WO2004031323A1 - 蛍光体及び蛍光体の処理方法 - Google Patents

蛍光体及び蛍光体の処理方法 Download PDF

Info

Publication number
WO2004031323A1
WO2004031323A1 PCT/JP2003/012818 JP0312818W WO2004031323A1 WO 2004031323 A1 WO2004031323 A1 WO 2004031323A1 JP 0312818 W JP0312818 W JP 0312818W WO 2004031323 A1 WO2004031323 A1 WO 2004031323A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
gas
region
particles
reaction
Prior art date
Application number
PCT/JP2003/012818
Other languages
English (en)
French (fr)
Inventor
Takehiro Zukawa
Masatoshi Kitagawa
Masaharu Terauchi
Junko Asayama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/528,589 priority Critical patent/US7468145B2/en
Priority to JP2004541296A priority patent/JPWO2004031323A1/ja
Priority to EP03751355A priority patent/EP1550708A1/en
Publication of WO2004031323A1 publication Critical patent/WO2004031323A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/71Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/42Fluorescent layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to a phosphor used in a light emitting device, and more particularly to a phosphor excited by vacuum ultraviolet rays used in a plasma display panel (PDP) or a mercury-free fluorescent lamp.
  • PDP plasma display panel
  • FIG. 9 is a schematic cross-sectional view showing a configuration of a general AC-driven surface discharge type PDP.
  • the PDP shown in this figure includes a front glass substrate 1 and a back glass substrate 5 arranged in parallel with each other, and a display electrode 2 is formed on the front glass substrate 1.
  • the display electrode 2 is made of a dielectric glass layer 3.
  • a dielectric protective layer 4 made of magnesium oxide (MgO) (see, for example, Patent Document 1).
  • an address electrode 6 and a partition wall 7 are provided on the rear glass substrate 5, and the phosphor layers 9 to 10 of the respective colors (red, green, and blue) made of an oxide phosphor are provided between the partition walls 7. 1 1 is provided.
  • the front glass substrate 1 is disposed on the partition wall 7 of the rear glass substrate 5, and a discharge space is formed between the two substrates 1 and 5 by filling a discharge gas.
  • vacuum ultraviolet rays (mainly at a wavelength of 147 nm) are generated by the discharge, and the color phosphor layers 9 to 11 are excited to emit light, whereby a color display is performed.
  • the above PDP can be manufactured as follows.
  • a silver paste is applied and baked on the front glass substrate 1 to form a display electrode 2, a dielectric glass paste is applied and baked to form a dielectric glass layer 3, and a dielectric protective layer 4 is formed thereon.
  • silver paste is applied to the rear glass substrate 5
  • the electrode 6 is formed, a glass paste is applied at a predetermined pitch, and baked to form the partition 7.
  • a phosphor paste of each color is applied between the partition walls 7 and baked at about 500 ° C. to remove resin components and the like in the paste to form phosphor layers 9 to 11. I do.
  • a glass frit for sealing is applied around the rear glass substrate 5 and calcined at about 350 ° C. to remove resin components and the like in the formed sealing glass layer (flitch). Calcining process).
  • the front glass substrate 1 and the rear glass substrate 5 are stacked so that the display electrodes 2 and the address electrodes 6 are orthogonally opposed to each other. This is heated to a temperature (about 450 ° C) higher than the softening temperature of the sealing glass to seal (sealing step).
  • the panel is evacuated from the internal space formed between the two substrates (the space formed between the front and rear glass substrates and facing the phosphor). (Exhaust process) After the exhaust, the discharge gas is introduced so as to have a predetermined pressure (usually 39.9 to 66.5 kPa, 300 to 500 Torr).
  • the challenge is to improve the light emission characteristics, including improving the brightness, and to reduce the change over time in the light emission characteristics of the phosphor layer to extend the quality assurance time. I have.
  • the quality assurance time may be determined by the aging characteristics of the phosphor used in the light emitting display unit changing over time.
  • the phosphor due to moisture, heating, and the like during the process of manufacturing a PDP, the phosphor emits light with reduced emission luminance and emission chromaticity. As a result, the phosphor characteristics deteriorate due to the temporal change of the phosphor during the PDP production process. Furthermore, the phosphor layer is exposed to the plasma accompanied by discharge even during PDP driving, and thus changes over time. Then, due to the change with time of the phosphor, the light emission characteristics of the PDP may deteriorate with time, leading to a long life.
  • the phosphor layer is also excited and emits light by vacuum ultraviolet light, but the aging of the phosphor layer may cause its life.
  • the surface of the phosphor particles is formed by evaporation, dipping, sputtering, spraying, or the like.
  • a method of coating with a protective film made of g0 is also known.
  • Reference 2 discloses that a coating precursor such as trimethylaluminum and a mixed gas of oxygen and ozone are supplied into a reactor, and sufficient time is given. A method has been proposed to spend the phosphor particles.
  • An object of the present invention is to realize a PDP or mercury-free fluorescent lamp that can maintain excellent luminescence characteristics for a long period of time by suppressing the luminescence characteristics of a phosphor that emits light excited by vacuum ultraviolet light from changing over time.
  • the near-surface region of the particle is modified, and the element composition of the near-surface region is compared with the element composition of the inner region of the particle. It is in a more oxidized state.
  • particle surface refers to an outer surface on which a protective layer or the like is not formed.
  • the “near-surface region” is a range from the surface of the phosphor particles where the phosphor is excited by vacuum ultraviolet light to a depth of about several tens nm.
  • the region near the surface of the particle is modified so that the elemental composition in the region near the surface is higher than the elemental composition in the inner region of the particle by halogen or chalcogen. Is included. It is desirable that this halogen element or chalcogen element is chemically bonded.
  • a gas containing a reactive gas is excited to form a highly reactive gas atmosphere, and the phosphor is exposed to the gas atmosphere to form phosphor particles.
  • the area near the surface was selectively modified.
  • reaction gas is a gas composed of oxygen, a halogen compound, a gas composed of a chalcogen compound, or the like.
  • the “near surface area” of a particle refers to the area from the particle surface to the depth where vacuum ultraviolet rays penetrate (about several tens of nanometers), and the internal area refers to a deeper area.
  • the term “highly reactive gas atmosphere” refers to a state in which the surface of the phosphor is more chemically reacted with the phosphor surface than the original gas. For example, in a state of being excited by radicals or ions, and in the case of oxygen, it is a state of radical oxygen or ozone which shows a strong oxidizing action.
  • the phrase “selectively in the vicinity of the surface” means that “the degree of modification in the region near the surface is greater than the degree of modification in the inner region”. According to the present invention, it is possible to suppress the temporal change of the light emission characteristics. The reason is considered as follows. In general, in the oxide phosphor, the type of element contained in the element composition is the same for the entire particle, but the emission characteristics of the phosphor may change over time due to the following factors.
  • oxygen vacancies are buried in the vicinity of the particle surface of the oxide phosphor to improve the crystallinity of the phosphor.
  • the absorption of water by the phosphor and (4) the change in the crystal structure often occur due to the defect of the phosphor crystal.
  • the defect of the phosphor crystal is compensated.
  • the crystallinity is improved, so that it is possible to suppress (1) moisture adsorption of the phosphor and (4) a change with time due to a change in crystal structure.
  • the modification treatment can be performed in a shorter time than in the case where the inside is modified. This means that processing can be performed at low cost, and the damage to the phosphor due to processing can be kept low.
  • a wide variety of gases can be used as the gas to be introduced.However, by selecting the type of gas to be used, it is possible to eliminate specific degradation factors and eliminate several degradation factors together. You can also.
  • the processing method of the present invention since the phosphor can be modified only by exposing it to the introduced gas, the processing is relatively simple, and an expensive apparatus such as a vapor deposition apparatus is not required. It is preferable to mix a rare gas or an inert gas, as well as a reaction gas, with the gas to be introduced in order to easily form a highly reactive gas atmosphere and to suppress damage to the phosphor. If fluorine is bonded to the phosphor composition before the treatment in the region near the surface of the phosphor particles, a layer acting as a water-repellent protective film is formed near the phosphor surface. Further, the change with time of the phosphor is suppressed.
  • fluorine is present in a region near the surface in a state of being bonded to the alkaline earth metal.
  • the introduction gas may include a fluoride gas, and the phosphor may be exposed to a gas atmosphere in which the gas is excited. If the phosphor film of the light emitting element is configured with such an oxide phosphor of the present invention, deterioration of the light emission characteristics over time can be suppressed even for the phosphor film.
  • the oxide phosphor of the present invention may be localized more in the region near the surface than in the internal region of the phosphor film. In this case, too, the characteristics near the surface of the phosphor film are maintained. It is possible to suppress the actual deterioration of the light emission characteristics.
  • Such a light-emitting element forms a highly reactive gas atmosphere, and exposes the substrate on which the phosphor layer is formed to the gas atmosphere, thereby modifying a phosphor layer near the surface of the phosphor layer. It can be manufactured by providing a quality process.
  • the oxide phosphor of the present invention when used in the phosphor layer of a PDP or mercury-free fluorescent lamp, it is effective to suppress deterioration of the light-emitting characteristics of the PDP or mercury-free fluorescent lamp with time.
  • phosphors used in PDP and mercury-free fluorescent lamps are: Since the excitation wavelength is mainly in the vacuum ultraviolet region of 147 nm, it is absorbed in the region near the surface of the phosphor particles and converted into visible light in that region. Therefore, if the emission characteristics in the region near the surface of the phosphor particles are maintained, the emission characteristics of the PDP and the mercury-free fluorescent lamp are also maintained.
  • an oxide phosphor containing an emission center metal that can have multiple valences, such as Eu and Mn has excellent emission characteristics as its elemental composition. .
  • oxide phosphors activated with europium and particularly alkaline earth metal aluminate phosphors activated with europium, show high luminous efficiency in the vacuum ultraviolet region, but these phosphors are not aging. The light emission characteristics are easily changed.
  • the average valence of the emission center metal in the region near the surface is set to be larger than the average valence of the emission center metal in the front inner region, the region near the surface is reduced. It is selectively modified, and the aging characteristics of the luminescence characteristics are suppressed.
  • Ba X X S r y E u Z M g A 1 10 O 17 (0.05 ⁇ x ⁇ 0.40, 0 ⁇ y ⁇ 0.25, 0.05 ⁇ z ⁇ 0. (30, x-y ⁇ z) has high luminous efficiency in the vacuum ultraviolet region, and is generally used for PDP and mercury-free fluorescent lamps. Therefore, a great effect can be obtained by applying the present invention.
  • the divalent europium ratio is 60% or more and 95% or less for the whole particle, and the surface vicinity It is preferable to set the value to 5% or more and 30% or less in the area, and it is more preferable to set the value to 10% or more and 20% or less.
  • the following is preferred. Excitation of gas containing reactive gas when forming highly reactive gas atmosphere As a result, when a gas atmosphere in a plasma state is formed, the excited state is maintained, so that an excellent reforming effect can be expected.
  • the gas can be excited to a certain reaction state by adding energy to the introduced gas.
  • a gas containing a reaction gas is introduced into a processing device, energy is applied to the introduced gas introduced into the processing device to excite the gas, and the gas is extruded from the processing device.
  • a highly reactive gas atmosphere may be formed.
  • Irradiation of the introduced gas with ultraviolet rays is preferably performed without irradiating the surface of the phosphor with ultraviolet rays.
  • the heating temperature is preferably at most 300 ° C, more preferably at most 100 ° C.
  • the introduced gas contains oxygen molecules and excites the introduced gas to form ozone or monatomic oxygen
  • the ozone or monoatomic oxygen is formed near the surface of the phosphor crystal.
  • crystal defects can be compensated for and the crystal can be reformed to have good crystallinity. This eliminates the cause of deterioration due to crystal defects, and realizes a phosphor with little change over time.
  • the treatment may be performed while changing the processing method of the phosphors for each type. Deterioration factors of the phosphor are not uniform regardless of the type of the phosphor, but differ depending on the type of the phosphor. Suitable processing can be performed.
  • lighting devices and image display devices often use a plurality of types of phosphors.However, different types of phosphors use different processing methods to perform processing appropriate to the degradation factors of each phosphor. This is desirable for maintaining the light emission characteristics of the device, that is, for maintaining the balance of each color for a long time.
  • FIG. 1 is a diagram showing a configuration of a phosphor processing apparatus used for processing a phosphor in the first embodiment.
  • FIG. 2 is an enlarged view of the phosphor layer 23 of the object 22 and a diagram schematically showing the configuration of the phosphor particles 100 constituting the phosphor layer 23.
  • FIG. 3 is a diagram showing an example in which each color phosphor layer on a substrate is modified.
  • FIG. 4 is a characteristic diagram showing the results of measuring the chromaticity and chromaticity y before and after the degradation test while changing the number of times the phosphor treatment is repeated.
  • FIG. 5 is a diagram showing a configuration of a phosphor processing apparatus used in the second embodiment.
  • FIG. 6 is a graph showing the results of measuring the change in the chromaticity y value when the substrate was subjected to a reforming process at different heating temperatures and subjected to a deterioration test.
  • FIG. 7 is a characteristic diagram showing the result of measuring the luminescence intensity after performing the modification treatment while changing the heating temperature of the substrate.
  • FIG. 8 is a diagram showing a configuration of a phosphor processing apparatus used in the third embodiment. You.
  • FIG. 9 is a schematic cross-sectional view showing a configuration of a general AC-driven surface discharge type PDP. BEST MODE FOR CARRYING OUT THE INVENTION
  • a source gas is introduced, a high-frequency voltage is applied to cause an excitation by discharging, and an atmosphere of a highly reactive activated gas is formed, and the phosphor is exposed to the formed reaction atmosphere.
  • a highly reactive activated gas is formed, and the phosphor is exposed to the formed reaction atmosphere.
  • the “reactive gas” is a gas having a property that when excited, becomes a gas having a high reactivity with the phosphor particles, and specifically, is composed of oxygen, halogen, and a halogen compound. Gas, gas composed of chalcogen compounds, etc.
  • FIG. 1 is a diagram showing a configuration of a phosphor processing apparatus used for processing a phosphor in the present embodiment.
  • a reaction vessel 17 for exciting the source gas 14 is provided between the ground electrode 15 and the high-voltage electrode 16.
  • a movable stage 24 that conveys the workpiece 22 is installed adjacent to the stage.
  • the object to be processed 22 is obtained by applying an oxide phosphor on a substrate 22a to form a phosphor layer 23.
  • a blue phosphor (B a M g A 1 10 O 17: E u 2 ⁇ short BAM) were mixed with bi Sunda one, is applied to the substrate 2 on 2 a of quartz processing object 2 2 can be made.
  • a high frequency power supply 21 is connected to the high voltage electrode 16.
  • the reaction vessel 17 is made of a dielectric material, and has a structure insulated from the ground electrode 15 and the high-voltage electrode 16.
  • This reaction vessel 17 contains a reaction gas.
  • a gas inlet 18 for introducing a source gas 14 containing gas, and an outlet 19 for discharging the excited gas are provided.
  • a quartz tube is used as the reaction vessel 17.
  • reaction gas By driving the high-frequency power supply 21, a high-frequency electric field is applied to the gas introduced into the reaction vessel 17.
  • the reaction gas may be used alone as the raw material gas 14, but it is preferable to use a mixture of the reaction gas with a rare gas or an inert gas.
  • the rare gas is helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn). It is. Further, the inert gas includes N 2 in addition to the rare gas.
  • the introduced source gas contains a rare gas, it contributes to the generation of discharge in the reaction vessel 17. Also, if the reaction gas is used alone, the phosphor is easily damaged by plasma, but if a mixture of inert gas is used as the source gas, the plasma damage to the phosphor can be reduced. I like it.
  • the inside of the reaction vessel 17 may be pressurized or depressurized, but the process can be performed at around atmospheric pressure without using a pressurization / decompression device.
  • the pressure range in the reaction vessel 17 is preferably in the range of lkPa to lOMPa, and more preferably in the range of 10 kPa to 110 kPa.
  • the movable stage 24 can transport the workpiece 22 in any direction along the main surface of the substrate 22a, and the outlet 19 can be scanned over the surface of the workpiece 22. I'm familiar.
  • the object 22 is placed on the stage 24 and transported so that the discharge port 19 scans over the surface of the object 22.
  • the source gas 14 is energized while being passed through the reaction vessel 17 (that is, a high-frequency electric field is applied), is excited and activated, and flows out from the outlet 19. .
  • Reference numeral 20 in FIG. 1 denotes an activated gas. Then, the phosphor layer 23 is exposed to the activation gas 20.
  • the activation gas 20 Since the activation gas 20 is in a state in which it is easily reacted, it comes into contact with the surface of each phosphor particle constituting the phosphor layer 23 and reacts with the region near the surface of the phosphor particle. In particular, the crystal defect portion is easily reacted, and this reaction improves the crystallinity in a region near the surface of the phosphor particles.
  • the activation gas 20 is impregnated in the region near the surface of each phosphor particle.
  • the source gas introduced into the reaction vessel 17 is oxygen as a reaction gas, He as a rare gas contributing to electric discharge, and an inert gas to reduce plasma damage.
  • oxygen as a reaction gas
  • He as a rare gas contributing to electric discharge
  • inert gas to reduce plasma damage An example is shown in which a mixed gas to which all of Ar is added is used.
  • FIG. 2 is an enlarged view of the phosphor layer 23 of the object 22 and a diagram schematically showing the configuration of the phosphor particles 100 constituting the phosphor layer 23. Shows the configuration in.
  • the phosphor layer 23 contains a large number of phosphor particles 100. Further, the activated gas 2 0, components constituting the raw material gas 1 4 (H e, A r , ⁇ 2) in addition to, that contains activated oxygen (Omicron).
  • the activated gas 20 reacts with the crystal defect portion existing in the region near the surface, and when carbon atoms are present in the region near the surface of the phosphor particles 100, the activated oxygen is activated.
  • atom (0) and ozone (0 3) becomes the carbon dioxide bound to the carbon atom by a radical reaction or the like, carbon is removed from the surface and surrounding fluorescent particles 1 0 0. Therefore, the phosphor particles after the treatment have few crystal defects in the region near the surface, so that the deterioration of the emission characteristics over time can be suppressed.
  • the source gas 14 may include a gas containing fluorine (fluoride gas) as a reaction gas.
  • the content of the fluorine-containing gas in the source gas 14 is preferably in the range of 0.1 to 10% by volume.
  • a fluorine compound is formed in the modified portion 102. Since the fluorine compound forms a water-repellent layer on the surface of the phosphor particles, the adsorption of moisture to the phosphor is suppressed, and the temporal change of the phosphor due to this is also suppressed.
  • the raw material gas 14 When the raw material gas 14 has a low vapor pressure at room temperature, it may be heated and brought into a high vapor pressure state before being introduced into the reaction vessel 17.
  • the heating temperature of the introduced gas is preferably in the range of 50 to 600 ° C.
  • the reaction can be promoted by heating the phosphor layer 23 in the range of 100 to 300 ° C.
  • a mechanism for applying a voltage to the stage 24 is provided, and when the phosphor layer 23 is exposed to the activation gas 20, the phosphor layer 23 is charged positively or negatively, and the activation gas 2 is charged. The reaction can be promoted even if the ions in 0 are attracted to the phosphor layer 23.
  • the number of crystal defects is smaller than that before the treatment, and the crystal state is good.
  • the treated phosphor particles 100 are used for the phosphor layer of the display element and the lamp, the effect of suppressing the deterioration of the phosphor layer with time can be obtained.
  • a phosphor layer such as a PDP or a mercury-free mercury fluorescent lamp, that is excited and emitted by vacuum ultraviolet light
  • only the region near the surface of the phosphor particles contributes to light emission.
  • the thickness d of the modified portion 102 is considered as follows.
  • the thickness d (the modification depth from the particle surface) of the reforming section 102 can be adjusted by the time of exposing the phosphor particles to the activation gas 20. The longer the time, the greater the thickness d.
  • the phosphor used for the PDP is mainly a phosphor excited by vacuum ultraviolet light, and is a region where excitation light is emitted in a range from the surface of the phosphor particles to a depth of about several tens nm.
  • the depth of the light emitting region of the phosphor also changes to some extent with time. From this point, the depth d of the modified portion 102 in the phosphor particles 100 is set to be greater than or equal to the depth of the excitation light emission region, and it is necessary to set the depth d sufficiently large to improve the light emission characteristics of the phosphor. Preferable for suppressing changes over time New
  • the thickness d of the reformed portion 102 is preferably in the range of l nm to l m, and more preferably in the range of 2 nm to 100 nm.
  • the depth d of the reforming section 102 is adjusted not only by the exposure time to the activation gas, but also by the components of the source gas (the ratio of the inert gas to the reaction gas) and the voltage and frequency of the high-frequency electric field. be able to. For example, when the ratio of the reaction gas in the source gas is increased, the depth d of the reforming section 102 increases.
  • the thickness d of the reformed portion 102 may be adjusted to a preferable range by combining these conditions.
  • the phosphor particles 100 having the modified portions 102 may be present entirely from the surface region to the inside of the phosphor layer 23, but the phosphor particles 100 are disposed on the phosphor layer 23 from the surface side.
  • the region that actually emits and emits light when irradiating ultraviolet rays is mainly the surface region of the phosphor layer 23, and the inner region does not emit much light. Therefore, only the vicinity of the surface of the phosphor layer 23 may be exposed to the activating gas, and the phosphor particles 100 having the modified portion 102 may be more unevenly distributed in the region near the surface than in the inner region. Also in that case, the effect of suppressing the deterioration with time of the phosphor layer 23 can be sufficiently obtained.
  • the state in which the gas is excited may change, but the activated gas 20 is in a plasma state.
  • the high-frequency power applied by the high-frequency power supply 21 has a voltage within the range of 10 V to 100 V and a frequency of several kilohertz (kHz) to several tens of gigahertz (GHz). It is preferable to be within the range.
  • the phosphor can be used without mixing an inert gas such as Ar. Plasma damage received can be reduced. Further, in order to reduce the plasma damage to the phosphor particles, it is preferable that the place where the high-frequency power is applied to the source gas 14 and the place where the phosphor is exposed to the activation gas 20 are separate.
  • the high-frequency power is applied to the raw material gas 14 in the reaction vessel 17 and the phosphor is exposed to the activation gas outside the reaction vessel 17, the high-frequency power is applied. Since no pressure is applied directly to the phosphor and the phosphor is not exposed to the plasma discharge space, plasma damage is reduced.
  • an atmosphere of the activation gas 20 may be formed over a wide range so as to cover the entire treatment object 22, When the area of 22 is large, it is necessary to form the atmosphere of the activation gas 20 widely, which takes time.
  • the method may be performed.
  • the area of the phosphor layer 23 to be processed is large, it is not necessary to form the atmosphere of the activation gas 20 over a wide range.
  • the entire phosphor layer 23 can be uniformly treated. Also, by adjusting the scanning speed or the number of scans, the depth of the modified portion 102 in the phosphor particles 100 (that is, the depth from the particle surface to which the modification is made) can be changed. Can be adjusted.
  • a color image display device such as a PDP
  • a plurality of types of phosphor layers are formed on a substrate, and usually three or more phosphor layers (red, blue, green) or more are present separately.
  • the phosphor layers 9 to 11 of the respective colors (red, green, and blue) made of oxide phosphor are provided in a stripe shape on the back glass substrate.
  • the blue phosphor, BAM phosphor is a green phosphor Z n 2 S i O 4: M n, is a red phosphor (Y yG d, - x) BO 3: E u is , Is commonly used.
  • each color phosphor may have a specific deterioration factor for each type, in such a case, each color phosphor layer formed on the substrate may be individually modified. .
  • the above treatment may be performed only on the blue phosphor layer which is relatively easily deteriorated with time among the blue phosphor layer, the green phosphor layer, and the red phosphor layer.
  • blue phosphors and green phosphors are easily degraded by moisture, but blue phosphors can suppress moisture adsorption degradation by reducing crystal defects. it can. Therefore, the surface of the phosphor particles is oxidized using a source gas containing oxygen as a reaction gas for the blue phosphor layer, and fluorine is added to the reaction gas for the green phosphor layer.
  • the surface of the phosphor particles may be subjected to a fluoridation treatment using a raw material gas containing water to impart water repellency.
  • a specific color can be obtained by forming the tip of the outlet 19 of the reaction vessel into a thin cylindrical shape. Can be exposed to the activating gas 20.
  • the tip of the discharge port 19 is connected to the phosphor layer of the same color.
  • a plurality of same-color phosphor layers (three blue phosphor layers 9 in FIG. 3) may be simultaneously exposed to the activating gas 20 by branching in a comb shape at the same pitch.
  • the depth of the modified portion in the phosphor particles may be increased.
  • a fluorescent lamp used for a lighting fixture is generally configured by enclosing a substance that emits ultraviolet light with discharge in a glass tube having a phosphor layer formed on an inner surface thereof. In many cases, mercury is sealed in this glass tube. However, in a mercury-free fluorescent lamp, Xe gas or the like is sealed, and the phosphor layer is excited by vacuum ultraviolet light from the sealed gas to emit visible light.
  • the phosphor layer can be modified to produce a lamp with little change over time.
  • a red phosphor, a green phosphor, and a blue phosphor are present in a mixture in the phosphor layer.
  • the present invention is effective for oxide phosphors, and is particularly effective for oxide phosphors using manganese ion / rare earth ion as a luminescent center.
  • this type of phosphor is widely used in PDPs and three-wavelength fluorescent lamps because of its high luminous efficiency, but it tends to cause oxygen deficiency, which causes luminance degradation.
  • BAM which is used as a blue phosphor, tends to deteriorate over time. Therefore, by applying the above-mentioned surface treatment to this type of phosphor, a particularly great effect can be obtained.
  • a BAM phosphor is represented by B a X S r y E u z M g A 1 10 O 17 (0.05 ⁇ x ⁇ 0.40, 0 ⁇ y ⁇ 0.25, 0 .05 ⁇ z ⁇ 0.3
  • This BAM phosphor shows good emission characteristics as a blue phosphor
  • the BAM phosphor causes a change in chromaticity especially due to moisture, and promotes deterioration in luminance.
  • Crystal defects on the surface of the BAM particles are compensated. Particularly, by performing the reforming treatment using a raw material gas containing oxygen as a reaction gas, the crystallinity is improved. As a result, a BAM phosphor with little change in chromaticity and little deterioration in luminance can be realized.
  • divalent europium and trivalent europium are mixed, but the total particle size of the total amount of europium (total amount of divalent europium and trivalent europium)
  • the proportion of divalent europium is preferably in the range of 60% to 95%, but in the vicinity of the surface, the proportion of divalent europium to the total amount of europium should be in the range of 5% to 30%. And more preferably in the range of 10% or more and 20% or less.
  • a BAM phosphor is applied on a quartz substrate to form a phosphor layer, and a reforming process is performed using a mixed gas obtained by adding He and Ar to oxygen as a reaction gas as a source gas. Repeatedly applied.
  • Each of the prepared measurement samples was subjected to a deterioration test in a high-temperature humidified atmosphere by exposing it to a humidified atmosphere at about 450 ° C using a tubular path, and the chromaticity and chromaticity before and after the deterioration test y was measured.
  • Chromaticity y is the y-value of the xy chromaticity coordinates indicating the two-dimensional color space in the CIE color system.
  • FIG. 4 is a characteristic diagram showing the result. From this result, it can be seen that the chromaticity degradation of the phosphor is suppressed by performing the processing on the phosphor (also, it can be seen that the chromaticity degradation of the phosphor decreases as the number of times of processing increases). .
  • the phosphor particles may be treated in a powder state.
  • the bulk of the phosphor particles may be placed on a tray and placed on the stage 24 for processing.
  • the stage 24 on which the object 22 is placed is moved so that the outlet 19 scans on the surface of the phosphor layer, but the stage 24 is moved.
  • the outlet 19 of the reaction vessel 17 may be moved, or both the stage 24 and the outlet 19 may be moved.
  • reaction gas, rare gas, and inert gas used as the source gas 14 do not necessarily need to be in a gaseous state at room temperature, but may be liquid or solid as long as they can be gaseous. .
  • reaction gas and the inert gas are mixed by bubbling the inert gas into the liquid in which the reaction gas (oxygen, nitrogen, halogen compound, fluoride gas, etc.) is dissolved and flowing.
  • reaction gas oxygen, nitrogen, halogen compound, fluoride gas, etc.
  • Raw gas can also be obtained.
  • the phosphor layer 23 of the object 22 was subjected to an activation gas using a phosphor processing apparatus in order to perform a reforming process, but the reaction gas (oxygen, halogen, halogen compound, By applying a liquid in which a fluorinated gas or the like is dissolved to the surface of the phosphor layer 23, it is also possible to modify the region of the phosphor layer 23 near the surface of the phosphor particles.
  • the reaction gas oxygen, halogen, halogen compound
  • the activated raw material gas is excited by applying energy to generate an activated gas, and the phosphor is exposed to the activated gas. Is modified in the region near the surface.
  • the source gas is excited by applying high-frequency power to the source gas.
  • the source gas is excited by irradiating the source gas with ultraviolet rays.
  • FIG. 5 is a diagram showing a configuration of a phosphor processing apparatus used in the present embodiment.
  • a reaction vessel 31 for introducing and exciting a source gas is provided.
  • the reaction vessel 31 is provided with an oxygen inlet 32 for introducing oxygen gas as a source gas and a nitrogen inlet 33 for introducing nitrogen gas, and an exhaust port 3 4 for exhausting used gas. Is provided.
  • the reaction vessel 31 there are provided a stage 37 on which the object 35 is placed, and an ultraviolet lamp 39 for irradiating the introduced source gas with ultraviolet rays 38.
  • the stage 37 can be heated to a desired temperature by the temperature controller 40.
  • the ultraviolet lamp 39 is, for example, a Xe excimer lamp, and is driven and controlled by an ultraviolet lamp control device 41.
  • the processing object 35 has a phosphor layer 36 formed on a substrate, similarly to the processing object 22 used in the first embodiment.
  • the stage 37 After a sufficient supply of nitrogen gas from the nitrogen inlet 33, the stage 37 is heated to a predetermined temperature (for example, 300 ° C.) by the temperature controller 40. When the temperature reaches a predetermined temperature, the supply of nitrogen gas is stopped, and oxygen gas is introduced from the oxygen inlet 32. For example, the flow rate of oxygen gas is about 1 minute, and the gas is introduced for 30 minutes after the temperature becomes saturated. The introduced nitrogen gas and oxygen gas are exhausted from the exhaust port 34.
  • a predetermined temperature for example, 300 ° C.
  • the ultraviolet lamp 39 is driven by the ultraviolet lamp controller 41 to irradiate the introduced oxygen gas with ultraviolet light.
  • oxygen gas is excited, and ozone ( ⁇ 3 ) and oxygen An activation gas containing atoms (O) is generated.
  • the ultraviolet irradiation time is, for example, 30 minutes.
  • oxygen gas may be supplied while increasing the temperature.
  • the reaction rate is reduced to fill crystal defects on the surface, and the luminance degradation due to oxidation of Eu is reduced. it can.
  • the reaction rate may be reduced by introducing both an oxygen gas and an inert gas such as nitrogen.
  • the phosphor particles thus modified have the same characteristics as the phosphor particles 100 described in the first embodiment, and a non-reformed portion 101 exists in the particle internal region, The modified portion 102 exists in the region near the surface.
  • the present invention can be applied to the modification of a phosphor layer in an illumination device such as a mercury-free fluorescent lamp or an image display device such as a PDP.
  • an illumination device such as a mercury-free fluorescent lamp or an image display device such as a PDP.
  • the rear glass substrate is placed on the stage 37 of the phosphor processing apparatus, and the phosphor layer is modified. PDP with little deterioration over time Can be made.
  • the above treatment is applied only to the blue phosphor layer, which is relatively easily deteriorated with time, among the blue phosphor layer, the green phosphor layer, and the red phosphor layer formed on the rear glass substrate. May go.
  • the oxygen atoms (O) generated by the decomposition reaction react with ozone to decompose ozone, and further convert monoatomic oxygen. Generate.
  • the UV lamp 39 emits light at the wavelength at which ozone is generated (1849 angstrom)
  • the Xe excimer lamp emits light at the wavelength at which ozone is generated (2537 angstrom).
  • Activated gas with high reactivity is generated by installing a parallel Xe excimer lamp that emits
  • the gas can be excited and activated relatively easily.
  • the processing time can be shortened and the processing cost can be reduced.
  • the stage 37 is heated so that the phosphor and the activation gas are heated. Therefore, the modification process of the phosphor particles is promoted.
  • the ultraviolet lamp 39 and the phosphor layer 36 are arranged opposite to each other as in the phosphor processing apparatus shown in FIG. 5, the ultraviolet rays 38 emitted from the ultraviolet lamp 39 are absorbed to some extent by oxygen gas. However, part of the light reaches the surface of the phosphor layer 36, and the ultraviolet light causes the phosphor layer 36 to deteriorate.
  • the ultraviolet rays 38 emitted from the ultraviolet lamp 39 should not be directly applied to the phosphor layer 36.
  • a shutter for shielding ultraviolet rays 38 may be provided on the workpiece 35, and the shutter may be closed only when the ultraviolet lamp 39 is driven, or the ultraviolet rays 38
  • a ceramic plate may be provided at a distance from the phosphor layer 36 to shield the light.
  • the BAM phosphor was subjected to reforming treatments at various heating temperatures as described below to prepare measurement samples.
  • a sample in which a phosphor layer was formed by applying a BAM phosphor onto a quartz substrate was placed in a reaction vessel of a commercially available ozone generator, and the substrate was heated. Nitrogen is flowed until the substrate reaches the specified temperature, and oxygen is flowed at a flow rate of about 1 LZ for 30 minutes after the temperature is saturated, oxygen is sufficiently distributed, and ultraviolet light is irradiated for about 30 minutes. To generate ozone. Thereafter, the inside of the reaction vessel was replaced with nitrogen and cooled.
  • the heating temperature of the substrate was set to various values within a range up to 300 ° C.
  • the emission intensity was measured before and after the modification treatment.
  • the phosphor layer was exposed to a humidified atmosphere at about 450 ° C using a tubular path to accelerate and deteriorate, and the chromaticity y before and after the deterioration test was changed. It was measured.
  • FIG. 6 is a characteristic diagram showing the results, and shows the value of the chromaticity y before and after the deterioration test for each heating temperature.
  • the horizontal axis shows the heating temperature during processing
  • the vertical axis shows the measured chromaticity y. ing.
  • the broken line indicates the chromaticity y value before the deterioration test
  • the solid line indicates the chromaticity y value after the deterioration test.
  • the higher the heating temperature during processing the lower the chromaticity y value after the deterioration test.
  • the heating temperature is 300 ° C
  • the chromaticity y does not change much before and after the deterioration test, and the initial value Chromaticity y equivalent to (before deterioration test) is obtained. This indicates that the higher the heating temperature during processing, the less the chromaticity y degradation of the phosphor. This is considered to be because the higher the heating temperature, the faster the reaction in the region near the surface of the phosphor particles, and the shorter the oxygen vacancies on the phosphor surface are filled.
  • FIG. 7 is a characteristic diagram showing the emission intensity after the treatment at each heating temperature during the treatment.
  • the horizontal axis indicates the heating temperature during the treatment, and the vertical axis indicates the emission intensity ratio.
  • This light emission intensity ratio is expressed as a ratio with respect to the luminance of the phosphor that has not been treated as an initial value, with the initial luminance being 100.
  • FIG. 8 is a diagram showing an outline of a phosphor processing apparatus according to the present embodiment.
  • This phosphor processing apparatus has the same configuration as that of the phosphor processing apparatus shown in FIG. 5, but the reaction vessel 31 has an oxygen introduction port 32 and a nitrogen introduction port as source gas inlets. In addition to port 33, a fluoride gas inlet 42 is provided.
  • the stage 37 After a sufficient supply of nitrogen gas from the nitrogen inlet 33, the stage 37 is heated to a predetermined temperature (for example, 150 ° C.) by the temperature controller 40. When the temperature reaches a predetermined temperature, the supply of nitrogen gas is stopped, oxygen gas is introduced from the oxygen inlet 32, and fluorinated gas is introduced from the fluorinated gas inlet 42 to mix oxygen and fluorinated gas. Gas is introduced into the reaction vessel 17.
  • a predetermined temperature for example, 150 ° C.
  • CF 4 As a specific example of a fluorinated gas, CF 4, SF 6, CHF 3, NF 6 can be mentioned up.
  • the ultraviolet lamp 39 is driven by the ultraviolet lamp controller 41 to irradiate the introduced oxygen gas and the fluoride gas with ultraviolet light. Yotsute thereto, the oxygen gas is raised excitation ozone (0 3) and oxygen atom ( ⁇ ) is generated, in parallel with this, a fluorine atom (F) is produced fluoride gas is excited.
  • ozone (0 3), an oxygen atom ( ⁇ ), vitalize gas containing fluorine atoms (F) are generated, the phosphor layer 3 6 to the activated gas is exposed, as in the second embodiment
  • crystal defects in the region near the surface of the phosphor particles are compensated.
  • a fluorine atom reacts in the region near the surface of the phosphor particles to form a water-repellent layer on the surface of the phosphor particles.
  • the introduction of the oxygen gas and the fluoride gas is stopped, the nitrogen gas is introduced into the reaction vessel 31, and the stage 37 is cooled to room temperature.
  • the phosphor particles treated by the treatment method of the present embodiment have a surface of the phosphor particles. In addition to improving the crystallinity in the vicinity region, the adsorption of water to the phosphor is suppressed, and the temporal change of the phosphor due to this is also suppressed.
  • ozone and monatomic oxygen have an effect of removing impurities present in a region near the particle surface of the phosphor.
  • the processing method of the present embodiment can also be applied to the modification of the phosphor layer in an illumination device such as a mercury-free fluorescent lamp or an image display device such as a PDP.
  • the present invention deterioration with time of the phosphor layer can be suppressed, so that the phosphor layer can be used for producing a long-life lighting fixture and a PDP.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

本発明は、真空紫外光で励起発光する蛍光体の発光特性が経時変化するのを抑制することによって、長期にわたって優れた発光特性を維持できるPDPや無水銀蛍光ランプを実現することを目的とする。 そのため、本発明の酸化物蛍光体においては、粒子の表面近傍領域を改質して、当該表面近傍領域の元素組成を、粒子の内部領域の元素組成と比べて、より酸化された状態とした。 あるいは、粒子の表面近傍領域を改質して、当該表面近傍領域での元素組成には、粒子の内部領域での元素組成と比べて、ハロゲン又はカルコゲンを多く含ませることとした。 また、本発明の蛍光体処理方法においては、反応ガスを含むガスを励起させることによって、反応性の高いガス雰囲気を形成し、当該ガス雰囲気に蛍光体を晒すことによって、蛍光体粒子の表面近傍領域を選択的に改質することとした。

Description

明細書
蛍光体及び蛍光体の処理方法 技術分野
本発明は、 発光素子に用いられる蛍光体に関するものであって、 特に プラズマディ スプレイパネル (P D P ) や無水銀蛍光ランプに用いられ る真空紫外線で励起する蛍光体に関するものである。
技術背景
三色の蛍光物質によるフル力ラー表示に適した P D Pと して 3電極構 造を有した A C駆動形式の面放電型 P D Pが知られている。
図 9は、 一般的な A C駆動形式の面放電型 P D Pの構成を示す概略断 面図である。
本図に示す P D Pは、 互いに平行に配された前面ガラス基板 1 及び背 面ガラス基板 5を備え、前面ガラス基板 1上には表示電極 2が形成され、 この表示電極 2は誘電体ガラス層 3及び酸化マグネシウム (M g O ) か らなる誘電体保護層 4で覆われている (例えば特許文献 1参照)。
一方、 背面ガラス基板 5上には、 ア ド レス電極 6および隔壁 7が設け られ、 隔壁 7どう しの間隙に、 酸化物蛍光体からなる各色 (赤, 緑, 青) の蛍光体層 9〜 1 1 が設けられている。
前面ガラス基板 1 は背面ガラス基板 5の隔壁 7上に配設され、 両基板 1 · 5間に放電ガスが封入されて放電空間 8が形成されている。
この P D Fにおいて、 放電空間 8では、 放電に伴って真空紫外線 (主 に波長 1 4 7 n m ) が発生し、 各色蛍光体層 9〜 1 1 が励起発光される ことによってカラー表示がなされる。
上記 P D Pは、 次のように製造することができる。
前面ガラス基板 1 に、 銀ペース トを塗布 · 焼成して表示電極 2を形成 し、誘電体ガラスペース トを塗布し焼成して誘電体ガラス層 3を形成し、 その上に誘電体保護層 4を形成する。
また、 背面ガラス基板 5上に、 銀ペース トを塗布 ' 焼成してア ドレス 電極 6を形成し、 ガラスペース トを所定のピッチで塗布し焼成して隔壁 7を形成する。 そして隔壁 7の間に、 各色蛍光体ペース トを塗布し、 5 00 °C程度で焼成してペース ト内の樹脂成分等を除去するこ とによ り蛍 光体層 9〜 1 1 を形成する。 蛍光体焼成後、 背面ガラス基板 5の周囲に 封着用ガラスフ リ ツ トを塗布し、 形成された封着ガラス層内の樹脂成分 等を除去するために 350 °C程度で仮焼する (フリ ッ ト仮焼工程)。 その後、 上記の前面ガラス基板 1 と背面ガラス基板 5とを、 表示電極 2どア ドレス電極 6とが直交して対向するよう積み重ねる。 そして、 こ れを封着用ガラスの軟化温度よりも高い温度 (45 0 °C程度) に加熱す ることによって封着する (封着工程)。
その後、 封着したパネルを 350°C程度まで加熱しながら、 両基板間 に形成される内部空間 (前面ガラス基板と背面ガラス基板との間に形成 され蛍光体が臨んでいる空間) から排気し (排気工程)、 排気終了後に放 電ガスを所定圧力 (通常、 39. 9〜 66. 5 k P a , 300〜 500 T o r r ) となるように導入する。
このような P D Pにおいて、 輝度向上をはじめと して発光特性の優れ たものとすること、 また、 蛍光体層の発光特性の経時変化を少なく して 品質保証時間を長くすることが課題となっている。
特に、 P D Pの場合は、 発光表示部で使用される蛍光体の発光特性が 経時変化するこ とによつて品質保証時間が決まる場合もある。
例えば、 P D Pの作製プロセス中の水分や加熱等により、 蛍光体は発 光輝度が劣化し、 また、 発光色度も変化する。 よって、 P D P作製プロ セス中での蛍光体の経時変化によつて 、 °ネル特性が悪化する。さらに、 P D P駆動中にも蛍光体層は、 放電を伴うプラズマに曝されるので、 経 時的に変化する。 そして、 この蛍光体の経時変化が原因で、 P D Pの発 光特性が経時劣化して寿命に至ることもある。
また、 無水銀蛍光ランプにおいても同様に、 真空紫外光で蛍光体層が 励起発光するが、 蛍光体層の経時変化が寿命の原因になることもある。
このような背景のもとで、 P D Pや無水銀蛍光ランプのような発光素 子において、 作製プロセスや駆動中に、 蛍光体の発光特性が経時的に変 化するのを抑えることが望まれる。 蛍光体の経時的変化を抑える技術として、 蛍光体を約 1 1 0 0 °cの高 温で熱処理する (焼成) ことにより結晶性を高める方法がよく知られて いる。
また、 蛍光体層の劣化を抑制する方法と して、 文献 1 に記載されてい るように、 蒸着法、 ディ ップ法、 スパッタ法、 スプレー法などが用いて、 蛍光体粒子の表面を M g 0からなる保護膜で被覆する方法も知られてい る。
また、 長寿命の蛍光体を形成する方法として、 文献 2には、 反応器内 に ト リメチルアルミニウムのような被覆用前駆体と、 酸素及びオゾンの 混合ガスを供給して、 十分な時間を費やして蛍光体粒子を被覆する方法 が提案されている。
文献 1 特開平 8— 3 1 3 2 5号公報
文献 2 特開 2 0 0 0 _ 9 6 0 4 4号公報
発明の開示
しかし、 上記文献 1 のように M g〇などの保護膜で蛍光体を被覆する には、 真空蒸着装置のような装置が必要となるのでコス 卜がかかる。 文献 2に記載されている方法の場合、 被覆するのに 4 0時間〜 7 0時 間という長い時間を要する。 また、 蛍光体粒子を高温で処理すると、 経 時的な特性変化は少なく なるものの、 発光特性は低下しやすい。
本発明は、 真空紫外光で励起発光する蛍光体の発光特性が経時変化す るのを抑制することによって、 長期にわたって優れた発光特性を維持で きる P D Pや無水銀蛍光ランプを実現することを目的と している。 上述の課題を解決するため、 本発明の酸化物蛍光体においては、 粒子 の表面近傍領域を改質して、 当該表面近傍領域の元素組成を、 粒子の内 部領域の元素組成と比べて、 より酸化された状態と している。 こ こで、 「粒子の表面」 は、 その上に保護層などが形成されていない外 表面を指す。
また 「表面近傍領域」 というのは、 真空紫外光によって蛍光体が励起 される蛍光体粒子の表面から深さ数十 n m程度までの範囲である。
あるいは、 本発明の酸化物蛍光体においては、 粒子の表面近傍領域を 改質して、 当該表面近傍領域での元素組成には、 粒子の内部領域での元 素組成と比べて、 ハロゲン又はカルコゲンを多く含ませることと した。 このハロゲン元素又はカルコゲン元素は化学結合していることが望ま し い
また、 本発明の蛍光体処理方法においては、 反応ガスを含むガスを励 起させるこ とによって、 反応性の高いガス雰囲気を形成し、 当該ガス雰 囲気に蛍光体を晒すことによって、 蛍光体粒子の表面近傍領域を選択的 に改質することと した。
ここで 「反応ガス」 は、 酸素、 ハロゲン化合物からなるガス、 カルコ ゲン化合物からなるガスなどである。
粒子の 「表面近傍領域」 とは、 粒子表面から真空紫外線が侵入する深 さ (数十 n m程度) までの領域を指し、 内部領域は、 これより深い領域 を指す。 また 「反応性の高いガス雰囲気」 というのは、 もとのガスと比べて、 蛍光体表面に対して化学的に反応しやすく なった状態をいう。 例えば、 ラジカルやイオンに励起された状態であって、 酸素の場合は、 強い酸化 作用を示すラジカル酸素やオゾン等の状態である。
また 「表面近傍領域を選択的に」 というのは、 「表面近傍領域における 改質度合いが、 内部領域における改質度合いよりも大きく なるように」 という意味である。 上記本発明によつて、発光特性の経時変化を抑制することができるが、 その理由は以下のように考えられる。 一般に、 酸化物蛍光体において、 元素組成に含まれている元素の種類 は、 粒子全体で同じであるが、 次に挙げる要因によって、 蛍光体の発光 特性が経時変化することが考えられる。
( 1 ) 蛍光体の表面に水分が吸着
( 2) 蛍光体結晶構造の欠陥
(3) 蛍光体結晶以外の物質が混在
(4) 蛍光体に熱が加えられるこ とによる結晶構造変化
( 5 ) 蛍光体が放電を伴うプラズマに曝されることによる結晶構造破 壊
これに対して、 上記本発明によれば、 酸化物蛍光体の粒子表面近傍領 域において、 酸素欠損が埋められて蛍光体の結晶性が向上するので、 上 記要因の中、 主と して ( 2) 結晶構造の欠陥に起因する発光特性の経時 変化を抑制することができる。
また、 ( 1 ) 蛍光体の水分吸着や (4) 結晶構造の変化が生じるのも、 蛍光体結晶の欠陥に起因することが多いが、 本発明によれば、 蛍光体結 晶の欠陥が補償されて結晶性が向上するので、 ( 1 ) 蛍光体の水分吸着、 (4) 結晶構造の変化による経時変化を抑制することができる。 また、 表面近傍領域を選択的に改質しているので、 内部まで改質する 場合と比べて、 短時間で改質処理することができる。 これは、 低コス ト で処理できること、 処理に伴う蛍光体へのダメージを低く抑えることに つながる。 導入するガスとしては、 多様多種のものを用いることができるが、 使 用するガスの種類を選択することによって、 特定の劣化要因を排除する ことができ、 幾つかの劣化要因を合わせて排除することもできる。
また、 本発明の処理方法によれば、 蛍光体を導入ガスに曝すだけで改 質できるので、 処理が比較的単純であり、 蒸着装置のような高価な装置 が必要ない。 導入するガスには、 反応ガスだけでなく、 希ガスあるいは不活性ガス を混合させることが、 反応性の高いガス雰囲気を形成しやすく、 また、 蛍光体へのダメージを抑えるのに好ましい。 蛍光体粒子の表面近傍領域に、 処理前の蛍光体組成に対してフッ素が 結合していれば、 蛍光体表面近傍に撥水性を持つ保護膜として働く層が 形成されるので、 これによつて更に蛍光体の経時変化が抑制される。
アルカ リ土類金属アルミ ン酸蛍光体の場合、 表面近傍領域において、 フッ素がアルカ リ土類金属と結合した状態で存在させる。
蛍光体の粒子表面近傍領域にフッ素を含ませるには、 導入ガスにフッ 化ガスを含ませておいて、 これを励起したガス雰囲気に、 蛍光体を晒せ ばよい。 このような本発明の酸化物蛍光体をもつて、 発光素子の蛍光体膜を構 成すれば、 蛍光体膜と しても経時的な発光特性の劣化を抑制することが できる。
また、 上記本発明の酸化物蛍光体を、 蛍光体膜における内部領域より も表面近傍領域に多く偏在させてもよく、 この場合も、 蛍光体膜の表面 近傍の特性が維持されるので、 経時的な発光特性の劣化を抑制すること ができる。
このような発光素子は、 反応性の高いガス雰囲気を形成し、 蛍光体層 が形成された基板を、 そのガス雰囲気に晒すことによって、 蛍光体層の 表面近傍領域を改質する蛍光体層改質工程を備えることにより製造でき る。 特に本発明の酸化物蛍光体を、 P D Pあるいは無水銀蛍光ランプの蛍 光体層に用いれば、 P D Pや無水銀蛍光ランプの経時的な発光特性の劣 化を抑えるのに有効である。
すなわち、 P D Pや無水銀蛍光ランプにおいて用いられる蛍光体は、 その励起波長が、 主に 1 4 7 n mの真空紫外光領域であるため、 蛍光体 粒子の表面近傍領域で吸収され、 その領域で可視光に変換される。 従つ て、 蛍光体粒子の表面近傍領域の発光特性が維持されれば、 P D Pや無 水銀蛍光ランプにおける発光特性も維持される。 一般に、 酸化物蛍光体において、 その元素組成と して、 E uや M nな ど、 複数の価数を取り得る発光中心金属が含まれているものが優れた発 光特性を有している。 特に、 ユーロ ピウムで付活した酸化物蛍光体、 特 にユーロピウムで付活したアル力 リ土類金属アルミ ン酸蛍光体は、 真空 紫外領域に対して高い発光効率を示すが、 これらは経時的に発光特性が 変化しやすい。
従って、 この種の酸化物蛍光体に本発明を適用すれば、 得られる効果 が大きい。
このタイプの酸化物蛍光体においては、 表面近傍領域における発光中 心金属の平均価数を、 前内部領域における発光中心金属の平均価数と比 ベて大きく なるようにすれば、 表面近傍領域が選択的に改質され、 発光 特性の経時変化が抑えられる。
特に、 B a卜 X S r y E u ZM g A 1 10 O 17 ( 0 . 0 5≤ x≤ 0 . 4 0、 0≤ y≤ 0 . 2 5、 0 . 0 5≤ z≤ 0 . 3 0 、 x - y≤ z ) で表わされ る酸化物蛍光体は、 真空紫外領域に対して高い発光効率を示し、 P D P や無水銀蛍光ランプに一般的に用いられているが、 経時的に変化しやす く、 本発明を適用するこ とによって大きい効果が得られる。 こ こで、 粒 子表面近傍におけるユーロピウム濃度を z ' とするとき、 ζ≤ ζ ' ≤ 5 ζの関係を満たし、 2価ユーロピウム率が、粒子全体で 6 0 %以上 9 5 % 以下、 表面近傍領域で 5 %以上 3 0 %以下に設定することが好ま しく、 更に 1 0 %以上 2 0 %以下に設定することが好ま しい。 本発明の蛍光体処理方法において、 以下のようにするのが好ま しい。 反応性の高いガス雰囲気を形成する際に、 反応ガスを含むガスを励起 させることによって、 プラズマ状態のガス雰囲気を形成すると、 励起さ れた状態が持続するので、 優れた改質効果が期待できる。
反応性の高いガス雰囲気を形成する際に、 大気圧に近い状態で形成す れば、 減圧する必要がないので、 処理のスループッ トが高くなる。 従つ て、 処理時間を短縮したり、 コス トを低減するのに有利である。
反応性の高いガス雰囲気を形成するには、 導入されたガスに対してェ ネルギ一を加えることによってガスを一定の反応状態に励起させればよ い。
この場合、 導入されたガス対してエネルギーを加える場所と、 反応性 の高いガス雰囲気に蛍光体を晒す場所とが離れていれば、 処理しようと する蛍光体にダメージが及ばない。
例えば、 反応ガスを含むガスを、 処理器内に導入し、 当該処理器内に 導入された導入ガスに対してエネルギーを加えて励起させ、 当該処理器 から押し出すことによって、 処理器の外部に、 反応性の高いガス雰囲気 を形成すればよい。
導入されたガスにエネルギーを加える具体的な方法と して、 導入ガス に対して紫外線を照射する方法が挙げられる。 この方法によれば、 低温 でも反応性の高いガスを形成できる。
導入ガスに対して紫外線を照射する際には、 蛍光体の表面に紫外線を 照射させることなく行なうことが好ま しい。
また、 エネルギーを加える具体的な方法と して、 導入ガスに対して高 周波電圧を印加して放電させることによつて励起させる方法も挙げられ る。
反応性の高いガス雰囲気に蛍光体を晒すときに、 蛍光体を加熱した状 態で行えば、蛍光体とガスとの反応を促進させることができる。ただし、 加熱温度は、 3 0 0 °C以下とすることが好ま しく、 1 0 0 °C以下とする ことがより好ま しい。
導入ガスには、 酸素分子が含ませ、 導入ガスを励起させることによつ てオゾンまたは単原子酸素を形成すれば、 蛍光体結晶の表面近傍におい て、 結晶欠陥を補償し、 結晶性の良いものに改質することができる。 こ れにより結晶欠陥による劣化要因を排除し、 経時変化の少ない蛍光体を 実現できる。 複数種類の蛍光体を、 形成した反応雰囲気に含浸させる際に、 種類ご とに蛍光体の処理方法を変えながら行なつてもよい。 蛍光体の劣化要因 は、 蛍光体の種類によらず一律というわけでなく、 蛍光体の種類ごとに 異なるので、 導入ガスの種類等の処理条件を変えることによって、 各蛍 光体の劣化要因に適合した処理を行なう ことができる。
例えば、 照明装置や画像表示装置では、 複数種類の蛍光体が用いられ ることが多いが、 蛍光体の種類ごとに、 処理方法を異ならせて、 各蛍光 体の劣化要因に適合した処理を行なうことが、 装置と して発光特性を維 持する上で、 すなわち各色のバラ ンスを長く維持する上で望ましい。 図面の簡単な説明
図 1 は、 実施の形態 1 において、 蛍光体を処理するのに用いる蛍光体 処理装置の構成を示す図である。
図 2は、 被処理物 2 2の蛍光体層 2 3を拡大した図、 並びに蛍光体層 2 3を構成する蛍光体粒子 1 0 0の構成を模式的に示す図である。
図 3は、 基板上の各色蛍光体層を改質処理する一例を示す図である。 図 4は、 蛍光体処理を繰り返す回数を変えて、 劣化試験前と劣化試験 後の色度色度 yを測定した結果を示す特性図である。
図 5は、 実施の形態 2で使用する蛍光体処理装置の構成を示す図であ る。
図 6は、 基板の加熱温度を変えて改質処理を施し、 劣化試験した.とき の色度 y値の変化を測定した結果を示す図である。
図 7は、 基板の加熱温度を変えて改質処理を施し処理後の発光強度を 測定した結果を示す特性図である。
図 8は、 実施の形態 3で使用する蛍光体処理装置の構成を示す図であ る。
図 9は、 一般的な A C駆動形式の面放電型 P D Pの構成を示す概略断 面図である。 発明を実施するための最良の形態
以下、 実施の形態について、 図面を参照しながら説明する。
〔実施の形態 1〕
本実施の形態では、 原料ガスを導入し、 高周波電圧を印加して放電さ せるこ とにより励起させて、反応性の高い活性化ガスの雰囲気を形成し、 形成した反応雰囲気に蛍光体を晒すことによつて蛍光体粒子の表面近傍 領域を改質する。
ここで、 「反応ガス」 は、 励起されることによって、 蛍光体粒子に対す る反応性に富んだガスとなる性質を有するガスであって、 具体的には、 酸素, ハロゲン, ハロゲン化合物からなるガス, カルコゲン化合物から なるガスなどを指す。
ぐ蛍光体処理装置 >
図 1 は、 本実施の形態において、 蛍光体を処理するのに用いる蛍光体 処理装置の構成を示す図である。
図 1 に示すように、 当該蛍光体処理装置において、 接地電極 1 5及び 高電圧電極 1 6の間に、 原料ガス 1 4を励起させるための反応容器 1 7 が設けられ、 当該反応容器 1 7に隣接して被処理物 2 2を搬送する可動 式のステージ 2 4が設置されている。
被処理物 2 2は、 基板 2 2 a上に、 酸化物蛍光体を塗布して蛍光体層 2 3が形成されたものである。 例えば、 青色蛍光体である (B a M g A 1 10 O 17: E u 2\ 略して B A M ) をバイ ンダ一と混合し、 石英からなる 基板 2 2 a上に塗布して被処理物 2 2を作製することができる。
高電圧電極 1 6には高周波電源 2 1 が接続されている。
反応容器 1 7は誘電体材料からなり、 接地電極 1 5および高電圧電極 1 6から絶縁された構造となっている。 この反応容器 1 7には、 反応ガ スを含む原料ガス 1 4を導入するガス導入口 1 8、 励起されたガスを排 出する排出口 1 9が設けられている。 ここでは反応容器 1 7 と して石英 菅を用いる。
上記高周波電源 2 1 を駆動することによって、 反応容器 1 7内に導入 されるガスに高周波電界が印加される。 原料ガス 1 4と して、反応ガスを単独で用いてもよいが、反応ガスに、 希ガスあるいは不活性ガスを混合したものを用いることが好ましい。
こ こで、 希ガス (Rare gas) というのは、 ヘリ ウム(He)、 ネオン(Ne)、 アルゴン(Ar)、 ク リ プト ン(K r)、 キセノ ン(Xe)、 ラ ドン(Rn)のこ とであ る。 また、 不活性ガスには、 上記希ガスの他に、 N 2 も含まれる。
導入される原料ガスに希ガスが含まれていると、 反応容器 1 7内にお いて放電が発生するのに寄与する。 また、 反応ガスを単独で用いると、 蛍光体がプラズマダメージを受けやすいが、 不活性ガスを混合したもの を原料ガスと して用いると、 蛍光体が受けるプラズマダメ一ジを緩和で きる点で好ま しい。
反応容器 1 7内は、 加圧あるいは減圧してもよいが、 加圧 · 減圧装置 を用いずに、 大気圧近傍で処理することができる。 反応容器 1 7内の圧 力範囲としては、 l k P a〜 l O M P aの範囲が好ま しく、 更に 1 O k P a〜 l 1 O k P aの範囲が好ま しい。
可動式のステージ 2 4は、 被処理物 2 2を基板 2 2 aの主面に沿って 任意の方向に搬送でき、 被処理物 2 2の表面上を排出口 1 9がスキャ ン できるようになつている。
く蛍光体の処理方法及びその効果〉
上記の蛍光体処理装置を用いて、 被処理物 2 2を処理する方法につい て説明する。
反応容器 1 7の導入口 1 8に原料ガス 1 4を導入すると共に、 高周波 電源 2 1 を駆動させる。
また、 ステージ 2 4上に被処理物 2 2を載せて、 排出口 1 9が被処理 物 2 2の表面上をスキヤ ンするように搬送する。
これによつて、 原料ガス 1 4は、 反応容器 1 7内を流通しながらエネ ルギ一が付与され (すなわち高周波電界が印加され) て励起されて活性 化され、 排出口 1 9から流出される。 図 1 中の符号 2 0は、 活性化され たガスである。 そして、 この活性化ガス 2 0に蛍光体層 2 3が晒される が、
活性化ガス 2 0は、 反応しやすい状態となっているので、 蛍光体層 2 3 を構成する各蛍光体粒子の表面に接触して、 蛍光体粒子の表面近傍領域 と反応する。 特に結晶欠陥部分は反応しやすく、 この反応によって、 蛍 光体粒子の表面近傍領域における結晶性が向上する。 活性化ガス 2 0は 各蛍光体粒子の表面近傍領域に含浸される。
図 1 では、 反応容器 1 7に導入する原料ガスと して、 反応ガスと して の酸素に、 放電に寄与する希ガスと しての H e、 及びプラズマダメージ を緩和する不活性ガスと しての A rを加えた混合ガスを用いた例を示し ている。
図 2は、 被処理物 2 2の蛍光体層 2 3を拡大した図、 並びに蛍光体層 2 3を構成する蛍光体粒子 1 0 0の構成を模式的に示す図であって、 処 理後における構成を示している。
図 2に示されるように、 蛍光体層 2 3には、 多数の蛍光体粒子 1 0 0 が含まれている。 また、 活性化ガス 2 0には、 原料ガス 1 4を構成する 成分 (H e , A r , Ο 2) の他に、 活性化された酸素 (Ο ) が含まれてい る。
このとき、 活性化ガス 2 0が、 当該表面近傍領域に存在する結晶欠陥 部分と反応するとともに、 蛍光体粒子 1 0 0の表面近傍領域に炭素原子 が存在している場合、 活性化された酸素原子 (0 ) やオゾン (0 3) が、 ラジカル反応等によりその炭素原子と結合して二酸化炭素等となり、 蛍 光体粒子 1 0 0の表面や周囲から炭素が排除される。 よって、 処理後の蛍光体粒子は、 表面近傍領域の結晶欠陥が少ないの で、 発光特性の経時的な劣化が抑えられる。
また、 蛍光体粒子の表面近傍領域には、 蛍光体の合成時にできた不純 物や、 蛍光体層を形成する工程などで含まれた不純物が存在すると、 そ の不純物が蛍光体の経時変化を促す要因となる場合もあるが、 活性化ガ ス 2 0と蛍光体粒子が接触することによって、 不純物が活性化ガスと反 応して排除されるという効果も期待できる。 原料ガス 1 4に、 反応ガスと してフッ素を含むガス (フッ化ガス) を 含ませてもよい。 その場合、 原料ガス 1 4におけるフッ素を含むガスの 含有率は 0 . 1 〜 1 0体積%の範囲内が好ま しい。
この場合、 上記の効果に加えて、 改質部 1 0 2にフッ素化合物が形成 される。 そして、 このフッ素化合物によって、 蛍光体粒子の表面に撥水 性層が形成されるので、 蛍光体への水分吸着が抑制され、 これによる蛍 光体の経時変化も抑制される。
なお、 原料ガス 1 4の蒸気圧が常温で低い場合には、 加熱して蒸気圧 が高い状態にしてから反応容器 1 7に導入してもよい。 この場合の導入 ガスの加熱温度は、 5 0 - 6 0 0 °Cの範囲とすることが好ま しい。 また、 活性化ガスと蛍光体との反応を促進する機構と して、 例えばス テージ 2 4を加熱ヒータを設置して、 蛍光体層 2 3を活性化ガス 2 0晒 す処理を行なう時、 或は処理の前、 或は処理の後で、 蛍光体層 2 3を 1 0 0〜 3 0 0 °Cの範囲で加熱することによって、 反応を促進することが できる。
また、 例えばステージ 2 4に電圧を印加する機構を設け、 蛍光体層 2 3を活性化ガス 2 0に晒すときに、 蛍光体層 2 3を正または負に帯電さ せて、 活性化ガス 2 0中のィォンを蛍光体層 2 3に引き寄せるようにし ても、 反応を促進することができる。 ぐ改質された蛍光体粒子の構成と効果 >
上記のように処理された蛍光体粒子は、 図 2に示すように、 粒子内部 領域には、 活性化ガスで改質されていない非改質部 1 0 1 が存在し、 表 面近傍領域には、活性化ガスで改質された改質部 1 0 2が存在している。 処理時に、 反応ガスと して酸素を用いた場合には、 非改質部 1 0 1 を 構成する元素と改質部 1 0 2を構成する元素の種類は同様であるが、 改 質部 1 0 2の方が非改質部 1 0 1 と比べて、 より酸化された元素組成と なっている。反応ガスとして、ノヽロゲン、ハロゲン化合物からなるガス、 カルコゲン化合物からなるガスを用いた場合は、 これらの元素が改質部 1 0 2に含有される。
改質部 1 0 2においては、 上述のように、 処理前と比べて結晶欠陥が 少なく、 結晶状態が良好になっている。
従って、 処理された蛍光体粒子 1 0 0を表示素子ゃランプの蛍光体層 に用いると、 蛍光体層の経時劣化を抑制する効果が得られる。 特に、 P D Pや無'水銀蛍光ランプのように、 真空紫外線で励起発光する蛍光体層 を備えたものでは、 蛍光体粒子の表面近傍領域だけが発光に寄与するの で、 上記のように処理された蛍光体粒子 1 0 0を用いることによって、 十分に経時劣化を抑制する効果が得られる。 改質部 1 0 2の厚み dについては次のように考察される。
改質部 1 0 2の厚み d (粒子表面からの改質深度) は、 蛍光体粒子を 活性化ガス 2 0に晒す時間によって調整可能であって、 当該時間が長い ほど厚み dが大きく なる。
ところで、 P D Pに用いられる蛍光体は、 主に真空紫外光によって励 起される蛍光体であって、 蛍光体粒子の表面から深さ数十 n m程度まで の範囲が励起発光される領域である。 ただし、 この蛍光体の発光領域の 深さも経時的にある程度変化する。 その点から、 蛍光体粒子 1 0 0にお ける改質部 1 0 2の深さ dは、 励起発光領域の深さ以上と し、 十分に大 きく設定することが、 蛍光体の発光特性の経時変化を抑制する上で好ま しい。
一方、 改質部 1 0 2の深さ dを大きくするには、 蛍光体粒子を活性化 ガスに長時間晒す必要があるので、 改質部 1 0 2の深さ dが大きいほど 処理コス トが高く なる。
以上の点から、 改質部 1 0 2の厚み d と しては、 l n m〜 l mの範 囲が好ま しく、 2 n m〜 1 0 0 n mの範囲がより好ま しい。 なお、 改質部 1 0 2の深さ dは、 活性化ガスに晒す時間だけでなく、 原料ガスの成分 (不活性ガスと反応ガスの割合) や、 高周波電界の電圧 や周波数によっても調整することができる。 例えば、 原料ガスにおける 反応ガスの割合を高めると、 改質部 1 0 2の深さ dは大きくなる。
従って、 これらの条件を組み合わせて、 改質部 1 0 2の厚み dを好ま しい範囲に調整すればよい。
また、 改質部 1 0 2を有する蛍光体粒子 1 0 0は、 蛍光体層 2 3にお ける表面領域から内部まで全体的に存在させてもよいが、 蛍光体層 2 3 に表面側から紫外線を照射するときに実際に励起発光する領域は、 主と して蛍光体層 2 3の表面領域であって、 内部領域はあまり励起発光しな い。 従って、 蛍光体層 2 3の表面近傍だけを活性化ガスに晒して、 内部 領域より も表面近傍領域に改質部 1 0 2を有する蛍光体粒子 1 0 0を多 く偏在させてもよく。 その場合も蛍光体層 2 3の経時劣化を抑制する効 果を十分に得ることができる。 く改質処理における好ましい形態〉
原料ガス 1 4の種類、 ガス流量、 ガス温度、 印加する高周波電界の周 波数や強度などの条件によって、 ガスが励起される状態も変わると考え られるが、 活性化ガス 2 0がプラズマ状態になるように、 これらの条件 を調整することが蛍光体粒子を改質効果を得る上で好ま しい。 これは、 ガスがプラズマ状態になると、 反応ガスが励起された状態のまま保つこ とができるので、 反応ガスが励起された状態のまま蛍光体表面に晒され るからである。
高周波電源 2 1 で印加する高周波電力は、 電圧を 1 0 V〜 1 0 0 0 0 Vの範囲内にし、 周波数を数キロへルツ (k H z ) 〜数十ギガへルツ (G H z ) の範囲内にすることが好ましい。
蛍光体粒子が受けるプラズマダメージを低減させるために、 上述した ように、原料ガスに A rのような不活性ガスを混合することが望ま しい。 ただし、 反応ガスの電子移動度が、 放電用に用いる希ガス (H e ) の電 子移動度よ りも小さい場合は、 A rのような不活性ガスを混合しなく て も、 蛍光体が受けるプラズマダメージを小さく抑えることができる。 また、 蛍光体粒子が受けるプラズマダメージを低減させるために、 原 料ガス 1 4に高周波電力を印加する場所と、 活性化ガス 2 0に蛍光体を 晒す場所とは、 別々であることが好ましい。 その点、 上記の蛍光体処理 装置においても、 反応容器 1 7内で原料ガス 1 4に高周波電力が印加さ れ、 反応容器 1 7の外で活性化ガスに蛍光体が晒されるので、 高周波電 圧が蛍光体に直接印加されることはなく、 また、 プラズマ放電空間に蛍 光体が曝されることもないので、プラズマダメージが小さく抑えられる。 蛍光体層 2 3を活性化ガス 2 0に晒す方式と しては、 被処理物 2 2全 体を包むように活性化ガス 2 0の雰囲気を広い範囲にわたって形成して もよいが、 被処理物 2 2の面積が広い場合、 活性化ガス 2 0の雰囲気を 広く形成する必要があり、 そのための時間もかかる。
これに対して、 上記蛍光体処理装置のように、 排出口 1 9から活性化 ガスを蛍光体層 2 3の一部分に当てながら蛍光体層 2 3の表面に沿って スキヤ ンさせる方式で行なえば、 処理しょうとする蛍光体層 2 3の面積 が広い場合であっても、 活性化ガス 2 0の雰囲気を広範囲に形成する必 要がない。
また、 蛍光体層 2 3の部分ごとに、 活性化ガス 2 0に晒す時間を調整 することができるので、 蛍光体層 2 3の全体にわたつて均一的に処理す ることができる。 また、 スキャ ンする速さ或はスキャ ン回数を調整することによって、 蛍光体粒子 1 0 0における改質部 1 0 2の深さ (すなわち粒子表面から どの程度の深さまで改質するか) も調節することができる。 く表示素子の蛍光体層を改質する場合〉
画像表示素子あるいはランプなどの発光素子における蛍光体層を改質 する場合について説明する。
P D Pのような力ラー画像表示素子では、 基板上に複数種類の蛍光体 層が形成されており、 通常、 三色(赤色、 青色、 緑色)あるいはそれ以上 の蛍光体層が分離して存在している。 上記図 8に示した P D Pでも、 背 面ガラス基板上に、 酸化物蛍光体からなる各色 (赤. 緑. 青) の蛍光体 層 9〜 1 1 がス トライプ状に設けられている。 青色蛍光体としては、 B A M蛍光体が、 緑色蛍光体と しては Z n 2 S i O 4: M n、 赤色蛍光体と しては (Y yG d ,— x) B O 3 : E uが、 一般的に用いられている。
そして、 各色蛍光体は、 その種類ごとに特有の劣化要因を有する場合 があるので、そのような場合、基板上に形成された各色蛍光体層ごとに、 個別に改質処理をしても良い。
例えば、 青色蛍光体層、 緑色蛍光体層、 赤色蛍光体層の中で、 比較的 経時劣化しやすい青色蛍光体層だけに対して上記の処理を行ってもよい, また、 P D Pに用いられる青色蛍光体、 緑色蛍光体、 赤色蛍光体の中 で、 青色蛍光体や緑色蛍光体は、 水分によって劣化しやすいが、 青色蛍 光体は結晶欠陥を減少させることによって水分吸着劣化を抑制すること ができる。 従って、 青色蛍光体層に対しては、 反応ガスと して酸素を含 む原料ガスを用いて蛍光体粒子の表面を酸化処理し、 緑色蛍光体層に対 しては、 反応ガスにフッ素を含む原料ガスを用いて蛍光体粒子の表面を フッ化処理して撥水性を持たせる処理を行なつてもよい。 上記蛍光体処理装置を用いて、 基板上の各色蛍光体層を個別に改質処 理する場合、 反応容器の排出口 1 9の先端を細い筒状にすれば、 特定色 の蛍光体層だけを活性化ガス 2 0に晒すことができる。
また、 図 3に示すように、 赤色, 緑色, 青色の蛍光体層 9〜 1 1が、 繰り返してス トライプ状に形成されている場合、 排出口 1 9の先端部分 を、 同色蛍光体層のピッチ合わせて櫛状に分岐させ、 複数本の同色蛍光 体層 (図 3では、 3本の青色蛍光体層 9 ) を同時に活性化ガス 2 0に晒 すようにしてもよい。
また、 表示素子の蛍光体層においては、 場所によって経時劣化が生じ やすいところと生じにくいところがあるので、 蛍光体層の中でも経時劣 化が生じやすいところでは活性化ガス 2 0に晒す時間を長く して、 蛍光 体粒子における改質部の深さを深く してもよい。
例えば P D Pにおいては、 パネルの中央部分よりも周辺領域では劣化 が生じやすい。 従って、、 蛍光体層に活性化ガスを照射する際に、 中央領 域よ りも周辺領域において、 照射時間を長く して、 蛍光体粒子における 改質部の深さを深く してもよい。 一方、 照明器具に用いられる蛍光ランプは、 一般に内面に蛍光体層を 形成したガラス管内に、 放電に伴って紫外光を発する物質が封入されて 構成されている。 このガラス管内には水銀が封入されているものが多い が、 無水銀蛍光ランプでは、 X eガスなどが封入され、 封入ガスから真 空紫外線によって蛍光体層が励起され、 可視光を発光する。
このような蛍光体層を形成したガラス管に対しても、 上記処理方法を 適用することによって、 蛍光体層を改質して、 経時変化の少ないランプ を作製することができる。
ところで、 3波長型蛍光ランプでは、 蛍光体層に、 少なく とも赤色蛍 光体、 緑色蛍光体、 青色蛍光体が混合して存在している。
このように複数種の蛍光体が混在する蛍光体層においても、 その種類 ごとに特有の劣化要因を有する場合があるので、 各種蛍光体ごとに特有 の劣化要因を排除するように、処理を繰り返して行っても良い。例えば、 上述した青色蛍光体を対象と した、 反応ガスとして酸素を含む原料ガス を用いた処理を行い、 次に緑色蛍光体層を対象と した反応ガスと してフ ッ素を含む原料ガスを用いた処理を行なう。
く B AM蛍光体を改質する場合〉
本発明は、 酸化物蛍光体に対して有効であるが、 中でもマンガンィォ ンゃ希土類ィオンを発光中心に用いた酸化物蛍光体に有効である。
すなわち、 このタイプの蛍光体は、 高い発光効率が得られるため P D Pや 3波長蛍光ランプに広く用いられているが、酸素欠損が生じやすく、 これが輝度劣化の原因となる。 特に、 青色蛍光体と して用いられている BAMにおいては、 経時劣化しやすい。 従って、 このタイプの蛍光体に 対して、 上記の表面処理を施すことによって、 特に絶大な効果が得られ る。
本発明の改質処理を B AM蛍光体に適用する場合について以下に詳述 する。
一般的に B AM蛍光体は、 B a卜 XS r yE uzM g A 110O17で表わされ (0. 05≤ x≤ 0. 40、 0≤ y≤ 0. 25、 0. 05≤ z≤ 0. 3
0、 x - y≤ z ), ユーロピウム (E u) が発光中心金属である。
この BAM蛍光体は、 青色蛍光体として良好な発光特性を示すが、 B
A M蛍光体の結晶には多く の結晶欠陥が存在し、 この結晶欠陥が色度変 化や輝度変化の要因となる。
また B AM蛍光体は、水分によつて特に色度変化を引き起こ しゃすく、 輝度劣化も促進される。
従って、 BAM蛍光体を、 P D Pや蛍光ランプの蛍光体層に用いた場 合、 製造時に BAM蛍光体に水分が付着することにより、 色度変化や輝 度劣化が生じやすいという問題がある。
このような B AM蛍光体に対して、上記のように改質処理を行なうと、
B AM粒子表面の結晶欠陥が補償される。 特に、 反応ガスと して酸素を 含んだ原料ガスを用いて改質処理を行なうことにより、 結晶性が良好と なる。 これによつて、 色度変化や輝度劣化の少ない B AM蛍光体が実現 できる。 このように改質された B A M蛍光体において、 2価のユーロピウムと 3価のユーロピウムとが混在しているが、 粒子全体では、 ユーロピウム 全量 ( 2価のユーロピウムと 3価のユーロピウムの合計量) に対する 2 価ユーロピウムの割合が 6 0 %以上 9 5 %以下の範囲にあることが好ま しいが、 表面近傍領域では、 ユーロピウム全量に対する 2価ユーロピウ ムの割合は 5 %以上 3 0 %以下の範囲にあるこ とが好ま しく、 更に 1 0 %以上 2 0 %以下の範囲にあることが好ま しい。
また、 フ ッ素原子を含む原料ガスを用いれば、 B A M蛍光体への水分 吸着が抑制されるので、 B A M蛍光体の色度変化や輝度劣化が抑制され る。 く実験〉
石英基板上に B A M蛍光体を塗布して蛍光体層を形成し、 反応ガスと しての酸素に、 H e及び A rを加えた混合ガスを原料ガスと して用いて、 改質処理を繰り返し施した。
た。 そして、 処理を繰り返す回数を 0回, 5回, 1 0回, 1 5回, 2 0回とした各測定試料を作製した。
作製した各測定試料について、 管状路を用いて 4 5 0 °C程度で加湿雰 囲気に晒すことによつて高温加湿雰囲気で劣化試験を行ない、 劣化試験 前と劣化試験後の色度色度 yを測定した。
「色度 y」 は、 C I E表色系による 2次元色空間を示す X y色度座標 の y値のことである。
青色蛍光体が劣化するのに伴つて、 X値の変化は小さいのに対して y 値の変化が大きいので、 この y値を評価対象とすることと した。
図 4はその結果を示す特性図である。 この結果から、 蛍光体に対して 処理を行なうことによつて蛍光体の色度劣化が抑えられることがわかる ( また処理回数が増えるに従い、 蛍光体の色度劣化が小さくなつているこ ともわかる。
<変形例 > 以下、 本実施形態の蛍光体処理装置及び処理方法にかかる変形例につ いて説明する。
*上記処理方法では、 基板 2 2 a上に形成された蛍光体層 2 3を処理 する例を示したが、蛍光体粒子を粉体の状態で処理してもよい。例えば、 蛍光体粒子のバルクを ト レイに載せて、 これをステージ 2 4上に置いて 処理してもよい。
*上記処理方法では、 被処理物 2 2を載せたステージ 2 4を移動させ ることによって、 蛍光体層の表面上を排出口 1 9がスキャ ンするように と したが、 ステージ 2 4を移動させる代わりに反応容器 1 7の排出口 1 9を移動させてもよいし、 ステージ 2 4と排出口 1 9を共に移動させて も良い。
*原料ガス 1 4のもとになる反応ガス、 希ガス、 不活性ガスは、 必ず しも常温でガス状である必要はなく、 液体あるいは固体であってもガス 状にできるものであればよい。
例えば、 反応ガス (酸素、 ノヽロゲン、 ハロゲン化合物、 フッ化ガスな ど) を溶解した液体に、 不活性ガスをバブリ ングして流入することによ つて、 反応ガスと不活性ガスとが混合された原料ガスを得ることもでき る。
*上記処理方法では、 被処理物 2 2の蛍光体層 2 3を改質処理するの に、 蛍光体処理装置を用いて活性化ガスに晒したが、 反応ガス (酸素、 ハロゲン、 ハロゲン化合物、 フッ化ガスなど) を溶解した液体を、 蛍光 体層 2 3の表面に塗布することによつても、 蛍光体層 2 3中の蛍光体粒 子の表面近傍領域を改質することができる。 〔実施の形態 2〕
本実施の形態でも、 上記実施の形態 1 と同様に、 導入される原料ガス にエネルギーを加えて励起させて活性化ガスを生成し、 その活性化ガス に蛍光体を晒すことによって、 蛍光体粒子の表面近傍領域を改質する。 ただし、 実施の形態 1 では、 原料ガスに高周波電力を印加して励起さ せたのに対して、 本実施形態では、 原料ガスに紫外線を照射することに よつて励起させる。
く蛍光体処理装置の構成〉
図 5は本実施形態で使用する蛍光体処理装置の構成を示す図である。 この蛍光体処理装置において、 原料ガスを導入して励起させるための 反応容器 3 1 が設けられている。
この反応容器 3 1 には、 原料ガスとしての酸素ガスを導入する酸素導 入口 3 2及び窒素ガスを導入する窒素導入口 3 3が設けられ、 使用後の ガスを排気するための排気口 3 4が設けられている。
また、反応容器 3 1 の中には、被処理物 3 5を載置するステージ 3 7、 及び導入された原料ガスに紫外線 3 8を照射する紫外線ランプ 3 9が設 置されている。
ステージ 3 7は、 温度制御装置 4 0によつて所望の温度に加熱できる ようになつている。 また、 紫外線ランプ 3 9は、 例えば X eエキシマラ ンプであって、 紫外線ランプ制御装置 4 1 によって駆動制御される。 被処理物 3 5は、 実施の形態 1 で用いた被処理物 2 2と同様、 基板上 に蛍光体層 3 6が形成されたものである。
く蛍光体処理方法〉
上記蛍光体処理装置を用いて、 蛍光体層 3 6を処理する方法について 説明する。
窒素導入口 3 3より窒素ガスを十分に供給した後、 温度制御装置 4 0 によりステージ 3 7を所定温度 (例えば 3 0 0 °C ) に加熱する。 所定温 度に到達したら、 窒素ガスの供給を停止し、 酸素導入口 3 2より酸素ガ スを導入する。 例えば、 酸素ガスの流量を 1 分程度と し、 温度が飽 和してから 3 0分間導入する。 導入された窒素ガス及び酸素ガスは、 排 気口 3 4から排出される。
反応容器 3 1 内に酸素ガスが十分に行き渡ったら、 紫外線ランプ制御 装置 4 1で紫外線ランプ 3 9を駆動し、 導入された酸素ガスに紫外光を 照射する。 これによつて、 酸素ガスが励起されてオゾン (〇3) 及び酸素 原子 (O ) を含む活性化ガスが生成される。 そして、 生成された活性化 ガスに蛍光体層 3 6が晒されることによって、 実施の形態 1 で説明した のと同様に蛍光体粒子の表面近傍領域が改質処理される。 紫外線照射時 間は、 例えば 3 0分とする。
その後、 酸素ガスの導入を停止して、 窒素ガスを反応容器 3 1 内に導 入し、 ステージ 3 7を室温まで冷却する。
反応ガスを導入する形態と して、 上記のように、 温度が一定になって から酸素ガスを供給すれば、 良好な特性の蛍光体を、 短時間で安定して 歩留まりよく作製できる。
ただし、 温度を上昇させながら酸素ガスを供給してもよい。 反応ガス 中で、 室温から 3 0 0 °C程度の高温まで徐々に温度を上昇させていく こ とにより、 反応速度をゆるめて表面の結晶欠陥を埋め、 かつ E uの酸化 による輝度劣化を緩和できる。
また、 酸素ガスと窒素などの不活性ガスとを共に導入することによつ て、 反応速度を緩和させてもよい。
<改質された蛍光体粒子の構成と効果〉
このように改質処理された蛍光体粒子は、 上記実施の形態 1で説明し た蛍光体粒子 1 0 0 と同様の特徴を備え、 粒子内部領域に非改質部 1 0 1が存在し、 表面近傍領域には改質部 1 0 2が存在する。
そして、 蛍光体粒子 1 0 0と同様の効果を奏し、 蛍光体粒子の表面近 傍領域の結晶性を向上すると共に、 蛍光体粒子の表面や周囲から炭素が 排除されるので、 処理前の蛍光体粒子と比べて発光特性の経時変化が抑 えられる。 実施の形態 1 で説明したのと同様に、 無水銀蛍光ランプなどの照明装 置や P D Pなどの画像表示装置における蛍光体層の改質に適用できる。 例えば、 P D Pを作製する場合、 背面ガラス基板上に各色蛍光体層を 形成した後、 この背面ガラス基板を上記蛍光体処理装置のステージ 3 7 上に設置して、 蛍光体層を改質処理すれば、 経時劣化の少ない P D Pを 作製することができる。
また、 本実施形態においても、 背面ガラス基板上に形成した青色蛍光 体層、 緑色蛍光体層、 赤色蛍光体層の中で、 比較的経時劣化しやすい青 色蛍光体層だけに上記の処理を行ってもよい。
〈紫外線による酸素ガスの励起〉
酸素ガスに紫外線が照射されることによつてオゾンや酸素原子が生成 される機構について説明する。
反応容器 1 7に導入した酸素 (02) に紫外線の中でも、 オゾン発生線 とよばれる短い波長( 1 849オングス ト ローム)の光線を照射すると、 酸素分子 (02) が解離して酸素原子 (0) が 2個生じる。 そして、 この 酸素原子 (〇) が他の酸素分子 (〇2) と結合してオゾン (03) が生成 される。
また、 ォゾンを分解する波長 (2 537オングス ト ローム) の光線が 照射されると、 上記分解反応で生じた酸素原子 (O) がオゾンと反応し てオゾンを分解し、 更に単原子の酸素を生成する。 このような機構からして、 紫外線ランプ 3 9と して、 オゾンが生成さ れる波長 ( 1 849オングス ト ローム) の光を出す X eエキシマランプ と、 オゾンを分解する波長 (25 37オングス トローム) の光を出す X eエキシマランプとを並列して設けることによって、 反応性の高い活性 化ガスが生成される
本実施形態のように、 導入される反応ガスに対して紫外線を照射する 方法を用いても、 比較的容易に、 ガスを励起させて活性化させることが できる。 また、 低温プロセスでガスを励起させることができるので、 処 理時間を短くすることができ処理コス ト も低くできる。 なお、 上記処理方法では、 蛍光体層 3 6を活性化ガスに晒すときにス テージ 37を加熱することによって、 蛍光体と活性化ガスとが加熱状態 になっているので、 蛍光体粒子の改質処理が促進される。
また、 上記図 5の蛍光体処理装置のように紫外線ランプ 3 9と蛍光体 層 3 6 とが対向配置されている場合、 紫外線ランプ 3 9から照射される 紫外線 3 8は、 酸素ガスにある程度吸収されるが、 一部は蛍光体層 3 6 の表面に到達し、 この紫外線によって蛍光体層 3 6が劣化する。
従って、 紫外線ランプ 3 9から照射される紫外線 3 8が蛍光体層 3 6 に直接照射されないようにすることが好ま しい。
例えば、 被処理物 3 5上に紫外線 3 8を遮蔽するシャ ッターを設けて おいて、 紫外線ランプ 3 9が駆動しているときだけシャ ッ ターを閉じて もよいし、 或は、 紫外線 3 8を遮蔽するセラミ ック板を、 蛍光体層 3 6 から間隔を開けて設けてもよい。
〔実験〕
B A M蛍光体に対して、 次のように、 いろいろな加熱温度下で改質処 理を施して、 測定試料を作製した。
石英基板上に B A M蛍光体を塗布して蛍光体層を形成した試料を、 市 販のオゾン発生器の反応容器内に設置し、 基板を加熱した。 基板が所定 の温度に到達するまでは窒素を流し、 温度が飽和してから 3 0分間は酸 素を流量 1 L Z分程度で流し、 酸素を十分に行き渡らせ、 紫外光を 3 0 分程度照射してオゾンを発生させた。 その後、 反応容器内を窒素で置換 して冷却した。
なお、 基板の加熱温度は、 3 0 0 °Cまでの範囲内でいろいろな値に設 定した。
改質処理を施す前及び後で、 発光強度を測定した。
また、 改質処理した各測定試料について、 管状路を用いて 4 5 0 °C程 度で蛍光体層を加湿雰囲気に晒すことによって加速劣化させ、 劣化試験 前と劣化試験後の色度 yを測定した。
図 6は、 この結果を示す特性図であって、 加熱温度ごとに劣化試験前 後における色度 yの値を示している。
図 6において横軸は処理時の加熱温度、 縦軸は測定した色度 yを示し ている。図中、破線は劣化試験前、実線は劣化試験後の色度 y値である。 処理時の加熱温度が高いものほど、 劣化試験後における色度 y値は低 く、 加熱温度が 3 0 0 °Cのものでは、 劣化試験の前後で色度 yの変化が ほとんどなく、 初期値 (劣化試験前) と同等の色度 yが得られている。 これは、 処理時の加熱温度が高いほど、 蛍光体の色度 y劣化が少ない ことを示している。 これは加熱温度が高いほど、 蛍光体粒子の表面近傍 領域における反応が加速され、 短時間で蛍光体表面の酸素欠損が埋めら れるためと考えられる。
図 7は、 処理時の加熱温度ごとにおける処理後の発光強度を示す特性 図であって、横軸は処理時の加熱温度、縦軸は発光強度比を示している。 この発光強度比は、 処理していない初期の蛍光体の輝度を初期値 1 0 0 として、 その輝度に対する比で表わしている。
図 7の結果から、 処理温度が高いほど、 処理後の発光強度が低いこと がわかる。 これは、 処理温度が高いほど、 発光中心金属である E uの酸 化が進むためと考えられる。 一方、 処理温度を低く、 特に 1 0 0 °C以下 で処理すると、処理に伴う発光強度の低下がほとんどないことがわかる。 このような実験結果からして、 処理温度を低く設定すると共に、 単原 子酸素が浅く侵入するように反応の速度を低下させ、 且つ、 処理時間を 長くすれば (例えば 1 0 0 °Cで 6時間程度処理すれば)、 E uの酸化を防 止して輝度を保ちながら、 色度 yの経時劣化が少ない蛍光体とすること ができる。
なお、 処理温度を 3 0 0 °C程度と高く した場合でも、 処理時間を 3 0 分以下に短くすれば、 発光強度の低下を抑えながら色度 yの劣化が少な い蛍光体を形成することができる。
〔実施の形態 3〕
本実施の形態は、上記実施の形態 2と同様であるが、反応ガスと して、 酸素ガスに加えてフッ素原子を含むガスも用いる点が異なっている。 図 8は、 本実施形態にかかる蛍光体処理装置の概 '要を示す図である。 この蛍光体処理装置は、 上記図 5に示した蛍光体処理装置と同様の構 成であるが、 反応容器 3 1 には、 原料ガスの導入口と して、 酸素導入口 3 2及び窒素導入口 33に加えてフッ化ガス導入口 4 2が設けられてい る。
上記蛍光体処理装置を用いて、 被処理物 35の蛍光体層 3 6を処理す る方法について説明する。
窒素導入口 3 3より窒素ガスを十分に供給した後、 温度制御装置 40 によりステージ 37を所定温度 (例えば 1 50 °C) に加熱する。 所定温 度に到達したら、 窒素ガスの供給を停止し、 酸素導入口 32より酸素ガ スを導入すると共に、 フ ッ化ガス導入口 42よりフッ化ガスを導入し、 酸素とフッ化ガスの混合ガスを反応容器 1 7内に導入する。
フッ化ガスの具体例と しては、 C F4, S F6, C H F3 , NF6 が挙 げられる。
フッ化ガスと して C F4を用いる場合、 酸素ガスと C F4の流量体積比 を、 酸素 : C F4= 1 : 1程度とすればよい。 反応容器 3 1 内に酸素ガス及びフッ化ガスが十分に行き渡ったら、 紫 外線ランプ制御装置 4 1 で紫外線ランプ 39を駆動し、 導入された酸素 ガス及びフッ化ガスに紫外光を照射する。 これによつて、 酸素ガスが励 起されてオゾン (03) 及び酸素原子 (〇) が生成され、 これと並行して、 フッ化ガスが励起されてフッ素原子 (F) が生成される。
この結果、 オゾン (03)、 酸素原子 (〇)、 フッ素原子 (F) を含む活 性化ガスが生成され、 この活性化ガスに蛍光体層 3 6が晒され、 実施の 形態 2と同様に、 蛍光体粒子の表面近傍領域における結晶欠陥が補償さ れるが、 更に、 蛍光体粒子の表面近傍領域がフッ素原子が反応して、 蛍 光体粒子の表面に撥水性層が形成される。
その後、 酸素ガス及びフッ化ガスの導入を停止して、 窒素ガスを反応 容器 3 1 内に導入し、 ステージ 37を室温まで冷却する。
本実施形態の処理方法で処理された蛍光体粒子は、 蛍光体粒子の表面 近傍領域における結晶性が良好となるのに加えて、 蛍光体への水分吸着 が抑制され、 これによる蛍光体の経時変化も抑制される。
また、 オゾン. 単原子酸素だけでなく、 フ ッ素原子も、 蛍光体の粒子 表面近傍領域に存在する不純物を取り除く効果がある。
いうまでもなく、 本実施の形態の処理方法も、 無水銀蛍光ランプなど の照明装置や P D Pなどの画像表示装置における蛍光体層の改質に適用 できる。 産業上の利用可能性
以上説明したように、 本発明によれば、 蛍光体層の経時劣化を抑える ことができるので、 長寿命の照明器具及び P D Pを作製するのに利用で きる。

Claims

請求の範囲
1 . 粒子の表面近傍領域が改質されて、
当該表面近傍領域の元素組成は、粒子の内部領域の元素組成と比べて、 より酸化された状態となっていることを特徴とする酸化物蛍光体。
2 . 蛍光体の元素組成には、 複数の価数を取り得る発光中心金属が 含まれ、
前記表面近傍領域における発光中心金属の平均価数が、 前記内部領域 における発光中心金属の平均価数と比べて大きいことを特徴とする請求 項 1記載の酸化物蛍光体。
3 . 発光中心と してユーロピウムを含むアル力 リ土類金属アルミ ン 酸蛍光体であって、
前記表面近傍領域におけるユーロ ピウムの平均価数が、 前記内部領 域におけるユーロピウムの平均価数と比べて大きいことを特徴とする請 求項 2記載の酸化物蛍光体。
4 . 前記酸化物蛍光体は、
粒子全体における元素組成が、 実質的に B a ^ S r y E u zM g A 1 10 O 17 ( 0 . 0 5≤ x≤ 0 . 4 0、 0≤ y≤ 0 . 2 5、 0 . 0 5≤ z≤ 0 . 3 0、 x - y≤ z ) であって、
粒子全体においては、 ユーロピウム全量に対する 2価ユーロピウムの 割合が 6 0 %以上 9 5 %以下であって、
表面近傍領域では、 ユーロピウム全量に対する 2価ユーロ ピウムの割 合が 5 %以上 3 0 %以下であることを特徴とする請求項 3記載の酸化物 蛍光体。
5 . 粒子の表面近傍領域が改質されて、 当該表面近傍領域での元素組成には、 粒子の内部領域での元素組成と 比べて、 ハロゲン又はカルコゲンが多く含まれていることを特徴とする 酸化物蛍光体。
6 . 前記表面近傍領域には、 ハロゲン元素又はカルコゲン元素が化 学結合していることを特徴とする請求項 5記載の酸化物蛍光体。
7 . 前記表面近傍領域には、
フッ素が結合していることを特徴とする請求項 6記載の酸化物蛍光体 <
8 . 請求項 1 または 5記載の酸化蛍光体からなる蛍光体膜を備える 発光素子。
9 . 請求項 1 または 5記載の酸化蛍光体が、 前記蛍光体膜の内部領 域よりも表面近傍領域に多く偏在していることを特徴とする請求項 8記 載の発光素子。
1 0 . 請求項 1 または 5記載の酸化蛍光体からなる蛍光体層を備え るプラズマディ スプレイパネル。
1 1 . 請求項 1 または 5記載の酸化蛍光体からなる蛍光体層を備え る無水銀ランプ。
1 2 . 反応ガスを含むガスを励起させることによって、 反応性の高 いガス雰囲気を形成し、 当該ガス雰囲気に蛍光体を晒すこ とによって、 蛍光体粒子の表面近傍領域を選択的に改質することを特徴とする蛍光体 処理方法。
1 3 . 前記反応性の高いガス雰囲気が、 プラズマ状態のガス雰囲気 であることを特徴とする請求項 1 2記載の蛍光体処理方法。
1 4 . 前記反応性の高いガス雰囲気を形成する際に、
大気圧近傍の圧力で行なうことを特徴とする請求項 1 2記載の蛍光体 処理方法。
1 5 . 前記反応ガスを含むガス対して、 エネルギーを加えることに よって励起させるこ とを特徴とする請求項 1 2記載の蛍光体処理方法。
1 6 . 前記反応ガスを含むガスに対して紫外線を照射することによ つて励起させるこ とを特徴とする請求項 1 5記載の蛍光体処理方法。
1 7 . 前記反応ガスを含むガスに対して紫外線を照射する際に、 前記蛍光体の表面に紫外線を照射させることなく行なうことを特徴と する請求項 1 6記載の蛍光体処理方法。
1 8 . 前記反応ガスを含むガスに対して高周波電圧を印加して放電 させることによって励起させることを特徴とする請求項 1 5記載の蛍光 体処理方法。
1 9 . 前記反応ガスを含むされたガス対してエネルギーを加える場 所と、 前記反応性の高いガス雰囲気に蛍光体を晒す場所とが、 離れてい るこ とを特徴とする請求項 1 5記載の蛍光体処理方法。
2 0 . 前記反応ガスを含むガスを、 処理器内に導入し、 当該処理器 内に導入された導入ガスに対してエネルギーを加えて励起させ、 当該処 理器から押し出すことによって、
当該処理器の外部に、 反応性の高いガス雰囲気を形成することを特徴 とする請求項 1 2記載の蛍光体処理方法。
2 1 . 前記反応性の高いガス雰囲気に蛍光体を晒す際に、 当該蛍光体を 3 0 0 °C以下で加熱した状態で行なうことを特徴とする 請求項 1 2記載の蛍光体処理方法。
2 2 . 前記反応ガスには、 酸素分子が含まれており、
前記反応ガスを励起させることによつてオゾンまたは単原子酸素を形 成するこ とを特徴とするこ とを特徴とする請求項 1 2記載の蛍光体処理 方法。
2 3 . 前記反応ガスには、 フッ化ガスが含まれていることを特徴と する請求項 1 2記載の蛍光体処理方法。
2 4 . 前記蛍光体処理方法では、
複数種類の蛍光体を処理し、
前記反応性の高いガス雰囲気を形成する条件、 及び蛍光体を反応雰囲 気に晒す条件の中、 少なく とも一方の条件を蛍光体の種類ごとに変える こ とを特徴とする請求項 1 2記載の蛍光体処理方法。
2 5 . 前記反応ガスを含むガスには、
希ガスあるいは不活性ガスが混合されていることを特徴とする請求項 1 2記載の蛍光体処理方法。
2 6 . 反応ガスを含むガスを励起させることによって、 反応性の高 いガス雰囲気を形成し、
蛍光体層が形成された基板を、 当該ガス雰囲気に晒すこ とによ って、 前記蛍光体層の表面近傍領域を改質する蛍光体層改質工程を有すること を特徴とする発光素子の製造方法。
PCT/JP2003/012818 2002-10-07 2003-10-07 蛍光体及び蛍光体の処理方法 WO2004031323A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/528,589 US7468145B2 (en) 2002-10-07 2003-10-07 Phosphor and treatment method for the same
JP2004541296A JPWO2004031323A1 (ja) 2002-10-07 2003-10-07 蛍光体及び蛍光体の処理方法
EP03751355A EP1550708A1 (en) 2002-10-07 2003-10-07 Phosphor and method of treating phosphor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002293857 2002-10-07
JP2002-293857 2002-10-07
JP2002-296226 2002-10-09
JP2002296226 2002-10-09

Publications (1)

Publication Number Publication Date
WO2004031323A1 true WO2004031323A1 (ja) 2004-04-15

Family

ID=32072504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012818 WO2004031323A1 (ja) 2002-10-07 2003-10-07 蛍光体及び蛍光体の処理方法

Country Status (6)

Country Link
US (1) US7468145B2 (ja)
EP (1) EP1550708A1 (ja)
JP (1) JPWO2004031323A1 (ja)
KR (1) KR20050053652A (ja)
TW (1) TW200417594A (ja)
WO (1) WO2004031323A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097599A (ja) * 2003-09-02 2005-04-14 Matsushita Electric Ind Co Ltd 蛍光体とその製造方法、および当該蛍光体を用いたプラズマディスプレイパネル
JP2005336449A (ja) * 2003-08-29 2005-12-08 Matsushita Electric Ind Co Ltd 蛍光体及びプラズマディスプレイ装置
WO2007007829A1 (ja) * 2005-07-13 2007-01-18 Konica Minolta Medical & Graphic, Inc. ハロゲン化物系輝尽性蛍光体前駆体、ハロゲン化物系輝尽性蛍光体、放射線画像変換パネルおよびこれらの製造方法
US7291290B2 (en) * 2003-09-02 2007-11-06 Matsushita Electric Industrial Co., Ltd. Phosphor, method of manufacturing same, and plasma display panel using same
JP2008081831A (ja) * 2006-09-29 2008-04-10 Mitsubishi Chemicals Corp 基体表面処理方法、固形物、蛍光体含有組成物、発光装置、画像表示装置、および照明装置
WO2008120441A1 (ja) * 2007-03-01 2008-10-09 Panasonic Corporation 発光表示装置、プラズマ表示装置および蛍光体粒子
KR20180003442A (ko) * 2016-06-30 2018-01-09 니치아 카가쿠 고교 가부시키가이샤 질화물 형광체의 제조 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223987B2 (en) * 2003-02-20 2007-05-29 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
EP1605029A4 (en) * 2003-02-20 2010-02-10 Panasonic Corp METHOD FOR PRODUCING A FLUORATE AND PLASMA INDICATOR AGGREGATE
EP1496098B1 (en) * 2003-06-13 2011-05-18 Panasonic Corporation Phosphors and related manufacturing method, display device, and fluorescent lamp
US8129905B2 (en) * 2006-05-26 2012-03-06 Panasonic Corporation Phosphor and light emitting device using the phosphor
JP4424394B2 (ja) * 2007-08-31 2010-03-03 ウシオ電機株式会社 エキシマランプ
JP4946772B2 (ja) * 2007-10-11 2012-06-06 ウシオ電機株式会社 エキシマランプ
US11142683B2 (en) * 2014-09-17 2021-10-12 Koninklijke Philips N.V. Phosphor with hybrid coating and method of production
JP7161100B2 (ja) * 2018-09-25 2022-10-26 日亜化学工業株式会社 発光装置及びその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151555A (en) * 1976-06-11 1977-12-16 Matsushita Electric Ind Co Ltd Manufacture of luminous screen
EP0046945A1 (en) * 1980-08-22 1982-03-10 Kabushiki Kaisha Toshiba Method and apparatus for treating fluorescent substance
EP0312383A1 (en) * 1987-10-14 1989-04-19 Canon Kabushiki Kaisha Luminescing member, process for preparation thereof, and electroluminescent device employing same
JPH01129090A (ja) * 1987-11-13 1989-05-22 Kohjin Co Ltd 分散型el素子
JPH06184533A (ja) * 1992-12-21 1994-07-05 Mitsubishi Cable Ind Ltd 被覆蛍光体の製造方法
JPH06267697A (ja) * 1993-03-16 1994-09-22 Mitsubishi Cable Ind Ltd プラズマ発生方法及びその装置並びに被覆粉体の製造方法
JPH09310067A (ja) * 1996-05-22 1997-12-02 Matsushita Electric Ind Co Ltd 蛍光体の製造方法
JPH10245550A (ja) * 1997-02-28 1998-09-14 Sumitomo Electric Ind Ltd ZnO紫外発光体およびその製造方法
JPH11181418A (ja) * 1997-12-25 1999-07-06 Kasei Optonix Co Ltd 蛍光膜の形成方法
JP2002235074A (ja) * 2000-12-08 2002-08-23 Toray Ind Inc ディスプレイ用蛍光体ペーストおよびディスプレイ用部材ならびにディスプレイ
JP2003082345A (ja) * 2001-09-12 2003-03-19 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831325A (ja) 1994-07-15 1996-02-02 Fujitsu Ltd 面放電型プラズマディスプレイパネル
JPH09104863A (ja) 1995-10-12 1997-04-22 Nec Kansai Ltd 被覆蛍光体および蛍光体の被覆処理方法および被覆蛍光体を用いた電界発光灯
CA2268602C (en) 1998-06-02 2004-06-22 Osram Sylvania Inc. Method for making long-life electroluminescent phosphor
JP4096619B2 (ja) * 2002-05-17 2008-06-04 松下電器産業株式会社 プラズマディスプレイ装置の製造方法
JP2003336052A (ja) * 2002-05-17 2003-11-28 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置
EP1605029A4 (en) * 2003-02-20 2010-02-10 Panasonic Corp METHOD FOR PRODUCING A FLUORATE AND PLASMA INDICATOR AGGREGATE
US7223987B2 (en) * 2003-02-20 2007-05-29 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
JP2004269870A (ja) * 2003-02-20 2004-09-30 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置および蛍光体の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151555A (en) * 1976-06-11 1977-12-16 Matsushita Electric Ind Co Ltd Manufacture of luminous screen
EP0046945A1 (en) * 1980-08-22 1982-03-10 Kabushiki Kaisha Toshiba Method and apparatus for treating fluorescent substance
EP0312383A1 (en) * 1987-10-14 1989-04-19 Canon Kabushiki Kaisha Luminescing member, process for preparation thereof, and electroluminescent device employing same
JPH01129090A (ja) * 1987-11-13 1989-05-22 Kohjin Co Ltd 分散型el素子
JPH06184533A (ja) * 1992-12-21 1994-07-05 Mitsubishi Cable Ind Ltd 被覆蛍光体の製造方法
JPH06267697A (ja) * 1993-03-16 1994-09-22 Mitsubishi Cable Ind Ltd プラズマ発生方法及びその装置並びに被覆粉体の製造方法
JPH09310067A (ja) * 1996-05-22 1997-12-02 Matsushita Electric Ind Co Ltd 蛍光体の製造方法
JPH10245550A (ja) * 1997-02-28 1998-09-14 Sumitomo Electric Ind Ltd ZnO紫外発光体およびその製造方法
JPH11181418A (ja) * 1997-12-25 1999-07-06 Kasei Optonix Co Ltd 蛍光膜の形成方法
JP2002235074A (ja) * 2000-12-08 2002-08-23 Toray Ind Inc ディスプレイ用蛍光体ペーストおよびディスプレイ用部材ならびにディスプレイ
JP2003082345A (ja) * 2001-09-12 2003-03-19 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526904B2 (ja) * 2003-08-29 2010-08-18 パナソニック株式会社 蛍光体及びプラズマディスプレイ装置
JP2005336449A (ja) * 2003-08-29 2005-12-08 Matsushita Electric Ind Co Ltd 蛍光体及びプラズマディスプレイ装置
US7291290B2 (en) * 2003-09-02 2007-11-06 Matsushita Electric Industrial Co., Ltd. Phosphor, method of manufacturing same, and plasma display panel using same
JP2005097599A (ja) * 2003-09-02 2005-04-14 Matsushita Electric Ind Co Ltd 蛍光体とその製造方法、および当該蛍光体を用いたプラズマディスプレイパネル
JP2010248525A (ja) * 2003-09-02 2010-11-04 Panasonic Corp 蛍光体とその製造方法、および当該蛍光体を用いたプラズマディスプレイパネル
WO2007007829A1 (ja) * 2005-07-13 2007-01-18 Konica Minolta Medical & Graphic, Inc. ハロゲン化物系輝尽性蛍光体前駆体、ハロゲン化物系輝尽性蛍光体、放射線画像変換パネルおよびこれらの製造方法
JP2008081831A (ja) * 2006-09-29 2008-04-10 Mitsubishi Chemicals Corp 基体表面処理方法、固形物、蛍光体含有組成物、発光装置、画像表示装置、および照明装置
WO2008120441A1 (ja) * 2007-03-01 2008-10-09 Panasonic Corporation 発光表示装置、プラズマ表示装置および蛍光体粒子
US7952279B2 (en) 2007-03-01 2011-05-31 Panasonic Corporation Light emitting display device, plasma display device and phosphor particles
KR20180003442A (ko) * 2016-06-30 2018-01-09 니치아 카가쿠 고교 가부시키가이샤 질화물 형광체의 제조 방법
JP2018002837A (ja) * 2016-06-30 2018-01-11 日亜化学工業株式会社 窒化物蛍光体の製造方法
US10563124B2 (en) 2016-06-30 2020-02-18 Nichia Corporation Method of producing nitride fluorescent material
KR102397811B1 (ko) 2016-06-30 2022-05-12 니치아 카가쿠 고교 가부시키가이샤 질화물 형광체의 제조 방법

Also Published As

Publication number Publication date
JPWO2004031323A1 (ja) 2006-02-02
KR20050053652A (ko) 2005-06-08
US20050277570A1 (en) 2005-12-15
EP1550708A1 (en) 2005-07-06
US7468145B2 (en) 2008-12-23
TW200417594A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
WO2004031323A1 (ja) 蛍光体及び蛍光体の処理方法
US7329989B2 (en) Plasma display panel and process for producing the plasma display panel
JP2008512845A (ja) 紫外放射光および/または真空紫外放射光を放射するための無電極ランプ
CN1947213A (zh) 包含uv-b荧光粉的介质阻挡放电灯
JP2001055567A (ja) 蛍光体粒子の処理方法及び蛍光体粒子並びにプラズマディスプレイパネル
US4937503A (en) Fluorescent light source based on a phosphor excited by a molecular discharge
EP0507533A2 (en) A mercury-free electrodeless metal halide lamp
KR20080003702A (ko) Uv-방출 인광물질 및 이를 함유한 램프
WO2006098305A1 (ja) 蛍光体
JP2009074090A (ja) 真空紫外線励起発光素子用蛍光体
CN1274004C (zh) 具有降频转换荧光体的放电灯
WO2006008971A1 (ja) 蛍光体とその製造方法および発光装置
JP2003041247A (ja) プラズマディスプレイ装置
JP4713169B2 (ja) 蛍光体
WO2004107478A2 (en) Non-oxidizing electrode arrangement for excimer lamps
JP2009057455A (ja) 蛍光体
JP2008285598A (ja) 緑色蛍光体の処理方法
JP2004197042A (ja) マンガン付活珪酸亜鉛蛍光体の製造方法およびプラズマディスプレイ装置
KR101065238B1 (ko) 진공 자외선에 의해 여기되는 발광 소자용 형광체
JP4523003B2 (ja) 青色発光蛍光体を有するvuv励起装置
JP2008038134A (ja) 青色蛍光体と赤色蛍光体の処理方法
JP2007099909A (ja) 混合蛍光体、蛍光体ペースト組成物及び真空紫外線励起発光素子
JP2007161904A (ja) 蛍光体材料、蛍光体ペースト、蛍光体膜及びプラズマディスプレイパネル
JP2004026922A (ja) 真空紫外線励起発光素子用の蛍光体
JP2004335403A (ja) 蛍光体処理装置と処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004541296

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057004227

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10528589

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003751355

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A10443

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004227

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003751355

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003751355

Country of ref document: EP