WO2004039136A1 - 樹脂基板の製造方法、および樹脂多層基板の製造方法 - Google Patents

樹脂基板の製造方法、および樹脂多層基板の製造方法 Download PDF

Info

Publication number
WO2004039136A1
WO2004039136A1 PCT/JP2003/010281 JP0310281W WO2004039136A1 WO 2004039136 A1 WO2004039136 A1 WO 2004039136A1 JP 0310281 W JP0310281 W JP 0310281W WO 2004039136 A1 WO2004039136 A1 WO 2004039136A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
resin
support
wiring pattern
conductor
Prior art date
Application number
PCT/JP2003/010281
Other languages
English (en)
French (fr)
Inventor
Yuki Yamamoto
Jun Harada
Hiroshi Takagi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to AU2003255017A priority Critical patent/AU2003255017A1/en
Publication of WO2004039136A1 publication Critical patent/WO2004039136A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0038Etching of the substrate by chemical or physical means by laser ablation of organic insulating material combined with laser drilling through a metal layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/0156Temporary polymeric carrier or foil, e.g. for processing or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1453Applying the circuit pattern before another process, e.g. before filling of vias with conductive paste, before making printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern

Definitions

  • the present invention relates to a method for manufacturing a resin substrate having wiring on both main surfaces or inside, and a method for manufacturing a resin multilayer substrate.
  • FIG. 19 is a cross-sectional view showing a wiring pattern transfer step in a conventional resin substrate manufacturing method.
  • a wiring pattern has been transferred as follows. First, as shown in FIG. 19 (a), a resin sheet 501 filled with a conductor 509 as a via conductor in advance and a support 502 formed with a wiring pattern 503 are formed. prepare. Next, as shown in FIG. 19 (b), the support member 502 is pressed on the main surface of the resin sheet 50 "I. Next, as shown in FIG.
  • the resin sheet The support member 502 is removed from the substrate 501, and the wiring pattern 503 is transferred onto the main surface of the resin sheet 501.
  • the resin sheet 501 and the support member 5 are transferred.
  • the resin component of the resin sheet 501 may flow between the wiring pattern 503 and the conductive material 509, or the conductive material 509 may be deformed. Therefore, there is a problem that the connection resistance between the wiring pattern 503 and the conductor 509 is increased.
  • the present invention solves the above-mentioned problem, and solves the problem of the wiring pattern and the via conductor. It is an object of the present invention to provide a method for manufacturing a resin substrate and a method for manufacturing a resin multilayer substrate that can reduce connection resistance.
  • the first method of manufacturing a resin substrate according to the present invention includes the steps of: A step of preparing a wiring pattern transfer support; and a step of forming a wiring pattern on one main surface of the support, and forming a laser passage hole penetrating the wiring pattern. A step of crimping the resin sheet and the support so that the one main surface and the one main surface on which the wiring pattern of the support is formed are combined; and removing the support from the resin sheet. And a step of forming a through hole through the resin sheet by a laser through the laser passage hole; and a step of filling the through hole with an electric conductor.
  • a second method for producing a resin substrate according to the present invention comprising the steps of: preparing a resin sheet in a pre-predated state; and a support for transferring a wiring pattern; and forming a wiring pattern on one main surface of the support. Forming a laser passage hole penetrating the wiring pattern ⁇ t one main surface of the resin sheet and the one main surface of the support on which the wiring pattern is formed; A step of pressure-bonding the sheet and the support, a step of forming a through-hole through the resin sheet and the support by a laser through the laser passage hole, and a conductor in the through-hole. And a step of removing the support from the resin sheet.
  • the laser passage hole is formed so as to penetrate the support and the wiring pattern in the thickness direction.
  • the method further includes a step of pressing the resin sheet in a thickness direction after the step of filling the through hole with a conductor.
  • the method for manufacturing a first resin substrate further includes a step of pressing the resin sheet in a thickness direction after the step of filling the through hole with a conductor, and removing the support from the resin sheet.
  • a step of heat-treating the resin sheet is provided between the step of performing the heat treatment and the step of pressing the resin sheet in the thickness direction.
  • a circuit component is mounted on one main surface of the support so as to be electrically connected to the wiring pattern.
  • the circuit component is embedded in a resin sheet.
  • the method for producing a resin multilayer substrate according to the present invention comprises the steps of: producing a plurality of resin substrates by the method for producing the first and second resin substrates; and a resin sheet having a conductor embedded therein.
  • a through hole is formed in the resin sheet, a conductor is filled in the through hole, and a via conductor is formed.
  • the resin component of the resin sheet does not flow between the pattern and the conductor, and the connection resistance between the wiring pattern and the via conductor can be reduced.
  • the protrusion of the conductor can be flattened. Therefore, the electrical contact between the wiring pattern and the via conductor can be improved, and the resin substrate can be easily formed into multiple layers. Further, before performing the pressing step, the resin sheet is heat-treated and cured to some extent, whereby deformation of the resin sheet due to pressing can be prevented, and an increase in volume resistance of the via conductor can be suppressed.
  • FIG. 1 is a process cross-sectional view illustrating a method for manufacturing a resin substrate according to Embodiment 1 of the present invention.
  • FIG. 2 is a process cross-sectional view illustrating a method for manufacturing a resin substrate in Embodiment 1 of the present invention.
  • FIG. 3 is a process cross-sectional view illustrating a method for manufacturing a resin substrate in Embodiment 1 of the present invention.
  • FIG. 4 is a process cross-sectional view illustrating a method for manufacturing a resin substrate in Embodiment 1 of the present invention.
  • FIG. 5 is a process cross-sectional view illustrating the method for manufacturing a resin substrate in Embodiment 1 of the present invention.
  • FIG. 6 is a process cross-sectional view illustrating the method for manufacturing a resin substrate in Embodiment 1 of the present invention.
  • FIG. 7 is a process cross-sectional view illustrating the method for manufacturing a resin substrate in Embodiment 1 of the present invention.
  • FIG. 8 is a process cross-sectional view illustrating a method for manufacturing a resin substrate in Embodiment 2 of the present invention.
  • FIG. 9 is a process cross-sectional view illustrating a method for manufacturing a resin substrate according to Embodiment 3 of the present invention. You.
  • FIG. 10 is a process sectional view illustrating the method for manufacturing the resin substrate in Embodiment 4 of the present invention.
  • FIG. 11 is a process cross-sectional view illustrating a method for manufacturing a resin substrate in Embodiment 4 of the present invention.
  • FIG. 12 is a process cross-sectional view illustrating a method for manufacturing a resin substrate in Embodiment 4 of the present invention.
  • FIG. 13 is a process cross-sectional view illustrating a method for manufacturing a resin substrate in Embodiment 4 of the present invention.
  • FIG. 14 is a process cross-sectional view illustrating a method for manufacturing a resin substrate according to Embodiment 4 of the present invention.
  • FIG. 15 is a process cross-sectional view illustrating a method for manufacturing a resin substrate in Embodiment 4 of the present invention.
  • FIG. 16 is a process cross-sectional view illustrating a method for manufacturing a resin multilayer substrate according to Embodiment 5 of the present invention.
  • FIG. 17 is a process cross-sectional view illustrating a method for manufacturing a resin multilayer substrate in Embodiment 5 of the present invention.
  • FIG. 18 is a process cross-sectional view illustrating a method for manufacturing a resin multilayer substrate according to Embodiment 5 of the present invention.
  • FIG. 19 is a process cross-sectional view illustrating a conventional method for manufacturing a resin substrate.
  • 1 to 7 are process cross-sectional views in the present embodiment.
  • a resin sheet 101 in a pre-prepared state and a support 102 for transferring a wiring pattern are prepared.
  • a wiring pattern 103 is formed on one main surface of the support 102.
  • the wiring pattern 103 is provided with a laser passage hole 104 penetrating the wiring pattern 103 in the thickness direction.
  • the resin sheet 101 is made of a mixture of an inorganic filler and a thermosetting resin.
  • the inorganic FILLER one, for example, AI 2 0 3, S i 0 2, etc. T ⁇ 0 2 can be used.
  • thermosetting resin For example, an epoxy resin, a phenol resin, a cyanate resin, or the like can be used. Among them, epoxy resins are preferred because of their excellent heat resistance and moisture resistance.
  • the pre-predator state means a state in which the thermosetting resin is not cured, that is, a state in which the resin sheet 101 has a certain fluidity.
  • the resin sheet 101 finally constitutes a part of a resin substrate or a resin multilayer substrate in a cured state.
  • the “resin sheet” means a prepreg state in an initial preparation stage, but does not necessarily mean a prepreg state in subsequent steps.
  • the support 102 Since the support 102 is used to transfer the wiring pattern 103 onto one main surface of the resin sheet 101, the support 102 preferably has a certain degree of releasability.
  • the support 102 include PET (polyethylene terephthalate) film, PEN (polyethylene naphthalate) film, PPS (polyphenylene sulfide) film, PEEK (polyether ether ketone) film, PI (Polyimide) film, etc. can be used.
  • the wiring pattern 103 is made of a metal such as Cu, Ag, Au, Ag-Pt, and Ag-Pd.
  • the wiring pattern 103 is formed, for example, as follows.
  • a metal foil 103a for a wiring pattern 103 is bonded to a support 102 having an adhesive (not shown) applied on one main surface.
  • a photoresist material such as a nopolak resin is spin-coated on a metal foil 103a bonded to the support 102 to form a photoresist layer 105. I do.
  • a photomask 106 having a predetermined shape is brought into contact with the photoresist layer 105 as shown in FIG.
  • a developing solution such as an aqueous solution of boric acid
  • a post bake is performed to pattern the photoresist layer 105.
  • a portion of the metal foil 103a that is not covered with the photoresist layer 105 is etched with an etching solution such as a ferric chloride aqueous solution to form a laser passage hole.
  • an etching solution such as a ferric chloride aqueous solution to form a laser passage hole.
  • a wiring pattern 103 having 104 is formed.
  • the photoresist layer 105 remaining on the wiring pattern 103 is removed with a resist stripper such as an aqueous sodium hydroxide solution.
  • a resist stripper such as an aqueous sodium hydroxide solution.
  • the wiring pattern 103 is formed on the support 102 by photolithography and etching.
  • the laser passage hole may be formed as follows. First, as shown in FIG. 3A, a support 102 having a wiring pattern 103 formed on one main surface is prepared. Next, as shown in FIG. 3 (b), by forming a through hole through the support 102 and the wiring pattern 103 with a mechanical puncher, the laser passage hole 103 is formed in the wiring pattern 103. Form 4a.
  • one main surface of the resin sheet 101 is aligned with the one main surface of the support 102 on which the wiring pattern 103 is formed. Then, the resin sheet 101 and the support 102 are pressure-bonded. In this embodiment, the support 102 is press-bonded to both main surfaces of the resin sheet 101.
  • thermocompression bonding is basically performed.
  • the resin sheets 10 and 1 and the support 102 are heated and pressurized for a certain period of time at a predetermined temperature and pressure.
  • the thermosetting resin contained in the resin sheet 10 ′ 1 is cured.
  • thermocompression bonding it is necessary to consider temperature restrictions. For example, when applying an adhesive on one main surface of the support 02, if the adhesive is denatured due to the temperature of thermocompression bonding, when the support 102 is removed from the resin sheet 101 in a later step. However, the adhesive may remain on the wiring pattern 103. Therefore, it is important to set appropriate heating conditions in accordance with the type of the thermosetting resin or the adhesive contained in the resin sheet 101.
  • the support 102 is removed from the resin sheet 101.
  • the wiring pattern 103 is transferred onto both main surfaces of the resin sheet 103.
  • a mask member 107 is arranged on one main surface of the resin sheet 101.
  • FIG. 5 (b) by irradiating the laser beam through the laser passage hole 104, a through hole penetrating the resin sheet 101 and the mask member 107 is formed.
  • Form 108 is the laser for laser passage? Since the light passes through L 104, it is possible to prevent the laser from being reflected on the wiring pattern 103 in this portion.
  • the mask member 107 prevents the conductor from adhering to the main surface of the resin sheet 101 when the through hole 108 is filled with the conductor in a later step.
  • a PET (polyethylene terephthalate) film, a PEN (polyethylene naphthalate) film, or the like can be used as the mask member 107.
  • the through hole 108 is formed by laser using a laser puncher. This By using a laser as described above, a plurality of through holes 108 can be formed in a short time, so that the mass productivity of the resin substrate is improved.
  • a laser a co 2 laser, a YAG laser, an excimer laser, or the like can be used, and among them, an inexpensive co 2 laser is preferable. Furthermore, since the co 2 laser it is particularly likely reflected on the wiring pattern 1 0 3 ing of metal, in the case of using C 0 2 laser scratch, the effect of the present invention is remarkably exhibited.
  • the conductor 109 is filled in the through hole 108 through the mask member 107.
  • the conductor 109 functions as a via conductor that connects wiring formed on the surface or inside of the resin substrate in a three-dimensional manner.
  • a conductive paste obtained by mixing metal particles and a thermosetting resin can be used.
  • the metal particles Au, Ag, Cu, Ni or the like can be used.
  • the thermosetting resin an epoxy resin, a phenol resin, a cyanate resin, or the like can be used.
  • the conductor 109 is not limited to the conductive paste, and may be a metal body such as a solder pole or a gold pole.
  • the through-holes 108 are formed after the mask members 107 are arranged. However, after the through-holes 108 are formed in the resin sheet 101, the through-holes 108 are formed.
  • a mask member 107 having a hole may be arranged at a position corresponding to.
  • the mask member 100 is removed from the resin sheet 101, and the conductor 109 is dried at a predetermined temperature for a predetermined time.
  • a resin sheet 101 cured to an arbitrary degree and a protrusion 109a protruding in a columnar shape on one main surface of the resin sheet 101 are provided.
  • a resin substrate 110 composed of the conductor 109 and the following is obtained.
  • a protective member (not shown) is disposed on both main surfaces of the resin sheet 101, and then pressure is applied.
  • a vacuum press can be used as means for pressurizing the resin sheet 101.
  • the protective member for example, a PET (polyethylene phthalate) film, a PEN (polyethylene naphthalate) film, or the like can be used.
  • the nail-shaped head 109 b By forming the nail-shaped head 109 b at one end of the conductor 109 in this way, the main surface of the wiring pattern 103 and the nail-shaped head formed at one end of the conductor 109 are formed. Is electrically connected to the lower principal surface of the head 109 b of the by surface contact. Therefore, the connection area between the wiring pattern 103 and the conductor 109 is increased, and the connection resistance between the wiring pattern 103 and the conductor 109 is reduced. Further, since the surface of the resin substrate 110 is flattened, the resin substrate 110 can be easily multilayered.
  • the resin sheet 101 In the step of pressing the resin sheet 101 in the thickness direction, it is preferable that the resin sheet 101 has a certain degree of hardness, and it is particularly preferable that the resin sheet 101 is completely cured. preferable. If the resin sheet 101 is fluid, the resin sheet 101 is deformed by pressurization, the conductor 109 expands in the horizontal direction, and the volume resistance of the conductor 109 increases. There is a risk. Therefore, if the resin sheet 101 is heat-treated and cured to some extent before this pressing step, an increase in the volume resistance of the conductor 109 can be suppressed.
  • the timing of heat-treating the resin sheet 101 may be any time before the step of applying the resin sheet 101 in the thickness direction.
  • the heat treatment includes thermocompression bonding between the resin sheet 101 and the support 102.
  • thermocompression bonding the resin sheet 101 and the support 102 it is necessary to sufficiently consider the heating conditions.
  • the mask members 107 are weak and easily modified by heat, it is particularly preferable to perform the heat treatment on the resin sheet 101 alone.
  • the resin substrate 110 manufactured as described above can be used as it is as a substrate for mounting circuit components.
  • a completely cured resin sheet is used as the resin sheet 101.
  • the resin substrate 110 may be used as one resin layer, and the resin substrate may be multi-layered to manufacture a resin multilayer substrate.
  • the resin sheet 101 a completely cured resin sheet or a partially cured resin sheet may be used.
  • the through holes 108 are formed in the resin sheet 101.
  • the conductor 109 is filled in the through hole 108 to form a via conductor. Therefore, the resin component of the resin sheet 101 does not flow between the wiring pattern 103 and the conductor 109, and the connection resistance between the wiring pattern and the via conductor can be reduced. (Embodiment 2)
  • FIG. 8 is a process sectional view in the present embodiment.
  • a resin sheet 201 in a prepreg state and a support 202 for transferring a wiring pattern are prepared.
  • a wiring pattern 203 is formed on one main surface of the support body 202.
  • a laser through hole 204 penetrating the wiring pattern 203 in the thickness direction is formed.
  • a support 202 is pressed onto both main surfaces of the resin sheet 201.
  • a through hole 208 penetrating the resin sheet 201 and the support body 202 is formed.
  • the conductor 209 is filled in the through hole 208 through the support 202.
  • the support body 202 functions as a mask member.
  • the support body 202 is removed from the resin sheet 201, and the wiring pattern 203 is transferred onto both main surfaces of the resin sheet 201.
  • the conductor 209 is dried at a predetermined temperature for a predetermined time.
  • a resin sheet 201 cured to an arbitrary degree, and a protrusion 209 a projecting in a columnar shape on both main surfaces of the resin sheet 201 are provided.
  • the through-holes 208 are formed in the resin sheet 201 after the wiring pattern 203 is transferred to the resin sheet 201. Then, the conductor 209 is filled in the through hole 208 to form a via conductor. Therefore, the resin component of the resin sheet 201 does not flow between the wiring pattern 203 and the conductor 209, and the connection resistance between the wiring pattern and the via conductor can be reduced. Further, in the second method for manufacturing a resin substrate according to the present invention, since the conductor 209 is filled in the through-hole 209 via the support 202, the method for manufacturing the first resin substrate is not required. In comparison, there is an advantage that a mask member is not required.
  • FIG. 9 is a process sectional view in this embodiment.
  • the method for manufacturing a resin substrate according to the present embodiment is substantially the same as that of the fourth embodiment.
  • a laser passage hole 204a penetrating the support 202 and the wiring pattern 203 is formed in advance.
  • the laser passage hole 204a can be actually formed, for example, by the method shown in FIG.
  • 10 to 15 are process cross-sectional views in the present embodiment. This embodiment is based on Embodiment 1, but can be applied to other embodiments.
  • a support 302a having a wiring pattern 303 formed on one main surface is prepared.
  • a laser passage hole 304 passing through the wiring pattern 303 in the thickness direction is formed.
  • the chip-type circuit component 31 is electrically connected to the wiring pattern 303.
  • an active element such as a transistor, IC, or LSI, or a passive element such as a chip capacitor, a chip resistor, a chip thermistor, or a chip inductor can be used.
  • Examples of the method for mounting the circuit component 311 include a method using soldering and a method using a conductive adhesive. The terminal electrodes of the circuit component 311 are not shown.
  • a support 30 2 b on which 303 is formed is prepared.
  • the support members 302a and 302b are pressure-bonded to both main surfaces of the resin sheet 301.
  • the circuit component 311 is buried in the resin sheet 301.
  • the support members 302a and 302b are removed from the resin sheet 301, and the wiring pattern is formed on both main surfaces of the resin sheet 301. Transcribe 03.
  • the resin sheet 301 is particularly easily deformed. Therefore, at this point, it is preferable that the resin sheet 301 is heat-treated and completely cured.
  • the resin sheet 311 is irradiated with a laser through a laser passage hole 304.
  • a through-hole 308 penetrating the mask member 307 is formed.
  • the conductor 309 is filled in the through hole 308 via the mask member 307.
  • the mask member 307 is removed from the resin sheet 301, and the conductor 309 is dried at a predetermined temperature for a predetermined time.
  • the resin sheet 301 hardened to an arbitrary degree, and the protruding portion 309a protruding in a columnar shape on one main surface of the resin sheet 301.
  • a conductor 309 and a resin base 310 consisting of the following are obtained.
  • FIG. 16 to FIG. 18 are process cross-sectional views in the present embodiment.
  • the present embodiment is based on Embodiment 4, but can be applied to other embodiments.
  • a resin sheet 301 and a wiring pattern 303 formed on both main surfaces of the resin sheet 301 are formed.
  • nail-shaped heads 309 b are formed at both ends of the conductor 309.
  • an adhesive layer 412 made of a resin sheet 401 embedded with a conductor 409 is prepared.
  • the adhesive layer 412 is produced, for example, as follows. First, as shown in FIG. 17 (a), a mask member 407 is attached to both main surfaces of the resin sheet 401 in a prepreg state. Next, as shown in FIG. 17 (b), a through hole 408 penetrating the resin sheet 401 and the mask member 407 is formed by a laser. Next, as shown in FIG. 17 (c), the through-hole 408 is filled with a conductor 409, and dried at a predetermined temperature for a predetermined time. Next, as shown in FIG.
  • a resin multilayer substrate 4 13 is manufactured by alternately laminating the resin substrates 3 10 and the adhesive layers 4 12 and pressing them.
  • the conductor 409 embedded in the adhesive layer 4 12 is electrically connected to the wiring pattern 3 0 3 or the conductor 3 09 of the resin substrate 3 10 .
  • the resin substrate 310 and the adhesive layer 412 When the resin substrate 310 and the adhesive layer 412 are pressure-bonded, all of the resin substrate 310 and the adhesive layer 412 may be laminated and then pressed together. Then, the resin substrate 310 and the adhesive layer 412 may be sequentially laminated and pressed, and this may be repeated.
  • thermocompression bonding is basically performed. At this time, as described above, it is preferable that the resin sheet 301 constituting the resin substrate 310 is completely cured.
  • the adhesive layer 412 plays a role of bonding the resin substrates 310 to each other, so that the resin sheet 301 constituting the adhesive layer 412 is hardened until thermocompression bonding is performed. Instead, it is preferable to have a certain fluidity.
  • the resin substrate 310 and the adhesive layer 412 are thermocompression-bonded, the resin substrate 310 and the adhesive layer 412 are completely thermally cured. -Other steps and components are the same as those of the fourth embodiment, and the description is omitted.
  • a resin substrate was manufactured as follows. First, a PET film having a thickness of 80 ⁇ m is prepared as a support, and a PET film is prepared.
  • An acrylic resin-based adhesive having a thickness of 20 m and a thickness of 20 m was applied onto the main surface to prepare a PET film with an adhesive having a thickness of 1 OO jUm.
  • the copper foil was patterned by photolithography and etching to form a predetermined wiring pattern and a laser passage hole having a diameter of 20 Oim.
  • a resin sheet As a resin sheet, a sheet-like epoxy prepreg having a thickness of 400 ⁇ m, prepared by mixing silica and a liquid epoxy resin, was prepared. Next, the PET film A on which the wiring pattern was formed was pressed on both main surfaces of the resin sheet by a vacuum press machine. The pressure conditions were 120 ° C., 1.0 MPa, and 5 minutes.
  • the PET film was removed from the resin sheet.
  • the resin sheet is 170.
  • C was heat-treated for 10 minutes to cure the epoxy prepreg constituting the resin sheet.
  • a PET film with a thickness of 20 m was attached as a mask member on one main surface of the resin sheet, and a through-hole was formed in the resin sheet by a co- 2 laser through a laser passage hole. .
  • a conductor was filled in the through-hole with a squeegee via a PET film to form a via conductor.
  • a conductive paste (AE1244 manufactured by Tatta Electric Wire Co., Ltd.) was used.
  • the PET film was removed from the resin sheet, the resin sheet was heat-treated at 100 ° C for 30 minutes, and the conductive paste was dried.
  • a PET film having a thickness of 20 jwm was adhered on both main surfaces of the resin sheet as a protective member, and the y resin sheet was pressed in the thickness direction by a vacuum press.
  • the pressurizing condition was 170 ° C, 1. OMPa, 5 minutes.
  • a resin substrate was obtained by removing the PET film.
  • a resin substrate with a built-in circuit component was manufactured as follows.
  • Example 2 First, in the same manner as in Example 1, an 18 m thick copper foil having both surfaces roughened was adhered to the main surface of a PET film with an adhesive having a thickness of 100 jt / m. And a 200 m diameter laser passage hole were formed.
  • a conductive adhesive (NH041A-2 manufactured by Nihon Handa Co., Ltd.) is applied to a part of the wiring pattern, and as a circuit component, the dimensions are 0.3mmX O. 3mm x 0.6mm. Mounted chip capacitors.
  • a sheet-like epoxy prepreg having the same thickness as that of Example 1 and having a thickness of 400 j «m was prepared as a resin sheet.
  • a PET film on which a wiring pattern was formed and a chip capacitor was mounted was pressed on both main surfaces of the resin sheet by a vacuum press machine.
  • the pressure conditions were set to 120 ° C, 1. OMPa, and 5 minutes.
  • the PET film was removed from the resin sheet.
  • the resin sheet was heat-treated at 170 ° C. for 10 minutes to cure the epoxy pre-preda constituting the resin sheet. Then, on one main surface of the resin sheet, paste the PET Fi Lum thick 20 ⁇ m as a mask member, via the laser one passage hole, the transmural hole in the resin sheet by co 2 laser one formed did.
  • a conductor was filled in the through-hole with a squeegee via a PET film to form a via conductor.
  • a conductive paste (AE1244 manufactured by Tatta Electric Wire Co., Ltd.) was used.
  • the PET film is removed from the resin sheet, and the resin sheet is kept at 100 ° C for 30 minutes. During the heat treatment, the conductive paste was dried.
  • a PET film having a thickness of 20 m was attached as a protective member on both main surfaces of the resin sheet, and the resin sheet was pressed in the thickness direction by a vacuum press.
  • the pressurizing condition was 170 ° C, 1. OMPa, 5 minutes.
  • a resin substrate having a built-in chip capacitor was obtained.
  • a resin multilayer substrate was manufactured as follows.
  • a sheet-like epoxy prepreg having a thickness of 100 jtm and prepared by mixing silica and a liquid epoxy resin was prepared as a resin sheet.
  • a PE film with a thickness of 20 m was attached as a mask member to both main surfaces of the resin sheet.
  • the C0 2 laser to form a through hole of diameter 300 Jum penetrating the resin sheet and P ET film.
  • a conductive paste (AE1244 manufactured by Tatta Electric Wire Co., Ltd.) was filled in the through hole, and the resin sheet was heat-treated at 60 ° C. for 30 minutes to dry the conductive paste. Next, the PET film was removed from the resin sheet to form an adhesive layer.
  • a resin substrate was produced in the same manner as in Example 2. Next, three resin substrates and two adhesive layers were alternately laminated and pressed together such that the resin substrates were the uppermost layer and the lowermost layer. Pressing conditions were as follows: first, thermocompression bonding was performed at 80 ° C, 1. OMPa, 5 minutes, and after curing the adhesive layer to some extent, thermocompression bonding was performed at 170 ° C, 2. OMPa, 60 minutes. As a result, a resin multilayer substrate in which the resin substrate and the adhesive layer were laminated was obtained. Industrial applicability
  • the method for manufacturing a resin substrate or a resin multilayer substrate according to the present invention includes a wiring board on which various semiconductor elements are mounted at a high density, and in particular, a chip-like electronic component such as an LSI, a chip capacitor, and a chip inductor. It is suitable for manufacturing a printed wiring board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 樹脂シート201と、一方主面上にレーザー通過用孔204を有する配線パターン203が形成された支持体202と、を準備し、樹脂シート201の一方主面と、支持体202の配線パターン203が形成された一方主面と、を合わせるようにして、樹脂シート201と支持体202とを圧着し、レーザー通過用孔204を介して、レーザーにより樹脂シート201を貫通する貫通孔208を形成し、貫通孔208に導電体208を充填する。これにより、配線パターンとビア導体との接続抵抗を低減することができる。

Description

明細書 樹脂基板の製造方法、 および樹脂多層基板の製造方法 技術分野
本発明は、 両主面または内部に配線を有する樹脂基板の製造方法、 および樹脂多 層基板の製造方法に関する。 背景技術
近年、 電子機器の小型化に伴い、 L S Iなどの半導体素子を高密度に実装できる 多層配線基板が求められている。 このため、 多層配線基板においては、 微細な配線 ピッチで高密度に配線を形成することが重要な課題となっている。
一方、 多層配線基板の中でも、 軽量、 低誘電率といった点から樹脂多層基板が注 目されている。 この樹脂多層基板において高密度配線を実現する方法としては、 金 属板などの支持体上に形成された配線パターンを、 樹脂シート上に転写する方法が 知られている。
図 1 9は、 従来の樹脂基板の製造方法における配線パターンの転写工程を示す断 面図である。 従来は、 たとえば、 特開平 1 0— 8 4 1 8 6号公報 (段落番号 0 0 2 6、 図 1 ) に示されているように、 以下のようにして配線パターンを転写していた。 まず、 図 1 9 ( a ) に示すように、 あらかじめビア導体としての導電体 5 0 9が 充填された樹脂シート 5 0 1と、 配線パターン 5 0 3が形成された支持体 5 0 2と を準備する。 次に、 図 1 9 ( b ) に示すように、 樹脂シート 5 0 "Iの主面上に支持 体 5 0 2を圧着する。 次に、 図 1 9 ( c ) に示すように、 樹脂シート 5 0 1から支 持体 5 0 2を除去し、樹脂シート 5 0 1の主面上に配線パターン 5 0 3を転写する。 しかし、 上記の転写方法では、 樹脂シート 5 0 1 と支持体 5 0 2とを圧着する際 に、 配線パターン 5 0 3と導電体 5 0 9との間に、 樹脂シート 5 0 1の樹脂成分が 流れ込むことがあったり、 また導電体 5 0 9が変形することがあるため、 配線バタ —ン 5 0 3と導電体 5 0 9との接続抵抗が増大してしまうという問題があった。 本発明は、 上記の問題を解決し、 配線パターンとビア導体との接続抵抗を低減す ることができる樹脂基板の製造方法、 および樹脂多層基板の製造方法を提供するこ とを目的とする。 発明の開示
本発明に係る第 1の樹脂基板の製造方法は、 プリプレグ状態の樹脂シートと、 配 線パターン転写用の支持体と、 を準備する工程と、 前記支持体の一方主面上に配線 パターンを形成し、 前記配線パターンを貫通するレーザー通過用孔を形成する工程 と、 前記樹脂シートの一方主面と、 前記支持体の配線パターンが形成された一方主 ^と、 を合わせるようにして、 前記樹脂シートと前記支持体とを圧着する工程と、 俞記樹脂シートから前記支持体を除去する工程と、前記レーザ一通過用孔を介して、 レーザーにより前記樹脂シートを貫通する貫通孔を形成する工程と、 前記貫通孔に 電体を充填する工程と、 を備えることを特徴とする。
; 本発明に係る第 2の樹脂基板の製造方法は、 プリプレダ状態の樹脂シートと、 配 線パターン転写用の支持体と、 を準備する工程と、 前記支持体の一方主面上に配線 パターンを形成し、 前記配線パターンを貫通するレーザー通過用孔を形成する工程 <t 前記樹脂シートの一方主面と、 前記支持体の配線パターンが形成された一方主 と、 を合わせるようにして、 前記樹脂シートと前記支持体とを圧着する工程と、 前記レーザー通過用孔を介して、 レーザーによリ前記樹脂シートと前記支持体とを 通する貫通孔を形成する工程と、 前記貫通孔に導電体を充填する工程と、 前記樹 脂シートから前記支持体を除去する工程と、 を備えることを特徴とする。
; また、 前記第 1、 第 2の樹脂基板の製造方法において、 前記レーザー通過用孔は、 ^記支持体と前記配線パターンとを厚み方向に貫通するように形成されることが好 ましい。
また、 前記第 1、 第 2の樹脂基板の製造方法においては、 前記貫通孔に導電体を 充填する工程の後に、 前記樹脂シートを厚み方向に加圧する工程を備えることが好 ましい。
: また、 前記第 1の樹脂基板の製造方法においては、 前記貫通孔に導電体を充填す 工程の後に、 前記樹脂シートを厚み方向に加圧する工程を備え、 前記樹脂シート から前記支持体を除去する工程と、 前記樹脂シートを厚み方向に加圧する工程との 間に、 前記樹脂シートを熱処理する工程を備えることが好ましい。
また、 前記第 1、 第 2の樹脂基板の製造方法において、 前記支持体の一方主面上 には、 前記配線パターンと電気的に接続されるように回路部品が実装されており、 前記樹脂シートと前記支持体とを圧着する工程において、 樹脂シートに前記回路部 品を埋没させることが好ましい。
本発明にかかる樹脂多層基板の製造方法は、 前記第 1、 第 2の樹脂基板の製造方 法により、 複数の樹脂基板を作製する工程と、 内部に導電体が埋め込まれた樹脂シ 一卜からなる接着層を準備する工程と、 前記樹脂基板の主面と前記接着層の主面と を合わせるようにして、 かつ、 2つの前記樹脂基板の間に前記接着層が配置される ように、 前記樹脂基板と前記接着層とを圧着する工程と、 を備えることを特徴とす る。
本発明にかかる樹脂基板の製造方法によれば、 樹脂シートに支持体を圧着した後 に、 樹脂シートに貫通孔を形成し、 貫通孔に導電体を充填し、 ビア導体を形成する ので、 配線パターンと導電体との間に、 樹脂シートの樹脂成分が流れ込むことがな く、 配線バターンとビア導体との接続抵抗を低減することができる。
同時に、 あらかじめ配線パターンを貫通するレーザー通過用孔を形成しておくこ とにより、 配線パターン上におけるレーザーの反射を防止することができる。 した がって、 レーザーを用いて、 短時間で複数の貫通孔を形成することができるため、 樹脂基板の量産性が向上する。
また、 貫通孔に導電体を充填した後に、 樹脂シートを厚み方向に加圧することに より、 導電体の突出部を平坦化させることができる。 したがって、 配線パターンと ビア導体との電気的接触をより良好にすることができるとともに、 樹脂基板を多層 化しやすくすることができる。 さらに、 この加圧工程を行う前に、 樹脂シートを熱 処理して、 ある程度硬化させることにより、 加圧による樹脂シートの変形を防止し、 ビア導体の体積抵抗の増加を抑制することができる。 図面の簡単な説明
図 1は、 本発明の実施形態 1 こおける樹脂基板の製造方法を示す工程断面図であ る。
図 2は、 本発明の実施形態 1 こおける樹脂基板の製造方法を示す工程断面図であ る。
図 3は、 本発明の実施形態 1 こおける樹脂基板の製造方法を示す工程断面図であ る。
図 4は、 本発明の実施形態 1 こおける樹脂基板の製造方法を示す工程断面図であ る。
図 5は、 本発明の実施形態 1 こおける樹脂基板の製造方法を示す工程断面図であ る。
図 6は、 本発明の実施形態 1 こおける樹脂基板の製造方法を示す工程断面図であ る。
図 7は、 本発明の実施形態 1 こおける樹脂基板の製造方法を示す工程断面図であ る。
図 8は、 本発明の実施形態 2 こおける樹脂基板の製造方法を示す工程断面図であ る。
図 9は、 本発明の実施形態 3 こおける樹脂基板の製造方法を示す工程断面図であ る。
図 1 0は、 本発明の実施形態 4における樹脂基板の製造方法を示す工程断面図で のる。
図 1 1は、 本発明の実施形態 4における樹脂基板の製造方法を示す工程断面図で ある。
図 1 2は、 本発明の実施形態 4における樹脂基板の製造方法を示す工程断面図で める。
図 1 3は、 本発明の実施形態 4における樹脂基板の製造方法を示す工程断面図で める。
図 1 4は、 本発明の実施形態 4における樹脂基板の製造方法を示す工程断面図で
00る。
図 1 5は、 本発明の実施形態 4における樹脂基板の製造方法を示す工程断面図で あ 。
図 1 6は、 本発明の実施形態 5における樹脂多層基板の製造方法を示す工程断面 図である。
図 1 7は、 本発明の実施形態 5における樹脂多層基板の製造方法を示す工程断面 図である。
図 1 8は、 本発明の実施形態 5における樹脂多層基板の製造方法を示す工程断面 図である。
図 1 9は、 従来の樹脂基板の製造方法を示す工程断面図である。 発明を実施するための最良の形態
以下、 本発明を望ましい実施形態に基づき説明する。
(実施形態 1 )
以下、 本発明にかかる第 1の樹脂基板の製造方法について、 その一実施形態を説 明する。 図 1〜図 7は、 本実施形態における工程断面図である。
まず、 図 1に示すように、 プリプレダ状態の樹脂シート 1 0 1 と、 配線パターン 転写用の支持体 1 0 2とを準備する。 支持体 1 0 2の一方主面上には、 配線パター ン 1 0 3が形成されている。 また、 配線パターン 1 0 3には、 配線パターン 1 0 3 を厚み方向に貫通するレーザー通過用孔 1 0 4が形成されている。
樹脂シート 1 0 1は、 無機フイラ一と熱硬化性樹脂とを混合したものからなる。 無機フイラ一としては、 たとえば、 A I 2 0 3, S i 0 2 , T ί 0 2などを用いること ができる。 これらの無機フィラーを用いることにより、 樹脂基板の放熱性を向上さ せるとともに、 樹脂基板の流動性を調節することができる。 また、 熱硬化性樹脂と しては、 たとえば、 エポキシ樹脂、 フエノール樹脂、 シァネート樹脂などを用いる ことができる。 中でも、 エポキシ樹脂は、 耐熱性、 耐湿性に優れているため好まし い。
なお、 プリプレダ状態とは、 熱硬化性樹脂が未硬化の状態、 すなわち、 樹脂シー ト 1 01が一定の流動性を有する状態のことを意味する。 樹脂シート 1 0 1は、 最 終的には、 硬化した状態で樹脂基板や樹脂多層基板の一部を構成する。 ただし、 樹 脂基板や樹脂多層基板の製造過程において、 どの工程で樹脂シ一ト 1 0 1を硬化さ せるかは目的に応じて任意に決定されるものである。 したがって、 本願明細書にお いて、 「樹脂シート」 とは、 最初の準備段階ではプリプレグ状態のものを意味する が、 その後の工程では必ずしもプリプレダ状態のものを意味するわけではない。 支持体 1 02は、 樹脂シ一ト 1 01の一方主面上に配線パターン 1 03を転写す るために用いられるため、 ある程度の離型性を有することが好ましい。 支持体 1 0 2としては、 たとえば、 P ET (ポリエチレンテレフタレート) フイルム、 P EN (ポリエチレンナフタレート) フイルム、 P PS (ポリフエ二レンサルファイ ド) フィルム、 P EEK (ポリエーテルエーテルケ卜ン) フィルム、 P I (ポリイミ ド) フイルム、 などを用いることができる。
配線パターン 1 03は、 C u, A g, A u , A g - P t , A g— P dなどの金属 からなる。 配線パターン 1 03は、 たとえば、 以下のようにして形成される。
まず、 図 2 (a) に示すように、 一方主面上に粘着剤 (図示せず) が塗布された 支持体 1 02に、 配線パターン 1 03用の金属箔 1 03 aを接着する。
次に、 図 2 (b) に示すように、 支持体 1 02に接着された金属箔 1 03 a上に、 ノポラック樹脂などからなるフォトレジスト材をスピンコ一卜し、 フォトレジスト 層 1 05を形成する。
次に、 フォトレジスト層 1 05をプリべ一クした後、 図 2 (c) に示すように、 フォ トレジスト層 1 05上に所定形状のフォトマスク 1 06を当接させ、露光する。 次に、 、 図 2 (d) に示すように、 ホウ酸水溶液などの現像液を用いて現像した 後、 ポス卜べ一クを行いフォトレジスト層 1 05をパターニングする。
次に、 図 2 (e) に示すように、 金属箔 1 03 aのうちフォトレジスト層 1 05 で覆われていない部分を、 塩化第 2鉄水溶液などのエツチング液でエッチングし、 レーザー通過用孔 1 04を有する配線パターン 1 03を形成する。
次に、 図 2 ( f ) に示すように、 配線パターン 1 03上に残存しているフォトレ ジスト層 1 05を、水酸化ナトリウム水溶液などのレジス卜剥離液により除去する。 このようにして、 フォトリソグラフィーおよびエッチングにより、 支持体 1 02上 に配線パターン 1 03を形成する。 なお、 上記のレーザ一通過用孔 1 0 4の形成方法では、 レーザー通過用孔 1 0 4 が微細な場合、 上記のエッチング処理が困難になることがある。 このような場合、 以下のようにしてレーザ一通過用孔を形成してもよい。 まず、 図 3 ( a ) に示すよ うに、 一方主面上に配線パターン 1 0 3が形成された支持体 1 0 2を準備する。 次 に、 図 3 ( b ) に示すように、 メカパンチヤーで支持体 1 0 2および配線パターン 1 0 3を貫通する貫通孔を形成することにより、 配線パターン 1 0 3にレーザー通 過用孔 1 0 4 aを形成する。
次に、 図 4 ( a ) に示すように、 樹脂シ一卜 1 0 1の一方主面と、 支持体 1 0 2 の配線パターン 1 0 3が形成された一方主面と、 を合わせるようにして、 樹脂シー ト 1 0 1と支持体 1 0 2とを圧着する。 なお、 本実施形態では、 樹脂シート 1 0 1 の両主面に支持体 1 0 2を圧着している。
樹脂シート 1 0 1と支持体 1 0 2とを圧着する際には、 基本的に熱圧着を行う。 たとえば、 加熱プレス機などを用いて、 所定の温度、 圧力により、 樹脂シート 1 0 , 1と支持体 1 0 2とを一定時間加熱、 加圧する。 この加熱により、 樹脂シート 1 0 ' 1に含まれる熱硬化性樹脂が硬化する。
なお、 熱圧着を行う場合は、 温度の制約を考慮する必要がある。 たとえば、 支持 0 2の一方主面上に粘着剤を塗布する場合、 熱圧着の温度により粘着剤が変性 してしまうと、 後工程で樹脂シート 1 0 1から支持体 1 0 2を除去する際、 配線パ ターン 1 0 3上に粘着剤が残留してしまうことがある。 したがって、 樹脂シート 1 0 1に含まれる熱硬化性樹脂や粘着剤の種類に応じて、 適切な加熱条件を設定する :ことが重要である。
次に、 図 4 ( b ) に示すように、 樹脂シ一ト 1 0 1から支持体 1 0 2を除去する。 :この結果、 樹脂シート 1 0 3の両主面上に、 配線パターン 1 0 3が転写される。 ' 次に、 図 5 ( a ) に示すように、 樹脂シート 1 0 1の一方主面上にマスク部材 1 0 7を配置する。 次に、 図 5 ( b ) に示すように、 レーザー通過用孔 1 0 4を介し て、 レーザ一を照射することにより、 樹脂シート 1 0 1とマスク部材 1 0 7とを貫 通する貫通孔 1 0 8を形成する。 このとき、 レーザーはレーザー通過用? L 1 0 4を 通過するため、 この部分においてレーザーが配線パターン 1 0 3上で反射するのを 防ぐことができる。
マスク部材 1 0 7により、 後工程において、 貫通孔 1 0 8に導電体を充填する際 に、 樹脂シート 1 0 1の主面上に導電体が付着するのが防止される。 マスク部材 1 0 7としては、 たとえば、 P E T (ポリエチレンテレフタレート) フイルム、 P E N (ポリエチレンナフタレート) フイルムなどを用いることができる。
貫通孔 1 0 8は、 レーザーパンチヤーを用いてレーザーにより形成される。 この ようにレーザ一を用いることにより、 短時間で複数の貫通孔 1 0 8を形成すること ができるため、 樹脂基板の量産性が向上する。 また、 レーザーとしては、 c o 2レー ザ一、 Y A Gレーザー、 エキシマレーザーなどを用いることができるが、 中でも、 安価な c o 2レーザーを用いることが好ましい。 また、 c o 2レーザーは金属からな る配線パターン 1 0 3上で特に反射しやすいため、 C 0 2レーザ一を用いた場合には, 本発明の効果が顕著に発揮される。
次に、 図 6 ( a ) に示すように、 マスク部材 1 0 7を介して、 貫通孔 1 0 8に導 電体 1 0 9を充填する。 導電体 1 0 9は、 樹脂基板の表面または内部に形成される 配線を立体的に接続するビア導体として機能する。 導電体 1 0 9としては、 たとえ ば、 金属粒子と熱硬化性樹脂とを混合した導電性ペーストを用いることができる。 金属粒子としては、 A u , A g , C u , N iなどを用いることができる。 熱硬化性 樹脂としては、 エポキシ樹脂、 フエノール樹脂、 シァネート樹脂などを用いること ができる。 なお、 導電体 1 0 9は、 導電性ペーストに限られるものではなく、 半田 ポールや金ポールなどの金属体であってもよい。
貫通孔 1 0 8に導電体 1 0 9を充填する方法としては、 たとえば、 マスク部材 1 0 7表面に導電性ペーストを流し込み、 マスク部材 1 0 7表面においてスキージを 摺動させる方法がある。 なお、 マスク部材 1 0 7を用いず、 直接、 貫通孔 1 0 8に 導電体 1 0 9を充填することも可能である。 また、 本実施形態では、 マスク部材 1 0 7を配置してから貫通孔 1 0 8を形成しているが、 樹脂シート 1 0 1に貫通孔 1 0 8を形成した後、 貫通孔 1 0 8に対応する位置に孔が形成されたマスク部材 1 0 7を配置してもよい。
次に、 樹脂シート 1 0 1からマスク部材 1 0 Ίを除去し、 導電体 1 0 9を所定時 間、 所定温度で乾燥させる。
この結果、 図 6 ( b ) に示すように、 任意の度合いで硬化された樹脂シート 1 0 1 と、 樹脂シート 1 0 1の一方主面上に柱状に突出した突出部 1 0 9 aを有する導 電体 1 0 9と、 からなる樹脂基板 1 1 0が得られる。
また、 この後、 樹脂シート 1 0 1を厚み方向に加圧することが好ましい。 これに より、 図 7に示すように、 導電体 1 0 9の突出部が押し延ばされ、 釘状の頭部 1 0 9 bが形成される。 さらに、 この際、 配線パターン 1 0 3および導電体 1 0 9を保 護するために、 樹脂シート 1 0 1の両主面に保護部材 (図示せず) を配置してから 加圧を行うことが好ましい。 樹脂シ一卜 1 0 1を加圧する手段としては、 たとえば、 真空プレス機を用いることができる。 保護部材としては、 たとえば、 P E T (ポリ エチレン亍レフタレ一ト) フィルム、 P E N (ポリエチレンナフタレート) フィル ムなどを用いることができる。 このように導電体 1 0 9の一端に釘状の頭部 1 0 9 bを形成することにより、 配 線パターン 1 0 3の主面と、 導電体 1 0 9の一端に形成された釘状の頭部 1 0 9 b の下側主面と、 が面接触により電気的に接続される。 したがって、 配線パターン 1 0 3と導電体 1 0 9との接続面積が増えるため、 配線パターン 1 0 3と導電体 1 0 9との接続抵抗が低減する。 また、 樹脂基板 1 1 0表面が平坦化されるため、 樹 ί旨 基板 1 1 0を多層化しやすくすることができる。
また、 樹脂シート 1 0 1を厚み方向に加圧する工程においては、 樹脂シート 1 0 1がある程度の硬度を有することが好ましく、 樹脂シー卜 1 0 1が完全に硬化して ί、ることが特に好ましい。 樹脂シート 1 0 1が流動的であると、 加圧により樹脂シ ート 1 0 1が変形し、 導電体 1 0 9が横方向に肥大して、 導電体 1 0 9の体積抵抗 が増加するおそれがある。 したがって、 この加圧工程の前に、 樹脂シート 1 0 1を 熱処理してある程度硬化させておけば、 導電体 1 0 9の体積抵抗の増加を抑制する ことができる。
. 樹脂シー卜 1 0 1を熱処理するタイミングは、 樹脂シート 1 0 1を厚み方向に加 する工程より前であればいつでもよい。 上述したが、 図 3 ( a ) に示したように、 樹脂シー卜 1 0 1と支持体 1 0 2とを圧着する際に熱圧着を行うことも、 この熱処 理に含まれる。
また、 上述したように、樹脂シート 1 0 1と支持体 1 0 2とを熱圧着する際には、 加熱条件に十分配慮する必要がある。 ところが、 樹脂シート 1 0 1と支持体 1 0 2 上に塗布される粘着剤とを選択する上で、 粘着剤を変性させない程度の温度で、 樹 聘シート 1 0 1を十分に硬化させることができない場合が生じうる。 このような場 合、 図 4 ( b ) に示したように、 支持体 1 0 2を除去してから、 樹脂シート 1 0 1 熱処理することが好ましい。 また、 マスク部材 1 0 7の中にも熱に弱く変性しや すいものがあるため、 樹脂シート 1 0 1単体で熱処理を行うことが特に好ましい。 ; このようにして製造された樹脂基板 1 1 0は、 そのまま回路部品実装用の基板と して用いることができる。 この場合、 樹脂シート 1 0 1としては完全に硬化させた ものを用いる。 また、 後述するが、 樹脂基板 1 1 0を一つの樹脂層とし、 これを多 層化して樹脂多層基板を製造してもよい。 この場合、 樹脂シート 1 0 1としては完 全に硬化させたものを用いてもよいし、 ある程度硬化させたものを用いてもよい。 以上のように、 本発明にかかる第 1の樹脂基板の製造方法によれば、 樹脂シート 1 0 1に配線パターン 1 0 3を転写した後に、 樹脂シート 1 0 1に貫通孔 1 0 8を 形成し、 貫通孔 1 0 8に導電体 1 0 9を充填し、 ビア導体を形成する。 したがって、 配線パターン 1 0 3と導電体 1 0 9との間に、 樹脂シート 1 0 1の樹脂成分が流れ 込むことがなく、 配線パターンとビア導体との接続抵抗を低減することができる。 (実施形態 2 )
次に、 本発明にかかる第 2の樹脂基板の製造方法について、 その一実施形態を説 明する。 図 8は、 本実施形態における工程断面図である。
まず、 図 8 ( a ) に示すように、 プリプレグ状態の樹脂シート 2 0 1と、 配線パ ターン転写用の支持体 2 0 2を準備する。 支持体 2 0 2の一方主面上には、 配線パ ターン 2 0 3が形成されている。 また、 配線パターン 2 0 3には、 配線パターン 2 0 3を厚み方向に貫通するレーザー貫通孔 2 0 4が形成されている。
次に、 図 8 ( b ) に示すように、 樹脂シート 2 0 1の両主面に支持体 2 0 2を圧 着する。 次に、 図 8 ( c ) に示すように、 樹脂シート 2 0 1と支持体 2 0 2とを貫 通する貫通孔 2 0 8を形成する。 次に、 図 8 ( d ) に示すように、 支持体 2 0 2を 介して、 貫通孔 2 0 8に導電体 2 0 9を充填する。 本実施形態においては、 支持体 2 0 2がマスク部材として機能する。
次に、 樹脂シート 2 0 1から支持体 2 0 2を除去し、 樹脂シート 2 0 1の両主面 上に配線パターン 2 0 3を転写する。 次に、 導電体 2 0 9を所定時間、 所定温度で 乾燥させる。
この結果、 図 8 ( e ) に示すように、 任意の度合いで硬化された樹脂シート 2 0 1と、 樹脂シート 2 0 1の両主面上に柱状に突出した突出部 2 0 9 aを有する導電 体 2 0 9と、 からなる樹脂基板 2 1 0が得られる。
また、 この後、 樹脂シート 2 0 1を厚み方向に加圧することが好ましい。 これに より、 図 8 ( f ) に示すように、 導電体 2 0 8の突出部が押し延ばされ、 釘状の頭 部 2 0 8 bが形成される。 また、 実施形態 1 と同様に、 樹脂シート 2 0 1を厚み方 向に加圧する工程の前に、 樹脂シート 2 0 1を熱処理する工程を備えることが好ま しい。
なお、 その他の各工程や構成要件については実施形態 1 と同様であり、 説明を省 略する。
以上のように、 本発明にかかる第 2の樹脂基板の製造方法によれば、 樹脂シート 2 0 1に配線パターン 2 0 3を転写した後に、 樹脂シート 2 0 1に貫通孔 2 0 8を 形成し、 貫通孔 2 0 8に導電体 2 0 9を充填し、 ビア導体を形成する。 したがって、 配線パターン 2 0 3と導電体 2 0 9との間に、 樹脂シート 2 0 1の樹脂成分が流れ 込むことがなく、 配線パターンとビア導体との接続抵抗を低減することができる。 また、 本発明にかかる第 2の樹脂基板の製造方法では、 支持体 2 0 2を介して導 電体 2 0 9を貫通孔 2 0 8に充填するため、 第 1の樹脂基板の製造方法に比べて、 マスク部材が不要になるという利点がある。
(実施形態 3 ) 次に、 本発明にかかる第 2の樹脂基板の製造方法について、 その変形例を説明す る。 図 9は、 本実施形態における工程断面図である。
. 本実施形態における樹脂基板の製造方法は、 実施形態 4とほぼ同様である。 実施 形態 4では、 支持体 2 0 2と配線パターン 2 0 3とを貫通するレーザー通過用孔 2 0 4 aがあらかじめ形成されている。 レーザー通過用孔 2 0 4 aは、 たとえば、 実 ,施形態 1の図 3で示した方法により形成することができる。
なお、 その他の各工程や構成要件については実施形態 4と同様であり、 説明を省 '略する。
(実施形態 4 )
次に、 本発明にかかる第 1、 第 2の樹脂基板の製造方法について、 その応用例を 説明する。 図 1 0〜図 1 5は、 本実施形態における工程断面図である。 なお、 本実 施形態は、 実施形態 1に基づいた内容となっているが、 その他の実施形態にも適用 することができる。
まず、 図 1 0 ( a ) に示すように、 一方主面上に配線パターン 3 0 3が形成され た支持体 3 0 2 aを準備する。 配線パターン 3 0 3には、 配線パターン 3 0 3を厚 み方向に貫通するレーザー通過用孔 3 0 4が形成されている。
次に、 図 1 0 ( b ) に示すように、 支持体 3 0 2 aの一方主面上に、 配線パター ン 3 0 3と電気的に接続されるように、 チップ型の回路部品 3 1 1を実装する。 回 路部品 3 1 1としては、 トランジスタ、 I C、 L S Iなどの能動素子や、 チップコ ンデンサ、 チップ抵抗、 チップサーミスタ、 チップインダクタなどの受動素子を用 いることができる。 また、 回路部品 3 1 1を実装する方法としては、 半田付けや導 電性接着剤を用いる方法などが挙げられる。 なお、 回路部品 3 1 1の端子電極は図 示していない。
次に、 図 1 1に示すように、 プリプレグ状態の樹脂シート 3 0 1 と、 回路部品 3 1 1が実装された支持体 3 0 2 aと、 レーザー通過用孔 3 0 4を有する配線パター ン 3 0 3が形成された支持体 3 0 2 bと、 を準備する。
, 次に、 図 1 2 ( a ) に示すように、 樹脂シート 3 0 1の両主面に支持体 3 0 2 a , 3 0 2 bを圧着する。 また、 このとき、 樹脂シ一ト 3 0 1に回路部品 3 1 1を埋没 させる。 次に、 図 1 2 ( b ) に示すように、 樹脂シート 3 0 1から支持体 3 0 2 a , 3 0 2 bを除去し、樹脂シ一ト 3 0 1の両主面上に配線パターン 3 0 3を転写する。 本実施形態においては、 樹脂シート 3 0 1に回路部品 3 1 1を埋没させるため、 樹脂シート 3 0 1が特に変形しやすい。 したがって、 この時点で、 樹脂シート 3 0 1を熱処理し、 完全に硬化させておくことが好ましい。 また、 上述したように、 支 持体 3 0 2 a , 3 0 2 bを残したまま熱処理を行うと問題が生じる場合があるため、 支持体 3 0 2 a , 3 0 2 bを除去した後に熱処理を行うことが好ましい。 また、 樹 脂プレブレグシ一ト 3 0 1単体を熱処理することが特に好ましい。
次に、 図 1 3に示すように、 樹脂シート 3 0 1の一方主面上にマスク部材 3 0 7 を配置した後、 レーザ一通過用孔 3 0 4を介して、 レーザーにより、 樹脂シート 3 0 1およびマスク部材 3 0 7を貫通する貫通孔 3 0 8を形成する。
次に、 図 1 4 ( a ) に示すように、 マスク部材 3 0 7を介して、 貫通孔 3 0 8に 導電体 3 0 9を充填する。 次に、樹脂シート 3 0 1からマスク部材 3 0 7を除去し、 導電体 3 0 9を所定時間、 所定温度で乾燥させる。 この結果、 図 1 4 ( b ) に示す うに、 任意の度合いで硬化された樹脂シート 3 0 1と、 樹脂シート 3 0 1の一方 主面上に柱状に突出した突出部 3 0 9 aを有する導電体 3 0 9と、 からなる樹脂基 ¾ 3 1 0が得られる。
: また、 この後、 樹脂シート 3 0 1を厚み方向に加圧することが好ましい。 これに より、 図 1 5に示すように、 導電体 3 0 9の突出部が押し延ばされ、 釘状の頭部 3 0 9 bが形成される。
なお、 その他の各工程や構成要件については実施形態 1と同様であり、 説明を省 i§する。
, (実施形態 5 )
次に、 本発明にかかる第 1、 第 2の樹脂基板の製造方法について、 その応用例を 説明する。 図 1 6〜図 1 8は、 本実施形態における工程断面図である。 なお、 本実 施形態は、 実施形態 4に基づいた内容となっているが、 その他の実施形態にも適用 することができる。
, まず、 実施形態 4の樹脂基板の製造方法により、 図 1 5に示すように、 樹脂シー ト 3 0 1と、 樹脂シート 3 0 1の両主面上に形成された配線パターン 3 0 3と、 樹 脂シート 3 0 1を厚み方向に貫通する導電体 3 0 9と、 樹脂シート 3 0 1に埋設さ れた回路部品 3 1 1と、 を備える樹脂基板 3 1 0を準備する。 なお、 導電体 3 0 9 の両端には釘状の頭部 3 0 9 bが形成されている。
次に、 図 1 6に示すように、 導電体 4 0 9が埋め込まれた樹脂シート 4 0 1から なる接着層 4 1 2を準備する。 接着層 4 1 2は、 たとえば、 以下のようにして作製 される。 まず、 図 1 7 ( a ) に示すように、 プリプレグ状態の樹脂シート 4 0 1の 両主面にマスク部材 4 0 7を貼り付ける。 次に、 図 1 7 ( b ) に示すように、 レー ザ一によリ、 樹脂シート 4 0 1とマスク部材 4 0 7を貫通する貫通孔 4 0 8を形成 する。 次に、 図 1 7 ( c ) に示すように、 貫通孔 4 0 8に導電体 4 0 9を充填し、 所定時間、 所定温度で乾燥させる。 次に、 図 1 7 ( d ) に示すように、 樹脂シート 4 0 1からマスク部材 4 0 7を除去して、 接着層 4 1 2を作製する。 次に、 図 1 8に示すように、 樹脂基板 3 1 0と接着層 4 1 2とを交互に積層し、 圧着することにより、 樹脂多層基板 4 1 3を作製する。 樹脂多層基板 4 1 3におい て、 接着層 4 1 2に埋め込まれた導電体 4 0 9は、 樹脂基板 3 1 0の配線パターン 3 0 3または導電体 3 0 9と電気的に接続されている。
なお、 樹脂基板 3 1 0と接着層 4 1 2とを圧着する際には、 樹脂基板 3 1 0およ び接着層 4 1 2のすベてを積層してから一括で圧着してもよいし、 樹脂基板 3 1 0 および接着層 4 1 2を順次積層、 圧着し、 これを繰り返してもよい。
また、 樹脂基板 3 1 0と接着層 4 1 2とを圧着する際には、 基本的に熱圧着を行 う。 このとき、 上述したように、 樹脂基板 3 1 0を構成する樹脂シート 3 0 1は、 完全に硬化していることが好ましい。 一方、 接着層 4 1 2は、 樹脂基板 3 1 0どう しを接着する役割を果たすため、 熱圧着を行うまでは、 接着層 4 1 2を構成する樹 脂シ一卜 3 0 1をあまり硬化させず、 一定の流動性を持たせることが好ましい。 樹 脂基板 3 1 0と接着層 4 1 2とを熱圧着する際には、 樹脂基板 3 1 0および接着層 4 1 2を完全に熱硬化させる。 - なお、 その他の各工程や構成要件については実施形態 4と同様であり、 説明を省 略する。 実施例
次に、 本発明を具体的な実施例に基づき説明する。
(実施例 1 )
実施形態 1に記載された内容に基づき、 以下のようにして樹脂基板を作製した。 まず、 支持体として厚さ 8 0〃mの P E Tフィルムを準備し、 P E Tフイルムの
—方主面上に厚さ 2 0 ;« mのアクリル樹脂系の粘着剤を塗布し、 厚さ 1 O O jU mの 粘着剤つき P E Tフイルムを作製した。
次に、 粘着剤が塗布された P E Tフィルムの主面上に、 両面が粗面化された厚さ
1 8 U mの銅箔を接着した。 次に、 フォトリソグラフィーおよびエッチングにより、 銅箔をパターンニングして、 所定の配線パターンと直径 2 0 O i mのレーザー通過 用孔とを形成した。
次に、 樹脂シートとして、 シリカと液状エポキシ樹脂を混合してなる、 厚さ 4 0 0〃mのシート状のエポキシプリプレグを準備した。 次に、 真空プレス機により、 樹脂シートの両主面に、 配線パターンが形成された P E Tフィル Aを圧着した。 加 圧条件は、 1 2 0 °C、 1 . O M P a、 5分間とした。
次に、 樹脂シートから P E Tフイルムを除去した。 次に、 樹脂シートを 1 7 0。C で 1 0分間熱処理し、 樹脂シートを構成するエポキシプリプレグを硬化させた。 次に、 樹脂シートの一方主面上に、 マスク部材として厚さ 20 mの P E Tフィ ルムを貼り付け、 レーザ一通過用孔を介して、 co2レーザ一により、 樹脂シートに 貫通孔を形成した。
次に、 スキージにより、 PETフィルムを介して貫通孔に導電体を充填し、 ビア 導体を形成した。 導電体としては、 導電ペースト (タッタ電線株式会社製 A E 1 2 44) を用いた。
次に、 樹脂シートから P ETフィルムを除去し、 樹脂シートを 1 00°Cで 30分 間熱処理し、 導電ペーストを乾燥させた。
次に、 樹脂シートの両主面上に、 保護部材として厚さ 20 jwmの P ETフィルム を貼り付け、 真空プレス機によ y樹脂シートを厚み方向に加圧した。 加圧条件は、 1 70°C、 1. OMP a、 5分間とした。 次に、 P E Tフイルムを除去することに より、 樹脂基板を得た。
(実施例 2 )
実施形態 4に記載された内容に基づき、 以下のようにして、 回路部品が内蔵され た樹脂基板を作製した。
まず、 実施例 1と同様にして、 厚さ 1 00 jt/mの粘着剤つき P ETフィルムの主 面上に、 両面が粗面化された厚さ 1 8 mの銅箔を接着し、 所定の配線パターンと 直径 200 mのレーザー通過用孔とを形成した。
次に、 配線パターンの一部に導電性接着剤 (二ホンハンダ株式会社製 N H 04 1 A— 2) を塗布し、 その上に回路部品として、 寸法 0. 3mmX O. 3 mm x 0. 6 mmのチップコンデンサを実装した。
次に、 樹脂シートとして、 実施例 1と同じ厚さ 400 j«mのシート状のエポキシ プリプレグを準備した。 次に、 真空プレス機により、 樹脂シートの両主面に、 配線 パターンが形成されチップコンデンサが実装された P ETフィルムを圧着した。 加 圧条件は、 1 20°C、 1. OMP a、 5分間とした。
次に、 樹脂シートから P ETフィルムを除去した。 次に、 樹脂シートを 1 70°C ^ 1 0分間熱処理し、 樹脂シートを構成するエポキシプリプレダを硬化させた。 次に、 樹脂シートの一方主面上に、 マスク部材として厚さ 20〃 mの P E Tフィ ルムを貼り付け、 レーザ一通過用孔を介して、 co2レーザ一により樹脂シートに貫 通孔を形成した。
次に、 スキージにより、 P ETフイルムを介して貫通孔に導電体を充填し、 ビア 導体を形成した。 導電体としては、 導電ペース卜 (タッタ電線株式会社製 A E 1 2 44) を用いた。
次に、 樹脂シー卜から P ETフイルムを除去し、 樹脂シートを 1 00°Cで 30分 間熱処理し、 導電ペーストを乾燥させた。
次に、 樹脂シートの両主面上に、 保護部材として厚さ 20 mの P ETフィルム を貼り付け、 真空プレス機により樹脂シートを厚み方向に加圧した。 加圧条件は、 1 70°C、 1. OMP a、 5分間とした。 次に、 P E Tフィルムを除去することに より、 チップコンデンサが内蔵された樹脂基板を得た。
(実施例 3 )
実施形態 5に記載された内容に基づき、 以下のようにして、 樹脂多層基板を作製 した。
まず、 樹脂シートとして、 シリカと液状エポキシ樹脂を混合してなる、 厚さ 1 0 0 jt mのシ一ト状のエポキシプリプレグを準備した。
次に、 樹脂シートの両主面に、 マスク部材として厚さ 20 mの P E丁フィルム を貼り付けた。次に、 C02レーザーにより、 樹脂シートと P ETフィルムとを貫通 する直径 300 jUmの貫通孔を形成した。
次に、 貫通孔に導電体として導電ペース卜 (タッタ電線株式会社製 A E 1 244) を充填し、 樹脂シ一卜を 60°Cで 30分間熱処理し、 導電ペーストを乾燥させた。 次に、 樹脂シートから P ETフイルムを除去し、 接着層を作製した。
次に、 実施例 2と同様にして樹脂基板を作製した。 次に、 樹脂基板が最上層およ び最下層となるように、 3つの樹脂基板と 2つの接着層とを交互に積層し、 圧着し た。 加圧条件は、 まず、 80°C、 1. OMP a、 5分間で熱圧着し、 ある程度接着 層を硬化させた後、 1 70°C、 2. OMP a、 60分間で熱圧着した。 これにより、 樹脂基板と接着層とが積層されてなる樹脂多層基板が得られた。 産業上の利用可能性
以上のように、 本発明にかかる樹脂基板または樹脂多層基板の製造方法は、 各種 半導体素子を高密度に実装する配線基板、 特に、 LS Iや、 チップコンデンサ、 チ ッブインダクタなどチップ状電子部品を内蔵した配線基板を製造するのに適してい る。

Claims

請求の範囲
1 - プリプレダ状態の樹脂シートと、 配線パターン転写用の支持体と、 を準備する 工程と、
前記支持体の一方主面上に配線パターンを形成し、 前記配線パターンを貫通する レーザー通過用孔を形成する工程と、
前記樹脂シー卜の一方主面と、 前記支持体の配線パターンが形成された一方主面 と、 を合わせるようにして、 前記樹脂シートと前記支持体とを圧着する工程と、 前記樹脂シー卜から前記支持体を除去する工程と、
前記レーザー通過用孔を介して、 レーザーにより前記樹脂シートを貫通する貫通 孔を形成する工程と、
前記貫通孔に導電体を充填する工程と、
を備える、 樹脂基板の製造方法。
2 . プリプレグ状態の樹脂シートと、 配線パターン転写用の支持体と、 を準備する 工程と、
前記支持体の一方主面上に配線パターンを形成し、 前記配線パターンを貫通する レーザー通過用孔を形成する工程と、
前記樹脂シ一卜の一方主面と、 前記支持体の配線パターンが形成された一方主面 と、 を合わせるようにして、 前記樹脂シートと前記支持体とを圧着する工程と、 前記レーザー通過用孔を介して、 レーザーにより前記樹脂シートと前記支持体と を貫通する貫通孔を形成する工程と、
前記貫通孔に導電体を充填する工程と、
前記樹脂シー卜から前記支持体を除去する工程と、
を備える、 樹脂基板の製造方法。
3 . 前記貫通孔に導電体を充填する工程の後に、 前記樹脂シー卜を厚み方向に加圧 する工程を備える、 請求の範囲第 1項または第 2項に記載の樹脂基板の製造方法。
4 . 前記貫通孔に導電体を充填する工程の後に、 前記樹脂シートを厚み方向に加圧 する工程を備え、
前記樹脂シートから前記支持体を除去する工程と、 前記樹脂シートを厚み方向に 加圧する工程との間に、 前記樹脂シートを熱処理する工程を備える、 請求の範囲第 1項に記載の樹脂基板の製造方法。
5 . 前記支持体の一方主面上には、 前記配線パターンと電気的に接続されるように 回路部品が実装されており、
前記樹脂シートと前記支持体とを圧着する工程において、 前記樹脂シー卜に前記 回路部品を埋没させる、 請求の範囲第 1項または第 2項に記載の樹脂基板の製造方 法。
;6 . 請求の範囲第 1項または第 2項に記載の樹脂基板の製造方法により、 複数の樹 脂基板を作製する工程と、
内部に導電体が埋め込まれた樹脂シー卜からなる接着層を準備する工程と、 : 前記樹脂基板の主面と前記接着層の主面とを合わせるようにして、 かつ、 2つの 前記樹脂基板の間に前記接着層が配置されるように、 前記樹脂基板と前記接着層と 'を圧着する工程と、
を備える、 樹脂多層基板の製造方法。
PCT/JP2003/010281 2002-10-25 2003-08-13 樹脂基板の製造方法、および樹脂多層基板の製造方法 WO2004039136A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003255017A AU2003255017A1 (en) 2002-10-25 2003-08-13 Method for manufacturing resin substrate and method for manufacturing multilayer resin substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002310647A JP2004146634A (ja) 2002-10-25 2002-10-25 樹脂基板の製造方法、および樹脂多層基板の製造方法
JP2002-310647 2002-10-25

Publications (1)

Publication Number Publication Date
WO2004039136A1 true WO2004039136A1 (ja) 2004-05-06

Family

ID=32171055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010281 WO2004039136A1 (ja) 2002-10-25 2003-08-13 樹脂基板の製造方法、および樹脂多層基板の製造方法

Country Status (4)

Country Link
JP (1) JP2004146634A (ja)
AU (1) AU2003255017A1 (ja)
TW (1) TW200501850A (ja)
WO (1) WO2004039136A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20031341A (fi) 2003-09-18 2005-03-19 Imbera Electronics Oy Menetelmä elektroniikkamoduulin valmistamiseksi
FI117814B (fi) 2004-06-15 2007-02-28 Imbera Electronics Oy Menetelmä elektroniikkamoduulin valmistamiseksi
US8487194B2 (en) 2004-08-05 2013-07-16 Imbera Electronics Oy Circuit board including an embedded component
FI117812B (fi) 2004-08-05 2007-02-28 Imbera Electronics Oy Komponentin sisältävän kerroksen valmistaminen
FI119714B (fi) 2005-06-16 2009-02-13 Imbera Electronics Oy Piirilevyrakenne ja menetelmä piirilevyrakenteen valmistamiseksi
JP2008544512A (ja) 2005-06-16 2008-12-04 イムベラ エレクトロニクス オサケユキチュア 回路基板構造体およびその製造方法
FI122128B (fi) 2005-06-16 2011-08-31 Imbera Electronics Oy Menetelmä piirilevyrakenteen valmistamiseksi
KR101113889B1 (ko) 2007-12-04 2012-02-29 삼성테크윈 주식회사 전자 소자를 내장하는 회로기판 및 회로기판의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182497A (ja) * 1984-09-28 1986-04-26 日立化成工業株式会社 印刷配線板の製造法
JPH0284791A (ja) * 1988-06-17 1990-03-26 Hitachi Chem Co Ltd 配線板の製造法
JPH06177277A (ja) * 1992-12-08 1994-06-24 Toppan Printing Co Ltd 半導体装置の製造方法
JP2000114681A (ja) * 1998-10-01 2000-04-21 Ibiden Co Ltd プリント配線板及びその製造方法
US6195882B1 (en) * 1996-09-06 2001-03-06 Matsushita Electric Industrial Co., Ltd. Method for producing printed wiring boards
US20020117743A1 (en) * 2000-12-27 2002-08-29 Matsushita Electric Industrial Co., Ltd. Component built-in module and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182497A (ja) * 1984-09-28 1986-04-26 日立化成工業株式会社 印刷配線板の製造法
JPH0284791A (ja) * 1988-06-17 1990-03-26 Hitachi Chem Co Ltd 配線板の製造法
JPH06177277A (ja) * 1992-12-08 1994-06-24 Toppan Printing Co Ltd 半導体装置の製造方法
US6195882B1 (en) * 1996-09-06 2001-03-06 Matsushita Electric Industrial Co., Ltd. Method for producing printed wiring boards
JP2000114681A (ja) * 1998-10-01 2000-04-21 Ibiden Co Ltd プリント配線板及びその製造方法
US20020117743A1 (en) * 2000-12-27 2002-08-29 Matsushita Electric Industrial Co., Ltd. Component built-in module and method for producing the same

Also Published As

Publication number Publication date
AU2003255017A1 (en) 2004-05-13
TW200501850A (en) 2005-01-01
JP2004146634A (ja) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4291279B2 (ja) 可撓性多層回路基板
JP3429734B2 (ja) 配線基板、多層配線基板、回路部品実装体及び、配線基板の製造方法
KR100276193B1 (ko) 인쇄회로판,ic카드및그제조방법
US7485569B2 (en) Printed circuit board including embedded chips and method of fabricating the same
WO2003034494A1 (en) Module component
JP2006190953A (ja) メッキによるチップ内蔵型プリント回路基板およびその製造方法
KR20080064872A (ko) 적층 회로 기판의 제조 방법, 회로판 및 그 제조 방법
JP2009253270A (ja) 印刷回路基板及びその製造方法
JP6291738B2 (ja) 回路基板、回路基板の製造方法及び電子機器
WO2004039136A1 (ja) 樹脂基板の製造方法、および樹脂多層基板の製造方法
JP2008300819A (ja) プリント基板およびその製造方法
KR100716809B1 (ko) 이방전도성필름을 이용한 인쇄회로기판 및 그 제조방법
JP4939519B2 (ja) 多層回路基板の製造方法
JP2005026573A (ja) 部品内蔵モジュールの製造方法
JP2010283300A (ja) 突起電極付き配線基板及び突起電極付き配線基板の製造方法
KR20060134512A (ko) 임베디드 인쇄회로기판 제조방법
JP2005045228A (ja) 光学情報記録媒体とその製造方法
JPH1070363A (ja) 印刷配線板の製造方法
JP4287757B2 (ja) 回路部品内蔵モジュール及びその製造方法
JP2001298274A (ja) 電子回路構成体
KR100867954B1 (ko) 전자소자 내장 인쇄회로기판 및 그 제조방법
JP2002246745A (ja) 三次元実装パッケージ及びその製造方法、三次元実装パッケージ製造用接着材
WO2004043120A1 (ja) 樹脂基板の製造方法、樹脂多層基板の製造方法、および樹脂基板
JP2001077536A (ja) 電子回路内蔵プリント配線板およびその製造方法
JP2002118368A (ja) 配線基板およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase