WO2004034521A1 - コネクタ用コンタクト及びはんだ付けされる部品の製造方法 - Google Patents

コネクタ用コンタクト及びはんだ付けされる部品の製造方法 Download PDF

Info

Publication number
WO2004034521A1
WO2004034521A1 PCT/JP2003/013094 JP0313094W WO2004034521A1 WO 2004034521 A1 WO2004034521 A1 WO 2004034521A1 JP 0313094 W JP0313094 W JP 0313094W WO 2004034521 A1 WO2004034521 A1 WO 2004034521A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
laser beam
plating layer
layer
contact
Prior art date
Application number
PCT/JP2003/013094
Other languages
English (en)
French (fr)
Inventor
Yasunori Miki
Hiroshi Yanagida
Shouichi Nagata
Shin Sato
Yoshiyuki Uchinono
Kenji Jonen
Masaharu Ishikawa
Hiroshi Iwano
Syunichi Nakayama
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003114759A external-priority patent/JP2004315941A/ja
Priority claimed from JP2003185748A external-priority patent/JP4003705B2/ja
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to EP03751468A priority Critical patent/EP1551081B1/en
Priority to KR1020047011963A priority patent/KR100597068B1/ko
Priority to US10/505,453 priority patent/US8294063B2/en
Priority to CN200380100193.8A priority patent/CN1692529B/zh
Publication of WO2004034521A1 publication Critical patent/WO2004034521A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/028Soldered or welded connections comprising means for preventing flowing or wicking of solder or flux in parts not desired
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections

Definitions

  • the present invention relates to a method for manufacturing a contact for a connector and a component to be soldered such as a contact.
  • the parts to be soldered such as the contacts used for connectors and the like, are provided with a nickel (N i) undercoat on a metal material such as copper, and then the gold is applied from above. (A u) Plating is applied. In this way, by plating the surface of the component with gold, it is possible to prevent the surface of the component from being oxidized, and because of the high wetting property of gold and solder, the terminal portion of the component and the printed wiring are not arranged. Soldering with the wiring pattern on the wiring board becomes easy.
  • the stacking height of the connector itself which is a combination of a socket and a header, is about lmm.
  • the arrangement pitch of the contacts is about 0.4 mm and the height is about 0.7 mm. Therefore, due to the high wettability of gold and solder, the molten solder can diffuse from the terminals along the contact surface and adhere to places where solder should not normally adhere, such as contact points There is. In addition, due to the diffusion of the solder, the amount of solder adhering to the terminals to be soldered and the wiring pattern on the printed wiring board is insufficient, and there is a possibility that sufficient bonding strength may not be obtained.
  • the surface of the contact should be covered with gold. It has been proposed to apply metal plating only to the terminals and contacts that need to be plated, and to perform partial metal plating so as not to apply the metal plating to the portion between the terminals and contacts. In this way, if the part between the terminal part and the contact part is not metallized and the base metal plating of Kuckel is left exposed, the wettability of nickel and solder is low, Diffusion of the solder from the terminal portion toward the contact portion can be prevented.
  • the side of the strip-shaped metal plate is formed into a comb shape, and the comb-shaped portion is bent into a predetermined shape to form a blank (blank) in which a large number of contacts are arranged at a predetermined pitch.
  • the half-finished product is immersed in a plating bath while being transported in the longitudinal direction, so that the entire surface of the contact is nickel-plated and plated. Therefore, it is very difficult to apply partial plating to contacts.
  • a part of the contact is intentionally plated, the plating process and equipment become very complicated, and the transfer speed of the semi-finished product becomes extremely slow, thereby causing a problem in productivity. . Disclosure of the invention
  • the present invention has been made in view of the above points, and it is possible to prevent molten solder from diffusing from a terminal portion to a contact portion even though the entire surface is plated. It is an object of the present invention to provide a method for manufacturing a connector contact and a component to be soldered.
  • a contact for a connector is formed by processing a metal material into a predetermined shape, and is provided near a terminal portion provided near one end and near the other end. Between the terminal part and the contact part, and a base plating layer and a gold plating layer or an alloy plating layer containing gold formed on almost the entire surface including the terminal part and the contact part. And a diffusion prevention region formed by applying a treatment on the gold plating layer or the gold-containing alloy plating layer. The diffusion prevention region has low wettability with the solder and does not easily diffuse the molten solder.
  • the method of manufacturing a component to be soldered includes: a step of processing a metal material into a predetermined shape so as to form a terminal portion to be soldered near one end; Forming a base plating layer and a gold plating layer or an alloy plating layer containing gold on substantially the entire surface including the above, and the gold plating layer or the gold between the terminal portion and the non-soldered portion that is not soldered.
  • Laser beam irradiation on the alloy plating layer containing A step of forming a diffusion prevention region having low wettability with the solder and preventing the molten solder from diffusing.
  • the diffusion of the molten solder that has progressed from the terminal portion along the surface of the gold plating layer or the gold-containing alloy plating layer causes the gold plating layer or the gold-containing alloy plating. It stops at the boundary between the surface of the layer and the diffusion prevention area and does not proceed any further. Therefore, there is almost no possibility that the diffusion of the molten solder reaches the contact point. In addition, since the diffusion of the molten solder is stopped at the boundary of the diffusion prevention area, a certain amount of the remaining solder can be secured near the terminal, and the wiring pattern on the terminal and the printed wiring board can be secured. Sufficient bonding strength is guaranteed. Furthermore, since there is no need to apply partial plating as a gold plating layer or an alloy plating layer containing gold, the transport speed of semi-finished products in the manufacturing process of parts to be soldered such as contacts is not reduced. Productivity can be maintained.
  • the diffusion prevention region is formed by irradiating the surface of the gold plating layer or the gold plating layer with a laser beam.
  • a part or all of the gold plating layer or the gold-containing alloy plating layer in the portion irradiated with the laser beam is removed by evaporation, the underlying plating layer is exposed.
  • gold and the material of the undercoating layer are alloyed, the alloy layer is exposed.
  • the diffusion layer is exposed.
  • FIGS. 1A to 1C are a plan view, a front view, and a side view, respectively, of a socket constituting a connector common to each embodiment of the present invention.
  • FIG. 2 is a side view showing a basic configuration of the connector contact according to the present invention.
  • FIG. 3 is a side sectional view showing a state where the socket is mounted on a printed wiring board.
  • 4A to 4C show the contact semi-finished products common to the respective embodiments. It is the top view, side view, and front view which show a shape. '
  • FIG. 5 is a side view showing a method for forming a diffusion prevention region according to the first embodiment of the present invention.
  • FIG. 6A is a cross-sectional view showing a state where a laser beam is applied to a contact in the first embodiment.
  • FIG. 6B is a cross-sectional view showing a state in which the gold plating layer on the surface of the contact has been removed in the first embodiment.
  • FIG. 7 is a diagram showing the direction of laser beam irradiation on a semi-finished product having contacts arranged in the first embodiment.
  • FIG. 8 is a diagram showing the irradiation direction of the laser beam observed from another direction.
  • FIG. 9 is a diagram showing a laser beam irradiation method when the spot diameter of the laser beam is smaller than the width of the diffusion prevention region.
  • FIG. 10 is a diagram showing a laser beam irradiation method when the spot diameter of the laser beam is larger than the width of the diffusion prevention region.
  • FIGS. 11 to 11E are diagrams showing the overlapping states of the nuggets (the laser beam irradiation traces) when the shift width of the beam spot when the laser beam is irradiated is changed.
  • FIG. 12 is a diagram showing the relationship between the beam spot diameter, the beam spot shift width, and the overlap width of the nuggets.
  • FIG. 13A is a cross-sectional view showing a state where a contact is irradiated with a laser beam in a method for forming a diffusion prevention region according to the second embodiment of the present invention.
  • FIG. 13B is a cross-sectional view showing a state where an alloy layer is formed by alloying gold and nickel on the surface of the contact in the second embodiment.
  • FIG. 14 shows that, according to a modification of the method of the second embodiment, the plating layer on the contact surface is partially removed, and the alloy layer is partially alloyed with gold and nickel to form an alloy layer. It is sectional drawing which shows the state which was formed.
  • FIG. 15A is a cross-sectional view showing a method for forming a diffusion prevention region according to the third embodiment of the present invention, and shows a state before a contact is mounted on a jig.
  • FIG. 15B is a cross-sectional view showing the method according to the third embodiment, and shows a state after the contact is mounted on the jig.
  • FIG. 16A is a cross-sectional view showing a method for forming a diffusion prevention region according to the fourth embodiment of the present invention.
  • FIG. 16B is a cross-sectional view showing a diffusion prevention region formed by the method of the fourth embodiment.
  • FIG. 17 is a cross-sectional view showing a diffusion prevention region formed by a modification of the method of the fourth embodiment.
  • FIG. 18 is a cross-sectional view showing a diffusion prevention area formed by another modification of the method of the fourth embodiment.
  • FIG. 19A is a cross-sectional view showing a method for forming a diffusion prevention region according to the fifth embodiment of the present invention.
  • FIG. 19B is a cross-sectional view showing a diffusion prevention region formed by the method of the fifth embodiment.
  • FIG. 20 is a cross-sectional view showing a diffusion prevention region formed by a modification of the method of the fifth embodiment.
  • FIG. 21 is a cross-sectional view showing a diffusion prevention area formed by another modification of the method of the fifth embodiment.
  • FIGS 1A to 1C show the configuration of the socket that makes up the connector.
  • the socket 100 has a socket base 101 formed in a substantially rectangular frame by an insulating resin, and a plurality of pairs of press-fitted or inserted into the long sides 102 of the socket base 101, respectively. -
  • FIG. 2 shows the side of Contact 1.
  • Each contact 1 is formed by bending a strip-shaped metal plate having a resiliency, for example, copper or the like into a predetermined shape, a soldering terminal 2 is provided at one end, and a contact 3 is provided at the other end. Is provided.
  • the surface of Contact 1 is entirely coated with nickel plating.
  • a gold-plated area 4 on the terminal 2 side and a gold-plated area 5 on the contact part 3 side, and a gold-plated area 4 and 5 A diffusion prevention region 6 is formed to prevent the diffusion of the molten solder (solder drip) formed in the substrate.
  • FIG. 3 shows a state where the socket 100 is mounted on the printed wiring board 1.10.
  • the terminal portion 2 projects below the lower surface of the socket base 101, and the terminal portion 2 is soldered to a wiring pattern on the printed wiring board 110 so that the socket 100 Is fixed on the printed wiring board 110.
  • the surface of the terminal portion 2 is plated with gold, and the wiring pattern on the printed wiring board 110 is also plated with gold.
  • the molten solder flows between the surface of the terminal portion 2 and the surface of the wiring pattern on the printed wiring board 110 due to its high property, and quickly adheres.
  • the solder adhering to the surface of the terminal portion 2 diffuses over the gold-plated region 4 but cannot diffuse to the other gold-plated region 5 due to the presence of the diffusion prevention region 6. As a result, the solder does not adhere to the contact portion 3.
  • the contact 1 of the connector for the mopile device is very small, as shown in FIGS. 4A to 4C, the side of the strip-shaped metal plate is formed in a comb shape, and further, the comb shape is formed.
  • a blank 12 in which a large number of contacts 1 are arranged at a predetermined pitch is formed.
  • the semi-finished product 12 is immersed in a nickel bath while being transported in the longitudinal direction thereof, so that a nickel base plating layer is first formed on the entire surface of the contact 1.
  • the semi-finished product 12 is transported in the longitudinal direction, it is immersed in a plating bath so that a plating layer is formed on the entire surface of the contact 1 from above the base plating layer.
  • a gold plating layer is formed on the entire surface of the contact 1 including the terminal portion 2 and the contact portion 3
  • the gold plating layer in a predetermined region between the terminal portion 2 and the contact portion 3 is formed.
  • the diffusion prevention region 6 is formed by performing the processing according to each embodiment described later.
  • the position of the diffusion preventing region 6 may be any position between the terminal portion 2 and the contact portion 3 and is not particularly limited. However, considering the bonding strength between the terminal portion 2 and the wiring pattern on the printed wiring board 110, the diffusion of solder should be reduced, and the diffusion prevention region 6 is provided at a location close to the terminal portion 2. It is preferred.
  • the blank 12 is press-fitted or inserted into the socket base 101 in that state, and each of the blanks 101 is inserted into the socket base 101.
  • each contact 1 is separated from the blank 1 2.
  • the socket 100 is completed. Then, as shown in FIG. 3, the socket 100 is placed on the printed wiring board 110, and the terminal portion 2 of the contact 1 is soldered to the printed wiring board 110 so that the socket The chip 100 is mounted on the printed wiring board 110.
  • the diffusion-preventing area is low because the wettability of the solder with the surface of the diffusion-preventing area 6 is low. Diffusion of the molten solder stops at the boundary between 4 and the metallized area 4. As a result, the molten solder is prevented from diffusing to the contact portion 3 and the amount of solder remaining in the terminal portion 2 is prevented from being reduced. Further, the solder joint strength of the terminal portion 2 to the printed wiring board 110 is maintained high.
  • the surface of the plating layer of the contact 1 is irradiated with a laser beam to partially remove the plating layer.
  • the surface of the contact 1 is irradiated with the laser beam L in a portion between the terminal 2 and the contact 3.
  • the location where the laser beam L is irradiated is not particularly limited as long as it is between the terminal 2 and the contact 3, but a location near the terminal 2 is preferable. Good. The same applies to other embodiments.
  • a predetermined position between the terminal part 2 and the contact part 3 of the contact 1 in which the nickel plating layer 7 and the gold plating layer 8 are formed on the entire surface including the terminal part 2 and the contact part 3 Then, a laser beam L is applied using, for example, a semiconductor laser device. Due to the energy of the laser beam L, the portion irradiated with the laser beam L is locally heated, and the metallized layer 8 on the surface is melted and evaporated. As a result, as shown in FIG. 6B, the gold-plated layer 8 in the portion irradiated with the laser beam L is partially removed. When the gold plating layer 8 on the surface is removed, the undercoat plating layer 7 is exposed. As described above, since the wettability of nickel and the solder is low, the portion of the surface from which the plating layer 8 has been removed functions as a diffusion prevention region 6 for the molten solder.
  • the laser beam L to remove the gold-plated layer 8
  • energy can be concentrated on a minute area, so that even if the contact 1 is minute, the diffusion preventing area 6 is formed with high accuracy. be able to.
  • the nickel plating layer 7 with an undercoat can be removed by appropriately selecting one energy condition according to the thickness of the plating layer 8 and the like. Without this, the diffusion preventing layer 6 can be formed accurately and in a short time.
  • the laser beam L has a wavelength of, for example, 110 nm or less, an energy per pulse in the range of 0.5 to 5 mJ / pul se, and an energy per unit area of 100 to It is preferable to use those in the range of 200 OmJ / mm2. More rather preferred is the energy per pulse is 3 mj Zpul se below, and, preferably used ones energy per unit area is 1 2 0 O m J Zmm 2 below.
  • the nickel plating layer 7 under the plating layer 8 may be removed or the material of the contact 1 may be melted.
  • the material of the contact 1 is copper
  • the laser beam L having excess energy is irradiated
  • the copper under the nickel plating layer 7 is exposed.
  • diffusion of the molten solder cannot be prevented where copper is exposed.
  • copper is exposed due to poor corrosion resistance. Corrosion resistance also decreases. Therefore, it is preferable to control the energy of the laser beam L to remove only the gold plating layer 8 and expose the nickel plating layer 7 as described above.
  • the contacts 1 are arranged at a predetermined pitch on the side of the blank 12. Therefore, it is necessary to uniformly and uniformly irradiate the laser beam L over the entire circumference of all the contacts 1 in the state of the blank 12. Therefore, as shown in FIG. 7, while scanning the laser beam L so as to form a predetermined angle ⁇ with respect to the transport direction X of the workpiece 1 2, the four sides 1 a forming a substantially rectangular cross section of the contact 1
  • the laser beams L are simultaneously applied to two sides 1a and 1b of .about.ld which are substantially perpendicular to each other.
  • the semi-finished product 12 When the irradiation of the laser beam L to the two sides 1a and 1b from one side of the semi-finished product 1 2 is completed, the semi-finished product 12 is turned upside down or the laser beam L is scanned from the opposite direction, and then semi-processed The two sides 1c and 1d on the opposite side of the product 12 are irradiated with the laser beam L.
  • each contact 1 prevents the other portion of the contact 1 from being shaded by the bent portion 2 ° so that a portion not irradiated with the laser beam L does not occur.
  • the irradiation direction of the beam L is also inclined by a predetermined angle ⁇ ⁇ ⁇ ⁇ with respect to the plate-like portion of the blank 12.
  • the laser beam L can be applied to all of the four sides l a to l d of 1 (that is, the entire circumference) without leakage and almost uniformly.
  • the diffusion prevention region 6 in the first case, the gold plating layer on the surface is removed, and the nickel plating layer, which is the base plating, is exposed. However, even if the wettability of nickel and solder is low, the molten solder diffuses slightly into the nickel plating area. Therefore, there is a lower limit of the width W required to prevent the diffusion of the molten solder.
  • the width W required to function as the diffusion prevention region 6 was determined by experiment, and the lower limit was 0.13 mm. Therefore, 0.13 mm or more
  • the laser beam L must be irradiated over the width to remove the plating layer. Laser beams L with various beam spot diameters are available.
  • a nugget having a nugget diameter of about 0.05 mm Irradiation is performed by scanning the laser beam L multiple times (five times in the example shown in FIG. 9) while slightly shifting in the width direction of the diffusion prevention region 6, as shown in FIG. I have to do it. Therefore, the laser beam L must be run at least twice from only one side of the semi-finished product 12, and it takes time to remove the metal plating, and the cost increases.
  • the accuracy of the scanning of the laser beam L or the conveyance of the semi-finished product 12 is required.
  • a beam spot diameter larger than the required width W as the diffusion prevention area 6 for example, 0.15 mm in the example shown in FIG. 10
  • a nugget with a nugget diameter of about 0.15 mm is formed, and the laser beam L is scanned only once on one side of the semi-finished product 1 2, and only twice on both sides as a whole.
  • the laser beam L can be applied to the circumference without leakage and almost uniformly.
  • the overlap width ⁇ is given by the following equation.
  • the shift amount ⁇ is 1 Z of the nugget diameter D.
  • a width W of 0.13 mm required to function as the diffusion prevention region 6 can be secured.
  • the shift amount B is reduced and the laser beam L The number of times of irradiation may be increased to secure the energy required for removing the metallized layer.
  • Second embodiment In any case, in the area where the center of the beam spot passes, the amount of energy irradiation is large, and not only the gold plating layer but also the underlying nickel plating layer is removed. Material is likely to be exposed. Therefore, it is preferable to set the power and the number of times of irradiation of the laser beam L to optimal conditions by experiments and the like. Second embodiment
  • a portion between the terminal portion 2 and the contact portion 3 of the contact 1 is irradiated with a laser beam L having a smaller energy than the laser beam L in the first embodiment.
  • the diffusion prevention region 6 is formed by alloying gold and nickel in the portion irradiated with the laser beam L.
  • the nickel plating layer below the gold plating layer 8 is formed.
  • the nickel 9 is diffused into the gold plating layer 8, and as shown in Fig. 13B, the alloy layer of gold and nickel (Au—N i) 8a is formed.
  • the wettability of this alloy layer 8a and solder is lower than the wettability of gold and solder, as is the wettability of nickel and solder.
  • this alloy layer 8 a By forming between the part 2 and the contact part 3, even if the molten solder diffuses from the terminal part 2 along the surface of the plating layer 8, the alloy layer 8a and the plating layer 8 The diffusion of the solder stops at the boundary of the above, and the solder no longer diffuses to the surface of the alloy layer 8a. That is, the alloy layer 8a of gold and nickel functions as the diffusion preventing region 6 of the molten solder.
  • the energy received from the laser beam L varies depending on the location depending on the degree of overlap of the beam spots of the laser beam L. Therefore, as shown in Fig. 14, in the highest part of the energy received from the laser beam L, the surface plating 9 is evaporated to form a part 9 where the nickel plating layer 7 is exposed, and the laser beam In a portion where the energy received from L is low, an alloy layer 8a of gold and nickel may be formed. By doing so, the evaporating up to the undercoat plating layer 7 is prevented, so that the material of the contact 1 such as copper can be prevented from being exposed.
  • the portion 9 where the nickel plating layer 7 is exposed and the alloy layer 8a of gold and nickel both have low wettability with the solder, and thus function as the diffusion prevention region 6 and serve as the diffusion prevention region 6 for the molten solder. Spreading can be prevented.
  • the laser beam L is applied to the portion between the terminal portion 2 and the contact portion 3 of the contact 1 after or before the gold stripper 40 is applied to the portion. Irradiation is performed to form the diffusion prevention region 6. Therefore, the description of the parts common to the above embodiments will be omitted.
  • the space between the terminal portion 2 and the contact portion 3 of the first contact 1 is formed.
  • the bent portion 19 is immersed in a gold stripper 40, and the gold-plated layer at that portion is removed (peeled).
  • One side of the jig 14 is provided with a bathtub 15 that opens upward, and the bathtub 15 is filled with a gold stripper 40.
  • a positioning protrusion 16 is provided on the upper surface of the jig 14.
  • positioning jigs 16 above jigs 14 A pressing plate 17 having a positioning recess 18 formed therein is provided corresponding to the above. Further, a cavity 21 having an opening at an upper end is formed adjacent to the bathtub 15.
  • the contact 1 with the undercoating and gold plating is mounted on the jig 14 in the state of the semi-finished product 12. Since a large number of guide holes 20 are formed in the semi-finished product 12 at regular intervals along the longitudinal direction, the semi-finished product 1 is fitted by fitting the guide holes 20 to the positioning projections 16. 2 is positioned and fixed on jig 14.
  • the bathtub 15 is dimensioned so that only the U-shaped bent portion 19 between the terminal portion 2 and the contact portion 3 fits, and the contact portion 3 does not fit.
  • the bent portion 19 is removed by the stripper 40 in the bathtub 15. Immersed.
  • the gold in the gold-plated layer undergoes an oxidation reaction with the stripping solution 40 to form a complex. Is dissolved. Accordingly, the portion of the contact 1 immersed in the stripping solution 40 is removed, and the underlying plating layer is exposed.
  • the stripping solution 40 rises along the inner wall of the bathtub 15 due to surface tension, the stripping solution 40 reaches the terminal portion 2 by the opening of the cavity 21 adjacent to the jig 14. Is prevented. As a result, it is possible to prevent the plating layer of the terminal portion 2 from being removed.
  • the contact portion 3 is not in contact with the jig 14, so that the gold-plated layer of the contact portion 3 is not removed.
  • the gold dissolved in the stripping solution 40 is recovered from the stripping solution 40 in a complexed state. While the contact 1 was left in the state of the semi-finished product 12, the metallized layer was removed with the stripping solution 40, but in some cases, after the contact 1 was cut off from the semi-finished product 12. It is also possible to carry out a treatment for removing the gold-plated layer with a stripping solution 40.
  • the type of the stripping solution 40 is not particularly limited, but a solution mainly containing potassium cyanide, a nitro compound, lead oxide, or the like can be used.
  • the time for immersing the contact 1 in the stripping solution 40 is set in a range from several seconds to several minutes. Specifically, "Enstrip Au78VI ..” manufactured by Meltex (Me1teX) Co., Ltd. is used as the stripping solution 40, and immersed in the solution for about 15 seconds.
  • the metal part of the bent part 19 between the terminal part 2 and the contact part 3 of the contact 1 is formed.
  • the metallized layer is formed by the method of the first or second embodiment.
  • the energy per unit of laser beam L per unit of laser beam ⁇ is set appropriately within a range that does not melt the underlying nickel plating layer 7 and the underlying contact 1 material (such as copper). can do.
  • a part of the bent part 19 between the terminal part 2 and the contact part 3 of the contact 1 is irradiated with the laser beam L first, and then the part irradiated with the laser beam L is peeled of gold.
  • the bent portion 19 between the terminal portion 2 and the contact portion 3 of the contact 1 is immersed in a gold stripping solution 40, and the gold remaining by irradiation with the laser beam L is removed. Since the gold alloyed with Eckel is not easily removed by the treatment with the stripping solution 40, the gold-Huckel alloy layer 8a (see FIG. 13B) is directly exposed as the diffusion prevention region 6. .
  • the metallized layer 8 can be almost completely removed from the diffusion prevention territory 6, and the remaining metallized layer 8 can be transmitted. The diffusion of the molten solder can be prevented.
  • a nickel plating layer 7 is formed as a base plating on almost the entire surface of the contact 1, and a gold plating layer 8 is formed on the nickel plating layer 7.
  • a gold-nickel (Au—Ni) alloy plating layer 80 is formed on a nickel plating layer 7 having a base plating.
  • the semi-finished product 12 processed as shown in Fig. 4A to Fig. 4C is immersed in a nickel bath while being transported in the longitudinal direction, so that the entire surface of the contact 1 is first coated with an undercoat. A certain nickel plating layer 7 is formed. Further, the semi-finished product 12 is immersed in a gold-nickel alloy plating bath while being transported in the longitudinal direction, whereby a gold-eckel plating layer 80 is formed on the nickel plating layer 7. .
  • the type of the Huckel plating bath is not particularly limited. For example, when a nickel sulfamate plating bath is used, the current density can be easily increased, and the productivity can be increased.
  • the nickel plating layer 7 is formed so that the film thickness is in the range of 0.3 to 1.
  • the type of the gold-nickel alloy bath is not particularly limited.
  • a specific example of the gold-nickel alloy plating bath a product of Nikko Metal Plating Co., Ltd. can be used.
  • the gold-nickel alloy plating layer 80 is formed so as to have a thickness in the range of 0.01 to 0.5 ⁇ .
  • the nickel plating layer 7 and the gold-nickel alloy plating layer 80 are formed on almost the entire surface of the contact 1, as shown in Figure 16 1, the area where the molten solder diffusion prevention area 6 is to be formed is formed.
  • the laser beam L is irradiated.
  • the gold-nickel alloy coating layer 80 in the portion irradiated with the laser beam L is melted and evaporated.
  • the gold-nickel alloy plating layer 80 is removed, and the diffusion prevention region 6 in which the nickel plating layer 7 having the base plating is exposed is formed.
  • the nickel plating layer 7 has much lower solder wettability than the gold-nickel alloy plating layer 80, so the nickel plating layer 7 is exposed in the portion between the terminal part 2 and the contact part 3 of the contact 1.
  • the diffusion prevention region 6 formed even if the molten solder diffuses from the terminal portion 2 to the surface of the gold-nickel alloy plating layer 80, the portion of the diffusion prevention region 6, that is, the exposed portion Nickel plating layer 7 and gold-nickel alloy At the boundary with the plating layer 80, the diffusion of the solder stops and the solder does not diffuse further. As a result, it is possible to prevent the solder from diffusing to the contact portion 3 and to prevent a sufficient amount of solder from remaining in the terminal portion 2. Further, the solder joining strength of the terminal portion 2 to the printed wiring board 110 can be maintained high.
  • a gold-nickel alloy layer 8a is formed by irradiating the laser beam L to the gold-plated layer 8.
  • the wettability of the alloy layer 8a and the solder is as low as the wettability of the nickel and the solder, because the ratio of gold and nickel is much higher in nickel than in gold. Therefore, the alloy layer 8a functions as the diffusion prevention region 6 for the molten solder.
  • the gold-nickel alloy plating layer 80 of the present embodiment as described above, the ratio of gold to nickel is larger in gold than in nickel. Therefore, the wettability of the gold-nickel alloy plating layer 80 and the solder is as high as that of the gold and the solder. Therefore, the gold-nickel alloy plating layer 80 is suitable for the surface treatment of a component to be soldered, such as the contact 1, like the gold plating layer 8.
  • the portion of the gold-Eckel alloy plating layer 80 irradiated with the laser beam L has a gold-nickel alloy of nickel. May be diffused to the surface to form the diffusion layer 81.
  • the ratio of gold and nickel is greater in nickel than in gold, so the wettability of the diffusion layer 81 and the solder is very low, and the diffusion layer 81 It functions as a diffusion prevention area 6 for the molten solder.
  • the gold-nickel alloy plating layer 80 on the surface is evaporated to expose the nickel plating layer 7 and receive the laser beam L.
  • the diffusion layer 81 may be formed by diffusing nickel of gold-nickel alloy to the surface. In this way, the nickel plating layer 7 having the undercoat is not evaporated, and the material of the contact 1 such as copper can be prevented from being exposed.
  • the portion 9 where the etch plating layer 7 is exposed and the diffusion layer 81 both have low wettability with solder, and thus function as a diffusion prevention region 6 to prevent diffusion of the molten solder. .
  • a nickel plating layer 7 is formed as an undercoat on almost the entire surface of the contact 1, and a gold-nickel (Au—Ni) alloy is formed on the nickel plating layer 7.
  • An additional layer 8 is formed.
  • a palladium-nickel (Pd—Ni) alloy plating layer 70 is further formed on the nickel plating layer 7 as an underlayer plating, and the palladium-nickel alloy layer 70
  • a gold-nickel (Au-Ni) alloy plating layer 80 is formed.
  • a semi-finished product 12 in which a large number of contacts 1 are arranged at a predetermined pitch is immersed in a nickel bath while being transported in the longitudinal direction, so that the nickel plating layer 7 is firstly coated on the entire surface of the contact 1 as an undercoat. Let it form.
  • a palladium nickel alloy plating layer 70 is formed on the nickel plating layer 7 by immersion in a palladium nickel alloy plating bath.
  • gold-nickel alloy plating is applied to the entire surface of the contact 1 on the palladium-nickel alloy plating layer 70.
  • the layer 80 is formed.
  • the type of the nickel plating bath is not particularly limited.
  • the nickel plating layer 7 is formed so that its film thickness is in a range of 0.3 to 10 // in.
  • the type of bath for plating a palladium-nickel alloy is not particularly limited, and it is preferable to use a bath that can easily increase the current density and increase the productivity.
  • the palladium nickel alloy coating layer 70 is formed such that its film thickness is in the range of 0.01 to 1. ⁇ .
  • the type of the gold-uckel alloy plating bath is not particularly limited.
  • a specific example of the gold-nickel alloy plating bath a product of Nikko Metal Plating Co., Ltd. can be used.
  • the gold-nickel alloy plating layer 80 is formed so that its film thickness is in the range of 0.01 to 0.5 m.
  • the diffusion prevention area 6 Is irradiated with the laser beam L.
  • the portion of the gold-nickel alloy-coated layer 80 irradiated with the laser beam L is melted and evaporated.
  • the gold-nickel alloy plating layer 80 is removed, and the diffusion prevention region 6 exposing the palladium-nickel alloy plating layer 70 is formed.
  • the palladium-nickel alloy coating layer 70 has much lower solder wettability than the gold-nickel alloy coating layer 80, palladium is applied to the portion between the terminal 2 and contact 3 of the contact 1.
  • the diffusion preventing region 6 is formed by exposing the mono-nickel alloy plating layer 70. Even if the molten solder diffuses from the terminal portion 2 to the surface of the gold-nickel alloy plating layer 80, the diffusion prevention region 6, that is, the exposed palladium-Huckel alloy plating layer 70 The diffusion of the solder stops at the boundary between the gold-nickel alloy plating layer 80 and the solder does not diffuse any further. As a result, it is possible to prevent the solder from diffusing to the contact portion 3 and not leaving a sufficient amount of solder on the terminal portion 2. Further, the soldering strength of the terminal portion 2 to the printed wiring board 110 can be kept high.
  • the palladium-nickel alloy plating layer 70 has better corrosion resistance than the nickel plating layer 7 with a base plating, the number of plating steps increases, but the nickel plating layer 7 is more exposed than the nickel plating layer 7 is exposed. The corrosion resistance can be improved.
  • the nickel of the gold-nickel alloy is applied to the surface of the gold-nickel alloy plating layer 80 where the laser beam L is irradiated.
  • the nickel of the gold-nickel alloy is applied to the surface of the gold-nickel alloy plating layer 80 where the laser beam L is irradiated.
  • the ratio of gold and nickel is higher in nickel than in gold, so that the wettability between the diffusion layer 81 and the solder is very low, and the diffusion layer 81 It functions as a diffusion prevention area 6 for the molten solder.
  • the gold-nickel alloy plating layer 80 on the surface was evaporated, and the palladium-nickel alloy plating layer 70 was exposed.
  • the diffusion layer 81 may be formed by forming the portion 9 and diffusing nickel of the gold-nickel alloy to the surface in the low energy portion received from the laser beam L. In this way, the material of the contact 1 such as copper is prevented from being exposed, without being evaporated to the nickel plating layer 7 which is the underlying plating.
  • the palladium-nickel alloy plating layer 70 is exposed and the portion 9 and the diffusion layer 81 both have low wettability with solder, they function as the diffusion prevention region 6 and serve as a diffusion prevention region. Diffusion can be prevented.
  • the portion 9 and the diffusion layer 81 both have low wettability with solder, they function as the diffusion prevention region 6 and serve as a diffusion prevention region. Diffusion can be prevented.
  • the step of irradiating the laser beam L when the step of irradiating the laser beam L is included, after the irradiation of the laser beam L, dirt such as carbonization adheres to the surface of the portion between the terminal portion 2 and the contact portion 3 of the contact 1. You may have. If such dirt is left untreated, it will hinder the subsequent processing and it will be difficult to obtain highly reliable contacts 1. Therefore, when the portion between the terminal portion 2 and the contact portion 3 is irradiated with the laser beam L, the portion is cleaned with a cleaning solution 23 using, for example, a jig 14 shown in FIGS. 15A and 15B. May be immersed.
  • the cleaning liquid 23 is not particularly limited as long as it can remove the above-mentioned dirt.
  • an alcohol-based cleaning liquid can be used. If dirt is attached to a portion other than the portion between the terminal portion 2 and the contact portion 3, the portion may be immersed in the cleaning solution 23 to remove the dirt. Removal of dirt on the surface of contact 1 increases the number of manufacturing processes, but does not hinder subsequent processing of contact 1 and finally obtains highly reliable contact 1. be able to.
  • the present invention can be applied to a lead provided in a package of a semiconductor device. That is, the package of the surface-mount type semiconductor device is also used by being mounted on a printed wiring board in the same manner as the connector. The package is arranged above the printed wiring board, and the package provided on this package is used. By soldering the tip of the lead to the printed wiring board, the package of the surface mount semiconductor device is mounted. In this case, it is possible to prevent the molten solder from diffusing from the tip of the lead to the base (root) of the lead.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

明 細 書 コネクタ用コンタクト及びはんだ付けされる部品の製造方法 技術分野
本発明は、 コネクタ用のコンタクト及びコンタクトなどのはんだ付けされる部 品の製造方法に関するものである。 背景技術
一般的に、 コネクタなどに使用されるコンタク トなどのはんだ付けされる部品 は、 例えば銅などの金属素材の上にニッケル (N i ) の下地めつきが施され、 さ らにその上から金 (A u ) めっきが施されている。 このように、 部品の表面に金 めっきを施すことにより、 部品の表面の酸化を防止することができると共に、 金 とはんだのぬれ性(wetting property)の高さにより、 部品の端子部とプリント配 線基板上の配線パターンとのはんだ付けが容易になる。
ところで、 携帯電話やディジタルカメラなどのモパイル機器に使用される微小 なコネクタは、 ソケットとヘッダを結合したコネクタ自体のスタツキング高さが l mm程度である。 また、 コンタクトも、 配列ピッチは 0 . 4 mm程度、 高さは 0 . 7 mm程度である。 そのため、 金とはんだのぬれ性の高さに起因して、 溶融 されたはんだが端子部からコンタクトの表面に沿って拡散し、 本来はんだが付着 すべきでない箇所、 例えば接点部などに付着する可能性がある。 また、 はんだの 拡散に伴い、 本来はんだ付けされるべき端子部及びプリント配線基板上の配線パ ターン付近に付着するはんだの量が不足し、 十分な接合強度が得られない可能性 力 Sある。
そこで、 例えば特開平 2— 1 5 6 6 2号公報ゃ特開平 6— 2 0 4 3 7 7号公報 などに記載されているように、 コンタクトのうち、 表面を金めつきで被覆するこ とが必要な端子部及び接点部にのみ金めつきを施し、 端子部と接点部の間の部分 には金めつきが施されないように、 部分金めつきを行なうことが提案されている。 このように端子部と接点部の間の部分に金めつきを施さず、 ュッケルの下地めつ きを露出させたままにしておけば、 ニッケルとはんだのぬれ性が低いことにより、 端子部から接点部に向かってはんだが拡散することを防止することができる。 しかしながら、 モパイル機器用のコネクタのコンタク トは非常に小さいので、 コンタクトを 1つ 1つ成形し、 各コンタクトの全体にめつきを施すこと自体が困 難である。 そのため、 帯状の金属板の側部を櫛歯状に成形し、 さらに櫛歯状部分 を所定形状に曲げ加工して、 多数のコンタク トが所定ピッチで配列された半加工 品(blank)を形成する。 そして、 半加工品を、 その長手方向に搬送させながら、 めっき浴に浸漬させることにより、 コンタクトの表面全体にニッケルめっき及び 金めつきを施している。 従って、 コンタクトに部分金めつきを施すことは非常に 困難である。 また、 敢えてコンタクトに部分金めつきを施そうとすれば、 金めつ き工程及び装置が非常に複雑になると共に、 半加工品の搬送速度が非常に遅くな り、 生産性に問題が生じる。 発明の開示
本発明は上記の点に鑑みてなされたものであり、 全面に金めつきを施している にもかかわらず、 溶融されたはんだが端子部から接点部へ拡散することを防止す ることが可能なコネクタ用コンタクト及びはんだ付けされる部品の製造方法を提 供することを目的とする。
上記目的を達成するため、 本発明の一態様に係るコネクタ用コンタク トは、 金 属材料を所定形状に加工することにより形成され、 一端の近傍に設けられた端子 部及び他端の近傍に設けられた接点部と、 前記端子部及び接点部を含むほぼ全表 面に形成された下地めつき層及ぴ金めつき層又は金を含む合金めつき層と、 前記 端子部と接点部の間の前記金めつき層又は金を含む合金めつき層の上から処理を 施されることにより形成され、 前記はんだとのぬれ性が低く、 溶融されたはんだ が拡散しにくい拡散防止領域を備える。
また、 本発明の一態様に係るはんだ付けされる部品の製造方法は、 一端の近傍 にはんだ付けされる端子部を形成するように、 金属材料を所定形状に加工するェ 程と、 前記端子部を含むほぼ全表面に下地めつき層及び金めつき層又は金を含む 合金めつき層を形成する工程と、 前記端子部とはんだ付けされない非はんだ付け 部の間の前記金めつき層又は金を含む合金めつき層に対してレーザビームを照射 することにより、 はんだとのぬれ性が低く、 溶融されたはんだが拡散しにくい 拡散防止領域を形成する工程とを備える。
このような構成によれば、 端子部から金めつき層又は金を含む合金めつき層の 表面に沿って進行してきた溶融されたはんだの拡散が、 金めつき層又は金を含む 合金めつき層の表面と拡散防止領域との境界で停止し、 それ以上は進行しない。 そのため、 溶融されたはんだの拡散が接点部にまで達する可能性はほとんどなく なる。 また、 溶融されたはんだの拡散が拡散防止領域の境界で停止されるため、 端子部の近傍に、 一定量の残存するはんだを確保することができ、 端子部及びプ リント配線基板上の配線パターンとの十分な接合強度が保証される。 さらに、 金 めっき層又は金を含む合金めつき層として部分めつきを施す必要がないので、 コ ンタクトなどのはんだ付けされる部品の製造工程における半加ェ品の搬送速度を 低下させることなく、 生産性を維持することができる。
拡散防止領域は、 金めつき層又は金を含む合金めつき層の表面にレーザビーム を照射することによって形成される。 レーザビームが照射された部分の金めつき 層又は金を含む合金めつき層の一部又は全部を蒸発させて除去させた場合、 下地 めっき層が露出される。 また、 金と下地めつき層の材料を合金化させた場合、 合 金層が露出される。 あるいは、 金を含む合金材料のうち、 金以外の材料を表面に 拡散させてた場合、 拡散層が露出される。 これら下地めつき層、 合金層又は拡散 層は、 それぞれ金に比べてはんだとのぬれ性が低いので、 端子部から金めつき層 又は金を含む合金層の表面を進行してきた溶融されたはんだの拡散は、 これら拡 散防止領域との境界で停止する。 図面の簡単な説明
図 1 A〜図 1 Cは、 それぞれ本発明の各実施の形態に共通するコネクタを構成 するソケットの平面図、 正面図及び側面図である。
図 2は、 本発明に係るコネクタ用コンタクトの基本構成を示す側面図である。 図 3は、 上記ソケットがプリント配線基板に実装された状態を示す側面断面図 である。
図 4 A〜図 4 Cは、 それぞれ各実施の形態に共通するコンタク トの半加工品の 形状を示す平面図、 側面図及び正面図である。'
図 5は、 本発明の第 1の実施の形態における拡散防止領域を形成するための 方法を示す側面図である。
図 6 Aは、 第 1の実施の形態において、 コンタクトにレーザビームが照射され ている状態を示す断面図である。
図 6 Bは、 第 1の実施の形態において、 コンタクトの表面の金めつき層が除去 された状態を示す断面図である。
図 7は、 第 1の実施の形態において、 コンタクトを配列した半加工品に対する レーザビームの照射方向を示す図である。
図 8は、 別の方向から観察されたレーザビームの照射方向を示す図である。 図 9は、 レーザビームのスポット径が拡散防止領域の幅よりも小さい場合のレ 一ザビームの照射方法を示す図である。
図 1 0は、 レーザビームのスポット径が拡散防止領域の幅よりも大きい場合の レーザビームの照射方法を示す図である。
図 1 1 〜図 1 1 Eは、 それぞれレーザビームが照射される際のビームスポッ トのずらし幅を変化させたときのナゲット (レーザビームの照射跡) の重なり状 態を示す図である。
図 1 2は、 ビームスポットの直径、 ビームスポットのずらし幅及ぴナゲットの 重複幅の関係を示す図である。
図 1 3 Aは、 本発明の第 2の実施の形態における拡散防止領域を形成するため の方法において、 コンタクトにレーザビームが照射されている状態を示す断面図 である。
図 1 3 Bは、 第 2の実施の形態において、 コンタク トの表面の金とニッケルを 合金化させて合金層が形成された状態を示す断面図である。
図 1 4は、 第 2の実施の形態の方法の変形例により、 コンタク トの表面の金め つき層が部分的に除去されると共に、 部分的に金とニッケルの合金化させて合金 層が形成された状態を示す断面図である。
図 1 5 Aは、 本発明の第 3実施の形態における拡散防止領域を形成するための 方法を示す断面図であり、 コンタクトが治具に装着される前の状態を示す。 図 1 5 Bは、 上記第 3の実施の形態の方法を示す断面図であり、 コンタク トが 治具に装着された後の状態を示す。
図 1 6 Aは、 本発明の第 4の実施の形態における拡散防止領域を形成するため の方法を示す断面図である。
図 1 6 Bは、 第 4の実施の形態の方法により形成された拡散防止領域を示す断 面図である。
図 1 7は、 第 4の実施の形態の方法の変形例により形成された拡散防止領域を 示す断面図である。
図 1 8は、 第 4の実施の形態の方法の別の変形例により形成された拡散防止領 域を示す断面図である。
図 1 9 Aは、 本発明の第 5の実施の形態における拡散防止領域を形成するため の方法を示す断面図である。
図 1 9 Bは、 第 5の実施の形態の方法により形成された拡散防止領域を示す断 面図である。
図 2 0は、 第 5の実施の形態の方法の変形例により形成された拡散防止領域を 示す断面図である。
図 2 1は、 第 5の実施の形態の方法の別の変形例により形成された拡散防止領 域を示す断面図である。 発明を実施するための最良の形態
各実施の形態に共通する説明
本発明の各実施の形態に共通する部分について、 例えば携帯電話やディジタル カメラなどのモパイル機器に用いられるスタツキング高さが 1 mm程度のコネク タを例にして説明する。 また、 はんだ付けされる部品としては、 コネクタ用のコ ンタク トを例にして説明するが、 この実施の形態に限定されるものではなく、 そ の他のはんだ付けされる部品に応用できることは言うまでもない。
コネクタを構成するソケットの構成を図 1 A〜図 1 Cに示す。 ソケット 1 0 0 は、 絶縁性樹脂により略長方形の枠体に形成されたソケットベース 1 0 1と、 ソ ケットベース 1 0 1の長辺 1 0 2にそれぞれ圧入又はィンサートされた複数対の -
コンタクト 1などで構成されている。
コンタク ト 1の側面を図 2に示す。 各コンタクト 1は、 それぞればね性を有 する、 例えば銅などの帯状の金属板を所定形状に折り曲げて形成され、 一端部に はんだ付け用の端子部 2が設けられ、 他端部に接点部 3が設けられている。 コン タクト 1の表面には、 全体的にニッケルめっきによる下地めつきが施されている。 さらに、 下地めつき層の上には、 金めつきが施された端子部 2側の金めつき領域 4及び接点部 3側の金めつき領域 5と、 金めつき領域 4と 5の間に形成された溶 融されたはんだの拡散 (はんだ上がり) を防止するための拡散防止領域 6が形成 されている。
ソケット 1 0 0をプリント配線基板 1 .1 0に実装した状態を図 3に示す。 端子 部 2は、 ソケットベース 1 0 1の下面よりも下側に突出されており、 端子部 2が プリント配線基板 1 1 0上の配線パターンにはんだ付けされることにより、 ソケ ット 1 0 0がプリント配線基板 1 1 0上に固定される。 その際、 端子部 2の表面 には金めつきが施されており、 また、 プリント配線基板 1 1 0上の配線パターン にも同様に金めつきが施されているので、 金とはんだのぬれ性の高さにより、 溶 融されたはんだが端子部 2の表面とプリント配線基板 1 1 0上の配線パターンの 表面との間に流れ込み、 速やかに付着する。 一方、 端子部 2の表面に付着したは んだは、 金めつき領域 4の上を拡散するが、 拡散防止領域 6の存在により他の金 めっき領域 5までは拡散できない。 その結果、 接点部 3にはんだが付着すること はなくなる。 なお、 ソケット 1 0 0と共にコネクタを構成するヘッダ (図示せ ず) についても同様である。
既述のように、 モパイル機器用のコネクタのコンタクト 1は非常に小さいので、 図 4 A〜図 4 Cに示すように、 帯状の金属板の側部を櫛歯状に成形し、 さらに櫛 歯状部分を所定形状に曲げ加工することにより、 多数のコンタク ト 1が所定ピッ チで配列された半加工品(blank) 1 2が形成される。 そして、 半加工品 1 2を、 その長手方向に搬送させながら、 ニッケル浴に浸漬させることにより、 まずコン タクト 1の表面の全面にニッケルの下地めつき層が形成される。 さらに、 半加工 品 1 2を長手方向に搬送させながら、 金めつき浴に浸漬させることにより、 下地 めっき層の上から、 コンタク ト 1の表面の全面に金めつき層が形成される。 このようにして、 端子部 2と接点部 3を含むコンタクト 1の表面に全面に金 めっき層が形成された後、 端子部 2と接点部 3の間の所定の領域の金めつき層 に、 後述する各実施の形態による処理を施すことにより、 拡散防止領域 6が形成 される。 拡散防止領域 6の位置は、 端子部 2と接点部 3との間であればいずれの 位置であってもよく、 特に限定されない。 しかしながら、 端子部 2とプリント配 線基板 1 1 0上の配線パターンとの接合強度などを考慮すると、 はんだの拡散は 少なくされるべきであり、 端子部 2に近い箇所に拡散防止領域 6を設けることが 好ましい。
このように端子部 2と接点部 3の間に拡散防止領域 6を形成した後、 半加工品 1 2は、 その状態でソケットベース 1 0 1に圧入又はインサートされ、 ソケット ベース 1 0 1に各コンタクト 1が固定された後、 各コンタクト 1が半加工品 1 2 から切り離される。 その結果、 ソケット 1 0 0が完成される。 そして、 図 3に示 すように、 プリント配線基板 1 1 0の上にソケット 1 0 0が配置され、 コンタク ト 1の端子部 2がプリント配線基板 1 1 0にはんだ付けされることにより、 ソケ ット 1 0 0がプリント配線基板 1 1 0上に実装される。
はんだ付けの際に、 溶融されたはんだが端子部 2の金めつき領域 4の表面を上 方に拡散したとしても、 拡散防止領域 6の表面とはんだのぬれ性が低いので、 拡 散防止領域 4と金めつき領域 4の境界で溶融されたはんだの拡散が停止する。 そ の結果、 溶融されたはんだが接点部 3にまで拡散することが防止されると共に、 端子部 2に残るはんだの量が少なくなることが防止される。 また、 プリント配線 基板 1 1 0への端子部 2のはんだ接合強度が高く維持される。 第 1の実施の形態
次に、 本発明の第 1の実施の形態について説明する。 第 1の実施の形態では、 コンタクト 1の金めつき層の表面にレーザビームを照射して、 部分的に金めつき 層を除去させている。
図 5に示すように、 端子部 2と接点部 3との間の部分において、 コンタクト 1 の表面にレーザビーム Lが照射される。 レーザビーム Lが照射される箇所は、 端 子部 2と接点部 3との間であれば特に限定されないが、 端子部 2に近い箇所が好 ましい。 他の実施の形態においても同様である。
図 6 Aに示すように、 端子部 2及び接点部 3を含む全面に二ッケルめっき層 7及び金めつき層 8が形成されたコンタクト 1の端子部 2と接点部 3の間の所定 の位置に、 例えば半導体レーザ装置などを用いて、 レーザビーム Lが照射される。 レーザビーム Lのエネルギーにより、 レーザビーム Lが照射された部分が局部的 に加熱され、 表面の金めつき層 8が溶融され、 蒸発される。 その結果、 図 6 Bに 示すように、 レーザビーム Lが照射された部分の金めつき層 8が部分的に除去さ れる。 表面の金めつき層 8が除去されると、 下地めつきである-ッケルめっき層 7が露出される。 前述のように、 ニッケルとはんだのぬれ性が低いので、 表面の 金めつき層 8が除去された部分が、 溶融されたはんだの拡散防止領域 6として機 能する。
このように、 レーザビーム Lを金めつき層 8の除去に用いることにより、 微小 領域にエネルギーを集中させることができるので、 コンタクト 1が微小であって も、 精度良く拡散防止領域 6を形成することができる。 また、 レーザビーム の パワーを制御することが可能であるので、 金めつき層 8の厚さなどに応じてエネ ルギ一条件を適宜選択することにより、 下地めつきであるニッケルめっき層 7を 除去することなく、 拡散防止層 6を精度良く、 かつ、 短時間に形成することがで きる。
レーザビーム Lとしては、 例えば波長 1 1 0 0 n m以下であり、 1パルス当りの エネルギーが 0 . 5〜 5 m J /pu l se の範囲で、 かつ、 単位面積当りのエネルギー が 1 0 0〜2 0 0 O m J /mm 2の範囲のものを用いるのが好ましレ、。 より好まし くは、 1パルス当りのエネルギーが 3 m j Zpul se 以下で、 かつ、 単位面積当りの エネルギーが 1 2 0 O m J Zmm2以下であるものを用いるのが好ましい。
レーザビーム Lのエネノレギ一が大きすぎると、 金めつき層 8の下のニッケノレめつ き層 7も除去されたり、 さらにコンタクト 1の素材をも溶融させる可能性がある。 例えば、 コンタクト 1の素材が銅である場合、 過剰なエネルギーを有するレーザビ ーム Lが照射されると、 ニッケルめっき層 7の下の銅が露出される。 ところが、 銅 とはんだのぬれ性が高いため、 銅が露出された部分では、 溶融されたはんだの拡散 を防止することができない。 さらに、 銅は耐食性が悪いため、 銅が露出されること によって耐食性も低下する。 従って、 上記のようにレーザビーム Lのエネルギー を制御して金めつき層 8のみを除去させ、 ニッケルめっき層 7を露出させること が好ましい。
次に、 レーザビーム Lの照射方法について説明する。 前述のように、 コンタクト 1は、 半加工品 1 2の側部に所定のピッチで配列されている。 従って、 半加工品 1 2の状態で全てのコンタクト 1の全周にわたって、 もれなく、 かつ、 均一にレーザ ビーム Lを照射する必要がある。 そこで、 図 7に示すように、 半加工品 1 2の搬送 方向 Xに対して所定の角度 Φをなすようにレーザビーム Lを走査させながら、 コン タクト 1の略矩形断面をなす 4辺 1 a〜l dのうち、 互いに略直角する 2辺 1 a及 ぴ 1 bに同時にレーザビーム Lを照射させる。
半加工品 1 2の一方の側から 2辺 1 a及び 1 bに対するレーザビーム Lの照射が 完了すると、 半加工品 1 2を裏返し又はレーザビーム Lを逆方向から走査させなが ら、 半加工品 1 2の反対側の 2辺 1 c及ぴ 1 dに対するレーザビーム Lの照射を行 う。
また、 図 8に示すように、 各コンタクト 1の形状から、 コンタクト 1の他の部分、 例えば屈曲部 2◦の陰となって、 レーザビーム Lが照射されない部分が生じないよ うにするため、 レーザビーム Lの照射方向を、 半加工品 1 2の板状部分に対しても 所定の角度 Θだけ傾斜させる。
このように、 2回のレーザビーム Lの走査により、 半力 til品 1 2の各コンタクト
1の 4辺 l a〜l dの全て (すなわち全周) に対して、 もれなく、 かつ、 ほぼ均一 にレーザビーム Lを照射させることができる。
次に、 溶融されたはんだの拡散防止領域 6として機能するために必要な幅 W (図
2参照) とレーザビーム Lの直径について説明する。 拡散防止領域 6として、 第 1 では、 表面の金めつき層を除去させ、 下地めつきであるニッケルめっき層を露出さ せている。 ところが、 ニッケルとはんだのぬれ性が低いとしても、 溶融されたはん だがニッケルめっき領域に若干拡散する。 そのため、 溶融されたはんだの拡散を防 止するために必要な幅 Wの下限値が存在する。 上記モバイル機器用の微小なコネク タ用のコンタクトでは、 拡散防止領域 6として機能するために必要な幅 Wを実験に より求めたところ、 下限値は 0 . 1 3 mmであった。 従って、 0 . 1 3 mm以上の 幅にわたってレーザビーム Lを照射し、 金めつき層を除去させなければならない。 レーザビーム Lとしては、 様々なビームスポット径のものが入手可能である。 拡散防止領域 6として必要な幅 Wよりも小さいビームスポット径 (図 9に示す例で は、 例えば 0 . 0 5 mni) のものを用いるときは、 ナゲット径が約 0 . 0 5 mmの ナゲット (レーザビームの照射跡) が形成され、 図 9に示すように、 拡散防止領域 6の幅方向に少しずつずらしながら、 レーザビーム Lを複数回 (図 9に示す例では 5回) 走査させて照射させなければならない。 そのため、 半加工品 1 2の一方の側 からだけでも 2回以上レーザビーム Lを走查させなければならず、 金めつきの除去 に時間がかかり、 コス トが高くなる。 また、 レーザビーム Lの走査を拡散防止領域 6の幅方向にずらせる必要があり、 レーザビーム Lの走査又は半加工品 1 2の搬送 の精度が要求される。 これに対して、 図 1 0に示すように、 拡散防止領域 6として 必要な幅 Wよりも大きいビームスポット径 (図 1 0に示す例では、 例えば 0 . 1 5 mm) のものを用いれば、 ナゲット径が約 0 . 1 5 mmのナゲットが形成され、 半 加工品 1 2の片面に対してレーザビーム Lを 1回だけ、 全体として両側に合計 2回 だけ走査させることにより、 コンタクト 1の全周に対して、 もれなく、 かつ、 ほぼ 均一にレーザビーム Lを照射することができる。 また、 レーザビーム Lの走査を拡 散防止領域 6の幅方向にずらす必要がないので、 金めつきの除去に時間がかからず、 コス トの低減も可能である。 さらに、 レーザビーム Lの走査又は半加工品 1 2の搬 送に対してさほど精度は要求されない。
次に、 レーザビーム L走査させながら照射させる際のレーザビーム Lのずらし量 Bと連続して照射された 2回のレーザビーム Lの重複する部分の幅 (重複幅) Hと の関係について検討する。 レーザビーム Lのビームスポット径を 0 . 1 5 mmとす ると、 形成されるナゲット径はほぼ 0 . 1 5 mmとなり、 ずらし量 Bを少しずつ変 化させ、 重複幅 Hを求めた。 その変化を园1 1 〜図1 1 Eに示すと共に、 ずらし 量 Bと重複幅 Hの値を表 1に示す (単位は、 いずれも πιπι)。
ここで、 図 1 2に示すように、 ナゲット径を Dとすると、 重複幅 Ηは以下の式で 与えられる。
Η = ΛΙΌ2 ~ Β2 (表 1 )
Figure imgf000013_0001
レーザビーム Lの 1回の照射により金めつき層の除去が可能であると仮定して、 表 1から分かるように、 図 1 1 Εに示すように、 ずらし量 Βをナゲット径 Dの 1 Z 2としても、 拡散防止領域 6として機能させるために必要な幅 Wである 0 . 1 3 m mを確保することができる。 逆に、 レーザビーム Lのパワーが小さく、 1回の照射 により金めつきの除去ができないときは、 図 1 1 Aや図 1 1 Bなどに示すように、 ずらし量 Bを少なくし、 レーザビーム Lの照射回数を多くして、 金めつき層の除去 に必要なエネルギーを確保すればよい。 なお、 いずれの場合でも、 ビームスポット の中心部が通過する領域ではエネルギーの照射量が多く、 金めつき層だけでなく下 地めつきであるニッケルめっき層も除去され、 銅などのコンタクト 1の素材が露出 される可能性が高い。 そのため、 レーザビーム Lのパワー及び照射回数などを、 実 験などにより最適な条件に設定することが好ましい。 第 2の実施の形態
次に、 本発明の第 2の実施の形態について説明する。 第 2の実施の形態では、 コンタクト 1の端子部 2と接点部 3との間の部分に、 上記第 1の実施の形態にお けるレーザビーム Lよりも小さなエネルギーを有するレーザビーム Lを照射させ ることにより、 レーザビーム Lが照射された部分の金とニッケルを合金化させて 拡散防止領域 6を形成させている。
図 1 3 Aに示すように、 コンタクト 1の端子部 2と接点部 3との間の部分に所定 のパワーを有するレーザビーム Lを照射させると、 金めつき層 8の下側のニッケル めっき層 9のニッケルが金めつき層 8に拡散され、 図 1 3 Bに示すように金めつき 層 8のレーザビーム Lが照射された部分に、 金とニッケル (A u— N i ) の合金層 8 aが形成される。 この合金層 8 aとはんだのぬれ性は、 ニッケルとはんだのぬれ 性と同様に、 金とはんだのぬれ性に比べて低い。 そのため、 この合金層 8 aを端子 部 2と接点部 3の間に形成させることにより、 溶融されたはんだが端子部 2から 金めつき層 8の表面に沿って拡散してきたとしても、 合金層 8 aと金めつき層 8 との境界の箇所ではんだの拡散が停止し、 それ以上はんだは合金層 8 aの表面には 拡散しなくなる。 すなわち、 金とニッケルの合金層 8 aは、 溶融されたはんだの拡 散防止領域 6として機能する。
なお、 上記第 1の実施の形態で説明したように、 レーザビーム Lのビームスポッ トの重なり具合によっては、 場所によってレーザビーム L力 ら受けるエネルギーに ばらつきが生じる。 そこで、 図 1 4に示すように、 レーザビーム Lから受けるエネ ルギ一の高い部分では、 表面の金めつき層 8を蒸発させてニッケルめっき層 7が出 された部分 9を形成させ、 レーザビーム Lから受けるエネルギーの低い部分では、 金とニッケルの合金層 8 aを形成させるように構成してもよい。 このようにすれば、 下地めつきであるュッケルめっき層 7まで蒸発されることはなく、 銅などのコンタ クト 1の素材が露出されることを防止することができる。 その一方で、 ニッケルめ つき層 7が露出された部分 9及び金とニッケルの合金層 8 aは共に、 はんだとのぬ れ性が低いので、 拡散防止領域 6として機能し、 溶融されたはんだの拡散を防止す ることができる。 第 3の実施の形態
次に、 本発明の第 3の実施の形態について説明する。 第 3の実施の形態では、 コ ンタクト 1の端子部 2と接点部 3との間の部分に金の剥離液 4 0を作用させた後又 は作用させる前に、 この部分にレーザビーム Lを照射させ、 拡散防止領域 6を形成 させる。 従って、 上記各実施の形態と共通する部分については、 その説明を省略す る。
第 3の実施の形態における拡散防止領域を形成するための方法では、 図 1 5 A 及び図 1 5 Bに示すように、 第 1のコンタク ト 1の端子部 2と接点部 3との間の 屈曲部 1 9が金の剥離液 4 0に浸漬され、 その部分の金めつき層が除去 (剥離) される。 治具 1 4の一側部には、 上方へ開口した浴槽 1 5が設けられており、 浴 槽 1 5には金の剥離液 4 0が充填されている。 また、 治具 1 4の上面には位置決 め突起 1 6が設けられている。 さらに、 治具 1 4の上方には、 位置決め突起 1 6 に対応して位置決め凹部 1 8が形成された押え板 1 7が配設されている。 さら に、 浴槽 1 5に隣接して上端に開口を有する空洞部 2 1が形成されている。
下地めつき及ぴ金めつきが施されたコンタクト 1は、 上記半加工品 1 2の状態 で治具 1 4に装着される。 半加工品 1 2には、 その長手方向に沿って一定間隔で 多数のガイド孔 2 0が形成されているので、 ガイド孔 2 0を位置決め突起 1 6に 嵌合させることにより、 半加工品 1 2が治具 1 4に位置決めされ、 固定される。 浴槽 1 5は、 端子部 2と接点部 3の間の U字状に屈曲された屈曲部 1 9のみが嵌 り、 接点部 3は嵌らないような寸法に設定されている。 そして、 屈曲部 1 9を下 向きにした状態で、 コンタク ト 1の端子部 2が治具 1 4の上面に載置されると、 屈曲部 1 9が浴槽 1 5内の剥離液 4 0に浸漬される。
コンタク ト 1の端子部 2と接点部 3の間の屈曲部 1 9が剥離液 4 0に浸漬され ると、 金めつき層の金が剥離液 4 0と酸化反応して錯体化した状態で溶解される。 従って、 コンタクト 1の剥離液 4 0に浸漬された部分の金めつき層が除去され、 下地めつき層が露出される。
その際、 剥離液 4 0が表面張力により浴槽 1 5の内壁を伝って上昇しても、 治具 1 4に隣接する空洞部 2 1の開口によって、 剥離液 4 0が端子部 2に到達するのを 阻止される。 その結果、 端子部 2の金めつき層が除去されるのを防止することがで きる。 一方、 接点部 3は、 図 1 5 Bに示すように、 治具 1 4に接触していないので、 接点部 3の金めつき層が除去されることはない。
剥離液 4 0中に溶解された金は、 錯体化した状態で剥離液 4 0から回収される。 なお、 コンタク ト 1を半加工品 1 2の状態のまま、 剥離液 4 0による金めつき層 の除去処理を行ったが、 場合によっては、 コンタクト 1を半加工品 1 2から切り 離した後、 剥離液 4 0による金めつき層の除去の処理を行なうことも可能である。 剥離液 4 0の種類は特に限定されないが、 シアン化カリウム、 ニトロ化合物、 酸化鉛等を主成分とするものを用いることができる。 また、 剥離液 4 0にコンタ クト 1を浸漬させる時間は、 数秒から数分程度の範囲に設定される。 具体的には、 剥離液 4 0として、 メルテックス (M e 1 t e X ) 社製 「エンストリップ A u 7 8 VI.. を用い、 これに 1 5秒程度浸漬させる。
このようにして、 コンタクト 1の端子部 2と接点部 3の間の屈曲部 1 9の金めつ き層が除去された後、 上記第 1又は第 2の実施の形態の方法により、 金めつき層
8が除去された部分にレーザビーム Lを照射させることにより、 レーザビームが 照射された部分に残った金を蒸発させたり、 あるいはニッケルと合金化させる。 こ のように、 剥離液 4 0とレーザビーム Lの照射を併用することにより、 仮に剥離液 4 0により金めつき層 8が完全に除去されなかったとしても、 残った金をレーザビ ーム Lの照射によりほぼ完全に除去させたり、 あるいはニッケルと合金化させるこ とができ、 はんだとのぬれ性が低い拡散防止領域 6を形成させることができる。 ま た、 その結果として、 溶融されたはんだが端子部 2から接点部 3に拡散することを 防止することができる。
なお、 レーザビーム Lの 1パノレス当りのエネノレギーゃ単位面積当りのエネノレギー は、 下地めつきであるニッケルめっき層 7やその下のコンタクト 1の素材 (銅な ど) を溶融させない範囲内で適宜に設定することができる。
また、 上記とは逆に、 先にコンタクト 1の端子部 2と接点部 3の間の屈曲部 1 9 の一部分にレーザビーム Lを照射し、 その後レーザビーム Lが照射された部分を金 の剥離液 4 0に浸漬させるようにしてもよい。 すなわち、 まず、 端子部 2と接点部 3との間の部分において、 コンタクト 1の表面に施された金めつき層 8の表面にレ 一ザビーム Lを照射させることにより、 その部分の金の一部を除去させて下地めつ きであるニッケルめっき層 7を部分的に露出させたり、 あるいは上記部分の金の一 部をニッケルと合金化させる。 次に、 コンタクト 1の端子部 2と接点部 3の間の屈 曲部 1 9を金の剥離液 4 0に浸漬させ、 レーザビーム Lの照射によって残った金を 除去させる。 なお、 エッケルと合金化された金は、 剥離液 4 0による処理では除去 されにくいので、 金とュッケルの合金層 8 a (図 1 3 B参照) は、 そのまま拡散防 止領域 6として露出される。
このように、 剥離液 4 0とレーザビーム Lを併用することにより、 拡散防止領城 6からほぼ完全に金めつき層 8を除去させることができ、 残った金めつき層 8を伝 わつて溶融されたはんだが拡散するのを防止することができる。 第 4の実施の形態
次に、 本発明の第 4の実施の形態について説明する。 上記第 1の実施の形態から -
15
第 3の実施の形態では、 コンタクト 1のほぼ全表面に、 下地めつきとしてニッケ ルめっき層 7が形成され、 さらにニッケルめっき層 7の上に金めつき層 8が形成 されている。 第 4の実施の形態では、 図 1 6 Aに示すように、 下地めつきである二 ッケルめっき層 7の上に金一ニッケル (A u— N i ) 合金めつき層 8 0が形成され ている点が異なる。
図 4 A〜図 4 Cに示すように加工された半加工品 1 2を、 その長手方向に搬送 させながら、 ニッケル浴に浸漬させることにより、 まずコンタクト 1の表面の全 面に下地めつきであるニッケルめっき層 7が形成される。 さらに、 半加工品 1 2 を、 その長手方向に搬送させながら、 金一ニッケル合金めつき浴に浸漬すること により、 二ッケルめっき層 7の上に金ーェッケル合金めつき層 8 0が形成される。 ュッケルめっき浴の種類は特に限定されないが、 例えばスルフアミン酸ニッケル めっき浴を用いると、 電流密度を上げやすく、 生産性を高めることができる。 ュッ ケルめっき層 7は、 膜厚が 0 . 3 ~ 1 の範囲となるように形成される。 また、 金—ニッケル合金めつき浴の種類も特に限定されないが、 例えば共析比率が金:二 ッケル = 7 0 : 3 0— 9 9 . 9〜 0 . 1の範囲のものを用いる。 金一ニッケル合金 めっき浴の具体例としては、 日鉱メタルプレーティング株式会社の製品を使用する ことができる。 金一ニッケル合金めつき層 8 0は、 膜厚が 0 . 0 1〜0 . 5 πιの 範囲となるように形成される。
コンタクト 1のほぼ全表面にニッケルめっき層 7及び金一ニッケル合金めつき層 8 0が形成された後、 図 1 6 Αに示すように、 溶融されたはんだの拡散防止領域 6 を形成する部分にレーザビーム Lが照射される。 レーザビーム Lが照射された部分 の金一ニッケル合金めつき層 8 0は溶融され、 蒸発する。 その結果、 図 1 6 Bに示 すように、 金一ニッケル合金めつき層 8 0が除去され、 下地めつきであるニッケル めっき層 7が露出された拡散防止領域 6が形成される。
ュッケルめっき層 7は、 金一ニッケル合金めつき層 8 0に比べてはんだのぬれ性 が非常に低いので、 コンタクト 1の端子部 2と接点部 3の間の部分においてニッケ ルめっき層 7が露出された拡散防止領域 6が形成されることにより、 溶融されたは んだが端子部 2から金一ニッケル合金めつき層 8 0の表面を拡散してきても、 拡散 防止領域 6の部分、 すなわち、 露出されたニッケルめっき層 7と金一ニッケル合金 めっき層 8 0との境界で、 はんだの拡散が停止し、 それ以上はんだが拡散しない。 その結果、 はんだが接点部 3にまで拡散したり、 端子部 2に十分な量のはんだが残 らなくなることを防止することができる。 また、 プリント配線基板 1 1 0への端子 部 2のはんだ接合強度を高く維持することができる。
例えば上記第 2の実施の形態では、 図 1 3 Bに示すように、 金めつき層 8にレー ザビーム Lを照射することにより、 金とニッケルの合金層 8 aを形成させている。 その場合、 金とニッケルの割合はニッケルの方が金よりもはるかに多いので、 合金 層 8 aとはんだのぬれ性は、 ニッケルとはんだのぬれ性と同程度に低い。 そのため、 合金層 8 aは、 溶融されたはんだの拡散防止領域 6として機能する。 これに対して、 本実施の形態の金一ニッケル合金めつき層 8 0では、 上記のように金とニッケルの 割合は金の方がニッケルよりも多い。 そのため、 金一-ッケル合金めつき層 8 0と はんだのぬれ性は、 金とはんだのぬれ性と同程度に高い。 そのため、 金一ニッケル 合金めつき層 8 0は、 金めつき層 8と同様に、 コンタクト 1などのはんだ付けされ る部品の表面処理として好適である。
また、 レーザビーム Lのパワーを調節することにより、 図 1 7に示すように、 金 —エッケル合金めつき層 8 0のうちレーザビーム Lが照射された部分で、 金一 -ッ ケル合金のニッケルを表面へ拡散させて拡散層 8 1を形成させてもよい。 その場合、 拡散層 8 1の表面近傍では、 金とニッケルの割合はニッケルの方が金よりも多くな るので、 拡散層 8 1とはんだのぬれ性は非常に低くなり、 拡散層 8 1が溶融された はんだの拡散防止領域 6として機能する。
さらに、 図 1 8に示すように、 レーザビーム Lから受けるエネルギーの高い部分 9では、 表面の金一ニッケル合金めつき層 8 0を蒸発させてニッケルめっき層 7を 露出させ、 レーザビーム Lから受けるエネルギーの低い部分では、 金一ニッケル合 金のニッケルを表面へ拡散させて拡散層 8 1を形成させてもよい。 このようにすれ ば、 下地めつきであるニッケルめっき層 7まで蒸発されることはなく、 銅などのコ ンタクト 1の素材が露出されることを防止することができる。 その一方で、 エッケ ルめっき層 7が露出した部分 9及び拡散層 8 1は共にはんだとのぬれ性が低いので、 拡散防止領域 6として機能し、 溶融されたはんだの拡散を防止することができる。 第 5の実施の形態
次に、 本宪明の第 5の実施の形態について説明する。 上記第 4の実施の形態で は、 コンタクト 1のほぼ全表面に、 下地めつきとしてニッケルめっき層 7が形成さ れ、 さらにニッケルめっき層 7の上に金一ニッケル (Au— N i ) 合金めつき層 8 が形成されている。 第 5の実施の形態では、 下地めつきとして、 ニッケルめっき層 7の上に、 さらにパラジウム一ニッケル (P d—N i ) 合金めつき層 70が形成さ れ、 パラジウム一ニッケル合金層 70の上に金一ニッケル (Au— N i) 合金めつ き層 80が形成されている。
多数のコンタクト 1が所定ピッチで配列された半加工品 12を、 その長手方向に 搬送させながら、 ニッケル浴に浸漬させることにより、 まずコンタクト 1の表面の 全面に下地めつきとしてニッケルめっき層 7を形成させる。 次に、 パラジウム一二 ッケル合金めつき浴に浸漬させることにより、 ニッケルめっき層 7の上にパラジゥ ムーニッケル合金めつき層 70を形成させる。 そして、 半加工品 12を長手方向に 搬送させながら、 金一ニッケル合金めつき浴に浸漬させることにより、 パラジウム 一ニッケル合金めつき層 70の上のコンタクト 1の表面の全面に金一ニッケル合金 めっき層 80を形成させる。
ニッケルめっき浴の種類は特に限定されないが、 例えばスルファミン酸ニッケル めっき浴を用いると、 電流密度を上げやすく、 生産性を高めることができる。 ニッ ケルめっき層 7は、 その膜厚が 0. 3~10 //inの範囲となるように形成される。 また、 パラジウム一ニッケル合金めつき浴の種類も特に限定されず、 電流密度を上 げやすく生産性を高めることができるものを用いるのが好ましい。 パラジウム一- ッケル合金めつき層 70は、 その膜厚が 0. 01〜1. Ο μπιの範囲となるように 形成される。 さらに、 金ーュッケル合金めつき浴の種類も特に限定されないが、 例 えば共析比率が金:ニッケル = 70 : 30〜99. 9〜0. 1の範囲のものを用い る。 金一ニッケル合金めつき浴の具体例としては、 日鉱メタルプレーティング株式 会社の製品を使用することができる。 金一ニッケル合金めつき層 80は、 その膜厚 が 0. 01〜0. 5 mの範囲となるように形成される。
コンタクト 1のほぼ全表面にニッケルめっき層 7及び金一ニッケノレ合金めつき層 80が形成された後、 図 19 Aに示すように、 溶融されたはんだの拡散防止領域 6 を形成する部分にレーザビーム Lが照射される。 レーザビーム Lが照射された部 分の金一ニッケル合金めつき層 8 0は溶融され、 蒸発される。 その結果、 図 1 9 Bに示すように、 金一ニッケル合金めつき層 8 0が除去され、 パラジウム一-ッケ ル合金めっき層 7 0が露出された拡散防止領域 6が形成される。
パラジウム一ニッケル合金めつき層 7 0は、 金一ュッケル合金めつき層 8 0に比 ベてはんだのぬれ性が非常に低いので、 コンタクト 1の端子部 2と接点部 3の間の 部分においてパラジウム一ニッケル合金めつき層 7 0を露出させることにより、 拡 散防止領域 6が形成される。 仮に、 溶融されたはんだが端子部 2から金一ニッケル 合金めつき層 8 0の表面を拡散してきても、 拡散防止領域 6の部分、 すなわち、 露 出されたパラジウム一ュッケル合金めつき層 7 0と金一ニッケル合金めつき層 8 0 との境界ではんだの拡散が停止し、 それ以上はんだが拡散しない。 その結果、 はん だが接点部 3にまで拡散したり、 端子部 2に十分な量のはんだが残らなくなること を防止することができる。 また、 プリント配線基板 1 1 0への端子部 2のはんだ接 合強度を高く維持することができる。
さらに、 パラジウム一ニッケル合金めつき層 7 0は、 下地めつきであるニッケル めっき層 7に比べて耐食性が優れているので、 めっき工程が増えるものの、 ニッケ ルめっき層 7を露出させておくよりも、 耐腐食性を向上させることができる。
また、 レーザビーム Lのパワーを調節することにより、 図 2 0に示すように、 金 一ニッケル合金めつき層 8 0のうちレーザビーム Lが照射された部分において、 金 —ニッケル合金のニッケルを表面へ拡散させて拡散層 8 1を形成させてもよい。 そ の場合、 拡散層 8 1の表面近傍では、 金とニッケルの割合はニッケルの方が金より も高くなるので、 拡散層 8 1とはんだのぬれ性は非常に低くなり、 拡散層 8 1が溶 融されたはんだの拡散防止領域 6として機能する。
さらに、 図 2 1に示すように、 レーザビーム Lから受けるエネルギーの高い部分 では、 表面の金一ニッケル合金めつき層 8 0を蒸発させてパラジウム一ニッケル合 金めつき層 7 0が露出された部分 9を形成させ、 レーザビーム Lから受けるェネル ギ一の低い部分では、 金一ニッケル合金のニッケルを表面へ拡散させて拡散層 8 1 を形成させてもよい。 このようにすれば、 下地めつきであるニッケルめっき層 7ま で蒸発されることはなく、 銅などのコンタクト 1の素材が露出されることを防止す ることができる。 その一方で、 パラジウム一ニッケル合金めつき層 7 0が露出さ れ部分 9及び拡散層 8 1は共にはんだとのぬれ性が低いので、 拡散防止領域 6と して機能し、 溶融されたはんだの拡散を防止することができる。 その他の実施の形態
上記の各実施の形態において、 レーザビーム Lを照射する工程を含む場合、 レー ザビーム Lの照射後に、 コンタクト 1の端子部 2と接点部 3の間の部分の表面に炭 化物などの汚れが付着している場合がある。 そのような汚れを放置しておくと、 そ の後の処理に支障を来したり、 信頼性の高いコンタクト 1を得ることが困難となる。 そこで、 端子部 2と接点部 3の間の部分にレーザビーム Lを照射したときは、 例え ば図 1 5 A及び図 1 5 Bに示す治具 1 4を用いて、 その部分を洗浄液 2 3に浸漬さ せてもよい。 洗浄液 2 3としては、 上記の汚れを除去できるものであれば、 特に限 定されるものではないが、 例えばアルコール系などの洗浄液を用いることができる。 なお、 端子部 2と接点部 3の間の部分以外の部分に汚れが付着している場合には、 その部分を洗浄液 2 3に浸漬させて、 汚れを除去すればよい。 コンタクト 1の表面 に付着した汚れを除去することにより、 製造工程が増えるものの、 コンタク ト 1の その後の処理に支障を来すようなことがなくなり、 最終的に信頼性の高いコンタク ト 1を得ることができる。
また、 上記各実施の形態では、 コネクタ用のコンタクトに溶融されたはんだの拡 散防止領域を形成する場合について説明したが、 本発明はこの用途に限定されるも のではなく、 例えば表面実装型半導体装置のパッケージに設けられたリ一ドなどに も応用することができる。 すなわち、 表面実装型半導体装置のパッケージも、 コネ クタと同様にプリント配線板に実装して使用されるものであり、 プリント配線板の 上方にパッケージを配置して、 このパッケージに設けられたリ一ドの先端部をプリ ント配線板にはんだ付けすることによって、 表面実装型半導体装置のパッケージの 実装が行われる。 その場合、 リードの先端部からリードの基部 (根元) に溶融され たはんだが拡散するのを防止することができる。 本願は曰本国特許出願 2 0 0 2— 2 9 7 8 8 0、 2 0 0 3— 1 1 4 7 5 9及び 200 3 - 1 8 5 748に基づいており、 その内容は、 上記特許出願の明細書 及び図面を参照することによって結果的に本願発明に合体されるべきものであ る。
また、 本願発明は、 添付した図面を参照した実施の形態により十分に記載され ているけれども、 さまざまな変更や変形が可能であることは、 この分野の通常の 知識を有するものにとって明らかであろう。 それゆえ、 そのような変更及び変形 は、 本願発明の範囲を逸脱するものではなく、 本願発明の範囲に含まれると解釈 されるべきである。

Claims

言畲 求 の 範 囲
1 . 金属材料を所定形状に加工することにより形成され、 一端の近傍に設けら れた端子部及び他端の近傍に設けられた接点部と、
前記端子部及び接点部を含むほぼ全表面に形成された下地めつき層及ぴ金めつ き層又は金を含む合金めつき層と、
前記端子部と接点部の間の前記金めっき層又は金を含む合金めっき層の上から 処理を施されることにより形成され、 はんだとのぬれ性が低く、 溶融されたはん だが拡散しにくい拡散防止領域を備えたコネクタ用コンタクト。
2 . 前記拡散防止領域は、 前記金めつき層又は金を含む合金めつき層に対して レーザビームを照射することにより、 レーザビームが照射された部分の少なくと も一部の金又は金を含む合金を蒸発させて除去させ、 下地めつき層を露出させた ものであることを特徴とする請求項 1に記載のコネクタ用コンタクト。
3 . 前記拡散防止領域は、 前記金めつき層に対してレーザビームを照射するこ とにより、 レーザビームが照射された部分の少なくとも一部が金と下地めつき層 の材料を合金化させて形成された合金層であることを特徴とする請求項 1に記載 のコネクタ用コンタクト。
4 . 前記拡散防止領域は、 前記金を含む合金めつき層に対してレーザビームを 照射することにより、 レーザビームが照射された部分の少なくとも一部の表面に 金を含む合金材料のうち、 以外の材料を拡散させた拡散層であることを特徴とす る請求項 1に記載のコネクタ用コンタクト。
5 . 前記拡散防止領域は、 レーザビームが照射された部分の一部の金を蒸発に より除去すると共に残りの金をニッケルと合金化させて形成された合金層である ことを特徴とする請求項 1に記載のコネクタ用コンタクト。
6 . 一端の近傍にはんだ付けされる端子部を形成するように、 金属材料を所定 形状に加工する工程と、
前記端子部を含むほぼ全表面に下地めつき層及び金めつき層又は金を含む合金 めっき層を形成する工程と、
前記端子部とはんだ付けされない非はんだ付け部の間の前記金めつき層又は金 を含む合金めつき層に対してレーザビームを照射することにより、 はんだとの ぬれ性が低く、 溶融されたはんだが拡散しにくい拡散防止領域を形成する工程 とを備えたはんだ付けされる部品の製造方法。
7 . 前記拡散防止領域は、 レーザビームの照射により、 レーザビームが照射さ れた部分の少なくとも一部の金又は金を含む合金が蒸発により除去され、 下地め つき層が露出されたものであることを特徴とする請求項 6に記載のはんだ付けさ れる部品の製造方法。
8 . 前記拡散防止領域は、 レーザビームの照射により、 レーザビームが照射さ れた部分の少なくとも一部の金が下地めつき層に拡散されることにより形成され た合金層であることを特徴とする請求項 6に記載のはんだ付けされる部品の製造 方法。
9 . 前記拡散防止領域は、 レーザビームの照射により、 レーザビームが照射さ れた部分の少なくとも一部の表面に金を含む合金材料のうち金以外の材料が拡散 されて形成された拡散層であることを特徴とする請求項 6に記載のはんだ付けさ れる部品の製造方法。
1 0 . 前記拡散防止領域は、 レーザビームが照射された部分の一部の金を蒸発 により除去すると共に残りの金をニッケルと合金化させて形成された合金層であ ることを特徴とする請求項 6に記載のはんだ付けされる部品の製造方法。
1 1 . レーザビームを照射する前に、 少なくともレーザビームが照射される領 域を含む部分の金めつき層又は金を含む合金めつき層に対して、 金の剥離液を作 用させたことを特徴とする請求項 6に記載のはんだ付けされる部品の製造方法。
1 2 . レーザビームを照射した後に、 少なくともレーザビームが照射された領 域を含む部分の金めつき層又は金を含む合金めつき層に対して、 金の剥離液を作 用させることを特徴とする請求項 6に記載のはんだ付けされる部品の製造方法。
1 3 . 前記下地めつき層はニッケルめっき層であることを特徴とする請求項 6 に記載のはんだ付けされる部品の製造方法。
1 4 . 前記下地めつき層は、 ニッケルめっき層及ぴその上に形成されたパラジ ゥム一ニッケル合金めっき層であることを特徴とする請求項 6に記載のはんだ付 けされる部品の製造方法。
1 5. 前記金を含む合金は、 金一ニッケル合金であることを特徴とする請求 項 6に記載のはんだ付けされる部品の製造方法。
1 6. レーザビームは、 前記端子部の近傍に照射されることを特徴とする請求 項 6に記載のはんだ付けされる部品の製造方法。
1 7. レーザビームとして、 1パノレス当りのエネルギーが 0. 5〜5m jZ pulse の範囲で、 かつ、 単位面積当りのエネルギーが 1 00~200 Om jZm m2の範囲のものを用いることを特徴とする請求項 6に記載のはんだ付けされる 部品の製造方法。
1 8. レーザビームとして、 1パルス当りのエネルギーが 3m J/pulse 以下 で、 かつ、 単位面積当りのエネルギーが 1 20 Om J Zmm2以下であるものを 用いることを特徴とする請求項 6に記載のはんだ付けされる部品の製造方法。
1 9. 前記レーザビームは、 波長 1 100 nm以下であることを特徴とする請 求項 6に記載のはんだ付けされる部品の製造方法。
20. レーザビームは、 前記拡散防止領域が溶融されたはんだの拡散を防止し うるために必要な所定の幅よりも大きいビームスポット径を有し、
レーザビームの照射は、 所定方向に所定のピッチずつずらしながら、 形成され る隣り合うナゲットが互いに重複する部分を形成し、 該重複した部分の幅は溶融 されたはんだの拡散を防止しうるために必要な所定の幅よりも広いことを特徴と する請求項 6に記載のはんだ付けされる部品の製造方法。
2 1. 前記はんだ付けされる部品は、 金属帯材の側部に一定のピッチで複数配 列された半加工品の状態で搬送され、
レーザビームは、 前記半加工品の搬送方向に対して 90度以外の所定の角度を なす方向から、 前記はんだ付けされる部品の前記搬送方向に平行な断面における
2辺に照射されることを特徴とする請求項 20に記載のはんだ付けされる部品の 製造方法。
22. 前記はんだ付けされる部品はコネクタ用のコンタクトであり、 前記端子 部とは反対側の端部近傍に接点部が形成されていることを特徴とする請求項 6に 記載のはんだ付けされる部品の製造方法。
PCT/JP2003/013094 2002-10-10 2003-10-10 コネクタ用コンタクト及びはんだ付けされる部品の製造方法 WO2004034521A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03751468A EP1551081B1 (en) 2002-10-10 2003-10-10 Production method for component to be soldered
KR1020047011963A KR100597068B1 (ko) 2002-10-10 2003-10-10 커넥터용 콘택트 및 납땜되는 부품의 제조방법
US10/505,453 US8294063B2 (en) 2002-10-10 2003-10-10 Connector-use contact and production method for component to be soldered
CN200380100193.8A CN1692529B (zh) 2002-10-10 2003-10-10 被软钎焊的零件的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002297880 2002-10-10
JP2002-297880 2002-10-10
JP2003-114759 2003-04-18
JP2003114759A JP2004315941A (ja) 2003-04-18 2003-04-18 半田付け用端子の製造方法
JP2003185748A JP4003705B2 (ja) 2003-06-27 2003-06-27 半田付け用端子の製造方法
JP2003-185748 2003-06-27

Publications (1)

Publication Number Publication Date
WO2004034521A1 true WO2004034521A1 (ja) 2004-04-22

Family

ID=32096712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013094 WO2004034521A1 (ja) 2002-10-10 2003-10-10 コネクタ用コンタクト及びはんだ付けされる部品の製造方法

Country Status (5)

Country Link
US (1) US8294063B2 (ja)
EP (1) EP1551081B1 (ja)
KR (1) KR100597068B1 (ja)
TW (1) TWI227579B (ja)
WO (1) WO2004034521A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172438B2 (en) * 2005-03-03 2007-02-06 Samtec, Inc. Electrical contacts having solder stops
US20060196857A1 (en) * 2005-03-03 2006-09-07 Samtec, Inc. Methods of manufacturing electrical contacts having solder stops
WO2007024005A1 (ja) 2005-08-23 2007-03-01 Ddk Ltd. 超小形コンタクトおよびその製造方法並びに電子部品
KR100912181B1 (ko) * 2007-09-20 2009-08-14 노승백 레이져 표면처리단계를 이용한 납오름 방지용 부분도금방법
DE102008042777A1 (de) * 2008-10-13 2010-04-15 Robert Bosch Gmbh Selektiver Lötstop
JP5479406B2 (ja) * 2011-06-30 2014-04-23 日本航空電子工業株式会社 コネクタ
JP2013171976A (ja) * 2012-02-21 2013-09-02 Fujitsu Ltd プリント配線板の製造方法及びプリント配線板
JP6309372B2 (ja) * 2014-07-01 2018-04-11 日本航空電子工業株式会社 コネクタ
DE102014017886A1 (de) * 2014-12-04 2016-06-09 Auto-Kabel Management Gmbh Verfahren zum Herstellen eines elektrischen Anschlussteils
DE102018125300A1 (de) * 2018-10-12 2020-04-16 Osram Opto Semiconductors Gmbh Elektronisches Bauteil und Verfahren zum Aufbringen von zumindest einem Lötpad auf ein elektronisches Bauteil
US11394146B2 (en) * 2020-04-07 2022-07-19 Quanta Computer Inc. Treated connection pins for high speed expansion sockets
JP7354944B2 (ja) * 2020-07-06 2023-10-03 トヨタ自動車株式会社 配線基板の製造方法
JP7456330B2 (ja) * 2020-08-21 2024-03-27 トヨタ自動車株式会社 配線基板の製造方法
CN114138058A (zh) * 2020-09-03 2022-03-04 联想(新加坡)私人有限公司 电子设备
WO2022136120A1 (en) * 2020-12-22 2022-06-30 Luxottica S.R.L. Method for the creation of decorations and/or logos on materials made of metal, preferably but not exclusively for parts of eyeglasses and the like
KR102501388B1 (ko) * 2022-02-25 2023-02-21 주식회사 제이앤티씨 실장기립부를 갖는 전자기기용 커넥터 제조방법
JP2024033060A (ja) * 2022-08-30 2024-03-13 モレックス エルエルシー コネクタ及びコネクタ対

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238489A (ja) * 1984-05-12 1985-11-27 Daiki Gomme Kogyo Kk 表面被覆金属層の作製する方法
JPH05315408A (ja) * 1992-05-12 1993-11-26 Nitto Denko Corp フィルムキャリアおよびこれを用いた半導体装置
JPH0590835U (ja) * 1992-05-14 1993-12-10 日本航空電子工業株式会社 コンタクト
JPH10247535A (ja) * 1996-12-31 1998-09-14 Dai Ichi Denshi Kogyo Kk 電子部品
JP2003045530A (ja) * 2001-07-27 2003-02-14 Japan Aviation Electronics Industry Ltd コネクタ及びそれに備えられるコンタクトの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424527A (en) * 1981-07-31 1984-01-03 Optical Information Systems, Inc. Bonding pad metallization for semiconductor devices
JPH0215662A (ja) 1988-07-01 1990-01-19 Fujitsu Ltd 集積回路のリードメッキ方法
JPH0590835A (ja) 1991-09-26 1993-04-09 Toshiba Corp アレイアンテナ
JPH0773121B2 (ja) 1992-12-28 1995-08-02 日本電気株式会社 半導体装置用パッケージ及びその製造方法
US5957736A (en) * 1997-11-19 1999-09-28 Ddk Ltd. Electronic part
US6300678B1 (en) * 1997-10-03 2001-10-09 Fujitsu Limited I/O pin having solder dam for connecting substrates
JP4079527B2 (ja) * 1998-07-15 2008-04-23 富士通コンポーネント株式会社 リードピンの部分めっき方法
EP1202390B1 (en) * 2000-10-25 2008-05-21 Japan Aviation Electronics Industry, Limited An electronic component and a method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238489A (ja) * 1984-05-12 1985-11-27 Daiki Gomme Kogyo Kk 表面被覆金属層の作製する方法
JPH05315408A (ja) * 1992-05-12 1993-11-26 Nitto Denko Corp フィルムキャリアおよびこれを用いた半導体装置
JPH0590835U (ja) * 1992-05-14 1993-12-10 日本航空電子工業株式会社 コンタクト
JPH10247535A (ja) * 1996-12-31 1998-09-14 Dai Ichi Denshi Kogyo Kk 電子部品
JP2003045530A (ja) * 2001-07-27 2003-02-14 Japan Aviation Electronics Industry Ltd コネクタ及びそれに備えられるコンタクトの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1551081A4 *

Also Published As

Publication number Publication date
EP1551081A1 (en) 2005-07-06
KR20040101217A (ko) 2004-12-02
US20050103761A1 (en) 2005-05-19
TW200414617A (en) 2004-08-01
KR100597068B1 (ko) 2006-07-06
US8294063B2 (en) 2012-10-23
EP1551081A4 (en) 2007-07-25
TWI227579B (en) 2005-02-01
EP1551081B1 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2004034521A1 (ja) コネクタ用コンタクト及びはんだ付けされる部品の製造方法
US6469394B1 (en) Conductive interconnect structures and methods for forming conductive interconnect structures
US10312603B2 (en) Fixing structure and fixing method
CN101248556B (zh) 超小型触点及其制造方法和电子部件
JP2008300359A (ja) 半田付け端子の表面の処理方法
JP2002203627A (ja) 電子部品およびその製法
JP2004152750A (ja) 半田付け端子、及び半田付け端子の表面の処理方法
JP4363261B2 (ja) 接点と半田付け端子を有する電子部品及びその表面処理方法
JP4003705B2 (ja) 半田付け用端子の製造方法
JP2004277837A (ja) 表面処理方法、電子部品並びにコネクタピンの製造方法、および電子部品
JP2004315941A (ja) 半田付け用端子の製造方法
JP3839579B2 (ja) チップの実装方法
JPH1112781A (ja) 部分メッキ工法および装置
JP2005243468A5 (ja)
JP2837052B2 (ja) 電子部品
JP2001210775A (ja) リードフレーム、電子部品パッケージ、及びそれらの作製方法
JP2004152559A (ja) 電子部品及びその製造方法
JP2747510B2 (ja) レーザー溶着によるフイルム状回路体の接続方法
JP3520457B2 (ja) 錫被覆金属板及びその製造法
JPH0629648A (ja) プリント配線板およびその製造方法
JP4599388B2 (ja) 電子部品およびその製法
JPS592356A (ja) 半導体装置の製造方法
JPH11168120A (ja) 半導体装置及びその製造方法
JPH04337644A (ja) Tab用バンプ接点の形成方法
JPH0457101B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047011963

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A01938

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10505453

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003751468

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003751468

Country of ref document: EP