WO2004036284A1 - 共焦点顕微鏡、共焦点顕微鏡を用いた蛍光測定方法及び偏光測定方法 - Google Patents

共焦点顕微鏡、共焦点顕微鏡を用いた蛍光測定方法及び偏光測定方法 Download PDF

Info

Publication number
WO2004036284A1
WO2004036284A1 PCT/JP2003/011935 JP0311935W WO2004036284A1 WO 2004036284 A1 WO2004036284 A1 WO 2004036284A1 JP 0311935 W JP0311935 W JP 0311935W WO 2004036284 A1 WO2004036284 A1 WO 2004036284A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
matrix type
type liquid
confocal microscope
Prior art date
Application number
PCT/JP2003/011935
Other languages
English (en)
French (fr)
Inventor
Terutake Hayashi
Katsuhiro Maekawa
Takayuki Shibata
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2004544910A priority Critical patent/JPWO2004036284A1/ja
Priority to EP03808886A priority patent/EP1548481A4/en
Priority to US10/529,395 priority patent/US20060012872A1/en
Publication of WO2004036284A1 publication Critical patent/WO2004036284A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0068Optical details of the image generation arrangements using polarisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/067Electro-optic, magneto-optic, acousto-optic elements
    • G01N2201/0675SLM

Definitions

  • the present invention relates to a confocal microscope used for fluorescence observation from a living tissue or a living tissue, and has high sensitivity, excellent resolution in a lateral direction and a depth direction, and enables dynamic observation of a wide area.
  • the present invention relates to a confocal microscope using liquid crystal, a method for measuring fluorescence from a microarray substrate using a confocal microscope using liquid crystal, and a method for measuring polarization using a confocal microscope using liquid crystal.
  • confocal microscopes have been used to observe fluorescence emission from biological tissues and biological tissue samples supplemented with fluorescent reagents in the field of life culture studies.
  • Confocal microscopes have been mainly used for three-dimensional observation of biological samples, etc. because of their high resolution in the depth direction.
  • Fig. 19 shows Conventional Example 1 of a confocal microscope (for example, see Non-Patent Document 1).
  • the laser beam 16 1 is reflected by the beam splitter 16 2, and is imaged on the sample 16 4 by the objective lens 16 3.
  • the reflected light or fluorescent light 166 reflected by the sample 164 passes through the beam splitter 162, passes through the mirror 167 and the lens 169, and enters the detector 171.
  • the pinhole 170 in front of the detector 171
  • light beams generated from other than the focal plane can be removed and a clear image can be obtained.
  • the stage on which the sample 164 is placed is moved in a plane, that is, the stage 172 is observed by scanning.
  • FIG. 20 is a diagram showing the principle of the scanning method of the multiple confocal microscope using the Nipkow disk of Conventional Example 2 (for example, see Patent Document 1 and Non-Patent Document 2 below).
  • the laser beam 18 1 is applied to the confocal scanning device 190.
  • the confocal scanning device 190 is composed of a condensing disc 191 and a pinhole disc 192 composed of two disks, a drum 194, and a beam splitter 182. ing.
  • the focusing disk 19 1 and the pinhole disk 19 2 are held by the drum 19 4 and rotated by the motor 19 5.
  • the laser beam 181 passes through a number of pinholes 193 provided on the focusing disk 191.
  • the transmitted light forms a plurality of focal points on the object 18 4 through the beam 18 3 through the lens 18 3 through the beam splitter 18 2.
  • the reflected light from the object to be observed 184 is turned 90 ° with respect to the incident direction through the beam splitter 182, and is connected to the camera 186 by the lens 185. Imaged. This improves light use efficiency and realizes a multiple confocal microscope with simultaneous detection of multiple focal points.
  • FIG. 21 is a diagram showing the configuration of a multiple confocal microscope of Conventional Example 3 (for example, see Patent Document 2 below).
  • the multiple confocal microscope 200 has an optical system similar to that of the conventional example 1 shown in FIG. 18 except that a liquid crystal cell 203 is provided in the optical path of incident light.
  • the incident light 201 passes through the beam splitter 202 and is condensed on the sample 205 by the objective lens 204 via the liquid crystal cell 203.
  • the reflected light from the sample 205 passes through the lens 207 via the beam splitter 202, and the reflected light 208 is imaged on the camera 209.
  • the incident light 201 passes through the opening 203 a which is one pixel of the liquid crystal cell, and forms an image at a point 210 a of the sample 205.
  • the other pixel 203 b which is another pixel of the liquid crystal cell, is opened, the incident light forms an image on the point 210 b of the sample 205.
  • the scanning of the sample 205 is performed by so-called XY scanning in which the pixels 201 on the plane of the liquid crystal cell are turned on and off in order.
  • Patent Documents 3 and 4 below disclose a DNA inspection apparatus having a multi-spot array in which an incident light source is a multi-beam, and performing confocal detection of fluorescence generated by irradiated excitation light.
  • Patent literature
  • the multi-confocal microscope of Conventional Example 2 detects a large number of points at the same time, so that light incident on adjacent focal points interferes with each other. This is called crosstalk.
  • the incident light intensity distribution generated by this interference generates interference fringes, which are light and dark patterns.
  • the illumination light intensity distribution becomes non-uniform, and the lateral resolution of the observed image is reduced.
  • the light intensity varies for each focus.
  • a fluorescence signal with a large variation from a DNA chip cannot be observed at once on a detector.
  • the scanning is performed by sequentially opening and closing a number of points of the liquid crystal cell, thereby eliminating the need for a mechanical scanning mechanism unlike the scanning of the second conventional example.
  • it is necessary to perform XY scanning for the number of pixels, so it takes time to scan one screen, and the detection of fluorescence and the like of the entire sample in real time Is difficult to do.
  • the multi-spot array is formed by a polarizing element, but the sample mounting stage is observed by scanning the plane in a plane, similarly to the confocal microscope of the related art 1. Like that. Scanning time is shorter than in the case of single focus of the multiple confocal microscope of Conventional Example 1, but it is wider. Observation requires scanning, and real-time observation of fluorescence and the like is difficult. Disclosure of the invention
  • an object of the present invention is to provide a confocal microscope and a liquid crystal using a liquid crystal, which are highly sensitive, have excellent lateral and depth resolutions, and are capable of dynamic observation of a wide area.
  • An object of the present invention is to provide a method for measuring fluorescence from a microarray substrate by using a confocal microscope and a method for measuring polarization by using a confocal microscope using liquid crystal.
  • a confocal microscope using a liquid crystal of the present invention transmits polarized light from an illuminating light source through a matrix-type liquid crystal element having a beam splitter and a microlens array at the top, and an objective lens.
  • Optical system that includes an image sensor that detects reflected light or fluorescence from the object through a beam splitter and a lens; and a matrix type liquid crystal element.
  • a confocal microscope including: a control system having a liquid crystal control unit for controlling each pixel; and a lens configured to transmit light of the microlens ⁇ transmitted through the microlens array to each pixel of the matrix type liquid crystal element, and A plurality of focal points are focused on the object to be observed by the lens, and the polarization direction of light transmitted through each pixel of the matrix type liquid crystal element is controlled using a liquid crystal control unit.
  • the polarization direction of light passing through each pixel of the matrix type liquid crystal element is controlled to be orthogonal to each other.
  • a polarizer is disposed below the matrix type liquid crystal element, and the polarization of light transmitted through the polarizer is controlled by each pixel of the matrix type liquid crystal.
  • light to be irradiated on the object to be observed enters the respective pixels of the matrix type liquid crystal element as pinholes by the microlens array, and forms a first plurality of focal points on the object to be observed.
  • the microscope of the present invention operates as a confocal microscope.
  • each pixel of the matrix liquid crystal element is controlled such that the polarization directions of light passing through each pixel are orthogonal to each other.
  • the observation of the reflected light or the fluorescence of the object can be performed at high speed without performing the scanning control of the object.
  • crosstalk between multiple confocal points can be prevented, and the resolution is improved.
  • the polarized light from the illumination light source is transmitted through a first matrix type liquid crystal element in which a beam splitter, a lens, and a first microlens array are arranged on the upper part.
  • An incident optical system for entering the object to be observed, and a reflected or reflected light from the object to be observed; a second matrix-type liquid crystal element having a beam splitter, a lens, and a second microlens array arranged thereon.
  • a detection optical system including an imaging element for detecting through a condenser lens, and first and second liquid crystal control units for controlling the polarization directions of light transmitted through each pixel of the first and second matrix type liquid crystal elements
  • a control system comprising: transmitting light of each microlens transmitted through the first microlens array to each pixel of the first matrix-type liquid crystal element to focus a plurality of objects on the object to be observed.
  • the reflected light or the fluorescence of the microlens array ⁇ transmitted through the second microlens array is transmitted for each pixel of the second matrix type liquid crystal element, and a plurality of focal points are formed on the imaging element.
  • the polarization direction of light passing through each pixel of the second matrix type liquid crystal element is controlled using the first and second liquid crystal control units.
  • the first liquid crystal control unit of the incident optical system controls the polarization directions of the light passing through each pixel of the first matrix type liquid crystal element so as to be orthogonal to each other.
  • the second liquid crystal controller of the detection optical system may control the polarization directions of the light transmitted through each pixel of the second matrix type liquid crystal element so as to be orthogonal to each other.
  • a polarizer may be arranged below the first matrix type liquid crystal element, and the polarization direction of light transmitted through the polarizer may be controlled by each pixel of the first matrix type liquid crystal.
  • the incident light irradiating the object to be observed enters each pixel of the first matrix type liquid crystal element through the first microlens array, and the first plurality of focal points are focused on the object to be observed.
  • the reflected light or the fluorescent light of the object to be observed passes through the second microlens array of the detection optical system and each pixel of the second matrix type liquid crystal element to form a second plurality of focal points.
  • the microscope of the present invention operates as a confocal microscope. At this time, in each pixel of the first and second matrix type liquid crystal elements, each pixel of each matrix type liquid crystal element is controlled such that the polarization directions of light passing through each pixel are orthogonal to each other.
  • the object to be observed can be controlled without performing scanning control of the object to be observed. Observation of reflected light or fluorescent light at high speed. In addition, crosstalk between multiple confocal points can be prevented, and the resolution in the lateral and depth directions is improved. Further, by controlling the combination of the first and second matrix liquid crystal elements, polarization control, selection of a detection signal, and the like can be dynamically realized.
  • the polarized light whose light intensity has been modulated from the illumination light source is transmitted through the matrix liquid crystal element in which the beam splitter and the microlens array are arranged in the upper part, and the objective lens.
  • Optical system that includes an imaging element that detects reflected light or fluorescence from the object through a beam splitter and a lens, and a matrix type liquid crystal element. Equipped with a control system including a liquid crystal control unit for controlling pixels and a light intensity modulation control unit for the illumination light source, and transmits the light of each microphone aperture lens transmitted through the micro lens array to each pixel of the matrix type liquid crystal element.
  • the objective lens is used to focus multiple points on the object to be observed, and the polarization directions of the light passing through each pixel of the matrix type liquid crystal element are controlled so as to be orthogonal to each other using the liquid crystal controller. , And detects and converts the optical intensity modulated signal of the reflected light or fluorescence from the object to be observed in the frequency signal.
  • a polarizer is arranged below the matrix type liquid crystal element, and the polarization of light transmitted through the polarizer is controlled by each pixel of the matrix type liquid crystal.
  • the illumination light source has one wavelength or multiple wavelengths, and the light intensity of the illumination light source is modulated using any one of a matrix type liquid crystal element, an acousto-optic element, and a digital mirror device. Further, light intensity modulation per wavelength of the illumination light source may be applied at a plurality of modulation frequencies for each pixel.
  • the incident light irradiating the object to be observed is light-intensity-modulated, the reflected light or the fluorescence from the object to be observed is converted into a signal on the frequency axis, thereby obtaining the object to be observed.
  • Reflected light or fluorescence from the object can be detected with high sensitivity.
  • the illumination light source has multiple wavelengths, reflected light or fluorescence from multiple wavelengths can be measured in a short time with high sensitivity.
  • the confocal microscope using the liquid crystal of the present invention uses a first matrix type in which a beam splitter, a lens, and a first microlens array are arranged on the upper part of a polarized light whose light intensity is modulated from an illumination light source.
  • An incident optical system that enters the object to be observed through a liquid crystal element Includes a beam splitter, a lens, a second matrix type liquid crystal element with a second micro lens array arranged on top, and an image sensor that detects the reflected light or fluorescence from the object to be observed via a condenser lens
  • a detection optical system includes a detection optical system, first and second liquid crystal controllers for controlling the polarization directions of light passing through each pixel of the first and second matrix liquid crystal elements, and a light intensity modulation controller for the illumination light source
  • the reflected light or fluorescent light of each microlens array transmitted through the second microlens array is transmitted through each pixel of the second matrix type liquid crystal element, and a plurality of focal points are focused on the image pickup element.
  • the first and second liquid crystal controllers
  • the first liquid crystal control unit of the incident optical system preferably controls the polarization directions of light transmitted through each pixel of the first matrix type liquid crystal element so as to be orthogonal to each other.
  • the second liquid crystal control unit of the detection optical system controls the polarization directions of the light transmitted through each pixel of the second matrix type liquid crystal element so as to be orthogonal to each other.
  • a polarizer may be provided below the first matrix type liquid crystal element, and the polarization of light transmitted through the polarizer may be controlled by each pixel of the matrix type liquid crystal.
  • the illumination light source has one wavelength or multiple wavelengths, and the light intensity modulation of the illumination light source is performed by using any one of a matrix type liquid crystal element, an acousto-optic element, and a digital mirror device. Further, light intensity modulation per wavelength of the illumination light source may be applied at a plurality of modulation frequencies for each pixel. Preferably, a frequency signal conversion is performed by a fast Fourier transform from a light intensity modulation signal of reflected light or fluorescence from the object to be observed.
  • the incident light irradiating the object to be observed is light-intensity-modulated, the reflected light or the fluorescence from the object to be observed is converted into a signal on the frequency axis, thereby obtaining the object to be observed.
  • Reflected light or fluorescence from the object can be detected with high sensitivity.
  • the illumination light source has multiple wavelengths, reflected light or fluorescence from multiple wavelengths can be measured in a short time with high sensitivity.
  • Fluorescence measurement from microarray substrate by confocal microscope using liquid crystal of the present invention The method is characterized by observing the fluorescence from the fluorescent substance with the confocal microscope of the present invention using a microarray substrate to which a fluorescent substance to be a label is selectively applied in advance.
  • the microarray substrate contains a minute amount of DNA or a biological substance, and is an object to be observed in which these are arranged in a plate shape.
  • the microarray substrate may be a DNA chip. According to this configuration, by using the liquid crystal of the present invention in a confocal microscope, it is possible to efficiently observe light without scanning the microarray substrate.
  • the method for measuring the polarization of an object to be observed by a confocal microscope using the liquid crystal of the present invention comprises the steps of: It is characterized by measuring.
  • polarization is measured from an object to be observed by changing polarization by 180 degrees.
  • polarized light from reflected light or fluorescence from the object to be observed can be efficiently observed.
  • the object to be observed can be measured at once without scanning the object to be observed.
  • the crosstalk can be reduced by controlling the polarization of each pixel of the matrix type liquid crystal element, and the resolution in the horizontal direction and the depth direction can be improved.
  • light intensity modulation is applied to a light source at one wavelength or multiple wavelengths, reflected light or fluorescence can be detected with high sensitivity.
  • fluorescence of one wavelength or multiple wavelengths can be efficiently observed without mechanical scanning of the microarray substrate.
  • polarized light from an object to be observed can be efficiently observed using one wavelength or multiple wavelengths without mechanical scanning of the object to be observed. it can.
  • FIG. 1 is a schematic diagram showing a configuration of a confocal microscope using a liquid crystal according to a first embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating polarization control of each pixel of the matrix type liquid crystal element.
  • FIG. 3 is a diagram showing a polarization state of light passing through each pixel in the matrix type liquid crystal element of FIG.
  • FIG. 4 is a diagram showing another configuration of the confocal microscope according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating the operation and effect of the polarizer provided in the incident optical system.
  • FIG. 6 is a schematic diagram showing a configuration of a confocal microscope according to a second embodiment of the present invention.
  • FIG. 5 is a diagram showing another configuration of the confocal microscope according to the present invention.
  • FIG. 8 is a schematic diagram showing a configuration of a confocal microscope according to a third embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing another configuration example of the illumination optical system of the confocal microscope according to the third embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing another configuration of the confocal microscope according to the third embodiment of the present invention. .
  • FIG. 11 is a schematic diagram showing a configuration of a confocal microscope according to a fourth embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing one configuration example of the illumination optical system of the confocal microscope according to the fourth embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing another configuration of the confocal microscope according to the fourth embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing a configuration of a confocal microscope according to a fifth embodiment of the present invention.
  • FIG. 15 shows an illumination optical system of a confocal microscope according to a fifth embodiment of the present invention. It is a schematic diagram which shows another example of a structure.
  • FIG. 16 is a diagram showing another configuration of the confocal microscope according to the present invention.
  • FIG. 17 is a schematic diagram showing a configuration of a confocal microscope according to a sixth embodiment of the present invention.
  • FIG. 18 is a diagram showing another configuration of the confocal microscope according to the present invention.
  • FIG. 19 is a diagram showing a configuration of a confocal microscope of Conventional Example 1.
  • FIG. 20 is a diagram showing the principle of the scanning method of the multiple confocal microscope using the two-bow disc of Conventional Example 2.
  • FIG. 21 is a diagram showing a configuration of a multiple confocal microscope of Conventional Example 3. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram showing a configuration of a confocal microscope using a liquid crystal according to a first embodiment of the present invention.
  • a confocal microscope 1 using liquid crystal detects an illumination optical system 10, an incident optical system 20 including a matrix type liquid crystal element to form a multifocal point on an object to be observed, and a reflected light from the illumination object to be observed. It comprises a detection optical system 30, a control system 50 for controlling image data from the matrix type liquid crystal element and the detection optical system, and a stage 3 on which the object 2 is placed.
  • the illumination optical system 10 includes an illumination light source 11, a collimator 12, a first polarizer 13, and a beam splitter 14.
  • the illumination light source 11 is, for example, a laser light source, and the emitted light is expanded into parallel light having a desired beam diameter by a collimator 12 including a lens 12a and a lens 12b, and the polarizer 13 is turned on. The light passes through and enters the beam splitter 14.
  • the wavelength of the laser light source may be about 400 nm to about 700 nm.
  • the polarizer 13 can be omitted.
  • the incident optical system 20 includes, in order from the top, a micro lens array 21, a matrix type liquid crystal element 22, and an objective lens 23.
  • the parallel light incident on the beam splitter 114 is reflected downward, and the light having a uniform light intensity distribution
  • the focus is focused on each pixel of the matrix-type liquid crystal element 22 by the microlens array 21 disposed below the litter 14.
  • the microlens array 21 is composed of a plurality of microlenses arranged in an array at positions corresponding to the pixels 22 a of the matrix liquid crystal element 2. Light can be efficiently incident every 22a. Each light incident on the micro lens array 21 is a matrix type liquid crystal element
  • Each of 22 pixels 22a passes as a pinhole.
  • Each light that has passed through each pixel 22 a as a pinhole is enlarged once, and then imaged as a plurality of focal points 24 on the surface of the object 2 by the objective lens 23.
  • Stage 3 is composed of an XYZ stage 3a and a ⁇ stage 3b that can move in the front-rear, left-right and up-down directions.
  • the position of the object 2 can be adjusted by moving and adjusting the stage 3 both in the horizontal plane and in the vertical direction by the XYZ stage 3a. Further, at this time, the angle adjustment in the XYZ plane is also performed by the stage 3b, so that the position of the object 2 is adjusted.
  • the detection optical system 30 that detects reflected light from an object to be observed will be described.
  • the reflected light from the observation target 2 reverses the path of the incident light, enters the imaging lens 31 via the beam splitter 14, and captures a plurality of focal points 3 2 element
  • the image sensor 33 a CCD image sensor or a CMOS image sensor capable of receiving the above-mentioned image at once can be used. Further, these imaging devices 33 may be cooled by a cooling device using, for example, liquid nitrogen or a Peltier device so as to reduce noise in order to improve the S / N ratio (signal to noise ratio).
  • the reflected light of the object to be observed may be normal reflected light when the wavelength is the same as that of the illumination light source 11, or may be fluorescence that is excitation light from the object to be excited excited by the illumination light source 11. .
  • the wavelength of the fluorescence is usually longer than the wavelength of the illumination source. Therefore, when observing fluorescence, a dichroic mirror or the like that can separate the fluorescence wavelength from the wavelength of the illumination light source can be used as the beam splitter 14.
  • the control system 50 includes a personal computer 51, a first liquid crystal control unit 52, An image processing device 53 is provided.
  • the personal computer 51 includes a display device 54 that displays an image of an object to be observed.
  • the personal computer 51 outputs data for controlling the polarization direction of light transmitted through each pixel of the matrix type liquid crystal element 22 to the liquid crystal control section 52.
  • the liquid crystal controller 52 is a drive circuit that converts the polarization direction of light rotated by each pixel 22 a of the matrix type liquid crystal element 22 into a liquid crystal element drive signal.
  • This drive circuit converts the polarization signal of each pixel 22 a of the matrix type liquid crystal element 22 from the personal computer 51 into a liquid crystal element drive signal suitable for the matrix type liquid crystal element 22, that is, with respect to each pixel 22 a. Convert to a voltage signal.
  • the liquid crystal control unit 52 appropriately adjusts the drive voltage applied to each pixel 22 a, or changes the drive voltage during the drive time, thereby controlling the light transmitted through each pixel 22 a. Control the polarization direction.
  • the image signal 33a of the image sensor 33 is output to the image processing device 53 of the control system 50, where the personal computer 51 processes the image data, etc., and outputs the image to the display device 54. Is done.
  • Each pixel 22 a of the matrix type liquid crystal element 22 is controlled by a first liquid crystal control unit 51 constituting the control system 50 to transmit light transmitted through each pixel 1 a of the matrix type liquid crystal element 2. Controls the polarization direction. Thereby, the control is performed so that the polarization directions of light incident on adjacent pixels are orthogonal to each other. At this time, all the pixels of the matrix type liquid crystal element are controlled simultaneously and for a time necessary for observing the object 2, so that a plurality of focal points 24 can be simultaneously formed on the object.
  • FIG. 3 and FIG. 3 are diagrams schematically showing the polarization control of each pixel of the matrix type liquid crystal element.
  • the plane light 15 from the collimator 12 is incident on the matrix type liquid crystal element 22 via the first polarizer 13 and the microlens array 21.
  • the first polarizer 13 has a known configuration, and is configured, for example, by bonding a polarizing film between two glass plates.
  • the incident parallel light is converted by the first polarizer 13 into illumination light polarization 16 in the- ⁇ direction as shown in FIG. 2, and each pixel 2 2a of the matrix type liquid crystal displays 17 a, 17 b, The polarization 16 of the incident light is controlled as in 17c.
  • the matrix type liquid crystal element The polarized light 17 a, 17 b, and 17 c of the polarized light 17 indicate a perpendicular state, a parallel state, and an intermediate state between the perpendicular and parallel directions to the polarized light 16 of the illumination light, respectively.
  • FIG. 3 shows the polarization state of light passing through each pixel 22 a in the matrix type liquid crystal element 12.
  • a and b in the figure are the states in which the polarization is parallel and perpendicular to the incident light, respectively. Accordingly, in the case shown in the figure, the polarization directions of the light passing through the adjacent pixels 22a are orthogonal to each other. As described above, when the polarization direction of light passing through each pixel 22 a adjacent to the matrix type liquid crystal element 22 is controlled, the incident light of a and b adjacent to each other has an orthogonal vibration component and no interference occurs.
  • each pixel 22 a of the matrix type liquid crystal element 22 is controlled so that the polarization directions of light transmitted through each pixel 22 a are orthogonal to each other. Can be. Thereby, crosstalk between multiple confocal points can be prevented, and the resolution in the lateral direction and the depth direction is improved. Further, it is possible to observe the reflected light or the fluorescence of the object 2 at high speed without performing the mechanical scanning of the object 2.
  • the pitch which is the interval between the pixels 22a of the matrix type liquid crystal element 22, is strictly not an image, so the stage 3 is moved by one pitch in the X and Y directions. To make up one screen.
  • the pitch of the pixels of the matrix type liquid crystal element .22 is about 10 to 20 ⁇ m.
  • the X-Y drive control of the stage for one pitch can be performed by adding a drive device using an electrostrictive element to the stage 3.
  • FIG. 4 is a diagram showing another configuration of the confocal microscope using the liquid crystal according to the present invention.
  • the other illumination optical system 10, detection optical system 30, control system 50, and stage 3 have the same configuration as in FIG.
  • the incident optical system 20 differs from the incident optical system of FIG. 1 in that a second polarizer 25 is provided below the matrix type liquid crystal element 22.
  • FIG. 5 is a schematic diagram illustrating the function and effect of the polarizer 25 provided in the incident optical system.
  • the incident light 15 from the collimator 1 passes through the first polarizer 13, the microlens array 21, and the matrix liquid crystal element 22 and enters.
  • the first polarizer 13 and the second polarizer 25 are arranged not to be coaxial but to be orthogonal (90 °) to each other.
  • the polarization direction as shown in 17 is shown every time the light transmitted through the first polarizer 13 is transmitted through the pixel 12a. Is transmitted through the second polarizer 25 whose transmission axis is shifted by 90 ° from the first polarizer 13, and becomes transmitted light 26 a.
  • the driving voltage when the driving voltage is applied to the pixel 22a, the twisted state of the liquid crystal molecules in the pixel 22a changes depending on the magnitude of the voltage.
  • the polarization direction of the linearly polarized light can be rotated within a range of 0 to 90 ° within the pixel 22a.
  • the intensity of the light transmitted through the second polarizer 25 is arbitrarily controlled. Therefore, the driving voltage of each pixel 22a of the matrix type liquid crystal element 22 controls the incident light to be transmitted 26a, not shielded 26b, and an intermediate state (gray) 26c between them.
  • the illumination light intensity can be changed.
  • the intensity of the illumination light is controlled by adding the second polarizer 25. be able to. This allows each pixel of the matrix-type liquid crystal element to correspond to the object to be observed.
  • the illumination light intensity can be controlled.
  • FIG. 6 is a schematic diagram showing a configuration of a confocal microscope using a liquid crystal according to a second embodiment of the present invention.
  • a confocal microscope 5 using a liquid crystal includes an illumination optical system 10, an incident optical system 0 including a matrix type liquid crystal element and forming a multifocal point on an object 2, and a reflected light from the object.
  • the illumination optical system 10 is composed of an illumination light source 11, a collimator 1 and a first polarizer 13 like the illumination optical system of FIG. It is made to enter splitter 1-14.
  • the incident optical system 20 is composed of an objective lens 26, a lens 27, a microlens array 21, and a matrix type liquid crystal element 22.
  • the polarized parallel light from the beam splitter 14 is further expanded using the objective lens 26 and the lens 27.
  • the enlarged light having the uniform light intensity distribution is applied to the entire surface of the first microlens array 11.
  • the light of each microlens that has passed through the first microlens array 21 attached to the surface of the first matrix type liquid crystal element 22 is output to each pixel 22 a of the first matrix type liquid crystal element 22.
  • a plurality of focal points 4 are formed on the observation object 2 which is transmitted and placed on the stage 3.
  • each pixel 2 2a of the matrix type liquid crystal element 22 is provided with the first matrix type liquid crystal element by the first liquid crystal control section 51 constituting the control system 50 ′.
  • Control is performed so that the polarization directions of the pixels adjacent to each of the 22 pixels 22 a are orthogonal to each other.
  • the polarization directions of the incident lights condensed at adjacent focal points are orthogonal to each other, so that the adjacent incident lights do not interfere with each other, and the horizontal directions due to crosstalk are not generated. A decrease in resolution can be prevented.
  • a detection optical system 30 ′ that detects reflected light or glare from the object 2 after passing through the beam splitter 14.
  • the detection optical system 30 is a mirror 34, a filter 35, an objective lens 36, a lens 3 7, a second microlens array 38, a second matrix type liquid crystal element 39, a condenser lens 40, and an imaging element 33.
  • the optical system from the objective lens 36 to the second matrix type liquid crystal element 39 is the same as the configuration from the objective lens 26 of the incident optical system 0, to the first matrix type liquid crystal element 22.
  • the mirror 34 bends the optical path of the reflected light from the object passing through the beam splitter 90 by 90 °, and passes the objective lens through the filter 35 that passes only light of a specific wavelength. 3 Make 6 incident.
  • the beam splitter When observing the fluorescence from the object 2, since the wavelength of the fluorescence is longer than that of the illumination light source 1, the beam splitter is used to transmit only the fluorescence to the detection optical system 30.
  • a dichroic mirror may be used as one.
  • the second microlens array 38 is composed of microlenses arranged in an array at positions corresponding to each pixel of the second matrix type liquid crystal element 39. This allows light to efficiently enter each pixel ⁇ of the second matrix type liquid crystal element 39.
  • the light of each microphone aperture lens that has passed through the second micro lens array 38 attached to the surface of the second matrix type liquid crystal element 39 passes through each pixel of the second matrix type liquid crystal element 39.
  • the control system 50 ′ further includes a second liquid crystal control unit 55 that is a control unit of the second matrix type liquid crystal element 39 of the detection optical system 30 ′ in addition to the control system 50 of FIG. Others have the same configuration.
  • each of the matrix type liquid crystal elements 22 is controlled by the first liquid crystal controller 52 constituting the control system 50, as described with reference to FIGS. Control is performed so that the polarization directions of the light passing through the pixels adjacent to the pixel 22a are orthogonal to each other.
  • the polarization directions of the reflected light or the fluorescence may be orthogonal to each other.
  • adjacent reflected light or fluorescent light incident on the image sensor does not interfere with each other, and it is possible to prevent a decrease in lateral resolution due to crosstalk.
  • each pixel of the matrix type liquid crystal element 39 of the detection optical system 30 ′ can be controlled to be in a transmissive state, a light-shielding state, or an intermediate state therebetween, so that the field of view can be limited.
  • each pixel 22 a of the first matrix-type liquid crystal element by the first micro lens array 21, and the first plurality of focal points 2 4 is incident on each pixel 22 a of the first matrix-type liquid crystal element by the first micro lens array 21, and the first plurality of focal points 2 4 to form Further, the reflected light or the fluorescent light of the object 2 is detected by the detection optical system 30 using the second microlens array 38 and the pixels of the second matrix type liquid crystal element 39.
  • the microscope of the present invention operates as a confocal microscope.
  • each pixel of the matrix type liquid crystal elements 22 and 39 can be controlled so that the polarization direction of light transmitted through each pixel of the matrix type liquid crystal elements 22 and 39 is orthogonal to each other.
  • FIG. 7 is a diagram showing another configuration of a confocal microscope using a liquid crystal according to the present invention. It is.
  • the confocal microscope 5 ′ using liquid crystal shown in the figure differs from the confocal microscope 5 using liquid crystal shown in FIG. 6 in an incident optical system 20 ′.
  • the other illumination optical system 10, detection optical system 30, control system 50, and stage 3 have the same configuration as in FIG.
  • the incident optical system 20 ′ is different from the incident optical system in FIG. 6 in that a second polarizer 25 is provided below the matrix type liquid crystal element 22.
  • the effect of the second polarizer 25 is to change the illumination light intensity by the drive voltage of the pixel 22a of the first matrix type liquid crystal element, as described with reference to FIGS.
  • the first matrix type liquid crystal element 2 is set so that the polarization directions of light passing through adjacent pixels 22a are orthogonal to each other. Each of the two pixels can be controlled.
  • crosstalk between a plurality of focal points 41 formed on the image sensor 33 by the reflected light of the object 2 can be prevented by controlling the polarization of each pixel of the second matrix type liquid crystal element. Therefore, even if illumination control of incident light is performed, an image without crosstalk of reflected light can be formed, and it is necessary to perform mechanical scanning like a conventional confocal microscope to synthesize the entire screen. And can be observed immediately on the display device 54 of the control system 50. Thereby, the reflected light or the fluorescence of the object 2 can be observed at high speed without performing the mechanical scanning of the object 2. Also, crosstalk between multiple confocal points can be prevented, and the resolution is improved. Further, by combining two matrix type liquid crystal elements and the second polarizer 25, it is possible to realize illumination light control, polarization control, selection of a detection signal, and the like.
  • FIG. 8 is a schematic diagram showing a configuration of a confocal microscope using a liquid crystal according to the third embodiment.
  • the confocal microscope 7 shown in FIG. 8 differs from the confocal microscope 1 shown in FIG. 1 in an illumination optical system 60 and a control system 70.
  • the other incident optical system 20, detection optical system 30, and stage 3 have the same configuration as in FIG.
  • the illumination optical system 60 differs from the confocal microscope 1 using the liquid crystal shown in FIG. 1 in that light intensity modulation can be applied to the illumination light source 11.
  • the illumination optical system 60 includes an illumination light source 11 and a light intensity modulator 61.
  • the light intensity modulator 61 generates a light beam 62 obtained by modulating the light intensity of the illumination light source 11.
  • Illumination light source 1 Light intensity modulation elements such as liquid crystal devices, acousto-optic devices, and digital 'mirror' devices can be used.
  • the illumination optical system 60 shown in FIG. 8 is a case in which a matrix type liquid crystal element is used as a light intensity modulation element.
  • a laser light source is used as the illumination light source 11, and the emitted light is expanded into a parallel light having a desired beam diameter by a collimator 12 including a lens 12a and a lens 12b.
  • the arrangement of the third polarizer 63 and the fourth polarizer 65 is orthogonal to each other, and this expanded beam is inserted between the third and fourth polarizers 63, 65.
  • the intensity of light is modulated by a voltage applied to each pixel of the matrix type liquid crystal element 64 for light intensity modulation, so-called AM modulation (frequency f 1).
  • the light intensity modulation matrix type liquid crystal element 64 is controlled by a control system 70 described later. At this time, intensity modulation may be performed at a plurality of different frequencies such as f 1 and f 2 so that the light intensity modulation frequencies of adjacent pixels are different. These modulation frequencies are preferably selected so as not to have a harmonic relationship with each other.
  • FIG. 9 is a schematic diagram showing another configuration example of the illumination optical system of the confocal microscope according to the third embodiment of the present invention.
  • the illumination optical system 60 differs from the illumination optical system 60 in FIG. 8 in that an acousto-optic element 68 is further provided between the illumination light source 11 and the collimator 12.
  • the illumination light source 11 is subjected to light intensity modulation (modulation frequency f A0 ) by the acousto-optic element 68, and then expanded by collimation 12 into parallel light having a desired beam diameter.
  • the light intensity is modulated by the liquid crystal element 64 (modulation frequency f 2), so-called double intensity modulation.
  • the acousto-optic device 68 can perform light intensity modulation at a higher frequency than a matrix liquid crystal device for light intensity modulation (f AO
  • the control system 70 differs from the control system 50 of the confocal microscope 1 using the liquid crystal of FIG. 1 in that the control system 70 detects the reflected light whose light intensity has been modulated.
  • the control system 70 includes a light intensity modulation control unit 56 and an image processing device 5 ⁇ for detecting the reflected light whose light intensity has been modulated.
  • the light intensity modulation control section 58 drives and controls the light intensity modulation elements 64 and 68 to control the light intensity of the illumination light source 11. Perform modulation.
  • the incident light whose light intensity has been modulated in the illumination optical system 60 is applied to the object 2 through the incident optical system 20 as in the confocal microscope 1 shown in FIG.
  • the reflected light from the object 2 enters the detection optical system 30, is subjected to signal processing in the image processing device 58, and the image signal is transmitted to the personal computer 51.
  • the image processing device 58 includes an amplifier for an electric signal for detection, an A / D converter, and the like, digitizes a time axis signal from the detection optical system, and sends the signal to the personal computer 51.
  • the personal computer 51 performs a Fourier transform process for converting the time axis signal into the frequency axis, obtains the light intensity distribution of the reflected light or the fluorescence of the object 2 and displays it on the display device 54.
  • the Fourier transform can be obtained by a fast Fourier transform calculation method.
  • the operation of the confocal microscope 7 of the third embodiment is different from that of the confocal microscope 1 in that the light applied to the object 2 is modulated in light intensity.
  • the light transmitted through each pixel 22a is modulated in light intensity
  • each pixel 22a of the matrix type liquid crystal element is set so that its polarization direction is orthogonal to each other. a is controlled.
  • the reflected light from the object 2 or the light emitted to the fluorescent light is converted into a frequency signal by converting the light intensity modulated signal from each pixel into a frequency signal in the detection optical system 30 and the control system 70. Can be detected on-axis.
  • noise other than crosstalk generated in the confocal microscope 7 using liquid crystal can be easily discriminated on the frequency axis different from the light intensity modulation frequency, so that the signal-to-noise ratio (S / N ratio) ) Can be increased. That is, reflected light or fluorescence from the object to be observed can be detected with high sensitivity. Further, when light intensity modulation is performed on adjacent pixels at different frequencies, crosstalk can be further prevented. As a result, crosstalk between multiple confocal points can be prevented, and the intensity of reflected light or fluorescence can be detected at the frequency of light intensity modulation, resulting in high sensitivity. Resolution in the vertical direction is improved. Further, the observation of the reflected light or the fluorescence of the object 2 can be performed at high speed without performing the mechanical scanning of the object 2.
  • FIG. 10 is a schematic diagram showing another configuration of the confocal microscope using the liquid crystal according to the third embodiment.
  • Figure The confocal microscope 7 shown in FIG. 10 differs from the confocal microscope 7 using a liquid crystal shown in FIG.
  • the other illumination optical system 60, detection optical system 30, control system 70, and stage 3 have the same configuration as in FIG.
  • the incident optical system 20 differs from the incident optical system of FIG. 8 in that a second polarizer 25 is provided below the matrix type liquid crystal element 22.
  • the intensity of the illumination light can be controlled as described in FIG. 5 by adding the second polarizer 25.
  • the illumination light intensity can be controlled by controlling each pixel 12a of the matrix type liquid crystal element according to the object to be observed.
  • FIG. 11 is a schematic diagram showing a configuration of a confocal microscope using a liquid crystal according to the fourth embodiment.
  • the confocal microscope 8 shown in FIG. 11 differs from the confocal microscope 7 using the liquid crystal shown in FIG. 8 in an illumination optical system 80 and a control system 90.
  • the other incident optical system 20, detection optical system 30, and stage 3 have the same configuration as in FIG.
  • the illumination optical system 80 includes a light source in which the illumination light source 11 has a plurality of wavelengths, and a light intensity modulation unit 82 that applies different light intensity modulation to the light source of each wavelength.
  • the illumination light source 11 has three different wavelength light sources 11a, 11b, 11c.
  • the light intensity modulator 82 generates a light beam 84 obtained by modulating the light intensity of the illumination light source 11.
  • a light intensity modulation element such as a matrix type liquid crystal element, an acousto-optic element, or a digital mirror device can be used.
  • the control system 90 includes a light intensity modulation control unit 91 of an illumination light source, and an image processing device 92 that detects light intensity-modulated reflected light or fluorescence of the object 2 to be observed.
  • FIG. 12 is a schematic diagram showing one configuration example of the illumination optical system of the confocal microscope according to the fourth embodiment.
  • the illumination optical system 80 includes three light sources 11 a, 11 b, and 11 c at different wavelengths, a collimator 12 a, 12 b, and 12 c, and a third polarizer 6. 3a, 63b, 63c, matrix liquid crystal elements for light intensity modulation 64a, 64b, 64c, and fourth polarizers 66a, 64b, 64c. , Beam splitters 85, 86, 87.
  • the illumination light source 11a as in the illumination light source 11 described with reference to FIG.
  • the emitted light has a desired beam diameter by a collimator 12 including a lens 11a and a lens 12b. Expanded to parallel light. No. The arrangement of the third polarizer 62 and the fourth polarizer 66 is orthogonal to each other. This expanded beam is generated by the voltage applied to each pixel of the light intensity modulation matrix type liquid crystal element 64a inserted between the third polarizer 62a and the fourth polarizer 66a. The light intensity is modulated, that is, so-called AM modulation (frequency f1), and the light intensity modulated beam 84a is obtained.
  • AM modulation frequency f1
  • the light intensity modulation matrix type liquid crystal element 64 a is controlled by the light intensity modulation control section 91 of the control system 90.
  • the beams 84b (frequency f2), the light intensity of which is modulated by the matrix liquid crystal elements 64b and 64c for light intensity modulation, 84 c (frequency f 3).
  • the light intensity modulation control section 91 drives and controls the light intensity modulation elements 64a, 64b, 64c, and performs intensity modulation of the illumination light sources 1a, lib, 11c.
  • the light intensity modulated beams 84a, 84b, 84c in the illumination optical system 80 are respectively incident on the beam splitters 85, 86, 87, and are combined with the light intensity modulated beam 84.
  • intensity modulation may be performed at a plurality of different frequencies for each pixel of the light intensity modulated beams 84a, 84b, and 84c so that the light intensity modulation frequencies of adjacent pixels are different.
  • the light intensity modulation frequency of the light intensity modulated beam 84a (wavelength; I 1) is set to f1, f2, and f3 in the order of adjacent pixels, and similarly, the light intensity modulated beam 84a
  • the light intensity modulation frequency of b (wavelength; I 2) is f 4, f 5, and f 6, and the light intensity modulation frequency of light intensity modulated beam 84 c (wavelength; I 3) is f 7, f 8, It may be f 9.
  • These modulation frequencies are preferably selected so as not to have a harmonic relationship with each other.
  • the light intensity-modulated beam 84 is applied to the object 2 through the incident optical system, similarly to the confocal microscope 7 using the liquid crystal shown in FIG.
  • the reflected light or fluorescent light from the object under observation 2 enters the detection optical system 30, undergoes signal processing in the image processing device 92, and transmits an image signal to the personal computer 51.
  • the image processing device 92 includes an amplifier for an electric signal for detection, an A / D converter, and the like, digitizes a time axis signal from the detection optical system, and sends the signal to the personal computer 51.
  • the personal computer 51 obtains the intensity distribution of the reflected light by performing a free-transformation process for converting the time axis signal into the frequency axis, and displays it on the display device 54.
  • the Fourier transform may be processed by a calculation method of the fast Fourier transform.
  • the operation of the confocal microscope 8 of the fourth embodiment will be described.
  • the operation of the confocal microscope 8, that a plurality of light irradiating the object under observation 2 is a light intensity modulation is different from the confocal microscope 7.
  • the light passing through each pixel 22 a is subjected to light intensity modulation and the polarization direction of the matrix liquid crystal element is set to be orthogonal to each other.
  • Each pixel 22a is controlled.
  • the reflected light or the fluorescence of a plurality of wavelengths from the object 2 can be detected on the frequency axis by the detection optical system 30 and the control system 90 on the frequency axis.
  • noise and the like other than crosstalk generated in the confocal microscope 7 using liquid crystal can be easily discriminated on the frequency axis, unlike the light intensity modulation frequency, so the signal-to-noise ratio (S / N ratio) Can be increased. That is, reflected light or fluorescence from the plurality of wavelengths of the object 2 can be detected with high sensitivity. Further, when light intensity modulation is performed on adjacent pixels at different frequencies, crosstalk can be further prevented. As a result, crosstalk between multiple confocal points can be prevented, and the intensity of reflected light or fluorescence from a plurality of wavelengths can be detected at the frequency of light intensity modulation, resulting in high sensitivity at multiple wavelengths. The resolution in the horizontal and depth directions from multiple wavelengths that cannot be improved is improved. Further, the observation of the reflected light or the fluorescence of the object 2 can be performed at high speed without performing the mechanical scanning of the object 2.
  • FIG. 13 is a schematic diagram showing another configuration of the confocal microscope using the liquid crystal according to the fourth embodiment.
  • the confocal microscope 8 ′ shown in FIG. 13 differs from the confocal microscope 8 using the liquid crystal shown in FIG. 11 in the incident optical system 20.
  • the other illumination optical system 80, detection optical system 30, control system 90, and stage 3 have the same configurations as those in FIG.
  • the incident optical system 20 differs from the incident optical system in FIG. 11 in that a second polarizer 25 is provided below the matrix type liquid crystal element 12.
  • the intensity of the illumination light can be controlled as described with reference to FIG. This controls each pixel I 2a of the matrix type liquid crystal element according to the object to be observed By doing so, the illumination light intensity can be controlled.
  • FIG. 14 is a schematic diagram showing a configuration of a confocal microscope using a liquid crystal according to the fifth embodiment.
  • the confocal microscope 9 shown in FIG. 14 differs from the confocal microscope 5 using the liquid crystal shown in FIG. 6 in an illumination optical system 60 and a control system 100.
  • the other incident optical system 20 ′, detecting optical system 30 ′, and stage 3 have the same configuration as in FIG.
  • the illumination optical system 60 is the same as the illumination optical system 60 shown in FIG. 8, and is composed of a light source 11 and a light intensity modulation unit 62.
  • the liquid crystal element 64 generates a light beam 62 whose light intensity has been modulated.
  • the light intensity modulation matrix liquid crystal element 64 is controlled by a control system 100 described later. At this time, it is preferable to perform intensity modulation at a plurality of different frequencies so that adjacent pixels have different light intensity modulation frequencies.
  • FIG. 15 is a schematic diagram showing another configuration example of the illumination optical system of the confocal microscope according to the fifth embodiment.
  • the illumination optical system 60 is different from the illumination light source 11 and the collimator 11 in that an acousto-optic element 68 is further provided in FIG. Different from illumination optical system 60.
  • the illumination light source 11 is subjected to light intensity modulation by the acousto-optical element 6.8, then expanded by the collimator 12 into parallel light having a desired beam diameter, and then subjected to a light intensity modulation matrix type liquid crystal element 6
  • the intensity of the light is modulated by 4, and so-called double intensity modulation is performed.
  • the acousto-optic device 68 can perform light modulation at a higher frequency than the matrix liquid crystal device for light intensity modulation.
  • the control system 100 differs from the control system 50 ′ in FIG. 6 in that the control system 100 includes a light intensity modulation control unit 56 and an image processing device 101 that detects the reflected light whose light intensity has been modulated.
  • the light intensity modulation control section 56 drives and controls the light intensity modulation element 64 to perform intensity modulation of the illumination light source 11.
  • the incident light whose light intensity has been modulated in the illumination optical system 60 irradiates the object 2 through the incident optical system 20, similarly to the confocal microscope 5 shown in FIG.
  • the reflected light from the observation target 2 enters the detection optical system 30, is subjected to signal processing in the image processing device 101, and the image signal is transmitted to the personal computer 51.
  • the image processing apparatus 101 includes an amplifier for an electric signal for detection, an A / D converter, and the like, digitizes a time-axis signal from the detection optical system, and sends it to the personal computer 51. Put out.
  • the personal computer 51 performs a Fourier transform process for converting the time axis signal into the frequency axis, obtains the light intensity distribution of the reflected light or the fluorescent light of the object 2 and displays it on the display device 54.
  • the Fourier transform can be performed by a calculation method of the fast Fourier transform.
  • the polarization of light transmitted through each pixel of the matrix type liquid crystal elements 22 and 39 is similar to that of the Each pixel of the matrix type liquid crystal elements 22 and 39 is controlled so that the light directions are orthogonal to each other.
  • the reflected light from the object to be observed 2 or the light irradiated to the fluorescent light is converted by the detection optical system 30 and the control system 100 into a signal on each of the light intensity modulated signals from each pixel in the frequency axis.
  • the noise other than crosstalk generated in the confocal microscope 9 using liquid crystal can be easily discriminated on the frequency axis unlike the light intensity modulation frequency, so the signal-to-noise ratio (S / N ratio) is increased.
  • S / N ratio signal-to-noise ratio
  • FIG. 9B using the liquid crystal shown in the figure differs from the confocal microscope 9 using the liquid crystal shown in FIG. 14 in the incident optical system 20 '.
  • the other illumination optical system 60, detection optical system 30, control system 100, and stage 3 have the same configuration as in FIG.
  • the incident optical system 20 ′ differs from the incident optical system of FIG. 14 in that a second polarizer 25 is provided below the matrix type liquid crystal element 22.
  • the effect of the second polarizer 25 is to change the illumination light intensity by the drive voltage of the pixel 22a of the first matrix type liquid crystal element, as described with reference to FIGS.
  • the first matrix type liquid crystal element 1 is set so that the polarization directions of the light passing through the adjacent pixels 22 a are orthogonal to each other. Each of the two pixels can be controlled.
  • FIG. Confocal microscopy The mirror 9C differs from the confocal microscope 9 shown in FIG. 14 in an illumination optical system 80 and a control system 100.
  • the same components as those in FIG. 14 are denoted by the same reference numerals, and description thereof will be omitted.
  • Illumination optical system 80 can have the same configuration as in FIGS. 11 and 12, and a detailed description thereof will be omitted.
  • the control system 100 ′ has the same configuration as that of FIG. 14 except that the control system 100 ′ includes a light intensity modulation control unit 56 and an image processing device 101 that detects the light intensity modulated reflected light. The detailed description is omitted.
  • the illumination light source 11 has three different wavelengths of light 11a, lib, and 11c, and the light of each wavelength is light intensity modulated.
  • the pixels of the matrix type liquid crystal elements 22 and 39 are controlled so that the polarization directions of the light transmitted through the pixels of the matrix type liquid crystal elements 22 and 39 are orthogonal to each other. In each pixel, crosstalk does not occur because reflected light or fluorescent light of a different wavelength is light intensity modulated.
  • incident light having different wavelengths in each pixel has a different light intensity modulation frequency, reflected light or light from each wavelength can be easily identified.
  • noise other than crosstalk generated in the confocal microscope 9 can be easily discriminated on the frequency axis different from the light intensity modulation frequency, so that the signal-to-noise ratio (S / N ratio) can be increased. it can. That is, reflected light or fluorescence from the object 2 can be detected with high sensitivity.
  • the confocal microscope 9D using the illustrated liquid crystal differs from the confocal microscope 9C shown in FIG. 17 in the incident optical system 20,.
  • the other illumination optical system 80, detection optical system 30 ', control system 100, and stage 3 have the same configuration as in FIG.
  • the incident optical system 10 differs from the incident optical system in FIG. 17 in that a second polarizer 25 is provided below the matrix type liquid crystal element 12.
  • the effect of the second polarizer 25 is to change the illumination light intensity by driving the pixel 22a of the first matrix type liquid crystal element as described in FIGS. It is.
  • the first matrix type liquid crystal element 2 is set so that the polarization directions of light passing through adjacent pixels 22 a are orthogonal to each other. Are controlled.
  • crosstalk between a plurality of focal points 41 formed on the image sensor 33 by the reflected light of the object 2 can be prevented by controlling the polarization of each pixel of the second matrix type liquid crystal element. Therefore, even if the illumination of the incident light is controlled, an image without crosstalk of the reflected light can be formed, and it is necessary to combine the entire screen by mechanical scanning like a conventional confocal microscope. And can be observed immediately on the display device 54 of the control system 100. Thereby, observation of reflected light or glare from the multiple wavelengths of the object 2 can be performed at high speed without performing mechanical scanning of the object 2. Further, crosstalk between multiple confocal points can be prevented, the resolution can be improved, and the sensitivity can be improved by the light-modulated light source. Further, by combining the two matrix liquid crystal elements and the second polarizer 25, it is possible to realize illumination light control, polarization control, selection of a detection signal, and the like.
  • the microarray substrate is an object to be observed in which a minute amount of DNA or a biological substance is arranged in a flat plate shape.
  • These microarray substrates are preliminarily provided with a fluorescent substance that selectively serves as a label.
  • the microarray substrate may be a DNA microarray substrate that has been subjected to a hybridization reaction with an unknown single-stranded DNA that has been fluorescently labeled.
  • a measurement method for observing the DNA microarray substrate using the confocal microscope 5 of the present invention shown in FIG. 6 will be described.
  • the size of the first and second matrix type liquid crystal elements 22 and 39 of the confocal microscope 5 is sufficiently larger than the size of the DNA microarray substrate. Therefore, the entire reflection image or light of the DNA microarray substrate can be observed using the confocal microscope 5.
  • the DNA microarray substrate is placed on the stage 3 and the illumination light source 11 is turned on.
  • the Z-directional position of the DNA microarray substrate to be observed is set so that the focal position of the illumination light source 11 and the detection position of the DNA microarray substrate overlap. —Adjust using di 3a and ⁇ stage 3b.
  • each pixel of the second matrix type liquid crystal element 39 of the detection optical system is also controlled by the second liquid crystal control unit.
  • all the fluorescence generated on the DNA microarray substrate can be detected simultaneously by using, for example, a CCD camera as the imaging element 33, and the fluorescence image observation is performed by changing the intensity and polarization direction of the detected signal. It can be performed.
  • the size of the pixels of the matrix type liquid crystal elements 22 and 39 is 10 / im to 20 um, and for example, the size of one fluorescence generated on the DNA microarray substrate is 100 ⁇ m in diameter. Since it is about m, the resolution is sufficient. Therefore, it is possible to immediately determine the number of fluorescence and the location of fluorescence emission on the DNA microarray substrate. Then, using the personal computer 51 of the control system 50, image recording and data processing can be performed quickly.
  • the light source is modulated in light intensity, and the fluorescence from the DNA microarray substrate is highly sensitive in the frequency axis. Can be measured.
  • a measuring method for observing the DNA microarray substrate in the case where a fluorescent substance having a plurality of fluorescent wavelengths to be selectively labeled is previously provided using the confocal microscope 5 of the present invention shown in FIG. 11 is used. Will be described.
  • Observation using the confocal microscope 9B of the present invention shown in FIG. 16 shows that the light source has multiple wavelengths, each wavelength is light intensity modulated, and the multi-wavelength fluorescence from the DNA microarray substrate is plotted along the frequency axis. It can be measured with high sensitivity.
  • the reflected light enters the confocal detection optical system through the separation optical system, and is formed as multiple focal points corresponding to the number of pixels through the matrix type liquid crystal element. Therefore, according to the confocal microscope of the present invention, an object to be observed corresponding to the number of pixels of the matrix type liquid crystal element can be observed at a time.
  • the polarized light is the polarized light from the reflected light or the fluorescent light of the object 2 to be observed.
  • the polarized light is the polarized light from the reflected light or the fluorescent light of the object 2 to be observed.
  • the DNA microarray substrate is placed on the stage 3 and the illumination light source 11 is turned on.
  • the position of the DNA microarray substrate to be observed in the Z direction is set using the XYZ stage 3a and the 0 stage 3b so that the focal position of the illumination light source 11 and the detection position of the DNA microarray substrate overlap. Adjust.
  • Light incident on the DNA microarray substrate is controlled by the first liquid crystal control unit 52 by the matrix type liquid crystal element 22 so that the polarization directions of the incident light transmitted through adjacent pixels are mutually changed.
  • the polarization direction of the light passing through each pixel can be controlled independently for each pixel.
  • this polarized light is rotated by 180 degrees, the amount of light transmitted through the polarizer 25 changes, and the change in polarized light from the object to be observed can be observed.
  • the polarization from the fluorescence or reflected light of the DNA microarray substrate, biological sample, sugar, or the like can be detected by using, for example, a CCD camera as the imaging device 33.
  • the light source has multiple wavelengths and each wavelength has its light intensity modulated, and the polarization of the multi-wavelength fluorescence from the DNA microarray substrate is highly sensitive on the frequency axis. Can be measured.
  • the size of the pixels of the matrix type liquid crystal elements 22 and 39 is 10 m to 20 m.
  • the size of one fluorescent light generated on the DNA microarray substrate is 100 m in diameter. Since it is about ⁇ m, the resolution is sufficient. Therefore, the polarization of the fluorescence of the DNA microarray substrate can be measured immediately. At this time, image recording and data processing can be performed promptly using the personal computer 51 of the control system 50.
  • the method for measuring the polarization of reflected light or fluorescence using the confocal microscope of the present invention multiple focal points corresponding to the number of pixels of a matrix type liquid crystal element are generated on a microarray substrate.
  • the reflected light is incident on the confocal detection optical system through the separation optical system, and is formed as multiple focal points corresponding to the number of pixels through the matrix type liquid crystal element. Therefore, according to the confocal microscope of the present invention, polarized light from the object to be observed corresponding to the number of pixels of the matrix type liquid crystal element can be observed at a time. Further, since not only one wavelength but also a multi-wavelength light source can be used, it is possible to accurately measure the reflected light of the multi-wavelength from the object to be observed or the polarization from the fluorescence in a short time.
  • an image sensor is used for the detection optical system.
  • the detection system may be a plurality of detection systems as necessary so that visual observation or photographing can be performed at the image sensor position. It is also possible.
  • the configuration of the incident optical system and the detection optical system having a multi-wavelength, the light intensity modulation element, and the like can be optimally designed and the components used can be selected according to the object to be observed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Liquid Crystal (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

共焦点顕微鏡及びそれを用いた蛍光測定方法及び偏光測定方法であって、照明光源(11)から偏光を、マイクロレンズアレイ(21)を上部に配置したマトリクス式液晶素子(22)及び対物レンズ(23)を介して被観察物(2)へ入射する入射光学系(10,10’)と、被観察物からの反射光又は蛍光を検出する検出光学系(30,30’)と、液晶素子(22)を制御する液晶制御部(52)とを備え、マイクロレンズアレイ(21)を透過したマイクロレンズ毎の光を、液晶素子(22)の各画素(22a)毎に透過させ、対物レンズ(23)にて被観察物(2)に複数の焦点(24)を結ぶと共に、液晶素子(22)の各画素を透過する光の偏光方向を液晶制御部(52)を用い各画素を透過する光の偏光方向を互いに直交するように制御する。

Description

明 細 書 共焦点顕微鏡、共焦点顕微鏡を用いた蛍光測定方法及び偏光測定方法 技術分野
本発明は、 生体組織や生体組織からの蛍光観察などに使用される共焦点顕微鏡 に関し、 高感度で、 横方向、 深さ方向の分解能に優れ、 広領域の動的な観察が可 能である、液晶を用いた共焦点顕微鏡及び液晶を用いた共焦点顕微鏡によるマイ クロアレイ基板からの蛍光測定方法並びに液晶を用いた共焦点顕微鏡による偏光 測定方法に関するものである。
従来、 生命禾斗学の研究分野における生体組織や蛍光試薬を添カロした生体組織試 料からの蛍光発光の観察に共焦点顕微鏡が使用されている。 共焦点顕微鏡は、 深 さ方向に高い分解能を有することから、生体試料の三次元観察などに主に利用さ れてきた。
図 1 9に共焦点顕微鏡の従来例 1を示す (例えば、 非特許文献 1参照。 ) 。 レ —ザ光 1 6 1は、 ビームスプリッ夕ー 1 6 2で反射され、対物レンズ 1 6 3で試 料 1 6 4に結像される。 そして、試料 1 6 4で反射した反射光、 または、 蛍光 1 6 6がビームスプリツター 1 6 2を透過してミラー 1 6 7とレンズ 1 6 9を通過 して検出器 1 7 1に入る。 ここで、 検出器 1 7 1の前にピンホール 1 7 0を置く ことによって、 焦点面以外から発生する光束を除去し明確な像を得ることができ る。 試料 1 6 4の全体を見るためには、試料 1 6 4を載置しているステージを平 面内で移動、即ち走査 1 7 2を行うことによって観察するようにしている。 共焦点顕微鏡において、試料の移動を行わないで高速で走査する方法が 1 8 8 4年に P a u l N i p k o wが発明した二ボウディスク方式である。 図 2 0は 、 従来例 2のニポウディスクを用いた多重共焦点顕微鏡の走査方式の原理を示す 図である (例えば、 下記特許文献 1、 非特許文献 2参照) 。
多重共焦点顕微鏡 1 8 0では、 レーザ光 1 8 1が、共焦点用走査装置 1 9 0に 入射する。 共焦点用走査装置 1 9 0は、 2枚の円板で構成された集光ディスク 1 9 1及びピンホールディスク 1 9 2と、 ドラム 1 9 4と、 ビームスプリツター 1 8 2と、 から構成されている。 集光ディスク 1 9 1及びピンホールディスク 1 9 2はドラム 1 9 4に保持され、 モーター 1 9 5により回転している。
ここで、 レーザ光 1 8 1は、 集光ディスク 1 9 1に設けられた多数のピンホ一 ル 1 9 3を通過する。 この通過した光は、 ビームスプリッタ一 1 8 2を介してレ ンズ 1 8 3により被観察物 1 8 4に複数の焦点を形成する。 そして、 被観察物 1 8 4からの反射光は、 ビ一ムスプリッ夕一 1 8 2を介して光路が入射方向に対し て 9 0 ° 曲げられて、 レンズ 1 8 5によりカメラ 1 8 6に結像される。 これによ り光の利用効率を向上させ、複数の焦点同時検出による多重共焦点顕微鏡を実現 している。
図 2 1は従来例 3の多重共焦点顕微鏡の構成を示す図である (例えば、 下記特 許文献 2参照) 。 多重共焦点顕微鏡 2 0 0は、 図 1 8の従来例 1と同様な光学系 を有しているが、 入射光の光路に液晶セル 2 0 3が配設されている点が異なる。 入射光 2 0 1が、 ビームスプリッ夕ー 2 0 2を通過し、 液晶セル 2 0 3を介して 対物レンズ 2 0 4で試料 2 0 5に集光される。 試料 2 0 5からの反射光は、 ビー ムスプリッ夕ー 2 0 2を介してレンズ 2 0 7を通過して、 反射光 2 0 8がカメラ 2 0 9に,結像される。
ここで、 入射光 2 0 1は、液晶セルの 1画素である開口部 2 0 3 aを通り、試 料 2 0 5の 2 1 0 aの点に結像する。 次に液晶セルの他の画素である 2 0 3 bを 開口すると、 入射光は、試料 2 0 5の 2 1 O bの点に結像する。 このように、試 料 2 0 5の走査は、 液晶セルの平面にある画素を順番に、 入射光 2 0 1をオンォ フさせる所謂 X—Y走査により行われる。
下記特許文献 3及び 4では、 入射光源をマルチビームとしたマルチスポットァ レイを有し、 照射した励起光により発生する蛍光を共焦点検出する D N A検査装 置が開示されている。
特許文献:
特開平 5— 6 0 9 8 0号公報
特開平 5— 2 1 0 0 5 1号公報 特開 2 0 0 1 _ 1 0 8 6 8 4号公報
特開 2 0 0 1— 2 0 8 6 8 8号公報
非特許文献:
Mark Schena著, 加藤郁之進 監訳 「D N Aマイクロアレイ基板」 , 丸善 株式会社, 2000年, p. 19-45
• 川村信一郎 他 3名, 「共焦点顕微鏡レーザ顕微鏡スキャナと C C Dカメ ラ」 横河技報, 2001年, Vol. 45, No. 2, p. 112-114
ところで、 従来例 1の試料走査型の共焦点顕微鏡は、単焦点での検出を行うた め、広領域を観察するには走査を行う必要があり、 蛍光などの実時間観察が困難 である。
従来例 2の多重共焦点顕微鏡は、 多数の点を同時に検出することから、 隣接す る焦点に入射する光同士が干渉する。 これを、 クロストークと呼んでいる。 この 干渉によつて生じる入射光強度分布が、 明暗の模様である干渉縞を生じさせる。 これが原因で、 照明光強度分布が不均一となるために、 観察像の横分解能が低下 するという課題がある。 また、 各焦点毎に光強度にばらつきが生じるという課題 がある。 さらに、共焦点顕微鏡の応用として、 D N Aチップからのばらつきの大 きい蛍光信号を検出器上で一度に観察できない。
従来例 3の多重共焦点顕微鏡では、液晶セルの多数の点を順番に開閉すること により走査を行うことで、 従来例 2の走査のように機械的な走査機構が不要とな る。 しかし、 液晶セルの各画素をオンオフさせるために、画素数分の X— Y走査 をさせる必要があるので、 一画面を走査するのに時間がかかり、 実時間で試料全 体の蛍光などの検出をすることが困難である。
また、 上記特許文献 3の D N A検査装置では、 マルチスポットアレイから入射 する光同士が干渉しクロストークが発生し、従来例 の共焦点顕微鏡と同様に、 照明光強度分布が不均一となるために観察像の横分解能が低下する。
さらに、上記特許文献 4の D N A検査装置では、 マルチスポットアレイを偏光 素子により形成しているが、 従来 1の共焦点顕微鏡と同様に、試料載置ステージ を平面内の走査を行うことによって観察するようにしている。 従来例 1の多重共 焦点顕微鏡の単焦点の場合よりも走査に要する時間は短縮されるものの、 広領域 を観察するには走査を行う必要があり、 蛍光などの実時間観察が困難である。 発明の開示
本発明の目的は、 以上の課題に鑑みて、 高感度で、 横方向、 深さ方向の分解能 に優れ、 広領域の動的な観察が可能である、 液晶を用いた共焦点顕微鏡及び液晶 を用いた共焦点顕微鏡によるマイクロアレイ基板からの蛍光測定方法並びに液晶 を用いた共焦点顕微鏡による偏光測定方法を提供することを目的とする。
上記の課題を解決するため、 本発明の液晶を用いた共焦点顕微鏡は、 照明光源 から偏光を、 ビ一ムスプリツター, マイクロレンズアレイを上部に酉己置したマト リクス式液晶素子及び対物レンズを介して被観察物へ入射する入射光学系と、 被 観察物からの反射光または蛍光を、 ビ一ムスプリツ夕一とレンズを介して検出す る撮像素子を含む検出光学系と、 マトリクス式液晶素子の各画素を制御する液晶 制御部を有する制御系と、 を含む共焦点顕微鏡であって、 マイクロレンズアレイ を透過したマイクロレンズ每の光を、 マトリクス式液晶素子の各画素毎に透過さ せ、 対物レンズにより被観察物に複数の焦点を結ばせると共に、 マトリクス式液 晶素子の各画素を透過する光の偏光方向を液晶制御部を用いて制御し、 液晶制御 部が、 マトリクス式液晶素子の各画素を透過する光の偏光方向を互いに直交する ように制御することを特徴とする。
上記構成において、好ましくは、 マトリクス式液晶素子の下部に偏光子を配置 し、 偏光子を透過した光の偏光がマトリクス式液晶の各画素で制御される。 この構成によれば、 被観察物に照射する光が、 マイクロレンズアレイにより、 マトリクス式液晶素子の各画素をピンホールとして入射し、 被観察物に第一の複 数の焦点を形成する。 さらに、被観察物の反射光または蛍光が、検出光学系にお いて、 第二の複数の焦点を形成することから、本発明の顕微鏡は、 共焦点顕微鏡 として動作する。 この際、 マトリクス式液晶素子の各画素において、各画素を透 過する光の偏光方向が互いに直交するように、 マトリクス式液晶素子の各画素が 制御される。 これにより、 被観察物の走査制御を行わないで、被観察物の反射光 または蛍光の観察を高速に行うことができる。 また、 多重共焦点間におけるクロ ストークを防止でき、 分解能が向上する。 また、 本発明の液晶を用いた共焦点顕微鏡は、 照明光源からの偏光を、 ビーム スプリツ夕一, レンズ, 第一のマイクロレンズアレイを上部に配置した第一のマ トリクス式液晶素子を介して被観察物へ入射する入射光学系と、 被観察物からの 反射光または; ¾光を、 ビームスプリツター, レンズ, 第二のマイクロレンズァレ ィを上部に配置した第二のマトリクス式液晶素子, 集光レンズを介して検出する 撮像素子を含む検出光学系と、 第一及び第二のマトリクス式液晶素子の各画素を 透過する光の偏光方向を制御する第一及び第二の液晶制御部を含む制御系と、 を 備え、 第一のマイクロレンズアレイを透過したマイクロレンズ毎の光を、 第一の マトリクス式液晶素子の各画素毎に透過させ、 被観察物に複数の焦点を結ばせ、 さらに、 第二のマイクロレンズアレイを透過したマイクロレンズアレイ每の反射 光または蛍光を、第二のマトリクス式液晶素子の画素毎に透過させ、撮像素子に 複数の焦点を結ばせると共に、 第一及び第二のマトリクス式液晶素子の各画素を 透過する光の偏光方向を、 第一及び第二の液晶制御部を用いて制御することを特 徴とする。
上記構成において、好ましくは、 入射光学系の第一の液晶制御部が、 第一のマ トリクス式液晶素子の各画素を透過する光の偏光方向を、互いに直交するように 制御すればよい。 また、 好ましくは、 検出光学系の第二の液晶制御部が、 第二の マトリクス式液晶素子の各画素を透過する光の偏光方向を、互いに直交するよう に制御すればよい。 また、 第一のマトリクス式液晶素子の下部に偏光子を配置し 、 偏光子を透過した光の偏光方向を、 第一のマトリクス式液晶の各画素で制御す るようにしてもよい。
この構成によれば、被観察物に照射する入射光が、第一のマイクロレンズァレ ィにより第一のマトリクス式液晶素子の各画素に入射し、 被観察物に第一の複数 の焦点を形成する。 さらに、 被観察物の反射光または蛍光が、 検出光学系の第二 のマイクロレンズァレイ及び第二のマトリクス式液晶素子の各画素を通過して第 二の複数の焦点を形成することから、本発明の顕微鏡は、 共焦点顕微鏡として動 作する。 この際、 第一及び第二のマトリクス式液晶素子の各画素において、 各画 素を透過する光の偏光方向が互いに直交するように、 各マトリクス式液晶素子の 各画素が制御される。 これにより、 被観察物の走査制御を行わないで、 被観察物 の反射光または蛍光の観察を高速に行うことができる。 また、 多重共焦点間にお けるクロストークを防止でき、 横方向及び深さ方向の分解能が向上する。 さらに 、第一及び第二のマトリクス式液晶素子の組み合わせにより、 偏光制御、 検出信 号の選択等を動的に実現することができる。
また、本発明の液晶を用いた共焦点顕微鏡は、 照明光源から光強度変調された 偏光を、 ビ一ムスプリッ夕一, マイクロレンズアレイを上 ¾5に配置したマトリク ス式液晶素子及び対物レンズを介して被観察物へ入射する入射光学系と、 被観察 物からの反射光または蛍光を、 ビームスプリッ夕一とレンズを介して検出する撮 像素子を含む検出光学系と、 マトリクス式液晶素子の各画素を制御する液晶制御 部と照明光源の光強度変調制御部とを含む制御系とを備え、 マイクロレンズァレ ィを透過したマイク口レンズ毎の光をマトリクス式液晶素子の各画素每に透過さ せ、対物レンズにより被観察物に複数の焦点を結ばせると共に、 マトリクス式液 晶素子の各画素を透過する光の偏光方向を液晶制御部を用いて互いに直交するよ うに制御し、 被観察物からの反射光または蛍光の光強度変調信号を周波数信号に 変換して検出することを特徴とする。
上記構成において、好ましくは、 マトリクス式液晶素子の下部に偏光子を配置 し、偏光子を透過した光の偏光を、 マトリクス式液晶の各画素で制御する。 また 好ましくは、 照明光源が一波長または多波長であり、 照明光源の光強度変調をマ トリクス式液晶素子、音響光学素子、 デジタル ' ミラ一 'デバイスの何れかを用 いて行う。 また、 照明光源の一波長あたりの光強度変調が各画素毎に複数の変調 周波数で印加されてもよい。
この構成によれば、 さらに、 被観察物に照射する入射光が光強度変調されてい るので、被観察物からの反射光または蛍光を周波数軸に信号変換をすることによ り、被観察物からの反射光または蛍光を高感度で検出することができる。 また、 照明光源が多波長の場合には、 多波長からの反射光または蛍光を短時間に、高感 度で測定することができる。
また、本発明の液晶を用いた共焦点顕微鏡は、 照明光源から光強度変調された 偏光を、 ビ一ムスプリッ夕一, レンズ, 第一のマイクロレンズアレイを上部に配 置した第一のマトリクス式液晶素子を介して被観察物へ入射する入射光学系と、 被観察物からの反射光または蛍光を、 ビームスプリツ夕一, レンズ, 第二のマイ クロレンズァレイを上部に配置した第二のマトリクス式液晶素子, 集光レンズを 介して検出する撮像素子を含む検出光学系と、 第一及び第二のマトリクス式液晶 素子の各画素を透過する光の偏光方向を制御する第一及び第二の液晶制御部と照 明光源の光強度変調制御部とを含む制御系とを備え、 第一のマイクロレンズァレ ィを透過したマイクロレンズ毎の光を第一のマトリクス式液晶素子の各画素毎に 透過させ、 被観察物に複数の焦点を結ばせ、 さらに、 第二のマイクロレンズァレ ィを透過したマイクロレンズアレイ毎の反射光または蛍光を第二のマトリクス式 液晶素子の画素毎に透過させ、 撮像素子に複数の焦点を結ばせると共に、 第一及 ぴ第二のマトリクス式液晶素子の各画素を透過する光の偏光方向を第一及び第二 の液晶制御部を用いて制御し、 被観察物からの反射光または蛍光の光強度変調信 号を周波数信号に変換して検出することを特徴とする。
上記構成において、 入射光学系の第一の液晶制御部が、好ましくは、 第一のマ トリクス式液晶素子の各画素を透過する光の偏光方向を、互いに直交するように 制御する。 また、 好ましくは、 検出光学系の第二の液晶制御部が、 第二のマトリ クス式液晶素子の各画素を透過する光の偏光方向を、 互いに直交するように制御 する。 また、 第一のマトリクス式液晶素子の下部に偏光子を配置し、偏光子を透 過した光の偏光を、 マトリクス式液晶の各画素で制御してもよい。 好ましくは、 照明光源が一波長または多波長であり、 照明光源の光強度変調がマトリクス式液 晶素子、音響光学素子、 デジタル' ミラー ·デバィスのいづれかを用いて行われ る。 また、 照明光源の一波長あたりの光強度変調を各画素毎に複数の変調周波数 で印加してもよい。 また、好ましくは、被観察物からの反射光または蛍光の光強 度変調信号から周波数信号変換が、 高速フーリエ変換で演算処理される。
この構成によれば、 さらに、被観察物に照射する入射光が光強度変調されてい るので、 被観察物からの反射光または蛍光を周波数軸に信号変換をすることによ り、被観察物からの反射光または蛍光を高感度で検出することができる。 また、 照明光源が多波長の場合には、 多波長からの反射光または蛍光を短時間に、 高感 度で測定することができる。
本発明の液晶を用いた共焦点顕微鏡によるマイクロアレイ基板からの蛍光測定 方法は、 選択的に標識となる蛍光物質が予め付与されているマイクロアレイ基板 を用いて、本発明の共焦点顕微鏡により蛍光物質からの蛍光を観察することを特 徴とする。 上記構成において、 マイクロアレイ基板は、微量の D NAまたは生体 物質を含んでおり、 これらを平板状に配置した被観察物である。 また、 マイクロ アレイ基板は D NAチップであってもよい。 この構成によれば、本発明の液晶を 用いた共焦点顕微鏡に使用することで、 マイクロアレイ基板の走査無しに効率よ く、 觉光の観察ができる。
また、本発明の液晶を用いた共焦点顕微鏡による被観察物の偏光測定方法は、 被観察物からの偏光測定において、本発明の共焦点顕微鏡により被観察物の反射 光または蛍光からの偏光を測定することを特徴とする。 好ましくは、液晶を用い た共焦点顕微鏡の液晶マトリクスにおいて、 偏光を 1 8 0度変化させることによ り、 被観察物からの偏光測定を行う。 この構成によれば、 本発明の液晶を用いた 共焦点顕微鏡において、 被観察物の反射光または蛍光からの偏光を効率よく観察 できる。
本発明の液晶を用いた共焦点顕微鏡によれば、 マトリクス式液晶素子を用いる ことで、被観察物の走査無しに一度に被観察物の測定を行うことができる。 そし て、 マトリクス式液晶素子の各画素の偏光制御によりクロストークを減少させ、 横方向と深さ方向の分解能を向上することができる。 また、光源を一波長または 多波長で光強度変調を印加した場合には、反射光または蛍光を高感度で検出する ことができる。
本発明の共焦点顕微鏡を用いたマイクロアレイ基板の測定方法によれば、 マイ クロアレイ基板の機械的走査無しに効率よく、一波長または多波長の蛍光を観察 することができる。
また、本発明の液晶を用いた共焦点顕微鏡による偏光測定方法によれば、被観 察物からの偏光を、 被観察物の機械的走査無しに、 一波長または多波長を用いて 効率よく観察できる。 図面の簡単な説明
本発明は、 以下の詳細な発明及び本発明の幾つかの実施の形態を示す添付図面 に基づいて、 より良く理解されるものとなろう。 なお、 添付図面に示す種々の実 施例は本発明を特定または限定することを意図するものではなく、単に本発明の 説明及び理解を容易とするためだけのものである。
図 1は、本発明に係る第 1の実施の形態による液晶を用いた共焦点顕微鏡の構 成を示す模式図である。
図 2は、 マトリクス式液晶素子の各画素の偏光制御を模式的に示す図である。 図 3は、 図 2のマトリクス式液晶素子における各画素を透過する光の偏光状態 を示す図である。
図 4は、 本発明に係る第 1の実施の形態による共焦点顕微鏡の別の構成を示す 図である。
図 5は、 入射光学系に設けた偏光子の作用効果を説明する概略図である。 図 6は、本発明に係る第 2の実施の形態による共焦点顕微鏡の構成を示す模式 図である。
図 Ίは、本発明による共焦点顕微鏡の別の構成を示す図である。
図 8は、本発明に係る第 3の実施の形態による共焦点顕微鏡の構成を示す模式 図である。
図 9は、 本発明に係る第 3の実施の形態による共焦点顕微鏡の照明光学系の別 の構成例を示す模式図である。
図 1 0は、本発明に係る第 3の実施の形態による共焦点顕微鏡の別の構成を示 す模式図である。 .
図 1 1は、本発明に係る第 4の実施の形態による共焦点顕微鏡の構成を示す模 式図である。
図 1 2は、本発明に係る第 4の実施の形態による共焦点顕微鏡の照明光学系の 一構成例を示す模式図である。
図 1 3は、本発明に係る第 4の実施の形態による共焦点顕微鏡の別の構成を示 す模式図である。
図 1 4は、本発明に係る第 5の実施の形態による共焦点顕微鏡の構成を示す模 式図である。
図 1 5は、本発明に係る第 5の実施の形態による共焦点顕微鏡の照明光学系の 別の構成例を示す模式図である。
図 1 6は、本発明による共焦点顕微鏡の別の構成を示す図である。
図 1 7は、本発明に係る第 6の実施の形態による共焦点顕微鏡の構成を示す模 式図である。
図 1 8は、本発明による共焦点顕微鏡の別の構成を示す図である。
図 1 9は、従来例 1の共焦点顕微鏡の構成を示す図である。
図 2 0は、 従来例 2の二ボウディスクを用いた多重共焦点顕微鏡の走査方式の 原理を示す図である。
図 2 1は、 従来例 3の多重共焦点顕微鏡の構成を示す図である。 発明を実施するための最良の形態
以下、 この発明の実施の形態を図面を参照して詳細に説明する。
始めに本発明の液晶を用いた共焦点顕微鏡の第 1の実施の形態を示す。 図 1は 本発明に係る第 1の実施の形態による液晶を用いた共焦点顕微鏡の構成を示す模 式図である。 液晶を用いた共焦点顕微鏡 1は、 照明光学系 1 0と、 マトリクス式 液晶素子を含み被観察物へ多重焦点を形成する入射光学系 2 0と、 照明被観察物 からの反射光を検出する検出光学系 3 0と、 マトリクス式液晶素子及び検出光学 系からの画像データを制御する制御系 5 0と、被観察物 2を載置するステージ 3 から構成される。
照明光学系 1 0は、 照明光源 1 1と、 コリメ一夕 1 2と、 第一の偏光子 1 3と 、 ビームスプリッタ一 1 4とからなっている。 照明光源 1 1は、 例えばレーザ光 源で、 出射した光は、 レンズ 1 2 a及びレンズ 1 2 bからなるコリメータ 1 2に よって所望のビーム径の平行光に拡大して、偏光子 1 3を通ってビームスプリッ タ一 1 4に入射する。 レーザ光源の波長は、 4 0 0 nmから 7 0 0 nm程度の波 長でよい。 ここで、 照明光源 1 1として直線偏光のレーザ光源を用いれば、偏光 子 1 3は省略することができる。
入射光学系 2 0は、 上から順に、 マイクロレンズアレイ 2 1と、 マトリクス式 液晶素子 2 2と、対物レンズ 2 3とからなっている。 ビ一ムスプリッタ一 1 4に 入射した平行光は、 下部方向に反射され、 一様な光強度分布の光が、 ビ一ムスプ リツター 1 4の下部に配設されたマイクロレンズァレイ 2 1により、 焦点がマト リクス式液晶素子 2 2の各画素に結ばれる。
このマイクロレンズアレイ 2 1は、 マトリクス式液晶素子 2の各画素 2 2 a に対応する位置に、 ァレイ状に配列した複数の微小レンズから構成されており、 マトリクス式液晶素子 2 2の各々の画素 2 2 a毎に効率よく光を入射させること ができる。 マイクロレンズアレイ 2 1に入射した各光は、 マトリクス式液晶素子
2 2の各画素 2 2 aをピンホールとして通過する。 この各画素 2 2 aをピンホ一 ルとして通過した各光は一度拡大してから、 さらに対物レンズ 2 3によって被観 察物 2の表面に複数の焦点 2 4として結像される。
被観察物 2はステージ 3に載置されている。 ステージ 3は、 前後左右及び上下 方向に移動可能な X Y Zステージ 3 a及び Θステージ 3 bから構成されている。 X Y Zステージ 3 aによりステージ 3が水平面内と垂直方向の両方で移動調整さ れることにより、被観察物 2の位置調整が行なわれ得る。 また、 このとき、 Θス テージ 3 bにより X Y Z面内の角度調整も行われることにより、 被観察物 2の位 置調整が行なわれるようになつている。
次に、 被観察物からの反射光を検出する検出光学系について説明する。 検出光 学系 3 0において、 被観察物 2からの反射光は、 入射光の経路を逆進してビーム スプリツター 1 4を介して結像レンズ 3 1へ入射し、 複数の焦点 3 2が撮像素子
3 3に形成され、被観察物 2の反射光が結像される。 撮像素子 3 3としては、上 記の結像を一度に受光できる C C D型撮像素子や C M O S型撮像素子を使用でき る。 さらに、 これらの撮像素子 3 3は、 S /N比 (信号対雑音比) を向上させる ために雑音を減らすように、 例えば液体窒素やペルチヱ素子を使用した冷却装置 で冷却してもよい。
ここで、 被観察物の反射光は、 照明光源 1 1と同一波長の場合の通常反射光の 場合と、 照明光源 1 1より励起された被観察物からの励起光である蛍光の場合が ある。 蛍光の波長は、 通常、 照明光源の波長よりも長い。 従って、 蛍光を観測す る場合には、 ビームスプリッター 1 4として、照明光源光源の波長と、 蛍光波長 を分離できるダイクロイツクミラーなどを使用することができる。
制御系 5 0は、 パーソナルコンピュータ 5 1と、 第一の液晶制御部 5 2と、 画 像処理装置 5 3とを備えている。 上記パーソナルコンピュータ 5 1は、.被観察物 の画像などを表示するディスプレ一装置 5 4を備えている。
さらに、上記パーソナルコンピュータ 5 1は、 マトリクス式液晶素子 2 2の各 画素を透過する光の偏光方向を制御するデータを、 液晶制御部 5 2へ出力する。 上記液晶制御部 5 2は、 マトリクス式液晶素子 2 2の各画素 2 2 aで回転させる 光の偏光方向を液晶素子駆動信号に変換する駆動回路である。 この駆動回路は、 パーソナルコンピュータ 5 1からのマトリクス式液晶素子 2 2の各画素 2 2 aの 偏光信号を、 マトリクス式液晶素子 2 2に適合する液晶素子駆動信号、 即ち各画 素 2 2 aに関する電圧信号に変換する。 そして、液晶制御部 5 2が、 各画素 2 2 aに印加する駆動電圧を適宜に調整し、 または、駆動時間中に駆動電圧を変更す ることにより、各画素 2 2 aを透過する光の偏光方向を制御する。 撮像素子 3 3 の画像信号 3 3 aは制御系 5 0の画像処理装置 5 3に出力されて、 パーソナルコ. ンピュータ 5 1により画像データの演算処理などがされ、 ディスプレー装置 5 4 に画像が出力される。
次に、 マトリクス式液晶素子の偏光制御について説明する。 マトリクス式液晶 素子 2 2の各画素 2 2 aは、制御系 5 0を構成する第一の液晶制御部 5 1によつ て、 マトリクス式液晶素子 2 の各々の画素 1 aを透過する光の偏光方向を制 御する。 これによつて、 隣り合う各画素に入射する光の偏光方向が互いに直角に なるように制御される。 この際、 マトリクス式液晶素子の画素全部が、 同時にか つ被観察物 2の観察に必要な時間だけ制御されるので、複数の焦点 2 4を同時に 被観察物に形成することができる。
図 及び図 3は、 マトリクス式液晶素子の各画素の偏光制御を模式的に示す図 である。 図 2に示すように、 コリメータ 1 2からの平 ί亍光 1 5は、 第一の偏光子 1 3と、 マイクロレンズァレイ 2 1を介して、 マトリクス式液晶素子 2 2へ入射 する。 上記第一の偏光子 1 3は公知の構成であって、 例えば二枚のガラス板の間 に偏光膜を挟んで貼り合わせることにより構成されている。
入射する平行光が第一の偏光子 1 3により、 図 2で示すように—→方向の照明 光偏光 1 6になり、 マトリクス式液晶の各画素 2 2 aにより 1 7 a , 1 7 b , 1 7 cのように入射光の偏光 1 6が制御される。 ここで、 マトリクス式液晶素子に よる偏光 1 7の偏光 1 7 a , 1 7 b , 1 7 cは、 それぞれ照明光の偏光 1 6に対 して垂直、平行、 垂直と平行の中間状態を示している。
図 3は、 マトリクス式液晶素子 1 2における各画素 2 2 aを透過する光の偏光 状態を示している。 図中の aと bは、 それぞれ、 偏光が入射光と平行及び垂直の 状態である。 従って図示の場合は、 隣接する各画素 2 2 aを透過する光の偏光方 向が互いに直交するようになっている。 このように、 マトリクス式液晶素子 2 2 の隣接する各画素 2 2 aを透過する光の偏光方向を制御すると、互いに隣接する aと bの入射光は振動成分が直交し干渉が生じない。
ここで、干渉するのは、対角に位置する aと aおよび bと bの画素となる。 対 角に位置する aと a、 bと bの焦点の間隔は、 隣接する焦点 aと bの間隔に比べ 2 1 /2 に広がることから、 隣接する入射光の偏光を制御しない場合と比較すると 2一 1 /2の 0 . 7 1倍まで、 隣接する焦点の間隔を近づけることができる。 従って 、 従来と比較して約 3 0 %の横分解能の向上ができる。 これにより、 マトリクス 式液晶を使用することで、 隣接する焦点に集光される光の偏光方向は互いに直交 するので、 隣接する照明光同士は干渉せず、 クロストークによる横分解能の低下 を防ぐことができる。
次に、本発明の液晶を用いた共焦点顕微鏡の動作について説明する。 被観察物 2に照射される光は、 マイクロレンズアレイ 2 1により、 マトリクス式液晶素子 2 2の各画素 2 2 aをピンホールとして入射し、被観察物 2に第一の複数の焦点 2 4を形成する。 さらに、被観察物 2の反射光または蛍光が、 検出光学系 3 0に おいて第二の複数の焦点 3 2を形成することから、本発明の顕微鏡は共焦点顕微 鏡として動作する。 この際、 マトリクス式液晶素子 2 の各画素 1 2 aにおいて 、 各画素 2 2 aを透過する光の偏光方向が互いに直交するように、 マトリクス式 液晶素子の各画素 2 2 aが制御されることができる。 これにより、 多重共焦点間 におけるクロストークを防止でき、横方向及び深さ方向の分解能が向上する。 ま た、被観察物 2の機械的な走査を行わないで、 被観察物 2の反射光または蛍光の 観察を高速に行うことができる。
ここで、 マトリクス式液晶素子 2 2の各画素 2 2 aの間隔であるピッチ分は、 厳密には、像が得られないので、 ステージ 3を 1 ピッチ分だけ X方向及び Y方向 に移動させて 1画面を構成してもよい。 ここで、 マトリクス式液晶素子.2 2の画 素のピッチは 1 0〃mから 2 0〃m程度である。 この 1ピッチ分のステージの X —Y駆動制御は、 電歪素子による駆動装置をステージ 3に付加することで行うこ とができる。
次に、本発明において、 液晶を用いた共焦点顕微鏡の第 1の実施の形態の変形 例を示す。 図 4は本発明による液晶を用いた共焦点顕微鏡の別の構成を示す図で ある。 図 4に示す共焦点顕微鏡 1, が、 図 1に示す液晶を用いた共焦点顕微鏡 1 と異なるのは、 入射光学系 2 0である。 他の照明光学系 1 0、 検出光学系 3 0、 制御系 5 0、 ステージ 3は、 図 1と同じ構成であるので、説明は省略する。 入射光学系 2 0において、 マトリクス式液晶素子 2 2の下部に第二の偏光子 2 5を設けている点が、 図 1の入射光学系と異なる。
図 5は入射光学系に設けた偏光子 2 5の作用効果を説明する概略図である。 図 5に示すように、 コリメ一夕 1 からの平 ί亍光 1 5が第一の偏光子 1 3と、 マイ クロレンズアレイ 2 1と、 マトリクス式液晶素子 2 2を通過して入射する。 ここ で、上記第一の偏光子 1 3及び第二の偏光子 2 5は、 同軸ではなく、 互いに直交 ( 9 0 ° ) するように配置している。
マトリクス式液晶素子の画素 2 2 aが駆動電圧を印加されない状態では、 第一 の偏光子 1 3を透過した光が画素 1 2 aを透過するごとで、 1 7に示すようにそ の偏光方向が 9 0 ° 捩れるために、第一の偏光子 1 3と透過軸が 9 0 ° ずれてい る第二の偏光子 2 5を透過し透過光 2 6 aとなる。
一方、画素 2 2 aが駆動電圧を印加された状態では、電圧の大きさによって画 素 2 2 a内の液晶分子の捩れの状態が変ィヒするため、 第一の偏光子 1 3を透過し た直線偏光の偏光方向を当該画素 2 2 a内で 0〜 9 0 ° の範囲で回転させること ができる。 これにより、 第二の偏光子 2 5を透過する光の強度が任意に制御され る。 従って、 マトリクス式液晶素子 2 2の各画素 2 2 aの駆動電圧により、 入射 光が、 透過 2 6 a、 透過しない遮光 2 6 b、 これらの中間状態 (グレー) 2 6 c となるように制御されるので、 照明光強度を変えることができる。
ここで、本発明の液晶を用いた共焦点顕微鏡の動作の特徴について説明する。 この例では、 第二の偏光子 2 5を追カ卩したことにより、 照明光の強度制御を行う ことができる。 これにより、 被観察物に応じて、 マトリクス式液晶素子の各画素
2 2 aを制御することで照明光強度の制御ができることになる。
次に、本発明の液晶を用いた共焦点顕微鏡の第 2の実施の形態を示す。 図 6は 本発明に係る第 2の実施の形態による液晶を用いた共焦点顕微鏡の構成を示す模 式図である。 図において、液晶を用いた共焦点顕微鏡 5は、 照明光学系 1 0と、 マトリクス式液晶素子を含み被観察物 2へ多重焦点を形成する入射光学系 0, と、被観察物からの反射光を検出する検出光学系 3 0 ' と、 マトリクス式液晶素 子及び検出光学系からの画像データを制御する制御系 5 0 ' と、被観察物 2を載 置するステージ 3とから構成される。 なお、 図 1と同一の構成要素には、 同じ符 号を付して説明は省略する。 照明光学系 1 0は、 図 1の照明光学系と同様に、 照 明光源 1 1と、 コリメ一夕 1 と、第一の偏光子 1 3から構成され、偏光した平 行光をビ一ムスプリッタ一 1 4に入射させる。
入射光学系 2 0, は、 対物レンズ 2 6と、 レンズ 2 7と、 マイクロレンズァレ ィ 2 1と、 マトリクス式液晶素子 2 2とから構成されている。 ビームスプリッ夕 一 1 4からの偏光した平行光は、 対物レンズ 2 6とレンズ 2 7を用いてさらに拡 大される。 この拡大された一様な光強度分布の光が、 第一のマイクロレンズァレ ィ 1 1の全面に照射される。 第一のマトリクス式液晶素子 2 2の表面に取り付け られた第一のマイクロレンズアレイ 2 1を通過したマイクロレンズ毎の光は、 第 一のマトリクス式液晶素子 2 2の各画素 2 2 a毎に透過し、 ステージ 3に載置さ れた被観察物 2に複数の焦点 4を形成する。
マトリクス式液晶素子 2 2の各画素 2 2 aは、 図 2及び図 3で説明したように 、制御系 5 0 ' を構成する第一の液晶制御部 5 1によって、 第一のマトリクス式 液晶素子 2 2の各画素 2 2 aの隣り合う画素の偏光方向を互いに直交させるよう に制御する。 これにより、 第一のマトリクス式液晶 2 2を使用することで、 隣接 する焦点に集光される入射光の偏光方向が互いに直交するので、 隣接する入射光 同士は干渉せず、 クロストークによる横分解能の低下を防ぐことができる。 次に、 被観察物 2からの反射光または觉光を、 ビームスプリッ夕一 1 4を通過 した後に検出する検出光学系 3 0 ' について説明する。
検出光学系 3 0, は、 ミラ一 3 4, フィルタ 3 5 , 対物レンズ 3 6, レンズ 3 7, 第二のマイクロレンズアレイ 3 8, 第二のマトリクス式液晶素子 3 9, 集光 レンズ 4 0 , 撮像素子 3 3から構成されている。 ここで、対物レンズ 3 6から第 二のマトリクス式液晶素子 3 9までの光学系は、 入射光学系 0, の対物レンズ 2 6から第一のマトリクス式液晶素子 2 2までの構成と同じにする。 ミラー 3 4 は、 ビ一ムスプリッ夕ー 1 4を通過した被観察物からの反射光の光路を 9 0 ° 曲 げて、 特定の波長の光のみを通過させるフィル夕 3 5を介して対物レンズ 3 6に 入射させる。
被観察物 2からの蛍光を観察する場合には、 蛍光の波長は照明光源 1 1より波 長が長いことから、 蛍光のみを検出光学系 3 0, に透過させるために、 ビ一ムス プリッ夕一 1 4としてダイクロイツクミラーを使用すればよい。 さらに、 蛍光の コントラスト向上のため、 フィルタ 3 5としては蛍光のみを透過させるエミッシ ョンフィル夕を用いることが好ましい。
次に、対物レンズ 3 6とレンズ 3 7は、被観察物 2からの反射光または; t光を さらに拡大し、一様な光強度分布の光を第二のマイクロレンズアレイ 3 8の全面 に照射する。 この第二のマイクロレンズアレイ 3 8は、 第一のマイクロレンズァ レイ 2 1と同じく、 第二のマトリクス式液晶素子 3 9の各画素に対応する位置に ァレイ状に配列した微小レンズから構成されており、 第二のマトリクス式液晶素 子 3 9の各々の画素每に効率よく、 光を入射させることができる。 第二のマトリ クス式液晶素子 3 9の表面に取り付けられた第二のマイクロレンズアレイ 3 8を 通過したマイク口レンズ毎の光は、 第二のマトリクス式液晶素子 3 9の各画素每 に通り、集光レンズ 4 0により撮像素子 3 3に複数の焦点 4 1を形成する。 制御系 5 0 ' は、 図 1の制御系 5 0にさらに、検出光学系 3 0 ' の第二のマト リクス式液晶素子 3 9の制御部である第二の液晶制御部 5 5を備えたほかは、 同 じ構成である。 入射光学系のマトリクス式液晶素子 2 2は、 図 2及び図 3で説明 したように、制御系 5 0, を構成する第一の液晶制御部 5 2によって、 マトリク ス式液晶素子 2 2の各画素 2 2 aの隣り合う画素を透過する光の偏光方向を互い に直交させるように制御される。
検出光学系 3 0, に入射する反射光または蛍光において、 それらの偏光方向が 同一となり干渉の影響を受ける場合には、 検出光学系の第二のマトリクス式液晶 素子 3 9を透過する際に、 反射光または蛍光の偏光方向を互いに直交させればよ い。 これにより、 撮像素子に入射する互いに隣接する反射光または蛍光同士は、 干渉せず、 クロストークによる横分解能の低下を防ぐことができる。
また、 検出光学系 3 0, の第二のマトリクス式液晶素子 3 9の画素を透過する 反射光に対して偏光方向の制御を行うこともできる。 この際、 検出光学系 3 0 ' のマトリクス式液晶素子 3 9の各画素を、 透過、 遮光あるいはその中間の状態に 制御できるので、視野の限定などができる。
ここで、本発明の液晶を用いた共焦点顕微鏡の動作について説明する。
被観察物 2に照射する光が、 第一のマイクロレンズアレイ 2 1により第一のマ トリクス式液晶素子の各画素 2 2 aへ入射し、 被観察物 2に第一の複数の焦点 2 4を形成する。 さらに、 被観察物 2の反射光または蛍光が、検出光学系 3 0, に おいて、 第二のマイクロレンズアレイ 3 8と、 第二のマトリクス式液晶素子 3 9 の各画素を使用して第二の複数の焦点 4 1を形成することから、本発明の顕微鏡 は共焦点顕微鏡として動作する。 この際、 マトリクス式液晶素子 2 2 , 3 9の各 画素を透過する光において、 その偏光方向が互いに直交するようにマトリクス式 液晶素子 2 2 , 3 9の各画素が制御され得る。
従って、 前記した従来例 1のように、 クロストークが生じない程度離れたピン ホールの下に、試料を走査して時系列で画像を測定して合成する必要がない。 ま た、従来例 2のように、 クロストークが生じない程度離れたピンホールの組み毎 の画像を、 時系列で測定して合成する必要がない。 このため、 本発明の液晶を用 いた共焦点顕微鏡によれば、 マトリクス式液晶素子の全ての画素をピンホールと した画面を形成しても、 クロストークによる画面の乱れがなくなり、 リアルタイ ムで被観察物の全画像を観察できる。 これにより、 被観察物 2の機械的な走査制 御を行わないで、被観察物 2の反射光または蛍光の観察を高速に行うことができ る。 また、 多重共焦点間におけるクロスト一クを防止できるので、横方向と深さ 方向の分解能が向上する。 また、 2枚のマトリクス式液晶素子の組み合わせによ り、 偏光制御、 検出信号の選択等を実現することができる。
次に、 本発明において、液晶を用いた共焦点顕微鏡の第 2の実施の形態の変形 例を示す。 図 7は、本発明による液晶を用いた共焦点顕微鏡の別の構成を示す図 である。 図示する液晶を用いた共焦点顕微鏡 5 ' が、 図 6に示す液晶を用いた共 焦点顕微鏡 5と異なるのは、 入射光学系 2 0 ' である。 他の照明光学系 1 0、検 出光学系 3 0, 、制御.系 5 0, 、 ステージ 3は、 図 6と同じ構成であるので、説 明は省略する。 本例では、 入射光学系 2 0 ' において、 マトリクス式液晶素子 2 2の下部に第二の偏光子 2 5を設けている点が図 6の入射光学系と異なる。 この第二の偏光子 2 5による作用は、 図 4及び図 5で説明したように、 第一の マトリクス式液晶素子の画素 2 2 aの駆動電圧により照明光強度を変えることで ある。 入射光学系の第一のマトリクス式液晶素子 2 2の各画素 2 2 aにおいて、 隣り合う各画素 2 2 aを透過する光の偏光方向を互いに直交させるように、 第一 のマトリクス式液晶素子 2 2の各画素が制御され得る。
ここで、 被観察物 2の反射光により撮像素子 3 3に形成される複数の焦点 4 1 間のクロストークは、 第二のマトリクス式液晶素子の各画素の偏光制御により防 止できる。 従って、 入射光の照明制御を行なった場合であっても、反射光のクロ ストークのない像を形成できるので、 従来の共焦点顕微鏡のように機械的な走査 をして全画面を合成する必要がなく、制御系 5 0, のディスプレー装置 5 4で直 ちに観察できる。 これにより、 被観察物 2の機械的な走査を行わないで、 被観察 物 2の反射光または蛍光の観察を高速に行うことができる。 また、 多重共焦点間 におけるクロストークを防止でき、 分解能が向上する。 さらに、 2枚のマトリク ス式液晶素子と、 第二の偏光子 2 5との組み合わせにより、 照明光制御、 偏光制 御、検出信号の選択等を実現することができる。
次に、本発明の共焦点顕微鏡の第 3の実施の形態を示す。 図 8は第 3の実施の 形態による液晶を用いた共焦点顕微鏡の構成を示す模式図である。 図 8に示す共 焦点顕微鏡 7が、 図 1に示す共焦点顕微鏡 1と異なるのは、 照明光学系 6 0及び 制御系 7 0である。 他の入射光学系 2 0、 検出光学系 3 0、 ステージ 3は、 図 1 と同じ構成であるので、 それらの説明は省略する。
照明光学系 6 0は照明光源 1 1に光強度変調を印加できる点が、 図 1の液晶を 用いた共焦点顕微鏡 1と異なっている。 照明光学系 6 0は、 照明光源 1 1と、光 強度変調部 6 1から構成されている。 光強度変調部 6 1は、 照明光源 1 1を光強 度変調したビーム光 6 2を発生させる。 照明光源 1 1の光強度変調には、 マトリ クス式液晶素子、音響光学素子、 デジタル ' ミラー 'デバイスなどの光強度変調 素子を用いることができる。
図 8に示す照明光学系 6 0は、光強度変調素子として、 マトリクス式液晶素子 を用いた場合であり、 照明光源 1 1と、 コリメ一夕 1 2と、 第二の偏光子 6 3と 、光強度変調用マトリクス式液晶素子 6 4と、 第四の偏光子 6 5とから構成され ている。
照明光源 1 1は、 例えばレーザ光源を用い、 出射した光はレンズ 1 2 a及ぴレ ンズ 1 2 bからなるコリメ一夕 1 2によって所望のビーム径の平行光に拡大され る。 第三の偏光子 6 3及び第四の偏光子 6 5の配置は互いに直交する配置であり 、 この拡大されたビームは、 第三及び第四の偏光子 6 3、 6 5の間に挿入されて いる光強度変調用マトリクス式液晶素子 6 4の各画素に印加される電圧により光 の強度が変調、 所謂 AM変調 (周波数 f 1 ) される。
光強度変調用マトリクス式液晶素子 6 4は、後述する制御系 7 0により制御さ れる。 この際、 隣接する画素同士の光強度変調周波数が異なるように、例えば、 f 1 , f 2というように異なる複数の周波数で強度変調してもよい。 これらの変 調周波数は、 互いに高調波関係とならないように選定することが好ましい。
図 9は本発明の第 3の実施の形態による共焦点顕微鏡の照明光学系の別の構成 例を示す模式図である。 照明光学系 6 0, は、 照明光源 1 1とコリメ一夕 1 2と の間にさらに音響光学素子 6 8が配設されている点が、 図 8の照明光学系 6 0と 異なる。 照明光源 1 1は、音響光学素子 6 8により光強度変調 (変調周波数 f A0 ) された後に、 コリメ一夕 1 2によって、所望のビーム径の平行光に拡大された のち、光強度変調用マトリクス式液晶素子 6 4により光の強度が変調され (変調 周波数 f 2 ) 、所謂、 二重強度変調される。 音響光学素子 6 8は、光強度変調用 マトリクス式液晶素子よりも高い周波数で光強度変調をすることができる ( f AO
> f 1 , f 2 ) 。
制御系 7 0は、光強度変調された反射光を検出する点が、 図 1の液晶を用いた 共焦点顕微鏡 1の制御系 5 0と異なる。 制御系 7 0は、光強度変調制御部 5 6と 光強度変調された反射光を検出する画像処理装置 5 δを有している。 光強度変調 制御部 5 8は、光強度変調素子 6 4 , 6 8を駆動制御し、 照明光源 1 1の光強度 変調を行う。 照明光学系 6 0において光強度変調された入射光は、 図 1に示す共 焦点顕微鏡 1と同様に、 入射光学系 2 0を介して被観察物 2に照射される。 この 被観察物 2からの反射光は、検出光学系 3 0に入射し画像処理装置 5 8において 信号処理されて画像信号がパーソナルコンピュータ 5 1に送出される。
画像処理装置 5 8は、検出電気信号用の増幅器、 A/ D変換器などを備え、検 出光学系からの時間軸信号をデジタル化して、 パーソナルコンピュータ 5 1に送 出する。 パーソナルコンピュータ 5 1は、 時間軸信号を周波数軸に変換するフー リエ変換処理をして、 被観察物 2の反射光のまたは蛍光の光強度分布を得て、 デ ィスプレー装置 5 4に表示する。 フ一リェ変換は、 高速フーリェ変換の計算手法 により ί亍ぅことができる。
次に、 第 3の実施形態に係る共焦点顕微鏡 7の動作について説明する。
第 3実施形態の共焦点顕微鏡 7の動作は、被観察物 2に照射される光が光強度 変調されている点が、共焦点顕微鏡 1と異なる。 マトリクス式液晶素子 2の各 画素 2 2 aにおいて、各画素 2 2 aを透過する光は光強度変調されると共に、 そ の偏光方向が互いに直交するように、 マトリクス式液晶素子の各画素 2 2 aが制 御されている。 被観察物 2からの反射光または蛍光に照射される光は、検出光学 系 3 0及び制御系 7 0において、光強度変調された各画素からの信号を周波数信 号に変換することにより、 周波数軸上で検出できる。 この際、液晶を用いた共焦 点顕微鏡 7内で生じるクロストーク以外の雑音などは、光強度変調周波数とは異 なり周波数軸で容易に判別処理できるので、 信号対雑音比 (S /N比) を増大さ せることができる。 即ち被観察物 からの反射光または蛍光を高感度で検出する ことができる。 また、 隣り合う画素同士が異なる周波数で光強度変調されている 場合には、 さらにクロストークを防止できる。 これにより、 多重共焦点間におけ るクロストークを防止できるとともに、反射光または蛍光の強度を光強度変調の 周波数で検出できるので高感度となり、共焦点顕微鏡 1よりも、 さらに、横方向 及び深さ方向の分解能が向上する。 また、被観察物 2の機械的な走査を行わない で、 被観察物 2の反射光または蛍光の観察を高速に行うことができる。
次に、共焦点顕微鏡の上記第 3の実施の形態の変形例を示す。 図 1 0は第 3の 実施の形態による液晶を用いた共焦点顕微鏡の別の構成を示す模式図である。 図 1 0に示す共焦点顕微鏡 7, が、 図 8に示す液晶を用いた共焦点顕微鏡 7と異な るのは、 入射光学系 2 0である。 他の照明光学系 6 0、 検出光学系 3 0、制御系 7 0、 ステージ 3は、 図 8と同じ構成であるので、説明は省略する。 入射光学系 2 0において、 マトリクス式液晶素子 2 2の下部に第二の偏光子 2 5を設けてい る点が、 図 8の入射光学系と異なる。 この例では、 第二の偏光子 2 5を追カ卩した ことにより、 図 5で説明したように、 照明光の強度制御を行うことができる。 こ れにより、 被観察物に応じてマトリクス式液晶素子の各画素 1 2 aを制御するこ とで、 照明光強度の制御ができることになる。
次に、本発明の共焦点顕微鏡の第 4の実施の形態を示す。 図 1 1は第 4の実施 の形態による液晶を用いた共焦点顕微鏡の構成を示す模式図である。 図 1 1に示 す共焦点顕微鏡 8が、 図 8に示す液晶を用いた共焦点顕微鏡 7と異なるのは、 照 明光学系 8 0及び制御系 9 0である。 他の入射光学系 2 0、 検出光学系 3 0、 ス テージ 3は、 図 8と同じ構成であるので、説明は省略する。 照明光学系 8 0は、 照明光源 1 1が複数の波長を有する光源と、各波長の光源に異なる光強度変調を 印加する光強度変調部 8 2から構成されている。 図においては、照明光源 1 1が 3つの異なる波長の光源 1 l a , l i b , 1 1 cを有するとして説明する。 光強 度変調部 8 2は、照明光源 1 1を光強度変調したビーム光 8 4を発生させる。 照 明光源 1 1の光強度変調には、 マトリクス式液晶素子、 音響光学素子、 デジタル •ミラー -デバイスなどの光強度変調素子を用いることができる。 制御系 9 0は 、照明光源の光強度変調制御部 9 1と、光強度変調された被観察物 2の反射光ま たは蛍光を検出する画像処理装置 9 2と、 を有している。
図 1 2は、上記第 4の実施の形態による共焦点顕微鏡の照明光学系の一構成例 を示す模式図である。 照明光学系 8 0は、 3つの異なる波長の光源 1 1 a , 1 1 b , 1 1 cのそれぞれに、 コリメ一夕 1 2 a , 1 2 b , 1 2 cと、 第三の偏光子 6 3 a , 6 3 b , 6 3 cと、 光強度変調用マトリクス式液晶素子 6 4 a , 6 4 b , 6 4 cと、 第四の偏光子 6 6 a , 6 4 b , 6 4 cと、 ビームスプリッ夕ー 8 5 , 8 6, 8 7と、 から構成されている。 例えば、照明光源 1 1 aにおいては、 図 9で説明した照明光源 1 1と同様に、 出射した光は、 レンズ 1 1 a及びレンズ 1 2 bからなるコリメ一タ 1 2によって所望のビーム径の平行光に拡大される。 第 三の偏光子 62及び第四の偏光子 66の配置は、互いに直交する配置である。 こ の拡大されたビームは、 第三の偏光子 62 a及び第四の偏光子 66 aの間に揷入 されている光強度変調用マトリクス式液晶素子 64 aの各画素に印加される電圧 により光の強度が変調、 所謂 AM変調 (周波数 f 1) され、 光強度変調されたビ ーム 84 aとなる。
光強度変調用マトリクス式液晶素子 64 aは、制御系 90の光強度変調制御部 9 1により制御される。 照明光源 1 1 b及び 1 1 cにおいても、 照明光源 1 1 a と同様に、光強度変調用マトリクス式液晶素子 64 b及び 64 cにより光強度変 調されたビーム 84 b (周波数 f 2) , 84 c (周波数 f 3) となる。
光強度変調制御部 9 1は、 光強度変調素子 64 a, 64b, 64 cを駆動制御 し、 照明光源 1 l a, l i b, 1 1 cの強度変調を行う。 照明光学系 80におい て光強度変調されたビーム 84 a, 84 b, 84 cは、 それぞれ、 ビームスプリ ッ夕ー 85, 86, 87に入射し、 合波されて光強度変調されたビーム 84とな る。 ここで、 隣接する画素同士の光強度変調周波数が異なるように、光強度変調 されたビーム 84 a, 84 b, 84 cの各画素毎に異なる複数の周波数で強度変 調してもよい。 例えば、 光強度変調されたビーム 84 a (波長; I 1 ) の光強度変 調周波数を隣り合う画素の順に f 1, f 2, f 3とし、 同様に、 光強度変調され たビ一ム 84 b (波長; I 2 ) の光強度変調周波数を f 4, f 5, f 6とし、 光強 度変調されたビーム 84 c (波長; I 3 ) の光強度変調周波数を f 7, f 8, f 9 としてもよい。 これらの変調周波数は、互いに高調波関係とならないように選定 することが好ましい。
光強度変調されたビーム 84は、 図 8に示す液晶を用いた共焦点顕微鏡 7と同 様に、 入射光学系を介して被観察物 2に照射される。 この被観察物 2からの反射 光または蛍光は、検出光学系 30に入射し画像処理装置 92において信号処理さ れて画像信号がパーソナルコンピュータ 5 1に送出される。
画像処理装置 92は、 検出電気信号用の増幅器、 A/D変換器などを備え、検 出光学系からの時間軸信号をデジタル化してパーソナルコンピュータ 5 1に送出 する。 パーソナルコンピュータ 5 1は、 時間軸信号を周波数軸に変換するフ一リ ェ変換処理をして、 反射光の強度分布を得てディスプレー装置 54に表示する。 フ一リェ変換は、 処理時間を短くするためには高速フーリェ変換の計算手法によ り演算処理すればよい。
次に、 上記第 4実施形態の共焦点顕微鏡 8の動作について説明する。 この共焦 点顕微鏡8の動作は、被観察物2に照射される複数の光が光強度変調されている 点が、共焦点顕微鏡 7と異なる。 マトリクス式液晶素子 1 2の各画素 1 2 aにお いて、 各画素 2 2 aを透過する光は光強度変調されると共に、 その偏光方向が互 いに直交するように、 マトリクス式液晶素子の各画素 2 2 aが制御されている。 被観察物 2からの複数の波長の反射光または蛍光は、 検出光学系 3 0及び制御系 9 0において、各波長の光強度変調された各画素からの信号を周波数軸上で検出 できる。 この際、 液晶を用いた共焦点顕微鏡 7内で生じるクロストーク以外の雑 音等などは光強度変調周波数とは異なり周波数軸で容易に判別処理できるので、 信号対雑音比 (S / N比) を増大させることができる。 即ち、 被観察物 2の複数 の波長からの反射光または蛍光を高感度で検出することができる。 また、 隣り合 う画素同士が異なる周波数で光強度変調されている場合には、 さらにクロストー クを防止できる。 これにより、 多重共焦点間におけるクロストークを防止できる とともに、 複数の波長からの反射光または蛍光の強度を光強度変調の周波数で検 出できるので多波長において高感度となり、共焦点顕微鏡 7では得られない多波 長からの横方向及び深さ方向の分解能が向上する。 また、 被観察物 2の機械的な 走査を行わないで、 被観察物 2の反射光または蛍光の観察を高速に行うことがで きる。
次に、 共焦点顕微鏡の第 4の実施の形態の変形例を示す。 図 1 3は第 4の実施 の形態による液晶を用いた共焦点顕微鏡の別の構成を示す模式図である。 図 1 3 に示す共焦点顕微鏡 8 ' が、 図 1 1に示す液晶を用いた共焦点顕微鏡 8と異なる のは、 入射光学系 2 0である。 他の照明光学系 8 0、検出光学系 3 0、 制御系 9 0、 ステージ 3は、 図 1 1と同じ構成であるので、 説明は省略する。 入射光学系 2 0において、 マトリクス式液晶素子 1 2の下部に第二の偏光子 2 5を設けてい る点が、 図 1 1の入射光学系と異なる。 この変形例では、 第二の偏光子 2 5を追 加したことにより、 図 5で説明したように、照明光の強度制御を行うことができ る。 これにより、 被観察物に応じてマトリクス式液晶素子の各画素 I 2 aを制御 することで、 照明光強度の制御ができることになる。
次に、本発明の共焦点顕微鏡の第 5の実施の形態を示す。 図 1 4は第 5の実施 形態による液晶を用いた共焦点顕微鏡の構成を示す模式図である。 図 1 4に示す 共焦点顕微鏡 9が、 図 6に示す液晶を用いた共焦点顕微鏡 5と異なるのは、 照明 光学系 6 0及び制御系 1 0 0である。 他の入射光学系 2 0 ' 、 検出光学系 3 0 ' 、 ステージ 3は、 図 6と同じ構成であるので、 説明は省略する。 照明光学系 6 0 は、 図 8に示した照明光学系 6 0と同じであり、光源 1 1と光強度変調部 6 2と から構成されていて、照明光源 1 1を光強度変調用マトリクス式液晶素子 6 4に より光強度変調したビーム光 6 2を発生させる。 光強度変調用マトリクス式液晶 素子 6 4は、 後述する制御系 1 0 0により制御される。 この際、 隣接する画素同 士の光強度変調周波数が異なるように、 異なる複数の周波数で強度変調すること が好ましい。
図 1 5は、 上記第 5の実施の形態による共焦点顕微鏡の照明光学系の別の構成 例を示す模式図である。 この共焦点顕微鏡 9 Aにおいて、照明光学系 6 0は、 照 明光源 1 1と、 コリメ一夕 1 1との間にさらに音響光学素子 6 8が配設されてい る点が、 図 1 4の照明光学系 6 0と異なる。 照明光源 1 1は、 音響光学素子 6. 8 により光強度変調された後に、 コリメ一夕 1 2によつて所望のビーム径の平行光 に拡大されたのち、 光強度変調用マトリクス式液晶素子 6 4により光の強度が変 調され、 所謂、二重強度変調される。 音響光学素子 6 8は、光強度変調用マトリ クス式液晶素子よりも高い周波数で光変調することができる。
制御系 1 0 0は、 光強度変調制御部 5 6と光強度変調された反射光を検出する 画像処理装置 1 0 1を有している点が、 図 6の制御系 5 0 ' と異なる。 光強度変 調制御部 5 6は光強度変調素子 6 4を駆動制御し、 照明光源 1 1の強度変調を行 う。 照明光学系 6 0において光強度変調された入射光は、 図 6に示す共焦点顕微 鏡 5と同様に、 入射光学系 2 0, を介して被観察物 2に照射される。 この被観察 物 2からの反射光は、検出光学系 3 0, に入射し画像処理装置 1 0 1において信 号処理されて画像信号がパーソナルコンピュータ 5 1に送出される。
画像処理装置 1 0 1は、検出電気信号用の増幅器、 A/D変換器などを備え、 検出光学系からの時間軸信号をデジタル化してパーソナルコンピュータ 5 1に送 出する。 パーソナルコンビュ一夕 5 1は、 時間軸信号を周波数軸に変換するフー リェ変換処理をして、 被観察物 2の反射光または蛍光の光強度分布を得てディス プレー装置 5 4に表示する。 フーリエ変換は、 高速フ一リエ変換の計算手法によ り行うことができる。
ここで、 第 5の実施形態の共焦点顕微鏡の動作について説明する。 上記第 5の 実施形態の共焦点顕微鏡 9では、 第 2の実施形態による共焦点顕微鏡 5の動作で 説明したと同様に、 マトリクス式液晶素子 2 2 , 3 9の各画素を透過する光の偏 光方向が互いに直交するように、 マトリクス式液晶素子 2 2 , 3 9の各画素が制 御される。
第 5の実施形態では、被観察物 2からの反射光または蛍光に照射される光は、 検出光学系 3 0及び制御系 1 0 0において、 光強度変調された各画素からの信号 を周波数軸上で検出できる。 この際、 液晶を用いた共焦点顕微鏡 9内で生じるク ロストーク以外の雑音などは光強度変調周波数とは異なり周波数軸で容易に判別 処理できるので、 信号対雑音比 (S /N比) を増大させることができる。 即ち、 被観察物 2からの反射光または蛍光を高感度で検出することができる。 また、 隣 り合う画素同士が異なる周波数で光強度変調されている場合には、 さらにクロス トークを防止できる。
次に、 本発明の共焦点顕微鏡の第 5の実施の形態の変形例を図 1 6に示す。 図 示する液晶を用いた共焦点顕微鏡 9 Bが、 図 1 4に示す液晶を用いた共焦点顕微 鏡 9と異なるのは、 入射光学系 2 0 ' である。 他の照明光学系 6 0、検出光学系 3 0, 、 制御系 1 0 0、 ステージ 3は、 図 1 4と同じ構成であるので、説明は省 略する。 本例では、 入射光学系 2 0 ' において、 マトリクス式液晶素子 2 2の下 部に第二の偏光子 2 5を設けている点が図 1 4の入射光学系と異なる。
この第二の偏光子 2 5による作用は、 図 4及び図 5で説明したように、 第一の マトリクス式液晶素子の画素 2 2 aの駆動電圧により照明光強度を変えることで ある。 入射光学系の第一のマトリクス式液晶素子 2 2の各画素 2 2 aにおいて、 隣り合う各画素 2 2 aを透過する光の偏光方向を互いに直交させるように、 第一 のマトリクス式液晶素子 1 2の各画素が制御され得る。
次に、 本発明の共焦点顕微鏡の第 6の実施の形態を図 1 7に示す。 共焦点顕微 鏡 9 Cが、 図 1 4に示す共焦点顕微鏡 9と異なるのは、 照明光学系 8 0と制御系 1 0 0, である。 なお、 図 1 4と同一の構成要素には同じ符号を付して説明は省 略する。 照明光学系 8 0は、 図 1 1及び図 1 2と同じ構成とすることができるの で詳しい説明は省略する。 また、制御系 1 0 0 ' は、光強度変調制御部 5 6と光 強度変調された反射光を検出する画像処理装置 1 0 1を有している以外は、 図 1 4と同じ構成とすることができるので詳しい説明は省略する。
ここで、 照明光源 1 1は異なる 3波長の光 1 1 a, l i b , 1 1 cを有し、 そ れぞれの波長の光は光強度変調されている。 マトリクス式液晶素子 2 2, 3 9の 各画素を透過する光において、 その偏光方向が互いに直交するようにマトリクス 式液晶素子 2 2 , 3 9の各画素が制御され。 そして、各画素において、異なる波 長の反射光または蛍光が光強度変調されているので、 クロストークが生じない。 また、 各画素における波長の異なる入射光は光強度変調周波数が異なるので、各 波長からの反射光または 光を容易に識別することができる。
さらに、 共焦点顕微鏡 9内で生じるクロストーク以外の雑音等も光強度変調周 波数とは異り周波数軸で容易に判別処理できるので、信号対雑音比 (S /N比) を増大させることができる。 即ち、 被観察物 2からの反射光または蛍光を高感度 で検出することができる。
これにより、被観察物 2の機械的な走査と、波長により検出器の切り替えを行 うことなしに、 被観察物 2の多波長からの反射光または堂光の観察を高速に高感 度で行うことができる。 また、 多重共焦点間におけるクロストークを防止でき、 分解能が向上する。
次に、共焦点顕微鏡の第 6の実施の形態の変形例を図 1 8を参照しつつ説明す る。 図示の液晶を用いた共焦点顕微鏡 9 Dが、 図 1 7に示す共焦点顕微鏡 9 Cと 異なるのは入射光学系 2 0, である。 他の照明光学系 8 0、検出光学系 3 0 ' 、 制御系 1 0 0, 、 ステージ 3は、 図 1 7と同じ構成であるので説明は省略する。 本例では、 入射光学系 1 0, において、 マトリクス式液晶素子 1 2の下部に第二 の偏光子 2 5を設けている点が図 1 7の入射光学系と異なる。
この第二の偏光子 2 5による作用は、 図 4及び図 5で説明したように、 第一の マトリクス式液晶素子の画素 2 2 aの駆動電圧により、 照明光強度を変えること である。 入射光学系の第一のマトリクス式液晶素子 2 2の各画素 2 2 aにおいて 、 隣り合う各画素 2 2 aを透過する光の偏光方向を互いに直交させるように、 第 一のマトリクス式液晶素子 2 の各画素が制御される。
ここで、被観察物 2の反射光により撮像素子 3 3に形成される複数の焦点 4 1 間のクロストークは、 第二のマトリクス式液晶素子の各画素の偏光制御により防 止できる。 従って、 入射光の照明制御を行なった場合であっても、反射光のクロ ストークのない像を形成できるので、従来の共焦点顕微鏡のように機械的な走査 をして全画面を合成する必要がなく、 制御系 1 0 0, のディスプレー装置 5 4で 直ちに観察できる。 これにより、被観察物 2の機械的な走査を行わないで、被観 察物 2の多波長からの反射光または萤光の観察を高速に行うことができる。 また 、 多重共焦点間におけるクロストークを防止でき、 分解能が向上するとともに、 光変調された光源により感度を向上させることができる。 さらに、 2枚のマトリ クス式液晶素子と、 第二の偏光子 2 5との組み合わせにより、 照明光制御、偏光 制御、検出信号の選択等を実現することができる。
以下、 共焦点顕微鏡を用いたマイクロアレイ基板の測定方法の実施の形態を説 明する。
ここで、 マイクロアレイ基板は、微量の D NA、 または、 生体物質を平板状に 配置した被観察物である。 これらのマイクロアレイ基板は、 選択的に標識となる 蛍光物質が予め付与されている。 また、 このマイクロアレイ基板は、蛍光標識化 した未知の一本鎖 D N Aとハイプリダイゼーシヨン反応させた D NAマイクロア レイ基板でもよい。
上記 D NAマイクロアレイ基板を、 図 6に示す本発明の共焦点顕微鏡 5を用い て観察する測定方法について説明する。 共焦点顕微鏡 5の第一及び第二のマトリ クス式液晶素子 2 2及び 3 9の大きさは、 D N Aマイクロアレイ基板よりも十分 に大きいものを使用する。 従って、 D N Aマイクロアレイ基板の全体の反射像ま たは 光は、共焦点顕微鏡 5を用いて観察できる。
先ず、 D NAマイクロアレイ基板をステージ 3に載置して照明光源 1 1を点灯 する。 次に、 照明光源 1 1の焦点位置と、 D NAマイクロアレイ基板の検出位置 が重なるように、 観察する D NAマイクロアレイ基板の Z方向位置を XY Zステ —ジ 3 a及び Θステージ 3 bを用いて調節する。
D NAマイクロアレイ基板への入射光は、 マトリクス式液晶素子 2 2によって 、 隣接する画素を透過した入射光の偏光方向を互いに直交させるように第一の液 晶制御部 5 2により制御される。 この際、 検出光学系の第二のマトリクス式液晶 素子 3 9の各画素もまた、 第二の液晶制御部により制御される。
このようにして、 D N Aマイクロアレイ基板で発生した全部の蛍光が、 撮像素 子 3 3として、例えば C C Dカメラを使用することで同時に検出でき、検出する 信号の強度や偏光方向を変化させて蛍光画像観察を行うことができる。
ここで、 マトリクス式液晶素子 2 2 , 3 9の画素の大きさは、 1 0 /i m〜2 0 u mであり、例えば、 D N Aマイクロアレイ基板で発生する一つの蛍光の大きさ は直径が 1 0 0 m程度であるので、 分解能は十分にある。 従って、 D NAマイ クロアレイ基板の蛍光の数や蛍光発生個所を、 直ちに判別することができる。 そ して、制御系 5 0のパーソナルコンピュータ 5 1を使用して、画像の記録ゃデー タ処理を敏速にラうことが'できる。
また、 上記 D NAマイクロアレイ基板を、 図 1 4に示す本発明の共焦点顕微鏡 9を用いて観察すれば、 光源が光強度変調されており、 D NAマイクロアレイ基 板から蛍光を周波数軸で高感度で測定できる。
次に、 選択的に標識となる複数の蛍光波長を有する蛍光物質が予め付与されて いる場合の D NAマイクロアレイ基板を、 図 1 1に示す本発明の共焦点顕微鏡 5 を用いて観察する測定方法について説明する。 図 1 6に示す本発明の共焦点顕微 鏡 9 Bを用いて観察すれば、 光源が多波長で、各波長が光強度変調されており、 D N Aマイクロアレイ基板からの多波長の蛍光を周波数軸で高感度で測定するこ とができる。
上記した共焦点顕微鏡を用いたマイクロアレイ基板の測定方法によれば、 マイ クロアレイ基板上にマトリクス式液晶素子の画素数に相当する多重の焦点が生じ
、 その反射光が分離光学系を通って共焦点検出光学系へ入射し、 マトリクス式液 晶素子を通って画素数に相当する多重の焦点として形成される。 従って、本発明 の共焦点顕微鏡によれば、 マトリクス式液晶素子の画素数に対応する被観察物を 一度に観察することができる。 また、 一波長に限らず多波長の光源を用いること ができるので、 D NAマイクロアレイ基板上からの多波長の蛍光を短時間に、 精 度よく測定することができる。 これにより、 D NAマイクロアレイ基板上で励起 された蛍光の鮮明な全体像が、 D NAマイクロアレイ基板の機械的な走查なしに 、 すなわちリアルタイムで観察できる。
次に、共焦点顕微鏡を用いた偏光の測定方法の実施の形態を説明する。 偏光は 被観察物 2の反射光または蛍光からの偏光であり、例えば、 図 1 7に示す本発明 の共焦点顕微鏡 9 Cを用いて、 上記 D N Aマイクロアレイ基板による蛍光からの 偏光を観察する場合を例にとつて説明する。
先ず、 D NAマイクロアレイ基板をステージ 3に載置して、 照明光源 1 1を点 灯する。 次に、 照明光源 1 1の焦点位置と、 D NAマイクロアレイ基板の検出位 置が重なるように、観察する D N Aマイクロアレイ基板の Z方向位置を X Y Zス テ一ジ 3 a及び 0ステージ 3 bを用いて調節する。
D NAマイクロアレイ基板への入射光は、 マトリクス式液晶素子 2 2によって 、 隣接する画素を透過した入射光の偏光方向を互いに変化させるように第一の液 晶制御部 5 2により制御される。 この際、 各画素を透過する光の偏光方向を画素 毎に独立して制御することができる。 この偏光を 1 8 0度回転させると、 偏光子 2 5を透過する光の量が変化し、被観察物からの偏光の変化を観察することがで きる。
このようにして、 D NAマイクロアレイ基板、 生物試料、糖などにおける蛍光 や反射光からの偏光を撮像素子 3 3として、 例えば C C Dカメラを使用すること で検出できる。 また、本発明の共焦点顕微鏡 9 Bを用いて観察すれば、光源が多 波長で各波長が光強度変調されており、 D NAマイクロアレイ基板からの多波長 の蛍光の偏光を周波数軸で高感度で測定することができる。
ここで、 マトリクス式液晶素子 2 2 , 3 9の画素の大きさは、 1 0〃 m〜 2 0 mであり、例えば D NAマイクロアレイ基板で発生する一つの蛍光の大きさは 直径が 1 0 0〃m程度であるので、 分解能は十分にある。 従って、 D NAマイク ロアレイ基板の蛍光の偏光を直ちに測定することができる。 この際、制御系 5 0 のパーソナルコンピュータ 5 1を使用して、画像の記録やデータ処理を敏速に行 うことができる。 本発明の共焦点顕微鏡を用いた反射光や蛍光の偏光の測定方法によれば、 マイ クロアレイ基板上にマトリクス式液晶素子の画素数に相当する多重の焦点が生じ
、 その反射光が、 分離光学系を通って共焦点検出光学系へ入射し、 マトリクス式 液晶素子を通って画素数に相当する多重の焦点として形成される。 従って、本発 明の共焦点顕微鏡によれば、 マトリクス式液晶素子の画素数に対応する被観察物 からの偏光を一度に観察することができる。 また、一波長に限らず多波長の光源 を用いることができるので、被観察物からの多波長の反射光または蛍光からの偏 光を短時間に精度よく測定することができる。
本発明は、上記実施の形態に限定されることなく、 特許請求の範囲に記載した 発明の範囲内で種々の変形が可能であり、 それらも本発明の範囲内に含まれるこ とはいうまでもない。 上述した実施形態においては、 検出光学系に撮像素子を用 いたが、撮像素子位置で目視の観察や写真撮影なども行うことができるように、 検出系は必要に応じて複数の検出系とすることも可能である。 また、 多波長とす る入射光学系及び検出光学系の構成や光強度変調素子などは、 被観察物に応じて 最適な設計や使用部品を選定できることは勿論である。

Claims

請 求 の 範 囲
1 . 照明光源から偏光を、 ビームスプリツタ一, マイクロレンズアレイを 上部に配置したマトリクス式液晶素子及び対物レンズを介して被観察物へ入射す る人射光学系と、
被観察物からの反射光または堂光を、上記ビームスプリッ夕一とレンズを介し て検出する撮像素子を含む検出光学系と、
上記マトリクス式液晶素子の各画素を制御する液晶制御部を含む制御系を含む 制御系と、 を備えた共焦点顕微鏡であって、
上記マイクロレンズァレイを透過したマイク口レンズ毎の光を、上記マトリク ス式液晶素子の各画素每に透過させ、 上記対物レンズにより上記被観察物に複数 の焦点を結ばせると共に、
上記マトリクス式液晶素子の各画素を透過する光の偏光方向を上記液晶制御部 を用いて制御し、 上記液晶制御部が、 マトリクス式液晶素子の各画素を透過する 光の偏光方向を互いに直交するように制御することを特徴とする、液晶を用いた 共焦点顕微鏡。
2 . 前記マトリクス式液晶素子の下部に偏光子を配置し、該偏光子を透 過した光の偏光が、 前記マトリクス式液晶の各画素で制御されることを特徴とす る、請求項 1に記載の液晶を用いた共焦点顕微鏡。
3 . 照明光源からの偏光を、 ビームスプリツ夕一, レンズ, 第一のマイ クロレンズアレイを上部に配置した第一のマトリクス式液晶素子を介して被観察 物へ入射する入射光学系と、
被観察物からの反射光または蛍光を、 ビームスプリツ夕一, レンズ, 第二のマ イク口レンズアレイを上部に配置した第二のマトリクス式液晶素子, 集光レンズ を介して検出する撮像素子を含む検出光学系と、
上記第一及び第二のマトリクス式液晶素子の各画素を透過する光の偏光方向を 制御する第一及び第二の液晶制御部とを含む制御系と、 を備えた共焦点顕微鏡で あゥてヽ
上記第一のマイクロレンズァレイを透過したマイクロレンズ毎の光を、 上記第 一のマトリクス式液晶素子の各画素毎に透過させ、上記被観察物に複数の焦点を 結ばせ、
さらに、上記第二のマイクロレンズアレイを透過したマイクロレンズアレイ每 の上記反射光または蛍光を、 上記第二のマトリクス式液晶素子の画素毎に透過さ せ、上記撮像素子に複数の焦点を結ばせると共に、
上記第一及び第二のマトリクス式液晶素子の各画素を透過する光の偏光方向を 、上記第一及び第二の液晶制御部を用いて制御することを特徴とする、液晶を用 いた共焦点顕微鏡。
4 . 前記入射光学系の第一の液晶制御部が、 第一のマトリクス式液晶素 子の各画素を透過する光の偏光方向を、互いに直交するように制御することを特 徴とする、請求項 3に記載の液晶を用いた共焦点顕微鏡。
5 . 前記検出光学系の第二の液晶制御部が、 第二のマトリクス式液晶素 子の各画素を透過する光の偏光方向を、互いに直交するように制御することを特 徴とする、請求項 3に記載の液晶を用いた共焦点顕微鏡。
6 . 前記第一のマトリクス式液晶素子の下部に偏光子を配置し、 該偏光 子を透過した光の偏光方向が、前記第一のマトリクス式液晶の各画素で制御され ることを特徴とする、請求項 3に記載の液晶を用いた共焦点顕微鏡。
7 . 照明光源から光強度変調された偏光を、 ビ一ムスプリッター, マイ クロレンズアレイを上部に配置したマトリクス式液晶素子及び対物レンズを介し て被観察物へ入射する入射光学系と、
被観察物からの反射光または蛍光を、上記ビームスプリッターとレンズを介し て検出する撮像素子を含む検出光学系と、
上記マトリクス式液晶素子の各画素を制御する液晶制御部と上記照明光源の光 強度変調制御部とを含む制御系と、 を備えた共焦点顕微鏡であつて、
上記マイクロレンズァレイを透過したマイクロレンズ每の光を、上記マトリク ス式液晶素子の各画素毎に透過させ、上記対物レンズにより上記被観察物に複数 の焦点を結ばせると共に、
上記マトリクス式液晶素子の各画素を透過する光の偏光方向を上記液晶制御部 を用いて互いに直交するように制御し、
上記被観察物からの反射光または蛍光の光強度変調信号を周波数信号に変換す ることにより検出することを特徴とする、 液晶を用いた共焦点顕微鏡。
8 . 前記マトリクス式液晶素子の下部に偏光子を配置し、該偏光子を透 過した光の偏光が、 前記マトリクス式液晶の各画素で制御されることを特徴とす る、 請求項 7に記載の液晶を用いた共焦点顕微鏡。
9 . 前記照明光源が一波長または多波長であり、前記照明光源の光強度 変調がマトリクス式液晶素子、 音響光学素子、 デジタル ' ミラー 'デバイスのい づれかの素子を用いて行われることを特徴とする、 請求項 7に記載の液晶を用い た共焦点顕微鏡。
1 0 . 前記照明光源の一波長あたりの光強度変調が各画素毎に複数の変 調周波数で印加されることを特徴とする、請求項 7または 9に記載の液晶を用い た共焦点顕微鏡。
1 1 . 前記被観察物からの反射光または蛍光の光強度変調信号から周波 数信号への変換が、 高速フーリエ変換で演算処理されることを特徴とする、請求 項 7に記載の液晶を用いた共焦点顕微鏡。
1 1 . 照明光源から光強度変調された偏光を、 ビ一ムスプリッター, レ ンズ, 第一のマイクロレンズァレイを上部に配置した第一のマトリクス式液晶素 子を介して被観察物へ入射する入射光学系と、 被観察物からの反射光または蛍光を、 ビームスプリツ夕一, レンズ, 第二のマ イクロレンズァレイを上部に配置した第二のマトリクス式液晶素子, 集光レンズ を介して検出する撮像素子を含む検出光学系と、
上記第一及び第二のマトリクス式液晶素子の各画素を透過する光の偏光方向を 制御する第一及び第二の液晶制御部と上記照明光源の光強度変調制御部とを含む 制御系と、 を備えた共焦点顕微鏡であって、
上記第一のマイクロレンズァレイを透過したマイク口レンズ毎の光を、上記第 —のマトリクス式液晶素子の各画素毎に透過させ、上記被観察物に複数の焦点を 結ばせ、
さらに、上記第二のマイクロレンズアレイを透過したマイクロレンズアレイ每 の上記反射光または蛍光を、 上記第二のマトリクス式液晶素子の画素毎に透過さ せ、上記撮像素子に複数の焦点を結ばせると共に、
上記第一及び第二のマトリクス式液晶素子の各画素を透過する光の偏光方向を 、上記第一及び第二の液晶制御部を用いて制御し、
上記被観察物からの反射光または蛍光の光強度変調信号を周波数信号に変換す ることにより検出することを特徴とする、液晶を用いた共焦点顕微鏡。
1 3 . 前記入射光学系の第一の液晶制御部が、前記第一のマトリクス式 液晶素子の各画素を透過する光の偏光方向を、互いに直交するように制御するこ とを特徴とする、請求項 1 2に記載の液晶を用いた共焦点顕微鏡。
1 4 . 前記検出光学系の第二の液晶制御部が、前記第二のマトリクス式 液晶素子の各画素を透過する光の偏光方向を、互いに直交するように制御するこ とを特徴とする、請求項 1 2に記載の液晶を用いた共焦点顕微鏡。
1 5 . 前記第一のマトリクス式液晶素子の下部に偏光子を配置し、 該偏 光子を透過した光の偏光が、前記マトリクス式液晶の各画素で制御されることを 特徴とする、 請求項 1 2に記載の液晶を用いた共焦点顕微鏡。
1 6 . 前記照明光源が一波長または多波長であり、前記照明光源の光強 度変調がマトリクス式液晶素子、音響光学素子、 デジタル ' ミラー 'デバイスの 何れかを用いて行われることを特徴とする、請求項 1 2に記載の液晶を用いた共
1 7 . 前記照明光源の一波長あたりの光強度変調が各画素毎に複数の変 調周波数で印加されることを特徴とする、請求項 1 2または 1 6に記載の液晶を 用いた共焦点顕微鏡。
1 8 . 前記被観察物からの反射光または蛍光の光強度変調信号から周波 数信号への変換が、 高速フーリエ変換で演算処理されることを特徴とする、請求 項 1 1に記載の液晶を用いた共焦点顕微鏡。
1 9 . 選択的に標識となる蛍光物質が予め付与されているマイクロアレ ィ基板の蛍光測定において、
請求項 1乃至 1 8の何れかに記載の液晶を用いた共焦点顕微鏡を使用して、 上 記蛍光物質からの蛍光を観察することを特徴とする、 液晶を用いた共焦点顕微鏡 によるマイクロアレイ基板からの蛍光測定方法。
2 0 . 前記マイクロアレイ基板が、微量の D N Aまたは生体物質を含ん でいることを特徴とする、請求項 1 9に記載の液晶を用いた共焦点顕微鏡による 基板の蛍光測定方法。
2 1 . 前記マイクロアレイ基板が、 D N Aチップであることを特徴とす る、請求項 1 9または 2 0に記載の液晶を用いた共焦点顕微鏡によるマイクロア レイ基板の堂光測定方法。
2 2 . 被観察物からの反射光または蛍光からの偏光測定において、請求 項 1乃至 1 8の何れかに記載の液晶を用いた共焦点顕微鏡を使用して、上記被観 察物からの偏光を測定することを特徴とする、 上記共焦点顕微鏡による偏光測定 方法。
2 3 . 前記液晶を用いた共焦点顕微鏡の液晶マトリクスにおいて、前記 偏光を 1 8 0度変化させることにより、 前記被観察物からの偏光測定を行うこと を特徴とする、請求項 2 2に記載の液晶を用いた共焦点顕微鏡による偏光測定方 法。
PCT/JP2003/011935 2002-09-30 2003-09-18 共焦点顕微鏡、共焦点顕微鏡を用いた蛍光測定方法及び偏光測定方法 WO2004036284A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004544910A JPWO2004036284A1 (ja) 2002-09-30 2003-09-18 共焦点顕微鏡、共焦点顕微鏡を用いた蛍光測定方法及び偏光測定方法
EP03808886A EP1548481A4 (en) 2002-09-30 2003-09-18 CONFOCAL MICROSCOPE, FLUORESCENCE MEASUREMENT METHOD, AND POLARIZED LIGHT MEASURING METHOD USING A CONFOCAL MICROSCOPE
US10/529,395 US20060012872A1 (en) 2002-09-30 2003-09-18 Confocal microscope, fluorescence measuring method and polarized light measuring method using cofocal microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002287422 2002-09-30
JP2002-287422 2002-09-30

Publications (1)

Publication Number Publication Date
WO2004036284A1 true WO2004036284A1 (ja) 2004-04-29

Family

ID=32104948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011935 WO2004036284A1 (ja) 2002-09-30 2003-09-18 共焦点顕微鏡、共焦点顕微鏡を用いた蛍光測定方法及び偏光測定方法

Country Status (6)

Country Link
US (1) US20060012872A1 (ja)
EP (1) EP1548481A4 (ja)
JP (1) JPWO2004036284A1 (ja)
KR (1) KR100721414B1 (ja)
CN (2) CN1991335A (ja)
WO (1) WO2004036284A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086095A (ja) * 2005-09-16 2007-04-05 Toshiba Corp 表面検査装置
US7724363B2 (en) * 2005-01-06 2010-05-25 Leica Microsystems Cms Gmbh Device for multifocal confocal microscopic determination of spatial distribution and for multifocal fluctuation analysis of fluorescent molecules and structures with flexible spectral detection
JP2011511966A (ja) * 2008-02-13 2011-04-14 カール ツァイス マイクロイメージング ゲーエムベーハー 試料の構造を空間的に高分解能で結像するための装置および方法
JP2013515266A (ja) * 2009-12-21 2013-05-02 テルモ株式会社 目標の癌組織を視覚化する励起/検出/投射システム
JP2015513671A (ja) * 2012-02-23 2015-05-14 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ 多焦点構造化照射顕微鏡検査システムおよび方法
JP2015141038A (ja) * 2014-01-27 2015-08-03 富士通株式会社 樹脂硬化状態モニタリング装置及び樹脂硬化状態モニタリング方法
CN105319195A (zh) * 2015-11-30 2016-02-10 哈尔滨工业大学 一种超分辨结构探测阵列共焦荧光成像装置及其成像方法
KR101607404B1 (ko) * 2014-11-12 2016-03-30 한양대학교 산학협력단 현미경용 다중화 광원 장치
JP2019508691A (ja) * 2016-02-26 2019-03-28 シングル テクノロジーズ アクティエボラーグ 高スループットの撮像のための方法及びデバイス
JPWO2020183601A1 (ja) * 2019-03-12 2020-09-17
JP2021530714A (ja) * 2018-07-24 2021-11-11 ケーエルエー コーポレイション クロマティック共焦点エリアセンサ
JP2022065600A (ja) * 2020-10-15 2022-04-27 采▲ぎょく▼科技股▲ふん▼有限公司 バイオチップ、バイオ検知システム、およびバイオ検知方法
JP7379610B2 (ja) 2022-03-17 2023-11-14 采▲ぎょく▼科技股▲ふん▼有限公司 生体検出装置、生体検出システム、および生体検出方法

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235420A (ja) * 2005-02-28 2006-09-07 Yokogawa Electric Corp 共焦点顕微鏡
KR20080075123A (ko) * 2005-11-30 2008-08-14 가부시키가이샤 니콘 관찰장치
US7620309B2 (en) 2006-04-04 2009-11-17 Adobe Systems, Incorporated Plenoptic camera
DE102006023887B3 (de) * 2006-05-16 2007-08-23 Universität Stuttgart Anordnung und Verfahren zur konfokalen Durchlicht-Mikroskopie, insbesondere auch zur Vermessung von bewegten Phasenobjekten
WO2009112594A2 (en) * 2008-03-14 2009-09-17 Clondiag Gmbh Assays
KR100848033B1 (ko) * 2006-12-05 2008-07-24 한국전자통신연구원 편광판과 고속 푸리에 변환을 이용한 나노선 감지용 광학현미경 시스템
US7872796B2 (en) * 2007-01-25 2011-01-18 Adobe Systems Incorporated Light field microscope with lenslet array
DE102007028195B4 (de) * 2007-05-30 2014-04-03 Vistec Semiconductor Systems Gmbh Element zur Homogenisierung der Beleuchtung bei gleichzeitiger Einstellung des Polarisationsgrades
US8290358B1 (en) 2007-06-25 2012-10-16 Adobe Systems Incorporated Methods and apparatus for light-field imaging
WO2009001390A1 (en) * 2007-06-28 2008-12-31 Gian Luca Ferri Adjustable multi-band excitation and visualization / imaging system for simultaneous viewing multiple fluorescence
WO2009020977A1 (en) 2007-08-06 2009-02-12 Adobe Systems Incorporated Method and apparatus for radiance capture by multiplexing in the frequency domain
US7956924B2 (en) 2007-10-18 2011-06-07 Adobe Systems Incorporated Fast computational camera based on two arrays of lenses
US7962033B2 (en) 2008-01-23 2011-06-14 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
US8189065B2 (en) 2008-01-23 2012-05-29 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
US8155456B2 (en) 2008-04-29 2012-04-10 Adobe Systems Incorporated Method and apparatus for block-based compression of light-field images
KR100980306B1 (ko) 2008-05-14 2010-09-06 한국과학기술원 하이컨텐트 스크리닝을 위한 공초점 형광 현미경
US8244058B1 (en) 2008-05-30 2012-08-14 Adobe Systems Incorporated Method and apparatus for managing artifacts in frequency domain processing of light-field images
EP2163885A1 (en) 2008-06-24 2010-03-17 Koninklijke Philips Electronics N.V. Microarray characterization system and method
EP2291643B1 (en) 2008-06-24 2016-11-23 Koninklijke Philips N.V. Microarray characterization system and method
DE102008044522A1 (de) * 2008-09-12 2010-03-18 Degudent Gmbh Verfahren und Vorrichtung zur Erfassung von Konturdaten und/oder optischen Eigenschaften eines dreidimensionalen semitransparenten Objekts
GB0817991D0 (en) * 2008-10-02 2008-11-05 Enigma Diagnostics Ltd Fluorescence based detection methods and apparatus
EP3370060B1 (en) 2008-10-21 2023-06-07 ChemoMetec A/S Apparatus and method for illuminating a sample
US7949252B1 (en) 2008-12-11 2011-05-24 Adobe Systems Incorporated Plenoptic camera with large depth of field
US8315476B1 (en) 2009-01-20 2012-11-20 Adobe Systems Incorporated Super-resolution with the focused plenoptic camera
US8189089B1 (en) 2009-01-20 2012-05-29 Adobe Systems Incorporated Methods and apparatus for reducing plenoptic camera artifacts
US8228417B1 (en) 2009-07-15 2012-07-24 Adobe Systems Incorporated Focused plenoptic camera employing different apertures or filtering at different microlenses
US8345144B1 (en) 2009-07-15 2013-01-01 Adobe Systems Incorporated Methods and apparatus for rich image capture with focused plenoptic cameras
DE102009037841B4 (de) * 2009-08-18 2020-01-23 Carl Zeiss Meditec Ag Optisches System mit Wellenfrontanalysesystem und Baugruppe mit Wellenfrontanalysesystem für ein Mikroskop mit Mikroskopchassis
WO2011023593A1 (en) * 2009-08-24 2011-03-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Method of and apparatus for imaging a cellular sample
US20130126756A1 (en) * 2010-01-22 2013-05-23 Cornell University Fluorescence imaging apparatus and method
US8817015B2 (en) 2010-03-03 2014-08-26 Adobe Systems Incorporated Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data
US8665341B2 (en) 2010-08-27 2014-03-04 Adobe Systems Incorporated Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data
US8749694B2 (en) 2010-08-27 2014-06-10 Adobe Systems Incorporated Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing
US8724000B2 (en) 2010-08-27 2014-05-13 Adobe Systems Incorporated Methods and apparatus for super-resolution in integral photography
US8803918B2 (en) 2010-08-27 2014-08-12 Adobe Systems Incorporated Methods and apparatus for calibrating focused plenoptic camera data
US9197798B2 (en) 2011-03-25 2015-11-24 Adobe Systems Incorporated Thin plenoptic cameras using microspheres
JP2013074400A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 固体撮像装置
TWI467155B (zh) 2011-12-14 2015-01-01 Ind Tech Res Inst 調整針孔位置與大小之光學裝置及其方法
JP6294823B2 (ja) 2012-07-17 2018-03-14 ユニバーサル・バイオ・リサーチ株式会社 反応容器用光測定装置およびその方法
JP6233784B2 (ja) * 2013-02-28 2017-11-22 パナソニックIpマネジメント株式会社 共焦点顕微鏡
JP5966982B2 (ja) * 2013-03-15 2016-08-10 オムロン株式会社 共焦点計測装置
US9494777B2 (en) * 2013-08-22 2016-11-15 The Board Of Trustees Of The Leland Stanford Junio Multi-foci laser scanning microscope and use of same for analyzing samples
CN103439781B (zh) * 2013-09-06 2015-04-29 成都西图科技有限公司 偏光显微图像自动采集分析装置
US9538075B2 (en) 2013-12-30 2017-01-03 Indiana University Research And Technology Corporation Frequency domain processing techniques for plenoptic images
WO2015164844A1 (en) * 2014-04-24 2015-10-29 Vutara, Inc. Super resolution microscopy
CN105092544A (zh) * 2014-05-12 2015-11-25 绍兴安尼特微电子科技有限公司 一种荧光定量pcr检测仪光学激发和检测系统
CN105092543A (zh) * 2014-05-12 2015-11-25 绍兴安尼特微电子科技有限公司 一种便携式荧光定量pcr检测仪
IL234766A (en) * 2014-09-21 2015-09-24 Visionsense Ltd Fluorescent Imaging System
CN104296687A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法
JP6479041B2 (ja) * 2014-12-11 2019-03-06 オリンパス株式会社 観察システム、光学部品、及び観察方法
JP6410618B2 (ja) * 2015-01-19 2018-10-24 株式会社ニューフレアテクノロジー 欠陥検査装置
WO2016125281A1 (ja) * 2015-02-05 2016-08-11 株式会社ニコン 構造化照明顕微鏡、観察方法、及び制御プログラム
FR3034196B1 (fr) * 2015-03-24 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'analyse de particules
EP3278166A2 (en) 2015-03-31 2018-02-07 Samantree Medical SA Systems and methods for in-operating-theatre imaging of fresh tissue resected during surgery for pathology assessment
US10989661B2 (en) * 2015-05-01 2021-04-27 The Board Of Regents Of The University Of Texas System Uniform and scalable light-sheets generated by extended focusing
KR101735208B1 (ko) * 2015-11-16 2017-05-12 한양대학교 산학협력단 현미경용 다중화 광원 장치
EP3182095B1 (en) 2015-12-18 2019-10-09 STMicroelectronics (Research & Development) Limited Apparatus for use in luminescence applications
DE102016102286A1 (de) * 2016-02-10 2017-08-10 Carl Zeiss Microscopy Gmbh Vorrichtung und Verfahren zur Multispot-Scanning-Mikroskopie
US10509215B2 (en) * 2016-03-14 2019-12-17 Olympus Corporation Light-field microscope
US10876970B2 (en) 2016-04-12 2020-12-29 The Board Of Regents Of The University Of Texas System Light-sheet microscope with parallelized 3D image acquisition
DE102016108384B3 (de) * 2016-05-04 2017-11-09 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zur lichtblattartigen Beleuchtung einer Probe
CN107845584B (zh) 2016-09-18 2020-10-30 中芯国际集成电路制造(上海)有限公司 用于检测基板表面缺陷的装置、系统和方法
WO2018061901A1 (ja) * 2016-09-30 2018-04-05 オリンパス株式会社 観察装置
KR101893433B1 (ko) * 2016-11-30 2018-10-04 단국대학교 산학협력단 누화 현상이 방지되는 3차원 영상 획득장치
CN106980175B (zh) * 2017-05-10 2019-05-14 暨南大学 基于环形离轴照明焦面共轭的非荧光成像光切片方法和装置
JP2019066706A (ja) * 2017-10-02 2019-04-25 ソニー株式会社 蛍光顕微鏡装置及び蛍光顕微鏡システム
US10539776B2 (en) 2017-10-31 2020-01-21 Samantree Medical Sa Imaging systems with micro optical element arrays and methods of specimen imaging
US10928621B2 (en) 2017-10-31 2021-02-23 Samantree Medical Sa Sample dishes for use in microscopy and methods of their use
US11747603B2 (en) 2017-10-31 2023-09-05 Samantree Medical Sa Imaging systems with micro optical element arrays and methods of specimen imaging
CN108152941B (zh) * 2017-11-20 2019-11-12 北京航空航天大学 基于微纳米透镜阵列的高速光学超分辨率成像系统和方法
CN115165758A (zh) * 2018-07-06 2022-10-11 深圳中科飞测科技股份有限公司 一种检测设备及方法
JP7380569B2 (ja) 2018-08-09 2023-11-15 ソニーグループ株式会社 光学顕微鏡装置及び光学顕微鏡システム
US10634890B1 (en) 2018-10-26 2020-04-28 General Electric Company Miniaturized microscope for phase contrast and multicolor fluorescence imaging
CN111435192B (zh) * 2019-01-15 2021-11-23 卡尔蔡司显微镜有限责任公司 利用荧光显微镜生成荧光照片的方法
KR102235642B1 (ko) * 2019-05-17 2021-04-02 서울대학교산학협력단 공간 광 변조기를 이용한 광학계 및 이를 이용한 물성 측정 방법
DE102019129932B4 (de) * 2019-11-06 2023-12-21 Technische Universität Braunschweig Optische Detektionseinrichtung und Verfahren zum Betreiben einer optischen Detektionseinrichtung
KR102270190B1 (ko) * 2020-04-03 2021-06-28 서울대학교산학협력단 공간 광 변조기를 이용한 각도 분해 분광반사계
KR102436051B1 (ko) * 2020-11-08 2022-08-24 단국대학교 산학협력단 다방향 광조사를 이용한 라이트 시트 형광 현미경 및 이의 운용방법
CN112630203B (zh) * 2020-12-15 2022-11-22 雷振东 一种高次谐波共聚焦探测系统
US11808934B2 (en) * 2021-04-20 2023-11-07 Eagle Technology, Llc Planar optical telescope and related methods
CN113218926B (zh) * 2021-05-17 2023-06-20 北京京东方技术开发有限公司 一种光调制组件、荧光显微镜及芯片检测系统及方法
CN115166958A (zh) * 2022-07-15 2022-10-11 深圳迈塔兰斯科技有限公司 小型化层析成像系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216065A (ja) * 1988-07-04 1990-01-19 Fuji Photo Film Co Ltd 液晶光シヤツタ
US5248876A (en) * 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
JPH07181023A (ja) * 1993-09-30 1995-07-18 Komatsu Ltd 共焦点光学装置
JPH10318733A (ja) * 1997-05-20 1998-12-04 Takaoka Electric Mfg Co Ltd 2次元配列型共焦点光学装置
JP2001108684A (ja) * 1999-10-05 2001-04-20 Hitachi Ltd Dna検査方法及びdna検査装置
JP2001252986A (ja) * 2000-03-09 2001-09-18 Japan Science & Technology Corp 光造形装置及び光造形方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012462B4 (de) * 2000-03-15 2004-07-08 Leica Microsystems Heidelberg Gmbh Beleuchtungsvorrichtung für die konfokale Fluoreszenz-Rastermikroskopie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216065A (ja) * 1988-07-04 1990-01-19 Fuji Photo Film Co Ltd 液晶光シヤツタ
US5248876A (en) * 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
JPH07181023A (ja) * 1993-09-30 1995-07-18 Komatsu Ltd 共焦点光学装置
JPH10318733A (ja) * 1997-05-20 1998-12-04 Takaoka Electric Mfg Co Ltd 2次元配列型共焦点光学装置
JP2001108684A (ja) * 1999-10-05 2001-04-20 Hitachi Ltd Dna検査方法及びdna検査装置
JP2001252986A (ja) * 2000-03-09 2001-09-18 Japan Science & Technology Corp 光造形装置及び光造形方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724363B2 (en) * 2005-01-06 2010-05-25 Leica Microsystems Cms Gmbh Device for multifocal confocal microscopic determination of spatial distribution and for multifocal fluctuation analysis of fluorescent molecules and structures with flexible spectral detection
JP2007086095A (ja) * 2005-09-16 2007-04-05 Toshiba Corp 表面検査装置
JP2011511966A (ja) * 2008-02-13 2011-04-14 カール ツァイス マイクロイメージング ゲーエムベーハー 試料の構造を空間的に高分解能で結像するための装置および方法
JP2013515266A (ja) * 2009-12-21 2013-05-02 テルモ株式会社 目標の癌組織を視覚化する励起/検出/投射システム
US9743836B2 (en) 2009-12-21 2017-08-29 Terumo Kabushiki Kaisha Excitation, detection, and projection system for visualizing target cancer tissue
JP2015513671A (ja) * 2012-02-23 2015-05-14 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ 多焦点構造化照射顕微鏡検査システムおよび方法
JP2015141038A (ja) * 2014-01-27 2015-08-03 富士通株式会社 樹脂硬化状態モニタリング装置及び樹脂硬化状態モニタリング方法
KR101607404B1 (ko) * 2014-11-12 2016-03-30 한양대학교 산학협력단 현미경용 다중화 광원 장치
CN105319195A (zh) * 2015-11-30 2016-02-10 哈尔滨工业大学 一种超分辨结构探测阵列共焦荧光成像装置及其成像方法
JP2019508691A (ja) * 2016-02-26 2019-03-28 シングル テクノロジーズ アクティエボラーグ 高スループットの撮像のための方法及びデバイス
JP2021530714A (ja) * 2018-07-24 2021-11-11 ケーエルエー コーポレイション クロマティック共焦点エリアセンサ
JP7232895B2 (ja) 2018-07-24 2023-03-03 ケーエルエー コーポレイション クロマティック共焦点エリアセンサ
JPWO2020183601A1 (ja) * 2019-03-12 2020-09-17
TWI741515B (zh) * 2019-03-12 2021-10-01 日商日立全球先端科技股份有限公司 缺陷檢測裝置、缺陷檢測方法以及具備其之缺陷觀察裝置
JP7066914B2 (ja) 2019-03-12 2022-05-13 株式会社日立ハイテク 欠陥検出装置、欠陥検出方法並びにこれを備えた欠陥観察装置
WO2020183601A1 (ja) * 2019-03-12 2020-09-17 株式会社日立ハイテク 欠陥検出装置、欠陥検出方法並びにこれを備えた欠陥観察装置
US11982631B2 (en) 2019-03-12 2024-05-14 Hitachi High-Tech Corporation Defect detection device, defect detection method, and defect observation apparatus including defect detection device
JP2022065600A (ja) * 2020-10-15 2022-04-27 采▲ぎょく▼科技股▲ふん▼有限公司 バイオチップ、バイオ検知システム、およびバイオ検知方法
JP7216127B2 (ja) 2020-10-15 2023-01-31 采▲ぎょく▼科技股▲ふん▼有限公司 バイオチップ、バイオ検知システム、およびバイオ検知方法
JP7379610B2 (ja) 2022-03-17 2023-11-14 采▲ぎょく▼科技股▲ふん▼有限公司 生体検出装置、生体検出システム、および生体検出方法

Also Published As

Publication number Publication date
KR100721414B1 (ko) 2007-05-23
US20060012872A1 (en) 2006-01-19
KR20050059221A (ko) 2005-06-17
EP1548481A4 (en) 2006-11-22
EP1548481A1 (en) 2005-06-29
CN1692296A (zh) 2005-11-02
CN1991335A (zh) 2007-07-04
JPWO2004036284A1 (ja) 2006-02-16

Similar Documents

Publication Publication Date Title
WO2004036284A1 (ja) 共焦点顕微鏡、共焦点顕微鏡を用いた蛍光測定方法及び偏光測定方法
US9086536B2 (en) Talbot imaging devices and systems
JP6346615B2 (ja) 光学顕微鏡および顕微鏡観察方法
US8072680B2 (en) Confocal microscope apparatus
US7400446B2 (en) Confocal microscope
US20090032736A1 (en) Biochip reader and fluorometric imaging apparatus
EP1872167B1 (en) Multi-photon fluorescence microscope
JP4894161B2 (ja) 共焦点顕微鏡
JP4865399B2 (ja) 光を調節可能に変化させるための方法および装置
JP2002082287A (ja) 顕微鏡用物体の検査及び操作のための装置及び方法
JP2001108684A (ja) Dna検査方法及びdna検査装置
JP2006313356A5 (ja)
TWI452335B (zh) 應用共聚焦顯微鏡結構的被測物圖像獲取方法及系統
JP2009282112A (ja) 共焦点顕微鏡
JP2916321B2 (ja) 多層半導体基板等における内部欠陥の検出方法
EP2828700A1 (en) Multi-color confocal microscope and imaging methods
JP4885685B2 (ja) 光学装置および顕微鏡
JP2010266452A (ja) 走査型近接場光学顕微鏡
KR20060033830A (ko) 음향광학편향기와 선주사 카메라를 이용한 공초점 레이저선주사 현미경
US11156818B2 (en) Flexible light sheet generation by field synthesis
CN116953920A (zh) 一种激光扫描器及激光共聚焦显微镜
JP2009015218A (ja) 走査型共焦点顕微鏡
JP2001133219A (ja) レーザ顕微鏡
JP2002318187A (ja) 走査型近接場光学顕微鏡

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003808886

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004544910

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006012872

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529395

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038234122

Country of ref document: CN

Ref document number: 1020057005557

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057005557

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003808886

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10529395

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003808886

Country of ref document: EP