WO2004035472A1 - 高純度シリコンの製造方法及び装置 - Google Patents

高純度シリコンの製造方法及び装置 Download PDF

Info

Publication number
WO2004035472A1
WO2004035472A1 PCT/JP2003/011656 JP0311656W WO2004035472A1 WO 2004035472 A1 WO2004035472 A1 WO 2004035472A1 JP 0311656 W JP0311656 W JP 0311656W WO 2004035472 A1 WO2004035472 A1 WO 2004035472A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
reaction
gas
furnace
reactor
Prior art date
Application number
PCT/JP2003/011656
Other languages
English (en)
French (fr)
Inventor
Takayuki Shimamune
Tadashi Yoshikawa
Hiroshi Fukuoka
Nobuo Ishizawa
Original Assignee
Takayuki Shimamune
Tadashi Yoshikawa
Hiroshi Fukuoka
Nobuo Ishizawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002305110A external-priority patent/JP2004099421A/ja
Priority claimed from JP2002383648A external-priority patent/JP2004210594A/ja
Priority claimed from JP2003117612A external-priority patent/JP4462839B2/ja
Application filed by Takayuki Shimamune, Tadashi Yoshikawa, Hiroshi Fukuoka, Nobuo Ishizawa filed Critical Takayuki Shimamune
Priority to EP03808883A priority Critical patent/EP1550636A4/en
Priority to US10/527,801 priority patent/US7538044B2/en
Priority to AU2003264408A priority patent/AU2003264408A1/en
Publication of WO2004035472A1 publication Critical patent/WO2004035472A1/ja
Priority to US12/417,228 priority patent/US20090202415A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process

Definitions

  • the present invention relates to a method and an apparatus for producing high-purity silicon using silicon tetrachloride and sub-gas, and more particularly to a method for producing high-purity silicon preferably used for solar cells at a high refraction rate or impurities.
  • the present invention relates to a method and a method for minimizing ⁇ .
  • silicon was obtained by spraying silicon tetrachloride onto the solution surface, and the resulting salt fcffi was electrolyzed to extract the subgeneric genus, and the raw material was removed.
  • a method has been tested in which pulp is used as hydrogen chloride for tetrachloride pulp fiber, which has achieved its purpose in terms of the reuse of chlorinated lead, but the silicon produced is a mixture with lysate ⁇ . Silicon itself becomes fine particles Therefore, there is a problem that the quality of the generated silicon particles is increased, which makes it difficult to achieve high purity.
  • the present invention provides a method and an apparatus for crystalline silicon capable of improving the crystallinity of the obtained silicon. is there.
  • the present invention firstly provides a method of performing eye reaction between silicon tetrachloride and zinc in a reactor to view high-rise polycrystalline silicon.
  • This is a difficult method for crystalline silicon (hereinafter referred to as the first invention) characterized in that a silicon seed crystal is put in advance and silicon is deposited on a 13 ⁇ 4 crystal.
  • Silicon generated by an eye reaction between silicon tetrachloride and zinc can be generated on crystalline silicon according to its eight bits, thereby producing polycrystalline silicon for solar cells and the like with high efficiency as a bulk.
  • the yield of silicon Is very good.
  • the silicon produced is almost amorphous in the same process as before, but it is polycrystalline with good crystallinity and can be obtained as silicon with excellent stability and energy efficiency.
  • silicon tetrachloride and zinc are produced in a reaction melting furnace in which the inner wall temperature is equal to or higher than the melting point of silicon, and the gas phase reaction is performed in a reaction melting furnace.
  • a method for producing silicon hereinafter, referred to as a second invention characterized in that a silicon melt is immersed to obtain molten silicon.
  • the produced silicon can be converted from polycrystal to a single crystal having a good crystallinity, and thus the silicon can be extremely low.
  • Salt which is the reaction product, is used as a liquid as raw material by molten salt electrolysis.
  • the bone In addition to returning to zinc, the bone can be recycled as a material of silicon tetrachloride. With such a configuration, almost no matter is emitted.
  • the present invention thirdly provides a method for producing high-temperature polycrystalline silicon by subjecting silicon tetrachloride and zinc to an eye reaction in a reaction furnace, wherein the gas phase reaction has an internal temperature of 907 to 1410 ° C.
  • the gas phase reaction has an internal temperature of 907 to 1410 ° C.
  • the polycrystalline silicon method (hereinafter, referred to as a third invention) is characterized in that it is cooled to 1410 ° C. or lower and solidified or recrystallized in the container.
  • the reaction system can reduce the energy consumption required for silicon production such as T capability while maintaining high temperatures.
  • the silicon produced is almost amorphous in the same process as before, but is polycrystalline with good crystallinity, and has excellent properties and energy efficiency.
  • the present invention relates to the production of high-purity silicon, in which silicon tetrachloride gas and zinc gas are reacted in a zinc chloride atmosphere to produce silicon, and the silicon is placed in a silicon bath having a silicon melting temperature or higher. It is a method of high-purity silicon (hereinafter, referred to as a fourth invention) to lead and cool down.
  • parylene silicon which is particularly excellent in terms of energy and rm3 ⁇ 4 can be obtained.
  • silicon can be adhered without adhering to the inner wall of the reaction melting furnace. Therefore, the yield of silicon can be extremely improved because it can be efficiently formed as crystalline silicon bulk for solar cells and the like.
  • the silicon produced is almost amorphous in the same process as described above, but is polycrystalline with good crystallinity, and is excellent in stability and energy efficiency.
  • Zinc chloride which is a reaction product, can be used as an atmospheric gas, and hardly emits any substance.
  • the present invention relates to the production of high-grade silicon using silicon tetrachloride as a raw material.
  • The process of producing gas and dissolved MM ⁇ , 5) The process of heating and vaporizing the produced lead, and sending it to the reactor, and 6)
  • the present invention relates to a silicon reactor for obtaining solid or liquid silicon and gaseous lead by visually reacting silicon tetrachloride and zinc.
  • the reaction furnace has an inlet for the reaction gas and an outlet for the salt ffi-lead gas generated by the reaction in the reaction furnace, and further has a heat trap for collecting solid or liquid silicon generated by the reaction in the reaction furnace. It has a trap of conductive f raw material, and heats the trap more than the melting of silicon during or after supply of reactant gas, and sends the generated silicon as a liquid to the silicon storage part afterwards. (Hereinafter referred to as the sixth invention).
  • high agglomerate crystals can be obtained in aa of silicon using silicon tetrachloride, which is considered to be difficult to obtain because only fine needle-like fine crystals can be obtained.
  • silicon tetrachloride + zinc silicon + zinc chloride is also a very fast and one-sided reaction because only silicon comes out of the system in the gas phase reaction, so the equipment is extremely small, and Along with the effect that the reaction is fast and the fiber ability is extremely high, there is a great energy saving effect that the energy consumption is extremely small and the calculation is almost 1/10.
  • the present invention relates to a method for producing a solid or liquid silicon and agglomerated ffi-lead by reacting silicon tetrachloride and zinc with air, and forming a solid produced by the reaction in a reactor for performing the reaction.
  • a heat-resistant and conductive trap for collecting liquid silicon is installed, and during or after the supply of the reaction gas, the trap is heated to a temperature equal to or higher than the melting temperature of silicon to collect the produced silicon as a liquid.
  • a method for producing silicon (hereinafter referred to as a seventh invention) characterized by the following.
  • the present invention relates to a method of performing ⁇ ffiM ⁇ in silicon tetrachloride and zinc in a reaction furnace to reduce the amount of high-quality silicon, thereby reducing the reaction to a lower value than that of silicon and performing a silicon reaction during the reaction.
  • a method of high-purity silicon hereinafter referred to as an eighth invention in which the generated silicon is obtained in a lump or in a molten state without bringing the silicon into contact with the atmosphere.
  • the produced silicon since is lower than the melting point of silicon, the produced silicon does not solidify and does not substantially adhere to the inner wall of the reaction furnace. Since there is no contamination, high-purity silicon can be produced with high yield.
  • FIG. 1 is a flowchart illustrating the silicon manufacturing process of the first invention.
  • FIG. 2 is a flowchart illustrating the silicon manufacturing process of the second invention.
  • FIG. 3 is a flowchart illustrating the silicon process of the third invention.
  • FIG. 4 is a flowchart illustrating the silicon manufacturing process of the fourth invention.
  • FIG. 5 is a flowchart illustrating the silicon manufacturing process of the fifth invention.
  • FIG. 6 is a schematic longitudinal sectional view illustrating an embodiment of a reactor as the silicon production apparatus of the sixth invention.
  • FIG. 7 is a flowchart illustrating a silicon manufacturing process including the reaction furnace of FIG.
  • FIG. 8 is a schematic longitudinal sectional view illustrating another embodiment of the reactor as the silicon production apparatus of the sixth invention.
  • FIG. 9 is a schematic vertical sectional view illustrating still another embodiment of the reactor as the silicon observation apparatus of the sixth invention.
  • polycrystalline high-m silicon that is, high-parque silicon fiber
  • polycrystalline high-m silicon that is, high-parque silicon fiber
  • the use of a true-type reactor reduces the size of the reactor, reduces equipment costs and the number of personnel, and recovers the salt ⁇ bffi, which is a by-product of
  • cranes can be reused as a raw material for consolidating metallic silicon. Furthermore, by eliminating unnecessary substances from the system system basically, cost reduction and environmental And a manufacturing system that is both gentle and friendly.
  • the first invention has the above-described structure, and forms high-crystallinity polycrystalline silicon by forming silicon produced by the ⁇ !-Order reaction between silicon tetrachloride and zinc on seed crystal silicon according to the habit. Can be obtained.
  • part of the zinc chloride which is the product gas after the silicon reaction, is used as a circulating gas, which can be used for controlling the reaction rate. The excess is recovered by liquefaction and separated and recycled as raw material by orchid. This virtually eliminates emissions to the outside of the system, and makes it possible to obtain polycrystalline bulk silicon using 100% raw materials.
  • a reaction in a thin film formation method based on the ordinary CVD (Chemical Vapor Deposition) method, a reaction can be caused by the eye to generate a reactant on a substrate, thereby obtaining a thin film reactant.
  • the crystallinity of the reaction product is extremely poor. Even if it is formed as amorphous or crystalline, its crystallite size is at most 50 imm3 ⁇ 4 and it is extremely active and unstable. It is not possible to do so, and it is necessary to reprocess it to make bulk silicon.
  • the first invention aims to improve the process by using a reactor of an I-bed type, an externally heated rotary kiln type or a fixed-bed type to obtain bulk silicon.
  • a reactor of an I-bed type an externally heated rotary kiln type or a fixed-bed type to obtain bulk silicon.
  • the boiling point of zinc is 907 or more and the melting point of silicon is 1,410 or less
  • the reaction gas is silicon chloride, zinc, and zinc chloride.
  • a bulk crystal with high crystallinity can be obtained. The reason for this is not clear, but it shows that excellent crystallinity is obtained even in normal crystal growth; if there are certain species, crystals with good crystallinity or the same orientation can be selectively deposited.
  • Well known at high temperatures of 910 ° C or more, under high-temperature gas, the precipitation of crystals with good crystallinity occurs selectively, and the active fine particles with poor crystallographic state easily react again. It can be a pleasure to wake up and go back to salinization.
  • the silicon crystal with good crystallinity is considered as ⁇ "T by these sets ⁇ ".
  • the reaction should be 1,200 ° C or less.
  • silicon tetrachloride and zinc as reaction gases are supplied countercurrently or concurrently into the reaction furnace as gases.
  • both silicon tetrachloride and zinc are vapors and gases.
  • lead chloride which is a reaction product, also has a boiling point of 732 and is ⁇ ⁇ 1 "as a gas, but the silicon produced is a solid.
  • the produced silicon is the same as the so-called CVD product, and it is amorphous, or even if crystallized, its crystallite size is in the extremely active range of about 50 to 100 nm.
  • granular, sandy, or polycrystalline silicon which becomes crystalline, is pre-existing in the reactor and silicon is deposited on the surface.
  • a silicon crystal having good crystallinity can be formed, specifically, the seed crystal is transported to 910 to 1,200 ° C, preferably 950 to 1,200 ° C.
  • silicon tetrachloride and zinc gas are sprayed on the surface of the seed crystal in a co-current manner from below, in which case the reaction between silicon tetrachloride and zinc is extremely fast, so that highly crystalline silicon is obtained. In this case, it is necessary to optimize the reaction rate. Therefore, the reaction product is made to coexist with zinc chloride, and the pressure is controlled.
  • the reaction proceeds closer to ITT, that is, the production of silicon increases ftrt. Also, if the Mlt of ZnCl 2 in the reactor is increased in PT, the reaction slows down. Note that silicon is a solid here You can think. Also, by increasing the pressure, the target reaction load increases due to the tendency to simulate it, and when the pressure is reduced, the reaction avoidance becomes one. It is desirable to increase the pressure in the reactor from 1 to 5 ⁇ iffiS ⁇ . Also, the supply gas may be theoretically, but from the point of operability, unlike the case of obtaining bulk silicon, the amount of lead should be slightly larger than the theoretical here.
  • the supply gas and the ambient temperature may be a temperature at which the gas can stably exist, and is preferably 1,000C.
  • a high-grade silicon of a granular, sandy or sagittal single-crystal S crystal is preliminarily placed in a reactor under the above conditions as a hard crystal. By doing so, it becomes an ability to stack the silicon produced by the reaction on these crystals and to extract them as bulk crystals.
  • the reaction 3 3 ⁇ 4 can obtain a good crystal even at a considerably faster speed than the reaction 3 3 ⁇ 4 which produces a thin film.
  • the reaction gas and product gas are It is preferable to operate in a pressurized state instead of a reduced pressure after coexistence. Needless to say, these can be selected according to the desired crystal and the operation.
  • the reaction gas after the reaction in this way is a mixture of zinc chloride and zinc or / and silicon tetrachloride, but is taken out of the reaction furnace and is reduced to 732 ° C or less, which is the boiling point of lead chloride.
  • the temperature is lowered to 650 ° C, and the lead chloride is separated and recovered as a liquid.
  • Remaining silicon tetrachloride can be recycled as feed gas, zinc chloride can be sent to the equipment and separated into crane and zinc by ⁇ , zinc can be used for ⁇ U, and can be used for silicon tetrachloride i3 ⁇ 4i.
  • the electricity of the salt ffi-lead may be obtained after extracting the solid 3 ⁇ 4 ⁇ 3 ⁇ 4 3 ⁇ 4 But the zinc chloride taken out as a liquid is ⁇ ? It can be sent to If by the so-called molten salt method.
  • a gas is generated from the anode, and the gas is collected upward, sent to the silicon tetrachloride weaving device, and taken out through the zinc drain, which is a us product accumulated in the urn, and re-used.
  • a circulating gas and a gas of generated silicon (solid) are provided at the top of the foreground furnace to separate fine silicon rising with the circulating gas and return to the reactor, and these fine silicon crystallize to form a fluidized bed. Therefore, continuous conversion can be performed without adding a new seed crystal, and the generated granulated silicon may be discontinuously withdrawn from the reaction;
  • the gas / solid separation tank is not specified in terms of its structure, and its purpose can be sufficiently achieved by adding 1 to 5 times as much space as the reactor.
  • Second invention It is important for the material used in the reactor and the gas circulation system and the product extraction system to prevent contamination of the product silicon and withstand high-temperature corrosive gas. It is extremely difficult to use a reactor and / or a circulating gas system and a product extraction system in which the inner surface is coated with silicon in advance by the CVD method.
  • the process in obtaining high-purity silicon, that is, high-concentration silicon segregation in bulk, using the eye reaction between zinc tetrachloride and zinc, the process is simplified and the process is closed by recycling the raw materials.
  • the present invention provides a more economical and higher-key silicon crystal method by making it possible.
  • the molten silicon and salt iM lead were obtained, the molten silicon was liquefied, degassed in a refining furnace, and then transferred to a vessel such as Satoshi, where it was slowly cooled and crystallized.
  • a reaction melting furnace a swirling reaction melting furnace is inverted, and silicon tetrachloride and zinc are internally contained.
  • a gas phase reaction was performed in the furnace where the internal wall temperature was maintained at 1200 to 1600 ° C and the inner wall temperature was 14101: to 1600 to obtain molten silicon and tffi-lead, which were melted and homogenized in a furnace, and then the molten silicon was melted. Is transferred to a refining furnace to remove the gas in the molten silicon, and then transferred to a container such as TO for control and crystallization.
  • reaction gas and the reaction product are rotated in the rotary reaction melting furnace to homogenize the reaction, and the generated atomized liquid collides with the sulfur. , A droplet is formed, separated, and taken out of the system.
  • the atmosphere gas is converted to the reaction product salt “ ⁇ ⁇ ⁇ lead” to completely prevent ⁇ ⁇ as an impurity. To directly produce high-purity silicon ingots.
  • the reaction between silicon tetrachloride and zinc is carried out on a reaction melting furnace, and the temperature of the reaction melting furnace is 1200 to 1600 ° C., and it is necessary that the reaction melting furnace be able to perform the reaction.
  • the inner wall is set to a temperature higher than the melting point of silicon and from 1410 ° C to 1600 ° C, at which the inner wall is not eroded.
  • the furnace inner surface material must be rare with respect to the reaction gas. It is not particularly specified as a material, but it is particularly preferable to use a 5-mm glass lining which is extremely ⁇ !
  • the furnace temperature of the reaction melting furnace is usually operated at 1410 ° C or higher, which is the melting point of silicon.
  • the molten state is carried and it grows into droplets during the swirling reaction.
  • " ⁇ may crystallize and separate ft. ⁇ Melt in the re-melting furnace, and proceed to the next process as molten silicon.
  • the reaction gases are silicon tetrachloride and zinc gas.
  • the m3 ⁇ 4 sound! In 5 minutes, the pressure drops drastically due to the reaction that produces gas from 3 ⁇ to 2, so here we send these reactant gases into the atmosphere gas This prevents pressure fluctuations and adjusts reaction avoidance.
  • the pressure of the reaction part is not specified, and may be determined according to the reaction rate and the residence time. However, it is desirable that the pressure be substantially large considering the 3 ⁇ 4 ⁇ of the continuous reactant.
  • the ambient gas is desirably lead chloride, which is a reaction product, and the reaction is also controlled accordingly. Depending on the reaction speed conditions and the like, it is also possible to further reduce pressure changes during operation and the like by adding inert gas to the chlorine atmosphere gas.
  • the silicon and chlorine produced by the reaction here are transported to the remelting furnace below, where they are transported at a temperature higher than the melting point of silicon to make a complete melt, and then moved to the refining furnace. However, if the reaction is sufficiently high, it is possible to send directly to the fining furnace without necessarily passing through the furnace.
  • the lower molten silicon part is kept at 1410 ° C or more, which is the melting point of silicon, but the gas zone in which zinc chloride gas is stored is slightly lowered and the gas is released. The gas contained in the silicon liquid is degassed.
  • silicon tetrachloride and zinc as gases are supplied as gases to the furnace wall such that a swirling flow is generated in the reactor.
  • the reaction proceeds more quickly, and the atomized silicon, which is a reaction product, gathers at the center, grows into droplets by the collision of silicon, and moves downward due to gravity.
  • the supply gas is not particularly specified, but it is necessary that the inside of the furnace does not fall.
  • silicon chloride should be used in order to stabilize the gas state of the supply reaction gas. It is desirable that the temperature of zinc is 950 ° C or higher.
  • a mixed gas of zinc salt or zinc salt and argon gas which is an inert gas can be used as the atmosphere gas.
  • Zinc chloride is a reaction product in the present silicon production, does not become an element of impurities, and has almost no effect on the product silicon, and is used as an atmospheric gas.
  • the reaction control becomes T ability by placing salt bffi lead in the reaction field.
  • the reaction of this silicon formation is indicated by the above-mentioned anti-J3 ⁇ 43 ⁇ 4 :, it is possible to increase the amount of SiCl 4 or Zn, which is a raw material, so that the reaction proceeds toward the reaction side, that is, the formation of silicon increases. I do.
  • the reaction rate decreases.
  • silicon may be considered to be a melt or a solid and to go out of the system.
  • the pressure is increased, the reaction proceeds in a direction to alleviate the pressure, and the target reaction 3 ⁇ 4g increases.
  • the pressure is decreased, the reaction becomes more responsive.
  • the control of this pressure can be controlled by salt and lead.
  • the higher the reaction the higher the reactants. Considering these facts, in this process it is desirable that the separation is slightly higher than that of the main building, but it may be determined according to the operating conditions.
  • the silicon produced by the rotation of the atmosphere gas is a very small droplet in the form of an initial mist, which collides with each other in the gas flow, grows, and grows. At the same time as the droplets, they fall down and are led to the lower disintegration furnace or fining furnace.
  • the ⁇ of the salt gas bffi-lead which is the atmospheric gas, is similarly guided to the disintegration furnace or the refining furnace, and is removed from the reaction melting furnace to be carried into a constant gas atmosphere to continuously react. It will be a power to advance.
  • the silicon is heated in the disintegration furnace and completely melted, and sent to the refining furnace.
  • the operation of the reaction melting furnace is higher than the temperature of silicon! And the silicon is completely melted, it can be taken directly to the refining furnace.
  • it is desirable to put the gas into the furnace raise the temperature sufficiently, homogenize the melt, and send out the " ⁇ " of the gas which may be contained, and send it to the refining furnace.
  • Melting furnace part or separate Some ages need to be isolated by the solution part lube. In other words, it is possible to carry out the reaction in the reaction melting furnace completely continuously, but when the silicon extraction part is of a batch type, it must be isolated in that case.
  • the refining furnace has a gas reservoir and a drain in the structural part, and a liquid reservoir in the lower part. It is desirable that the brewery 15 can be agitated as needed.
  • a pump may be used to exhaust the gas part, but it is also possible to liquefy the lead chloride gas by setting i to be lower than the boiling point of lead outside the exhaust pipe. As a result, an extremely strong negative pressure is generated, so that a reactive gas such as salt ( ⁇ lead) contained in the molten silicon is generated ( ⁇ . Gas ⁇ ).
  • the crystallization conditions are not specified, but the worms are controlled from the bottom while holding the insect body, and gradually crystallized from the bottom to the top. By moving impurities in the body upward, it is desirable to further purify the obtained silicon crystal. This is equivalent to so-called zone melting. You can give close characteristics.Adjust the grain by adjusting it as needed.
  • the salt liquefied by step 7 can be stored as an atmosphere gas in the reaction melting furnace, depending on the requirements, but most of it is taken out of the system and sent to the equipment to convert it into zinc and zinc by orchid.
  • Zinc is reused as raw material ii3 ⁇ 4 gas, and can be used for silicon tetrachloride ® ⁇ .
  • lead chloride may be taken out once as a solid by controlling the salt "m3 ⁇ 4 lead", but zinc chloride taken out as a liquid is sent directly to the electrode and subjected to the so-called molten salt electrolysis method.
  • the salt solution is sent to a pot with a drain at the bottom provided with a drain for taking out zinc at the bottom, which is used as a lead reservoir, and the lead is separated from the anode.
  • the tetrachloride refining device collect it upwards and send it to the tetrachloride refining device to remove it through the zinc drain, which is the product that has accumulated in the pot, and recycle it. The fee will be charged.
  • the materials used in the reaction melting furnace, as well as the remelting furnace, fining furnace, and the associated gas circulation system and product extraction system prevent contamination of the product silicon and withstand high temperatures. Moreover, it is difficult to withstand high-temperature corrosive gas.
  • the gas contact part is made of glass, so that even if a partial reaction occurs, it does not become a substance. .
  • a material having no reactivity with the silicon melt for example, magnesium oxide or the like can be used.
  • the third invention is mainly for obtaining polycrystalline high silicon for a solar cell, that is, bulk high silicon by an eye reaction of silicon tetrachloride and zinc, and using silicon produced by the reaction in a minimum process.
  • the present invention relates to a method for obtaining polycrystalline silicon.
  • the supply of the reaction gas may be stopped or the inside of the reaction furnace may be straightened after depositing silicon in the reaction furnace.
  • the impurities dissolved in the silicon melt can be removed as a gas in the reaction furnace set to E. Further, by gradually cooling the melt into a container such as a workplace, it is possible to obtain a polycrystalline bulk crystal having an arbitrary size without taking it out to the outside.
  • silicon is produced by a reaction between silicon tetrachloride and zinc, and silicon and a lead salt are obtained as products.
  • the reaction is extremely fast, and (2) Depending on the reaction range, silicon tetrachloride, zinc, and the salt of the reaction product, ⁇ 16 lead, are all present at temperatures above 1,000 ° C. (3) that only silicon, which is a gas and a product, becomes a solid, and that the generated silicon can be easily separated from the] ⁇ material and the reaction product, salt!
  • the reaction product salt, lead is directly converted into ⁇ :: ⁇ and zinc:: »reacts with silicon as raw material to form ⁇ of silicon tetrachloride, and 3» & reacts as raw material as it is.
  • the generated silicon is generally in the form of powder or needles, and it is necessary to handle it because it is attached to the reactor wall of the reactor. Since oxygen, which is an impurity, is adsorbed on the surface when touched, there is a problem that the storage and purification must be a fiber.
  • the produced silicon is melted in a furnace, and thereafter, is taken out as a melt and solidified or re-bonded, so that high silicon is obtained.
  • the type of the reactor to be inverted is not particularly specified, and may be a fluidized bed type, a rotary kiln or a fixed bed type.
  • silicon is mainly formed on the wall surface and melts in the furnace, so the inner wall is preferably made of quartz glass or high-purity magnesium oxide ceramics, especially quartz, so that it does not react with the molten silicon. It is desirable to have a glass lining.
  • Silicon tetrachloride and zinc which are reaction gases, are fed into the furnace in a gaseous state to cause a reaction to generate silicon and zinc chloride gas. At this time, if the supplied gas is only silicon tetrachloride and zinc, the reaction and crystallization may proceed too quickly, and these gases may be trapped in the generated silicon. This can be controlled by leaving zinc gas as atmospheric gas.
  • reaction gas ⁇ becomes faster, that is, if the amount ratio of zinc chloride is reduced, silicon precipitates, resulting in 'fine amorphous or crystalline'. At the same time, ⁇ ⁇ in silicon is intensified.
  • ⁇ ⁇ in silicon is intensified.
  • the reaction product zinc chloride is used as the atmosphere gas, which greatly differs from the age when an inert gas such as argon is used.
  • an inert gas such as argon
  • the silicon precipitated or crystallized becomes a melt by heating, and volatile unreacted substances and impurities contained therein become gas and are removed from the silicon. Further, by this, the produced silicon becomes a melt and is substantially purified by removing volatile substances contained under reduced pressure; thus, a silicon melt having a height higher than Six Nine is produced, and After being transferred to a job, it is sent to the crystallization furnace and won. In this case, the temperature is not less than the melting point of silicon, which is 1,410 ° C.
  • the upper limit is preferably 1,600 ° C, because the volatilization of the product will lower the yield due to volatilization. If 53 ⁇ 4 glass is used for the furnace inner wall, the temperature should be 1,600 ° C or less from the viewpoint that damage to the furnace inner wall will be extremely rapid if it is 1,600 or more.
  • the silicon melt refined and melted in this way is put into a workplace or a kojiro container and gradually cooled to form a kanigata.
  • the crystallization conditions are not specified, the solidification of silicon is slightly lower than that of 1,300 to 1,400. It is more powerful to pour crystallization. In other words, it should be noted that if the glue is too fast, the crystal may be easily distorted or cracked, and the grain size may be small, which may make it difficult to exhibit sufficient characteristics for use in solar ponds.
  • the salt of the reaction product is subjected to molten salt electrolysis with a sculpture that maintains a liquid state, and is capable of generating pith at the anode and, optionally, zinc.
  • the zinc chloride may be cooled after the zinc chloride has been cooled and taken out as a solid.However, the zinc chloride taken out as a liquid at the time of the reactor is sent directly to the electrode and subjected to the so-called molten salt electrolysis method. Can be done.
  • the zinc chloride solution is sent to an electrophoresis device in which a bottom portion of the electrode provided with a drain outlet for taking out zinc at the bottom and a pot portion on the bottom surface is formed as a zinc reservoir, and electrolysis is performed. Since the gas emits from the anode, it is collected upward, sent to the red tetrahedron silicon tetrachloride observation device, and taken out through the zinc drain, which is a by-product at the bottom, and can be recycled as a recycle material. . Thereby, it is possible to obtain polycrystalline silicon with almost no defects.
  • the material used for the reactor, the gas circulation system attached to it, and the product extraction system is important to prevent contamination of the product silicon and to withstand high-temperature corrosive gases.
  • M is that the silicon melt moves mainly in contact with the furnace wall, so it does not react with the silicon melt.
  • the wall is made of glass or high-magnesium oxide, especially quartz glass. ⁇ ).
  • the present invention relates to a method for producing silicon capable of providing facilities with a long life while minimizing impurities ⁇ from the S facilities at the time and minimizing wear of the viewing facilities.
  • the silicon nitride is reacted with silicon tetrachloride gas and zinc gas in a zinc chloride atmosphere in the case of high-J silicon S3 ⁇ 4ii, and the silicon is melted at a silicon melting temperature.
  • a difficult method for high-boat single-crystal silicon characterized in that it is guided to a silicon ⁇ f tank that has been overturned as described above, and then degassed of dissolved gas and then taken out as single-crystal silicon in a single-crystal manufacturing apparatus.
  • silicon tetrachloride gas and zinc gas are reacted in an m-gas atmosphere to generate silicon, and the silicon is guided to a silicon bath that is more than the silicon melted and melted.
  • the degassing process is followed by sending it to a cooling tank and converting it to polycrystalline silicon, which is characterized by the ⁇ method of producing high-purity silicon.
  • zinc The silicon reacts with the gas to produce silicon, which is led to a silicon i3 ⁇ 4t tank maintained at a temperature higher than the silicon melting temperature.
  • the silicon produced during the production of silicon by the reduction of silicon tetrachloride is made into a solid body, so that the shape of the produced silicon, which has been a problem in the past, becomes fine powder and the specific surface area increases.
  • the heat energy should be minimized by sending it to a crystallizer or a high-purity silicon mass production system.
  • reaction device for performing these processes and the wall side of the generated silicon device are heated to a temperature lower than the melting point of silicon, solid silicon is deposited on the wall surface, and the molten silicon is not directly transferred to the tank.
  • the reaction tank and i ⁇ ⁇ f tank can be prevented from being consumed, and the T ability of the silicon, which has been stable for a long time, can be improved.
  • silicon metal and IT are reacted with silicon to form silicon tetrachloride. If necessary, distillation is performed to remove impurities. This is sent to the tower where the zinc is applied.
  • the inside of the reactor is charged at 1000 ° C to 1500 ° C and filled with lead chloride as atmospheric gas. At 1000 ° C to 1500 ° C, salt in the atmosphere gas is lead.
  • Lead, silicon tetrachloride, and zinc as a material are gases. Therefore, silicon tetrachloride undergoes an eye reaction at this temperature in a gaseous state, whereby silicon is deposited.
  • the ratio of the supplied silicon tetrachloride and zinc may be a theoretical ratio. In addition, it is better to change the age of lead. In other words, when the silicon tetrachloride becomes »J, a part of the silicon tetrachloride may react with the produced silicon to form silicon dichloride, and the 3 ⁇ 4j ratio decreases, though slightly.
  • Zinc is recommended: ⁇ is not a problem with the product, but the atmosphere gas may be destroyed. Therefore, it is desirable to periodically analyze the atmosphere gas and control the gas conductivity ⁇ *. Since the ambient gas, zinc chloride gas, increases with the reaction, the pressure in the reaction is adjusted by partially removing the gas, and the extracted salt bffi lead gas is cooled, liquefied, and ttM And send to
  • silicon is first formed in the form of a mist in the reaction tank, which gradually rises in the atmosphere gas and collects at the bottom of the reaction tower, and is formed at the bottom and is poured into ⁇ which is slightly higher than the melting point of silicon. And is transported in liquid form.
  • silicon using ⁇ bath has become a two-tank type in which a liquid flow path to the bottom, and argon is provided outlet of the silicon melt is paired anti side reaction column 10_ from 10- 1 3 It has a reduced pressure argon gas atmosphere that is difficult to torr.
  • an argon gas supply port can be provided at the bottom, and silicon following the reaction rules moves through the liquid channel 1 to the opposite side of the reaction tower, and argon gas is bubbled from the bottom.
  • argon gas is bubbled from the bottom.
  • gas components remaining in the liquid are removed, and a high-purity silicon melt is obtained.
  • the temperature of the silicon holding tank is naturally kept higher than the melting point of silicon, but as with the anti-J3 ⁇ 4f, the reaction between the silicon in the melt and the inner wall of the holding tank is prevented, and the silicon melting tank is transported.
  • the temperature of the inner wall itself be slightly lower than the melting point of silicon.
  • the desired high-purity silicon of about 6-nine to 9-nin is obtained.
  • this is an outside work of a double- ⁇ single crystal manufacturing apparatus. of used instead, by performing up-out single crystal bow I by melt the plant feeding the continuous ⁇ a job body called CZ method, et al can segregation coefficient of zinc is very small and 1X10- 5, at least 8 To obtain a 10-Nine single crystal silicon ingot.
  • a polycrystalline silicon ingot can be obtained by putting the melt in a crucible or by cooling. Further, the silicon melt is beaten in an argon gas atmosphere.
  • Particles can be obtained by scattering the particles on a disk (centrifugal quenching device) made of copper, platinum, silica glass, or the like cooled by the above method.
  • the particle size of the granular silicon used as the product is desirably 1 to 5 fibers, which can be easily controlled by adjusting the diameter of the silicon melt nozzle exit that allows the bacteria of the rotating disk and the T to be reduced. Is well known. Fifth invention
  • the fifth invention is to provide a manufacturing process that is as simple as possible and that can minimize the energy consumption and effectively obtain a silicon melt.
  • the fifth invention has the configuration as described above, is the most »target, and is high!
  • silicon $ 3 ⁇ 4i from silicon tetrachloride with zinc, which is considered to be difficult to obtain, the silicon produced is obtained in a molten state without being taken out of the system. It can be obtained directly as single crystal, polycrystal or upright crystalline silicon.
  • silicon is used as a raw material, which is reacted with chlorine gas and then purified by distillation, and then sent into the atmosphere gas, zinc chloride, and zinc is used as a catalyst.
  • the gaseous gas By sending the gaseous gas into the lead, it also produces metallic silicon and lead gas by eye reaction.
  • the boiling point of zinc is 907
  • the boiling point of zinc chloride is 732 ° C
  • the boiling point of silicon tetrachloride is 57.6 ° C.
  • silicon when this is converted, silicon is discharged out of the system as a liquid or solid phase in the reverse of the above, so that the reaction unilaterally proceeds to the ZnCl 2 generation side.
  • the reaction is one-sided, and since the reaction is performed at a high temperature, the reaction is extremely fast.
  • the reaction St is set to 1350 or more, the precipitated silicon is extremely fine and becomes a droplet.
  • the silicon droplet generated in this way is Since the reaction gas is heavier than the atmospheric gas, it is difficult to make it into the reaction T direction.If the atmosphere is below the point, it becomes a lump, and if the atmosphere is above the melting point, it gathers in a molten state and gathers in the reservoir below. Become.
  • This type of reactor can be used as long as it is a reactor type.
  • the cyclone indicated as a swirl melting pipe capable of minimizing collision between the reactor wall and an object By using the furnace of ⁇ :, higher reputation and higher efficiency are expected. That is, the atmosphere gas is rotated by the cyclone ⁇ ; and the reaction gas is rotated together with the rotation, whereby the reaction products are accelerated and solidified to form ⁇ T. If the temperature in the lower part of the reactor is higher than the melting point of silicon, it can be taken out as molten silicon without solidification.
  • lead chloride which is a reaction product and is an atmospheric gas, is taken out of the system by the amount increased by the reaction and reduced to a boiling point or lower to form a melt. I do.
  • gas is supplied from the anode J as anti-ZnCl 2 Zn + Cl 2 (theory ⁇ ? ME 1.88V at 500 ° C), and zinc metal is obtained from the anode.
  • the obtained gas is converted into silicon tetrachloride by reacting with silicon, which is the first reaction of gas.
  • zinc since zinc has a melting point of 419 ° C, it is electrolyzed at this temperature and taken out as zinc melt, which is heated and vaporized and sent to the reactor again.
  • the reaction media, chlorine and zinc are recycled in the system, and as a whole a process for obtaining high-purity silicon from silicon.
  • raw metal silicon or scrap silicon as a kind of raw metal silicon can be used, and silica (silicon oxide) such as silica stone can also be used.
  • solubilizer it is only necessary to add carbon powder or carbon monoxide as the solubilizer and react while heating the mixture to 400 ° C or higher, so that it can be used in the present process. But use silica, because obtaining high-fidelity products may disrupt the overall material balance: t ship, outside in advance ⁇ ! It is preferable that the process be converted to silicon at a rate and then be applied to this process.
  • the type of the reaction is not particularly specified because the reaction proceeds very quickly, but it is required to react with the metallic silicon powder of the IT material in a fluidized bed process in which the gas flows countercurrently or in a fixed bed of silicon; May be taken out to remove silicon chloride.
  • the reaction temperature is desirably from 60 to 400 ° C, and the silicon chloride formed by this is separated from silicon as a gas. At this time, it is considered that there is no gas because the reaction is as fast as the silicon can do, but even if the gas is present, by reducing 3 ⁇ 4 to 50 ° C or less, the pulp is converted into pulp gas and tetrachloride Crane is separated as silicon tetrachloride liquid.
  • the liquid silicon tetrachloride obtained in this way is distilled to distill it.
  • This condition is not particularly specified as long as only silicon tetrachloride is extracted as a gas, but only silicon tetrachloride can be extracted by distillation at 58 to 68 ° C under normal pressure.
  • This silicon tetrachloride is heated by a heater and sent to a reaction furnace.
  • the reactor is desirably swirled as indicated above, whereby silicon tetrachloride reacts with zinc gas in a rotating airflow.
  • the atmosphere gas in the reactor uses relatively stable and mysterious zinc chloride gas. This allows the reaction system to contain only reactants and no other elements at all, so that it is possible to obtain high readings and to control the reaction by adjusting the partial pressure of these components.
  • the atmosphere force is set to 1 to 5 mm
  • the lead gas which is the atmosphere gas
  • the amount of zinc gas with respect to silicon chloride is slightly reduced from 0.1% to the theoretical reaction amount. 10% increase.
  • the reaction temperature is desirably 1350 ° C or more, which makes silicon, which is a reaction product, in a finely divided state at least as a melt very easily in an atmosphere gas, rapidly grows into large particles, and the reaction proceeds. Gather in the T direction. In the reaction T, the melt is kept at 141 CTC or more, which is the melting point of silicon, so that the melt can be sent to the reservoir.
  • this reactor is made of a substance that does not react with silicon. For example, metals such as tantalum iridium and heat-resistant ceramics such as zirconium boride are used.
  • silica glass used for silicon single crystal growth reacts with molten silicon and consequently consumes, as shown in the contradictory Si + Si0 2 S10, but does not substantially contain other impurity metals. , Use power is Noh.
  • a thin crystalline silicon layer is formed on the furnace wall surface by keeping the reactor wall temperature slightly lower than the melting point of silicon, 1410 ° C, for stable operation. Can be provided. As a result, the reaction gas does not enter the furnace wall, and the length of the furnace wall can be prevented and impurities can be prevented from being mixed into the product.
  • the temperature of the reaction furnace itself is kept lower than 1400 ° C., and the temperature of the atmosphere gas is desirably 1350 ° C. or more, as described above.
  • silicon produced can be obtained in a molten state, and since the periphery of the furnace wall is covered with silicon crystals, there is no contamination of impurities and high-purity silicon can be obtained.
  • the silicon produced in this way becomes large droplets and moves downward, and when operating at a temperature below the B insect point, it partially falls as particles and falls.
  • slightly raising the pressure in the lower cycle opening or raising the atmospheric gas to 1410 ° C or more the liquid moves downward as a droplet and moves to the silicon reservoir.
  • silicon in a dog, silicon sometimes moves to the reservoir as a standing child, but in the reservoir, ⁇ 3 ⁇ 4 rises above the melting point of silicon and is held as a liquid as thin as possible in liquid.
  • Atmospheric gas that may be contained in iron.
  • high-purity argon gas may be passed through the liquid, or the atmosphere gas of the reservoir may be cooled and liquefied at the outlet thereof to be extracted from the silicon as a negative pressure.
  • the material of the reservoir should be a material that does not react with molten silicon.
  • the transfer may be carried out by external heating.On the other hand, as in the case of the reactor, the ⁇ it of the reservoir body is slightly lower than the melting point of silicon, and the molten silicon is heated by induction heating to maintain the melting silicon at or above the melting point. Holding the reservoir so that it is covered with solid silicon, It is also possible to prevent direct leakage between the recon and the reservoir wall. At this age, silica glass can be used for the reservoir material. In addition, the reservoir does not substantially react with silicon. Use ceramics such as tantalum, zirconium, niobium and other valve metals and their compounds, such as zirconium boride and oxides such as niobium tanta! / ⁇ Niobium oxide. Can do it. In this way, the liquid silicon can be crystallized as needed.
  • the 3 ⁇ 4 of silicon in the reservoir ranges from 6-nine to 8-nine, which can be further enhanced in the crystallization process described below. Since Toru was once taken out as a solid and then re-resolved, there was a possibility that impurities could enter there. In this way, Kodani becomes a T ability because he can do high quality.
  • Using a reservoir as the outside of a double crucible is a powerful feature, and allows a simple crystal growth device.
  • the age at which the polycrystal is formed may be placed in a rope and slowly cooled to crystallize, or may be grown by zone melting. It can also be pulled up in a flat plate shape.
  • massive silicon polycrystals can be obtained by rapid cooling with a ⁇ ] device.
  • Electrolysis is performed by molten salt electrolysis in principle, but the melting point of lead is 419 and the salt bffi lead has a high $$ of 283 ° C. 3 ⁇ 4 is desirable at 460 to 550 ° C, particularly preferably 480 to 510, so that zinc can be obtained from the melt and gas can be obtained from the anode.
  • the marrow is used for the metallization of the metallic silicon as described above, and the zinc is collected and heated and used in the reactor for the ⁇ of the crane.
  • the sixth and seventh inventions have the above-described configuration, whereby a high-purity silicon lump or liquid silicon can be obtained semi-continuously using crane tetrachloride as a raw material.
  • the silicon ⁇ i device of the sixth aspect of the present invention makes the gas composed of silicon tetrachloride and zinc ⁇ in a salty lead atmosphere gas to obtain the salty lead gas and solid or semi-molten silicon.
  • the generated silicon precipitates as a solid on the trap inside the reactor and is separated from the reaction gas and the atmosphere gas.At the time of reaction generation, the product silicon, which is very fine particles or melt, is used. They are trapped in traps that substantially serve as filters that are provided so as not to go outside, and are deposited in the reactor.
  • the silicon $ 3 ⁇ 4t device of the sixth invention is composed of a reaction furnace section and a storage section for storing silicon generated in the reaction furnace.
  • the reaction furnace is provided inside the furnace body and inside the furnace. It is a heat-resistant, conductive, trapped product silicon made of tantalum or molybdenum or an alloy thereof that does not substantially react with silicon even at high temperatures, and the introduction of reaction gas. , Outlet and drain for discharging the generated silicon. It also includes a heating tree to keep the reaction temperature, and a trapping unit to melt and remove the produced silicon.
  • the silicon storage section has a receiving port for molten silicon and an outlet for bulk silicon, and / or an outlet for liquid silicon, an outlet for molten silicon, and argon gas for degassing silicon melt as necessary. It consists of nozzles and heating equipment.
  • the reactor part be located above the reservoir so that the molten silicon falls into the reservoir due to gravity.
  • the reactor section will be controlled as described above.
  • the reaction is 1410 ° C. or less, which is the melting point of silicon, and the temperature is above the boiling point of zinc, which is the same as that of tetrachlorosilicon, zinc chloride, and zinc in order to cause the reaction to take place. ° C or higher, so that heating can be performed.
  • the silicon layer is formed on the furnace wall, and the silicon on the wall is transferred to the storage part. In addition, it is necessary to raise the temperature above the melting point.
  • the trapped portion needs to melt the deposited silicon into ⁇ :, it must be at least a temperature higher than the melting point of silicon.
  • the trap can be heated up to around 1500 ° C so that it can be sent to the detention area. For this purpose, it is better to generate heat by the trap itself, or to energize the trap itself to generate heat, or, if the trap has a three- ⁇ shape, to generate heat by induction heating. As a result, only the silicon can be melted without increasing the temperature of the furnace body much, so that the possibility of ⁇ ⁇ as an impurity can be greatly reduced, and the silicon can be extracted as high-purity silicon.
  • the material of the trap is tantalum or molybdenum, which does not substantially react with silicon even at a temperature higher than its melting point, has a very high melting point, is stable and has conductivity, or an alloy mainly containing these materials. Is desirable.
  • the furnace wall material is like this, but it should react at least at the reaction temperature with silicon or reactant gas. It is perfect.
  • the furnace wall material in addition to the above tanta! / ⁇ Molybdenum, (Silica glass 3 ⁇ 4 glass), which does not react to the hands and becomes a tongue, is desirable.
  • the reactor has inlets for the raw material silicon tetrachloride and sub-gas, and the gas outlet and gas inlet for degassing the reaction gas, chloride gas, and for circulating the fiber lead gas.
  • Zinc chloride gas can be used as a diluent gas for silicon tetrachloride and lead gas, which are reaction raw material gases, instead of the gas inlet.
  • the material of the trap material provided in the reactor is as described above, and is tantalum, an alloy mainly composed of tantalum, or molybdenum or an alloy mainly composed of molybdenum.
  • there is a porous material which acts as a filter to substantially prevent the formed silicon from leaking out together with the extracted bffi-lead.
  • a mesh material or foam such as an expansive mesh or a knitted mesh placed around the reaction area, or a web combining thin wires is used. These are placed in the reactor Silicon, which is placed so as to cover the part and falls out of the silicon particles generated by the reaction due to the fine particles, adheres to the surface of these meshes or trap materials such as webs and foams. Even if molybdenum does not react with silicon, and even if there is a reacting element, it does not react because it is basically a solid-dig bond, and does not become a factor of impurities. At this time, it is stuck to the furnace wall at the same time, but if the furnace wall is made of stable silica glass, the above-mentioned tantalum, molybdenum, or an alloy thereof, no reaction occurs, so that it is stable.
  • the silicon deposited in this manner raises the trap itself above the melting point of the silicon, so that silicon flows downward as a melt at the g
  • the silicon is sent to the storage part with almost no reaction with silicon.
  • the trap material is a mesh or perforated plate, the trap material can be heated by applying a current directly to the trap material. If the trap material is a web or foam, etc. 3 ⁇ 4: Observation is difficult:!
  • a power source is installed outside the reactor, and the metal part is heated by induction heating ⁇ : to melt the silicon and send it to the storage part.
  • silicon attached to the furnace wall is heated by induction heating: ⁇ itself generates heat and melts, but otherwise, shelves silica glass furnace walls: ⁇ requires melting by external heating It is.
  • the reaction between silica glass and silicon may occur for a short time, and SiO may be generated.However, the time is short and the gas is discharged in a gaseous state. It is not a problem, and even if it is contaminated, it is SiO, which is not a problem because it is removed by crystal growth.
  • the reservoir must be made of a material that does not react in principle with silicon. Also made It is necessary to be able to use it as a processing furnace for the processing of product silicon.
  • the silicon storage part is not specified, but tantalum, molybdenum, alloys mainly containing tantalum, alloys mainly composed of molybdenum, and alloys mainly composed of molybdenum that do not react with silicon even at a temperature of 1500 ° C, and silica that does not become an impurity even if reacted Glass (53 ⁇ 4 glass) is preferred.
  • the temperature in the storage section should be raised to the melting point or higher, and the gas components can be removed by flowing argon gas from below.
  • the gas nozzle in addition to the above-mentioned metals, it is possible to use a iridium having no reactivity with silicon and having a very high bow at high temperatures.
  • the eighth invention has the configuration as described above, and among the constitutions of the first to seventh inventions, the reaction S is made lower than that of silicon, and the silicon is not carried to the atmosphere during the reaction.
  • the invention can be constructed by selecting the requirements for obtaining the silicon as a lump or a molten state, and for forming silicon. Next, an example of the silicon difficult method according to the present invention will be described with reference to the drawings.
  • FIG. 1 is a flowchart illustrating the silicon-made ir process of the first invention.
  • the raw material metallic silicon in the metallic silicon storage tank 11 is supplied to the metallic silicon conversion and silicon tetrachloride purification unit 12. At the same time, it was obtained with the salt i ffi lead ⁇ f 13; »The gas was supplied to the metal silicon: In response, silicon tetrachloride is produced and its purification is carried out.
  • the metallic zinc produced in the negative 3 ⁇ ? If 13 is supplied to the zinc evaporator 1, and the crane tetrachloride and the metallic zinc in the negative B lead evaporator 14 generated in the disgusting device 12 are supplied to the piping 15 and supplied to the compressor 16. As a result, the mixture reaches the bed reactor 17 which is below the melting point of metallic silicon.
  • the fluidized-bed reactor is preliminarily added with a seed crystal of metallic silicon, and metallic silicon produced by the reaction of disfavorable silicon tetrachloride and zinc grows with the seed crystal as a nucleus to produce high metallic silicon. can get.
  • the obtained metallic silicon is in a molten state in the fluidized bed reactor 17, separated from other gas components, and taken out as high-purity metallic silicon into the product tank 19 through the product extracting tank 18.
  • an externally heated rotary kiln type or fixed bed type reactor is used for the reactor, and granular, sandy or thin silicon is seeded inside. If 3 ⁇ 4 ⁇ is obtained, and if silicon is deposited on the crystal, high-purity jtn-lk polycrystalline silicon can be efficiently formed.
  • FIG. 2 is a flowchart illustrating the silicon manufacturing process of the second invention.
  • the ffiil metal silicon in 21 is supplied to silicon tetrachloride composite 22 and reacts with the pulverulent gas obtained in salt ffi lead electrolysis 23 and supplied to the synthesis tower 22 to tetrachloride Is synthesized, and this nitrogen tetrachloride is supplied to the reaction melting furnace 2 through a pipe.
  • the metallic zinc produced in the above-mentioned salt electrolytic zinc electrolytic cell 23 is gasified in a zinc evaporator 25 and then supplied to the Ml lead chloride electrolytic electrolytic 23 and lifted to react with silicon tetrachloride to increase the metal content. Silicon and salty! ⁇ Lead is formed.
  • the obtained metallic silicon is turned into a silicon melt in a knitting 3 reaction melting furnace 24 and is led into a melting furnace 26 located therebelow to become molten silicon, and after being homogenized, is led to a refining furnace 27.
  • the temperature of the zinc chloride gas which is the atmospheric gas entering the refining furnace 27, is reduced and liquefied, thereby turning the inside of the refining furnace 7 into The contained gas and other impurities are vaporized.
  • the molten silicon is received in a silicon slow cooling tank 28 such as TO, and the crystallization is advanced from the lower part to the upper part. Obtain large polycrystalline silicon.
  • the zinc chloride gas in the refining furnace 27 is cooled by the cooler 29 and then circulated to the mim 23 as a raw material.
  • the refining furnace may be separated from the furnace by 5 ⁇ , and the salt complex gas in the furnace may be supplied directly to 7 ⁇ * ⁇ .
  • FIG. 3 is a flowchart illustrating the silicon process of the third invention.
  • the process of FIG. 3 relates to an improvement of the process of FIG. 2, and the same members as those of the process of FIG.
  • a silicon nitride or silicon silicate glass 32 is connected at the lower part of the reaction furnace 31 where silicon tetrachloride and metal zinc are supplied to generate high-metal silicon and salt gas. Crystallization or melting of the obtained high @ metallic silicon is performed. The obtained metal silicon is stored in a silicon cooling bath 28, and zinc chloride gas is subjected to a mist experiment with a mist separator 33, and then controlled at ⁇ $ 29. Circulated as
  • FIG. 4 is a flowchart illustrating the silicon manufacturing process of the fourth invention.
  • Chlorine gas and zinc gas are blown into the reaction tower 41 in a salt gas atmosphere.
  • the atmosphere and pressure in the reaction tower are conveyed constantly. Through this gas flow, agitation is performed so that the reaction gas can easily react.
  • the reaction gas and the reaction product, silicon collect in the center of the anti-sickle by stirring. This causes the heavy silicon »: to move solids downward and collect in the ⁇ e tank.
  • the same conditions as the so-called swirl melting are obtained.
  • a tank 43 composed of two chambers is provided. In operation, the reaction tower is operated at 1000 ° C to 1500 ° C.
  • the silicon generated in 41 is at least partially a melt or a solid, and is heavier than the atmospheric gas, so that it is stored in a molten state in the lower holding tank 43.
  • the atmosphere gas that is sufficiently light with respect to the melt is almost separated, and only a very small amount is contained in the melt.
  • This melt moves to the opposite side of the reaction tower 41 through the lower part of the partition wall in the tank 43. This part is reduced from 10 "'to If)-about 3 torr, so the residual gas in the melt is removed by itself, but if necessary, argon gas is removed from the bottom of the holding tank by degassing 44.
  • the impurity gas such as reaction gas can be degassed by sending it inside.
  • the silicon melt that has been enhanced in this way is pulled up to silicon, sent to the apparatus, and bowed up to produce a single crystal.
  • the silicon ingot 45 is woven or sent to work and solidified to obtain polycrystalline silicon 46, or sent to a key quenching device to obtain granular silicon 47.
  • the material of the reaction tower and the tank As described above, by slightly lowering the furnace wall temperature, silicon crystals are deposited on the furnace wall surface, thereby avoiding direct contact with the furnace wall, thereby completely preventing reaction with the furnace wall.
  • the molten silicon transport tank 43 is not a two-room room with a bottom, but only one room.
  • the supply of the reaction gas is stopped to degas or remove Similar results can be obtained by so-called intermittent operation in which gon gas replacement is performed.
  • reference numeral 48 denotes an H metal silicon storage tank; 49, a silicon tetrachloride synthesis tower; and 50, a device for circulating and heating zinc chloride gas with the reaction tower 41.
  • FIG. 5 is a flowchart illustrating the silicon process of the fifth invention.
  • Reference numeral 51 denotes a metal silicon raw material # tank, from which 98.5 to 99% of the raw material silicon metal is introduced and sent to the reaction tower 52 via this.
  • the silicon tetrachloride gas was distilled in a distillation tank 54 at about 50 to remove impurity fractions, heated by a heater 55 and sent to a reaction furnace 56, and the molten lead obtained in mm ⁇ 53 was heated and vaporized by a heater 55.
  • Liquid zinc is formed by gaseous zinc.
  • salt gas and lead gas are circulated between the heater and 55a as atmospheric gas.
  • the temperature of the reactor is 1350 ° C or higher, and it is controlled by heating the furnace itself and the atmosphere circulating gas.
  • the silicon thus formed into droplets is aggregated in the reaction furnace 56, and moves downward to large reservoirs 57 as large droplets or particles.
  • zinc chloride gas which is a reaction furnace atmosphere gas that has moved together with the silicon generated at a temperature of 1410 ° C or more, which is the melting point of the silicon, and which is a reaction product gas, is sent to the cooler 58 through an exhaust gas passage. Because of this, a negative pressure is created, and any salty lead gas that may be contained in the product molten silicon is removed here.
  • an argon gas can be sent from the argon gas storage tank 59 to completely remove eye components by publishing.
  • the amount of lead chloride gas circulating as atmospheric gas increases with the progress of the reaction, and that amount is also transported to ⁇ lit through this 58 ⁇ 3 ⁇ 43 ⁇ 4 ⁇ 58. In this way, the zinc chloride gas produced by the reaction is cooled to 500 ° C and sent to 53 as a melt.
  • FIG. 6 is a schematic longitudinal sectional view illustrating an embodiment of a reactor as the silicon $ t apparatus according to the sixth invention
  • FIG. 7 is a flowchart illustrating a silicon process ii including the reactor.
  • the reaction furnace 61 is composed of a cylindrical reaction furnace part 62 lined with glass and a lower silicon storage part 63.
  • the reactor section 62 has a cylindrical birdcage-like mesh 64 made by knitting an evening wire inside.
  • a vent 65 for atmospheric gas and generated gas was provided above the reactor, and a filter 66 made by hardening a fine intaral wire was attached to the vent.
  • a lead wire was drawn out from this filter and birdcage-shaped mesh, and electricity was supplied to enable heating.
  • Atmospheric gas flowed along the cylindrical surface between the five-element cylinder and the cylindrical birdcage-like mesh 64, and was extracted from the upper outlet port 65 for recycling.
  • 67 is an atmosphere gas supply port.
  • the reaction gases were allowed to flow in a mutually upward manner inside the cylindrical birdcage mesh 64 slightly upward.
  • 68 is a supply port for the reaction gas.
  • the reactor was heated by a heater 169 provided outside to maintain the reaction temperature.
  • the silicon storage section provided at the lower part of the reactor had a quartz glass port inside covered with tantalum foil, and a heater 70 was provided outside for heating.
  • the reactor 61 of FIG. 6 is installed, for example, during the process of FIG.
  • the zinc chloride gas which is the atmospheric gas, is circulating between the gas heating device 71 and the reaction furnace 61, and the gas of ⁇ is taken out and sent to the electrolytic cell 72, where it is decomposed into zinc and chlorine gas by electrolysis.
  • the generated gas reacts with silicon in the reaction tank / purification tank 73, is purified, and supplied to the reaction furnace 61 as silicon chloride.
  • Zinc is also heated and vaporized by the force 74 and supplied to the reaction furnace 61 to be subjected to the reaction.
  • zinc and tffi-lead which are auxiliary materials, circulate in the system, and silicon is stored in the storage section 63 of the reactor 61 as J silicon.
  • FIG. 8 is a schematic W fiber cross-sectional view illustrating another embodiment of the reactor as the silicon production apparatus of the sixth invention.
  • the reactor 81 was made of quartz glass as in FIG. 6, and a power supply 82 for induction heating was placed outside the reactor.
  • the inside of the reactor was covered with a cylindrical tantalum plate 83.
  • the T portion of the reaction was filled with a tri-shaped wire diameter of 0.1 to 0.2 thighs 84, also serving as a filter.
  • the reaction gas and the atmosphere gas were introduced from the supply port 85; and the produced gas was taken out from the discharge port 86.
  • the high JS metallic silicon obtained in the furnace was taken out from the lower part of the reactor 81 to the storage part 87.
  • FIG. 9 is a schematic longitudinal sectional view illustrating still another embodiment of the reactor as the silicon production apparatus of the sixth invention.
  • This reactor relates to an improvement of the reactor shown in FIG. 8, and the same reference numerals as those in FIG. 8 denote the same parts, and a description thereof will be omitted.
  • This reactor 91 is different from the reactor of FIG. 8 in that the reactor 92 is placed on the upper side, and a generated gas outlet 93 is formed on the top plate of the reactor 91 to supply the reaction gas and the atmosphere gas to the reactor 94. Is formed on the side T of the reactor 91.
  • the silicon ⁇ device consisting of the reactor shown in Fig. 6 was assembled, and the process shown in Fig. 7 was constructed.
  • the temperature of the circulating gas, dani-zinc, is 1100 ° C, and the pressure is 2kg / cm 2 , which is sent to the reactor at 1100 ° C, and a mixture of silicon chloride and zinc chloride in a ratio of 1:10 and zinc.
  • a mixture of lead and zinc in a ratio of 1: 2 was sent to the furnace as a reaction gas.
  • the zinc thigh was increased by 3% from the amount required for reaction with silicon chloride.
  • the zinc chloride gas was replaced with argon gas, and then the tantalum in the reactor was energized and heated to 1450 ° C.
  • Furnace temperature The temperature was from 1100 to 1400 ° C.
  • the fi ⁇ in the storage unit was the same as the reactor.
  • the silicon formed on the surface of the evening filter and the evening resol mesh became droplets and precipitated as a lump in the storage part. Analysis of this product showed that i was 7-nine or more, and tantalum was not detected.
  • a silicon production test was performed using the same equipment as in Example 1 with tanta molybdenum. Since a molybdenum mesh could not be obtained, a perforated plate with an aperture ratio of 45% and a similar shape was used instead of the cylindrical birdcage mesh. Using this, the reaction was carried out with the pressure of the salt gas, which is the atmospheric gas, at 1 atm and the furnace temperature at 1050 ° C. In addition, the supply of zinc was increased by 3% in the same manner as in Example 1. After completion of the reaction, the gas was degassed with argon gas, and then electricity was supplied to molybdenum, and the molybdenum was moved as a molten material to the storage part and solidified. When this was analyzed, it was found that it was more than 7 nines, which was sufficiently high, and that molybdenum was not detected at all, and that high-purity silicon could be easily obtained.
  • the salt gas which is the atmospheric gas
  • the atmosphere in the furnace was heated to about 1200 ° C by flowing a salty bffi lead gas heated to 1200 ° C.
  • gas of crane tetrachloride and zinc was supplied in the same manner as in Example 1.
  • zinc chloride gas which is an atmosphere gas, was blown in such a way as to rotate inside the tantalum cylinder, so that zinc and silicon chloride gas were anti-JiTT while riding in this flow.
  • the reaction was stopped.
  • the power of the induction heating device was turned on and the mixture was heated to a temperature of 1500 ° C in the perforated ⁇ -neck tube.
  • the silicon on the surface of the tongue became germ-free and fell down, leaving it in the storage area.
  • the 3 ⁇ 4 of the silicon obtained as a lump in this way was 8-nine. If you pull up a single crystal of this silicon, one tonine silicon single crystal was expected to be obtained.
  • the metal part in the reaction furnace part shown in Example 3 was changed to molybdenum, the wall of the inner wall part was provided, and the tube disposed in the furnace was provided at the upper part of the furnace.
  • tetrachloride which is a reaction gas, and zinc were put in from below, and drained up.
  • a silicon storage section was provided immediately below the furnace. The inner wall of the silicon storage section was tantalum. Using this furnace, the gas was fed at an atmospheric gas temperature of 1300 ° C., and as shown in Difficult Example 1, both the silicon tetrachloride and zinc were mixed with high-efficiency lead gas and fed to the reaction lobe.
  • the sculptures of these gases were silicon tetrachloride-containing gas at 1000 ° C and zinc-containing gas at 1300 ° C, and the reaction temperature was practically 1300 ° C.
  • silicon was deposited on the molybdenum web.
  • the reaction gas was stopped to terminate the reaction, and argon gas at 1300 ° C was sent to replace the gas and the residual gas was discharged.
  • the web and the wall were heated to 1500 ° C by induction heating. »
  • the molten silicon was filled in liquid in the lower silicon storage tank. The temperature of the storage was 1400 ° C, and solidification started gradually after a while after filling. Two hours ⁇ When the silicon was removed, it was found to be massive and very compact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

高«シリコンの $¾i方去及 置
腿分野
本発明は、 四塩化珪素と亜船の気 ma芯による高純度シリコンの製 法及び装置 に関し、 より詳細には太陽電池用として好ましく使用される高純荬シリコンを高い反 腿率であるいは不純物の Μλを最小限に抑制しながら する方法及 置に関す る。 発明の背景
徹から太陽電池用シリコンは、 半 用シリコンの不適格品が多く翻されてい るが、 そのような齢には、 今後の太陽電池の飛躍的な需要に応えられるだけの供給 が伴わないという問題が されている。 このようなことから、 独自にシリコン結晶を 織する方法として、 溶麵鉛と四塩化珪素を させるいわゆる金属溶融法が知ら れているがその場合は製品が粉状となり、 «理の'展睢さや不純物処理の難しさ並び にキャスティングの困難さの為、 高コストとなり、 実用化されるに至っていない。 このために^!目亜 法によるシリコン S が驗されているが、 シリコンとと もに重量比で約 1 0倍の塩ィ 鉛が 性し、 その処理が問題となりやすく実用化はご く"^に限られている。; Mでは特開平 11 - 92130に記載のように、溶 面に四 塩化珪素を吹き付けることによってシリコンを得、 さらに生成する塩ィ fcffi鉛を電 解して亜齢属を取り出すと共に、 生^ る髓を塩化水素として四塩化髓纖に 使う方法が驗されている。 塩ィ b¾鉛の再利用という点では目的を達成しているが、 生成シリコンは溶菌 铅との混合体であるためにシリコンそれ自体が微細な粒子とな つてしまうこと、 従って生成シリコン粒子の表顧が大きくなりそのために高純度化 が困難になると言う問題点があった。 またモノシランやジシラン、 トリクロロシラン を原料とする方法があるがこれについてはその反応率が低く従ってエネルギー消費が 大きくなると言う 題と共に、 併; iTTる水素の回収があわせて問題となっているが、 7_Κ素に限らず、 副生する髓乃至驗の取り扱いにも問題がある。 また 剤として 高価な水素を翻するので、 コストの低下が灘しいとされている。
一方これらによって得た多結晶あるい 末状のシリコンから単結晶シリコンを得 るためには、 粒の大きさが大きく相対的に表面積の小さなシリコン多結晶の場合は、 粒 面への不純物の吸着、 特に酸素の吸着が少ないので、 問題は少ないが、 粉末状 の表面積の大きな粒子の齢は、 ノ^レク部分が 纖であっても、 表面吸編質が不 純物要因となるために、 結晶觀装置への ¾λ前に、 表面の吸着物^ ¾を行う必要が あり、 鍾が纖になると共に、 麟物処理などの必要性も合わせて生じており、 そ れ故どうしても コストが嵩むという結果となっている。 しかも常法によるとまず シリコン粉体、 あるいは微結晶を^ iするために高? 理を行い、 それを冷却し、 更 に結晶成長のために 显溶融と'腿な操作を必要とすると共に、加熱ノ冷却を繰り返す ようになっており、 エネルギー消費上からも問題であった。 特にこれらは、 工程ごと に ¾ΰϊしているから、 i H性が良いとはいうものの、 熱の出入りを含むこれらの ί樓 は高 ¾Ρ 直の電子デバイス用としてはまだ許容隨であるかも知れないが、 今後の 細途と考えられる太陽電池用では、 多量に使う代わりに、 その価格が安 あり、 しかも製造時のエネルギー消費の少ないことが重要な達成 i¾ であるが。 これらにま で言及した は今までに知られていない。
上記に示したように ¾έ¾ί¾Τιはいずれもシリコンを固体としてあるいは結晶として 生成させることに主暇 が置かれており、 生成した結晶塊、 あるい〖謝体が空気中に さらされることを前提としており、 単結晶、 あるいは結晶の発達した多結晶を^ tす る場 には一度取り出したものを必要に応じて再精製してから再 解、 結晶化とい う纏を行っており、 少なくとも離解のための余分なエネルギーが必要であるとい う問題点があった。 またあらかじめシリコンの塊あるいは粉体を作る時に、 空気中に さらされることを前提としているために、 不純物吸着を最小とするためにシリコン原 料の製造に当たっては、 出来るだけ塊状のシリコンの製造力河能な条件が 用される 結果、 理屈の上で镊も容易であり単純化できる、 塩化珪素の亜鉛による 法が 業缠では事実上使えないと言う問題点を残して'いた。 最近では反応炉からシリコン を溶融 態 ¾り出 みがなされているが、 カ犒くなることから、 副^ ~る塩 酸の腐食問題や生成シリコンと炉壁内面とが反 ji ることによる、 反応炉の ^化 などの問題があり、 その活用も完全ではないという問題があった。
更に徹の四塩化珪素と亜鉛の mi目反応による高謎シリコン難の際に、 反応炉 の小型化や反応の効率化が図 ばより望ましいことは言うまでもない。 発明の開示
本発明の目的 記の問題点を解決し、 これにより反脑率を改善して得られるシ リコンの結晶性を向上させることのできる結晶性シリコンの 法、 及 Ό¾ϋ装置 を提 ί共することである。
従って本発明は、 第 1に、 四塩化珪素と亜鉛とを反応炉内において 目反応を行わ せしめ高艇多結晶シリコンを觀する方法において、 91CTC以上の内部渡に纖さ れた反応炉内に予めシリコン種結晶を投入し 1¾結晶上にシリコンを析出せしめるこ とを特徴とする結晶性シリコンの難方法 (以下第 1発明という) である。
第 1発明によると次のような効果が得られ これらによりエネルギー面及 境面 から特に優れたパルク雜晶シリコンを得ることが出来る。
( 1 ) 四塩化珪素と亜鉛との 目反応により生成するシリコンを 結晶シリコン 上にその八ビットに従って生成させる事が き、 これにより太陽電池等を する多 結晶シリコンをバルクとして高効率で製造することが出来るので、 シリコンの歩留ま りが極めて良くなる。
( 2 ) シリコンの I ^に掛かるエネルギー消費を極めて小さく搬すること力河 能となる。
( 3 ) しかも生成したシリコンは従来の同様なプロセスではほぼ非晶質であった ものが、 結晶性の良好な多結晶であり、 安定性と、 エネルギー効率に優れたシリコン として得られる。
(4) 反応生成物である塩ィ ¾鉛は離により原材料である亜鉛に戻すと共に、
: ^は四塩化 ^料としてリサイクルするようにすることも可能で、 このような構 成とすると、 殆ど续物を出さずにすむ。
本発明は第 2に、 四塩化珪素と亜鉛とを、 内壁温度をシリコンの融点以上の、 に 傲寺した反応溶融炉内にて気相反応を行わせ、 該反応溶融炉内にて生成したシリコン 融体を «させ溶融シリコンを得ることを特徴とするシリコンの製造方法 (以下第 2 発明という) である。
第 2発明でも次のような効果が得られ、 これらによりエネルギ一面及 面から 特に優れたバルク多結晶シリコンを得ることが出来る。
( 1 ) 四塩化珪素と亜鉛との 目反応によりシリコン生成を行う反応溶融炉の内 壁 をシリコンの融点以上の? に搬しているため、 霧状として生成すると考え られているシリコンが 溶融炉の内壁に付着することなく «できる。 従って太陽 電池等を製造するための結晶性シリコンをパルクとして高効率で製造することが出来 るので、 シリコンの歩留まりが極めて良くなる。
( 2 ) 連続プロセスであり、 生成した溶融シリコンをそのまま結晶化するので製 造に掛かるエネルギー消費を極めて小さく勝することが 能となる。
( 3 ) しかも生成したシリコンは多結晶から、 単結晶に近い結晶性の良好な 態 とすることが出来、 それ故 «物も極めて低くすることが出来るようになる。
(4) 反応生成物である塩ィ【 鉛は液体としてそのまま溶融塩電解により原材料 である亜鉛に戻すと共に、 髓は四塩化珪素 料としてリサィクルするように るこ とも可能で、 このような構成とすると、 殆ど麵物を出さずにすむ。
本発明は第 3に、 四塩化珪素と亜鉛とを反応炉内において 目反応を行わせ高 « 多結晶シリコンを製造する方法において、 前記気相反応を 907〜1410°Cの内部温度を 有する前記反応炉内にて行ってシリコン結晶を析出せしめた後、 該反応炉内温度を 1, 410°C以上に して該結晶シリコンを溶融し、その後融液として反応炉外の容器中 に移液し、該容器内で 1410°C以下に冷却して固化又は再結晶化することを Μとする 多結晶シリコンの 法 (以下第 3発明という) である。
第 3発明でも次のような効果が得られ、 これらによりエネルギー面及 mi¾面から 特に優れたバルク多結晶シリコンを得ることが出来る。
(1) 微の 目反応によるシリコン S¾iでは、 得られるシリコンが ¾、末状とな つて反応炉内壁に付着するため、 内壁からの分離が' Milで該分離に伴って不純物の混 入が顕著に起こっていたが、 第 3発明では生成シリコンを炉中で融体化し、 しかる後 に融液として取り出し固化乃至再結晶化する事によつて、 高艇シリコンのバルク結 晶を得ることが^ I能となる。 従って太陽電池等を製造する多結晶シリコンをパルクと して連続的に高効率で難することにが出来るので、 シリコンの歩留まりが極めて良 くなる。
(2) シリコンの精製、 §¾ が実質的に反応炉内で出来、 製品は^晶として得 られるので、 製品品質が ι¾く、 且つ遙^!転力河能であるため! ¾tにかかる手間も最 小限に押さえることが出来る。
( 3 ) 反応系は高温を傲寺したまま連^!転が T能等シリコンの製造に掛かるェ ネルギー消費を極めて小さくィ ¾#することが出来る。
(4) しかも生成したシリコンは、 従来の同様なプロセスではほぼ非晶質であつ たものが、 結晶性の良好な多結晶であり、 性と、 エネルギー効率に優れている。
( 5) 反応生成物である塩ィ ¾鉛は により原材料である亜鉛に戻すと共に、 髓は四塩化鶴麟としてリサイクルするようにすることも可能で、 このような構 成とすると、 殆ど^物を出さずにすむ。
本発明は第 4に、 高純度シリコンの製造に当たり、 塩化亜鉛雰囲気中で四塩化珪素 ガスと亜鉛ガスとを反応させてシリコンを生成させ、 該シリコンをシリコン溶融温度 以上に されたシリコン ^槽に導き、 冷却 1匕することを [とする高純度シリ コンの^ 法 (以下第 4発明という) である。
第 4発明でも次のような効果が得られ これらによりエネルギ一面及 rm¾面から 特に優れたパリレクシリコンを得ることが出来る。
( 1) 第 2発明の場合と同様に、 シリコンが反応溶融炉の内壁に付着することな く謹できる。 従って太陽電池等を amするための結晶性シリコン バルクとして高 効率で ι¾ϋすることが出来るので、 シリコンの歩留まりが極めて良くなる。
(2) 得られる製品の品質が ぐ 且つ 河能であるため織にかかる 手間も最小限に押さえることが出来る。
(3) 反応系は高温を保持したまま 転が^ r能等シリコンの製造に掛かるェ ネルギー消費を極めて小さく i¾tすることが出来る。
(4) しかも生成したシリコンは、 «の同様なプロセスではほぼ非晶質であつ たものが、 結晶性の良好な多結晶であり、 安定性と、 エネルギー効率に優れている。
(5) 反応生成物である塩化亜鉛は雰囲気ガスとして使用でき、 殆ど 物を出 さずにすむ。
本発明は第 5に、四塩化珪素を原料として高 «シリコンを製造するに当たり 1 ) 反応炉内塩ィ [^鉛ガス中で四塩化珪素と金属亜鉛を mi目で MJ^させる工程と、 2) 生 成した金属シリコンを融液の状態でガスと分離し、 3) 塩 f ffi鉛ガスの"^を分離し 御して液状にする工程と、 4) 液状の塩ィ 鉛を して;^ガスと溶 MM铅を生 成させる工程と、 5) 生成した溶蔓極鉛を加熱気化し、 反応炉に送る工程と、 6) 電 解により発生した:^ガスを滅シリコンと反応させて as¾四塩化珪素を生^- るェ 程と、 7) 該繊四塩化珪素を蒸留精製する工程と、 8) 精製四塩化珪素を気化して 反応炉に送る工程とを含んで成ることを M [とする高 シリコンの 法 (以下 第 5発明という) である。
第 5発明でも次のような効果が得られ、 特に徹から最も簡単な反応で、 最もエネ ルギ一の消費が少なくて済むが 匕が困難であった、 四塩化 a¾の亜鉛による還 元法によるシリコンの製豊を可倉 gにでさる。
( 1 ) 半 グレードとして使用できる、 高艇シリコンが容易に iSiできる。
(2) 高 を勝したままで全てのプロセスを行うことにより、 «の亜 法によるシリコン難よりも更に省エネルギー化をはかることが 能となる。
( 3 ) プロセスの簡易ィ匕を図ること力河能となる。
(4) 高 応にもかかわらず、 反応炉を含む^ t設備の消耗を極端に減らし、 製 品 i荬を極めて高く することカ^ J肯となる。
本発明は第 6に、 四塩化珪素と亜鉛を 目で反応させて固体ないし液体のシリコン と気髓ィ ¾鉛を得るシリコン^ ϋ用反応炉において、 反応炉部とその下方にあるシ リコン貯留部からなり反応炉に反応ガスの入り口と反応で生成した塩 ffi鉛ガスの出 口を有し、 更に反応炉内に反応により生成した固体ないし液体シリコンを捕集する加 «冓を有する耐熱 .導電 f生のトラップを有し、 反応ガスの供給中或いは供給 ί亭止後 に該トラップをシリコンの溶融 以上に加熱して生成したシリコンを液状として後 シリコン貯留部に送るようにしたことを特徴とするシリコン製造装置 (以下第 6発明 という) である。
第 6発明でもエネルギー面及! ^面から特に優れたバルクシリコンを得ることが 出来る他、 次のような効果が得られる。
つまり第 6発明により、 «έ*針状の微細結晶しか得られないので高 匕が困難と された四塩化珪素を 料としたシリコンの a¾aにおいて高! ^の塊状の結晶が得られ る。 またこれにより、 消費エネルギーはシリコン 四塩ィ匕珪素の反応が極めて早く、 また一方的であり、 また四塩化珪素 +亜鉛 シリコン +塩化亜鉛も気相反応では シリコンのみが系外に出るので極めて早いしかも一方的な反応であるので、 装置が極 めて小型であり、 しかも反応が早く纖能力が極めて高いという効果と共に、 消費ェ ネルギ一が極めて小さく計算上はほぼ 1/10で良いという多大なる省エネルギー効果 がある。 更に反応 をシリコンの融点より低くしたことによって、 反応炉内壁とシ リコンの反応の可能性が大幅に減つたこと、 またシリコンを炉内 する時間を最小 としたことに炉設備そのものの赫が飛躍的に默できるように成り、 m にでも耐えられるようになつたという工業的に大きな意味を持つ効果が得られる。 本発明は第 7に、 四塩化珪素と亜鉛を気ォ目で反応させて固体ないし液体のシリコン と気纏 ffi鉛を得るシリコンの S¾iにおいて、 該反応を行う反応炉内に反応で生成 した固体ないし液体シリコンを捕集する耐熱 ·導電' I生のトラップを設置し、 反応ガス の供給中或いは供給停止後該トラップをシリコンの溶融温度以上に加熱して該生成シ リコンを液状として 回収するようにしたことを特徴とするシリコンの製造方法 (以下第 7発明という) である。
第 7発明により、 実質的に第 6発明と同じ効果が得られる。
本発明は第 8に、 四塩化珪素と亜鉛とを反応炉内において ^ffiM ^を行わせしめ高 謹シリコンを $¾tする方法において、 反応 をシリコンの鬲 より低くするとと もに、 反応中にシリコンを大気に接触させることなく、 生成するシリコンを塊状又は 溶融状として得ることを霞とする高純度シリコンの 法 (以下第8発明という) である。
第 8発明では、 をシリコンの融点より低くしているため、 生成シリコンが 固化せず、 実質的に反応炉の内壁に付着することがなぐ 更に反応中に^に撤し て酸匕されたり不純物混入が こることがないため、 高純度シリコンを高歩留まりで 難できる。
本発明の上記及び他の目的、 態様及び利点は、 弓 Iき続く説明により更に明らかにな るであろう。 図面の簡単な説明
図 1は、 第 1発明のシリコン製造工程を例示するフローチヤ一トである。
図 2は、 第 2発明のシリコン製造工程を例示するフローチャートである。
図 3は、 第 3発明のシリコン製 程を例示するフローチヤ一トである。
図 4は、 第 4発明のシリコン製造工程を例示するフローチヤ一トである。
図 5は、 第 5発明のシリコン製造工程を例示するフ口一チヤ一トである。
図 6は、 第 6発明のシリコン製造装置である反応炉のー態様を例示する概略縦断面 図である。
図 7は、 図 6の反応炉を含むシリコン製造工程を例示するフローチヤ一トである。 図 8は、 第 6発明のシリコン製造装置である反応炉の他の態様を例示する概略縦断 面図である。
図 9は、 第 6発明のシリコン觀装置である反応炉の更に他の態様を例示する概略 縦断面図である。 発明を実施するための最良の形態
第 1発明
第 1発明の一態様として、 多結晶の高 mシリコン、 即ちパルク高纖シリコンを 四塩化珪素と亜鉛の^!目反応によって得る際、 »J床式、 外部加熱式口一タリーキル ン型又は固誠式の反応炉を用いることによって連^ aつ小型化し、 設備費の低減 と 要員の軽減を図ると共に、 ; に副生する塩 {bffi鉛を蘭により亜鉛及 として回収し、 亜鉛 原料として、 又鶴は金属シリコンの纏化用原料とし て再使用して、 目亜 |¾ ^法による太陽鹭池用等のシリコン難が難できる。 更 に、 システム系外へ不要物質の排出を基本的にはなくすことにより低コスト化と環境 に優しいことを両立させた製造システムが提供できる。
第 1発明は前述した構成を有し、 四塩化珪素と亜鉛との^!目反応により生成するシ リコンを種結晶シリコン上にそのハビッ卜に従って生成させる事により高結晶度のパ ルク多結晶シリコンを得る事が出来る。 またシリコン反応後の生成ガスである塩化亜 鉛の一部は循環ガスとし、 これを反応速度の制御用として使用しても良ぐ 過剰分は 液化分離により回収し蘭により原料として、 再循環することによって系外への排出 物を実質的に無くし、しかも原料を 100%棚に使って多結晶バルクシリコンを得るこ とが出来る。
つまり通常の C VD (Chemical Vapor Depos i t ion)法に依る薄膜形成法では 目で反 応を起こさせて反応物を基板上に生成させることにより薄膜状の反応物を得ることが 出来るが、 この i その反応物の結晶性は極めて悪ぐ 非晶質あるいは結晶で生成し てもその結晶子サイズはせいぜい 50imm¾で、 極めて活'性で,不安定であるので、 こ のまま製品としてのシリコンとすることは出来ず、 再加工によってバルク状のシリコ ンとすること力必要である。
第 1発明は、 バルク状シリコンを得るために «I床式、 外部加熱式ロータリ一キル ン型又は固定床式等の反応炉を用いることによりプロセスの改良を目指したものであ る。 ノルク形戯件を舰化すること、 反応炉内に予め難晶を配することにより、 さらに Ί 好ましくは反応炉内に反応生成物である衞 1 ^鉛ガスを残留させることによ り反応藤を制御して、 その状態に従った、 すぐれた結晶性を Tるパルク結晶を形 る。
つまり を亜鉛の沸点 907 以上、シリコンの溶融? 1, 410 以下とすると共に、 反応ガスを塩化珪素、 亜鉛、 並びに塩ィ 鉛とし、 反応炉内に結晶性の優れた觀晶 を置くことによって高度な結晶性を^ Tるバルク結晶が得られる。 この理由は明確に はなっていないが、 通常の結晶成長でも優れた結晶性を; る種があるとそれに従つ て結晶性の優れた、 あるいは同じ方位の結晶が選択的に析出する事は良く知られてい ることであり、 これに 910°C以上の高温で、 ^ガスの 下では、 結晶性の良好な 結晶の析出が選択的に起こると共に、 結晶怃態の悪い活性な微粒子は容易に再反応を 起こして塩化 にもどってしまうことカ堵えられる。 これらの組 ^"により結晶性 の良好なシリコン結晶が^ "Tると考えられる。 但し、 あまり高温であると、 材質選 定上の問題が解決できかねるため、 反応 は 1,200°C以下とすることが望ましい。 第 1発明では反応ガスとしての四塩化珪素と亜鉛とを気体で反応炉内に向流乃至併 , 流的に供給する。 が 910°C以上では四塩化珪素も亜鉛も蒸気であり気体である。 これに対して反応生成物である塩ィ 鉛も沸点が 732 であって気体として ¾1 "る が生成するシリコンは固体であるので雲吉晶' を 910°C以上に保つと純粋なシリコ ンだけが析出する。 ただ、 通常では、 生成したシリコンはいわゆる CVD法生成物と 同じであり、 非晶質か、 たとえ結晶化していてもその結晶子サイズは 50〜100nm程度 という極めて活性な範囲にある。 析出シリコ の結晶性をより高度にして安定化する ために、 ここでは反応炉内にあらかじめ ®結晶となる粒状、 砂状或いは 状の多結 晶シリコンを存在させ、 その表面にシリコンを析出させるようにする。 これにより結 晶性の良好なシリコンのノ レク結晶を形成することが出来るようになる。具体的には、 種結晶 を 910〜1, 200°Cに搬、望ましくは 950〜1, 150 に i¾tし、麵床式の場 合、 この種結晶表面に四塩化珪素と亜鉛ガスを下部より並流的に吹き付ける。 この場 合、 四塩化珪素と亜鉛との反応は極めて早いために、 結晶性の舰なシリコンを得る ためには反応速度を適正化する必要があるので反応生成物である塩化亜鉛を共存させ る様にすると共に圧力を制御する。
つまり本シリコン生成の反応は
ϋδ^ SiCl4 + Zn 4» ZnCl2 + Si I
で され 可 応であるので、廳である SiCl4や Znの相文 を増力 ITTると反応 ½寄りに進む、 つまりシリコンの生成 が、増 ftrtる。 また、 反応炉内の ZnCl2の Mltが増力 PTると反応 が遅くなる。 尚ここでシリコンは固体であり系外に出ると 考えて良い。 又圧力を高くすることにより、 それを擬口する方向に が むために 目的反応搬が大きくなり、 圧力を低くすると反応避〖¾1くなる。 反応炉内の圧力 は 1から 5 ^iffiS^に加圧することが望ましい。 また供給ガスは理論誠でも良いが 操作性の点からは ¾έ¾のバルク状シリコンを得るのとは異なり、 ここで 鉛を理論 誠よりわずかに多くしておくことがよい。 つまりわずかに 鉛の が、 分 解して生成した驢を吸収し、 ^^が生成したシリコン薄膜中の結晶性の不十分 な部分を塩化珪素として浸食することを防ぎ結晶性の良好なシリコン膜を得ることが 出来る。但し、 四塩化 ¾ ^を i ¾に加えても本プロセスが航すること うまでも ない。 なお供給ガス並びに雰囲気温度はガスが安定的に存在できる温度で良く、 1,000Cが、よい。
薄膜結晶とは異なり、 ノルク結晶を成長させるには、 上記条件にて、 粒状、 砂状或 いは薩状の単結晶乃 S 結晶の高 «シリコンを難晶として反応炉内に予め ¾Λ しておくことにより、 反応により生成したシリコンがこれら ®結晶上に積層してバル ク結晶として取り出すことが^ r能となる。 但しこの:^、 反応 3§¾は薄膜を得る^ に比し相当速くとも良好な結晶が得られることから^ ¾範囲は同様であっても、 上記 に示したように反応ガスと生成ガスを共存させた上で減圧でなく、 加圧状態で運転す ることが好ましい。 これらは目的とする結晶と運 ¾ ^件によって選択すれば良いこと は言うまでもない。
この様にして反応させた後の反応ガスは塩化亜鉛と亜鉛又 ¾ /及び四塩化珪素の混 合体であるが、 反応炉から を取り出して、 を塩ィ 鉛の沸点である 732°C以 下、 望ましくは 650°C離まで下げることによって塩ィ 鉛は液体として分離回収す ることカ塑ましい。 残った四塩化珪素は 料ガスとしてリサイクルすると共に、 塩化 亜鉛は 装置に送って離により鶴と亜鉛に^^、 亜鉛は原料として辩 U用し、 は四塩化珪素の i¾iに使うことも出来る。
当該塩ィ ffi鉛の電 は一^ i ¾鉛を ί^¾して固体で取り出してからでも良い が、 液体として取り出した塩化亜鉛をそのまま^? Ifに送りいわゆる溶融塩 法に よって德することが出来る。 底に亜鉛取り出し用のドレインを設けた m«の底面 の壺状部を生 β鉛溜めとした^ ftに該塩ィ ffi鉛液を送り、 を行う。 陽極から ガスが発生するのでこれを上方に集めると共に、 程の四塩化珪素織装置 に送り、 壷部にたまった us生成物である亜鉛〖¾ϋドレインを通じて取り出し、 再
JtH料として使用する。 これにより、 殆ど 物無しに、 パルク多結晶シリコンを製 造する事力 ¾B来る。
又、 跡炉上部に循環ガスと生成シリコンの気体'固体分謹を設け、 循環ガスに 伴って上昇する微粒シリコンを分離し反応炉へ戻す事と、 これら微粒シリコンが 結 晶となり流動床を形成するため、 新たに種結晶を加えることなく連^ s転が 能であ り、 生成した粒 激品シリコンは反応;^ T部より不連続的に抜き出せばよい。 尚、 こ の気体 .固体分離槽に関しては構造上の指定は特になく、 反応炉の 1から 5倍程度の 空隙を^ gするだけでその目的は充分に果たされる。
反応炉及びこれに付^ るガス循環系統、 製品抜き出し系統に翻する材質は、 製 品シリコンへの汚染を防ぎ且つ高温の腐食性のガスに耐える事が重要な点であるが、 この為には C VD法により予め内面をシリコンコ一ティングされた反応炉及び/又は 循環ガス系 .製品抜き出し系 を用いる事が極めて ¾である。 第 2発明
第 2発明では、 高純度シリコン、 即ちバルクの高請シリコン結離を四塩化藤 と亜鉛の 目反応を使って得るにあたり、 プロセスを単純化すること、 原材料のリサ ィクルをはかることによるプロセスのクローズド化を可能とするによって、 より経済 性に優れた、 また、 より高鍵のシリコン結晶の^ 法を提供する。
第 2発明は、前述した主たる態様 に、 ( 1 )四塩化珪素と亜鉛とを内部 ϊ¾ 1200 から 1600° (:、 内壁 を 1410°Cから 160(TCに した反応溶融炉内において 目反 応を行わせしめ溶融シリコンと塩 i M鉛を得、 該溶融シリコンを纏液化し、 清澄炉 内にて账下で脱ガス処理を行った後に、聰等の容器に移し徐冷'結晶化する方法、 (2) 反応溶融炉としては旋回反応溶融炉を翻し、 四塩化珪素と亜鉛とを内部、
1200から 1600°C、 内壁温度を 14101:から 1600でに保持した該炉内において気相反応 を行わせしめ溶融シリコンと塩ィ tffi鉛を得、 解炉で溶解し均一化した後、 該溶融 シリコンを清澄炉に移し 下で溶融シリコン中のガスを除去した後、 TO等の容器 に移し、 御、 結晶化する方法する態様を^ る。
この態様では、 旋回反応溶融炉を麵し、 炉内で、 反応ガス並びに反応生成物を回 転することによって、 反応を均一化すると共に、 生成した霧状の液体が Sいに衝突す ることにより、液滴を形成させて分離し、系外に取り出す。この手法を用いると共に、 雰囲気ガスを反応生成物である塩 "ί^Ε鉛とすることによって不純物の^ λを完全に防 ぎ、 また液状シリコンからの結 匕によって、 ノルク状、 また必要に応じて高純度シ リコンのィンゴットを直接製造すること力 きる。
第 2発明では、 四塩化珪素と亜鉛の反応は反応溶融炉を棚して行うが、 この反応 溶融炉の部分の は 1200 から 1600°Cであり、それを できることが必要である。 但し、 生成したシリコンが内壁に付着しないよう内壁 をシリコンの融点以上又内 壁が浸食されない である 1410°Cから 1600°Cに する。また炉からの不純物 ίΜλ を防ぐために炉内表面材質は反応ガスに対して稀性であることが必要である。 材質 としては特には指定されないが、 きわめて^!性であり、 しかもたとえ反応が こつ ても反応物質と同じで不純物とはならない 5¾ガラス製の内張を ることが特に好 ましい。 又、 工作性が極めて良ぐ 且つ反応性を有しない酸化マグネシウム製の内張 を使用することも好ましい。 反応溶融炉の炉内温度は通常シリコンの融点である 1410°C以上で運転されるが、 反応溶融炉内では生成シリコンの粒子がきわめて小さい t
ので、 1200°C®! でも溶融 態を搬し、 旋回反応中で液滴に成長していく。 ただ、 液滴に成長していく過程で、 "^が結晶化して分离 ftる可能性があるので、 融点以上 の に ί 寺した再溶解炉で溶解を行ない、 溶融シリコンとして次工程に進める。 反応ガスは四塩化珪素と亜鉛ガスであるが、 これだけでは
反 SiCl4 + 2Zn - 2ZnCl2 + Si
に示されるごとく、 m¾音! 5分では、 3 ^から 2 のガスが生 る反応となるた めに大幅に圧力の低下が こるので、 ここでは雰囲気ガス中にこれらの反応ガスを送 り込むことにより圧力の変動を防ぐとともに、 反応避の調整を行う。 反応部分の圧 力は得には指定されず、 反応速度、 その滞留時間によって決めればよいが、 連続的な 反応物質の ¾λを考慮するとほぼ大 ^ffiとすることが望ましい。 なお雰囲気ガスは反 応生成物である塩ィ 鉛が望ましく、 これによつて反応の制御を併せて行う。 反応速 度条件などによっては塩ィ匕亜鉛雰囲気ガスに不活'性なアルゴンを一 ¾¾Πえることによ つて、 ^^動時その他の圧力変化をより少なくすることも可能である。 ここで反応 し生成したシリコン並びに塩化亜铅は下方にある再溶解炉に運ばれ、 をシリコン の融点以上で搬して完全に溶融体とした後、 さらに清澄炉に移動させる。但し反応 が十分に高い場合は必ずしも 解炉を経由しなくても、 直接清澄炉に送ること も可能である。清澄炉では下部の溶融シリコン部分はシリコンの融点である 1410°C以 上に保持するが、塩化亜鉛ガスが^ るガスゾーンの? をそれよりわずかに下げ るとともに のガスを抜くようにして脏とし、 シリコン液中に含まれる気体の脱 気を行う。
第 2発明では、 ガスとしての四塩化珪素と亜鉛とを気体で反応炉内に旋回流が 生じるように炉壁に向けガス供給する。 更に反応を均一に進めるためには、 これらの 原料は向流的に供給し、 乱気流的にして反応を^ ϋさせることが ましい。 これによ つて反応がより早く進み、 反応生成物である霧状のシリコンは中央部に集まるように なり、シリコン同士の衝突によって、液滴に成長し、重力により下方に^ Τしていく。 供給ガス は特には指定されないが、 炉内 の低下が こらないことが必要であ ること、 また供給反応ガスが安定的にガス 態をィ辦するために塩化珪素は lOO :以 上、 また亜鉛は 950°C以上であることが望ましい。
雰囲気ガスとして塩ィヒ亜鉛または塩ィ匕亜鉛と不活性ガスであるアルゴンガスの混合 ガスを使用できる。 塩化亜鉛は本シリコン製造における反応生成物であり、 不純物の 要素にはならず、 また製品であるシリコンに対しても殆ど影響しないので雰囲気ガス として である。 また塩ィ bffi鉛を反応場に置くことによって反応の制御が T能とな る。 すなわち本シリコン生成の反応は前述の反 J¾¾:で示され 可«応であるので、 料である SiCl4や Znの相謝鍵を増加すると反応〖坊寄りに進む、つまりシリコン の生成 が増力 ΙΓする。 また、 反応場内に ZnCl2の濃度が増加すると反応速度が遅く なる。 尚ここでシリコンは融体又は固体であり系外に出ると考えて良い。 又圧力を高 くすることにより、 それを緩和する方向に反応が進むために目的反応 ¾gが大きくな り、 圧力を低くすると反応 くなる。 この圧力の制御は塩イ^ E鉛によって制御 できる。 また当然のことながら、 反応 を高くすれば反応體が上昇する。 これら を考 ると本プロセスでは大赃か大躯よりわずかに高い離が望ましいが、 運 転条件によって決 ばよい。
このようにして反応が行われるが雰囲気ガスの回転によつて生成した 状のシリコ ン 初霧状の極めて小さい液滴であるが、 これがガス流の中で互いに衝突して、 成 長し、 液滴になると同時に、 下方に落ちていき、 下方にある離解炉あるいは清澄炉 に導かれる。 この時、 雰囲気ガスである塩ィ bffi鉛の^^も同様に離解炉あるいは清 澄炉に導かれ、 反応溶融炉部分から取り除かれることによつて一定ガス雰囲気に搬 され連镜的に反応を進めること力河能になる。
シリコンは離解炉で加温され 完全に溶解されると共に、 清澄炉に送られる。 尚 反応溶融炉の運転をシリコンの鬲! ^温度より高くしてシリコンが完全な溶融状態とな つている場合は清澄炉に直接持っていくことが出来る。 ただ通常は、 炉に入れ て、 十分に を上げ、 融体を均一にすると共に含まれる可能性のある、 ガスの"^ を^ ¾し、 清澄炉に送ること力望ましい。 尚清澄炉と反応溶融炉部分、 あるいは離 解部分 ルブによって隔離できることが必要な齢も出てくる。 つまり反応溶融炉 による反応は完全に連続的に行わせることが 能であるが、 シリコンの取り出し部分 がバッチ式となる場合で、 その際はその隔離を行う必要が こるのである。
清澄炉の構造 部にガスだめと排 «を有し、 下部が液だめとなったものであ る。 必要に応じて藏15の攪拌が行えるようになつていることが望ましい。 ガス部分の 排気はポンプでも良いが、 排気管の外側で、 i を塩ィ! ^鉛の沸点より低くして、 塩 ィ 鉛ガスを液化することによつても良い。これによつて極めて強い負圧となるので、 溶融シリコン中に含まれる塩ィ [^鉛などの反応ガスが (^される。 ガス^ ¾後にこの 溶融シリコンは結晶化のための職等の容器に移して、 結^匕させる。 結晶化条件は 特には指定されないが ¾虫体を保持しながら、 容器下部から御をしていき、 下部から 上部に向かって徐々に結晶化することによって、 融体中の不純物を上方に移動させる ことによって、 得られるシリコン結晶の精製をさらに行うことが望ましぐ いわゆる ゾーンメルティングと同等となり、 多結晶であっても結晶グレインを大きくして、 単 結晶に近い特性を与えることが出来るようになる。グレインの調整は により、 必要に応じてそれを調^-る。
7 により液化した塩 ί«Η泌要に応じて、 反応溶融炉の雰囲気ガスとして棚 することが出来るが、 大部分は系外に取り出して、 装置に送って蘭により髓 と亜鉛に する。 亜鉛は原料の ii¾ガスとして再利用し、 は四塩化珪素の ®ϋ に使うことカ出来る。
塩ィ 鉛の^^?は一度塩" m¾鉛を御して固体で取り出してからでも良いが、 液体として取り出した塩化亜鉛をそのまま電^ ϋに送りいわゆる溶融塩電解法によつ て することが出来る。 つまり底に亜鉛取り出し用のドレインを設けた電 の底 面の壺部を生^ ffi鉛溜めとした^ ϋに該塩ィ b¾鉛液を送り、 離を行う。 陽極から « ^ガスが出るのでこれを上方に集めると共に、 程の四塩化纏猶装置に送 り、 壷部にたまった麵生成物である亜鉛〖¾ϋドレインを通じて取り出し、 再颜 料として する。
これにより、 殆ど麟物無しに、 シリコン結晶を smする事が出来る。
すでに示したが、 反応溶融炉ばかりでなく、 再溶解炉、 清澄炉並びに、 これに付随 するガス循環系統、 製品抜き出し系統に麵する材質は、 製品シリコンへの汚染を防 ぎ且つ高温に耐え、 しかも高温の腐食性のガスに耐える事が颠な点であり、 ここで は嫌、接ガス部分を碟ガラスとすることによって、たとえ部分反応が こっても、 物とはならない工夫をしている。 但し、 このほかに上記条件、 特にシリコン融体 に対する反応性が全くない材料、 例えば ¾化マグネシウム等であればそれを する ことも可能である。 第 3発明
第 3発明は、 主に太陽電池用多結晶の高 シリコン、 即ちバルク状高 «シリコ ンを四塩ィ匕珪素と亜鉛の 目反応によって得るにあたり、 反応により生成したシリコ ンを最小限の工程で多結晶高謹シリコンとして得る方法に関する。
第 3発明は前述した主たる態様 に、 反応炉内にてシリコンを析出させた後に、 反応ガスの供給を停止したり、 反応炉内を直にしたりしても良い。 反応及び結^匕 終了後に Eにした反応炉内でシリコン融液中に溶解した不純物敝をガスとして取 り除くことができる。 更に該融液を職などの容器に新して徐冷することにより、 外気に取り出すことなく、 任意の大きさを^ る、 多結晶バルク状結晶として得るこ とが出来る。
第 3発明では、 シリコンの生成を四塩化珪素と亜鉛との反応によって行い、 生成物 としてシリコンと塩 f ¾鉛を得る。 この方法の «として、 ( 1 )反応が極めて早いこ と、 (2) また反応 範囲によるが 1,000°C以上では四塩化珪素、亜鉛、 及び反応生 成物である塩^ 16鉛が共に気体であり、 生成物であるシリコンのみが固体となり、 生 成したシリコンと]^料、 反応生成物である塩ィ! ^鉛との分離が容易であること、 (3) 反応生成物である塩ィ ffi鉛は直接の^?によって:^と亜鉛に^でさ、 :»は原料 のシリコンと反応させて四塩化珪素の^ に、 3» &はそのまま原材料として反応に 翻できるので、 ほぼ なクローズド化が出来る、等がある。その一方、 (1)生成 したシリコンは一般に粉末状乃至針状晶であり、 反応炉の炉壁面に付着しているため に、取り扱いに amを要すること、 (2) 中に取り出す時に、空気と触れて表面に 不純物となる酸素を吸着するので、 その駐、 精製を必纖件とするという問題点を 有していた。
第 3発明では生成シリコンを炉中で融体化し、 しかる後に融液として取り出し固化 乃至再結 匕する事によって、高!^シリコンのバルク結晶を得ることを可能にする。 翻する反応炉の形式は特には指定されず、 流動床式、 ロータリ一キルン いは 固定床式等のいずれでも良い。 この齢、 主に壁面にシリコンが形成され、 それを炉 中で溶融してしまうので、 溶融シリコンと反応が こらないよう、 内壁は石英ガラス や高純度酸化マグネシウムセラミックスであることが望ましく、 特に石英ガラス内張 を有することが望ましい。 この炉中に反応ガスである四塩化珪素と亜鉛をガス状で送 り込み反応を起こさせてシリコンと塩化亜鉛ガスを生成させる。 この時、 供給ガスが 四塩化珪素と亜鉛だけでは反応及び結晶化が早く進みすぎる可能性があり、 生成した シリコン中にこれらのガスがトラップされる可能性があるが、 反応生成物である塩化 亜鉛ガスを雰囲気ガスとして残すことによってこれを制御する事ができる。
ϋ ^は前述の通りで、 反応の確に関しても前述の通りである。
更に 炉内に予めシリコンの難晶を配することにより、すぐれた結晶性を有し、 含有^ Β物のより少ないバルク結晶を形成できるのも前述と同様である。
反応ガス«を ϋ& が早くなる条件、 つまり塩ィ 鉛の量比を減らすとシリコ ンの析出 くなり、'微細な非晶又は結晶の «となってしまう。 と同時に生成 シリコン中の^ β物が増力 [ΓΤる。 一方塩イ^鉛ガスが の 〖 生成が少なく なり結晶成長が優先される結果、 良く発達した針状晶が得られるが、 4¾*が減って しまう。 これ〖雄転 によっても変化するので 、 ガス繊を合わせて合目的な 忧態にしておくことが必要である。 尚、 反応炉内にシリコンの種結晶が入っていると そのハビットに従った成長があるようであり、 針状晶が得られ易くなり、 シリコン内 への不純物の巻き込みをより少なくすることが出来る。
このようにして反応炉内にシリコンを成長させるが、 ある 成長したところで、 反応ガスの供給を止め、反応が止まったところで、必要に応じて、雰囲気ガスを抜き、 炉温を 1, 410 以上、 つまり、 シリコンの融点以上に上昇させる。 この時、 雰囲気ガ スを抜き «とするには、 外部に反応生成ガス M¾§を言躍し、 谢 ffi鉛の沸点であ る 732°C以下とすれば未反応亜鉛も液化 され账となるため、 特に直ポンプ或 いはブロワ一等の手段を使うことなく達成可能である。
第 3発明の一態様として雰囲気ガスに反応生成物である塩ィ匕亜鉛を使用することが あり、 アルゴン等の不活性ガスを使用する齢との大きな差異が生じる。 以上によつ て析出或いは晶出したシリコンは加温により融液となり、 中に含まれる揮発性の未反 応物ゃ不純物がガスとなってシリコン中から除かれる。 又、 これによつて、 生成した シリコンは融液になると共に減圧下で含; る揮発物質が除かれることによって実質 的に精製されシックスナイン以上の高艇を^ るシリコン融液が生成すると共に、 職等に移液後、 結晶化炉に送られ勝される。 尚この時の はシリコンの融点で ある 1, 410°C以上であることは勿論であるが、 高温になるほど不純物の除去には ¾1 であるが、 シリコンの蒸気圧が! ¾くなってしまいシリコン自身が揮散してしまうこと による収率の低下が起こるので、 上限は 1,600°Cが好ましい。 尚 5¾ガラスを炉内壁 に使用した場合、 1, 600 以上では炉内壁の損傷が極端に早くなるという点からも 1, 600°C以下であることが ましい。
このようにして精製し溶融化されたシリコン融液は、 職或いは結^匕容器に入れ て徐冷して結曰 匕する。 結晶化の条件は特には指定されないが、 1,300〜1,400 、 つ まりシリコンの固化 ょりわずかに低い?雖に礙した應、 或いは結^匕容器に 注いで結晶化を行うこと力壁ましい。 つまり、 糊藤が早いと、 結晶にひずみや割 れが こりやすくなると共に、 グレインサイズが小さくなり、 太陽 池用等として十 分な特性を示しにくくなる場合があるので注意を要する。
一方第 3発明の他の態様として、 反応生成物である塩ィ [^鉛は液状を保つ雕で溶 融塩電解を行い、 陽極で髓を生成し、 隨に亜鉛を生成させること力 きる。 塩化 亜鉛の電^ は一度塩ィ 鉛を冷却して固体で取り出してからでも良いが、 反応炉 の赃時に液体として取り出した塩ィ ¾鉛をそのまま電讓に送りいわゆる溶融塩電 解法によって することが出来る。 底に亜鉛取り出し用のドレイン抜き口を設けた 電^ ϋの底面の壺部を生成亜鉛溜めとした電嫌に該塩ィ匕亜鉛液を送り、電解を行う。 陽極からは髓ガスが出るのでこれを上方に集めると共に、 ί紅程の四塩化珪素觀 装置に送り、又底部の隨生成物である亜鉛〖Μϋドレイン抜き口を通じて取り出し、 再麵料として^ fflできる。 これにより、 殆ど麟物無しに、 シリコン多結晶を得る こと; ^出来る。
反応炉及びこれに付»るガス循環系統、 製品抜き出し系統に使用する材質は、 製 品シリコンへの汚染を防ぎ且つ高温の腐食性のガスに耐える事が重要な点であり、 特 に反応炉はシリコン融液が主に炉壁面に接触して移動するようになるのでシリコン融 液とも反応しないことが M であり、 この為には壁面は ガラスや高 «酸化マグ ネシゥム、 特に石英ガラスが極めて^)である。 第 4発明
第 4発明は、容易な方法によって、シリコンの继から結晶化までを一貫して行い、 空気中への中間的な取り出しなしに、必要な結晶あるいは塊状体を遙镜して I ^でき、 更に 時の S 設備からの不純 «λを最小限とすると共に、 觀設備の消耗を最 小限として、 W命の設備を与えることのできるシリコンの製造方法に関するもので ある。 第 4発明は、前述した主たる態様 に、 ( 1 )高 J シリコンの S¾iiに当たり、塩 ィ 鉛雰囲気中で四塩化珪素ガスと亜鉛ガスとを反応させてシリコンを生成させ、 該 シリコンをシリコン溶融温度以上に倒寺されたシリコン^ f槽に導き、 溶解ガスの脱 ガスを行った後に単結晶製造装置にて単結晶シリコンとして取り出すことを特徴とす る高艇単結晶シリコンの難方法、 (2)高繊シリコンの織に当たり、 m ガス雰囲気中で四塩化珪素ガスと亜鉛ガスとを反応させてシリコンを生成させ、 該シ リコンをシリコンの溶融離以上に麟されたシリコンィ辦槽に導き、 溶解ガスの脱 ガスを行つた後に冷却槽に送り多結晶シリコンとする事を特徴とする高純度シリコン の製^^法、 (3)高純度シリコンの製造に当たり、塩化亜鉛雰囲気中で四塩化珪素ガ スと亜鉛ガスとを反応させてシリコンを生成させ、 該シリコンをシリコン溶融温度以 上に保持されたシリコン i¾t槽に導さ、 溶解ガスの脱ガスを行った後に半急冷して粒 状シリコンとする事を特徴とする高純度シリコンの製造方法の各態様を含む。
第 4発明では、 四塩化珪素の還元によるシリコンの製造にあたり生成したシリコン を ϋ体とすることによって、 従来問題となっていた生成シリコンの形状が微粉体とな り、 比表面積が大きくなる事を防ぎ、 表面吸着を防ぐと共に、 融体の 4え態を保ったま ま、 外部に取り出すことなく、 従って不純物混入の問題が こらないこと、 更に融体 のままで製造時に混入するガス等の可能な不純物を除去した後に直^晶化装置、 あ るいは高純度シリコン塊製造装置に送ることによって必要な熱エネルギーを最小限に すること力河能とする。 またこれらを行う反応装置並びに生成したシリコン 装置 の壁側をシリコンの融点より低く ί ^することにより、 壁表面に固体シリコンが析出 して、 融体シリコンは反 、 麟槽と直接機しないので、 不純物の混入を防ぐと 共に、 反応槽、 i¾f槽の消耗防ぐことが出来るようになり長期間にわたり安定したシ リコンの が T能となる。
. 讓シリコンから高謹シリコンの生成に当たって、 ここでは IT料金属珪素と驢 を反応させて四塩化珪素とし、 必要に応じて蒸留を行って不純物の^ ¾を行った後、 これを 塔に送り亜鉛による^ ΰを行う。反応塔内部は 1000°Cから 1500°Cに麟さ れ雰囲気ガスとして塩ィ 鉛を充填しておく。尚 1000°Cから 1500°Cでは、雰囲気ガ スの塩ィ! ^鉛、 四塩化珪素並びに、 材である亜鉛は気体である。 従って四塩化珪 素は気体のままこの温度下で 目反応を行うことによって珪素が析出する。 つまり反 Ji£¾:、 SiCl4 + Zn Si + ZnCl2の反応では Siのみが液体あるいは固体としてガス反 応系から除けるので、常に Siの生成反応が進む様になっており、反応 カ槁いので 反応速度が極めて速くなる。 反応藤の調整は雰囲気ガスである塩ィ bffi鉛の分圧のコ ントロールによる。 特には指定されないが塩ィ! ^鉛雰囲気は大気圧より若千高い程度 カ靈である。
供給する四塩化珪素と亜鉛の比率は理論値割合で良い。 またいずれかを にする 齢 鉛を翻とすることがよい。 つまり、 四塩化珪素が »Jになると 四塩化 珪素の一部が生成したシリコンと反応して二塩化珪素になる可能性がありわずかでは あるが ¾j率が低下する。亜鉛が顧な:^は生成物に問題ないが、 雰囲気ガス誠が 崩れる可能性があるので、 定期的に雰囲気ガス分析を行い、 ガスの導 λ*を制御する ことが望ましい。 尚雰囲気ガスである塩ィ 鉛ガスは反応と共に増加していくので部 分的に抜くことによって反応 内の圧力を調^ ると共に、 抜いた塩bffi鉛ガスは冷 却し、 液化して、 ttMに送り、 を行い、
ZnCl2 Zn (麵、 液 t¾ + CI2 (陽極、 ガス ^
とし、 Znはそのまま加熱蒸発させ^ £剤として反 ji ^に、 Cl2は原料金属纏と反応 させて四塩化珪素を生^ "るのに棚する。 これによつて副原料である、 Zn及び Cl2 は反応系内にとどまりリサイクルされるので、 系を殆どクローズド化することが出来 る。 なお反鎌内壁と反応物質との反応により反応 の消耗が こったり、 製品の品 位の低下が こったりすることのないように、 反応 νϋの壁面 をシリコンの融点よ り低く保つことによって内壁面に Hのシリコンを析出させ、 これを実質上の反赚 内壁とすることが出来る。 この^ β¾外部からの加熱を弱くし、 反応ガスそのも のを加熱して循環することが望ましい。
反応槽内ではシリコンは先ず霧状で生成すると考えられ これが雰囲気ガス中で 徐々に «して反応塔の底部に集まり、 底部に されシリコンの融点よりわずかに 高い^^に麟された、 シリコ 槽に移動し、 液状となって搬される。 ここで 使用するシリコン^槽は底部に液流通路を設けた二槽式となっており、 反応塔の対 抗側にはシリコン融液の取り出し口が設けられ又アルゴンは 10—1から 10_3torr難 の減圧アルゴンガス雰囲気となっている。 更に必要に応じて底部にアルゴンガスの供 給口を設けることが出来、 反応 ί剳則に鍾したシリコンが液 ¾1路を通って、 反応塔 対抗側に移動し、 底部からアルゴンガスをバブリングすることによって、 液中に残留 するガス成分が'除かれ、 高純度のシリコン融液となる。 シリコン保持槽の温度はシリ コンの融点より当然高く保たれるが、 その^、 反 J¾fと同じく融体のシリコンと保 持槽内壁との反応を防いでシリコン融体の幢を搬すると共に、 内壁の保護のため に、 内壁自身の? をシリコンの融点より若干低くするようにすると良い。 つまり保 持槽それ自身を しながら融体シリコンは誘導加謝去のようにシリコンそれ自 身を加熱する手段を取ることが ましい。 なお反 ί&ϋ、 ィ膽槽共にその内壁材料は特 に ¾ί旨定されないが、 シリカガラスであることが特に望ましく、 これによつてたとえ 反応を起こしてもシリコンそれ自身の純度にほとんど影響を与えないと言う があ る。
このシリコン融液を結晶成長装置に送ることによって所望の 6-ナインから 9-ナイ ン程度の高純度シリコンとなっているので、 これを一例としては二重 煱型単結晶製 造装置の外側職の代わりに使用し、融液を職本体に連铳的に送り所謂 CZ法により 単結晶弓 Iき上げを行うことによって、 亜鉛の偏析係数が 1x10— 5と非常に小さいことか ら、 少なくとも 8から 10-ナインの単結晶シリコンインゴットを得ることが出来る。 又融体を坩堝或い に入れて冷却することによって多結晶シリコンィンゴットを 得ることが出来る。 さらに〖鉢シリコン融液をアルゴンガス雰囲気中に勝さ 冷 によって冷却された銅製、 白金製或いはシリカガラス製等の円盤上 (遠心急冷装置) に飛散させることにより粒状シリコンを得ることが出来る。 なお製品となる粒状シリ コンの粒径は 1から 5腿纖が望ましいが、これ は回転する円盤の菌及ぴ ¾Tさ せるシリコン融液ノズル出口径の調整により容易にコントロールすることが出来るこ とは良く知られている。 第 5発明
5発明は、 出来るだけ単純なプロセスで、 消費エネルギーを最小として、 w シリコン融体を 镜的に得ること力河能な製造プロセスを提供するものである。
第 5発明は、 前述した通りの構成を有し、 最も »的であり、 高!^シリコンが得 られにくいとされる亜鉛^による四塩化珪素からのシリコン $¾iを高 目中で行 . うことにより、 また生成シリコンは系外に取り出すことなく、 実質的に融体で得、 直 接単結晶、 多結晶あるい 立状の結晶性シリコンとして、 得ることが出来る。
第 5発明におけるシリコン製造は、 のシリコンを 料としてそれを塩素ガスと 反応させた後に蒸留精製し、 それを 目として雰囲気ガスである塩ィ 鉛中に送り込 む事、 また ¾剤として亜鉛をガス状で同じく塩ィ kffi鉛ガス中に送り込むことによつ て、 目反応によって金属シリコンと塩ィ^¾鉛ガスが生成する。 反 は前述の通り. であるが、亜鉛の沸点が 907 であり、塩化亜鉛の沸点が 732°Cであり、また四塩化珪 素の沸点は 57. 6°Cであるので塩化亜鉛の沸点より高レ に保持することによって これら三者は 目に されまた生成シリコンはその融点が 1410°Cであるので固相 として析出する。 つまりこれを禾翻すると上記の反 ではシリコンが液ないし固相 として系外に出されるので、 反応は一方的に ZnCl2生成側に進んでいくことになる。 このように反応は一方的であり、 しかも高温で行うので反応雖は極めて早いので 反応炉部分は極めて小さくて良い。反応 Stを 1350 以上とすると、析出してくるシ リコンは極めて微細であるので液滴となる。 このようにして生成するシリコン液滴は 雰囲気ガスに比較して重いので、 反応' T方に し、 難し、 雰囲気 が 点以 下であれば塊状となるし、 融点以上であれば溶融状態として集まり下方にあるリザ一 バーに集まるように成る。 このように反応炉雄常の炉形式を取っていればよいが、 この難を加 ると共に、 炉壁と 物との衝突を最少とすることカ坷能な旋回溶 鬲 ΐ¾として示されるサイクロン:^:の炉を使うことによってより高 匕、 並びに 高能率が期待される。 すなわち、 サイクロン^;で雰囲気ガスヲ回転させ、 それとと もに反応ガスを回転させることにより反応物相互の纏が加速され に固体と成 りながら^ Tする。 反応炉の下方部分の をシリコンの融点より高く すると固 体化することなく融体のシリコンとして取り出すことが出来る。 一方の反応生成物で あり、 雰囲気ガスである塩ィ 鉛は反応によって増加した分だけ系外に取り出し、 沸 点以下に下げることによって融体とし、溶融塩離によつて、髓と亜鉛金属にする。 すなわち反1¾ ZnCl2 Zn + Cl2 (理論^? ME 1. 88V at 500°C) として陽極御 Jか ら ガスをまた,から亜鉛金属が得られる。
ここで得られた;^ガス〖^初の反応である 珪素と反応させることに依つて四 塩化珪素とする。 また亜鉛は融点が 419°Cであるので、 その? 以上で電解すること によって亜鉛融体として取り出し、 それを加熱気化して再び反応炉に送る。 これによ つて反応媒体である塩素、 亜鉛は系内でリサイクルされ、 全体としてはシリコンから 高純度シリコンを得るプロセスとなる。 尚原料としては原料金属珪素、 あるいは原料 金属珪素の一種としての屑シリコンを使えるが、 こ に珪石などシリカ (酸化珪 素) を使うことも出来る。 この^ 剤として炭素粉末あるいは一酸化炭素を加 えて? を 400°C以上に加熱しながら反応させればよくそれによつて、 本プロセスで 使うことも可能である。 しかし高繊品を得ること、 全体のマテリアルバランスを狂 わせる可能性があるので、 シリカを使う: t船、 あらかじめ外部で^! ¾して 料金属珪 素としてから、 本プロセスに麵することが ましい。
次に 料金属鶴を翻する例、 すなわち原料金属珪素粉末を謹ガスと反応させ る例を説明する。
この反応は非常に早く進むためにその形式は特には指定されないが、 IT料金属珪素 粉末と:^ガスを向流的に流して反応させる流動層プロセス、 或いはシリコンの固定 層中に;^ガスを流すことによって塩化珪素を取り出す方法を採ればよい。 反応温度 は 60 から 400°Cが望ましく、 此によって生成した塩化珪素は気体としてシリコンと 分離される。 この時にシリコンが する限り反応が、早いので、 ガスは存在しな いと考えられるが、 ガスが るとしても、 ¾ を 50°C以下に^することに よって、 髓は髓ガスとして、 また四塩化鶴は四塩化珪素液として分離される。 このようにして得た液状の四塩化珪素を蒸留して高 匕をはかる。 この条件は四塩 化珪素のみを気体として取り出されるのであれば特に指定はされないが、 常圧で 58°Cから 68°Cで蒸留する事により四塩化珪素のみを取り出すことが出来る。この四塩 化珪素はヒーターによって加熱して反応炉に送る。
一方反応炉は上記に示したように旋回溶融^:が望ましくそれによつて回転気流中 で四塩化珪素と亜鉛ガスを反応させる。此によって炉壁材料との纖が最小限となり、 不純物の 、 また反応炉の消耗が最小限となる。 反応炉中の雰囲気ガスは比較的安 定な高謎の塩ィ 鉛ガスを使用する。 此によって反応系内は反応物のみとなり他の 元素が全く入らない状態となるので、 高讀を衞できると共に、 それらの分圧を調 ることによって反応避を調 ることが出来る。 通常は雰囲赃力を 1から 5 赃とし、 雰囲気ガスである塩ィ ffi鉛ガスを 90%以上とし、 また塩化珪素に対して亜 鉛ガス量を理論反応量よりわずかに 0. 1%から 10%禾 くする。 此によって、 完全に 腐食性ヵ搞く、 また析出シリコンが ^化されるのを完全に防ぐことが出来る。 なお反応温度は 1350°C以上力望ましく、此によって反応生成物であるシリコンは微粒 態では少なくとも融体として雰囲気ガス内では極めて «し易くなり、 速やかに大 きな粒子に成長して、 反応 ' T方に集まる。 なお反応' T方では をシリコンの融 点である 141CTC以上とすることによって、融体を保持したままリザ一バーに送られる。 この反応炉はシリコンと反応しない物質で出来ていれば特に問題はなく、たとえば、 タンタ イリジウムなどの金属、 硼化ジルコニウムなどの耐熱セラミックスが使わ れる。 一方シリコン単結晶の成長に使われるシリカガラスは融体シリコンと反応して 反献 Si + Si02 2S10に示される様に、 消耗するが実質的に他の不純物金属が入 らないと言う があり、 使用力河能である。 また上記の様な反応物でも安定な運転 のためには反応炉の伊壁温度をシリコンの融点である 1410°Cよりわずかに低くして おくことにより炉壁の表面に薄い結晶性シリコン層を設けることが出来る。此によつ て反応ガスが炉壁と^ *することが無くなり、 炉壁の長^ M匕と製品への不純物の混 入を防ぐことが出来る。つまり反応炉自身の? は 1400°Cより低く保持し、雰囲気ガ スである塩化亜鉛を加熱ガスとして高温に保持する前述のように雰囲気ガス温度は 1350°C以上が望ましい。 It匕によって、 生成シリコンは融体で得ることが出来、 しかも 炉壁周辺はシリコン結晶で覆われているために不純物の混入がなく、 高純度のシリコ ンが得られる。 このようにして生成したシリコンは謹し、 大きな液滴になると共に 下方に移動し、 B虫点以下の温度で運転をしている場合は部分的に粒子になって落下し ていく。 この下方のサイク口ン部分の をわずかに上げる或いは雰囲気ガス を 1410°C以上とすることで液滴のまま下方に移動し、 シリコンリザ一パーに移動する。 このようにして^!犬で、 時として 立子としてシリコンがリザーバーに移動するが、 リザ一バーでは^ ¾をシリコンの融点以上に騰し、 液体として出来るだけ厚みの薄 液状で保持し、 シリコン中に含まれる可能性のある雰囲気ガスを P鉄する。 この時 に高純度のアルゴンガスをこの液体中に通しても良いし、 またリザーバーの雰囲気ガ スをその出口で冷却液化することによって負圧としてシリコン中から抜き出しても良 い。 なおリザーバー材質は融体シリコンが反応しない材質を使い、 ? 搬を外部加 熱によっても良いが、 一方反応炉と同じように、 リザ一バー本体の^ itをシリコンの 融点よりわずかに低く麟し、 融体シリコンを誘導加熱により加熱して融点以上に保 持することによって、 リザーパーが固体シリコンで覆われるようにして、 生成したシ リコンとリザーパー壁との直接漏を防ぐようにすることもできる。 この齢であれ ば、 リザーバー材質にシリカガラスなどを使うことが出来る。 またリザーパーをシリ コンとは実質的に反応しない、 タンタル、 ジレコニゥム、 ニオブなどの弁金属やそれ らの化合物、 たとえば谢匕タンタ !/ ^酸化ニオブなどの酸化物ゃ硼化ジルコニウムな どのセラミックスを使うことが、出来る。 このようにして液状で |¾寺したシリコンは必 要に応じて結晶化する事が出来る。
リザ一バー中のシリコンの ¾は 6-ナインから 8-ナインであり、此について以下に 述べる結晶化の過程で更に高謹化が図れる。なお徹は一度固体で取り出してから、 再 解を行っていた関係上そこで不純物のはいる可能性があつたが、 ここでは原則 として外音陳り出しがないので高繊を搬し、 更に結晶かで高«かが出来るので より高 匕が T能となる。
つまりリザ一パーと単結晶成長装置とを組み合わせる: ^リザーバーを二重坩堝の 外部として使うこと力河能であり、 結晶成長装置が単純に出来るようになる。 また多 結晶を作る齢は綱に入れて徐冷し、 結晶化させても良いし、 ゾーンメルティング 的に成長をさせても良い。 また平板状に引き上げていくことも出来る。 また^]装置 にて急冷して塊状のシリコン多結晶を得ることもできる。
リザ一バーから抜き取つた塩ィ 鉛ガス、 或い ¾»Jになつた雰囲気ガス分は抜き 出して、 ?御し液化して ¾ϋに送り込み、 蘭によって前述のように塩素ガスと液 状の亜鉛を得る。電解は原則として溶融塩電解により行うが 鉛の融点が 419でであ り、塩ィ bffi鉛の鬲 $^が 283°Cであるのでこれらより高レゝ? ¾が望ましぐ 460 か ら 550°Cカ璧ましく特に望ましくは 480 から 510 であり此により^ ϋの こは 融体の亜鉛が得られ 陽極からは気体の髓が得られる。 髓は上記したように 料 金属珪素の髓化に使い、 亜鉛は集めて加熱し反応炉で塩化鶴の ¾に使う。 なお に当たっては溶融塩ィ匕亜鉛のみを電解質として使うことカ坏純物混入を避ける点 から望ましいが、 電気抵抗が大きくなると言うことから、 補助^?質を加えることも 可能である。 通常は苛性アルカリ、 特に苛性カリを加えることによって^質の観 抵抗が大幅に下がり電解 を低下させ、 電力原単位を下げること力河能となる。 但 し補助 質が汚染の原因となる可能性があるので、 iMiを含めて特別な 意が必 要である。
なお 料金属珪素の;^化に当たって 料金属珪素の! ^が 98%から 99であり、不 純分を纏化する必要があり、 不純分は系外に取り出されるので、 その分系内の髓 が不足することになる。 この塩素の分だけ外部から髓を加える必要があるが、 ガスで加えても良いが、 ここで〖 部から高贿の塩化亜鉛を導入する事も出来る。 つまり塩イ^鋭を加えて »Jに^?を行うことによって必要量の:^の確保が出来る と共に、 翻分の亜鉛を系外に取り出す事によって、 合わせて系内の不純分の除去が 出来、 これによつてシリコンの觀を長期間に渡って連続して行うこと出来る。 第 6及び第 7発明
第 6及び第 7発明は、 前述の構成を有し、 これにより半連続的に四塩化鶴を原料 として高純度のシリコン塊または液状のシリコンを得ることが出来る。
第 6発明のシリコンの^ i装置は塩ィ ffi鉛雰囲気ガス中で四塩化珪素と亜鉛からな るガスを^^させ、 塩ィ! ^鉛ガスと固体あるいは半融体状のシリコンを得ること、 生 成シリコンは固体として反応炉内部にあるトラップ上に析出して反応ガス並びに雰囲 気ガスから分離されること、 また反応生成時には非常に微細な粒子または融体である 生成物シリコンを系外に出ないように設けられた実質的にフィルタ一の役目をするト ラップにとらえられる様にして、 反応炉部内に堆積させる様になつている。
更に、 これにより一定量の反応が完了すると共に反応ガスを排気してしまい、 その 牝態でフィルタ一部分を含むトラップをシリコンの鬲 $^、である 1410 以上に加熱し、 内部に生 積したシリコンを融体として反応炉部の下部に設けたシリコンの貯留部 に^ T、 貯留する。 このようにして貯留部内では塊状体として貯留されるが、 それを 定時的にそれを取り出し、 あるいは加熱し融体として含有ガスを脱ガス化して融体の まま、 あるいは再 m¾状化して取り出 菜にする。
これにより、 ¾έ¾、 得にくいとされた、 四塩化珪素を 料とした液状のあるいは塊 状の高! «シリコンを得ることが出来るようになる。 つまり、 魏法による四塩化珪 素からのシリコン^ gでは、 生成シリコンが微細な粒子であるが故に空気中に取り出 すことに生成シリコン表面が 化してしまいあるいは窒化してしまうことによって、 その後の溶解^ nなどが困難となること、 また表面への: w物吸着によって不純物レ ベルが上がってしまうことを見いだし、シリコンを塊状体、あるいは融体とするまで、 外気に曝させないことにより目的が達成できることを見いだして第 6発明に至つたも のである。
第 6発明のシリコン $¾t装置は^^して、 反応炉部と反応炉で生成したシリコンを 職する貯留部からなる。 反応炉は炉本体と炉内に設けられた、 耐熱性で導電性で、 しかも高温においてもシリコンと実質的に反応しないタンタルあるいはモリブデン、 またはそれらの合金からなる生成シリコンのトラップ並びに反応ガスの導入、 排出口 及び生成シリコン排出のドレーンからなる。 またこれにカロえて反応温度保持のための 加熱樹冓、 並びに生成シリコンを融体化し取り出すためのトラップ加 »ϋが含まれ る。 またシリコンの貯留部は融体シリコンの受け口と塊状シリコンの取り出し口、 及 び/又は液状シリコンの取り出し口、融体シリコンの取り出し口、必要に応じたシリコ ン融体の脱ガス用のアルゴンガス ノズル、 並びに加温設備からなる。
反応炉部は塑が Ήましぐ 融体シリコンが重力により貯留部に落ちるように貯留 部の上に位置するように識されること力望ましい。 反応炉部は上記に示したように 加隱冓を ¾ る。反応 はシリコンの融点である 1410°C以下、 また^!目反応を行 わせるために、 四塩ィ匕珪素、 塩ィ匕亜鉛、 亜鉛が共に 目である、 亜鉛の沸点以上であ る 907°C以上とする必要があり、 そのための加温が出来るようになっている。 また炉 壁部には生成シリコンカ權層され 貯留部への移送に当たっては壁部の? がシリコ ンの融点以上に上げられることが合わせて必要となる。 またトラップ部分は析出した シリコンを^:に融解する必要上、 少なくともシリコシの融点以上の温度が必要であ り望ましくは融点より ioo°c程度高い a eの操作により、 粘度の低いシリコン融体 としてシリコン好留部に送れるようにするためにトラップの加温は 1500°C程度まで 出来ることが必要である。 このためにはトラップ自身を発熱させた方が ましく、 ト ラップ自身に通電して発熱させること、 あるいはトラップが三^^状であれば誘導 加熱方式による発熱が ましい。 それにより、 炉体部分の温度をそれほど上げずにシ リコンのみを融体化できるので、 不純物の^ λの可能性を大幅に減らすことが出来、 高純度シリコンとして取り出すことが出来る。 このためにトラップの材料としてはシ リコンとその融点以上でも実質的に反応しない、 しかも融点が極めて高く、 安定で、 しかも導電性を^ る、 タンタル又はモリブデン、 或いはこれらを主とする合金であ ることが望ましい。 また炉壁材としてこのようであるが、 少なくとも反応温度におい てシリコンあるいは反応ガスとの反応がょいこと、 カ璧ましく、 炉壁材としては上記 タンタ !/^モリブデンの他に、 たとえ部分的に反応を起こし手も^ 屯物とならないシ リカガラス ¾ガラス) が望ましい。 この反応炉には原料である四塩化珪素と亜船 ガスの導入孔を有し、 反応ガスである塩ィ 鉛ガスのガス抜きあるい〖纖 鉛ガス の循環用のガス出口とガスの入り口が設けられている。 なお塩化亜鉛ガスは反応原料 ガスである四塩化珪素及ぴ 鉛ガスの希釈ガスとしてガス入り口の代わりにこれらの ガス供給口を使うこともできる。 反応炉部内に設けるトラップ材の材質は上述の通り であり、 タンタル、 タンタルを主体とする合金あるいはモリブデン、 モリブデンを主 体とする合金であり、 その形状は特には指定されないが、 最小限の必要性としては取 り出される塩ィ bffi鉛と共に生成シリコンが外部に抜けるのを防ぐための実質的にフィ ルターとして働く多孔材がある。 そ で特に指定されないが、 反応部分をおり囲 むように置かれたェクスパンドメッシュ,編みメッシュなどのメッシュ材やフォーム、 あるいは細いワイヤーを組み合わせたウェブなどを使う。 これらを反応炉内の反応部 分を覆い囲むように設置し反応により生成したシリコン粒 微粒による 降下に より液状で出てきたシリコンがこれらのメッシュあるいはウェブやフォームなどのト ラップ材に表面に付着する。 夕ン夕レゃモリブデンはシリコンとは反応しないこと、 またたとえ反応する要素があっても基本的には固体ー掘体の接着であるので反応する ことなく、 不純物の要因とはならない。 このとき同時に'炉壁にィ寸着するが炉壁を安定 なシリカガラスや、 上記タンタル、 モリブデンあるいはこれらの合金で作っておけば 反応を起こさないので安定である。
なお高温反応とはいえ四塩化珪素の分解温度までは至っていないので全く問題はな いが、 何らかの原因で自己^を起こす ¾ ^を考慮して亜鉛をごくわずか、 常に 1か ら 5 %禾1¾»』となるように亜鉛を入れるようにしておけばたとえ自己 を起こし ても他に影響することない。
このようにして析出させたシリコンはトラップ自身をシリコンの融点以上に上昇す ることで g|3座にシリコンは融体として下方に流れ、 下方に るシリコンの,聍留部に 流れ込み礙される。 なお炉壁もこのとき短時間 を 以上に上昇すればほとん どシリコンとの反応が起こることなくシリコンは貯留部に送られる。 なおトラップ材 の加熱はトラップ材がメッシュゃ多孔板であればそれに直接通電する事によつて行え るし、 ウェブやフォームなどであれば ¾:観電が困難となる:!^があるので、 その時 は、 反応炉部の外部に電源を設けて、 誘導加熱^:で金属部を加熱してシリコンを融 体化し、 貯留部に送ること力河能となる。 なお炉壁に付着しているシリコンは誘導加 熱 の: ^は自身発熱して融体となるが、 そうでない は、 シリカガラス炉壁を 棚する:^は、 外部加熱による融体化が必要である。 なおこのときに短時間ではあ るがシリカガラスとシリコンの反応が こる可能性があり、 SiOの生成の可能性があ るが、 短時間であり、 ガス状で排出されるためスペック上ほとんど問題にならないこ と、 また汚染されても SiOであって、 これは結晶成長で除かれるので問題はない。 貯留部は、 シリコンと原則反応しない材料で出来ていることが必要である。 また製 品シリコンの処理のためにやはり処理炉として使えることが必要であり、 そのための カロ «冓が必要である。 つまり、 シリコンの 以上で安定に運転できることが必要 であり、 1500°C離で使えることが望ましい。 シリコン貯留部分の材質は特には指定 されないが、 1500°C離の でもシリコンと反応しないタンタル、 モリブデン、 夕 ンタルを主とする合金、 モリブデンを主とする合金並びにたとえ反応しても不純物と ならないシリカガラス (5¾ガラス)であることが ましい。 また必要に応じてはシリ コン中に含有されるガスを除くために貯留部内で融点以上の にあげて ΐ悔し、下 部からアルゴンガスを流してガス成分を除くことが出来る。 ガスノズルとしては上記 金属の他にシリコンとの反応'性の全くない、 しかも高温での «弓 の極めて高い、 ィリジゥムを使うことカ出来る。
尚このような脱ガス処理をしなくても含有ガス成分がほとんど無いこと、 またこの 後の多結晶化、 あるいは引き上げによる単結晶化時に容易に除けることから問題は少 ないので必要に応じてこのような処理を行えばよい。 第 8発明
第 8発明は前述した通りの構成を有し、 前述の第 1〜第 7発明の構颇件のうち、 反応 S をシリコンの より低くすること、 反応中にシリコンを大気に搬させな いこと、 及び生成するシリコンを塊状又は溶融状として得ること、 に関する要件を適 択して発明を構成できる。 次に本発明に係るシリコン難方法の例を謝図面に基づいて説明する。
図 1は第 1発明のシリコン製 i r程を例示するフローチヤ一トである。
ffi^料金属シリコン貯槽 11 中の粗原料金属シリコンを金属シリコン;^化及び四 塩化珪素精製装置 12へ供給する。 同時に塩 i ffi鉛^ f 13で得られた; »ガスを前 記金属シリコン:^化及び四塩化珪素精製装置 1 へ供給して歸3金属シリコンと反 応させて四塩化珪素を生成させかつその精製を行う。嫌 3^?if 13で生 る金属亜 鉛は亜鉛蒸発器 1 へ供給され、 嫌己装置 12で生 る四塩化鶴及び嫌 B 鉛蒸発 器 14中の金属亜鉛は配管 15を供給され コンプレッサー 16により混合 態で、金属 シリコンの融点未満の に«された^床反応炉 17に達する。
該流動床反応炉 Πには金属シリコンの種結晶が予め添加されており、嫌 S四塩化珪 素と亜鉛の反応で生成する金属シリコンは前記種洁晶を核として成長して高 金属 シリコンが得られる。得られた金属シリコンは觸 3流動床反応炉 17内で溶融怃態にな り、 他のガス成分から分離され 製品抜き出し槽 18を通して製品タンク 19中に高純 度金属シリコンとして取り出される。
鎌己流動床反応炉 17内に «mィ!^ E鉛ガスが ¾存し、 このガスは配管 15を通して冷
20に循環され、 嫌 3塩ィ 鉛電^ f 13の原料として翻される。
図示の例の他に、 同様の δ¾ϋ工程で、 反応炉に外部加熱式ロータリ一キルン型或い は固定床式反応炉等を使用し内部に粒状、 砂状、 乃至薄板状のシリコンを種結晶とし て ¾λし、 該猶吉晶上にシリコンを析出させれば、 高純 jtnルク多結晶シリコンを効 率よく i¾iすることも可能である。
図 2は第 2発明のシリコン製造工程を例示するフローチヤ一トである。
fii^料金属シリコン, 21中の ffiil料金属シリコンを四塩化珪素合 荅 22へ供給 し、 塩ィ ffi鉛電騰 23で得られ該合成塔 22へ供給される髓ガスと反応して四塩化 が合成され、 この四塩化连素は配管を通して反応溶融炉 2 へ ί共給される。
一方前記塩 ί匕亜鉛電解槽 23で生成した金属亜鉛は亜鉛蒸発器 25でガス化された後、 Ml己塩化 鉛電解瞎 23に供給され、 lift己四塩化珪素と反応して高!^金属シリコンと 塩ィ! ^鉛が生成する。得られた金属シリコンは編 3反応溶融炉 24内でシリコン融体と なってその下部にある 解炉 26内に導かれて溶融シリコンとなり、均一化を行った 後に清澄炉 27へ導かれる。 同時に清澄炉 27に入ってくる雰囲気ガスである塩化亜鉛 ガスの を下げて液化することによって清澄炉 7内を脏として、溶融シリコンに 含まれる ガス、 その他の不純物を気化し^ ¾する。 その後、 溶融シリコンを: TO 等のシリコン徐冷槽 28に受け、下部より上部に向かって結晶化を進めることによって、 ごく ί¾*に含まれる不純物を上部に集め分離し、 高 ¾の結晶グレインの大きな多結 晶シリコンを得る。 前記清澄炉 27中の塩化亜鉛ガスは冷却器 29で冷却された後、 前 m i m 23に原料として循環される。
図示の例以外に清澄炉を 解炉から分 »5Ϊさせ、 解炉中の塩ィ ^¾錯ガスを 直接 7^* ^へ供給しても良い。
図 3は第 3発明のシリコン製 程を例示するフ口一チヤ一トである。 図 3の工程 は図 2の工程の改良に係るものであり、 図 2の工程と同一部材には同一符号を付して 説明を省略する。
四塩化珪素及び金属亜鉛が供給されて高 «金属シリコンと塩イ^鈴ガスが生成す る反応炉 31の下部には、 結 匕シリコン又はシリコン諭夜¾« 32が連結され、 反応 炉 31で得られた高 @金属シリコンの結晶化又は溶融が行われる。得られた金属シリ コンはシリコン徐冷槽 28に貯留され、 塩化亜鉛ガスはミストセパレーター 33でミス ト驗が行われた後、 ^$ 29で御され 纖己塩ィ ffi鉛^ ϋ 23に 料として循 環される。
図 4は第 4発明のシリコン製造工程を例示するフローチャートである。
塩ィ 鉛ガス雰囲気とした反応塔 41に、塩化 «ガスと亜鉛ガスを吹き込むように なっている。又生麵 ffi鉛ガスを反応塔から抜いて脚し、 mi に送ることに よって、 反応塔内の雰囲気、 ¾ びに圧力を一定に搬するようになっている。 又 このガスの流れを通じて、 反応ガスが反応しやすいように回繊拌が行われるように なっている。 回碰拌により反鎌の中央部に反応ガス、 反応生成物であるシリコン が集まる。 此によって比重の大きなシリコン »:は固体が下方に移動し ί娥槽に集ま るようになる。いわゆる旋回溶融と同様な条件になる。この反応塔 41底部に二室から なる麟槽 43が 置される。 運転 は反応塔が 1000°Cから 1500°Cである。 反 荅 41で生成したシリコンは少なくとも部分的に融体又は固体であり、雰囲気ガスより重 いので下方の保持槽 43に融体の 態で溜められる。この時に、融体に対して十分に軽 い雰囲気ガスはほとんど分離してしまい、融体中にはごくわずか含まれるのみとなる。 この融体は麟槽 43内の隔壁の下部を通って、 反応塔 41の対抗側に移動する。 この 部分は 10"'から If)—3 torr程度に減圧されているのでそれだけでも融体中の残留ガスは 取り除かれるが、必要に応じて、保持槽の底部から脱 構 44によってアルゴンガス を液中に送って反応ガスなどの不純物ガスを脱気する事が出来る。 このようにして高 ¾化したシリコン融体をシリコンの引き上げ、装置に送り、 弓【き上げを行うことによ つて単結晶シリコンインゴット 45を織し、或いは職に送って固化して多結晶シリ コン 46が得られ 或い〖鍵心急冷装置に送って、 粒状シリコン 47が得られる。 尚反 応塔、 ^槽の材質は上記に示したように炉壁温度を若干下げることによって炉壁表 面にシリコン結晶を析出させることによって炉壁との直接の接触を避け、 それによつ て炉壁との反応を完全に防ぐことが出来るが、 より安全のために、 シリコンへの汚染 がない材料を^ fflすれば良ぐ 直接、 ^物や生成したシリコンが ¾ する部分はシ リカガラスやマグネシアを使用することが特に好ましく、 これによつて単結晶の場合 は 8 -ナイン以上が搬のシリコンを容易に得ることが出来る。ただアルゴンガスの供 給口についてはこのようなことが出来ないのでたとえ反応しても問題のない石英ガラ ス、 或いはこのような雰囲気下で最も安定で耐久性のある金属イリジウムを使うこと が出来る。
尚、融体シリコン搬槽 43は、底部が賓通した二室ではなく一室のみ言耀し、融体 シリコンが搬槽に充分鎌した時点で反応ガスの供給を停止して脱ガス或いはアル ゴンガス置換を行う、所謂間欠的な運転を行うことによつても同様な結果が得られる。 尚図中、 48は ¾H料金属シリコン貯槽、 49は四塩化珪素合成塔、 50は反応塔 41と の間で塩ィヒ亜鉛ガスを循環させかつ加熱するための装置である。
図 5は第 5発明のシリコン製 程を例示するフローチヤ一トである。 51は金属シリコン原謝 ¾#槽であり、 繊 98. 5から 99%の原料金属珪素が麟さ れここを介して、反応塔 52に送られる。反応塔 52ではこのシリコンと^?槽 53から の:^ガスとを? 約 300°Cで反応させて四塩化珪素ガスとする。 四塩化珪素ガスは 蒸留槽 54により約 50 で蒸留、 不純物留分を取り除き、 ヒータ一 55で加熱して反応 炉 56に送られ、 m m^ 53で得た溶薩鉛をヒーター 55で加熱気化した気体亜鉛 で^され液状の塩化 δ素が生成される。 なお反応炉は雰囲気ガスとして塩ィ b¾鉛ガ, スがヒータ一 55 aとの間を循環している。反応炉の は 1350°C以上であり、炉自身 と雰囲気循環ガスの加熱により傲寺されている。
このようにして ¾され液滴となったシリコンは反応炉 56内で凝集していき、大き な液滴ないし粒となって下方に蓮ばれリザーパ一57に移動する。リザーパ ~57ではシ リコンの融点である 1410°C以上に礙され生成したシリコンと共に移動した反応炉 雰囲気ガスでありまた反応生成ガスである塩化亜鉛ガスが排ガス路を通って冷却器 58に送られる事によって負圧となるので、製品溶融シリコン中に含まれる可能性のあ る塩ィ ffi鉛ガスはここで取り除かれる。 またここには必要に応じてアルゴンガス貯留 槽 59からアルゴンガスを送りパブリングによつて、 目成分を完全に除くことが出来 る。 雰囲気ガスとして循環している塩 ¾鉛ガスは、 反応の進行により増加するので その分は同様にこの ί^¾¾§ 58を通じて^ litに運ばれる。このように、反応によって 生 る塩ィ 鉛ガスは ¾勺 500°Cまで Mlされ融体として 53に送られる。
は無隔麵であり、 電解により上方に髓ガスを取り出し、 I S生成物である 亜鉛金属は融体として底部にたまり、 そこからヒーター 55 bを通して反応炉に送られ ることは の通りである。 なお原料金属珪素の髓化に当たり、 赫 Jの髓が必要 であるが、^ Ιϋ中に外部より高!^塩ィ ffi鉛を追加し することによって補給し、 に继される亜鉛に相当する亜鉛分は定期的に排出して、 系の高纖化をィ赚す る。 リザーパーで され脱ガスの行われたシリコン融体は結晶成長槽 60に送られ、 単結晶、又は多結晶の高璧シリコンを生财る。此により反応炉で 6-ナインから 9- ナイン、 また多結晶成長部分で単結晶弓 Iき上げを行うと 9 -ナインから 1トナインの高 «シリコンが得られる。
図 6は第 6発明のシリコン $¾t装置である反応炉のー態様を例示する概略縦断面図、 図 7は該反応炉を含むシリコン製 ii 程を例示するフローチャートである。
図 6に示すように、 反応炉 61は^ガラスを内張とした円筒状反応炉部 62と下部 のシリコン貯留部 63カゝら成る。 反応炉部 62は内側に夕ンタル線を編んで作つた円筒 鳥かご状のメッシュ 64が入っている。又反応炉部上方には雰囲気ガス、並びに生成ガ スの抜き口 65を設けており、その抜き口部分には夕ンタルの細線を焼き固めたフィル 夕一 66を取り付けた。このフィルタ一と鳥かご状のメッシュからはリード線を出して 通電し加熱出来るようにした。 雰囲気ガスは 5¾¾子の円筒と円筒鳥かご状のメッシ ュ 64の間を円筒面に沿うように流、 上方の抜き口 65から抜き、 リサイクルするよう にした。 67が'雰囲気ガスの供給口である。 又反応ガスは円筒鳥かご状メッシュ 64の 内側にわずかに上方に向けて互いに交流的に流すようにした。 68は反応ガスの供給口 である。尚反応炉は外部に設けたヒータ一 69により加熱するようにして反応温度を保 持するようにした。 反応炉の下部に設けたシリコン貯留部は石英ガラス製のポートの 内側をタンタル箔で覆ったものとし、外部にヒーター 70を設けて加熱するようにした。 図 6の反応炉 61は例えば図 7のプロセス中に取り付けられている。
雰囲気ガスである塩化亜鉛ガスはガス加熱装置 71と反応炉 61の間を循環しており、 ^^のガスは取り出されて電解槽 72 に送られ電解によって亜鉛と塩素ガスとに分解 される。 生成 ガスは反応槽 /精製槽 73でシリコンと反応、 精製して塩化珪素とし て反応炉 61に供 $合する。又亜鉛も力 Π»ϋ 74により加熱気化されて、反応炉 61に供 給され 反応に供される。 これにより副原料である亜鉛並びに塩ィ tffi鉛は系内を循環 し、 シリコンが J シリコンとして反応炉 61の貯留部 63に貯蔵される。 この貯留 部のシリコンは多結晶として取り出しても良いし、結晶成長装置 75に送って単結晶ィ ンゴットとして取り出すこともできる。 図 8は第 6発明のシリコン製造装置である反応炉の他の態様を例示する概 W纖断面 図である。
この反応炉 81の炉外形は図 6と同じく石英ガラスとして、その外部に誘導加熱用の 電源 82を置き、 炉内は 筒状のタンタル板 83で覆った。 又反応' T部にはフィル夕 —を兼ねて、 三^状の線径 0. 1から 0. 2腿の夕ン夕ルゥエツブ 84を充填した。 反応ガス及び雰囲気ガスを供給口 85から導入し; 生成ガスを導出口 86から取り出 すようにした。 炉中で得られる高 JS金属シリコンは反応炉 81下部から貯留部 87に取り出すようにした。
図 9は第 6発明のシリコン製造装置である反応炉の更に他の態様を例示する概略縦 断面図である。 この反応炉は図 8の反応炉の改良に係るものであり、 図 8と同一咅附 には同一 を付して説明を省略する。
この反応炉 91は図 8の反応炉と比較して、 夕ン夕ルゥエツブ 92が上側に 置し、 生成ガス導出口 93が反応炉 91の天板に形成され 反応ガス及び雰囲気ガスを供給口 94が反応炉 91の側 T部に形成されていることが異なっている。 次に実施例に基づいて本発明に係るシリコン^ i方法の実施例を説明するが、 該実 施形態 発明を! るものではない。
[実施例 1 ]
図 6に示す反応炉から成るシリコンの ^装置を組み立て、 図 7に示す プロセ スを構築した。
循環ガスである 匕亜鉛の温度を 1100°C、圧力を 2kg/cm2として 1100°Cに保った反 応炉部に送ると共に、塩化珪素と塩ィ 鉛を 1 : 10に混合したガスと亜鉛と谢 鉛を 1: 2に混合したガスを反応ガスとして 炉部に送った。 尚亜鉛の供腿は塩化珪 素との反応必要量の 3 %増しとした。 1時間反応させた後に塩化亜鉛ガスをアルゴン ガスで置換した後に、反応炉部のタンタルに通電して 1450°Cまで ?显した。尚炉内温 度は 1100から 1400°Cに した。 又貯留部の fi^も反応炉部と同じとした。 これに より夕ンタルフィルター並びに夕ンタゾレメッシュ表面に形成されたシリコンが液滴と なり、貯留部に塊状として析出した。 このものの分析を行ったところ 7-ナイン以上の i があり、 タンタルは検出されなかった。
醜例 2]
タンタ モリブデンとした 施例 1と同じ装置を使用してシリコンの製造 試験を行った。 なおモリブデンのメッシュが得られなかったので、 円筒鳥かご状のメ ッシュに代えて、開口率 45%の穴あき板を同様の形状としたものを用いた。 これを用 いて雰囲気ガスである塩^^鉛の圧力を 1気圧とし、炉内温度を 1050°Cとして反応を 行った。 尚亜鉛の供給は実施例 1と同様、 理隱の 3 %増しとした。 反«了後アル ゴンガスで脱気した後、 モリブデンに通電し、 モリブデンを融体として貯留部に移動 させ固ィ匕した。 これについて分析を行ったところ 7ナイン以上であり十分に高璧で あると共に、 モリブデンはまったく検出されず、 容易に高純度のシリコンの得られる ことがわかった。
瞧例 3]
全プロセスは実施例 1に準じ、 反応炉部を図 8に示すような構造とした反応炉を使 用した。
雰囲気ガスとして 1200°Cに加熱した塩ィ bffi鉛ガスを流して炉内^ itをほぼ 1200°C に職した。 これに実施例 1と同様にして四塩化鶴と亜鉛のガスを供給した。 尚雰 囲気ガスである塩化亜鉛ガスはタンタル円筒内を回転するように吹き込み、 亜鉛並び に塩化珪素ガスがこの流れに乗りながら反 JiTTるようにした。 15分後に反応を止め、 ガスを抜いた後誘導加熱装置の電源をいれて夕ンタル多孔 βびにゥエツブの温度 1500°Cまで加熱した。 これによりタン夕 面のシリコンが菌し、 下方に落ちてい き、貯留部に された。 この様にして塊状で得られたシリコンの ¾は 8-ナインで あった。 このシリコンについて単結晶引き上げを行えば 1トナインのシリコン単結晶 の得られることが予想された。
[実施例 4]
全プロセスは実施例 1に準じ、 反応炉部を図 9に示すような構造とした反応炉を使 用しこ。
つまり実施例 3に示した反応炉部中の金属部分をモリブデンに変え、 内壁部の壁を 設け、 炉内に配置するゥエツブを炉内上部に設けると共に; 部から雰囲気ガスであ る塩化亜鉛、 並びに反応ガスである四塩化 ¾¾、 並びに亜鉛を下から入れ、 上部に抜 くようにした。 また炉の直下にはシリコン貯留部を設けた。 尚シリコン貯留部の内壁 はタンタルとした。この炉を使って雰囲気ガス温度を 1300°Cとしてガスを送り込むと 共に、 反応ガスは難例 1に示すように、 四塩化珪素、 亜鉛とも谢 ffi鉛ガスと混合 して反応ロブに送り込んだ。 これらのガスの雕は四塩化珪 有ガス 1000°C、亜鉛 含有ガス 1300°Cであり、反応温度は実質的に 1300°Cであった。これによつてモリブデ ンのウエッブ部にシリコンが析出していった。 15分後に反応ガスを止めて反応を終了 させ、 1300°Cのアルゴンガスを送ってガス置換を行い残留ガスの排出を行った後ゥェ ッブならびに壁を誘導加熱により 1500°Cまで上昇シリコンを »させた。融解シリコ ンは下方シリコンの貯留槽に液状で充填された。尚貯留その温度は 1400°Cであり、充 填後しばらくしてから徐々に固化が始まった。 2時間 ^^成シリコンを取り出し たところ、 塊状であり、 非常にコンパクトであることがわかった。 また分析の結果は 夕ン夕^!レもモリブデンも見られず 8-ナイン以上の純度であった。 鎌 3謹様は例示のために記載したもので、 本発明は嫌 3実 i様に P跪される べきではなく、 当餘により、 種々の修正や変形が、 本発明の範囲から逸脱すること なく行われる。

Claims

請求の範囲
1. 四塩化珪素と亜鉛とを反応炉内において気湘反応を行わせしめ高純 J ^結晶シ リコンを製造する方法において、 910°C以上の内部温度に維持された反応炉内に予めシ リコン種結晶を投入し該種結晶上にシリコンを析出せしめることを特徴とする結晶性 シリコンの製造方法。
2. 反応炉内で副生する塩ィ ffi鉛の を IT料ガスに混合して循環ガスとすること を特徴とする請求項 1記載のシリコンの製 法。
3. 反応炉上部に循環ガスと生成シリコンの気体 ·固体分离髓を設け、 循環ガスに 伴い上昇する微粒シリコンを分離し反応炉へ戻すことを糊敷とする請求項 1記載のシ リコンの S ^法。 4. 未反応亜鉛又は/及び四塩化珪素を含む副生塩化亜鉛をバイパスにより抜き出し、 系内圧力を 5 mm以下に保つように御 ·液化分離して反応系から除外することを特 徴とする請求項 1記載のシリコンの S¾g^法。
5. 反応系より液化分離された塩ィ! ^鉛を、 液として删し、 溶融塩離によ り驢及び: ffi鉛に し、 亜鉛は四塩化珪素の ¾に、 體は原料金属藤と反応さ せ四塩化珪素として再使用し循環することを とする請求項 1記載のシリコンの製 去。
6. CVD法により予め内面をシリコンコーティングされた反応炉及ぴン又は循環ガ ス系 ·製品抜き出し系機^を用いる請求項 1記載のシリコンの製造方法。
7. 反応炉が該炉内の糧吉晶を循環ガスにより流動させる流動床式である請求項 1 記載のシリコンの 法。 8. 反応炉が外部加熱式ロータリーキルン型である請求項 1記載のシリコンの Sit 方法。
9. 反応炉が該炉内の種結晶を動かさない固定床式である請求項 1記載のシリコン の^
10. 四塩化珪素と亜鉛とを、内壁? を 1410 から 160(TCに保持した反応溶融炉内 にて気相反応を行わせ、 該反応溶融炉内にて生成したシリコン融体を■させ溶融シ リコンを得ることを とするシリコンの^ ^方法。 11. 該反応溶融炉が、 反応ガス及 囲気ガスを反応炉内で渦巻き状に旋回するよ うに流入させる旋回溶融炉であることを特徴とする請求項 10記載のシリコンの製造 方法。
12. 該 溶融炉内未溶融微結晶シリコン乃 «シリコン融体を捕集し溶融さ せる再溶解炉を、 該反応溶融: 部に隣接して設置することを特徴とする請求項 10 記載のシリコンの製 法。
13. 該反応溶融炉及び 離解炉により得られた溶融シリコンの清澄及びガス抜き の為の清澄炉を設置することを とする請求項 10記載のシリコンの 方法。
14. 該反応溶融炉、 該^^解炉及び該清澄炉の本体又はそれらの内張に ガラス を删し、 反応 ·離解 ·清澄時に生成シリコンへの炉壁からの不純物の混入を防ぐ ようにしたことを とする請求項 10記載のシリコンの製 法。 15. 該反応溶融炉、 該 ¾t解炉及び該清澄炉の本体又はそれらの内張に酸化マグネ シゥムを使用し、 反応 · W^M ·清澄時に生成シリコンへの炉壁からの不純物の 1λ を防ぐようにしたことを特徴とする請求項 10記載のシリコンの製造方法。
16. 該反応溶融炉、 該 解炉及び |¾清澄炉内の雰囲気ガスが塩 i ffi鉛又は塩イ^ 鉛及びアルゴンの混合ガスであることを ί敷とする請求項 10記載のシリコンの t 方法。
17. 清澄炉に続き設置された冷 »により、 生成した塩 it3E鉛及び未反 «鉛又は 四塩化珪素を し液化 することにより清澄炉内を し、 溶融シリコン内に捕 捉されたガス抜きを容易にすることを特徴とする請求項 10記載のシリコンの S¾t方 法。
18. 該清澄炉内溶融シリコンを職等の容器に取り出し、 徐冷し多結晶乃至単結晶 シリコンを得る請求項 10言 3載のシリコンの I ^法。
19. 系より液化分離された塩ィ ffi鉛を、 電解液として麵し、 溶融塩離によ り髓及び 鉛に し、 亜鉛は四塩化珪素の ¾に、 髓は 料金属珪素と反応さ せ四塩化珪素として再 ^し循環する事を とする請求項 10記載のシリコンの製 造方法。
20. 四塩化 と亜鉛とを反応炉内において気湘反応を行わせ高 ^結晶シリコ ンを織する方法において、 前記^!目反応を 907〜141(TCの内部 を る ffif己反 応炉内にて行ってシリコン結晶を析出せしめた後、 該反応炉内温度を 1,410°C以上に 親显して該結晶シリコンを溶融し、 その後融液として反応炉外の容器中に移液し、 該 容器内で 1410°C以下に冷却して固化又は再結晶化することを特徴とする多結晶シリ コンの 法。
21. 反応炉内にてシリコン結晶を析出せしめた後反応ガスの供給を停止する請求項 20記載のシリコンの^^法。
22. 該反応炉内? を 1, 410〜1, 600°Cに帮显して該シリコンを溶融する際、反応炉 内を大気圧以下に減圧してシリコン融液中のガス抜きを容易とすることを特徴とする 請求項 20記載の多結晶シリコンの S 方法。 ' 23. ¾ 907〜1, 410°Cにて行う反応及び結晶化工程と、 該反応炉内 を 410〜 1, 600°Cに帮显して該シリコンを溶融し融液として抜き出す工程とを、 ¾Sに鍾的に 行う事を特徴とする請求項 20記載の多結晶シリコンの製造方法。
24. 副生塩ィ匕亜鉛の一部を該気相反応の雰囲気ガスとして使用する事を特徴とする 請求項 20記載の多結晶シリコンの^ 方法。
25. 未反応亜鉛又 ¾ /及び四塩化鶴を含む副生塩ィ 鉛をバイパスにより抜き出し、 系内圧力を 5赃以下に保つように糊 ·液化分離して反応系から除外する事を體 とする請求項 20記載の多結晶シリコンの製 法。
26. 反応系より液化分離された塩ィ bffi鉛を、 蘭液として棚し、 溶融塩離によ り «及び: ffi鉛に し、 亜鉛は四塩化珪素の ¾に、 纏は原料金属珪素と反応さ せ四塩化珪素として再^ fflし循環する事を,とする請求項 20記載の多結晶シリコ ンの sitm
27. 反応炉の炉内壁力 ¾Η¾ガラスで形成してなることを特徴とする請求項 20記載の 多結晶シリコンの S ^法。
28. 反応炉内にあらかじめシリコン種結晶を ¾λし、 結晶上にシリコンを晶出 させることを特徴とする請求項 20記載の多結晶シリコンの^ ^方法。
29. 該反応により内面が CVDシリコンコーティングされた反応炉を繰り返し使用 し、該反応炉内壁の付着シリコンを ffi結晶として活用することを特徴とする請求項 20 記載の多結晶シリコンの S¾ ^法。
30. 高 ^^シリコンの ® tに当たり、 塩ィ ffi鉛雰囲気中で四塩化 ガスと亜鉛ガ スとを反応させてシリコンを生成させ、 該シリコンをシリコン溶融温度以上に保持さ れたシリコンィ ¾#槽に導き、 冷却固ィ匕することを特徴とする高!^シリコンの製造方 法。
31. シリコンをシリコン ί¾#槽に導いた後、 溶解ガスの脱ガスを行うようにした請 求項 30に記載の高 シリコンの Sit方法。
32. 高鍵シリコンの ¾に当たり、 塩ィ 鉛雰囲気中で四塩化珪素ガスと亜鉛ガ スとを反応させてシリコンを生成させ、 該シリコンをシリコン溶融温度以上に保持さ れたシリコン 槽に導含、 溶解ガスの脱ガスを行つた後に単結晶 $¾i装置にて単結 晶シリコンとして取り出すことを特徴とする高純度単結晶シリコンの «方法。
33. 高 Sシリコンの i¾iに当たり、 塩イ^鉛雰囲気中で四塩化珪素ガスと亜鉛ガ スとを反応させてシリコンを生成させ、 該シリコンをシリコン溶融? ¾以上に保持さ れたシリコン纖槽に導き、 溶解ガスの脱ガスを行つた後に Ml槽に送り ί鈴して多 結晶シリコンとする事を とする高 シリコンの 法。
34. 高純度シリコンの製造に当たり、 塩ィ匕亜鉛雰囲気中で四塩化珪素ガスと亜鉛ガ スとを反応させてシリコンを生成させ、 該シリコンをシリコン溶融 以上に保持さ れたシリコンィ辦槽に導き、 溶解ガスの脱ガスを行った後に融体シリコンを急激に飛 散させ半急冷して粒状シリコンとする事を,とする高 «シリコンの 法。
35. 塩ィ 3E鉛と四塩化珪素ガスとの反応を lOOOtから 1500°Cで行うことを [とす る請求項 30記載の高純度シリコンの製 法。
36. 融体シリコン保持槽は底部が賓通した二室からなっており、 片方が反応部に接 韓され 片方が 囲気中に観されてなり、 反応部にて生成したシリコンが 体 シリコン麟槽の反応部に鐘され、 違镜的に謝親槽の 部に移動して脱ガスが 行われる様にしたことを とする請求項 30記載の高純度シリコンの製 法。
37. 融体シリコン保持槽の底部からアルゴンガスを供給して融体シリコンの脱ガス と攪挣を行うことを とする請求項 30記載のシリコンの Sit ^法。 38. 反応部分の塩ィ (^鉛の"^を糊液化して電騰に送り、 蘭により髓と亜 鉛に分離し、 再 ^ffiすることを難とする請求項 30記載のシリコンの I ^法。
39. 反応ガス を炉壁より高温とし、 実質的に反応部の内壁表面を固体シリコン で覆うことにより生成シリコンと内壁との反応を無くしたことを特徴とする請求項 30言 3載の高純度シリコンの製 法。
40. シリコン搬槽の コントロールを誘導加熱によって行い、 保持槽内壁 をシリコンの融点より低く保ちつつ、 シリコン自体は融液で保持する様にしたことを 特徴とする請求項 30記載の高 シリコンの^ ^方法。
41. 四塩化珪素を原料として高純度シリコンを製造するに当たり、 1 ) 反応炉内塩 ィ tffi鉛ガス中で四塩化珪素と金属亜鉛を 目で反応させる工程と、 2) 生成した金属 シリコンを融液の状態でガスと分離し、 3) 塩ィ ffi鉛ガスの^^を分離し Mlして液 状にする工程と、 4) 液状の塩ィ 鉛を鶴して髓ガスと溶鬲 鉛を生成させるェ 程と、 5) 生成した溶鬲 鉛を加熱気化し、 反応炉に送る工程と、 6) により発 生した髓ガスを滅シリコンと反応させて 四塩化珪素を生 る工程と、 7) 該 ¾ 四塩化 を蒸留精製する工程と、 8) 精製四塩化纏を気化して反応炉に送 る工程とを含んで成ることを mとする高細芰シリコンの S¾g方法。 2. 工程 2) と 3) の間に、 金属シリコン中に含まれる反応ガスを脱 る工程を 含む請求項 41記載の高 J シリコンの 法。
43. 反応炉が旋回溶融炉であり、 反応ガスが旋回中の雰囲気ガスによって旋回しな がら反応を行う事によって、 反応炉の側壁との接触を最小限とするようにしたことを 特徴とする請求項 41記載の高純度シリコンの製 法。
44. 反応温度が 1300°C以上であり、反応により生成したシリコンが微細な粒子及び
/又は液滴として下方に ¾τし、反応 方におかれシリコン融体搬槽に礙される 様にしたことを特徴とする請求項 1記載の高純度シリコンの製 法。
45. 生成した溶融シリコン中のガス成分の離脱を融体シリコン中ヘアルゴンガスを 通して行うことを特徴とする請求項 41記載の高純度シリコンの製造方法。
46. 塩ィ! ^鉛の德を補助電解質無しに を行うことを難とする請求項 41記載 の高 «シリコンの製造方法。
47. 塩ィ bffi鉛の により ® ^の上方から «ガスを、 下方から溶鬲 鉛を取り出 すようにしたことを特徴とする請求項 41記載の高 シリコンの S¾i^法。 48. 電解により発生した塩素ガスを高温のまま原料金属珪素と反応させ粗四塩化珪 素とし、 粗四塩化 を常温にて液化'貯蔵し、 しかる «留精製して原料四塩化珪 素として棚し、 発生した驢ガスをガス状或いは液化して貯蔵することを不要とし たことを とする請求項 41記載の高 直シリコンの製造方法。 49. 四塩化 と亜鉛を^!目で反応させて固体ないし液体のシリコンと気 鉛を得るシリコン S ^用反応炉において、 反 炉部とその下方にあるシリコン貯留部 からなり反応炉に反応ガスの入り口と反応で生成した塩ィ ffi鉛ガスの出口を有し、 更 に反応炉内に反応により生成した固体ないし液体シリコンを捕集する力!] を有す る耐熱 ·導電性のトラップを有し、 反応ガスの供給中或いは供給停止後に該トラップ をシリコンの溶融^ J 以上に加熱して生成したシリコンを 状として後シリコン貯留 部に送るようにしたことを特徴とするシリコン難装置。
50. 反応炉部の下方にシリコン貯留部があり、 反応炉部で溶解したシリコン 力 により貯留部に送られるようにしたことを«とする請求項 49記載のシリコン製造 装置
51. 反応炉部の加謝显度が 910°Cから 1500°Cであり、 その間の任意の温度に 出 来る 制御樹冓を ることを とする請求項 49記載のシリコン 8t装置。
52. 反応炉の内壁が ¾ ^ガラスを主とすることを特徴とする請求項 49記載のシリコ ン難装置。
53. 反応炉の内壁がタンタルであり、 トラップ加熱時、 内壁タンタルも同時に加熱 するようにしたことを 1¾とする請求項 49記載のシリコン製造装置。 54. 反応炉が ^回炉であり、 トラップが反応炉内壁内側に配置された網状体である ことを とする請求項 49記載のシリコン Sit装置。
55. 反応炉内に 性及び/又は網状体の金属が ¾填されてなることを Μとする請 求項 9記載のシリコン 装置。
56. トラップが反応炉に入れられた金属フィルター用多孔体焼結体であることを觀 とする請求項 9記載のシリコン製造装置。
57. 耐熱 ·導電性のトラップがタン夕ル及び/又はモリブデンである請求項 9記載 のシリコン製造装置。
58. 耐熱 ·導電性のトラップの加熱を誘導加熱により行うことを體とする請求項 49記載のシリコン I ^装置。 59. 耐熱 ·導電性のトラップの加熱をトラップへの直 ¾a電により行うことを とする請求項 9記載のシリコン製造装置。
60. 四塩化珪素と亜鉛を mi目で反応させて固体ないし液体のシリコンと気 ffi 鉛を得るシリコンの織において、 該反応を行う反応炉内に で生成した固体ない し液体シリコンを捕集する耐熱'導電性のトラップを^ gし、 反応ガスの供給中或い は供給停止後該トラップをシリコンの溶融温度以上に加熱して該生成シリコンを液状 として収集回収するようにしたことを特徴とするシリコンの^ i方法。
61. 反応 が 910°Cから 1500 であること とする請求項 60言 3載のシリコン の $mm
62. 雰囲気ガスが塩 < ¾鉛であることを糊敷とする請求項 60記載のシリコンの S¾t 方法。 63. 亜鉛ガスの供給を四塩化珪素に対する化学量 より «とすることを特徴と する請求項 60記載のシリコンの製 法。
64. トラップの加熱溫芰を 1410から 1500°Cとすることを特徴とする請求項 60記載 のシリコンの 法。
65. 貯留部内で生成シリコンを 1410°C以下でィ赚することを特徵とする請求項 60 記載のシリコンの ¾ ^法。
66. 貯留部からのシリコンの排出の前に貯留シリコンを加熱融体とし、 脱ガスを行 つてから、 外部に取り出すことを特徴とする請求項 60記載のシリコンの Sig^法。
67. 反応により生成した塩ィ ffi鉛は系外に取り出して、 離により髓と亜鉛ガス とに舊し塩素は四塩化珪素生成に、 亜鉛は反応ガスとして反応炉部に戻し再循環す ることを 敷とする請求項 60記載のシリコンの 法。
68. 供給ガスを予熱してから反応炉へ供給すること とする請求項 60のシリコ ンの mm
69. 四塩化 と亜鉛とを反応炉内において気相反応を行わせしめ高 «シリコン を難する方法において、 反応 をシリコンの融点より低くするとともに、 反応中 にシリコンを大気に させることなく、 生 るシリコンを塊状又は溶融状として 得ることを特徴とする高 «シリコンの製 法。
PCT/JP2003/011656 2002-09-12 2003-09-11 高純度シリコンの製造方法及び装置 WO2004035472A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03808883A EP1550636A4 (en) 2002-09-12 2003-09-11 PROCESS FOR PRODUCING HIGH PURITY SILICON AND APPARATUS THEREFOR
US10/527,801 US7538044B2 (en) 2002-09-12 2003-09-11 Process for producing high-purity silicon and apparatus
AU2003264408A AU2003264408A1 (en) 2002-09-12 2003-09-11 Process for producing high-purity silicon and apparatus
US12/417,228 US20090202415A1 (en) 2002-09-12 2009-04-02 Process for producing high-purity silicon and apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002305110A JP2004099421A (ja) 2002-09-12 2002-09-12 シリコンの製造方法
JP2002-305110 2002-09-12
JP2002-383648 2002-12-27
JP2002383648A JP2004210594A (ja) 2002-12-27 2002-12-27 高純度シリコンの製造方法
JP2003117612A JP4462839B2 (ja) 2003-03-19 2003-03-19 シリコンの製造装置及び製造方法
JP2003-117612 2003-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/417,228 Division US20090202415A1 (en) 2002-09-12 2009-04-02 Process for producing high-purity silicon and apparatus

Publications (1)

Publication Number Publication Date
WO2004035472A1 true WO2004035472A1 (ja) 2004-04-29

Family

ID=32110648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011656 WO2004035472A1 (ja) 2002-09-12 2003-09-11 高純度シリコンの製造方法及び装置

Country Status (4)

Country Link
US (2) US7538044B2 (ja)
EP (1) EP1550636A4 (ja)
AU (1) AU2003264408A1 (ja)
WO (1) WO2004035472A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922814B2 (en) * 2005-11-29 2011-04-12 Chisso Corporation Production process for high purity polycrystal silicon and production apparatus for the same
US8173094B2 (en) * 2005-12-27 2012-05-08 Sumitomo Chemical Company, Limited Method for producing polycrystalline silicon
CN109652855A (zh) * 2018-11-29 2019-04-19 中国电子科技集团公司第十研究所 石英舟熏碳方法及锑化铟提纯方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531461A (ja) 2005-03-05 2008-08-14 ジョイント ソーラー シリコン ゲーエムベーハー ウント コンパニー カーゲー シリコンを調製するためのリアクター及び方法
EP1811064A1 (fr) * 2006-01-12 2007-07-25 Vesuvius Crucible Company Creuset pour le traitement de silicium à l'état fondu
US20100024882A1 (en) * 2006-09-22 2010-02-04 Eric Robert Process for the Production of Si by Reduction of SiHCl3 with Liquid Zn
JP5040716B2 (ja) * 2007-03-19 2012-10-03 Jnc株式会社 高純度多結晶シリコンの製造装置および製造方法
JP5018156B2 (ja) * 2007-03-19 2012-09-05 Jnc株式会社 多結晶シリコンの製造方法
JP5040717B2 (ja) * 2007-03-19 2012-10-03 Jnc株式会社 高純度シリコンの製造方法
JP4528995B2 (ja) * 2007-08-02 2010-08-25 国立大学法人東北大学 Siバルク多結晶インゴットの製造方法
US20100247416A1 (en) * 2007-10-23 2010-09-30 Kinotech Solar Energy Corporation Silicon manufacturing apparatus and related method
ES2349175T3 (es) * 2007-11-19 2010-12-28 Sun Materials Technology Co., Ltd. Reactor ciclónico de combustión autopropagante.
TW201012978A (en) * 2008-08-27 2010-04-01 Bp Corp North America Inc Apparatus and method of use for a casting system with independent melting and solidification
KR20110114617A (ko) * 2009-01-07 2011-10-19 알이씨 실리콘 인코포레이티드 분할된 고체 물질의 이동 베드 상에서의 용융 물질의 고체화
US8168123B2 (en) * 2009-02-26 2012-05-01 Siliken Chemicals, S.L. Fluidized bed reactor for production of high purity silicon
US20120244059A1 (en) * 2009-09-25 2012-09-27 Jx Nippon Oil & Energy Corporation Method for manufacturing silicon tetrachloride and method for manufacturing silicon for use in a solar cell
CN102351194B (zh) * 2011-07-01 2013-02-20 王存惠 多晶硅还原铸锭联合生产装置与生产方法
CN114735708B (zh) * 2022-04-29 2023-06-02 成都理工大学 一种制备低铁铝钙含量硅的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095633A (ja) * 2001-09-18 2003-04-03 Yutaka Kamaike シリコンの製造方法
JP2003342016A (ja) * 2002-05-24 2003-12-03 Takayuki Shimamune 多結晶シリコンの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2804377A (en) * 1954-06-25 1957-08-27 Du Pont Preparation of pure silicon
US3012862A (en) * 1960-08-16 1961-12-12 Du Pont Silicon production
US4188368A (en) * 1978-03-29 1980-02-12 Nasa Method of producing silicon
US4265859A (en) * 1978-05-31 1981-05-05 Energy Materials Corporation Apparatus for producing semiconductor grade silicon and replenishing the melt of a crystal growth system
US4981102A (en) * 1984-04-12 1991-01-01 Ethyl Corporation Chemical vapor deposition reactor and process
JPH07500651A (ja) * 1990-11-28 1995-01-19 タプコ インタナシャナル,インコーポレイティッド スライド バルブ
JPH05214537A (ja) * 1992-01-30 1993-08-24 Nec Corp 固体昇華用の気化器
US6050288A (en) * 1998-01-15 2000-04-18 Tapco International, Inc. Slide valve with welded internals
EP1318207A4 (en) * 2000-08-31 2006-08-16 Sumitomo Titanium Corp SILICON MONOXIDE-GAS PHASE SEPARATING MATERIAL, METHOD OF MANUFACTURING THEREOF, RAW MATERIAL FOR THE PRODUCTION AND DEVICE FOR THE PRODUCTION THEREOF
US20030038265A1 (en) * 2001-01-23 2003-02-27 Koerner Andre F. Slide valve with wedging system
JP2003242016A (ja) 2002-02-14 2003-08-29 Nippon Telegr & Teleph Corp <Ntt> 情報処理システムおよびその情報システムで使用されるサーバ装置ならびにクライアント装置と、プログラムおよび情報処理方法
US7105053B2 (en) * 2002-02-14 2006-09-12 Rec Silicon Inc. Energy efficient method for growing polycrystalline silicon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095633A (ja) * 2001-09-18 2003-04-03 Yutaka Kamaike シリコンの製造方法
JP2003342016A (ja) * 2002-05-24 2003-12-03 Takayuki Shimamune 多結晶シリコンの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1550636A4 *
SEIFERT D A: "pilot-scale development of the zinc reduction process for production of high-purity silicon", AICHE SYMPOSIUM SERIES, vol. 78, no. 216, 1982, pages 104 - 115, XP002974656 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922814B2 (en) * 2005-11-29 2011-04-12 Chisso Corporation Production process for high purity polycrystal silicon and production apparatus for the same
US8287645B2 (en) 2005-11-29 2012-10-16 Jnc Corporation Production process for high purity polycrystal silicon and production apparatus for the same
US8173094B2 (en) * 2005-12-27 2012-05-08 Sumitomo Chemical Company, Limited Method for producing polycrystalline silicon
CN109652855A (zh) * 2018-11-29 2019-04-19 中国电子科技集团公司第十研究所 石英舟熏碳方法及锑化铟提纯方法

Also Published As

Publication number Publication date
EP1550636A4 (en) 2012-03-07
EP1550636A1 (en) 2005-07-06
US20090202415A1 (en) 2009-08-13
AU2003264408A1 (en) 2004-05-04
US20060270199A1 (en) 2006-11-30
US7538044B2 (en) 2009-05-26

Similar Documents

Publication Publication Date Title
WO2004035472A1 (ja) 高純度シリコンの製造方法及び装置
US4753783A (en) Process and apparatus for obtaining silicon from fluosilicic acid
US4312850A (en) Semicontinuous process for the manufacture of pure silicon
JPS60500370A (ja) 弗化珪素酸から珪素を得る方法および装置
KR20110069770A (ko) 고순도 결정 실리콘, 고순도 사염화규소 및 이들의 제조 방법
TWI417241B (zh) 高純度多晶矽的製造裝置及製造方法
CN101243014B (zh) 硅的制备方法
JP4462839B2 (ja) シリコンの製造装置及び製造方法
JP3844849B2 (ja) 多結晶シリコンおよび塩化亜鉛の製造方法
JP4392675B1 (ja) 高純度シリコンの製造装置
JP2006298740A (ja) シリコンの製造方法
CN101264889B (zh) 制造固体产物的方法和设备
JP2004210594A (ja) 高純度シリコンの製造方法
JP2004035382A (ja) 多結晶シリコンの製造方法
JP2004099421A (ja) シリコンの製造方法
WO2012050410A1 (en) Method of purification of silicon
WO2012064046A2 (ko) 고순도 실리콘 미세분말의 제조 장치
JP2004010472A (ja) シリコンの製造方法
JP5574295B2 (ja) 高純度シリコン微粉末の製造装置
RU2415080C2 (ru) Способ и установка для очистки кремния
JP4392671B2 (ja) シリコン製造装置
JP4708505B2 (ja) 多結晶シリコンの製造方法及びこれに用いる反応炉
JP2006274340A (ja) Ti又はTi合金の製造方法
WO2011007655A1 (ja) 塩化亜鉛の凝縮液化装置及び方法
GB1568338A (en) Process for the production of silicon of high purity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003808883

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003808883

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006270199

Country of ref document: US

Ref document number: 10527801

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10527801

Country of ref document: US