかしながら、第2時点における素材の第1中空孔の底部とマンドレルとの間の空隙G(初期空隙)が小さ過ぎると、第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を十分に低減することができない場合がある。従って、第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を十分に低減するためには初期空隙を十分に大きく設けることが望ましいと考えられる。ところが、本発明者による更なる研究の結果、例えば素材、マンドレル、スリーブ及び/又はコンテナを構成する材料並びに例えば押圧荷重及び又は押圧速度等の押出加工の条件等によっては、初期空隙が大き過ぎても第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を十分に低減することができない場合があることが判明した。即ち、初期空隙には第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を十分に低減するために好適な範囲が存在する。
〈構成〉
 そこで、第3方法は、前述した第2方法であって、初期空隙の押出方向における長さである初期長さが所定の第1長さ以上であり且つ第1長さよりも長い所定の第2長さ未満であることを特徴とする、中空部分を有する差厚パイプの押出成形方法である。初期空隙は、第2時点における素材の第1中空孔の底部とマンドレルの先端側の端部との間の空隙である。
 尚、第1長さは、第2時点から素材の先端側の端部がコンテナ孔の内径減少部分へと進入し始める時点である第3時点までの期間における素材の寸法変化の大きさに基づいて定めることができる。好ましくは、第1長さは、第2時点から第3時点までの期間における第1中空孔の底部の基端側への変位の大きさに基づいて定めることができる。このような第1中空孔の底部の基端側への変位等の素材の寸法変化の大きさは、例えば事前の予備実験による検証及び/又は流動解析等のコンピューターシミュレーション等によって特定することができる。
 一方、第2長さは、第2時点から(マンドレルの先端側の端部がコンテナ孔の内径減少部分を通過した時点以降の所定の時点である)第1時点までの期間において素材を構成する材料が第1空隙に流入しない最大長さ以下の所定の長さに定めることができる。斯かる第2長さもまた、例えば事前の予備実験による検証及び/又は流動解析等のコンピューターシミュレーション等によって特定することができる。
〈効果〉
 以上のように、第3方法においては、スリーブ及びマンドレルを押出方向に向かって進行させ始める時点(第2時点)において第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を十分に低減するために好適な範囲に初期空隙が設定される。その結果、第3方法によれば、素材の第1中空孔の底部と側壁部との境界に亀裂が生ずる虞をより確実に低減することができる。
《第4実施形態》
 ところで、本明細書の冒頭において述べたように、本発明は、上述した第1方法乃至第3方法を始めとする、中実部分を有する差厚パイプの押出成形方法のみならず、中実部分を有する差厚パイプの押出成形装置にも関する。そこで、本発明の各種実施形態に係る、中実部分を有する差厚パイプの押出成形装置につき以下に説明する。
 先ず、本発明の第4実施形態に係る差厚パイプの押出成形装置(以降、「第4装置」と称呼される場合がある。)について説明する。
〈構成〉
 第4装置は、所定の形状を有するマンドレルと所定の形状を有するスリーブと所定の形状を有する貫通孔であるコンテナ孔が形成されたコンテナとコンテナ孔にマンドレルを押し込むように構成された駆動機構とを備える、中実部分を有する差厚パイプの押出成形装置である。前述したように、このような押出成形装置の基本的な構成については当業者に周知であり、マンドレル、スリーブ及びコンテナを始めとする構成要素は、例えば前述した押出加工において構成要素に作用する荷重等の加工条件に耐え得る性質(例えば、機械的強度及び耐久性等)を有する材料によって構成される。
 第4装置は、以下に列挙する第1工程乃至第3工程を実行することにより、所定の形状を有する素材から中空部分を有する差厚パイプを押出加工によって成形するように構成されている。
 第1工程は、コンテナ孔の大内径部分に素材を挿入しコンテナ孔の内径減少部分に素材の先端側の端部を当接させ、素材の基端側の端部にスリーブを当接させ、素材の第1中空孔にマンドレルを挿入し、スリーブの先端側の端部とマンドレルの先端側の端部との間の押出方向における相対的な距離である先端間距離を所定の距離である第1距離に固定する工程である。
 第2工程は、先端間距離を第1距離に維持しつつスリーブ及びマンドレルを押出方向に向かって進行させることによりコンテナ孔の内径減少部分を介して小内径部分へと素材を押し込んで押出加工を行い、マンドレルの先端側の端部がコンテナ孔の内径減少部分の基端側の端部に到達する時点である第1時点までスリーブ及びマンドレルの進行を継続する工程である。
 第3工程は、第1時点以降も先端間距離を第1距離に維持しつつスリーブ及びマンドレルを押出方向に向かって進行させる工程である。
 第1工程乃至第3工程の詳細については、前述した第1方法に関する説明において既に述べたので、ここでの説明は省略する。
 図1を参照しながら既に説明したように、素材21は、第1中空部分PH1及び第1中実部分PS1からなり、全体として所定の外径である第1外径DO1を有する円柱状の外形を有する部材である。第1中空部分PH1は、押出方向における上流側である基端側の端面に開口し所定の内径である第1内径DI1を有する円柱状の空間である第1中空孔HH1が形成され所定の肉厚である第1肉厚T1を有する円筒状の部分である。第1中実部分PS1は、押出方向における下流側である先端側の端面と第1中空部分PH1との間に位置する円柱状の部分である。
 また、差厚パイプ31は、第2中空部分PH2と、第3中空部分PH3と、第4中空部分PH4と、第2中実部分PS2からなる部材である。第2中空部分PH2は、第1外径DO1及び第1肉厚T1を有する円筒状の部分である。第3中空部分PH3は、第2中空部分PH2の先端側に隣接し基端側から先端側に向かって第1外径DO1から第1外径DO1よりも小さい所定の外径である第2外径DO2へと外径が変化し且つ第1肉厚T1から第1肉厚T1よりも小さい所定の肉厚である第2肉厚T2へと肉厚が変化する筒状の部分である。第4中空部分PH4は、第3中空部分PH3の先端側に隣接し第2外径DO2及び第2肉厚T2を有する円筒状の部分である。第2中実部分PS2は、先端側の端部と第4中空部分PH4との間に位置し第2外径DO2を有する円柱状の部分である。更に、基端側の端面に開口し第1内径DI1を有する円柱状の空間である第2中空孔HH2が第2中空部分PH2から第4中空部分PH4に亘って連続的に形成されている。
 図2を参照しながら既に説明したように、マンドレル41は、スリーブ51に同軸状且つ軸方向において摺動可能に内嵌され、素材21の第1中空部分PH1の内径である第1内径DI1に対応する所定の外径である第3外径DO3を有する円柱状の形状を有する部材である。スリーブ51は、マンドレル41に同軸状且つ軸方向において摺動可能に外嵌され、マンドレル41の外径である第3外径DO3に対応する所定の内径である第2内径DI2及び素材21の外径である第1外径DO1を有する円筒状の形状を有する部材である。
 また、コンテナ61に形成されたコンテナ孔HC1は、大内径部分PDILと、小内径部分PDISと、内径減少部分PDITと、からなる。大内径部分PDILは、基端側に形成され且つ素材21の外径である第1外径DO1に対応する内径である第3内径DI3を有する部分である。小内径部分PDISは、先端側に形成され且つ差厚パイプ31の第4中空部分PH2及び第2中実部分PS2の外径である第2外径DO2に対応する内径である第4内径DI4を有する部分である。内径減少部分PDITは、大内径部分PDILと小内径部分PDISとの間に形成され且つ大内径部分PDILから小内径部分PDISへと近付くにつれて第3内径DI3から第4内径DI4へと内径が減少する部分である。
 以上のように、第4装置は前述した第1方法に対応する、中実部分を有する差厚パイプの押出成形装置である。従って、第4装置によって成形される差厚パイプ、差厚パイプを成形する元となる素材及び素材の元となる原素材、並びに、第4装置を構成するマンドレル、スリーブ及びコンテナについては、前述した第1方法に関する説明から明らかであるので、ここでの説明は省略する。
〈効果〉
 上述したような構成を有する第4装置において第1工程乃至第3工程を実行することにより、単純な構造を有する素材から中空部分を有する差厚パイプを精度良く且つ容易に成形することができる。即ち、第4装置は、複雑な形状を有する素材を必要とすること無く亀裂及び/又は肉溜まり等の欠陥の発生を低減することができる、中実部分を有する差厚パイプの製造装置である。
《第5実施形態》
 次に、本発明の第5実施形態に係る、中実部分を有する差厚パイプの押出成形装置(以降、「第5装置」と称呼される場合がある。)について説明する。
〈構成〉
 第5装置は、上述した第4装置であって、少なくとも第2工程における押出加工の開始時点である第2時点においては素材の第1中空孔の底部とマンドレルとが接触していないことを特徴とする、中空部分を有する差厚パイプの押出成形装置である。
 以上のように、第5装置は前述した第2方法に対応する、中実部分を有する差厚パイプの押出成形装置である。従って、第5装置の構成及び作動の詳細については第2方法に関する説明から明らかであるので、ここでの説明は省略する。
〈効果〉
 第5装置によれば、第2工程における押出加工の開始時点において据え込み現象が発生して素材に形成された第1中空孔の底部が基端側へと変位する場合であっても、マンドレルの先端を中空孔の底部が押圧する可能性を低減することができる。その結果、第1中空孔の底部によるマンドレルの先端への押圧の反作用により第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を低減することができる。
《第6実施形態》
 次に、本発明の第6実施形態に係る、中実部分を有する差厚パイプの押出成形装置(以降、「第6装置」と称呼される場合がある。)について説明する。
〈構成〉
 第6装置は、上述した第5装置であって、初期空隙の押出方向における長さである初期長さが所定の第1長さ以上であり且つ第1長さよりも長い所定の第2長さ未満であることを特徴とする、中空部分を有する差厚パイプの押出成形方法である。初期空隙は、第2時点における素材の第1中空孔の底部とマンドレルの先端側の端部との間の空隙である。第1長さは、第2時点から素材の先端側の端部がコンテナ孔の内径減少部分へと進入し始める時点である第3時点までの期間における素材の寸法変化の大きさに基づいて定めることができる。第2長さは、第2時点から(マンドレルの先端側の端部がコンテナ孔の内径減少部分を通過した時点以降の所定の時点である)第1時点までの期間において素材を構成する材料が第1空隙に流入しない最大長さ以下の所定の長さに定めることができる。
 以上のように、第6装置は前述した第3方法に対応する、中実部分を有する差厚パイプの押出成形装置である。従って、第6装置の構成及び作動の詳細については第3方法に関する説明から明らかであるので、ここでの説明は省略する。
〈効果〉
 第6装置においては、スリーブ及びマンドレルを押出方向に向かって進行させ始める時点(第2時点)において第1中空孔の底部と側壁部との境界に亀裂が生ずる虞を十分に低減するために好適な範囲に初期空隙が設定される。その結果、第6装置によれば、素材の第1中空孔の底部と側壁部との境界に亀裂が生ずる虞をより確実に低減することができる。
 以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施形態につき、時に添付図面を参照しながら説明してきたが、本発明の範囲は、これらの例示的な実施形態に限定されると解釈されるべきではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることが可能であることは言うまでも無い。
 11…原素材、21…素材、31…差厚パイプ、41…マンドレル、51…スリーブ、61…コンテナ、
 DO1…第1外径、DO2…第2外径、DO3…第3外径、
 DI1…第1内径、DI2…第2内径、DI3…第3内径、DI4…第4内径、
 HH1…第1中空孔、HH2…第2中空孔、
 T1…第1肉厚、T2…第2肉厚、
 PH1…第1中空部分、PH2…第2中空部分、PH3…第3中空部分、PH4…第4中空部分、
 PS1…第1中実部分、PS2…第2中実部分、
 HC1…コンテナ孔、
 PDIL…大内径部分、PDIS…小内径部分、PDIT…内径減少部分、及び
 G…空隙。

Claims (8)

  1.  所定の形状を有するマンドレルと、所定の形状を有するスリーブと、所定の形状を有する貫通孔であるコンテナ孔が形成されたコンテナと、前記コンテナ孔に前記マンドレルを押し込むように構成された駆動機構と、を備える押出成形装置において、所定の形状を有する素材から中空部分を有する差厚パイプを押出加工によって成形する、押出成形方法であって、
     前記素材は、押出方向における上流側である基端側の端面に開口し所定の内径である第1内径を有する円柱状の空間である第1中空孔が形成され所定の肉厚である第1肉厚を有する円筒状の部分である第1中空部分及び前記押出方向における下流側である先端側の端面と前記第1中空部分との間に位置する円柱状の部分である第1中実部分からなり全体として所定の外径である第1外径を有する円柱状の外形を有する部材であり、
     前記差厚パイプは、前記第1外径及び前記第1肉厚を有する円筒状の部分である第2中空部分と、前記第2中空部分の前記先端側に隣接し前記基端側から前記先端側に向かって前記第1外径から前記第1外径よりも小さい所定の外径である第2外径へと外径が変化し且つ前記第1肉厚から前記第1肉厚よりも小さい所定の肉厚である第2肉厚へと肉厚が変化する筒状の部分である第3中空部分と、前記第3中空部分の前記先端側に隣接し前記第2外径及び第2肉厚を有する円筒状の部分である第4中空部分と、前記先端側の端部と前記第4中空部分との間に位置し前記第2外径を有する円柱状の部分である第2中実部分とからなり、前記基端側の端面に開口し前記第1内径を有する円柱状の空間である第2中空孔が前記第2中空部分から前記第4中空部分に亘って連続的に形成された部材であり、
     前記マンドレルは、前記スリーブに同軸状且つ軸方向において摺動可能に内嵌され前記第1内径に対応する所定の外径である第3外径を有する円柱状の形状を有する部材であり、
     前記スリーブは、前記マンドレルに同軸状且つ軸方向において摺動可能に外嵌され前記第3外径に対応する所定の内径である第2内径及び前記第1外径を有する円筒状の形状を有する部材であり、
     前記コンテナ孔は、前記基端側に形成され且つ前記第1外径に対応する内径である第3内径を有する部分である大内径部分と、前記先端側に形成され且つ前記第2外径に対応する内径である第4内径を有する部分である小内径部分と、前記大内径部分と前記小内径部分との間に形成され且つ前記大内径部分から前記小内径部分へと近付くにつれて前記第3内径から前記第4内径へと内径が減少する部分である内径減少部分と、からなり、
     前記コンテナ孔の前記大内径部分に前記素材を挿入し前記コンテナ孔の前記内径減少部分に前記素材の前記先端側の端部を当接させ、前記素材の前記基端側の端部に前記スリーブを当接させ、前記素材の前記第1中空孔に前記マンドレルを挿入し、前記スリーブの前記先端側の端部と前記マンドレルの前記先端側の端部との間の前記押出方向における相対的な距離である先端間距離を所定の距離である第1距離に固定する、第1工程、
     前記先端間距離を前記第1距離に維持しつつ前記スリーブ及び前記マンドレルを前記押出方向に向かって進行させることにより前記コンテナ孔の前記内径減少部分を介して前記小内径部分へと前記素材を押し込んで押出加工を行い、前記マンドレルの前記先端側の端部が前記コンテナ孔の前記内径減少部分の前記基端側の端部に到達する時点である第1時点まで前記スリーブ及び前記マンドレルの進行を継続する、第2工程、及び
     前記第1時点以降も前記先端間距離を前記第1距離に維持しつつ前記スリーブ及び前記マンドレルを前記押出方向に向かって進行させる、第3工程、
    を含む、
    ことを特徴とする、中空部分を有する差厚パイプの押出成形方法。
  2.  請求項1に記載された中空部分を有する差厚パイプの押出成形方法であって、
     少なくとも前記第2工程における前記押出加工の開始時点である第2時点においては前記素材の前記第1中空孔の底部が前記マンドレルによって押圧されない、
    ことを特徴とする、中空部分を有する差厚パイプの押出成形方法。
  3.  請求項2に記載された中空部分を有する差厚パイプの押出成形方法であって、
     前記第2時点においては前記素材の前記第1中空孔の底部と前記マンドレルとが接触していない、
    ことを特徴とする、中空部分を有する差厚パイプの押出成形方法。
  4.  請求項3に記載された中空部分を有する差厚パイプの押出成形方法であって、
     前記第2時点における前記素材の前記第1中空孔の底部と前記マンドレルの前記先端側の端部との間の空隙である初期空隙の前記押出方向における長さである初期長さが所定の第1長さ以上であり且つ前記第1長さよりも長い所定の第2長さ未満であり、
     前記第1長さが、前記第2時点から前記素材の前記先端側の端部が前記コンテナ孔の前記内径減少部分へと進入し始める時点である第3時点までの期間における前記素材の寸法変化の大きさに基づいて定められ、
     前記第2長さが、前記第2時点から前記第1時点までの期間において前記素材を構成する材料が前記第1空隙に流入しない最大長さ以下の所定の長さに定められる、
    ことを特徴とする、中空部分を有する差厚パイプの押出成形方法。
  5.  所定の形状を有するマンドレルと、所定の形状を有するスリーブと、所定の形状を有する貫通孔であるコンテナ孔が形成されたコンテナと、前記コンテナ孔に前記マンドレルを押し込むように構成された駆動機構と、を備え、
     所定の形状を有する素材から中空部分を有する差厚パイプを押出加工によって成形するように構成された、
    押出成形装置であって、
     前記素材は、押出方向における上流側である基端側の端面に開口し所定の内径である第1内径を有する円柱状の空間である第1中空孔が形成され所定の肉厚である第1肉厚を有する円筒状の部分である第1中空部分及び前記押出方向における下流側である先端側の端面と前記第1中空部分との間に位置する円柱状の部分である第1中実部分からなり全体として所定の外径である第1外径を有する円柱状の外形を有する部材であり、
     前記差厚パイプは、前記第1外径及び前記第1肉厚を有する円筒状の部分である第2中空部分と、前記第2中空部分の前記先端側に隣接し前記基端側から前記先端側に向かって前記第1外径から前記第1外径よりも小さい所定の外径である第2外径へと外径が変化し且つ前記第1肉厚から前記第1肉厚よりも小さい所定の肉厚である第2肉厚へと肉厚が変化する筒状の部分である第3中空部分と、前記第3中空部分の前記先端側に隣接し前記第2外径及び第2肉厚を有する円筒状の部分である第4中空部分と、前記先端側の端部と前記第4中空部分との間に位置し前記第2外径を有する円柱状の部分である第2中実部分とからなり、前記基端側の端面に開口し前記第1内径を有する円柱状の空間である第2中空孔が前記第2中空部分から前記第4中空部分に亘って連続的に形成された部材であり、
     前記マンドレルは、前記スリーブに同軸状且つ軸方向において摺動可能に内嵌され前記第1内径に対応する所定の外径である第3外径を有する円柱状の形状を有する部材であり、
     前記スリーブは、前記マンドレルに同軸状且つ軸方向において摺動可能に外嵌され前記第3外径に対応する所定の内径である第2内径及び前記第1外径を有する円筒状の形状を有する部材であり、
     前記コンテナ孔は、前記基端側に形成され且つ前記第1外径に対応する内径である第3内径を有する部分である大内径部分と、前記先端側に形成され且つ前記第2外径に対応する内径である第4内径を有する部分である小内径部分と、前記大内径部分と前記小内径部分との間に形成され且つ前記大内径部分から前記小内径部分へと近付くにつれて前記第3内径から前記第4内径へと内径が減少する部分である内径減少部分と、からなり、
     前記コンテナ孔の前記大内径部分に前記素材を挿入し前記コンテナ孔の前記内径減少部分に前記素材の前記先端側の端部を当接させ、前記素材の前記基端側の端部に前記スリーブを当接させ、前記素材の前記第1中空孔に前記マンドレルを挿入し、前記スリーブの前記先端側の端部と前記マンドレルの前記先端側の端部との間の前記押出方向における相対的な距離である先端間距離を所定の距離である第1距離に固定する、第1工程、
     前記先端間距離を前記第1距離に維持しつつ前記スリーブ及び前記マンドレルを前記押出方向に向かって進行させることにより前記コンテナ孔の前記内径減少部分を介して前記小内径部分へと前記素材を押し込んで押出加工を行い、前記マンドレルの前記先端側の端部が前記コンテナ孔の前記内径減少部分の前記基端側の端部に到達する時点である第1時点まで前記スリーブ及び前記マンドレルの進行を継続する、第2工程、及び
     前記第1時点以降も前記先端間距離を前記第1距離に維持しつつ前記スリーブ及び前記マンドレルを前記押出方向に向かって進行させる、第3工程、
    を実行することにより前記差厚パイプを成形するように構成された、
    ことを特徴とする、中空部分を有する差厚パイプの押出成形装置。
  6.  請求項5に記載された中空部分を有する差厚パイプの押出成形装置であって、
     少なくとも前記第2工程における前記押出加工の開始時点である第2時点においては前記素材の前記第1中空孔の底部が前記マンドレルによって押圧されない、
    ことを特徴とする、中空部分を有する差厚パイプの押出成形装置。
  7.  請求項6に記載された中空部分を有する差厚パイプの押出成形装置であって、
     前記第2時点においては前記素材の前記第1中空孔の底部と前記マンドレルとが接触していない、
    ことを特徴とする、中空部分を有する差厚パイプの押出成形装置。
  8.  請求項7に記載された中空部分を有する差厚パイプの押出成形装置であって、
     前記第2時点における前記素材の前記第1中空孔の底部と前記マンドレルの前記先端側の端部との間の空隙である初期空隙の前記押出方向における長さである初期長さが所定の第1長さ以上であり且つ前記第1長さよりも長い所定の第2長さ未満であり、
     前記第1長さが、前記第2時点から前記素材の前記先端側の端部が前記コンテナ孔の前記内径減少部分へと進入し始める時点である第3時点までの期間における前記素材の寸法変化の大きさに基づいて定められ、
     前記第2長さが、前記第2時点から前記第1時点までの期間において前記素材を構成する材料が前記第1空隙に流入しない最大長さ以下の所定の長さに定められる、
    ことを特徴とする、中空部分を有する差厚パイプの押出成形装置。
PCT/JP2023/032371 2022-11-22 2023-09-05 中実部分を有する差厚パイプの押出成形方法及び押出成形装置 WO2024111215A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022186133 2022-11-22
JP2022-186133 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024111215A1 true WO2024111215A1 (ja) 2024-05-30

Family

ID=91195380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032371 WO2024111215A1 (ja) 2022-11-22 2023-09-05 中実部分を有する差厚パイプの押出成形方法及び押出成形装置

Country Status (1)

Country Link
WO (1) WO2024111215A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266139A (ja) * 2002-03-14 2003-09-24 Toto Ltd 金属部品の鍛造方法
WO2013038526A1 (ja) * 2011-09-14 2013-03-21 荻野工業株式会社 パイプ製造方法
JP2013230494A (ja) * 2012-05-01 2013-11-14 Sango Co Ltd 中空品の製造方法
JP2014205187A (ja) * 2013-04-16 2014-10-30 トヨタ自動車株式会社 中空押出成形装置及び中空押出成形方法
JP2021041461A (ja) * 2019-09-06 2021-03-18 株式会社三五 差厚パイプの押出成形方法及び差厚パイプの押出成形装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266139A (ja) * 2002-03-14 2003-09-24 Toto Ltd 金属部品の鍛造方法
WO2013038526A1 (ja) * 2011-09-14 2013-03-21 荻野工業株式会社 パイプ製造方法
JP2013230494A (ja) * 2012-05-01 2013-11-14 Sango Co Ltd 中空品の製造方法
JP2014205187A (ja) * 2013-04-16 2014-10-30 トヨタ自動車株式会社 中空押出成形装置及び中空押出成形方法
JP2021041461A (ja) * 2019-09-06 2021-03-18 株式会社三五 差厚パイプの押出成形方法及び差厚パイプの押出成形装置

Similar Documents

Publication Publication Date Title
RU2323058C1 (ru) Способ формирования наружной резьбы на концевом участке трубной заготовки
JP4929408B1 (ja) 中空エンジンバルブの製造方法
JP5221910B2 (ja) パイプ拡管方法
JP6394254B2 (ja) 拡径管部品の製造方法および製造装置
JP2006272350A (ja) 偏心拡径加工用ポンチ及び偏心拡径パイプの製造方法
US7284403B2 (en) Apparatus and method for performing a hydroforming process
JP2006305603A (ja) 押出成形方法及び押出成形装置
WO2024111215A1 (ja) 中実部分を有する差厚パイプの押出成形方法及び押出成形装置
JP6665643B2 (ja) 拡径管部品の製造方法および製造装置
JP2003343592A (ja) トリポード組立体およびトリポード粗形材の冷間塞鍛造方法
JP5246588B2 (ja) 歯車の製造装置及び製造方法
JP2010110776A (ja) 金属板の絞り加工方法
JP2009274124A (ja) 自動車変速機用ピストンのバネ座止まり穴加工方法
JP2005144554A (ja) 鍛造方法、鍛造品及び鍛造装置
JP4906849B2 (ja) 鋼管の拡管成形方法および鋼管の拡管成形装置
JP5157716B2 (ja) 自在継手用ヨークの製造方法
US20220314290A1 (en) Extrusion molding method for differential thickness pipe and extrusion molding apparatus for differential thickness pipe
JP7036195B2 (ja) 成形品の製造方法
WO2023105883A1 (ja) テーパ部を有する円筒体の成形方法
JP2001300652A (ja) 金属管の液圧バルジ加工におけるピアシング方法および金型
JP4723769B2 (ja) 中空ラックバーの製造方法
JP4900713B2 (ja) 冷間鍛造による平歯車の製造方法
RU2323059C1 (ru) Способ формирования внутренней резьбы на концевом участке трубной заготовки
JP2017217700A (ja) 缶の製造方法
JP2006043729A (ja) 組立構造体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894230

Country of ref document: EP

Kind code of ref document: A1