WO2004030085A1 - 被処理体の搬送方法 - Google Patents

被処理体の搬送方法 Download PDF

Info

Publication number
WO2004030085A1
WO2004030085A1 PCT/JP2003/012006 JP0312006W WO2004030085A1 WO 2004030085 A1 WO2004030085 A1 WO 2004030085A1 JP 0312006 W JP0312006 W JP 0312006W WO 2004030085 A1 WO2004030085 A1 WO 2004030085A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
processing
processed
transporting
pick
Prior art date
Application number
PCT/JP2003/012006
Other languages
English (en)
French (fr)
Inventor
Shigeru Ishizawa
Eiji Horike
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CNB038165562A priority Critical patent/CN1310302C/zh
Priority to US10/529,171 priority patent/US7371683B2/en
Priority to KR1020057004926A priority patent/KR100659413B1/ko
Publication of WO2004030085A1 publication Critical patent/WO2004030085A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/07Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers Not used, see H01L21/677
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices

Definitions

  • the present invention relates to a method of transporting an object to be processed in a process of performing a predetermined process on an object to be processed such as a semiconductor wafer.
  • a semiconductor wafer is repeatedly subjected to various thin film forming processes, a reforming process, an oxidation diffusion process, an annealing process, an etching process, and the like.
  • a multilayer thin film can be formed on a semiconductor wafer.
  • a single-wafer processing system a plurality of processing chambers are commonly connected to one transfer chamber to form a so-called cluster processing apparatus so that the above-described various processing can be performed continuously. ing. Then, the semiconductor wafer is transported so as to walk in each processing space, so that necessary processing is performed continuously and efficiently in each processing chamber.
  • processing chambers 104A to 104D are respectively surrounded by a gate valve 106 around a single, for example, hexagonal common transfer chamber 102. It has a vacuum processing device connected.
  • the rectangular transfer-side transfer chamber 110 is connected to the common transfer chamber 102 via two load lock chambers 108A and 108B.
  • the load lock chambers 108 A and 108 B and the common transfer chamber 102 There is a connection between the load lock chambers 108 A and 108 B and the common transfer chamber 102 and a connection between the load lock chambers 108 A and 108 B and the transfer chamber 110 on the loading side.
  • a gate valve 106 is interposed in each case.
  • the loading-side transfer chamber 110 is connected to, for example, three introduction ports 112 for mounting a cassette capable of accommodating a plurality of semiconductor wafers and an orienter 114 for aligning the semiconductor wafer W. Have been.
  • the carry-in side transfer chamber 110 ⁇ has two picks 116A and 116B for holding the semiconductor wafer W, and can be bent, swiveled, raised and lowered, and horizontally moved in a straight line.
  • a loading-side transport mechanism 1 16 is provided.
  • In the common transfer chamber 102 there is provided a transfer mechanism 118 having two picks 118A and 118B for holding the semiconductor wafer W and capable of bending,
  • processing in each of the processing chambers 104 A to 104 D for the semiconductor wafer W is performed in the order of 104 A ⁇ 104 B ⁇ 104 C ⁇ 104 D.
  • the semiconductor wafer W at the introduction port 112 is transported as shown by the arrow. That is, for example, the wafer W at the center introduction port 112 is held by the pick 116 A or 116 B of the loading-side transfer mechanism 116 and transferred to the orienter 114.
  • the wafer W is aligned at the orienter 114, again held at the pick 116A or 116B, and transferred into one of the load lock chambers, for example, the load lock chamber 108A. Is done.
  • the wafer W transferred into the load lock chamber 108 A is transferred to the processing chamber 104 A by the pick 118 A or 118 B of the transfer mechanism 118 in the common transfer chamber 102. 1104 D in this order, and are sequentially transported so as to cross each processing chamber 104 A ⁇ 104 D. Necessary processing is performed on wafer W in each processing chamber 104A to 104D. Then, the wafer W having undergone the various processes is unloaded into the loading-side transfer chamber 110 through one of the load lock chambers, here, the other load lock chamber 108B, and thereafter, is returned to the original state. Returned to installation port 1 1 2
  • each of the transport mechanisms 116, 118 one of the two picks is left empty to improve the throughput.
  • this empty pick a wafer previously placed or accommodated in a certain place is picked up, and the place is set as an empty place.
  • the wafer held by the other pick is placed or accommodated in the empty space by the other pick. In this way, the wafer exchange is performed smoothly, and the throughput is improved.
  • the semiconductor wafer W is likely to be contaminated.
  • metal thin films such as Cu film, Ti film, and W (tungsten) film are formed
  • particles of this kind of metal can adhere to the wafer surface.
  • Metal particles can become nuclei and cause abnormal film growth during CVD deposition. Further, no other film is deposited on the portion where the particles are attached.
  • Cu particles have a large diffusion coefficient of Cu atoms in an oxide film, the dielectric constant of the SiO 2 film is reduced.
  • each of the picks 116A, 116, 118, and 118B has a throughput.
  • all of the picks 116A, 116B and 118A, 118B can hold processed wafers in the processing chamber 104C. Therefore, particles of the metal film adhering to the back surface of the processed wafer, etc. could adhere to the picks 116A, 116B, 118A, 118B and were contaminated.
  • the pick holds the wafer W before being carried into the processing chamber 104C, the wafer itself may be contaminated by the metal film particles. In addition, contamination of the pick may occur even if the pick is simply inserted into the processing chamber 104C in which the metal film is formed.
  • An object of the present invention is to provide a method of transporting an object, which can suppress the occurrence of cross contamination (propagation of contamination) even at the expense of throughput.
  • the present invention relates to a method of transporting a processing object in a processing apparatus including: a plurality of processing chambers including a specific processing chamber for performing processing that easily causes contamination of the processing object; and a transfer mechanism having two picks.
  • a plurality of transporting steps for sequentially transporting an object to be processed so as to walk between the plurality of processing chambers, immediately before loading the object into the specific processing chamber. Conveying step up is performed using one of the pick of the two picks, as conveyed E transport step and subsequent of the object to be processed to carry the target object to the particular processing chamber, the two
  • This is a method of transporting an object to be processed, which is performed using the other pick of one pick.
  • the method of the present invention further includes a holding step of holding the object to be processed from the one pick to the other pick, and the holding step includes: A step of holding the object to be processed, and a step of collecting the object to be processed held by the buffer mechanism by the other pick.
  • the present invention provides a plurality of processing chambers including a specific processing chamber for performing processing that easily causes contamination of a processing object; a common transfer chamber commonly connected to each of the processing chambers; A transfer mechanism having two picks provided in the room, a buffer mechanism provided in the common transfer chamber for temporarily holding the work, and unloading the work to the common transfer chamber A transfer port for receiving the workpiece, and a method of transporting the workpiece in a vacuum processing apparatus, comprising: a plurality of transport steps for sequentially transporting the workpiece so as to walk between the plurality of processing chambers; The transporting process up to immediately before loading the workpiece into the specific processing chamber is performed by using one of the two picks, and the transporting process of transporting the workpiece into the specific processing chamber and the subsequent process.
  • the body transport process is the two A process performed by using the other pick of the picks, further comprising a holding process of changing the workpiece from the one pick to the other pick using the buffer mechanism. This is the method of transporting the body.
  • the present invention includes a plurality of processing chambers, a common transfer chamber commonly connected to each of the processing chambers, and a transfer mechanism having two picks provided in the common transfer chamber.
  • a processing system in which a plurality of vacuum processing apparatuses are connected via a pass unit, wherein any one of the processing chambers in the processing system performs processing that easily causes contamination of a processing target.
  • a buffer mechanism for temporarily holding an object to be processed is provided in a common transfer chamber connected to the specific processing chamber, or in a path portion communicating with the common transfer chamber.
  • the processing object may be moved so as to walk between the plurality of processing chambers. Convey body sequentially The transport process up to immediately before loading the workpiece into the specific processing chamber is performed using one of the two picks, and the workpiece is transported to the specific processing chamber.
  • the transporting step of loading the workpiece and the subsequent transporting step of the object to be processed are performed using the other pick of the two picks, and the buffer mechanism is used to transfer the one pick from the other pick to the other pick.
  • At least two workpiece holding mechanisms capable of holding the workpiece are provided in the pass section, and one of the workpiece holding mechanisms is provided before the workpiece is carried into the specific processing chamber.
  • the object to be processed is held, and the other object to be processed holding mechanism is configured to hold the object to be processed after being processed in the specific processing chamber.
  • a gate valve for controlling communication and shutoff with respect to a common transfer chamber connected via the path section is provided in the path section, and the processing chamber is connected to each of the processing chambers.
  • a gate valve for controlling communication and shutoff with respect to the common transfer chamber provided, and when the gate valve of the pass section is in a closed state, each gate connected to each of the common transfer chambers not communicated by the pass section. Only one gate valve of the processing chamber is selectively opened for each common transfer chamber. When the valve is in the open state, only one gate valve of each processing chamber connected to the common transfer chamber communicated by the path section is selectively opened for each of the communicated common transfer chambers. It has become so.
  • the holding step includes a step of causing the buffer mechanism to hold the object to be processed by the one pick, and a step of collecting the object to be held by the buffer mechanism by the other pick; Having.
  • the one transport port is used as a carry-in port dedicated to carrying in
  • the other transport port is used as a carry-out port dedicated to carrying out. It has become.
  • a load port chamber in which a vacuum state and an atmospheric pressure state are repeated is connected to the two transfer ports via a gate 1 and a valve, respectively.
  • the loading chamber is provided with a loading-side transport mechanism having two picks, and is commonly connected via a gate valve.
  • the transporting step of carrying in the loading port chamber is performed using one pick of the loading side transport mechanism, and the transporting step of transporting the workpiece from the loading port chamber to the loading side transport chamber. Is carried out using the other pick of the carry-in side transport mechanism.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a processing system for performing a transport method according to the present invention.
  • FIG. 2 is a perspective view showing an example of the buffer mechanism.
  • FIG. 3 is a schematic configuration diagram showing an example of a modified embodiment of the treatment system.
  • FIG. 4 is a perspective view showing a pass unit also having a buffer mechanism.
  • FIG. 5 is an explanatory diagram for explaining an operation in the pass unit.
  • FIG. 6 is a schematic configuration diagram showing an example of another modification of the treatment system.
  • FIG. 7 is a diagram illustrating an example of a conventional processing system including a cluster processing device.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a processing system for implementing a transport method according to the present invention
  • FIG. 2 is a perspective view illustrating an example of a buffer mechanism.
  • this processing system 30 has four processing chambers 4A to 4D which can be evacuated around a single, for example, hexagonal common transfer chamber 2 through gate valves 6. And a vacuum processing apparatus connected to the vacuum processing apparatus.
  • Each of the processing chambers 4A to 4D is provided with a susceptor 32A to 32D on which a semiconductor wafer W as an object to be processed is placed, so that a predetermined process can be performed on the semiconductor wafer W. ing.
  • the rectangular transfer-side transfer chamber 10 is connected to the common transfer chamber 2 via two load-lock chambers 8A and 8B that can be evacuated.
  • Gate valves 6 are interposed at the connection between the load lock chambers 8A and 8B and the common transfer chamber 2 and at the connection between the load lock chambers 8A and 8B and the transfer side transfer chamber 10 respectively. ing. Further, for example, three introduction ports 12 for mounting a cassette capable of accommodating a plurality of semiconductor wafers and an orienter 14 for positioning the semiconductor wafer W are connected to the transfer-side transfer chamber 10. The orienter 14 of the present embodiment rotates the semiconductor wafer W and optically obtains the amount of eccentricity to perform alignment.
  • the loading-side transfer chamber 10 has two picks 16A and 16B for holding the semiconductor wafer W and is capable of bending, stretching, turning, moving up and down, and moving horizontally in a straight line. A side transport mechanism 16 is provided. In the common transfer chamber 2, there is provided a transfer mechanism 18 having two picks 18A and 18B for holding the semiconductor wafer W and capable of bending and extending and turning. .
  • one of the common transfer chamber 2 and one of the two load lock chambers is used to exclusively load the semiconductor wafer into the common transfer chamber 2. It is used as a loading port.
  • the common transfer chamber 2 and the other load The carry-in port 36 connected to the lock chamber 8B is used as a carry-out port for exclusively carrying semiconductor wafers out of the common transfer chamber 2 to the outside.
  • a buffer mechanism 38 for temporarily holding the semiconductor wafer W is provided.
  • the buffer mechanism 38 includes an elevator door 40 that moves up and down, a plate-shaped buffer base 42 provided at the upper end of the elevator door 40, and a buffer base 4.
  • the buffer mechanism 38 includes three support pins 44 protruding upward. The upper ends of the three support pins 44 can support the back surface of the wafer W.
  • a process of depositing a metal thin film such as a Cu film is performed in the processing chamber 4C as a process that easily causes contamination of the semiconductor wafer W. Since the processing is performed in the processing chamber 4C, the processing chamber 4C is a specific processing chamber. The expression “specified” is simply to distinguish it from other treatment rooms.
  • the contamination pick is allowed to enter a processing chamber for performing processing immediately before the metal thin film deposition processing, in this case, the processing chamber 4B, the inside of the processing chamber 4B may be contaminated. Therefore, in the present embodiment, the operation of switching the semiconductor wafer from the pick for cleaning to the pick for contamination is performed using the buffer mechanism 38.
  • the wafer WT is transported as shown by the arrow.
  • a wafer is taken out from a cassette (including a carrier) installed in the central introduction port 12 of the three introduction ports 12.
  • the load lock chamber 8A of the two load lock chambers 8A and 8B is used for loading the wafer W before processing by the specific processing chamber 4C, and the other load lock chamber 8B is used. Is used for unloading the wafer W after processing by the specific processing chamber 4C.
  • the pick 16As18A of the two picks is used as a clean pick
  • the other picks 16B and 18B are used for contamination. Used as a pick.
  • the route where the clean pick is used is represented by a black arrow
  • the route where the contamination pick is used is represented by a white arrow.
  • each of the processing chambers 4A to 4D contains a wafer W.
  • the processing in each of the processing chambers 4A to 4D is completed or almost completed.
  • the wafers W processed in all the processing chambers 4A to 4D and stored in the loading chambers 8B are transported by the contamination picks 16B of the loading-side transport mechanism 16 to the transport path X1. Is transported to the central introduction port 12 according to and stored.
  • the unprocessed wafer W in the central introduction port 12 is transferred to the orienter 14 by the cleaning pick 16A along the transfer path X2.
  • the wafer W is aligned in the orienter 14 and is again stored in the other load lock chamber 8A by the cleaning pick 16A. The above operation is repeated each time the processing of the wafer W progresses.
  • the contamination pick 18B of the transport mechanism 18 has been processed in the processing chamber 4D. Go to get the wafer w and place it in the empty load lock chamber 8B for contamination according to the transport route Y1.
  • the contamination pick 18B goes to pick up the processed wafer W in the specific processing chamber 4C, and carries it into the empty processing chamber 4D according to the transfer path Y2. . After that, the processing in the processing chamber 4D is started.
  • the wafer W that has been processed in the processing chamber 4B is held on the buffer mechanism 38 in advance.
  • the contamination pick 18B goes to pick up the wafer W placed on the buffer mechanism 38, and carries it into the empty specific processing room 4C according to the transfer path Y3. Thereafter, the processing in the specific processing chamber 4C is started.
  • a cleaning pick 18A goes to pick up the processed wafer W in the processing chamber 4B, and places it on the empty buffer mechanism 38 according to the transfer path # 4. The wafer W waits here.
  • a pick 18A for cleaning picks up the processed wafer W in the processing chamber 4A, and transports the wafer W into the empty processing chamber 4B according to the transport path Y5. . Thereafter, the processing in the processing chamber 4B is started.
  • the cleaning pick 18A goes to pick up the unprocessed wafer W waiting in the clean load lock chamber 8A, and transfers it to the empty processing chamber 4A according to the transfer path Y6. Bring it inside. After that, the processing in the processing chamber 4A is started. When the semiconductor wafer W is loaded or unloaded, the corresponding gate valve 6 is opened or closed.
  • the above operation is repeatedly performed.
  • the contamination W Picks 16 B and 18 B are used in the process of transporting the wafer W into the specific processing chamber 4C and the process of transporting the wafer in which the metal thin film is formed and metal contamination may occur in the specific processing chamber 4C.
  • the cleaning picks 16 A and 18 A are used in the wafer W transfer process before that.
  • the transfer order between the processing chambers 4A to 4D is merely an example, and is not limited to this. Regardless of the transport route, immediately before the wafer is loaded into the processing chamber that performs processing that is likely to cause contamination of the wafer, the wafer that has been processed in the processing chamber in the previous step is transferred to the buffer mechanism 3. The wafer is held at 8, and the operation of changing the wafer between the pick 18A for cleaning and the pick 18B for contamination is performed. Thus, as described above, contamination of the cleaning pick 18A is prevented, and as a result, contamination of the wafer W before being processed in the specific processing chamber 4C can be prevented.
  • the transfer method in the processing system having the vacuum processing apparatus in which the plurality of processing chambers 4A to 4D are connected to one common transfer chamber 2 has been described.
  • the present invention is not limited to this type of processing system, and can be applied to, for example, a processing system having a configuration in which a plurality of common transfer chambers (vacuum processing apparatuses) are connected.
  • FIG. 3 is a schematic configuration diagram showing an example of a modified embodiment of such a processing system
  • FIG. 4 is a perspective view showing a pass unit (relay unit) also having a buffer mechanism
  • FIG. 5 is an operation in the pass unit.
  • FIG. 4 is an explanatory diagram for explaining the method.
  • the mechanism of the pass section itself is described in detail in Japanese Patent Application No. 200-02-475709. It should be noted that components that are substantially the same as the components shown in FIG.
  • a second common transfer chamber 20 is interposed.
  • Two processing chambers 4E and 4F are connected to the second common transfer chamber 20 via gate valves 6, respectively.
  • a pass section 22 that connects the two common transfer chambers 2 and 20 and that can temporarily hold the wafer W is connected. Is tied. When the wafer W is transferred, the wafer is temporarily held in the pass section 22.
  • the shape of the first common transfer chamber 2 is also an irregular heptagon in order to connect the path portions 22.
  • a gate valve 6 is provided at the junction with 22. As a result, the common transfer chambers 2 and 20 can be connected and disconnected.
  • the susceptor 32 E holding the wafer W is also provided in the above two processing chambers 4 E and 4 F.
  • 3 2 F is provided respectively.
  • a transfer mechanism 24 having two picks 24A and 24B and capable of bending and extending and turning is also provided. Then, by the same operation as described above, the fly is transported efficiently.
  • the transfer port 52 at the connection portion between the second common transfer chamber 20 and one of the two load lock chambers, for example, the load lock chamber 8A, is provided with a second common transfer chamber. It is used as a carry-in port for carrying into the transfer chamber 20 exclusively.
  • the transfer port 54 at the connection between the second common transfer chamber 20 and the other load port chamber 8B carries the semiconductor wafer out of the second common transfer chamber 20 exclusively. Used as a carry-out port.
  • the buffer mechanism 38 shown in FIG. 1 is not provided in the first common transfer chamber 2.
  • the path section 22 has the function of the buffer mechanism 38.
  • the pass section 22 has two workpiece holding mechanisms 56, 58 disposed at the center thereof, and a pair of workpieces disposed outside thereof. And a holding mechanism 60 are provided.
  • the two object holding mechanisms 56, 58 located at the center have base plates 56A, 58A formed in a substantially U-shape, respectively.
  • On each of the base plates 56A and 58A three support pins 56B and 58B are provided so as to protrude upward.
  • the center portions of the back surface of the wafer W can be separately and independently supported by the support pin groups 56 B and 58 B.
  • the U-shaped base plates 56 A and 58 A are arranged so as to be fitted to each other and slightly apart from each other, and as shown in FIG.
  • the elevating rods 56 C and 58 C are connected to the upper ends of the elongating rods so that they can be moved up and down independently.
  • the base of these lifting rods 56 C and 58 C is No bellows are provided.
  • the lifting rods 56 C and 58 C can be raised and lowered while maintaining the airtightness of the inside of the path portion 22.
  • these two workpiece holding mechanisms 56 and 58 can selectively support one wafer W.
  • FIG. 5 shows that the workpiece holding mechanism 56 is This shows a state in which one wafer W is held.
  • one of these two workpiece holding mechanisms 56 and 58 for example, the workpiece holding mechanism 56 (partly shaded in FIG. 4) or The wafer W immediately before being loaded into the specific processing chamber 4C is supported. Further, the other object holding mechanism 58 supports the wafer W that has been processed in the specific processing chamber 4C. That is, the processing target holding mechanism 58 functions as a contamination processing target holding mechanism.
  • the object holding mechanism 60 located outside the two object holding mechanisms 56, 58 has a pair of support plates 6OA arranged on the left and right, and the support plates 6OA at the upper end. And a lifting rod 60 B to be supported.
  • the support plate 6OA can move up and down while holding the peripheral portion of the back surface of the wafer W.
  • a bellows (not shown) is also provided at the base of the elevator door 60B. As a result, the elevator doors 60B can be moved up and down while maintaining the airtightness of the inside of the path section 22. +
  • the workpiece holding mechanism 60 can hold the wafer W at a high position, as shown in FIG.
  • the object-to-be-processed holding mechanism 60 is used when the wafer W is loaded from the second common transfer chamber 20 to the first common transfer chamber 2. That is, the processing target holding mechanism 60 functions as a cleaning processing target holding mechanism. That is, while the cleaning object holding mechanism 60 holds the wafer W at a high position, the buffer object holding mechanism 56 is carried into the specific processing chamber 4C below the wafer W. The wafer W immediately before being transferred can be temporarily held for a change operation, or the processed wafer W to be unloaded can be held by the contamination object holding mechanism 58. . In other words, the entire path section 22 can hold two wafers W at the same time.
  • the processing for the semiconductor wafer W is performed in the order of the processing chamber 4E ⁇ the processing chamber 4A ⁇ the processing chamber 4B ⁇ the specific processing chamber 4C ⁇ the processing chamber 4D ⁇ the processing chamber 4F. Further, the wafer W is transferred as indicated by an arrow in FIG. Again, the path where the pick for tallies is used is shown as a black arrow, and the path where the pick for contamination is used is shown as a white arrow. As described above, the transfer operation in the transfer-side transfer chamber 10 is exactly the same as the case shown in FIG. 1, and a description thereof will be omitted here.
  • the contamination pick 24b of the transfer mechanism 24 goes to the processing chamber 4F to pick up the processed wafer W, and transfers it to the load lock chamber for the vacant contamination according to the transfer path Z1. 8 Place in B.
  • the contamination pick 24 B is formed of a metal thin film supported by the support pins 58 B (see FIGS. 4 and 5) of the contamination target holding mechanism 58 of the path portion 22 ′. Then, the wafer W having been deposited is picked up and transferred along the transfer path Z2 into the empty processing chamber 4F. After that, the processing in the processing chamber 4F is started.
  • the cleaning pick 24A picks up the processed wafer W in the processing chamber 4E, and moves it along the transport path Z3 to the empty cleaning object in the above-mentioned pass section 222. Place on both supporting plates 6 OA of holding mechanism 60. As shown in FIG. 5, the wafer W is held at a high position by both support plates 6OA. As described above, in this state, one of the other two workpiece holding mechanisms 56, 58 is different from the other. Can hold W.
  • the cleaning pick 24A picks up the unprocessed wafer W waiting in the clean load lock chamber 8A, and removes the unprocessed wafer W along the transfer path Z4. Bring it inside. Thereafter, the processing in the processing chamber 4E is started. When the semiconductor wafer W is loaded or unloaded, the corresponding gate valve 6 is opened or closed.
  • the contamination pick 18B of the transfer mechanism 18 goes to the processing chamber 4D to pick up the processed wafer W, and follows the transfer path Y1 to remove the processed wafer W in the empty state of the pass section 22.
  • the support pins 58B of the workpiece holding mechanism 58 for use.
  • the wafer W placed on the support pins 58B is immediately transferred to the second common transfer chamber 20 side, and the support pins 58 are again empty.
  • the contamination pick 18B goes to pick up the processed wafer W in the specific processing chamber 4C, and carries it into the empty processing chamber 4D according to the transfer path Y2. . After that, the processing in the processing chamber 4D is started.
  • the support pins 5 6 B (see FIGS. 4 and 5) of the buffer object holding mechanism 56 of the pass section 22 serving as a buffer mechanism are processed in the processing chamber 4 B in advance.
  • the completed wafer W is held.
  • the contamination pick 18B goes to pick up the wafer W supported on the support pins 56B, and carries it into the empty specific processing chamber 4C according to the transfer path Y3. Thereafter, the processing in the specific processing chamber 4C is started.
  • a cleaning pick 18A goes to pick up the processed wafer W in the processing chamber 4B, and places it on the empty supporting pins 56B according to the transport path Y4. The wafer W waits here.
  • the cleaning pick 18A goes to pick up the processed wafer W in the processing chamber 4A, and transports it to the empty processing chamber 4B according to the transport path Y5. Put. Thereafter, the processing in the processing chamber 4B is started.
  • the unprocessed wafer W supported and supported by the support plate 6 ⁇ A of the cleaning target holding mechanism 60 of the pass section 22 2 is picked up by the cleaning pick 18A. Go along and carry it into the empty processing chamber 4A ⁇ along the transport route Y6. After that, the processing in the processing chamber 4A is started. When the semiconductor wafer W is loaded or unloaded, the corresponding gut valve 6 is opened or closed.
  • the above operation is repeatedly performed.
  • the contamination W Picks 16B, 18B, 24B are used.
  • the picks for cleaning 16 A, 18 A and 24 A are used.
  • the wafer that has been processed in the previous processing chamber is temporarily held by the buffer workpiece holding mechanism 56 in the pass section 22.
  • the wafer switching operation is performed between the cleaning pick 18A and the contamination pick 18B.
  • a gate valve 6 that can be opened and closed is interposed between the first common transfer chamber 2 and the path section 22 that is connected to the second common transfer chamber 20. .
  • the opening / closing operation of each gate valve 6 during transfer of the wafer is restricted.
  • the gate valve 6 cannot be opened in a state where the processing chambers communicate with each other. In other words, the gate valves 6 of two or more processing chambers are the same. It is avoided that the chambers are sometimes opened and the processing chambers are in communication even temporarily.
  • the processing gas a gas that can cause cross-contamination (contamination propagation), a corrosive gas, or a gas that exhibits an explosive property when mixed with another gas is used. Therefore, in general, when the gate valve of each processing chamber is opened, the pressure in the common transfer chambers 2 and 22 is, for example, 27 Pa (20 Om Torr) by an inert gas such as N 2 gas. ) The pressure is higher than the processing chamber. Thus, even when the gate valve is opened, the residual processing gas in the processing chamber does not flow out to the common transfer chamber.
  • the gate valves of two or more processing chambers cannot be opened at the same time in order to further suppress the generation of contamination and the like.
  • the gate valve 6 between the pass section 22 and the first common transfer chamber 2 is closed and the connection between the two common transfer chambers 2 and 20 is shut off, the first common transfer chamber 2
  • Each of the gate valves 6 of the processing chambers 4A to 4D connected to each other is controlled so as to be selectively opened.
  • the gate valves 6 of the processing chambers E and 4F communicated with the second common transfer chamber 20 and the two gates provided at the connecting portion of the load lock chambers 8A and 8B.
  • the valves are also controlled so that they can only be opened alternatively.
  • a gate valve 6 is provided in the path section 22 so that communication and shutoff between the two common transfer chambers 2 and 20 can be freely performed.
  • the gate valve 6 may not be provided in the pass section 22. In this case, between both common transfer chambers 2, 20 Are always in communication with each other via the path section 22.
  • the pass section 22 also has a buffer mechanism.
  • the present invention is not limited to this, and the buffer mechanism 38 described with reference to FIG. 2 may be separately provided at a corner in the first common transfer chamber 2. In this case, it is not necessary for the path section 22 to have a buffer mechanism. Therefore, from the configuration shown in FIG. 4, the buffer object holding mechanism 56 that plays the role of the buffer mechanism can be omitted.
  • the first and second common transfer chambers 2 and 20 each have an empty processing chamber connection portion (polygonal side) to which the above processing chambers are not connected. I have.
  • a small processing chamber for preheating and cooling the wafer can be connected to the empty processing chamber connection. Therefore, in the above embodiment, the object holding mechanisms 56, 58, 60 are multiplexed in the vertical direction in order to secure a space for arranging these small processing chambers.
  • two buffer mechanisms 62A, 6B similar to the buffer mechanism 38 described with reference to FIG. 2B may be juxtaposed in the 'pass section 22'.
  • the buffer mechanism 62 A functions as a cleaning object holding mechanism for relaying the clean wafer W from the second common transfer chamber 20 to the first common transfer chamber 2.
  • the buffer mechanism 62A functions as a buffer processing body holding mechanism for performing the work of changing the wafer W between the picks 18A and 18B. Of course, the wafer is transferred so that the two functions do not compete with each other.
  • the buffer mechanism 62B functions as a contamination holding object holding mechanism for relaying the wafer W processed in the processing chamber 4C from the first common transfer chamber 2 to the second common transfer chamber 20. I do.
  • the transport sequence in this case is as shown in FIG.
  • the wafer W is placed on the tables in the load lock chambers 8A and 8B, and the wafer W is preheated and cooled. For this reason, a load lock room 8 A dedicated to carrying in and a load opening room 8 B dedicated to carrying out are used.
  • the buffer mechanism 38 described with reference to FIG. 2 may be used instead of the table.
  • the tips of the support pins 4 4 of the buffer mechanism 38 are thin. I have to go. If the contact area between the wafer W and the tip of the support pin 4 is small, even if the unprocessed wafer and the processed wafer are transported through the same load lock chamber, the adverse effects due to cross contamination will occur. Relatively minor. That is, in such a case, one load lock chamber may be used. In that case, the number of the transfer ports provided in the first common transfer chamber 2 in FIG. 1 and the second common transfer chamber 20 in FIG. 3 is also one.
  • the semiconductor wafer is described as an example of the object to be processed.
  • the present invention is not limited to this, and the present invention can be applied to the case of processing an LCD substrate, a glass substrate, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本発明は、被処理体に対して汚染の生じ易い処理を行う特定処理室を含む複数の処理室と、2つのピックを有する搬送機構と、を備えた処理装置における被処理体の搬送方法に関する。本発明方法は、前記複数の処理室間を渡り歩くように被処理体を順次搬送する複数の搬送工程を備える。前記特定処理室へ前記被処理体を搬入する直前までの搬送工程は、前記2つのピックの一方のピックを用いて行われ、前記特定処理室へ前記被処理体を搬入する搬送工程及びそれ以後の当該被処理体の搬送工程は、前記2つのピックの他方のピックを用いて行われる。

Description

明 被処理体 の搬送方法 技 術 分 野
本発明は、 半導体ウェハ等の被処理体に対して所定の処理を施す処理 等における被処理体の搬送方法に関する。 背 景 技 術
一般に、 半導体デバイスを製造する際には、 半導体ウェハに対して各種の薄膜 の成膜処理、 改質処理、 酸化拡散処理、 ァニール処理、 エッチング処理等が順次 繰り返して施される。 例えば、 半導体ウェハ上に多層の薄膜が形成され得る。 例えば、 枚葉式の処理システムでは、 前記の各種の処理を連続して行うことが できるように、 複数の処理室が 1つの搬送室に共通に連結されて、 いわゆるクラ スタ処理装置が形成されている。 そして、 半導体ウェハは、 各処理空間をいわば 渡り歩く ようにして搬送され、 必要な処理が各処理室にて連続的に、 且つ効率的 に行われるようになつている。
この種のクラスタ処理装置よりなる従来の処理システムの一例を図 7を参照し て説明する。
図 7に示すように、 この処理システムは、 1つの例えば六角形状の共通搬送室 1 0 2の周囲に 4つの処理室 1 0 4 A〜 1 0 4 Dがそれぞれゲートバルブ 1 0 6 を介して連結されている真空処理装置を有している。 そして、 この共通搬送室 1 0 2には、 2つのロードロック室 1 0 8 A、 1 0 8 Bを介して、 長方形状の搬 入側搬送室 1 1 0が連結されている。
ロードロック室 1 0 8 A、 1 0 8 Bと共通搬送室 1 0 2との連結部及びロード ロック室 1 0 8 A、 1 0 8 Bと搬入側搬送室 1 1 0との連結部には、 それぞれゲ 一トバルブ 1 0 6が介在されている。 また、 搬入側搬送室 1 1 0には、 半導体ゥ ェハを複数枚収容できるカセッ トを載置する例えば 3つの導入ポート 1 1 2及び 半導体ウェハ Wの位置合わせを行うオリエンタ 1 1 4が連結されている。 そして、 搬入側搬送室 1 1 0內には、 半導体ウェハ Wを保持するための 2つの ピック 1 1 6 A、 1 1 6 Bを有すると共に屈伸、 旋回、 昇降及び水平直線移動可 能になされた搬入側搬送機構 1 1 6が設けられている。 また、 共通搬送室 1 0 2 内には、 半導体ウェハ Wを保持するための 2つのピック 1 1 8 A、 1 1 8 Bを有 すると共に屈伸及び旋回可能になされた搬送機構 1 1 8が設けられている。
ここで、 半導体ウェハ Wに対する各処理室 1 0 4 A〜 1 0 4 Dにおける処理が 1 0 4 A→ 1 0 4 B→ 1 0 4 C→ 1 0 4 Dの順序で行われるものと仮定すると、 導入ポート 1 1 2における半導体ウェハ Wは、 矢印で示されたように搬送される。 すなわち、 例えば中央の導入ポート 1 1 2のウェハ Wは、 搬入側搬送機構 1 1 6 のピック 1 1 6 A或いは 1 1 6 Bに保持されて、 オリエンタ 1 1 4に運ばれる。 ウェハ Wはオリエンタ 1 1 4において位置合わせされ、 再びピック 1 1 6 A或い は 1 1 6 Bに保持されて、 いずれか一方のロードロック室、 例えばロードロック 室 1 0 8 A、 内に搬送される。 ロードロック室 1 0 8 A内に搬送されたウェハ W は、 共通搬送室 1 0 2内の搬送機構 1 1 8のピック 1 1 8 A或いは 1 1 8 Bによ つて、 処理室 1 0 4 A〜 1 0 4 Dの順に、 各処理室 1 0 4 A〜 1 0 4 Dを渡り歩 くように順次搬送される。 必要な処理が、 各処理室 1 0 4 A〜 1 0 4 Dにてゥェ ハ Wに施される。 そして、 各種の処理が完了したウェハ Wは、 いずれかのロード ロック室、 ここでは他方のロードロック室 1 0 8 B、 を介して搬入側搬送室 1 1 0内へ搬出され、 その後、 元の導入ポート 1 1 2へ戻される。
各搬送機構 1 1 6、 1 1 8においては、 スループットを向上させるために、 2 つのピックの内の一方のピックが空状態とされる。 この空状態のピックで、 ある 場所に先に載置或いは収容されているウェハが取り上げられて、 当該場所を空き 場所とする。 次に、 他方のピックにより、 当該他方のピックに保持されていたゥ ェハが前記空き場所に載置或いは収容される。 このようにして、 ウェハの交換が 円滑に行われ、 スループットの向上が図られている。
また、 クロスコンタミネーシヨンを防止する従来技術として、 多数の処理室を 有する処理システムにおいて、 搬送機構の多数のピックが処理室毎にそれぞれ割 り当てられる技術がある (例えば、 特開平 7— 1 2 2 6 1 2号公報 (第 3— 4頁、 図 1 _図 2 ) 参照) 。 この技術によれば、 ウェハが各処理室間で搬送されても、 ある工程 (処理室) で発生された汚染物質が他の工程に影響を及ぼさない。 発 明 の 要 旨
ところで、 上記処理室 1 04A〜1 04Dにおける処理として、 半導体ウェハ Wに対して汚染の生じ易い処理が行われる場合がある。 例えば Cu膜、 T i膜、 W (タングステン) 膜のような金属薄膜を成膜する処理が行われる場合、 この種 の金属のパーティクルがウェハ表面に付着し得る。 金属のパーティクルは核にな つて、 CVD成膜時に膜の異常成長を生じさせ得る。 また、 パーティクルが付着 している部分には他の膜が堆積されない。 また、 特に Cuパーティクルは、 Cu 原子の酸化膜中での拡散係数が大きいことから、 S i 02 膜の誘電率を低下させ てしまう。
例えば処理室 1 04 Cにおいて上記した金属薄膜の成膜処理が行われると仮定 すると、 上述のように各ピック 1 1 6 A、 1 1 68及び1 1 8 、 1 1 8 Bがス ループッ トを優先して運用される場合、 各ピック 1 1 6 A、 1 1 6 B及ぴ 1 18 A、 1 1 8 Bの全てが処理室 104 Cにて処理済みのウェハを保持し得る。 従つ て、 処理済みのウェハの裏面等に付着している金属膜のパーティクルがピック 1 1 6 A、 1 1 6 B、 1 1 8 A、 1 1 8 Bに付着し得て、 汚染されたピックが処 理室 1 04 Cへの搬入前のウェハ Wを保持する際に、 このウェハ自体が上記した 金属膜のパーティクルによって汚染され得る。 また、 ピックの汚染は、 金属膜の 成膜処理を行う処理室 1 04 C内へピックを挿入しただけでも生ずる可能性があ る。
本発明は、 上記したクロスコンタミネーシヨンの問題に着目し、 これを有効に 解決すべく創案されたものである。 本発明の目的は、 スループットを犠牲にして でもクロスコンタミネーション (汚染の伝播) の発生を抑制することが可能な被 処理体の搬送方法を提供することにある。
本発明は、 被処理体に対して汚染の生じ易い処理を行う特定処理室を含む複数 の処理室と、 2つのピックを有する搬送機構と、 を備えた処理装置における被処 理体の搬送方法において'、 前記複数の処理室間を渡り歩くように被処理体を順次 搬送する複数の搬送工程を備え、 前記特定処理室へ前記被処理体を搬入する直前 までの搬送工程は、 前記2つのピックの一方のピックを用いて行われ、 前記特定 処理室へ前記被処理体を搬入する搬送工程及びそれ以後の当該被処理体の搬送ェ 程は、 前記 2つのピックの他方のピックを用いて行われることを特徴とする被処 理体の搬送方法である。
汚染が生じ易い特定処理室に被処理体を搬入する直前までは一方のピックを用 い、 特定処理室への被処理体の搬入及ぴそれ以降の搬送は他方のピックを用いる ようにしたので、 被処理体とピックとによるクロスコンタミネーシヨン (汚染の 伝播) を極力抑制することが可能となる。 '
この場合、 好ましくは、 本発明方法は、 前記一方のピックから前記他方のピッ クへ前記被処理体を持ち換える持ち換え工程を更に備え、 当該持ち替え工程は、 前記一方のピックにより、 バッファ機構に被処理体を保持させる工程と、 前記他 方のピックにより、 バッファ機構に保持された被処理体を取りに行く工程と、 を 有する。
また、 本発明は、 被処理体に対して汚染の生じ易い処理を行う特定処理室を含 む複数の処理室と、 前記各処理室に共通に連結された共通搬送室と、 前記共通搬 送室内に設けられた、 2つのピックを有する搬送機構と、 前記共通搬送室内に設 けられた、 被処理体を一時的に保持するバッファ機構と、 前記共通搬送室に対し て被処理体を搬出入させる搬送口と、 を備えた真空処理装置における被処理体の 搬送方法において、 前記複数の処理室間を渡り歩くように被処理体を順次搬送す る複数の搬送工程を備え、 前記特定処理室へ前記被処理体を搬入する直前までの 搬送工程は、 前記 2つのピックの一方のピックを用いて行われ、 前記特定処理室 へ前記被処理体を搬入する搬送工程及びそれ以後の当該被処理体の搬送工程は、 前記 2つのピックの他方のピックを用いて行われ、 前記バッファ機構を用いて前 記一方のピックから前記他方のピックへ前記被 ^理体を持ち換える持ち換え工程 を更に備えたことを特徴とする被処理体の搬送方法である。
この場合も、 被処理体に対して汚染が生じ易い処理を行う特定処理室へ被処理 体を搬入する直前までの搬送と、 特定処理室へ被処理体を搬入する際及びそれ以 降の搬送とで使用するピックを区別するようにしたので、 被処理体とピックとに よるクロスコンタミネーシヨン (汚染の伝播) を極力抑制することが可能となる。 また、 本発明は、 複数の処理室と、 前記各処理室に共通に連結された共通搬送 室と、 前記共通搬送室内に設けられた、 2つのピックを有する搬送機構と、 を各 々備えた複数の真空処理装置がパス部を介して連結されて構成された処理システ ムであって、 前記処理システム内のいずれかの処理室が、 被処理体に対して汚染 の生じ易い処理を行う特定処理室であり、 前記特定処理室に連結された共通搬送 室、 または、 当該共通搬送室に連通するパス部に、 被処理体を一時的に保持する バッファ機構が設けられており、 いずれかの共通搬送室に、 当該共通搬送室に対 して被処理体を搬出入させる搬送口が設けられている処理システムにおける彼処 理体の搬送方法において、 前記複数の処理室間を渡り歩くように被処理体を順次 搬送する複数の搬送工程を備え、 前記特定処理室へ前記被処理体を搬入する直前 までの搬送工程は、 前記 2つのピックの一方のピックを用いて行われ、 前記特定 処理室へ前記被処理体を搬入する搬送工程及びそれ以後の当該被処理体の搬送ェ 程は、 前記 2つのピックの他方のピックを用いて行われ、 前記バッファ機構を用 いて前記一方のピックから前記他方のピックへ前記被処理体を持ち換える持ち換 え工程を更に備えたことを特徴とする被処理体の搬送方法である。
この場合も、 被処理体に対して汚染が生じ易い処理を行う特定処理室へ被処理 体を搬入する直前までの搬送と、 特定処理室へ被処理体を搬入する際及びそれ以 降の搬送とで使用するピックを区別するようにしたので、 被処理体とピックと ,に よるクロスコンタミネーシヨン (汚染の伝播) を極力抑制することが可能となる。 好ましくは、 前記パス部には、 被処理体を保持できる少なく とも 2つの被処理 体保持機構が設けられており、 一方の被処理体保持機構は、 前記特定処理室へ搬 入される前の被処理体を保持し、 他方の被処理体保持機構は、 前記特定処理室で 処理された後の被処理体を保持するようになつている。
また、 好ましくは、 前記パス部には、 当該パス部を介して連結された共通搬送 室に対する連通及び遮断を制御するゲートバルブが設けられており、 前記各処理 室には、 当該処理室が連結された共通搬送室に対する連通及び遮断を制御するゲ ートバルブが設けられており、 前記パス部のゲートバルブが閉状態の時には、 当 該パス部により連通されていない各共通搬送室に連結された各処理室のゲートバ ルブは、 各共通搬送室毎に 1つだけ択一的に開状態とされ、 前記パス部のゲート バルブが開状態の時には、 当該パス部により連通されている共通搬送室に連結さ れた各処理室のゲートバルブは、 連通された共通搬送室毎に 1つだけ択一的に開 状態とされるようになつている。
この場合、 異なる処理室で用いていた異なる処理ガス同士が混合して汚染等の 不都合が生ずることが確実に防止され得る。
また、 好ましくは、 前記持ち替え工程は、 前記一方のピックにより、 バッファ 機構に被処理体を保持させる工程と、 前記他方のピックにより、 バッファ機構に 保持された被処理体を取りに行く工程と、 を有する。
また、 好ましくは、 前記搬送口は、 2つ設けられており、 前記一方の搬送口は、 搬入専用の搬入口として用いられ、 前記他方の搬送口は、 搬出専用の搬出口とし て用いられるようになっている。
この場合、 好ましくは、 前記 2つの搬送口には、 真空状態と大気圧状態とが繰 り返されるロード口ック室が、 ゲー 1、バルブを介してそれぞれ連結されており、 前記ロード口ック室には、 2つのピックを有する搬入側搬送機構が設けられた搬 入側搬送室が、 ゲートバルブを介して共通に連結されており、 前記被処理体を前 記搬入側搬送室から前記ロード口ック室に搬入する搬送工程は、 前記搬入側搬送 機構の一方のピックを用いて行われ、 前記被処理体を前記ロード口ック室から前 記搬入側搬送室に搬出する搬送工程は、 前記搬入側搬送機構の他方のピックを用 いて行われる。
また、 例えば、 前記特定処理室では、 前記被処理体に金属薄膜を堆積する処理 が行われる。 図面の簡単な説明
図 1は、 本発明に係る搬送方法を実施するための処理システムの一例を示す概 略構成図である。
図 2は、 バッファ機構の一例を示す斜視図である。
図 3は、 処置システムの変形実施例の一例を示す構成概略図である。
図 4は、 バッファ機構を兼ね備えたパス部を示す斜視図である。
図 5は、 パス部での動作を説明するための説明図である。 図 6は、 処置システムの他の変形実施例の一例を示す構成概略図である。
図 7は、 クラスタ処理装置よりなる従来の処理システムの一例を示す図である。 発明を実施するための最良の形態
以下に、 本発明に係る被処理体の搬送方法の一実施例を添付図面に基づいて詳 述する。
図 1は、 本発明に係る搬送方法を実施するための処理システムの一例を示す概 略構成図、 図 2は、 バッファ機構の一例を示す斜視図である。
図 1に示すように、 この処理システム 3 0は、 1つの例えば六角形状の共通搬 送室 2の周囲に真空引き可能になされた 4つの処理室 4 A〜 4 Dがそれぞれゲー トバルブ 6を介して連結されている真空処理装置を有している。 各処理室 4 A〜 4 Dには、 被処理体である半導体ウェハ Wを載置するサセプタ 3 2 A〜3 2 Dが 設けられ、 半導体ウェハ Wに対して所定の処理を施し得るようになつている。 そ して、 この共通搬送室 2には、 真空引き可能になされた 2つのロードロック室 8 A、 8 Bを介して、 長方形状の搬入側搬送室 1 0が連結されている。
ロードロック室 8 A、 8 Bと共通搬送室 2との連結部及びロード口ック室 8 A、 8 Bと搬入側蠏送室 1 0との連結部には、 それぞれゲートバルブ 6が介在されて いる。 また、 搬入側搬送室 1 0には、 半導体ウェハを複数枚収容できるカセッ ト を載置する例えば 3つの導入ポート 1 2及び半導体ウェハ Wの位置合わせを行う オリエンタ 1 4が連結されている。 本実施の形態のォリエンタ 1 4は、 半導体ゥ ェハ Wを回転して偏心量を光学的に求めて位置合わせを行うようになっている。 そして、 搬入側搬送室 1 0内には、 半導体ウェハ Wを保持するための 2つのピ ック 1 6 A、 1 6 Bを有すると共に屈伸、 旋回、 昇降及び水平直線移動可能にな された搬入側搬送機構 1 6が設けられている。 また、 共通搬送室 2内には、 半導 体ウェハ Wを保持するための 2つのピック 1 8 A、 1 8 Bを有すると共に屈伸及 び旋回可能になされた搬送機構 1 8が設けられている。
ここで、 共通搬送室 2と 2つのロードロック室の内のいずれか一方、 例えば口 ードロック室 8 A、 との連結部の搬送口 3 4は、 半導体ウェハを共通搬送室 2内 へ専用に搬入する搬入口として用いられる。 一方、 共通搬送室 2と他方のロード ロック室 8 Bとの連結部の搬入口 3 6は、 半導体ウェハを共通搬送室 2から外へ 専用に搬出する搬出口として用いられる。
共通搬送室 2内の片隅には、 半導体ウェハ Wを一時的に保持するためのバッフ ァ機構 3 8が設けられている。 このバッファ機構 3 8は、 図 2に示すように、 上 下動する昇降口ッド 4 0と、 昇降口ッド 4 0の上端に設けられた板状のバッファ ベース 4 2と、 バッファベース 4 2上に突出する例えば 3本の支持ピン 4 4と、 を有している。 この 3本の支持ピン 4 4の上端が、 ウェハ Wの裏面を支持できる ようになっている。 次に、 以上のように構成された処理システム 3 0における被処理体の搬送方法 について説明する。
ここでは、 処理室 4 Cにおいて、 半導体ウェハ Wに対して汚染が生じ易い処理 として、 C u膜等の金属薄膜を堆積する処理が行われるものと仮定する。 処理室 4 Cにおいて当該処理が行われるため、 処理室 4 Cが特定処理室となる。 尚、 こ の [特定] なる表現は、 単に他の処理室から区別するためのものである。
処理室 4 Cにて金属薄膜の成膜処理がなされた半導体ウェハ Wを搬送する際に は、 このウェハ Wの裏面等に不要な金属薄膜が付着していてこれがピックに付着 (伝播) する恐れがある。 従って、 本実施の形態では、 一方のピックのみがコン タミ用ピックとして専用に用いられる。 上記特定処理室 4 Cへウェハ Wを搬入す る直前までは、 他方のピックがクリーン用ピックとして専用に用いられる。 タリ 一ン用ピックは、 上記特定処理室 4 C内へ侵入させられただけでも汚染される恐 れがある。 従って、 本実施例では、 ウェハを特定処理室 4 C内へ搬入する際にも、 コンタミ用ピックが用いられる。 また、 コンタミ用ピックが金属薄膜の堆積処理 の直前の処理を行う処理室、 ここでは処理室 4 B、 に侵入させられると、 この処 理室 4 B内が汚染される恐れがある。 そこで、 本実施例では、 半導体ウェハをク リーン用ピックからコンタミ用ピックへ持ち換える操作は、 上記バッファ機構 3 8を使用して行われる。
さて、 上記した条件の下で、 半導体ウェハ Wに対する各処理室 4 A ~ 4 Dにお ける処理が 4 A→4 B→4 C→ 4 Dの順序で行われるものと仮定すると、 半導体 ウェハ WTよ、 矢印で示されたように搬送される。 ここでは、 一例として、 3つの 導入ポート 1 2の内の中央の導入ポート 1 2に設置されたカセット (キャリアも 含む) からウェハが取り出される。 また、 2つのロードロック室 8 A、 8 Bの内 のロード口ック室 8 Aが、 特定処理室 4 Cによる処理前のウェハ Wの搬入用に用 いられ、 他方のロードロック室 8 Bが、 特定処理室 4 Cによる処理後のウェハ W の搬出用に用いられる。
また、 ここでは、 各搬送機構 1 6、 1 8において、 2つのピックの内のピック 1 6 A s 1 8 Aがクリーン用ピックとして用いられ、 他方のピック 1 6 B、 1 8 Bがコンタミ用ピックとして用いられる。 図中において、 クリーン用ピックが用 いられる経路が黒色の矢印として表され、 コンタミ用ピックが用いられる経路が 白抜きの矢印として表されている。
図 1においては、 各処理室 4 A〜 4 Dはそれぞれウェハ Wを収容している。 こ こで、 各処理室 4 A〜4 Dの処理は、 終了しているか略終了しかけているものと する。 ぐ搬入側搬送室 1 0内の搬送操作 >
まず、 搬入側搬送室 1 0内の操作について説明する。 全ての処理室 4 A〜4 D で処理されてロード口ック室 8 B内に収容されているウェハ Wは、 搬入側搬送機 構 1 6のコンタミ用ピック 1 6 Bによって、 搬送経路 X 1に従って中央の導入ポ ート 1 2へ搬送されて収容される。
また、 中央の導入ポート 1 2の未処理のウェハ Wは、 クリーン用ピック 1 6 A によって、 搬送経路 X 2に従ってオリエンタ 1 4へ搬送される。 当該ウェハ Wは オリエンタ 1 4において位置合わせされ、 再度クリーン用ピック 1 6 Aによって 他方のロードロック室 8 A内へ収容される。 以上の操作が、 ウェハ Wの処理が進 む毎に、 繰り返し行われる。
<共通搬送室 2内の搬送操作 >
次に、 共通搬送室 2内でのウェハの搬送操作について説明する。
1 . まず、 搬送機構 1 8のコンタミ用ピック 1 8 Bが、 処理室 4 Dにて処理済 みのウェハ wを取りに行き、 搬送経路 Y 1に従ってこれを空き状態のコンタミ用 のロードロック室 8 B内に置く。
2 . 次に、 コンタミ用ピック 1 8 Bは、 特定処理室 4 C内の処理済みのウェハ Wを取りに行き、 搬送経路 Y 2に従ってこれを空き状態の処理室 4 D内へ搬入し て置く。 その後、 処理室 4 D内での処理が開始される。
3 . ここで、 バッファ機構 3 8上には、 予め処理室 4 Bにて処理済みのウェハ Wが保持されている。 コンタミ用ピック 1 8 Bは、 バッファ機構 3 8上に载置さ れているウェハ Wを取りに行き、 搬送経路 Y 3に従ってこれを空き状態の特定処 理室 4 C内に搬入して置く。 その後、 この特定処理室 4 C内での処理が開始され る。
4 . 次に、 処理室 4 B内の処理済みのウェハ Wをクリーン用ピック 1 8 Aが取 りに行き、 搬送経路 Ϋ 4に従ってこれを上記空き状態のバッファ機構 3 8上に置 く。 ウェハ Wはここで待機する。
5 . 次に、 処理室 4 A内の処理済みのウェハ Wをクリーン用ピック 1 8 Aが取 りに行き、 搬送経路 Y 5に従ってこれを上記空き状態の処理室 4 B内へ搬送して 置く。 その後、 処理室 4 B内での処理が開始される。
6 . 次に、 クリーン用ロードロック室 8 A内で待機していた未処理のウェハ W をクリーン用ピック 1 8 Aが取りに行き、 搬送経路 Y 6に従ってこれを上記空き 状態の処理室 4 A内へ搬入して置く。 その後、 処理室 4 A内での処理が開始され る。 尚、 半導体ウェハ Wの搬出入の際には、 対応するゲートバルブ 6が開閉操作 されるのは勿論である。
そして、 各処理室 4 A〜4 Dにおける半導体ウェハ Wの処理が完了する毎に、 上記した操作が繰り返し行われる。 以上のように、 特定処理室 4 C内へウェハ Wを搬送する工程および特定処理室 4 Cにて金属薄膜が形成されて金属汚染を生ずる恐れのあるウェハを搬送するェ 程では、 必ずコンタミ用ピック 1 6 B、 1 8 Bが用いられる。 逆に、 それより以 前のウェハ Wの搬送工程ではクリーン用ピック 1 6 A、 1 8 Aが用いられる。 こ のようにピックを区別して使用することにより、 クロスコンタミネーシヨン (汚 染の伝播) が発生することを極力抑制することが可能となる。
尚、 上記各処理室 4 A〜4 D間における搬送順序は、 単に一例を示したに過ぎ ず、 これに限定されないのは勿論である。 どのような搬送経路の場合でも、 ゥェ ハに対して汚染の生じ易い処理を行う処理室にウェハが搬入される直前に、 前ェ 程の処理室で処理済みのウェハがー且バッファ機構 3 8で保持され、 ここでクリ ーン用ピック 1 8 Aとコンタミ用ピック 1 8 Bとの間でのウェハの持ち換え操作 が行われる。 これにより、 上述したように、 クリーン用ピック 1 8 Aが汚染され ることが防止され、 その結果、 特定処理室 4 Cにて処理される前のウェハ Wに対 する汚染が防止され得る。
<処理システムの変形実施例 >
前述した実施例では、 1つの共通搬送室 2に複数の処理室 4 A〜 4 Dが連結さ れている真空処理装置を有する処理システムにおける搬送方法について説明した。 しかし、 本発明はこの種の処理システムに限定されず、 例えば複数の共通搬送室 (真空処理装置) が連結されている構成の処理システムにおいても適用すること ができる。
図 3は、 このような処理システムの変形実施例の一例を示す概略構成図、 図 4 は、 バッファ機構を兼ね備えたパス部 (中継部) を示す斜視図、 図 5は、 パス部 での動作を説明するための説明図である。 パス部の機構自体は、 特願 2 0 0 2— 0 4 7 5 0 9号に詳細に示されている。 尚、 図 1に示す構成部分と略同一構成部 分については同一符号を付して説明する。
また、 この実施例の場合にも、 特定処理室 4 Cにおいてコンタミネーシヨンの 恐れを生ずる金属薄膜を形成する処理が行われるものと仮定する。
図 3に示す処理システム 5 0では、 図 1に示す処理システム 3 0における第 1 の共通搬送室 2と 2つのロードロック室 8 A、 8 Bとの間に、 別の多角形、 例え ば変則的な七角形、 の第 2の共通搬送室 2 0が介在されている。 第 2の共通搬送 室 2 0に、 2つの処理室 4 E、 4 Fがそれぞれゲートバルブ 6を介して連結され ている。 また、 第 2の共通搬送室 2 0と第 1の共通搬送室 2との間には、 両共通 搬送室 2、 2 0を連通すると共にウェハ Wを一時的に保持できるパス部 2 2が連 結されている。 ウェハ Wの搬送時に、 パス部 2 2にウェハが一時的に保持される ようになつている。 図 3の場合、 第 1の共通搬送室 2の形状も、 上記パス部 2 2 を連結するために変則的な七角形となっている。 第 1の共通搬送室 2とパス部
2 2との接合部には、 ゲートバルブ 6が設けられている。 これにより、 両共通搬 送室 2、 2 0は、 連通及び遮断可能となっている。
上記 2つの処理室 4 E、 4 F内にも、 ウェハ Wを保持するサセプタ 3 2 E、
3 2 Fがそれぞれ設けられる。 また、 第 2の共通搬送室 2 0内にも、 2つのピッ ク 2 4 A、 2 4 Bを有すると共に屈伸及び旋回可能になされた搬送機構 2 4が設 けられている。 そして、 前述したと同様な操作によって、 ゥエバが効率的に搬送 されるようになっている。
また、 第 2の共通搬送室 2 0と 2つのロードロック室の内のいずれか一方、 例 えばロードロック室 8 A、 との連結部の搬送口 5 2は、 半導体ウェハを第 2の共 通搬送室 2 0内へ専用に搬入する搬入口として用いられる。 一方、 第 2の共通搬 送室 2 0と他方のロード口ック室 8 Bとの連結部の搬送口 5 4は、 半導体ウェハ を第 2の共通搬送室 2 0から外へ専用に搬出する搬出口として用いられる。 この処理システム 5 0では、 第 1の共通搬送室 2内に図 1にて示したバッファ 機構 3 8が設けられていない。 バッファ機構 3 8の機能は、 上記パス部 2 2が兼 ね備えている。
図 4及び図 5に示すように、 パス部 2 2には、 その中心部に配置された 2つの 被処理体保持機構 5 6、 5 8と、 この外側に配置された 1対の被処理体保持機構 6 0と、 が設けられている。 中心部に位置する 2つの被処理体保持機構 5 6、 5 8は、 略 U字状に成形されたベース板 5 6 A、 5 8 Aをそれぞれ有している。 各ベース板 5 6 A、 5 8 A上には、 それぞれ 3本の支持ピン 5 6 B、 5 8 Bが上 方へ突出するように設けられている。 各支持ピン群 5 6 B、 5 8 Bによって、 ゥ ェハ Wの裏面の中央部がそれぞれ別個独立に支持され得るようになっている。 図 4に示すように、 U字状のベース板 5 6 A及び 5 8 Aは、 互いに嵌め合わさるよ うにかつ僅かに離間するように配置されており、 図 5に示すように、 それぞれ下 方から延びてくる昇降ロッド 5 6 C、 5 8 Cの上端に連結されて別個独立に昇降 可能となっている。 尚、 これらの昇降ロッド 5 6 C、 5 8 Cの基部には、 図示し ないベローズが設けられている。 これにより、 パス部 2 2の内部の気密性を維持 しつつ昇降ロッド 5 6 C、 5 8 Cは昇降可能である。 " 以上のように、 これら 2つの被処理体保持機構 5 6、 5 8は、 1つのウェハ W を択一的に支持できるようになつている。 図 5は、 被処理体保持機構 5 6がゥェ ハ Wを 1枚保持している状態を示している。
ノ ッファ機能として、 これらの 2つの被処理体保持機構 5 6、 5 8の内のいず れか一方、 例えば被処理体保持機構 5 6 (図 4中にて一部斜線で示す) 、 に特定 処理室 4 Cへ搬入される直前のウェハ Wを支持させるようにする。 また、 他方の 被処理体保持機構 5 8には、 特定処理室 4 Cにて処理済みのウェハ Wを支持させ るようにする。 すなわち、 被処理体保持機構 5 8はコンタミ用被処理体保持機構 として機能する。
一方、 この両被処理体保持機構 5 6、 5 8の外側に位置する被処理体保持機構 6 0は、 左右に配置された 1対の支持板 6 O Aと、 これら支持板 6 O Aを上端で 支持する昇降ロッド 6 0 Bと、 を有している。 支持板 6 O Aは、 ウェハ Wの裏面 の周縁部を保持して上下動し得るようになっている。 この昇降口ッド 6 0 Bの基 部にも、 図示しないべローズが設けられている。 これにより、 パス部 2 2の内部 の気密性を維持しつつ昇降口ッド 6 0 Bは昇降可能である。 +
被処理体保持機構 6 0は、 図 5に示すように、 高い位置においてウェハ Wを保 持できるようになつている。 ここでは、 被処理体保持機構 6 0は、 第 2の共通搬 送室 2 0から第 1の共通搬送室 2へウェハ Wを搬入する場合に用いられる。 すな わち、 被処理体保持機構 6 0は、 クリ一ン用被処理体保持機構として機能する。 すなわち、 クリ一ン用被処理体保持機構 6 0がウェハ Wを高い位置で保持した 状態で、 当該ウェハ Wの下方において、 バッファ用被処瑪体保持機構 5 6が特定 処理室 4 Cへ搬入される直前のウェハ Wを持ち換え操作のために一時的に保持し たり、 或いは、 搬出されるべき処理済みのウェハ Wをコンタミ用被処理体保持機 構 5 8が保持したりすることができる。 すなわち、 このパス部 2 2の全体では、 同時に 2枚のウェハ Wを保持できる。 次に、 以上のように構成された処理システム 5 0における被処理体の搬送方法 について説明する。
まず、 前述したように、 特定処理室 4 Cにおいて、 ウェハに対して汚染が生じ 易い処理が行われるものと仮定する。 そして、 各搬送機構 1 8、 2 4において、 一方のピック例えばピック 1 8 A、 2 4 Aがクリーン用ピックとして用いられ、 他方のピック 1 8 B、 2 4 Bのみがコンタミ用ピックとして用いられる。 尚、 搬 入側搬送機構 1 6の動作は、 図 1において説明したものと全く同様なので、 ここ ではその説明は省略する。
ここで、 半導体ウェハ Wに対する処理は、 処理室 4 E→処理室 4 A→処理室 4 B→特定処理室 4 C→処理室 4 D→処理室 4 Fの順序で行われるものとする。 また、 ウェハ Wは、 図 3中に矢印で示されたように搬送される。 ここでも、 タリ ーン用ピックが用いられる経路が黒色の矢印として表され、 コンタミ用ピックが 用いられる経路が白抜きの矢印として表されている。 尚、 前述したように、 搬入 側搬送室 1 0内での搬送操作は図 1に示した場合と全く同様なので、 ここではそ の説明は省略する。
<第 2の共通搬送室 2 0内の搬送操作 >
まず、 第 2の共通搬送室 2 0内でのウェハの搬送操作について説明する。
1 . まず、 搬送機構 2 4のコンタミ用ピック 2 4 Bが、 処理室 4 Fにて処理済 みのウェハ Wを取りに行き、 搬送経路 Z 1に従ってこれを空き状態のコンタミ用 のロードロック室 8 B内に置く。
2 . 次に、 このコンタミ用ピック 2 4 Bは、 パス部 2 2'のコンタミ用被処理体 保持機構 5 8の支持ピン 5 8 B (図 4及び図 5参照) に支持されている金属薄膜 の堆積済みのウェハ Wを取りに行き、 搬送経路 Z 2に従ってこれを空き状態の処 理室 4 F内へ搬送して置く。 その後、 処理室 4 F内での処理が開始される。
3 . 次に、 処理室 4 E内の処理済みのウェハ Wをクリーン用ピック 2 4 Aが取 りに行き、 搬送経路 Z 3に従ってこれを上記パス部 2 2の空き状態のクリーン用 被処理体保持機構 6 0の両支持板 6 O A上に置く。 図 5に示すように、 ウェハ W は両支持板 6 O Aによって高い位置で保持される。 尚、 前述したように、 この状 態で、 他の 2つの被処理体保持機構 5 6、 5 8の内のいずれか一方が別のゥ. Wを保持できる。
4 . 次に、 クリーン用ロードロック室 8 A内で待機していた未処理のウェハ W をクリーン用ピック 2 4 Aが取りに行き、 搬送経路 Z 4に従ってこれを上記空き 状態の処理室 4 E内へ搬入して置く。 その後、 この処理室 4 E内での処理が開始 される。 尚、 半導体ウェハ Wの搬出入の際には、 対応するゲートバルブ 6が開閉 操作されるのは勿論である。
そして、 各処理室 4 E、 4 Fにおける半導体ウェハ Wの処理が完了する毎に、 上記した操作が線り返し行われる。 く共通搬送室 2内の搬送操作 >
1 . まず、 搬送機構 1 8のコンタミ用ピック 1 8 Bが、 処理室 4 Dにて処理済 みのウェハ Wを取りに行き、 搬送経路 Y 1に従ってこれをパス部 2 2の空き状態 のコンタミ用の被処理体保持機構 5 8の支持ピン 5 8 B上に置く。 支持ピン 5 8 B上に置かれたウェハ Wは、 直ちに第 2の共通搬送室 2 0側へ搬送されて、 支持 ピン 5 8上は再び空き状態となる。
2 . 次に、 コンタミ用ピック 1 8 Bは、 特定処理室 4 C内の処理済みのウェハ Wを取りに行き、 搬送経路 Y 2に従ってこれを空き状態の処理室 4 D内へ搬入し て置く。 その後、 処理室 4 D内での処理が開始される。
3 . ここで、 バッファ機構であるパス部 2 2のバッファ用被処理体保持機構 5 6の支持ピン 5 6 B (図 4及び図' 5参照) 上には、 予め処理室 4 Bにて処理済 みのウェハ Wが保持されている。 コンタミ用ピック 1 8 Bは、 支持ピン 5 6 B上 に支持されているウェハ Wを取りに行き、 搬送経路 Y 3に従ってこれを空き状態 の特定処理室 4 C内に搬入して置く。 その後、 この特定処理室 4 C内での処理が 開始される。
4 . 次に、 処理室 4 B内の処理済みのウェハ Wをクリーン用ピック 1 8 Aが取 りに行き、 搬送経路 Y 4に従ってこれを上記空き状態の支持ピン 5 6 B上に置く。 ウェハ Wはここで待機する。
5 . 次に、 処理室 4 A内の処理済みのウェハ Wをクリーン用ピック 1 8 Aが取 りに行き、 搬送経路 Y 5に従ってこれを上記空き状態の処理室 4 B内へ搬送して 置く。 その後、 処理室 4 B内での処理が開始される。
6 . 次に、 パス部 2 2のクリーン用被処理体保持機構 6 0の支持板 6◦ Aによ り支持されて待機していた未処理のウェハ Wをクリーン用ピック 1 8 Aが取りに 行き、 搬送経路 Y 6に従ってこれを上記空き状態の処理室 4 A內へ搬入して置く。 その後、 処理室 4 A内での処理が開始される。 尚、 半導体ウェハ Wの搬出入の際 には、 対応するグートバルブ 6が開閉操作されるのは勿論である。
そして、 各処理室 4 A〜4 Dにおける半導体ウェハ Wの処理が完了する毎に、 上記した操作が繰り返し行われる。 以上のように、 特定処理室 4 C内へウェハ Wを搬送する工程および特定処理室 4 Cにて金属薄膜が形成されて金属汚染を生ずる恐れのあるウェハを搬送するェ 程では、 必ずコンタミ用ピック 1 6 B、 1 8 B、 2 4 Bが用いられる。 逆に、 そ れより以前のウェハ Wの搬送工程ではクリーン用ピック 1 6 A、 1 8 A、 2 4 A が用いられる。 このようにピックを区別して使用することにより、 クロスコンタ ミネーシヨン (汚染の伝播) が発生することを極力抑制することが可能となる。 尚、 上記各処理室 4 A〜4 F間における搬送順序は、 単に一例を示したに過ぎ ず、 これに限定されないのは勿論である。 どのような搬送経路の場合でも、 特定 処理室にウェハが搬入される直前に、 前工程の処理室で処理済みのウェハが一旦 パス部 2 2のバッファ用被処理体保持機構 5 6で保持され、 ここでクリーン用ピ ック 1 8 Aとコンタミ用ピック 1 8 Bとの間でのウェハの持ち換え操作が行われ る。 これにより、 上述したように、 クリーン用ピック 1 8 Aが汚染されることが 防止され、 その結果、 特定処理室 4 Cにて処理される前のウェハ Wに対する汚染 が防止され得る。
また、 本実施例では、 第 2の共通搬送室 2 0に連通されたパス部 2 2と第 1の 共通搬送室 2との間に、 開閉可能になされたゲートバルブ 6が介設されている。 そして、 各処理室 4 A〜4 F間における処理ガスのクロスコンタミネーションの 発生を防止するために、 ウェハ搬送時において各ゲートバルブ 6の開閉動作が制 限されている。 本実施の形態では、 処理室同士が連通するような状態ではゲート バルブ 6が開けられない。 換言すれば、 2個以上の処理室のゲートバルブ 6が同 時に開いて複数の処理室同士が一時的でも連通状態になる、 ということが回避さ れている。
周知のように、 処理ガスとしては、 クロスコンタミネーシヨン (汚染の伝播) を引き起こし得るガス、 腐食性のガス、 他のガスと混合すると爆発性を発揮する ガス等が用いられる。 従って、 一般には、 各処理室のゲートバルブが開けられる ときには、 共通搬送室 2、 2 2内の圧力は、 N 2 ガス等の不活性ガスにより例え ば 2 7 P a ( 2 0 O m T o r r ) 程度処理室内より高い陽圧状態とされる。 これ により、 ゲートバルブが開いても、 処理室内の残留処理ガスが共通搬送室側へ流 出することがない。
そして、 本実施例では、 更にコンタミネーシヨン等の発生を確実に抑制するた めに、 2つ以上の処理室のゲートバルブが同時には開けられないようになってい る。 例えばパス部 2 2と第 1の共通搬送室 2との間のゲートバルブ 6が閉状態と なって両共通搬送室 2、 2 0の間が遮断されている時には、 第 1の共通搬送室 2 に連結された処理室 4 A〜 4 Dの各ゲートバルブ 6は、 択一的にしか開かれない ように制御される。 一方、 同時に、 第 2の共通搬送室 2 0に連通された処理室 E、 4 Fの各ゲートバルブ 6、 及び、 両ロードロック室 8 A、 8 Bの連結部に設けら れた 2つのゲートバルブも、 択一的にしか開かれないように制御される。
これに対して、 上記パス部 2 2のゲートバルブ 6が開状態で両共通搬送室 2、 2 0の間が連通状態になっている時には、 全処理室 4 A〜4 Fの各ゲートバルブ 6及ぴ両ロードロック室 8 A、 8 Bのゲートバルブは、 択一的にしか開かれない ように制御される。
これにより、 同時に 2つ以上の複数の処理室が連通状態になることを阻止する ことができるので、 処理ガスによるクロスコンタミネーションの発生、 腐食性ガ スの流出、 爆発性ガスの混合生成等の不都合が生ずることを防止することができ る。
尚、 図 3に示す処理システムでは、 パス部 2 2にゲートバルブ 6が設けられて、 両共通搬送室 2、 2 0間の連通、 遮断が自由にできるようになつている。 しかし ながら、 処理ガスのクロスコンタミネーシヨン等の恐れが低い場合には、 パス部 2 2にゲートバルブ 6を設けなくてもよい。 この場合、 両共通搬送室 2、 2 0間 は、 パス部 2 2を介して常に連通状態となる。
また、 上記実施例にあっては、 パス部 2 2がバッファ機構を兼ね備えている。 しかし、 本発明はこれに限定されず、 図 2を用いて説明したようなバッファ機構 3 8を、 第 1の共通搬送室 2内の隅部に別途設けるようにしてもよい。 この場合 には、 パス部 2 2がバッファ機構を兼ね備えることが不要になる。 従って、 図 4 に示す構成から、 バッファ機構の役割を担うバッファ用被処理体保持機構 5 6を 省略することができる。
更に、 上記の実施例では、 第 1、 第 2の共通搬送室 2、 2 0は、 上記各処理室 が'接続されていない空き状態の処理室接続部 (多角形の辺) を有している。 この 空きの処理室接続部には、 ウェハの予備加熱、 冷却等を行う小型の処理室が接続 され得る。 従って、 上記の実施例では、 これら小型の処理室の配置スペースを確 保するために、 被処理体保持機構 5 6、 5 8、 6 0が鉛直方向に多重的に配置さ れている。 もっとも、 かかる小型の処理室を接続する必要がない場合には、 図 6 に示すように、 図 2を用いて説明したようなバッファ機構 3 8と同様な 2つのバ ッファ機構 6 2 A、 6 2 Bが、 'パス部 2 2内に並置されてもよい。
この場合、 バッファ機構 6 2 Aは、 クリーンなウェハ Wを第 2の共通搬送室 2 0から第 1の共通搬送室 2に中継するためのクリーン用被処理体保持機構として 機能する。 更に、 ノ ッファ機構 6 2 Aは、 ピック 1 8 A、 1 8 Bとの間でのゥェ ハ Wの持ち換え作業を行うためのバッファ用処理体保持機構として機能する。 両 機能が競合しないようにウェハが搬送されることは勿論である。 また、 バッファ 機構 6 2 Bは、 処理室 4 Cで処理されたウェハ Wを第 1の共通搬送室 2から第 2 の共通搬送室 2 0に中継するためのコンタミ用被処理体保持機構として機能する。 この場合の搬送シーケンスは、 図 6に示す通りである。
尚、 上記の実施例では、 ロードロック室 8 A、 8 B内のテーブル上にウェハ W が載置されて、 当該ウェハ Wの予備加熱や冷却が行われることが想定されている。 このため、 搬入専用のロードロック室 8 Aと搬出専用のロード口ック室 8 Bとが 用いられている。 しかし、 ロードロック室内でのウェハの予備加熱や冷却が行わ れない場合には、 上記テーブルに代えて、 図 2を用いて説明したようなバッファ 機構 3 8が用いられ得る。 ただし、 バッファ機構 3 8の支持ピン 4 4の先端は細 くなければならない。 ウェハ Wと支持ピン 4 4の先端との接触面積が小さければ、 処理前のウェハと処理後のウェハとが同一のロードロック室を経由して搬送され る場合でも、 クロスコンタミネーシヨンによる弊害が比較的軽微である。 つまり、 かかる場合には、 ロードロック室は 1つでもよい。 その場合には、 図 1における 第 1の共通搬送室 2及び図 3における第 2の共通搬送室 2 0に設けられる搬送口 も 1つになる。
また、 上記実施例では、 被処理体として半導体ウェハを例にとって説明したが、 これに限定されず、 L C D基板、 ガラス基板等を処理する場合にも本発明を適用 できる。

Claims

請 求 の 範 囲
1 . 被処理体に対して汚染の生じ易い処理を行う特定処理室を含む複数の処 理室と、
2つのピックを有する搬送機構と、
を備えた処理装置における被処理体の搬送方法において、
前記複数の処理室間を渡り歩くように被処理体を順次搬送する複数の搬送工程 を備え、
前記特定処理室へ前記被処理体を搬入する直前までの搬送工程は、 前記 2つの ピックの一方のピックを用いて行われ、
前記特定処理室へ前記被処理体を搬入する搬送工程及びそれ以後の当該被処理 体の搬送工程は、 前記 2つのピックの他方のピックを用いて行われる
ことを特徴とする被処理体の搬送方法。
2 . 前記一方のピックから前記他方のピックへ前記被処理体を持ち換える持 ち換え工程を更に備え、
当該持ち替え工程は、
前記一方のピックにより、 ノくッファ機構に被処理体を保持させる工程と、 前記他方のピックにより、 バッファ機構に保持された被処理体を取りに行くェ 程と、
を有する
ことを特徴とする請求項 1に記載の被処理体の搬送方法。
3 . 被処理体に対して汚染の生じ易レ、処理を行う特定処理室を含む複数の処 理室と、
前記各処理室に共通に連結された共通搬送室と、 '
前記共通搬送室内に設けられた、 2つのピックを有する搬送機構と、
前記共通搬送室内に設けられた、 被処理体を一時的に保持するバッファ機構と、 前記共通搬送室に対して被処理体を搬出入させる搬送口と、 を備えた真空処理装置における被処理体の搬送方法において、
前記複数の処理室間を渡り歩くように被処理体を順次搬送する複数の搬送工程 を備え、
前記特定処理室へ前記被処理体を搬入する直前までの搬送工程は、 前記 2つの ピックの一方のピックを用いて行われ、
前記特定処理室へ前記被処理体を搬入する搬送工程及びそれ以後の当該被処理 体の搬送工程は、 前記 2つのピックの他方のピックを用いて行われ、
前記バッファ機構を用いて前記一方のピックから前記他方のピックへ前記被処 理体を持ち換える持ち換え工程
を更に備えたことを特徴とする被処理体の搬送方法。
4 . 複数の処理室と、
前記各処理室に共通に連結された共通搬送室と、
前記共通搬送室内に設けられた、 2つのピックを有する搬送機構と、 を各々備えた複数の真空処理装置がパス部を介して連結されて構成された処理シ ステムであって、
前記処理システム内のいずれかの処理室が、 被処理体に対して汚染の生じ易い 処理を行う特定処理室であり、
前記特定処理室に連結された共通搬送室、 または、 当該共通搬送室に連通する パス部に、 被処理体を一時的に保持するバッファ機構が設けられており、 いずれかの共通搬送室に、 当該共通搬送室に対して被処理体を搬出入させる搬 送口が設けられている
処理システムにおける被処理体の搬送方法において、
前記複数の処理室間を渡り歩くように被処理体を順次搬送する複数の搬送工程 を備え、
前記特定処理室へ前記被処理体を搬入する直前までの搬送工程は、 前記 2つの ピックの一方のピックを用いて行われ、
前記特定処理室へ前記被処理体を搬入する搬送工程及びそれ以後の当該被処理 体の搬送工程は、 前記 2つのピックの他方のピックを用いて行われ、 前記バッファ機構を用いて前記一方のピックから前記他方のピックへ前記被処 理体を持ち換える持ち換え工程
を更に備えたことを特徴とする被処理体の搬送方法。
5 . 前記パス部には、 被処理体を保持できる少なくとも 2つの被処理体保持 機構が設けられており、
—方の被処理体保持機構は、 前記特定処理室へ搬入される前の被処理体を保持 し、
他方の被処理体保持機構は、 前記特定処理室で処理された後の被処理体を保持 するようになっている
ことを特徴とする請求項 4に記載の被処理体の搬送方法。
6 . 前記パス部には、 当該パス部を介して連結された共通搬送室に対する連 通及び遮断を制御するグートバルブが設けられており、
前記各処理室には、 当該処理室が連結された共通搬送室に対する連通及び遮断 を制御するゲートバルブが設けられており、
前記パス部のグートバルブが閉状態の時には、 当該パス部により連通されてい ない各共通搬送室に連結された各処理室のゲートバルブは、 各共通搬送室毎に 1 つだけ択一的に開状態とされ、
前記パス部のグートバルブが開状態の時には、 当該パス部により連通されてい る共通搬送室に連結された各処理室のグートバルブは、 連通された共通搬送室毎 に 1つだけ択一的に開状態とされるようになつている
ことを特徴とする請求項 4または 5に記載の被処理体の搬送方法。
7 . 前記持ち替え工程は、
前記一方のピックにより、 バッファ機構に被処理体を保持させる工程と、 前記他方のピックにより、 バッファ機構に保持された被処理体を取りに行くェ 程と、
を有する ことを特徴とする請求項 3乃至 6のいずれかに記載の被処理体の搬送方法。
8 . 前記搬送口は、 2つ設けられており、
前記一方の搬送口は、 搬入専用の搬入口として用いられ、
前記他方の搬送口は、 搬出専用の搬出口として用いられるようになつている ことを特徴とする請求項 3乃至 6のいずれかに記載の被処理体の搬送方法。
9 . 前記 2つの搬送口には、 真空状態と大気圧状態とが繰り返されるロード 口ック室が、 ゲートバルブを介してそれぞれ連結されており、
前記ロードロック室には、 2つのピックを有する搬入側搬送機構が設けられた 搬入側搬送室が、 ゲートバルブを介して共通に連結されており、
前記被処理体を前記般入側搬送室から前記ロード口ック室に搬入する搬送工程 は、 前記搬入側搬送機構の一方のピックを用いて行われ、
前記被処理体を前記ロード口ック室から前記搬入側搬送室に搬出する搬送工程 は、 前記搬入側搬送機構の他方のピックを用いて行われる
ことを特徴とする請求項 8に記載の被処理体の搬送方法。
1 0 . 前記特定処理室では、 前記被処理体に金属薄膜を堆積する処理が行わ れる
ことを特徴とする請求項 1乃至 9のいずれかに記載の被処理体の搬送方法。
PCT/JP2003/012006 2002-09-25 2003-09-19 被処理体の搬送方法 WO2004030085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNB038165562A CN1310302C (zh) 2002-09-25 2003-09-19 被处理体的输送方法
US10/529,171 US7371683B2 (en) 2002-09-25 2003-09-19 Method for carrying object to be processed
KR1020057004926A KR100659413B1 (ko) 2002-09-25 2003-09-19 피처리체의 반송 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/279991 2002-09-25
JP2002279991A JP4348921B2 (ja) 2002-09-25 2002-09-25 被処理体の搬送方法

Publications (1)

Publication Number Publication Date
WO2004030085A1 true WO2004030085A1 (ja) 2004-04-08

Family

ID=32040473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012006 WO2004030085A1 (ja) 2002-09-25 2003-09-19 被処理体の搬送方法

Country Status (5)

Country Link
US (1) US7371683B2 (ja)
JP (1) JP4348921B2 (ja)
KR (1) KR100659413B1 (ja)
CN (1) CN1310302C (ja)
WO (1) WO2004030085A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088401A (ja) * 2005-08-25 2007-04-05 Tokyo Electron Ltd 基板処理装置,基板処理方法,プログラム,プログラムを記録した記録媒体
JP4884801B2 (ja) * 2005-10-06 2012-02-29 東京エレクトロン株式会社 処理システム
JP4925650B2 (ja) * 2005-11-28 2012-05-09 東京エレクトロン株式会社 基板処理装置
JP2007186757A (ja) * 2006-01-13 2007-07-26 Tokyo Electron Ltd 真空処理装置及び真空処理方法
KR100790789B1 (ko) * 2006-07-03 2008-01-02 코닉시스템 주식회사 반도체 공정장치
KR100847888B1 (ko) * 2006-12-12 2008-07-23 세메스 주식회사 반도체 소자 제조 장치
TWI408766B (zh) * 2009-11-12 2013-09-11 Hitachi High Tech Corp Vacuum processing device
JP2012028659A (ja) * 2010-07-27 2012-02-09 Hitachi High-Technologies Corp 真空処理装置
JP5926694B2 (ja) * 2011-02-08 2016-05-25 東京エレクトロン株式会社 基板中継装置,基板中継方法,基板処理装置
WO2012141067A1 (ja) * 2011-04-15 2012-10-18 タツモ株式会社 ウエハ交換装置およびウエハ支持用ハンド
JP5854741B2 (ja) * 2011-10-04 2016-02-09 株式会社アルバック 基板処理装置
JP5923288B2 (ja) 2011-12-01 2016-05-24 株式会社日立ハイテクノロジーズ 真空処理装置及び真空処理装置の運転方法
US10216176B2 (en) * 2014-04-29 2019-02-26 Asm Ip Holding B.V. Substrate processing apparatus
JP6338989B2 (ja) 2014-09-19 2018-06-06 東京エレクトロン株式会社 基板搬送方法
US9673071B2 (en) * 2014-10-23 2017-06-06 Lam Research Corporation Buffer station for thermal control of semiconductor substrates transferred therethrough and method of transferring semiconductor substrates
CN106356317A (zh) * 2015-07-15 2017-01-25 英属开曼群岛商精曜有限公司 取放腔室
JP6779636B2 (ja) 2016-03-11 2020-11-04 株式会社Screenホールディングス 基板処理装置
JP6635888B2 (ja) 2016-07-14 2020-01-29 東京エレクトロン株式会社 プラズマ処理システム
CN111952139B (zh) * 2019-05-16 2023-11-14 北京北方华创微电子装备有限公司 半导体制造设备及半导体制造方法
JP2019186579A (ja) * 2019-07-31 2019-10-24 東京エレクトロン株式会社 プラズマ処理システム及びフォーカスリング交換方法
CN211788912U (zh) * 2020-04-01 2020-10-27 上海临港凯世通半导体有限公司 离子注入机的作业平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521579A (ja) * 1991-07-16 1993-01-29 Fujitsu Ltd 真空処理装置
JPH10150090A (ja) * 1996-11-18 1998-06-02 Dainippon Screen Mfg Co Ltd 基板処理装置
JPH1126548A (ja) * 1997-06-30 1999-01-29 Sumitomo Precision Prod Co Ltd 基板授受ユニット及びこれを用いたウエット処理装置
US5932014A (en) * 1993-05-07 1999-08-03 Fujitsu Limited Apparatus for producing semiconductor device
EP1152456A2 (en) * 2000-05-04 2001-11-07 Applied Materials, Inc. Method and apparatus for robots having temperature sensitive applications

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286296A (en) * 1991-01-10 1994-02-15 Sony Corporation Multi-chamber wafer process equipment having plural, physically communicating transfer means
JP3288200B2 (ja) * 1995-06-09 2002-06-04 東京エレクトロン株式会社 真空処理装置
US6602793B1 (en) * 2000-02-03 2003-08-05 Newport Fab, Llc Pre-clean chamber
US20020159864A1 (en) * 2001-04-30 2002-10-31 Applied Materials, Inc. Triple chamber load lock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521579A (ja) * 1991-07-16 1993-01-29 Fujitsu Ltd 真空処理装置
US5932014A (en) * 1993-05-07 1999-08-03 Fujitsu Limited Apparatus for producing semiconductor device
JPH10150090A (ja) * 1996-11-18 1998-06-02 Dainippon Screen Mfg Co Ltd 基板処理装置
JPH1126548A (ja) * 1997-06-30 1999-01-29 Sumitomo Precision Prod Co Ltd 基板授受ユニット及びこれを用いたウエット処理装置
EP1152456A2 (en) * 2000-05-04 2001-11-07 Applied Materials, Inc. Method and apparatus for robots having temperature sensitive applications

Also Published As

Publication number Publication date
CN1310302C (zh) 2007-04-11
KR20050052510A (ko) 2005-06-02
CN1669136A (zh) 2005-09-14
KR100659413B1 (ko) 2006-12-19
JP2004119635A (ja) 2004-04-15
JP4348921B2 (ja) 2009-10-21
US7371683B2 (en) 2008-05-13
US20060021575A1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
WO2004030085A1 (ja) 被処理体の搬送方法
JP4925650B2 (ja) 基板処理装置
US7198448B2 (en) Vacuum process system
US20080171435A1 (en) Vacuum Processing Apparatus, Method for Manufacturing Semiconductor Device, and System For Manufacturing Semiconductor Device
JP3966594B2 (ja) 予備真空室およびそれを用いた真空処理装置
US20060045668A1 (en) System for handling of wafers within a process tool
JP3629371B2 (ja) 成膜装置および成膜方法
JPH04190840A (ja) 真空処理装置
JP3215643B2 (ja) プラズマ処理装置
KR101106803B1 (ko) 반도체 웨이퍼 처리용 반도체 제조 시스템, 대기중 로봇핸들링 장비 및 반도체 웨이퍼의 반송 방법
US6322597B1 (en) Semiconductor fabrication line with contamination preventing function
JPH07335711A (ja) 減圧・常圧処理装置
JP2000150618A (ja) 真空処理システム
US20100189532A1 (en) Inline-type wafer conveyance device
JPH06314729A (ja) 真空処理装置
JP2003115518A (ja) 基板処理装置
JP2004304116A (ja) 基板処理装置
JPH07176592A (ja) 被処理体の搬入、搬出装置
JP3066691B2 (ja) マルチチャンバー処理装置及びそのクリーニング方法
JP3420712B2 (ja) 処理システム
JP4359109B2 (ja) 基板処理装置および基板処理方法
JP2004119627A (ja) 半導体製造装置
KR100740805B1 (ko) 다단 반송장치 및 그것을 사용한 기판 처리 설비
JP3665452B2 (ja) 被処理体中継装置
JP4657528B2 (ja) 処理システムおよび処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 20038165562

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057004926

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006021575

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529171

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057004926

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10529171

Country of ref document: US