WO2011007655A1 - 塩化亜鉛の凝縮液化装置及び方法 - Google Patents

塩化亜鉛の凝縮液化装置及び方法 Download PDF

Info

Publication number
WO2011007655A1
WO2011007655A1 PCT/JP2010/060843 JP2010060843W WO2011007655A1 WO 2011007655 A1 WO2011007655 A1 WO 2011007655A1 JP 2010060843 W JP2010060843 W JP 2010060843W WO 2011007655 A1 WO2011007655 A1 WO 2011007655A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant liquid
zinc chloride
zinc
gas
melt
Prior art date
Application number
PCT/JP2010/060843
Other languages
English (en)
French (fr)
Inventor
大久保 秀一
終一 本田
Original Assignee
チッソ株式会社
Jx日鉱日石金属株式会社
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チッソ株式会社, Jx日鉱日石金属株式会社, 東邦チタニウム株式会社 filed Critical チッソ株式会社
Priority to JP2011522772A priority Critical patent/JPWO2011007655A1/ja
Publication of WO2011007655A1 publication Critical patent/WO2011007655A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/04Halides

Definitions

  • the present invention relates to an apparatus and method for recovering zinc chloride from a gas containing zinc chloride as a main component, which is generated from a process of producing high-purity silicon by reducing silicon tetrachloride with zinc.
  • high-purity silicon may be preferentially supplied to semiconductors.
  • high-purity silicon used as a raw material for solar cells the residual crucible after pulling up single-crystal silicon for semiconductors and single-crystal silicon ingots
  • scrap materials such as cutting scraps are used forcibly using materials that vary in quality. For this reason, there is a strong demand for the realization of a stable supply system for high-purity silicon for solar cells, both in terms of quality and quantity, and the development of technology that can be manufactured in large quantities at a lower cost.
  • the production of high-purity silicon that is performed commercially is performed by the Siemens method.
  • the power cost occupying the manufacturing cost is large, and the production efficiency is low because batch manufacturing is performed.
  • recovery of unreacted trichlorosilane and hydrogen and by-product silicon tetrachloride are recovered and processed from the cracked gas emitted from the production of high-purity silicon by the Siemens method and the production of trichlorosilane used as a raw material Ancillary facilities must be strengthened.
  • the Siemens method is not suitable as a method for producing high-purity silicon in large quantities at a low cost.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-11925 discloses a method in which liquid or gaseous silicon tetrachloride is introduced into a molten zinc solution for reduction.
  • Patent Document 2 Japanese Patent Laid-Open No. 2007-284259 discloses a method in which liquid aluminum or zinc is brought into contact with silicon tetrachloride gas as fine particles, and Patent Document 3 (Japanese Patent Laid-Open No. 2008-037735). Discloses a method in which reaction conditions for various zinc reductions are changed, such as a method in which silicon tetrachloride is injected into a mixed gas of zinc and zinc chloride as a liquid.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2007-126342 discloses a method in which a reaction gas containing silicon generated by zinc reduction is made to collide with a silicon dissolution wall heated to a melting point of silicon or more and taken out as liquid silicon
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2007-223822 discloses a method for producing high-purity silicon such as a method in which high-purity silicon produced by zinc reduction is grown downward from the tip of a silicon tetrachloride supply nozzle in a reaction apparatus. It is disclosed.
  • Patent Document 6 Japanese Patent Laid-Open No. 2003-034519
  • high-purity silicon is obtained by bringing high purity silicon tetrachloride and vaporized metallic zinc into contact with gas and gas in a reactor at 900 ° C. to 1100 ° C.
  • by-product zinc chloride is separated and recovered by electrolysis as chlorine gas and high-purity metal electrolytic zinc.
  • Chlorine gas is reacted with metal silicon as the main raw material after purification, and further refined.
  • Non-Patent Document 1 (Seifelt DA and Browning MF, “Pilot-Scale Development of the Zinc Reduction for Production of High-Purity Silicon” AIChE Symposium Series (American Institute of Chemical Engineers) No. 216, Vol. 78, p104- 115 (1982) discloses a method for producing high-purity silicon in which silicon tetrachloride is reduced with zinc gas in a fluidized bed and grown on the seed silicon charged with the produced silicon. In this method, by-product zinc chloride gas, unreacted zinc gas and unreacted silicon tetrachloride gas are continuously withdrawn from the upper part of the fluidized bed reactor, and zinc chloride and zinc are captured as a mixed liquid by a condenser.
  • the collected and collected mixed liquid is sent to a molten salt electrolyzer and electrolyzed to recover chlorine and zinc.
  • the recovered zinc is used for the reduction of silicon tetrachloride
  • the recovered chlorine is used for the production of silicon tetrachloride using silicic acid (SiO 2 ) and carbon or metal silicon as raw materials.
  • a pilot production device that produces 50 tons / year using a zinc reduction method that includes a high-purity silicon production process and a recycling process for by-produced zinc chloride was designed. Production is possible at the lowest cost.
  • Non-Patent Document 1 when silicon tetrachloride gas is reduced with zinc gas at a reaction temperature of 890 ° C., the conversion rate from silicon tetrachloride gas to silicon is 67%, which is obtained by thermodynamic calculation. A value of 94% of the equilibrium reaction coefficient obtained is obtained. This is because, in addition to zinc chloride by-produced from the reactor, nearly 30% of the introduced amount of unreacted silicon tetrachloride gas and unreacted zinc gas, and dust that could not be recovered in the reactor. A mixed gas containing silicon and an inert gas introduced as necessary is discharged.
  • Non-Patent Document 1 discloses that the refrigerant flows through the opposite side of the contact surface with the exhaust gas, and the temperature of the contact surface is adjusted by heat transfer. An apparatus using a lowering indirect cooling scheme is shown.
  • Zinc chloride gas becomes a liquid at a boiling point of 732 ° C. or lower, increases in viscosity as the temperature is lowered, and becomes a solid at a melting point of 283 ° C. or lower.
  • Zinc gas becomes a liquid at a boiling point of 907 ° C. or lower, the viscosity increases near a melting point of 419 ° C., and becomes a solid at a temperature lower than the melting point.
  • silicon dust is condensed and recovered in a state where silicon dust is dispersed and mixed in a liquid in which zinc chloride and zinc are mixed. If zinc chloride recovered by this method is used as it is for electrolysis, it causes deterioration of electrolysis efficiency, and in extreme cases, electrolysis becomes impossible.
  • a process such as a method of filtering as a melt, a method of separating by distillation, or a method of reacting with chlorine gas. Becomes complicated.
  • Zinc chloride exhibits strong hygroscopicity in solids and easily absorbs moisture from the atmosphere.
  • the electrolysis voltage of water is lower than the electrolysis voltage of zinc chloride, so water begins electrolysis first.
  • Mixing moisture not only wastes power, but the mixed gas of hydrogen and chlorine generated by electrolysis can react explosively, and this is a method that can control moisture contamination for safety reasons. It will be necessary. If the condensed zinc chloride can be handled in the form of a melt, there is no concern about the mixing of moisture. Therefore, establishment of a method for recovering zinc chloride in the melt and passing it to the subsequent molten salt electrolysis is strongly demanded.
  • the method of cooling the gas and recovering it as a condensed liquid is a technique commonly practiced in the chemical industry.
  • Condensation methods include an indirect cooling method and a direct cooling method.
  • the gas to be condensed is separated by a refrigerant liquid and a partition wall and cooled indirectly from the outside of the partition wall, and the condensed liquid and the refrigerant liquid are mixed.
  • the direct cooling method is a method in which the latent heat is directly transferred between the condensed liquid and the refrigerant liquid, so that the speed of heat transfer is fast, but the gas to be introduced is in direct contact with the refrigerant liquid. Use is limited.
  • Patent Document 7 discloses a method and apparatus for condensing metal from metal vapor, specifically, reducing zinc oxide with carbon.
  • a method and apparatus for condensing and recovering zinc from zinc vapor is disclosed. This method is a method in which liquid zinc is placed in a sloping restricted pipe, a gas containing zinc vapor is passed through the liquid zinc, and the zinc vapor in contact with the moving surface of the liquid zinc is condensed. At the same time, using a lift created by the upward movement of liquid zinc generated by the gas flow, a device that draws a part of the liquid zinc from the restricted pipe line, cools it in an external cooling tank, and returns the part. This method is used. According to this method, it is said that zinc is efficiently and continuously condensed.
  • Patent Document 7 discloses whether or not zinc chloride can be condensed and collected from a gas containing zinc chloride having physical properties such as vapor pressure and viscosity different from zinc by the above method, or tetrachloride.
  • this method can be used even in a gas containing zinc gas or silicon tetrachloride gas in addition to zinc chloride gas and whose thermodynamic equilibrium changes with temperature.
  • the present invention recovers zinc chloride efficiently and stably over a long period of time from a gas containing zinc chloride as a main component as a by-product from the process of producing high-purity silicon by reducing silicon tetrachloride with zinc. It is an object of the present invention to provide an apparatus and a method.
  • the present inventors used a specific condensate liquefaction apparatus, and made a zinc chloride melt, a zinc melt or a melt in which both zinc chloride and zinc coexist as a refrigerant liquid, It has been found that the above problem can be solved by a method in which a condensed component containing zinc chloride is liquefied from a gas containing zinc chloride as a main component and collected in the refrigerant liquid, and the present invention has been completed based on this finding. It was.
  • the present invention has the following configuration.
  • a condensate liquefaction method comprising a step of introducing, and a step of liquefying a condensing component containing zinc chloride from the introduced gas and collecting it in a refrigerant liquid.
  • the gas containing zinc chloride introduced from the introduction part is moved in the upper refrigerant liquid of the mixing part, and between the introduced gas and the refrigerant liquid
  • a process of performing heat exchange by direct gas-liquid contact, and after condensing the condensed component containing zinc chloride and collecting it in the refrigerant liquid the refrigerant liquid is sent from the mixing section to the heat exchange section, and the refrigerant liquid is heat exchanged Removing the heat in the unit, returning the refrigerant liquid after heat removal to the mixing unit and circulating the refrigerant liquid; and extracting a part of the refrigerant liquid from the liquid extraction unit provided in the mixing unit or the heat exchange unit; And the step of exhausting the gas exhausted from the mixing part from the exhaust part.
  • the gas containing zinc chloride is a mixed gas containing zinc chloride and one or more gases selected from the group consisting of zinc and silicon tetrachloride, or an inert gas is further included in the mixed gas.
  • the condensate liquefaction method according to any one of [5] to [10] above, which is a mixed gas.
  • the refrigerant liquid extracted from the liquid extraction part provided in the mixing part is a zinc chloride melt or a mixed melt in which a zinc melt is mixed with a zinc chloride melt, and the heat exchange part Any one of the above [6] to [12], wherein the refrigerant liquid extracted from the provided liquid extraction portion is a zinc melt or a mixed melt in which a zinc chloride melt is mixed with a zinc melt.
  • the temperature of the refrigerant liquid returning to the mixing section is maintained in the range of 420 ° C to 650 ° C.
  • the liquid extracted from the liquid extraction part provided in the mixing part is a zinc chloride melt or a mixed melt in which a zinc melt is mixed in a zinc chloride melt and a mixed melt in which dusty silicon is further mixed.
  • the amount of heat removed from the refrigerant liquid in the heat exchange section is a heat amount corresponding to the sum of the latent heat of the condensed component and the amount of heat required for cooling the introduced gas [16]
  • the condensate liquefaction method according to any one of [16].
  • Condensed components containing zinc are liquefied and collected stably without causing problems such as blockage of pipes even when operated for a long time with a high collection rate, high thermal efficiency, and high volumetric efficiency. can do.
  • the condensed component contains a zinc chloride melt, a mixed melt in which a zinc melt is mixed with a zinc chloride melt, or a dust-like silicon contained in the zinc chloride melt.
  • the melt melt mixed with the zinc melt or the zinc melt melt in the zinc melt can be separated and taken out in the condensing apparatus.
  • the zinc chloride melt, the mixed melt in which zinc melt is mixed with the zinc chloride melt, or the melt containing dusty silicon in the zinc chloride melt, which is condensed and taken out by the apparatus and method of the present invention It has a quality that allows molten salt electrolysis without performing a special treatment such as distillation or filtration, and can be directly supplied to the subsequent molten salt electrolysis process.
  • the zinc melt or the mixed melt obtained by mixing the zinc melt with the zinc melt is reduced by the apparatus and method of the present invention, and the oxidation of zinc is suppressed.
  • the simple treatment it can be used for the reduction of silicon tetrachloride.
  • zinc chloride produced as a by-product is efficiently collected from the production process of high-purity silicon in which silicon tetrachloride is reduced with zinc, and chlorine and zinc are produced by molten salt electrolysis.
  • the produced chlorine can be directly reacted with metallic silicon or used as a raw material for producing silicon tetrachloride via hydrogen chloride, and the produced zinc can be used as a reducing agent for silicon tetrachloride. It becomes possible to realize the recycling utilization of zinc, and it becomes possible to produce high purity silicon at a relatively low cost.
  • FIG. 1 is a schematic view of a mixing section of a condensing liquefaction apparatus according to the present invention.
  • FIG. 2 is a schematic view of a heat exchange part of the condensing liquefaction apparatus according to the present invention.
  • FIG. 3 is a schematic diagram showing the arrangement of the mixing section and the heat exchange section in the condensing liquefaction apparatus according to the present invention.
  • FIG. 4 is a schematic view in which a third weir is installed in the mixing section shown in FIG.
  • FIG. 5 is a schematic diagram of a condensate liquefaction test apparatus.
  • the condensing and liquefying apparatus of the present invention includes (A) an introduction portion for introducing gas, (B) an inclined mixing portion that has a first weir and a second weir and stores refrigerant liquid, and (C) the above-mentioned A heat exchanging unit connected to the mixing unit for removing heat from the refrigerant liquid; (D) an exhaust unit connected to the suction exhaust device; and (E) a liquid provided in the mixing unit and the heat exchanging unit. A liquid extraction part for extracting the liquid.
  • FIG. 1 is a schematic diagram of a condensing and liquefying apparatus of the present invention used in a method for liquefying a condensed component containing zinc chloride from a gas containing zinc chloride as a main component and collecting it in a refrigerant liquid.
  • the mixing unit 1 is inclined within a range of 10 to 35 degrees from the horizontal plane, and has a first weir 5 and a second weir 6 inside.
  • the inlet 3 side of the first weir 5 has a refrigerant liquid return port 8 that receives the refrigerant liquid from the heat exchanger 20 shown in FIG. 2, and the heat exchanger on the exhaust part 4 side of the second weir 6.
  • 20 has a refrigerant liquid outlet 7 for sending out the refrigerant liquid.
  • the mixing unit 1 includes a liquid extraction unit 15 that extracts a refrigerant liquid containing a condensed component.
  • An upper gap 10, an upper gap 11, a lower gap 12, and a lower gap 13 are provided above and below the first weir 5 and the second weir 6.
  • a zinc chloride gas discharge source A such as a step of reducing silicon tetrachloride with zinc is connected to the introduction unit 3.
  • a suction / exhaust device B (not shown) is connected to the exhaust unit 4, and the suction / exhaust device B is further equipped with ancillary equipment (not shown) for processing a non-condensable gas and a gas containing zinc chloride that could not be recovered. ).
  • the introduction unit 3, the mixing unit 1, the exhaust unit 4, and the refrigerant liquid pipe circulating between the mixing unit 1 and the heat exchange unit 20 are surrounded by a heat insulating material or heated from the outside by a usual method. In other words, it is configured to be maintained within a predetermined operating temperature range.
  • Collection of condensed components containing zinc chloride from a gas containing zinc chloride is performed as follows. That is, the gas containing zinc chloride introduced from the introduction unit 3 is bubbled through the upper part of the refrigerant liquid stored in the inclined mixing unit 1 due to the negative pressure of the exhaust unit provided by the suction exhaust unit B. Or moving from the introduction unit 3 toward the exhaust unit 4 while spraying. At this time, the gas containing zinc chloride and the refrigerant liquid come into direct contact to exchange heat.
  • the gas containing zinc chloride is rapidly cooled to near the temperature of the refrigerant liquid, the latent heat of the condensed component contained in the gas containing zinc chloride is taken away, and the condensed component containing zinc chloride is condensed and collected in the refrigerant liquid. .
  • the refrigerant liquid also generates a flow.
  • This flow is emphasized by the first weir 5 and the second weir 6 installed in the mixing unit 1.
  • a part of the flow passes through the upper gap 10 of the first weir 5, changes direction before the second weir 6, and circulates from the lower gap 12 of the first weir 5 to the introduction part side of the mixing unit 1.
  • Form a flow The other flow is further lifted further along the gas flow through the upper gap 11 of the second weir 6. Due to the flow lifted upward, a difference L in the storage height occurs between the refrigerant liquid on the exhaust portion 4 side of the second weir 6 and the refrigerant liquid on the introduction portion 3 side of the first weir 5.
  • the difference L in the storage height becomes a driving force for circulating the refrigerant liquid between the mixing unit 1 and the heat exchange unit 20.
  • the size and tilt angle of the mixing unit main body are determined by the degree of bubbles and spray, the gas-liquid contact time between the introduced gas and the refrigerant liquid, the circulation of the refrigerant liquid in the mixing unit 1 and the circulation with the heat exchange unit 20. Affect. For example, when a mixing unit having the same size is used, bubbles and sprays are gently generated at a low inclination angle inclined by 10 degrees from the horizontal plane, the gas-liquid contact time becomes long, and the circulation of the refrigerant liquid becomes gentle. At a high inclination angle inclined 35 degrees from the horizontal plane, bubbles and sprays are generated violently, and the gas-liquid contact time is shortened, but the circulation of the refrigerant liquid is strengthened.
  • the inclination angle of the mixing unit 1 is in the range of 10 to 35 degrees from the horizontal plane, it is preferable that both the degree of bubbles and spraying and the degree of gas-liquid contact time and the degree of circulation of the refrigerant liquid can be achieved.
  • the inclination angle is more preferably in the range of 15 to 30 degrees.
  • the length of the mixing unit main body is determined in consideration of the scattering distance of bubbles and spray generated in the mixing unit 1 to the exhaust unit 4 side.
  • the size and inclination angle of the mixing unit main body and the size and position of each weir affect the difference L between the circulation of the refrigerant liquid and the storage height of the refrigerant liquid, the height of the weir, the position of the weir, and the position of the weir It is preferable to determine the tilt angle by performing an optimal adjustment by performing a test.
  • FIG. 2 is a schematic diagram of a heat exchange part of a condensing and liquefying apparatus used in a method for liquefying and collecting a condensed component containing zinc chloride from a gas containing zinc chloride as a main component of the present invention.
  • 2 includes a refrigerant liquid inlet 21 that receives the refrigerant liquid sent from the mixing unit 1 in FIG. 1, a refrigerant liquid outlet 22 that returns the heat-removed refrigerant liquid to the mixing unit 1, and heat removal from the refrigerant liquid.
  • a heat removal device 23 that performs the above operation
  • a liquid extraction unit 24 that extracts the refrigerant liquid
  • a liquid extraction unit 25 are provided.
  • a refrigerant liquid whose temperature has risen is received from the refrigerant liquid inlet 21, and a heat quantity corresponding to the sum of the latent heat of the condensed component from the refrigerant liquid and the quantity of heat required for cooling the introduced gas is removed by the heat removal device 23, and the refrigerant liquid outlet
  • the refrigerant liquid removed from the heat is returned to the mixing unit 1.
  • the heat removal performed by the heat exchanging unit 20 can be performed by using a heat removal device 23 of an indirect cooling system that circulates a gas, a liquid, or a metal melt as the heat removal medium.
  • the heat transfer area, the temperature and flow rate of the heat removal medium may be controlled to remove the necessary heat, and the capacity and structure of the heat exchanging unit 20 can ensure the necessary amount of heat transfer and storage of refrigerant liquid,
  • the shape is not particularly limited as long as it does not hinder the circulation of the refrigerant liquid.
  • the mixing unit 1 and heat Separation of condensed components can also be performed by the exchange unit 20.
  • the refrigerant liquid collected by condensing the condensed components immediately begins to separate by condensation and specific gravity for each condensed component within the mixing unit 1, and a condensed component having a small specific gravity is present in the upper part of the mixing unit 1 and a specific gravity is present in the lower part. Large condensed components gather, and the components having a large specific gravity become a refrigerant liquid that circulates between the heat exchanger 20.
  • the refrigerant liquid can be sent from the mixing unit 1 to the heat exchange unit 20 and further separated by the heat exchange unit 20, and then returned to the mixing unit 1.
  • the storage volume of the heat exchange unit 20 is increased to increase the residence time, and the condensed component having a small specific gravity is separated and stored in the upper part of the heat exchange unit 20 and the condensed component having a large specific gravity is separated and stored in the lower part.
  • the separated condensed component is extracted from the liquid extraction unit 24 or the liquid extraction unit 25.
  • the mixing unit 1 and the heat exchange unit 20 are arranged.
  • a pipe 27 and a pipe 28 are connected between the refrigerant liquid return port 8 and the refrigerant liquid outlet 22 and between the refrigerant liquid outlet 7 and the refrigerant liquid inlet 21, respectively.
  • the refrigerant liquid is circulated between the mixing unit 1 and the heat exchange unit 20.
  • the refrigerant liquid outlet 7 and the refrigerant liquid return port 8 are preferably provided in the mixing unit 1 so as to open into a layer made of refrigerant liquid having a large specific gravity in the refrigerant liquid separated by the specific gravity described above.
  • the cross-sectional shape of the mixing portion 1 can take a circular shape, an elliptical shape, a polygonal shape, or the like.
  • the cross-sectional shape of the mixing unit may be an elliptical shape that becomes narrower from the upper part to the lower part, or from the introduction part 3 to the exhaust part 4 A shape with a changed cross-sectional area may be used.
  • the shape of the heat exchanging unit 20 can be a cylindrical shape, a box shape, an ellipsoid, etc., as long as the configuration accepts the refrigerant liquid, removes a necessary amount of heat with a heat removal device, and can be returned to the mixing unit 1. It can take a shape and is not particularly limited.
  • the material used for the condensing device is zinc chloride, zinc or silicon tetrachloride contained in a gas containing zinc chloride as a main component, or zinc chloride or zinc melt or mixed melt constituting the refrigerant liquid. Quartz, silicon carbide, or a ceramic material having resistance in the temperature range to be used can be used, and the inner surface of the outer iron material can be covered with these materials.
  • a method for liquefying and collecting a condensed component containing zinc chloride from a gas containing zinc chloride as a main component by using the above-described condensing liquefaction apparatus of the present invention will be described in detail below.
  • the physicochemical properties of zinc chloride and zinc are shown in Table 1 and Table 2, respectively.
  • the boiling point of zinc is 907 ° C., and it is difficult to continuously supply zinc as a gas at a temperature below the boiling point.
  • the reaction temperature is set to a low temperature below the boiling point, the zinc gas condenses, and the generated silicon contains zinc.
  • the reaction is substantially carried out at 910 ° C. or higher and 1100 ° C. or lower because of incorporation.
  • the equilibrium reaction coefficient when reacting 1 mol of silicon tetrachloride gas and 2 mol of zinc gas at 900 ° C. and 1 atm is about 74%.
  • the exhaust gas discharged from the reactor is 26% of unreacted silicon tetrachloride gas
  • the composition contains 26% of unreacted zinc gas and zinc chloride gas produced as a by-product.
  • a mixed gas containing an inert gas introduced as necessary is introduced into the condensing liquefaction apparatus.
  • the exhaust gas discharged from the reactor is discharged.
  • the gas contains zinc chloride as a main component and the ratio changes, it is not changed that it is a mixed gas containing zinc gas or silicon tetrachloride gas and further containing an inert gas introduced as necessary.
  • the exhaust gas discharged from the reaction apparatus may contain dusty silicon. Dust-like silicon is generated when the exhaust gas containing unreacted silicon tetrachloride and unreacted zinc gas discharged from the reactor is placed under conditions such that the temperature of the exhaust gas decreases. For example, when exhaust gas is transported through a pipe with a negative temperature gradient, or when zinc chloride is recovered using an indirect cooling method that gradually cools from the outside, unreacted zinc gas and unreacted under low temperature conditions In particular, it is often observed when the silicon tetrachloride gas coexists for a long time. As the exhaust gas temperature decreases, the thermodynamic equilibrium changes and it is thought that dusty silicon is produced.
  • the exhaust gas discharged from the reaction apparatus is quickly sent to the condensing and liquefying apparatus without changing the temperature, and the exhaust gas containing zinc chloride is rapidly cooled to a temperature at which the reaction rate is low, and the zinc chloride is condensed and liquefied.
  • the method of the present invention which condenses liquefied unreacted zinc gas and quickly separates it from unreacted silicon tetrachloride gas, is also advantageous in reducing the production of dusty silicon.
  • the temperature of the gas containing zinc chloride to be introduced needs to be kept at a sufficiently high temperature not lower than the boiling point of zinc chloride of 732 ° C. until it is introduced into the condensing liquefaction apparatus, so as to prevent the zinc chloride from condensing. Yes. Moreover, even if it falls from reaction temperature, it is preferable to suppress a temperature change to about 100 degreeC. With such a temperature change, the change in thermodynamic equilibrium falls within a small range.
  • the exhaust gas from the zinc reduction reaction apparatus in which the reaction is carried out at 900 ° C. or higher and 1100 ° C. or lower is kept in a liquefied state within the range of 800 ° C. or higher and 1100 ° C.
  • the refrigerant liquid in the melt state Prior to receiving the exhaust gas from the zinc chloride gas discharge source A, the refrigerant liquid in the melt state is stored in the mixing unit 1 and the heat exchanging unit 20 of the condensing liquefaction apparatus and is kept at a predetermined temperature.
  • the method is not particularly limited, but a method in which a refrigerant liquid previously melted or a powder or solid refrigerant liquid raw material is charged through a charging port or an inspection port provided in the mixing unit 1 or the heat exchanging unit 20 Then, it can be performed by a method of heating from the outside to obtain a melt.
  • transducing part 3 to the exhaust part 4 is interrupted
  • the refrigerant liquid condenses and takes in zinc chloride and zinc in the exhaust gas, and the composition of the refrigerant liquid gradually changes to a mixed melt of zinc chloride and zinc. That is, the refrigerant liquid when the condensing liquefaction apparatus is in a normal operation is a mixed melt of zinc chloride and zinc.
  • the condensing and liquefying apparatus is temporarily stopped or restarted in this state, the temperature of the refrigerant liquid is maintained at a temperature at which the melting point of zinc is not lower than 419 ° C. and the evaporation of zinc chloride is not significant.
  • the suction / exhaust device B is moved to make the exhaust part 4 have a negative pressure.
  • unreacted silicon tetrachloride, unreacted zinc gas, and by-product zinc chloride in a temperature range of 800 ° C. to 1100 ° C. Is introduced into the introduction part 3 of the condensing liquefaction apparatus.
  • the liquid level on the introduction part 3 side of the refrigerant liquid is lowered, the liquid level on the exhaust part 4 side is raised, and the introduced gas generates bubbles and sprays in the refrigerant liquid near the upper part of the mixing part 1. Moving. At this time, the heat quantity of the gas rapidly moves to the refrigerant liquid, and the temperature of the gas rapidly decreases.
  • unreacted zinc and by-produced zinc chloride are condensed and collected in the refrigerant liquid.
  • the unreacted silicon tetrachloride gas as a non-condensed component and the inert gas introduced as necessary are cooled to a temperature close to that of the refrigerant liquid, and then separated from the refrigerant liquid and passed through the exhaust unit 4 to the suction exhaust apparatus B.
  • the refrigerant liquid receives the amount of heat required to cool the introduced gas and the amount of heat corresponding to the latent heat of condensation of zinc chloride and zinc, and the temperature rises.
  • the liquid circulation between the mixing unit 1 and the heat exchanging unit 20 is started by the difference L in the storage height inside the mixing unit 1 caused by the introduced gas flow.
  • the refrigerant liquid that has entered the heat exchanging unit 20 and whose temperature has risen is cooled by moving the heat removal device 23 and returned to the mixing unit 1.
  • the temperature of the refrigerant liquid returning from the heat exchange unit 20 to the mixing unit 1 can be controlled.
  • the temperature of the refrigerant liquid suitable for condensing the gas containing zinc chloride is preferably in the temperature range of 420 ° C. or more and 650 ° C. or less when the gas becomes stable.
  • a temperature of 650 ° C. or lower is preferable because both the zinc chloride gas and the unreacted zinc gas can be substantially condensed and liquefied.
  • a temperature of 550 ° C. or lower is more preferable because the vapor pressure of zinc chloride is 10% or less of the saturated vapor pressure and 1% or less of zinc.
  • a temperature of 520 ° C. or lower is particularly preferable because the vapor pressure of zinc chloride is 2% or lower of the saturated vapor pressure.
  • the temperature of 420 degreeC or more since zinc does not solidify, it is preferable.
  • a temperature of 450 ° C. or higher is more preferable because the viscosity of zinc chloride is lowered and the fluidity is improved.
  • zinc chloride gas and zinc gas can be stably condensed and liquefied.
  • zinc chloride is close to 98% estimated from the vapor pressure, and zinc is close to 99% estimated from the vapor pressure and can be condensed and collected. Since it becomes possible, it is further preferable.
  • silicon tetrachloride gas that does not condense at this temperature, or gas that contains zinc chloride or zinc that could not be collected is at a temperature close to the temperature range of the refrigerant liquid. Then, it is discharged from the mixing section 1 and exhausted to the suction exhaust apparatus B through the exhaust section 3.
  • the suction exhaust apparatus B is connected to incidental equipment for separating and recovering silicon tetrachloride gas from this gas, or for treating zinc chloride, zinc, etc. that could not be collected.
  • the exhaust temperature is preferably maintained at a temperature of 700 ° C. or less by adjusting the heat removal amount of the heat removal device 23 according to the exhaust amount of the suction exhaust device B.
  • the temperature difference between the refrigerant liquid temperature and the exhaust gas temperature is introduced within 50 ° C., that is, by changing the configuration such as the thickness, length, weir position, etc. of the mixing unit 1 and the inclination of the mixing unit 1. It is more preferable that the heat exchange of the gas is performed well.
  • the refrigerant liquid that has taken in the condensed liquid component of zinc chloride and zinc causes separation of the condensed component due to the difference in specific gravity inside the mixing unit 1.
  • the specific gravity of the zinc melt is twice or more larger and the zinc melt does not melt together.
  • the lower layer is a zinc melt or a mixed melt in which a zinc chloride melt is mixed with a zinc melt
  • the upper layer is a mixed melt in which a zinc melt is mixed with a zinc chloride melt or a zinc chloride melt.
  • a refrigerant liquid composed of this zinc melt or a mixed melt in which zinc chloride melt is mixed with the zinc melt is sent to the heat exchanging section 20 from the refrigerant liquid outlet 7 located in the lower layer thus formed, and the heat exchanging section. Heat is removed at 20 and returned to the mixing unit 1 from the refrigerant liquid return port 8 located in the lower layer.
  • the liquid is extracted from the liquid extraction unit 24 or the liquid extraction unit 25 provided in the heat exchange unit 20.
  • the upper layer formed in the mixing unit 1 may be a layer containing dusty silicon that is generated without being suppressed.
  • the zinc chloride melt, the mixed melt in which the zinc melt is mixed with the zinc chloride melt, or the increased amount of the mixed melt in which the dusty silicon is mixed with these are extracted from the liquid extraction portion 15 provided in the mixing portion 1. Continuously extracted.
  • the liquid extraction part 15 is sealed with the extracted refrigerant liquid as in the structural example 16 shown in FIG. 1, so that the negative pressure of the exhaust part 4 is maintained and the zinc chloride melt and zinc chloride fusion are maintained.
  • a mixed melt in which zinc melt is mixed in the liquid, or a mixed melt in which dust-like silicon is mixed with these can be continuously extracted.
  • a baffle plate or a submerged weir is used as the third weir 17 shown in FIG. It can also be set as the structure installed in front of the part 15.
  • a zinc chloride-based melt such as a zinc chloride melt or a zinc melt mixed with a zinc chloride melt
  • the reduction reaction is suppressed when the reaction conditions are such that zinc chloride is excessively present, that is, the reaction in a direction in which the production of silicon is reduced. The equilibrium of moves.
  • the contact between the introduced gas and the refrigerant liquid is performed in the liquid formed in the upper layer, that is, the gas-liquid contact is performed in the melt mainly composed of zinc chloride. It will be a condition.
  • This is also an important and advantageous feature of the method of the present invention along with the realization of a method for recovering zinc chloride efficiently and stably from a gas containing zinc chloride as a main component.
  • Example 1 Using a condensing liquefaction apparatus as shown in FIG. 1 and FIG. 5, zinc chloride is put into the mixing unit 1 and the heat exchanging unit 20 and heated so that the zinc chloride melt has a height L1 in the mixing unit 1. I made it. While flowing nitrogen gas heated to 500 ° C., the mixing unit 1 was maintained at 493 ° C. and the heat exchange unit 20 was maintained at 502 ° C. by heating from the outside with a heater.
  • a liquid circulation was generated in the mixing section 1 by adjusting the load of the exhaust device B.
  • the internal temperature of the mixing unit 1 at the start of the condensation liquefaction test was 478 ° C.
  • the internal temperature of the heat exchange unit 20 was 502 ° C.
  • Table 3 shows the material balance of zinc chloride by this condensate liquefaction test.
  • Table 3 shows the material balance of zinc chloride by this condensate liquefaction test.
  • Zinc chloride gas introduced at a high temperature above the boiling point of zinc chloride was also reliably condensed and collected, indicating that the method of collecting zinc chloride using this condensing liquefaction device was effective.
  • the amount of zinc chloride which was not collected by the condensing liquefaction device and was condensed in the trap portion was 2% or less of the introduced zinc chloride amount. Since this amount is the same as the amount that cannot be collected with nitrogen gas, calculated from the vapor pressure, the collection of zinc chloride using this condensing liquefaction device calculates the mass balance as theoretically. Thus, it can be understood that the apparatus can be designed.
  • Example 2 For the purpose of confirming the behavior of liquefaction condensation in a mixed state of zinc chloride and zinc, the same device as in Example 1 (however, a zinc gas supply device (not shown) in the same manner as the zinc chloride evaporation kettle is added)) The following tests were conducted using Note that a mixed gas of zinc chloride, zinc, silicon tetrachloride and an inert gas is exhausted from the step of producing high-purity silicon by reducing silicon tetrachloride with zinc. The reaction rate when zinc gas is reacted at an excess rate of 20% with silicon tetrachloride at 950 ° C.
  • the test was conducted according to the following procedure.
  • the mixing part 1 and the heat exchanging part 20 are charged with about 1/20 of the zinc chloride melt, and then the zinc melt is added, so that the zinc chloride melt reaches the height of the throat part of the mixing part 1.
  • the mixing unit 1 was heated to 520 ° C., and the heat exchanging unit 20 was heated to 500 ° C. and held so as to be L1.
  • the density of zinc chloride is 2.9 g / cm 3 (25 ° C.)
  • the zinc is 7.2 g / cm 3 (25 ° C.)
  • 6.5 g / cm 3 450 ° C.
  • the density of zinc is the density of zinc chloride.
  • the zinc chloride melt separates into the upper part and the zinc melt separates into the lower part inside the mixing unit 1 and the heat exchange unit 20.
  • Nitrogen gas heated to 950 ° C. is introduced from the introduction unit 3
  • air is introduced as a heat removal medium into the heat removal device 23
  • heat removal in the heat exchange unit 20 is started, the internal pressure of the exhaust unit 4 and the exhaust unit 4 While confirming the differential pressure with the introduction unit 3, the load of the suction / exhaust device B was increased to generate liquid circulation in the mixing unit 1.
  • the flow rate of the heat removal medium was adjusted to wait for the internal temperature of the mixing unit 1 and the internal temperature of the heat exchange unit 20 to stabilize.
  • the internal temperature of the mixing unit 1 was in the range of 520 to 540 ° C., and the internal temperature of the heat exchange unit 20 was almost stable in the range of 500 to 530 ° C.
  • the effluent contained a small amount of residue, it was judged that the effluent was mainly composed of zinc chloride because it was well dissolved in water.
  • the outflow from the liquid withdrawal portion 15 continued until the introduction of zinc chloride and zinc was stopped.
  • no outflow of liquid was observed from the liquid extraction part 24 for a while, but outflow began as time passed. Since the initial effluent from the liquid extraction part 24 was well dissolved in water, it was determined that the main component was zinc chloride. Over time, the effluent turned into a liquid with a metallic luster, which was determined to be based on zinc.
  • the zinc melt having a high specific gravity becomes a refrigerant liquid that circulates through the mixing unit 1 and the heat exchange unit 20.
  • the amounts of zinc chloride and zinc introduced in the test were 20.5 kg of zinc chloride and 6.5 kg of zinc.
  • the temperature of the mixing unit 1 was changed in the temperature range of 510 to 570 ° C.
  • the internal temperature of the heat exchange unit 20 was changed in the temperature range of 490 to 550 ° C.
  • the exhaust gas temperature was changed in the temperature range of 520 to 570 ° C.
  • the present invention realizes a basic technique and method for efficiently recovering zinc chloride by-produced from the production process of high-purity silicon in which silicon tetrachloride is reduced with zinc.
  • the recovered zinc chloride is subjected to molten salt electrolysis to produce chlorine and zinc, and the produced chlorine is directly used for reaction with metal silicon or used as a raw material for producing silicon tetrachloride via hydrogen chloride.
  • electrolytic zinc as a reducing agent for silicon tetrachloride, it becomes possible to circulate and use the by-produced chloride, so that high-purity silicon can be produced at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

[課題]四塩化珪素を亜鉛で還元して高純度シリコンを製造する工程より副生する塩化亜鉛を主成分として含む気体から、効率的に、かつ長時間継続して安定に塩化亜鉛を回収する装置及び方法を提供する。 [解決手段]本発明の凝縮液化装置は、気体を導入する導入部と、第一の堰と第二の堰を有し、冷媒液体を貯留する傾斜した混合部と、前記混合部に接続された、冷媒液体の除熱を行う熱交換部と、吸引排気装置が接続された排気部と、前記混合部および前記熱交換部に設けられた、液体の抜き出しを行う液抜き出し部とを備えたことを特徴とし、本発明の凝縮液化方法は、該装置を用いて、塩化亜鉛を含む気体から塩化亜鉛を含む凝縮成分を液化して冷媒液体中に捕集することを特徴とする。

Description

塩化亜鉛の凝縮液化装置及び方法
 本発明は、四塩化珪素を亜鉛で還元して高純度シリコンを製造する工程より生じる、塩化亜鉛を主成分として含む気体から塩化亜鉛を回収する装置及び方法に関する。
 近年、地球温暖化を防止するための有力な手段としての太陽電池に対する関心が益々強まっている。シリコン系、化合物系、有機系などの太陽電池が検討されているが、その内シリコン系の太陽電池は最も実用化が進んでいる。特に高純度シリコンを原料とした、単結晶や多結晶シリコン型の太陽電池を用いた発電設備は、小規模から大規模まで設置数が飛躍的に増加しており、発電コストの低下が可能となればさらに増加傾向は加速すると考えられている。
 高純度シリコンの供給能力は、電子機器や情報機器に使用される半導体向け需要に加え、近年の太陽電池向け需要の急激な拡大により、これらの需要に対して不足しており、市場の要求に応えられない状況である。特に、高純度シリコンが優先的に半導体用に供給されることもあり、太陽電池用の原料となる高純度シリコンについては、半導体用単結晶シリコンを引き上げた後のルツボ残や、単結晶シリコンインゴットの切削屑などのスクラップ品など、品質にバラツキが多い材料も無理やり用いている状況でもある。そのため、太陽電池用に向けた高純度シリコンの、質・量ともに安定した供給体制の実現、ならびに現在よりも大量に安価に製造できる技術の開発が強く求められている。
 現在、商業的に実施されている高純度シリコンの製造はシーメンス法によって行われている。この方法では製造コストに占める電力コストが大きく、また回分式製造となるため生産効率が悪い。さらに、原料として用いるトリクロロシラン製造設備の増強や、シーメンス法による高純度シリコンの製造に伴い排出される分解ガスから、未反応のトリクロロシランおよび水素ならびに副生する四塩化珪素などを回収し処理する付帯設備の増強などが必要となる。これらを考慮すると、シーメンス法は高純度シリコンを大量に安価に製造する方法としては適していない。
 シーメンス法に代わり安価に高純度シリコンを製造する方法は種々検討されているが、その内、四塩化珪素を亜鉛で還元する亜鉛還元法は、高純度シリコンを安価に製造できる可能性を持つ方法として注目されている。この還元反応は次式(1)に示される反応式によって行われる。
 SiCl4 + 2Zn → Si + 2ZnCl2  (1)
 しかし、この四塩化珪素を亜鉛で還元する方法は、高純度シリコンを1kg得るために、四塩化珪素を約6.1kgおよび亜鉛を約4.6kg必要とし、また塩化亜鉛を約9.7kg副生する反応である。副生する塩化亜鉛を有効に利用することは、亜鉛還元法によって高純度シリコンを安価に提供するために解決しなければならない大きな課題である。
 四塩化珪素の還元反応に亜鉛を用いる方法として、例えば、特許文献1(特開平11-11925号公報)には、液体または気体の四塩化珪素を溶融した亜鉛溶液中に導入して還元する方法、特許文献2(特開2007-284259号公報)には、四塩化珪素のガス中に液体状のアルミニウムや亜鉛を微小粒子にして接触させる方法、特許文献3(特開2008-037735号公報)には、亜鉛と塩化亜鉛の混合ガス中に四塩化珪素を液体のまま注入する方法などの各種亜鉛還元の反応条件を変えた方法が開示されている。
 また、特許文献4(特開2007-126342号公報)には、亜鉛還元によって生成したシリコンを含む反応ガスを、シリコンの融点以上に加熱されたシリコン溶解壁に衝突させて液状シリコンとして取り出す方法、特許文献5(特開2007-223822号公報)には、亜鉛還元により生成した高純度シリコンを反応装置内で四塩化珪素の供給ノズル先端から下方に成長させる方法などの高純度シリコンの製造方法が開示されている。
 また、特許文献6(特開2003-034519号公報)には、高純度四塩化珪素と気化させた金属亜鉛とを900℃~1100℃の反応炉内においてガス・ガス接触させて高純度シリコンを製造する気相法亜鉛還元法プロセスにおいて、副生する塩化亜鉛を電気分解により塩素ガス及び高純度金属電解亜鉛として分離回収すること、塩素ガスは精製後主原料の金属珪素と反応させ、さらに精留により高純度化して四塩化珪素とすること、電解亜鉛は四塩化珪素と反応させる還元剤とすることを特徴とする高純度シリコンの製造方法が示されている。この方法によれば、副生する塩化亜鉛を循環使用することにより、トータルシステムとして系外への廃棄物を基本的になくすことができるとともに、原料とする金属珪素から低コストで品質の安定した太陽電池用高純度シリコンが製造できるとしている。
 また、非特許文献1(Seifelt D.A. and Browning M.F., "Pilot-Scale Development of the Zinc Reduction for Production of High-Purity Silicon" AIChE Symposium Series (American Institute of Chemical Engineers) No.216, Vol.78, p104-115 (1982))には、流動層中で四塩化珪素を亜鉛ガスで還元し、生成したシリコンを投入した種シリコン上に成長させる高純度シリコンの製造方法が開示されている。この方法では、副生した塩化亜鉛ガス、未反応の亜鉛ガスおよび未反応の四塩化珪素ガスは、流動層反応装置の上部から連続的に抜き出し、凝縮装置により塩化亜鉛および亜鉛を混合液体として捕集し、捕集した混合液体を溶融塩電解装置に送り電気分解して塩素と亜鉛を回収している。回収した亜鉛は四塩化珪素の還元に用いられ、回収した塩素は、珪酸(SiO2)と炭素、または金属シリコンを原料とする、四塩化珪素の製造に用いられている。さらに、高純度シリコン製造工程および副生した塩化亜鉛の循環利用の工程を含む亜鉛還元法による、50トン/年を生産するパイロット製造装置が設計され、生産コストの試算では、他の方法に比較して最も低いコストで生産が可能となるとしている。
 さらに、非特許文献1によれば、890℃の反応温度で四塩化珪素ガスを亜鉛ガスで還元した場合、四塩化珪素ガスからシリコンへの転換率は67%で、熱力学的な計算により得られる平衡反応係数の94%の値が得られている。このことは、反応装置からは副生した塩化亜鉛のほかに、導入した量の30%近くの未反応の四塩化珪素ガスや未反応の亜鉛ガス、さらに反応装置内で回収できなかったダスト状シリコンや、必要に応じて導入した不活性ガスをも含む混合ガスが排出されることになる。この排出ガスから塩化亜鉛と未反応の亜鉛ガスを混合液体として回収する装置として、非特許文献1には、排出ガスとの接触面の反対側に冷媒を流し、伝熱により接触面の温度を下げる間接冷却方式を用いた装置が示されている。
 しかし、この方法では、接触面を構成する材料の熱伝導率により決定される熱移動に限界があることや、ガスとの接触面積を本質的に大きく確保することができないため、塩化亜鉛を含む排出ガスから塩化亜鉛などを効率的に回収することは出来ない。
 塩化亜鉛ガスは沸点732℃以下の温度で液体となり、温度を下げるに従い粘度を増し、融点の283℃以下で固体となる。亜鉛ガスは沸点の907℃以下で液体となり、融点の419℃近くで粘度が上昇し、融点以下の温度となると固体となる。間接冷却方式による塩化亜鉛と亜鉛の回収では、回収率を大きくするため冷媒液体の温度は塩化亜鉛の沸点をかなり下回る温度まで下げる必要があるが、凝縮した塩化亜鉛や亜鉛が装置内で部分的に固まり、さらに成長して内部の閉塞を起すことが多く、長期間安定して運転が行えない問題がある。
 さらにこの方法では、塩化亜鉛と亜鉛が混合した液体にシリコンダストが分散混在した状態で凝縮して回収される。この方法により回収した塩化亜鉛をそのまま電気分解に用いると電気分解の効率悪化の原因となり、極端な場合には電気分解が不可能となる。回収した塩化亜鉛を電気分解の原料として使用するために、溶融体としてろ過する方法、蒸留分離する方法、または塩素ガスにより反応処理する方法などの処理を行う必要があるが、いずれの方法もプロセスが複雑になる。
 塩化亜鉛は、固体では強い吸湿性を示し、大気中から容易に水分を吸収する。水分を含んだ塩化亜鉛の溶融塩電解を行う場合、水の電解電圧が塩化亜鉛の電解電圧より低いため、水が先に電解を始める。水分の混入は無駄な電力消費となるだけでなく、電気分解により発生する水素と塩素の混合気体は爆発的に反応を起こすこともあり、安全面からも水分の混入を低く管理できる方法であることが必要となる。凝縮液化した塩化亜鉛を融液のまま取り扱うことができれば水分の混入の心配がないことから、塩化亜鉛を融液で回収して、続く溶融塩電解に渡す方法の確立が強く求められている。
 四塩化珪素を亜鉛により還元して高純度シリコンを得ることを目的として、上述した各種方法が検討されているが、いずれに於いても副生する塩化亜鉛を含む排出ガスの凝縮液化方法に関して、これら内在する問題点を解決した方法を開示および示唆するものではない。塩化亜鉛を含む排出ガスから効率よく塩化亜鉛や亜鉛を回収する方法を確立し、続く電気分解工程に導き、塩素と亜鉛を回収して循環利用する方法を可能とすることが依然として強く求められている。
 気体を冷却して凝縮液体として回収する方法は、化学工業で一般的に実施されている技術である。凝縮方式としては間接冷却方式および直接冷却方式があるが、多くの化学装置では、被凝縮気体が冷媒液体と隔壁で分離され、隔壁の外部から間接的に冷却し、凝縮液体と冷媒液体が混ざらない間接冷却方式をとることが多い。直接冷却方式は、凝縮液体と冷媒液体との間で直接的に潜熱の受け渡しを行うことから、熱移動の速度が早い方式であるが、導入する気体が冷媒液体に直接接触することから、その利用は限られている。
 直接冷却方式を用いた数少ない例として、例えば特許文献7(米国特許2766114号公報)には、金属蒸気から金属を凝縮する方法および装置、具体的には、酸化亜鉛を炭素により還元して得られる亜鉛蒸気から亜鉛を凝縮回収する方法および装置が開示されている。この方法は、液体亜鉛を傾斜した制限された管路に入れ、亜鉛蒸気を含むガスを液体亜鉛の中を通過させ、液体亜鉛の移動表面に接した亜鉛蒸気を凝縮させる方法である。同時に、ガスの流れによって生じる液体亜鉛の上向きの移動により作られた揚程を利用して、制限された管路から液体亜鉛の一部を引き抜き、外部の冷却槽で冷却し一部を戻す装置を用いる方法である。この方法によれば、効率良く連続的に亜鉛の凝縮が成されるとされている。
 しかし、特許文献7は、上記方法により、蒸気圧や粘度などの物性が亜鉛と異なる塩化亜鉛を含むガスから塩化亜鉛を凝縮して捕集することが可能となるか否か、あるいは、四塩化珪素の亜鉛還元により排出される塩化亜鉛を主成分として含み、かつ蒸気圧や粘度などの物性が異なる未反応の亜鉛ガスや四塩化珪素ガスなどの複数の成分を他に含む気体から塩化亜鉛を凝縮液化することが可能となるか否かを開示または示唆するものでもない。また、塩化亜鉛ガスの他に亜鉛ガスや四塩化珪素ガスなどを含み、これらのガスの熱力学的な平衡が温度によって変化するようなガスに於いても、この方法を用いることが可能か否か、さらには、凝縮成分として塩化亜鉛と亜鉛のような複数の成分を凝縮し、成分毎に分けて捕集することが可能か否かを開示または示唆するものでもない。
特開平11-11925号公報 特開2007-284259号公報 特開2008-037735号公報 特開2007-126342号公報 特開2007-223822号公報 特開2003-034519号公報 米国特許2766114号公報
Seifelt D.A. and Browning M.F., "Pilot-Scale Development of the Zinc Reduction for Production of High-Purity Silicon" AIChE Symposium Series (American Institute of Chemical Engineers) No.216, Vol.78, p104-115 (1982)
 本発明は、四塩化珪素を亜鉛で還元して高純度シリコンを製造する工程より副生する塩化亜鉛を主成分として含む気体から、効率的に、かつ長時間継続して安定に塩化亜鉛を回収する装置及び方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定の凝縮液化装置を用い、塩化亜鉛融液、亜鉛融液または塩化亜鉛と亜鉛の双方が共存した融液を冷媒液体とし、塩化亜鉛を主成分として含む気体から塩化亜鉛を含む凝縮成分を液化して前記冷媒液体中に捕集する方法により、上記課題が解決されることを見出し、この知見に基づいて本発明を完成させた。本発明は、例えば以下の構成を有する。
 [1] (A)気体を導入する導入部と、(B)第一の堰と第二の堰を有し、冷媒液体を貯留する傾斜した混合部と、(C)前記混合部に接続された、冷媒液体の除熱を行う熱交換部と、(D)吸引排気装置が接続された排気部と、(E)混合部および熱交換部に設けられた、液体の抜き出しを行う液抜き出し部とを備えたことを特徴とする凝縮液化装置。
 [2] 前記混合部が水平面から10度~35度の範囲で傾斜していることを特徴とする前記[1]に記載の凝縮液化装置。
 [3] 前記混合部の排気部側に前記液抜き出し部が設けられたことを特徴とする前記[1]~[2]のいずれかに記載の凝縮液化装置。
 [4] 前記混合部の排気部側に設けられた液抜き出し部の手前に第三の堰を備えたことを特徴とする前記[3]に記載の凝縮液化装置。
 [5] 前記[1]~[4]のいずれかに記載の凝縮液化装置を用いて、混合部および熱交換部の内部に冷媒液体を貯留する工程と、導入部から塩化亜鉛を含む気体を導入する工程と、導入された気体から塩化亜鉛を含む凝縮成分を液化して冷媒液体中に捕集する工程とを含むことを特徴とする凝縮液化方法。
 [6] 吸引排気装置により生じる排気部の負圧を利用して、導入部より導入した塩化亜鉛を含む気体を混合部の上部冷媒液体中を移動させ、導入した気体と冷媒液体との間で直接気液接触による熱交換を行う工程と、塩化亜鉛を含む凝縮成分を液化して冷媒液体中に捕集した後、混合部から熱交換部に該冷媒液体を送り出し、該冷媒液体を熱交換部において除熱し、さらに除熱後の冷媒液体を混合部に返送して冷媒液体を循環させる工程と、混合部または熱交換部に設けられた液抜き出し部から冷媒液体の一部を抜き出す工程と、混合部より排出された気体を排気部より排気する工程とを、さらに含むことを特徴とする前記[5]に記載の凝縮液化方法。
 [7] 前記混合部に設けられた液抜き出し部が、抜き出された冷媒液体で封止されることを特徴とする前記[6]に記載の凝縮液化方法。
 [8] 前記凝縮成分を捕集した冷媒液体が、比重の小さな冷媒液体からなる層と比重の大きな冷媒液体からなる層との二つの層を混合部に形成することを特徴とする前記[5]~[7]のいずれかに記載の凝縮液化方法。
 [9] 前記比重の大きな冷媒液体を、混合部から熱交換部に送り出して除熱した後、混合部に返送して循環することを特徴とする前記[8]に記載の凝縮液化方法。
 [10] 混合部から熱交換部への冷媒液体の出口、および熱交換部から混合部への冷媒液体の戻り口を、前記比重の大きな冷媒液体からなる層の中に開口するように混合部に設けた凝縮液化装置を用いたことを特徴とする前記[8]~[9]のいずれかに記載の凝縮液化方法。
 [11] 前記塩化亜鉛を含む気体が、塩化亜鉛と、亜鉛および四塩化珪素からなる群から選ばれる1種以上の気体とを含む混合気体、または該混合気体にさらに不活性気体が含まれた混合気体であることを特徴とする前記[5]~[10]のいずれかに記載の凝縮液化方法。
 [12] 前記冷媒液体が、塩化亜鉛融液、亜鉛融液または塩化亜鉛と亜鉛の双方を共存して含む融液であることを特徴とする前記[5]~[11]のいずれかに記載の凝縮液化方法。
 [13] 前記混合部に設けられた液抜き出し部から抜き出される冷媒液体が、塩化亜鉛融液または塩化亜鉛融液に亜鉛融液が混在した混合融液であり、かつ、前記熱交換部に設けられた液抜き出し部から抜き出される冷媒液体が、亜鉛融液または亜鉛融液に塩化亜鉛融液が混在した混合融液であることを特徴とする前記[6]~[12]のいずれかに記載の凝縮液化方法。
 [14] 前記塩化亜鉛を含む気体を800℃~1100℃の温度範囲で導入することを特徴とする前記[5]~[13]のいずれかに記載の凝縮液化方法。
 [15] 混合部と熱交換部とを循環する冷媒液体の循環量および熱交換部の除熱量を制御することにより、混合部に戻る冷媒液体の温度を420℃~650℃の範囲に保ち、かつ排気部から吸引排気装置へ排出する排気ガスの温度を700℃以下に保つことを特徴とする前記[6]~[14]のいずれかに記載の凝縮液化方法。
 [16] 前記混合部に設けられた液抜き出し部から抜き出される液体が、塩化亜鉛融液または塩化亜鉛融液に亜鉛融液が混在した混合融液に、さらにダスト状シリコンが混在した混合融液であることを特徴とする前記[6]~[15]のいずれかに記載の凝縮液化方法。
 [17] 前記冷媒液体が熱交換部で除熱される熱量が、凝縮成分の潜熱と導入した気体の冷却に要した熱量との和に相当する熱量であることを特徴とする前記[6]~[16]のいずれかに記載の凝縮液化方法。
 塩化亜鉛を主成分として含む気体から、本発明の凝縮液化装置を用い、塩化亜鉛融液、亜鉛融液または塩化亜鉛と亜鉛の双方を共存して含む融液を冷媒液体として用いることにより、塩化亜鉛を含む凝縮成分を、高い捕集率、高い熱効率、高い容積効率で、かつ長時間継続して運転しても管路の閉塞等の問題を生じることもなく安定に、液化して捕集することができる。
 また、本発明の装置及び方法によれば、凝縮成分を比重差を利用して、塩化亜鉛融液、塩化亜鉛融液に亜鉛融液が混在した混合融液またはこれらにダスト状シリコンが含有された融液と、亜鉛融液または亜鉛融液に塩化亜鉛融液が混在した混合融液とを、凝縮液化装置内で分離して取り出すことができる。
 また、本発明の装置及び方法により凝縮液化されて取り出された、塩化亜鉛融液、塩化亜鉛融液に亜鉛融液が混在した混合融液またはこれらにダスト状シリコンが含有された融液は、蒸留や濾過などの特別な処理を行うことなく溶融塩電解が可能な程度の品質を有しており、続く溶融塩電解工程にそのまま供給することが可能となる。
 また、本発明の装置及び方法により凝縮液化されて取り出された、亜鉛融液または亜鉛融液に塩化亜鉛融液が混在した混合融液は、亜鉛の酸化が抑えられており、そのまま、または簡単な処理により、四塩化珪素の還元に用いることが可能となる。
 さらに、本発明の装置及び方法を用いることにより、四塩化珪素を亜鉛により還元する高純度シリコンの製造工程より副生する塩化亜鉛を効率的に捕集し、溶融塩電解により塩素と亜鉛を生成させ、生成塩素は直接金属シリコンと反応させるか、または塩化水素を経由して四塩化珪素を製造する原料に用い、生成亜鉛は四塩化珪素の還元剤として用いることができるため、副生した塩化亜鉛の循環利用を実現することが可能となり、高純度シリコンを比較的低コストで生産することが可能となる。
図1は本発明に係る凝縮液化装置の混合部の模式図である。 図2は本発明に係る凝縮液化装置の熱交換部の模式図である。 図3は本発明に係る凝縮液化装置における混合部および熱交換部の配置を示す模式図である。 図4は図1に示した混合部に第三の堰を設置した模式図である。 図5は凝縮液化試験装置の模式図である。
 以下、本発明について更に詳しく説明するが、本発明はこれに限定されるものではない。
 本発明の凝縮液化装置は、(A)気体を導入する導入部と、(B)第一の堰と第二の堰を有し、冷媒液体を貯留する傾斜した混合部と、(C)前記混合部に接続された、冷媒液体の除熱を行う熱交換部と、(D)吸引排気装置が接続された排気部と、(E)前記混合部および前記熱交換部に設けられた、液体の抜き出しを行う液抜き出し部とを備える。
 図1は、塩化亜鉛を主成分として含む気体から、塩化亜鉛を含む凝縮成分を液化して冷媒液体中に捕集する方法に用いる本発明の凝縮液化装置の模式図である。
 混合部1は、水平面から10度~35度の範囲で傾斜し、内部に第一の堰5および第二の堰6を有する。第一の堰5の導入部3側には、図2に示す熱交換部20から冷媒液体を受け入れる冷媒液体戻り口8を有し、第二の堰6の排気部4側には熱交換部20に冷媒液体を送り出す冷媒液体出口7を有する。また、混合部1は、凝縮成分を含む冷媒液体の抜き出しを行う液抜き出し部15を有する。第一の堰5および第二の堰6の上部および下部には、上部すきま10、上部すきま11、下部すきま12、下部すきま13を有する。四塩化珪素を亜鉛還元する工程などの塩化亜鉛ガス排出源A(図示せず)は導入部3に接続される。排気部4には吸引排気装置B(図示せず)を接続し、吸引排気装置Bには、更に非凝縮性のガスや回収できなかった塩化亜鉛を含む気体を処理する付帯設備(図示せず)を接続する。導入部3、混合部1、排気部4や、混合部1と熱交換部20との間を循環する冷媒液体の配管は、断熱材で周囲を囲ったり、通常行われる方法により外部から加熱したりして、所定の運転温度範囲に保たれるように構成する。
 塩化亜鉛を含む気体から塩化亜鉛を含む凝縮成分の捕集は次のように行われる。すなわち、導入部3から導入された塩化亜鉛を含む気体は、吸引排気装置Bによってもたらされた排気部の負圧により、傾斜した混合部1内部に貯留された冷媒液体中の上部を、気泡や噴霧を生じながら導入部3側から排気部4の方向に移動する。この時に塩化亜鉛を含む気体と冷媒液体とが直接接触し熱交換を行う。塩化亜鉛を含む気体は冷媒液体の温度近くまで急速に冷却され、塩化亜鉛を含む気体に含まれる凝縮成分の潜熱が奪われ、塩化亜鉛を含む凝縮成分が冷媒液体に凝縮して捕集される。
 導入された塩化亜鉛を含む気体の流れに誘引されて、冷媒液体も流れを生じる。この流れは、混合部1内に設置した第一の堰5および第二の堰6により強調される。流れの一部は第一の堰5の上部すきま10を通り、第二の堰6の手前で方向を変えて、第一の堰5の下部すきま12から混合部1の導入部側に循環する流れを形成する。他の流れは更に気体の流れに従って、第二の堰6の上部すきま11を通りさらに上部に持ち上げられる。この上部に持ち上げられる流れにより、第二の堰6の排気部4側の冷媒液体と、第一の堰5の導入部3側の冷媒液体とは、貯留高さの差Lが生じる。この貯留高さの差Lが、冷媒液体を混合部1と熱交換部20の間を循環させる原動力となる。
 混合部本体の大きさや傾き角度は、気泡や噴霧の程度、導入された気体と冷媒液体との気液接触時間や、冷媒液体の混合部1内での循環や熱交換部20との循環に影響する。例えば、同じ大きさの混合部を用いた場合、水平面から10度傾斜させた低い傾斜角度では、穏やかに気泡や噴霧を生じ、気液接触時間は長くなり、冷媒液体の循環は穏やかとなる。水平面から35度傾斜させた高い傾斜角度では、激しく気泡や噴霧を生じ、気液接触時間は短くなるが冷媒液体の循環は強くなる。混合部1の傾斜角度が水平面から10度~35度の範囲であれば、気泡や噴霧の程度と気液接触時間や冷媒液体の循環の程度とを両立することができ好ましい。傾斜角度は15度~30度の範囲がより好適である。混合部本体の長さは、混合部1内で生じる気泡や噴霧の排気部4側への飛散距離を考慮して決定する。混合部本体の大きさや傾斜角度および各堰の大きさや位置などは、冷媒液体の循環と冷媒液体の貯留高さの差Lに影響を与えることから、堰の高さ、配置する位置および堰の傾き角度は、試験を行い最適に調整して決定することが好ましい。
 図2は、本発明の塩化亜鉛を主成分として含む気体から塩化亜鉛を含む凝縮成分を液化して捕集する方法に用いる凝縮液化装置の熱交換部の模式図である。図2の熱交換部20は、図1の混合部1より送られる冷媒液体を受け入れる冷媒液体入口21、除熱された冷媒液体を混合部1に返送する冷媒液体出口22、冷媒液体の除熱を行う除熱装置23、冷媒液体の抜き出しを行う液抜き出し部24および液抜き出し部25を設けた例である。冷媒液体入口21から温度が上昇した冷媒液体を受け入れ、冷媒液体から凝縮成分の潜熱と導入した気体の冷却に要した熱量との和に相当する熱量を除熱装置23で除熱し、冷媒液体出口22から除熱された冷媒液体を混合部1に返送する。熱交換部20で行う除熱は、除熱媒体として気体や液体や場合によっては金属の融体を循環させる間接冷却方式による除熱装置23を用いて行うことができる。伝熱面積、除熱媒体の温度および流量を制御して必要熱量の除熱を行えばよく、熱交換部20の容量と構造は、必要な熱の移動量と冷媒液体の貯留が確保でき、また冷媒液体の循環を妨げない形状であれば特に限定されない。
 凝縮成分を捕集した冷媒液体が、塩化亜鉛と亜鉛のように複数の凝縮成分を含み、その凝縮成分が互いに溶け合わずに、かつ比重により分離が可能な場合には、混合部1や熱交換部20で凝縮成分の分離を行うこともできる。凝縮成分を凝縮して捕集した冷媒液体は、混合部1の内部で直ちに凝縮成分毎に凝集と比重による分離を始め、混合部1の上部には比重の小さな凝縮成分が、下部には比重の大きな凝縮成分が集まり、比重の大きな成分は熱交換部20との間で循環する冷媒液体となる。混合部1内部で充分な分離が完結しない場合は、混合部1から冷媒液体を熱交換部20に送り出し、さらに熱交換部20で分離した後に、混合部1に戻すこともできる。この場合は熱交換部20の貯留体積を大きくして滞留時間を長く取り、熱交換部20の上部に比重の小さな凝縮成分を、下部に比重の大きな凝縮成分を分離して貯留させる。分離した凝縮成分は、液抜き出し部24または液抜き出し部25から抜き出される。
 図3に示す様に、混合部1と熱交換部20を配置する。冷媒液体戻り口8と冷媒液体出口22の間および冷媒液体出口7と冷媒液体入口21の間は、それぞれ配管27および配管28で接続する。これにより、混合部1と熱交換部20の間で冷媒液体の循環が行われる。前記冷媒液体出口7および前記冷媒液体戻り口8は、上述した比重により分離した冷媒液体における比重の大きな冷媒液体からなる層の中に開口するように混合部1に設けることが好ましい。
 混合部1の断面形状は円形、楕円形、多角形などの形状を取ることができる。混合部1で行われる気液接触および液循環が効率的に行われるように、混合部の断面形状を上部から下部にかけて細くなるような楕円形状とすることや、導入部3から排気部4にかけて断面積が変化した形状とすることもできる。熱交換部20の形状は、冷媒液体を受け入れ、除熱装置で必要熱量の除熱を行い、混合部1に返送が可能な構成であれば、形状は円筒形、箱型、楕円体などの形状を取ることができ、特に限定されない。
 凝縮液化装置に使用する材質は、塩化亜鉛を主成分として含む気体に含まれる塩化亜鉛、亜鉛または四塩化珪素、あるいは冷媒液体を構成する塩化亜鉛または亜鉛の融液や混合融液に対して、使用する温度範囲で耐性を有する石英、炭化珪素またはセラミック材などを用いることができ、また、これらの材質で外皮鉄材の内面を覆った構造とすることもできる。
 上述した本発明の凝縮液化装置を用いて、塩化亜鉛を主成分として含む気体から塩化亜鉛を含む凝縮成分を液化して捕集する方法について、以下に詳細に説明する。なお、塩化亜鉛および亜鉛の物理化学的性質を、それぞれ表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 四塩化珪素ガスと亜鉛ガスとを反応させる亜鉛還元反応によるシリコンの生成反応は、次式(1)に示すように、四塩化珪素1モルに対して2モルの亜鉛が反応し、1モルのシリコンと2モルの塩化亜鉛を生成する発熱反応である。
 SiCl4 + 2Zn → Si + 2ZnCl2  (1)
 圧力1気圧の条件で熱力学的な計算から求めた、この還元反応の平衡反応係数は、1027℃では62%、927℃では72%、827℃では81%、塩化亜鉛の沸点732℃以下では、727℃で88%、700℃以下で100%の値となり、温度を低下させると反応係数が上昇することや、アルゴンガス等の希釈ガスを存在させると平衡反応係数が低下することが知られている。平衡反応係数から、700℃以下の温度および希釈ガスが無い条件で反応を行うことが有利と考えられるが、反応温度が低くなると反応速度が急激に遅くなり、長い反応時間が必要となること、亜鉛の沸点は907℃であり、沸点以下の温度では連続的に亜鉛をガスとして供給することが難しいこと、反応温度を沸点以下の低い温度とすると亜鉛ガスが凝縮し、生成したシリコンが亜鉛を取り込むこと等から、実質的には910℃以上1100℃以下で反応が行われる。
 例えば、900℃、1気圧で四塩化珪素ガス1モルと亜鉛ガス2モルとを反応させた場合の平衡反応係数は約74%である。この条件で行った反応では、理想的に反応が行われたと仮定しても、反応装置(塩化亜鉛ガス排出源A)から排出される排出ガスは、未反応の四塩化珪素ガスを26%、未反応の亜鉛ガスを26%、および副生した塩化亜鉛のガスを含む構成となる。さらに、必要に応じて導入した不活性ガスを含む混合ガスが凝縮液化装置には導入されることになる。還元反応を、亜鉛ガスに対して四塩化珪素ガスが過剰となる反応条件や、反対に亜鉛ガスが四塩化珪素に対して過剰となる反応条件で行ったとしても、反応装置から排出される排出ガスは塩化亜鉛を主成分として含み、比率は変わるものの、亜鉛ガスや四塩化珪素ガスを含み、さらに必要に応じて導入した不活性ガスを含む混合ガスであることは変わらない。
 更に、反応装置から排出された排出ガスには、ダスト状シリコンが含まれることがある。ダスト状シリコンは、反応装置から排出された未反応の四塩化珪素と未反応の亜鉛ガスとを含む排出ガスが、排出ガスの温度が低下するような条件に置かれた場合に発生する。例えば、負の温度勾配がある配管で排ガスを輸送する場合や、外から徐々に冷却する間接冷却方式を用いて塩化亜鉛を回収する場合など、温度の低い条件に未反応の亜鉛ガスと未反応の四塩化珪素ガスとが共存して長く置かれた場合に特に多く認められる。排出ガスの温度低下に伴い熱力学的な平衡が変わり、ダスト状シリコンが生じると考えられる。反応装置から排出された排出ガスを、温度を変化させずに速やかに凝縮液化装置に送り、塩化亜鉛を含む排出ガスを反応速度の遅い温度まで急速に冷却し、塩化亜鉛を凝縮液化させると共に、未反応の亜鉛ガスを凝縮液化して未反応の四塩化珪素ガスとすばやく分離する本発明の方法は、このダスト状シリコンの生成を減少させることにも有利である。
 より具体的には、導入する塩化亜鉛を含むガスの温度は、凝縮液化装置に導入するまで、塩化亜鉛の沸点732℃以上の充分高い温度に保ち、塩化亜鉛の凝縮を防ぐ温度とする必要が有る。また、反応温度から低下しても100℃程度に温度変化を抑えることが好ましい。この程度の温度変化であれば、熱力学的な平衡の変化が僅かな範囲に収まる。通常、900℃以上1100℃以下で反応が行われる亜鉛還元反応装置からの排出ガスは、保温したり、必要に応じて周囲から加熱したりして、800℃以上1100℃以下の範囲で凝縮液化装置に導入することが好ましい。より好ましくは、より好ましい反応温度である910℃以上1000℃以下の温度範囲と同等の温度に保って導入し、さらに好ましくは、反応温度より高いが1000℃を超えない温度にして導入する。
 凝縮液化装置の混合部1および熱交換部20の内部は、塩化亜鉛ガス排出源Aから排出ガスを受け入れるに先立ち、融液状態とした冷媒液体が貯留され、所定温度に保たれた状態にする。方法は特に限定されないが、混合部1や熱交換部20に設ける投入口または点検口などを介して予め融液状態にした冷媒液体を入れる方法、または粉体や固体状の冷媒液体原料を投入した後に外部から加熱して融液とする方法などにより行うことができる。これにより、混合部1の内部では、導入部3から排気部4へ流れるガス流は冷媒液体によって遮断され、直接気体が流れない状態となる。
 凝縮液化装置の運転開始前の冷媒液体に塩化亜鉛の融液を用いる場合、塩化亜鉛の融点283℃以上でかつ沸点732℃より充分に低く塩化亜鉛の蒸散が著しくない温度に保つ。運転開始前の冷媒液体に亜鉛の融液を用いる場合、亜鉛の融点419℃以上でかつ塩化亜鉛の沸点732℃より充分低い温度に保つ。冷媒液体は排出ガスの導入を始めると急激に温度が上昇することから、運転開始時の冷媒液体は、上記温度範囲の下限に近い温度にして運転を開始することが好ましい。凝縮液化装置を運転すると、冷媒液体は排出ガス中の塩化亜鉛と亜鉛を凝縮液化して取り込み、次第に冷媒液体の組成は塩化亜鉛と亜鉛の混合融液に変化する。すなわち、凝縮液化装置が通常運転となった時の冷媒液体は、塩化亜鉛と亜鉛の混合融液となる。この状態で凝縮液化装置を一時停止したり再開するような場合は、冷媒液体の温度を亜鉛の融点419℃以下とならない温度で、かつ塩化亜鉛の蒸散が著しくない温度に保持する。
 吸引排気装置Bを動かし排気部4を負圧とし、塩化亜鉛排出源Aから、800℃以上1100℃以下の温度範囲にある未反応の四塩化珪素、未反応の亜鉛ガスおよび副生した塩化亜鉛を含む気体を、凝縮液化装置の導入部3に導入する。冷媒液体の導入部3側の液面レベルは下降し、排気部4側の液面レベルは上昇して、導入された気体は混合部1の上部近くの冷媒液体中を気泡や噴霧を生じながら移動する。この時、気体の持つ熱量は急速に冷媒液体に移り、気体の温度は急激に下がる。これにより未反応の亜鉛および副生した塩化亜鉛は凝縮液化されて冷媒液体中に捕集される。非凝縮成分の未反応の四塩化珪素ガスや必要に応じて導入した不活性ガスは、冷媒液体に近い温度まで冷却された後、冷媒液体から分離されて排気部4を通り吸引排気装置Bに導かれる。冷媒液体は、導入された気体を冷却するのに要した熱量と、塩化亜鉛や亜鉛の凝縮潜熱に相当する熱量とを受け取り温度が上昇する。
 導入された気体の流れによりもたらされる、混合部1内部の貯留高さの差Lにより、混合部1と熱交換部20の間で液の循環が始まる。熱交換部20に入った、温度が上昇した冷媒液体は、除熱装置23を動かすことにより冷却されて混合部1に戻る。吸引排気装置Bの排気量に応じて除熱装置23の除熱量を調節することによって、熱交換部20より混合部1に戻る冷媒液体の温度を制御することができる。
 塩化亜鉛を含む気体を凝縮液化するのに好適な冷媒液体の温度は、安定状態となった時に420℃以上650℃以下の温度範囲とすることが好ましい。650℃以下の温度であれば、塩化亜鉛ガスと未反応の亜鉛ガスの両方のガスを実質的に凝縮液化が可能となり好ましい。550℃以下の温度であれば、塩化亜鉛の蒸気圧は飽和蒸気圧の10%以下に、亜鉛では1%以下となるため、さらに好ましい。520℃以下の温度であれば、塩化亜鉛の蒸気圧は飽和蒸気圧の2%以下となるため特に好ましい。また、420℃以上の温度であれば、亜鉛が凝固することがないため好ましい。450℃以上の温度では塩化亜鉛の粘度も低下し流動性が良くなるため、さらに好ましい。以上のとおり、熱交換部20より混合部1に戻る冷媒液体が420℃以上650℃以下の温度範囲であれば、塩化亜鉛ガスおよび亜鉛ガスを安定して凝縮液化することが可能となるため好ましく、450℃以上520℃以下の温度範囲であれば、塩化亜鉛は蒸気圧から推定される98%に近く、亜鉛は蒸気圧から推定される99%に近く、凝縮液化して捕集することが可能となるため、さらに好ましい。
 導入された気体から凝縮成分を冷媒液体に捕集した後、この温度では凝縮しない四塩化珪素ガスや、捕集できなかった塩化亜鉛や亜鉛などを含む気体は、冷媒液体の温度範囲に近い温度に冷却されて混合部1より排出され、排気部3を通り吸引排気装置Bに排気される。吸引排気装置Bには、この気体から四塩化珪素ガスを分離回収したり、捕集できなかった塩化亜鉛や亜鉛などを処理したりする付帯設備が接続される。この吸引排気装置Bに排出される気体の温度が700℃超となる温度では、四塩化珪素ガスの分離回収に必要なエネルギーが増加すること、および気体に含まれる塩化亜鉛の量が急激に増加することから、これらを処理する付帯設備への負荷が増加して好ましくない。排気温度は、吸引排気装置Bの排気量に応じて除熱装置23の除熱量を調整し、700℃以下の温度に保つことが好ましい。また、混合部1の太さ・長さ・堰の位置などの構成や、混合部1の傾きを変更して、冷媒液体の温度と排気温度との温度差が50℃以内に、すなわち導入された気体の熱交換が上手く行われる状態とすることがより好ましい。
 塩化亜鉛と亜鉛の凝縮液化成分を取り込んだ冷媒液体は、混合部1内部で比重の差により凝縮成分の分離を起こす。亜鉛融液と塩化亜鉛融液とでは、亜鉛融液の比重が2倍以上大きく、また互いに溶け合わないことから、混合部1内部で、冷媒液体は亜鉛融液を下層に、塩化亜鉛融液を上層とする分離層を形成する。下層は亜鉛融液または亜鉛融液に塩化亜鉛融液が混在した混合融液となり、上層は塩化亜鉛融液または塩化亜鉛融液に亜鉛融液が混在した混合融液となる。この亜鉛融液または亜鉛融液に塩化亜鉛融液が混在した混合融液からなる冷媒液体が、この形成された下層内に位置する冷媒液体出口7から熱交換部20に送り出され、熱交換部20で除熱され、下層内に位置する冷媒液体戻り口8から混合部1に戻される。導入部3より連続して気体を導入することにより、凝縮液化して冷媒液体に取り込まれ、比重により分離した亜鉛融液または亜鉛融液に塩化亜鉛融液が混在した混合融液の増加分は、熱交換部20に設けた液抜き出し部24または液抜き出し部25から抜き出される。
 混合部1に形成された上層には、生成を抑えられずに発生したダスト状シリコンを含む層となることもある。この塩化亜鉛融液、塩化亜鉛融液に亜鉛融液が混在した混合融液、またはこれらにダスト状シリコンが混在した混合融液の増加分は、混合部1に設けられた液抜き出し部15から連続的に抜き出される。液抜き出し部15を、図1に示す構造例16のように、抜き出された冷媒液体で封止することにより、排気部4の負圧を維持した状態で、塩化亜鉛融液、塩化亜鉛融液に亜鉛融液が混在した混合融液、またはこれらにダスト状シリコンが混在した混合融液を連続的に抜き出すことができる。また、冷媒液体の飛沫や気泡が直接、液抜き出し部15に飛散して混入するのを防ぐため、図4に示す第三の堰17として、邪魔板や潜り堰を混合部1内部の液抜き出し部15手前に設置した構造とすることもできる。
 塩化亜鉛融液または塩化亜鉛融液に亜鉛融液が混在した混合融液などの、塩化亜鉛が主成分の融液が混合層1の上層に形成されることは、ダスト状シリコンの発生を抑えることにさらに有効に作用する。前記式1に示した四塩化珪素を亜鉛で還元する反応式から明らかなように、塩化亜鉛が過剰に存在する反応条件となると還元反応は抑制される、すなわちシリコンの生成が少なくなる方向に反応の平衡は移動する。
 本発明の凝縮液化装置を用いた凝縮液化方法では、導入された気体と冷媒液体の接触が上層に形成された液体中で、すなわち気液接触が塩化亜鉛を主成分とする融液中で行われる条件となる。このことも、塩化亜鉛を主成分として含む気体から、効率的に安定に塩化亜鉛を回収する方法の実現と共に、本発明の方法の重要かつ有利な特徴である。
 以下、実施例を示して本発明を具体的に説明するが、本発明はこれらの記載によって限定されるものではない。
 (実施例1)
 図1および図5に示すような凝縮液化装置を用いて、混合部1および熱交換部20に塩化亜鉛を入れて加熱し、塩化亜鉛の融液が混合部1内でL1の高さとなるようにした。500℃に加熱した窒素ガスを流しながら、外部からヒーターで加熱することにより、混合部1を493℃に、熱交換部20を502℃にして保持した。
 次に、図5に示す蒸発釜に23.9kgの塩化亜鉛を入れ、700℃に加熱した窒素ガスを流した状態で、蒸発釜の温度を徐々に上げた。蒸発釜の温度が塩化亜鉛の沸点近くの689℃に到達した後、さらに蒸発釜の加熱を強めて塩化亜鉛を気体として発生させ、発生した塩化亜鉛ガスと加熱窒素ガスとの混合ガスを導入部3から混合部1に導入した。除熱媒体として空気を除熱装置23に導入することにより熱交換部20における除熱を開始し、排気部4の内部圧力および排気部4と導入部3との差圧を確認しながら、吸引排気装置Bの負荷を調節して混合部1内に液循環を発生させた。凝縮液化試験開始時の混合部1の内部温度は478℃、熱交換部20の内部温度は502℃であった。
 蒸発釜の加熱強度を変化させ、塩化亜鉛の蒸発量を5kg/hrから13.6kg/hrの間で変化させ、温度計TR1~TR8の温度の変化、導入部内圧、排気部内圧、その差圧を確認した。熱交換部20では、除熱媒体として空気を除熱装置23に流して除熱を行う状態を維持した。混合部1の内部温度は、5kg/hrの塩化亜鉛の蒸発量では低下の傾向を示し、一方13.6kg/hrの塩化亜鉛の蒸発量では上昇の傾向を示した。塩化亜鉛の蒸発量が10.6kg/hrの時に、混合部1の内部温度の変化は少なくなり安定した。液抜き出し部15からは凝縮液化された塩化亜鉛融液が抜き出され、時間の経過に従いその重量が増加した。凝縮液化試験を開始してから2時間20分後に、蒸発釜中の塩化亜鉛残量が少なくなったため、塩化亜鉛の加熱強度を低下させて試験を終了した。塩化亜鉛の蒸発速度は塩化亜鉛の液レベルの変化から求めた。
 この凝縮液化試験による塩化亜鉛の物質収支を表3に示す。試験前に装置内に導入した塩化亜鉛の総量と、試験後に回収された塩化亜鉛の総量とを比較すると、試験後に於いて塩化亜鉛の97%が捕集された。塩化亜鉛の沸点を上回る高い温度で導入された塩化亜鉛ガスも確実に凝縮されて捕集されたことから、この凝縮液化装置を用いた塩化亜鉛の捕集方法が有効であることが示された。凝縮液化装置によって捕集されずに、トラップ部分で凝縮された塩化亜鉛の量は導入塩化亜鉛量の2%以下であった。この量は、蒸気圧から計算される、窒素ガスに同伴して捕集不可能となる量と一致することから、この凝縮液化装置を用いた塩化亜鉛の捕集は理論通りに物質収支を計算して、装置設計を行うことができることが解る。
Figure JPOXMLDOC01-appb-T000003
 (実施例2)
 塩化亜鉛と亜鉛の混合状態における液化凝縮の挙動確認を目的として、実施例1と同様な装置(但し、塩化亜鉛の蒸発釜と同様な方式による亜鉛ガスの供給装置(図示せず)を付加)を用いて、以下の試験を行った。なお、四塩化珪素を亜鉛で還元して高純度シリコンを製造する工程からは、塩化亜鉛、亜鉛、四塩化珪素および不活性ガスの混合ガスが排気される。亜鉛ガスを過剰率20%の四塩化珪素と950℃で反応させた場合の反応率は約60%であり、排気ガスとして、副生した塩化亜鉛、未反応の亜鉛および四塩化珪素ならびに不活性ガスが排出される。この条件を模擬的に作るため、塩化亜鉛を平均6.4kg/hrの速度で、亜鉛を平均2.0kg/hrの速度で気化し、これらを950℃に加熱して導入する試験を行った。また、未反応の四塩化珪素の気体体積に相当する量の不活性ガスとして、窒素ガスを導入した。
 試験は以下の手順で行った。混合部1および熱交換部20に、塩化亜鉛の融液を内容量の約1/20量入れ、次に亜鉛の融液を加えて、塩化亜鉛の融液が混合部1のスロート部高さL1となるように入れ、混合部1は520℃に、熱交換部20は500℃に加熱して保持した。塩化亜鉛の密度は2.9g/cm3(25℃)、亜鉛は7.2g/cm3(25℃)、6.5g/cm3(450℃)であり、亜鉛の密度が塩化亜鉛の密度より2倍以上大きく、また融液は互いに交じり合わないことから、混合部1および熱交換部20の内部では塩化亜鉛融液が上部に、亜鉛融液が下部に分離する。950℃に加熱した窒素ガスを導入部3から導入し、除熱媒体として空気を除熱装置23に導入して熱交換部20における除熱を始め、排気部4の内部圧力および排気部4と導入部3との差圧を確認しながら吸引排気装置Bの負荷を上げ、混合部1内に液循環を発生させた。除熱媒体の流量を調整して、混合部1の内部温度および熱交換部20の内部温度が安定するのを待った。液循環の開始直後に液抜き出し部15からは塩化亜鉛の流出が認められたが、時間の経過に従い塩化亜鉛の流出は止まり、また、液抜き出し部15および液抜き出し部24の何れからも亜鉛融液の流出は確認されなかった。混合部1の内部温度は520~540℃の範囲で、熱交換部20の内部温度は500~530℃の範囲でほぼ安定した。
 次に、塩化亜鉛と亜鉛がそれぞれ所定の蒸発速度となるように、塩化亜鉛を入れた蒸発釜および亜鉛を入れた蒸発釜の加熱強度を上げ、蒸発した塩化亜鉛および亜鉛を窒素ガスに混合し、混合ガスを950℃に加熱して導入部3から導入した。混合部1と熱交換部20の加熱を止め、除熱媒体の流量を上げて除熱量を増やし、温度の変化を観測しながら、塩化亜鉛および亜鉛の蒸発導入を3時間継続して行った。塩化亜鉛ガスと亜鉛ガスの導入を始めると、液抜き出し部15から流出が始まった。流出物は、微量の残分が含まれるが、水に良く溶解したことから塩化亜鉛を主成分とするものと判断された。液抜き出し部15からの流出は塩化亜鉛と亜鉛の導入を停止するまで継続して起こった。一方、液抜き出し部24からは暫く液の流出は認められなかったが、時間の経過に従って流出が始まった。液抜き出し部24からの初期流出物は水に良く溶解したことから塩化亜鉛を主成分とするものと判断された。時間の経過に従い流出物は金属光沢を持つ液体に変わり、これは亜鉛を主成分とするものと判断された。この結果は、塩化亜鉛と亜鉛を混合状態で凝縮した場合には、比重の重い亜鉛融液が混合部1と熱交換部20を循環する冷媒液体となることを示している。なお、試験で導入した塩化亜鉛と亜鉛の量は、塩化亜鉛20.5kg、亜鉛は6.5kgであった。試験中、混合部1の温度は510~570℃の温度範囲で、熱交換部20の内部温度は490~550℃の温度範囲で、排気ガス温度は520~570℃の温度範囲で変化した。
 塩化亜鉛と亜鉛を混合状態で凝縮液化した場合にも、塩化亜鉛と亜鉛を凝縮して捕集することができること、さらに混合部1内部で塩化亜鉛および亜鉛融液が分離し、亜鉛融液が混合部1と熱交換部20を循環する冷媒液体となり、混合部1に設けた液抜き出し部15から塩化亜鉛融液を抜き出し、熱交換部20に設けられた液抜き出し部24から亜鉛融液を抜き出すことができることが解る。
 本発明により、四塩化珪素を亜鉛により還元する高純度シリコンの製造工程より副生する塩化亜鉛を効率的に回収する基本技術および方法が実現する。これにより、回収した塩化亜鉛を溶融塩電解して塩素と亜鉛を生成させ、生成した塩素を直接金属シリコンとの反応に用いるか、または塩化水素を経由して四塩化珪素を製造する原料に用い、電解亜鉛は四塩化珪素の還元剤として用いることにより、副生した塩化物の循環使用を実現することが可能となるため、低コストでの高純度シリコンの生産を可能とする。
1:混合部
2:冷媒液体
3:導入部
4:排気部
5:第一の堰
6:第二の堰
7:冷媒液体出口
8:冷媒液体戻り口
9:気泡や噴霧
10:上部すきま
11:上部すきま
12:下部すきま
13:下部すきま
15:液抜き出し部
16:液封された液抜き出し例
17:第三の堰
20:熱交換部
21:冷媒液体入口
22:冷媒液体出口
23:除熱装置
24:液抜き出し部
25:液抜き出し部
26:均圧接続や不活性ガスシール接続孔
27:冷媒液体配管
28:冷媒液体戻り配管
A:塩化亜鉛ガス排出源(四塩化珪素の亜鉛還元装置)
B:吸引排気装置
L:貯留高さの差
L1:スロート部高さ
L2:第二の堰6上部高さ
TR1~TR10:温度計
M1~M3:マノメーター

Claims (17)

  1. (A)気体を導入する導入部と、
    (B)第一の堰と第二の堰を有し、冷媒液体を貯留する傾斜した混合部と、
    (C)前記混合部に接続された、冷媒液体の除熱を行う熱交換部と、
    (D)吸引排気装置が接続された排気部と、
    (E)前記混合部および前記熱交換部に設けられた、液体の抜き出しを行う液抜き出し部と
    を備えたことを特徴とする凝縮液化装置。
  2.  前記混合部が水平面から10度~35度の範囲で傾斜していることを特徴とする請求項1に記載の凝縮液化装置。
  3.  前記混合部の排気部側に前記液抜き出し部が設けられたことを特徴とする請求項1または2に記載の凝縮液化装置。
  4.  前記混合部の排気部側に設けられた液抜き出し部の手前に第三の堰を備えたことを特徴とする請求項3に記載の凝縮液化装置。
  5.  請求項1~4のいずれか一項に記載の凝縮液化装置を用いて、混合部および熱交換部の内部に冷媒液体を貯留する工程と、導入部から塩化亜鉛を含む気体を導入する工程と、導入された気体から塩化亜鉛を含む凝縮成分を液化して冷媒液体中に捕集する工程とを含むことを特徴とする凝縮液化方法。
  6.  吸引排気装置により生じる排気部の負圧を利用して、導入部より導入した塩化亜鉛を含む気体を混合部の冷媒液体中を移動させ、導入した気体と冷媒液体との間で直接気液接触による熱交換を行う工程と、塩化亜鉛を含む凝縮成分を液化して冷媒液体中に捕集した後、混合部から熱交換部に該冷媒液体を送り出し、該冷媒液体を熱交換部において除熱し、さらに除熱後の冷媒液体を混合部に返送して冷媒液体を循環させる工程と、混合部または熱交換部に設けられた液抜き出し部から冷媒液体の一部を抜き出す工程と、混合部より排出された気体を排気部より排気する工程とを、さらに含むことを特徴とする請求項5に記載の凝縮液化方法。
  7.  前記混合部に設けられた液抜き出し部が、抜き出された冷媒液体で封止されることを特徴とする請求項6に記載の凝縮液化方法。
  8.  前記凝縮成分を捕集した冷媒液体が、比重の小さな冷媒液体からなる層と比重の大きな冷媒液体からなる層との二つの層を混合部に形成することを特徴とする請求項5~7のいずれか一項に記載の凝縮液化方法。
  9.  前記比重の大きな冷媒液体を、混合部から熱交換部に送り出して除熱した後、混合部に返送して循環することを特徴とする請求項8に記載の凝縮液化方法。
  10.  混合部から熱交換部への冷媒液体の出口、および熱交換部から混合部への冷媒液体の戻り口を、前記比重の大きな冷媒液体からなる層の中に開口するように混合部に設けた凝縮液化装置を用いたことを特徴とする請求項8または9に記載の凝縮液化方法。
  11.  前記塩化亜鉛を含む気体が、塩化亜鉛と、亜鉛および四塩化珪素からなる群から選ばれる1種以上の気体とを含む混合気体、または該混合気体にさらに不活性気体が含まれた混合気体であることを特徴とする請求項5~10のいずれか一項に記載の凝縮液化方法。
  12.  前記冷媒液体が、塩化亜鉛融液、亜鉛融液または塩化亜鉛と亜鉛の双方を共存して含む融液であることを特徴とする請求項5~11のいずれかに記載の凝縮液化方法。
  13.  前記混合部に設けられた液抜き出し部から抜き出される冷媒液体が、塩化亜鉛融液または塩化亜鉛融液に亜鉛融液が混在した混合融液であり、かつ、前記熱交換部に設けられた液抜き出し部から抜き出される冷媒液体が、亜鉛融液または亜鉛融液に塩化亜鉛融液が混在した混合融液であることを特徴とする請求項6~12のいずれか一項に記載の凝縮液化方法。
  14.  前記塩化亜鉛を含む気体を800℃~1100℃の温度範囲で導入することを特徴とする請求項5~13のいずれか一項に記載の凝縮液化方法。
  15.  混合部と熱交換部とを循環する冷媒液体の循環量および熱交換部の除熱量を制御することにより、混合部に戻る冷媒液体の温度を420℃~650℃の範囲に保ち、かつ排気部から吸引排気装置へ排出する排気ガスの温度を700℃以下に保つことを特徴とする請求項6~14のいずれか一項に記載の凝縮液化方法。
  16.  前記混合部に設けられた液抜き出し部から抜き出される液体が、塩化亜鉛融液または塩化亜鉛融液に亜鉛融液が混在した混合融液に、さらにダスト状シリコンが混在した混合融液であることを特徴とする請求項6~15のいずれか一項に記載の凝縮液化方法。
  17.  前記冷媒液体が熱交換部で除熱される熱量が、凝縮成分の潜熱と導入した気体の冷却に要した熱量との和に相当する熱量であることを特徴とする請求項6~16のいずれか一項に記載の凝縮液化方法。
PCT/JP2010/060843 2009-07-17 2010-06-25 塩化亜鉛の凝縮液化装置及び方法 WO2011007655A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011522772A JPWO2011007655A1 (ja) 2009-07-17 2010-06-25 塩化亜鉛の凝縮液化装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009168812 2009-07-17
JP2009-168812 2009-07-17

Publications (1)

Publication Number Publication Date
WO2011007655A1 true WO2011007655A1 (ja) 2011-01-20

Family

ID=43449265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060843 WO2011007655A1 (ja) 2009-07-17 2010-06-25 塩化亜鉛の凝縮液化装置及び方法

Country Status (3)

Country Link
JP (1) JPWO2011007655A1 (ja)
TW (1) TW201114473A (ja)
WO (1) WO2011007655A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2478594A (en) * 1947-08-13 1949-08-09 Augustin L J Queneau Method of condensing zinc
US2766114A (en) * 1952-03-13 1956-10-09 St Joseph Lead Co Method of condensing metallic vapors carried in a stream of gas
JP2004099421A (ja) * 2002-09-12 2004-04-02 Takayuki Shimamune シリコンの製造方法
JP2004210594A (ja) * 2002-12-27 2004-07-29 Takayuki Shimamune 高純度シリコンの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2478594A (en) * 1947-08-13 1949-08-09 Augustin L J Queneau Method of condensing zinc
US2766114A (en) * 1952-03-13 1956-10-09 St Joseph Lead Co Method of condensing metallic vapors carried in a stream of gas
JP2004099421A (ja) * 2002-09-12 2004-04-02 Takayuki Shimamune シリコンの製造方法
JP2004210594A (ja) * 2002-12-27 2004-07-29 Takayuki Shimamune 高純度シリコンの製造方法

Also Published As

Publication number Publication date
JPWO2011007655A1 (ja) 2012-12-27
TW201114473A (en) 2011-05-01

Similar Documents

Publication Publication Date Title
JP6956251B2 (ja) シリコン材料のダイヤモンドワイヤー切断時に副生したシリコンスラッジを利用してシリコン含有製品を製造する方法
US20090202415A1 (en) Process for producing high-purity silicon and apparatus
TW201008874A (en) Method of manufacturing silicon with high purity
JP5768714B2 (ja) シリコンの製造方法
KR20090104883A (ko) TiCl4의 금속열환원에 의한 티타늄의 연속적인 제조방법
WO2010029894A1 (ja) 高純度結晶シリコン、高純度四塩化珪素およびそれらの製造方法
JP5018156B2 (ja) 多結晶シリコンの製造方法
JP2010501459A (ja) 多結晶シリコンの精製及び析出の効率を改善するための方法及び装置本出願は、参照によって本明細書に全体が組み込まれる2006年8月18日出願の米国特許仮出願第60/838,479号の優先権を主張する。
JP5992244B2 (ja) 高純度マグネシウムの製造方法及び高純度マグネシウム
JP4463502B2 (ja) クロロシラン類の回収方法
JP5205776B2 (ja) 固体生成物の製造方法及び製造装置
JP4128983B2 (ja) シリコン塩化物の製造方法およびそれを用いる多結晶シリコンの製造方法
WO2012086544A1 (ja) シリコンの製造方法及び製造装置、シリコンウェハー、並びに、太陽電池用パネル
JP4392675B1 (ja) 高純度シリコンの製造装置
JP5533601B2 (ja) 高純度シリコン微粉末の製造装置
WO2011007655A1 (ja) 塩化亜鉛の凝縮液化装置及び方法
US20230041658A1 (en) A method and apparatus to condense magnesium vapor using a fluid-cooled heat exchanger
JP5574295B2 (ja) 高純度シリコン微粉末の製造装置
JP6392274B2 (ja) 高純度マグネシウムの製造方法及び高純度マグネシウム
JP5383573B2 (ja) 多結晶シリコン製造用の反応炉及びそれを用いる多結晶シリコンの製造方法
Hoseinpur et al. Phosphorus and Boron removal from Si by vacuum and gas refining processes
TWI471267B (zh) Manufacture of high purity silicon fine particles
JP4073551B2 (ja) ガリウムの回収方法
JP2019163185A (ja) TiCl4又はスポンジチタンの製造方法
TWI482736B (zh) Manufacture of high purity silicon micropowder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522772

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799715

Country of ref document: EP

Kind code of ref document: A1