WO2004025809A1 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
WO2004025809A1
WO2004025809A1 PCT/JP2003/005749 JP0305749W WO2004025809A1 WO 2004025809 A1 WO2004025809 A1 WO 2004025809A1 JP 0305749 W JP0305749 W JP 0305749W WO 2004025809 A1 WO2004025809 A1 WO 2004025809A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive device
heat sink
chamber
case
heat
Prior art date
Application number
PCT/JP2003/005749
Other languages
English (en)
French (fr)
Inventor
Masayuki Takenaka
Kouzou Yamaguchi
Naruhiko Kutsuna
Original Assignee
Aisin Aw Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Aw Co., Ltd. filed Critical Aisin Aw Co., Ltd.
Priority to JP2004535861A priority Critical patent/JP4096267B2/ja
Priority to US10/501,073 priority patent/US7030520B2/en
Priority to EP03721070A priority patent/EP1538731B1/en
Priority to DE60322232T priority patent/DE60322232D1/de
Publication of WO2004025809A1 publication Critical patent/WO2004025809A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units

Definitions

  • the present invention relates to a drive device using an electric motor as a power source, and more particularly, to a cooling technique in a drive device for an electric vehicle or a hybrid drive device.
  • the electric motor When an electric motor is used as a drive source for a vehicle, the electric motor is used as a control device for the control (AC book).
  • control device such as the impeller is connected to the motor by a power cable, the control device can be arranged at an appropriate position separately from the motor. It is more desirable to dispose them together with.
  • the heat resistance temperature of the control device is lower than the heat resistance temperature of the motor. Therefore, when the control device is integrated with the electric motor as described above, some means for interrupting the direct heat transfer from the electric motor to the control device is required to protect the control device. In addition, the temperature of the control device rises due to the heat generated by its own element, so it needs to be cooled to keep it below the heat resistance temperature.
  • a cooling channel for flowing a cooling fluid is formed on the outer periphery of a cylindrical inner body (housing) of an electric motor, and a jacket (a sleeve) is provided on the housing so as to cover an open surface side of the passage.
  • a cooling saddle is formed, and a control housing containing an IGBT module (inverter component) is attached to this cooling saddle.
  • a cooling space is defined at a portion opposite to the control housing and the cooling saddle, and the cooling fluid sent from the water pump flows through the cooling space into the spiral passage, and passes through the heat exchanger.
  • Circulation of cooling fluid back to the water pump is made.
  • a motor body and a controller are integrated via a heat sink, and a coolant is circulated inside a heat sink.
  • a configuration is being sought to cool the controller by cooling the controller and supplying the coolant after circulation to the motor body.
  • the controller since the controller is in direct contact with the heat sink, the cooling effect of the controller can be expected due to the cooling liquid, and a gap is provided to reduce the direct contact area between the heat sink and the motor body. Therefore, the heat insulation effect of the coolant in the gap can be expected, but the heat insulation layer composed of the coolant contacts both the motor body and the heat sink, and its heat-resistant temperature to protect the controller. Reducing the temperature of the coolant to a maximum would require a large-capacity coolant circulation system, which is also inefficient in terms of cooling efficiency.
  • the present invention has been devised based on such conventional technology, and in a drive device in which an inverter is integrated with a motor, the motor is cooled while heat transfer from the motor to the inverter is blocked by a coolant.
  • the main purpose is to provide a temperature difference between the refrigerant and the refrigerant that cools the impeller side so that both can be efficiently cooled by the flow of a small amount of refrigerant according to their heat-resistant temperatures. Disclosure of the invention
  • the present invention provides a driving device comprising: a motor; a driving device case housing the motor; an inverter controlling the motor; and a refrigerant flow path for cooling the impeller.
  • the heat integrated with the substrate The first sink defines a space in a portion facing the drive device case and is attached to the drive device case, and the space includes a first chamber facing the heat sink side and a second chamber facing the drive device case side by the separating means.
  • a heat sink side fin that is separated from the first chamber and communicates with the flow path of the refrigerant, the heat sink extends into the first chamber, and is separated from the separating means.
  • the driving device case may include a driving device-side fin that extends into the second chamber.
  • the cooling effect on the second chamber side facing the drive device case side by increasing the cooling effect on the second chamber side facing the drive device case side, the heat transferred to the first chamber side facing the heat sink side via the separation means can be reduced.
  • the cooling effect on the first chamber side can be improved.
  • the driving device side fins are separated from the separation means.
  • the heat transferred from the drive case to the separation means in the second chamber is increased in the second chamber while the cooling of the second chamber facing the drive case is enhanced by disposing the drive case fins. Can be reduced.
  • the separating means may be a low thermal conductive member made of a material having low thermal conductivity.
  • the drive device side fins may be in contact with the separating means.
  • the separating means for separating the first chamber and the second chamber plays a role of a heat insulating layer, two layers of the refrigerant between the drive device case and the heat sink and a low heat conductive member Three heat insulating layers, which are composed of one layer, are interposed, and the heat insulating effect is further improved.
  • the separating means may be constituted by a separating member and a low thermal conductive member made of a material having low thermal conductivity attached to the separating member.
  • a material having low rigidity can be used for the low thermal conductive member. You can select and use quality ones.
  • the separating means may be constituted by a separating member sandwiching a low heat conductive portion in the middle.
  • the middle part sandwiched between the separation members is made to be a low thermal conductive part, so that the separation members do not necessarily have to have heat insulation properties.Therefore, a wider material is selected and used as the separation members. be able to.
  • FIG. 1 is a system configuration diagram of a cooling system of a drive device of the present invention
  • FIG. 2 is a schematic diagram of an axial longitudinal section of the drive device of the first embodiment
  • FIG. 3 is a schematic plan view showing a pin-shaped fin arrangement pattern
  • FIG. 4 is a schematic plan view showing a rib-like fin arrangement pattern
  • FIG. 5 is a partial cross-sectional side view of an example in which the driving device of the first embodiment is embodied
  • FIG. 6 is a diagram of the driving device of the second embodiment.
  • FIG. 7 is a schematic plan view of a longitudinal cross section in the axial direction
  • FIG. 1 is a system configuration diagram of a cooling system of a drive device of the present invention
  • FIG. 2 is a schematic diagram of an axial longitudinal section of the drive device of the first embodiment
  • FIG. 3 is a schematic plan view showing a pin-shaped fin arrangement pattern
  • FIG. 4 is a schematic plan view showing a rib-like fin arrangement pattern
  • FIG. 5
  • FIG. 7 is a schematic plan view showing the fin arrangement pattern of the second embodiment in which opposing surfaces of a heat sink and a drive device case are arranged on the same plane
  • FIG. FIG. 9 is a schematic plan view showing another fin arrangement pattern in which opposing surfaces of a heat sink and a drive device case are arranged on the same plane.
  • FIG. 9 is an axial partial cross-sectional view of an example that embodies the drive device of the second embodiment.
  • FIG. 10 is a schematic longitudinal cross-sectional view of the drive device of the third embodiment. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically illustrates a cooling system of a drive device to which the present invention is applied.
  • This device includes a motor (not shown), a drive device case 2 that houses the motor, an inverter 3 that controls the motor, and a refrigerant flow path 4 that cools the impeller 3.
  • Means module The drive device in this embodiment constitutes a drive device for an electric vehicle or a hybrid vehicle.
  • the drive device case 2 includes a motor and / or a generator as a motor (not shown), a differential device, and a counter gear mechanism. Etc. are included.
  • the inverter 3 is mounted on the drive device case 2 by forming a space in the portion facing the drive device case 2 by the heat sink 5 integrated with the substrate, which is made of the substrate itself or by attaching another member to the substrate.
  • the space is communicated with a refrigerant flow path 4.
  • the flow path 4 of the refrigerant is a refrigerant circulation path for circulating the refrigerant through the space of the heat sink 5.
  • the refrigerant circulation path for circulating the cooling water as the refrigerant through the heat sink 5 includes a water pump 41 as a pumping source, a radiator 42 as a heat exchanger, and flow paths 43, 44, 45 connecting these. It is composed of It should be noted that the auxiliary equipment such as the drive motor of the water pump 41 is not shown.
  • the discharge-side flow path 43 of the water pump 41 as the starting point of the refrigerant circuit is connected to the inlet port 51 of the heat sink 5, and the outlet port 52 of the heat sink 5 is connected to the return flow path 44.
  • the radiator 42 is connected to the inlet 42 1 side of the radiator 42, and the outlet 42 22 side of the radiator 42 is connected to the suction side flow path 45 of the water pump 41.
  • this refrigerant circulation path the cooling water as the refrigerant is sent from the water pump 41 and then flows through the space inside the heat sink 5 when the heat from the module forming the impeller 3 and the drive case 2 Is heated by absorbing the heat of the air, is sent to the radiator 42 via the return flow path 44, is cooled by heat release to the air, is returned to the water pump 41, and repeats the circulation that completes one cycle Will be.
  • this refrigerant circulation path may be a flow path that passes through the inside of the drive device case 2 for further cooling, for example, at a portion of the return flow path 44.
  • FIG. 2 shown below schematically shows a longitudinal section in the axial direction of the drive device according to the first embodiment.
  • Reference numeral 1 denotes an electric motor
  • 11 denotes a rotor shaft thereof
  • 12 denotes a rotor core
  • 13 denotes a stator core.
  • heat sink 5 is paired with drive case 2
  • the space R defined in the opposite part is separated into a first chamber R1 facing the heat sink side and a second chamber R2 facing the drive unit case side by the separating means 8, and the above-described cooling is performed.
  • the heat sink 5 communicates with the flow path of the medium, and has a plurality of heat sink side fins 56 extending into the first chamber R 1 to secure a heat exchange area and separated from the separation means 8.
  • each fin is shown in an enlarged and exaggerated size with respect to the space R, and their numbers are also used to avoid complicating the drawings. However, the number is shown as being smaller than the actual number.
  • FIG. 3 shown below schematically shows the arrangement pattern of the heat sink side fins 56 in plan view.
  • the heatsink-side fins 56 are arranged in a predetermined pitch with respect to the first chamber R1 so as to generate a natural flow without restricting the flow in the first chamber R1 by the fins. It is a cylindrical pin-shaped fin. The advantage of using such pin-shaped fins is that the pressure loss of the refrigerant flow in the first chamber R1 can be extremely reduced.
  • the arrangement pattern of the fins 56 may take other forms.
  • FIG. 4 shows a modification of the arrangement pattern of the heat sink side fins 56 in a plan view similar to FIG.
  • the heatsink-side fins 56 are plate-shaped lip-shaped fins extending in parallel between the inlet-side port 51 and the outlet-side port 52 and arranged at equal intervals from each other. At both ends in the longitudinal direction, a predetermined gap is maintained between the peripheral wall 55 of the heat sink 5 so that the space between the fins 56 communicates with the port 51 on the inlet side and the port 52 on the outlet side. Terminated. Due to the arrangement of the fins 56, the first chamber R1 has a parallel flow path having both ends communicating with the port 51 on the inlet side and the port 52 on the outlet side, and the middle being separated by the fins 56. Has been established.
  • FIG. 5 shows an example in which the configuration of the first embodiment is applied to a drive device for a hybrid vehicle including two electric motors.
  • a motor 1A as a first electric motor is disposed at an upper portion
  • a differential device indicating only an axis position is disposed substantially below the same
  • a generator 1B as a second electric motor is disposed. In the middle position, they are located in front of them while mounted on the vehicle.
  • the mounting part 20 of the heat sink 5 is integrally formed on the upper part of the drive device case 2.
  • the mounting portion 20 of the heat sink 5 contacts the outer periphery of the two motor housings
  • the heat sink 5 has a trapezoidal shape having a planar outer shape substantially corresponding to the planar outer shape of the heat sink 5.
  • a concave portion is formed in the mounting portion 20 on the side facing the heat sink 5, and the M portion forms a second chamber (corresponding to the second chamber R2 in FIG. 2).
  • the heat sink 5 is a separate member from the substrate of the inverter 3, and has a case shape having a rectangular peripheral wall 54 extending in a plan view and extending upward from the bottom wall 53 so as to surround the outer shape in a frame shape.
  • the inside is a storage space for the impeller 3.
  • the two modules for the motor and generator that make up the impeller 3 are mounted on the bottom wall 5 3 of the heat sink 5 that has been flat-finished so that they can be attached closely so as not to cause heat transfer resistance. It is tightly fixed by appropriate means.
  • the upper opening of the heat sink 5 is covered with a cover 7 to protect the internal impeller 3 from rainwater and dust.
  • the bottom wall 53 of the heat sink 5 is provided with a rectangular peripheral wall 55 extending in a plan view extending downward so as to surround the outer shape of the heat sink 5 in a frame shape. (Corresponding to the first room R1).
  • the heat sink 5 configured as described above has a portion having an outer dimension that is a portion where the heat sink 5 faces the drive device case 2, that is, an outer shape of the mounting portion 20 of the drive device case 2, and is also denoted by a planar outer shape of the heat sink 5.
  • the end surface of the peripheral wall 55 is brought into contact with the mounting surface of the drive case 2 with the separating means 8 in between, and the surroundings are prevented from leaking by a sealing material 9 (see Fig. 2) such as an O-ring if necessary. It is fixed and integrated by appropriate fixing means such as bolting.
  • the space R interposed between the heat sink 5 and the drive device case 2 serves as a heat insulating layer by the refrigerant flowing therein, the space R is transmitted from the drive device case 2 transmitted to the heat sink 5.
  • the heat of the drive unit is shut off, and the impeller 3 that is integrated into the drive unit and is disadvantageous in terms of heat resistance can be protected from the high temperature of the drive unit.
  • the space R is divided into two layers of the first chamber R1 and the second chamber R2 by the separating means 8 (see FIG. 2), a temperature gradient can be provided between the two chambers.
  • heat sink side fins 56 are connected to drive unit case 2. In this case, heat transfer from the second chamber R2 to the first chamber R1 via the separation means 8 is reduced, and the heat insulation effect due to the interposition of both the two layers can be made effective. it can.
  • FIG. 6 shows a second embodiment having the same basic configuration as the first embodiment.
  • the heat sink 5 is the same as the first embodiment in that the heat sink 5 includes a heat sink side fin 56 extending into the first chamber R1, but in this embodiment, the heat sink 5 is also provided on the drive device case 2 side.
  • a drive-side fin 22 extending into the second chamber R2 is formed.
  • the drive device side fins 22 are also separated from the separation means 8.
  • Other configurations are the same as those of the first embodiment, and the corresponding members are denoted by the same reference numerals and description thereof will be omitted. This applies to the other embodiments that follow.
  • FIG. 7 shows the arrangement pattern of the fins 56 on the heat sink side and the fins 22 on the drive unit, and the bottom surface of the heat sink 5 and the drive unit case 2 side, which are actually facing each other with the spacing means 8 interposed therebetween.
  • the mounting surfaces of are arranged on the same plane, and a fin arrangement pattern that can be employed in this embodiment is shown in a schematic plane.
  • the heat sink-side fins 56 extending to the first chamber R1 are pin-shaped fins so as to reduce the pressure loss of the flow path, and the drive case fins 22 are made uniform in flow. It is considered to be an excellent rib-shaped fin.
  • connection relationship of the space R to the refrigerant circulation path which has not been mentioned in the description of the first embodiment, will be described.
  • the connection relationship between the respective chambers Rl and R2 with respect to the refrigerant circulation path becomes a problem.
  • inlet ports 51a, 51b are connected to discharge side flow path 43 (see Fig. 1 for the relationship of this flow path to the refrigerant circuit) and outlet ports 52a, 52b Are connected to a return flow path 44 (see also FIG. 1), and both chambers are connected to each other in a parallel relationship with respect to the refrigerant circulation path.
  • the second chamber R 2 Since the flow resistance on the first chamber R1 side is lower than that on the side, the flow rate on the first chamber R1 side is relatively higher, and the cooling capacity on the heat sink 5 side is increased, and the heat-resistant temperature of the impeller 3 is increased.
  • a temperature gradient is provided between the two chambers R 1 and R 2 according to the low temperature, and the inverter 3 and the drive unit case 2 can be cooled efficiently with a smaller flow rate.
  • FIG. 8 shows a modified example in which the connection relationship between the fin arrangement pattern and the refrigerant circulation path is further changed in the same manner as in FIG.
  • the heat sink side fins 5 6 extending to the first chamber R 1 and the drive device side fins 22 extending to the second chamber R 2 are both rib-shaped fins. Are arranged so that the arrangement interval is narrower than that of the drive device side fins 22.
  • the inlet port 51 a of the first chamber R 1 is connected to the discharge side flow path 43, and the outlet port 52 a is connected to the second chamber R 2 via the connection flow path 46.
  • the inlet port 51b of the second chamber R2 is connected to the outlet port 51b, and the outlet port 51b of the second chamber R2 is connected to the return flow path 44 so that both chambers are connected to each other in series with respect to the refrigerant circuit. ing.
  • a fin arrangement of the same kind and the same number, a combination of different kinds of fins, and a fin arrangement of the same kind and different only in number can be appropriately selected according to the intended cooling effect.
  • the connection of the two chambers R 1 and R 2 to the refrigerant circulation path can also be appropriately selected according to the relationship between the intended cooling effect and the fin arrangement pattern to be adopted.
  • FIG. 9 shows an example in which the second embodiment is embodied more specifically.
  • the integration of the inverter substrate and the heat sink is different from the example embodying the first embodiment, and illustrates a case where the heat sink is configured by the module substrate itself.
  • the heat sink 5 is attached to the inverter 3 side,
  • the heat sink 5 is fixed to an impeller case 50 formed as a separate member, and is attached to the drive unit case 2 via the impeller case 50. Therefore, in the drive device case 2 in this example, the upper mounting portion 20 serves as a mounting portion for the inverter case 50, but the substantial configuration is the same as in the previous embodiment.
  • the mounting portion 20 of the impeller case 50 has a trapezoidal shape having a planar outer shape substantially matching the planar outer shape of the impeller case 50.
  • a recess is formed in the mounting portion 20 on the side facing the heat sink 5, and this recess constitutes a second chamber (corresponding to the second chamber R2 in FIG. 6).
  • the part corresponding to the bottom wall 53 (see FIG. 5) of the impeller case 50 is an opening except for the surrounding shelf-like portion 57, and the shelf-like portion 57 supports the heat sink 5 fixedly. Department.
  • an appropriate sealing means (not shown) is provided at the fixed portion of the periphery of the heat sink 5 to the shelf 57.
  • the leak between the impator case 50 and the heat sink 5 is prevented.
  • the first chamber R of the space R (the first chamber R 1 in FIG. 6) is surrounded by a rectangular peripheral wall 55 below the lower surface of the heat sink 5 and the shelf portion 57 of the impeller case 50. ) Is defined.
  • the cooling medium is exclusively used as the heat insulating layer without considering the thermal conductivity of the separation means 8.
  • the low heat conduction made of a material having low heat conductivity is used for the separation means 8.
  • the conductive member 6, that is, a heat insulating material is used, or when a member such as a metal material constituting the separating means 8 is backed and a low thermal conductive member such as a film made of a material having low thermal conductivity is additionally provided.
  • at least the drive device side fins 22 can be configured to directly contact the low thermal conductive member 6 constituting the separating means 8 or a member attached thereto.
  • a third embodiment shown with reference to FIG. 10 adopts such a configuration.
  • the low thermal conductive member 6 does not necessarily mean a member made of a single material, but also includes a member obtained by laminating a plurality of different materials including a coating agent and the like.
  • the separating means 8 is made of a material having a low thermal conductivity and a low thermal conductivity.
  • the drive member side fins 22 are in contact with the low heat conductive member 6.
  • the separation means 8 is a low thermal conductive member 6, it is not always necessary to particularly consider the contact area of the tip of the drive device side fin 22 with the separation means 8, but the drive device side fin is required. It is effective to use the pin-shaped fins as the arrangement pattern of 22 in order to reduce the contact area with the low thermal conductive member 6.
  • the separating means 8 for separating the first chamber R1 and the second chamber R2 serves as a heat insulating layer serving as a heat insulating material 6, so that a refrigerant flows between the drive case 2 and the heat sink 5.
  • a low heat conductive member such as a film
  • the tip of the fins 22 on the driving device supports the low heat conductive member. It is possible to prevent the low thermal conductive member from rising from the separating means 8 without using any special bonding means.
  • the present invention has been described in detail based on three embodiments. However, the present invention is not limited to these embodiments, and various concrete configurations may be changed within the scope of the claims. Can be implemented.
  • a single-layer member is exemplified in the first and second embodiments, but this may be configured by a multi-layer member or structure.
  • the separating means is composed of, for example, a plurality of separating members sandwiching the low thermal conductive portion in the middle, and the low thermal conductive portion is formed of, for example, a solid heat insulating material, or the first chamber R1 or the second chamber R. It is effective to use the same coolant flow space as in 2.
  • the separating means 8 made of an appropriate material such as a metal material, a ceramic material, or rubber is used. It is also possible to adopt a configuration in which the low thermal conductive member 6 is attached or sandwiched. In this case, the low thermal conductive member 6 may be provided on one surface of the separating means 8 or on both surfaces.
  • the coolant is exemplified as the cooling water
  • other appropriate coolants can be used as a matter of course, and a separate system is provided for the coolant flowing through the first chamber R1 and the second chamber R2. It is also possible to configure the refrigerant circulation path.
  • the present invention is widely applicable not only to electric vehicle driving devices and hybrid driving devices but also to devices in which an electric motor and an inverter are integrated.

Abstract

駆動装置は、電動機と、電動機を収容する駆動装置ケース2と、電動機を制御するインバータ3と、インバータを冷却する冷媒の流路とを備える。インバータは、その基板と一体のヒートシンク5を間に空間Rを画成して駆動装置ケースに取付けられ、空間は、離隔手段8によりヒートシンク側に面する第1の室R1と駆動装置ケース側に面する第2の室R2とに分離させて、冷媒の流路に連通され、ヒートシンクは、第1の室内に延び出し、離隔手段とは離れたヒートシンク側フィン56を備える。これにより、両室間に温度勾配を持たせることができ、一層の空間全体を冷媒によりインバータの耐熱温度に合せて冷却する場合にくらべて、より少ない冷媒流量で有効なヒートシンクと駆動装置ケースの冷却が可能となる。

Description

技術分野
本発明は、 動力源として電動機を用いる駆動装置に関し、 特に、 電気自動車用 駆動装置やハイプリッド駆動装置における冷却技術に関する。 明
背景技術
電動機を車両の駆動源とする場合、 電動機はその制御のための制御装置 (交流 書
電動機の場合はインパータ)を必要とする。 こうしたインパータ等の制御装置は、 電動機に対してパヮ一ケーブルで接続されるものであるため、 電動機とは分離さ せて適宜の位置に配設可能であるが、 車載上の便宜性から、 電動機と一体化させ る配置がより望ましい。
ところで、 現状の技術では、 制御装置の耐熱温度は電動機の耐熱温度に対して 低い。 そこで、 上記のように制御装置を電動機と一体化させる場合、 制御装置を 保護すべく、 電動機から制御装置への直接的な熱伝達を遮断する何らかの手段が 必要である。 また、 制御装置は、 自身の素子による発熱で温度上昇するため、 耐 熱温度以下に保っために冷却を必要とする。
こうした問題点の改善に役立つと考えられる技術として、 従来、 米国特許第 5 4 9 1 3 7 0号明細書に記載のものがある。 この技術では、 電動機のシリンダ状 インナボディ (ハウジング) の外周に冷却流体を流す冷却チャンネル(螺旋通路) を形成し、この通路の開放面側を覆うようにハウジングに外装したジャケット(ス Vーブ)の一部に冷却サドルを形成し、この冷却サドルに I G B Tモジュール (ィ ンバータコンポーネント) を収容したコントロールハウジングを取付けた構成が 採られている。 この構成では、 コントロールハウジングと冷却サドルとの対向部 分に冷却空間が隔成されており、 水ポンプから送り出される冷却流体が、 この冷 却空間を経て螺旋通路に流れ、 熱交換器を通って水ポンプに戻る冷却流体の循環 がなされる。 また、 他の技術として、 特開平 5— 2 9 2 7 0 3号公報に提案の発明もあり、 この発明では、 ヒートシンクを介してモータ本体とコントローラを一体化し、 ヒ ートシンク内部に冷却液を流通させてコントローラを冷却し、 流通後の冷却液を モータ本体に供給してモータ本体を冷却する構成が探られている。
ところで、 上記前者の従来技術の構成では、 ィンパータコンポーネントのシャ ーシがコントロールハウジングに対して浮状態に配置されているため、 シリンダ 状ィンナボディとインパータコンポーネントとの間の断熱には優れるとみられる が、 冷却流体によるインパータコンポーネントの効果的冷却は期待できない。 ま た、 この技術では、 シリンダ状インナボディの螺旋通路を画成する壁の先端がジ ャケットと直接接触するため、 インバータコンポーネントに対する冷却空間を画 成するサドル部分への熱伝達が多くなると考えられ、 冷却能率の面で非能率であ る。
一方、 前記後者の技術では、 コントローラがヒートシンクに直接接しているこ とから、 冷却液によるコントローラの冷却効果ま期待でき、 ヒートシンクとモー タ本体の直接当接面積を低減するギャップが設けられていることから、 このギヤ ップ部分の冷却液による断熱効果も期待できるが、 冷却液により構成される断熱 層は、 モータ本体とヒートシンクに共に接するものとなるため、 コントローラ保 護のためにその耐熱温度まで冷却液の温度を下げるには、 大容量の冷却液循環系 を必要とすることになり、 この場合も冷却能率の面で非能率である。
本発明は、 こうした従来技術を踏まえて案出されたものであり、 電動機にイン パータを一体化させた駆動装置において、 電動機からインバータへの熱伝達を冷 媒により遮断しながら、 電動機を冷却する冷媒とインパータ側を冷却する冷媒に 温度差を持たせることで、 両者をそれらの耐熱温度に応じて少ない冷媒の流動に より効率よく冷却することを主たる目的とする。 発明の開示
上記目的を達成するため、 本発明は、 電動機と、 該電動機を収容する駆動装置 ケースと、 電動機を制御するインバータと、 該インパータを冷却する冷媒の流路 とを備える駆動装置において、 前記インパータは、 その基板と一体化されたヒー トシンクが駆動装置ケースと対向する部分に空間を画成して駆動装置ケースに取 付けられ、 前記空間は、 離隔手段によりヒートシンク側に面する第 1の室と駆動 装置ケース側に面する第 2の室とに分離させて、 冷媒の流路に連通され、 前記ヒ ートシンクは、 第 1の室内に延び出し、 離隔手段とは離れたヒートシンク側フィ ンを備えることを特徴とする。
この構成では、 ヒートシンクと駆動装置ケースとの間に介在する空間が、 その 中を流れる冷媒により断熱層の役割を果たすため、 ヒートシンクに伝わる駆動装 置ケースからの熱が遮断されて、 駆動装置に一体化されて耐熱温度的に不利なィ ンバータを駆動装置の高温から保護することができる。 また、 空間が離隔手段に より第 1の室と第 2の室の 2層に分けられているため、 両室間に温度勾配を持た せることができ、 これにより一層の空間全体を冷媒によりインパータの耐熱温度 に合せて冷却する場合にくらべて、 より少ない冷媒流量で有効なヒートシンクと 駆動装置ケースの冷却が可能となる。 更に、 ヒートシンク側フィンを駆動装置ケ ースに接しさせないことで、 離隔手段を介する第 2の室から第 1の室への熱伝達 も少なくなり、 2層の両室の介在による断熱効果を有効なものとすることができ る。
上記の構成において、 前記駆動装置ケースは、 第 2の室内に延ぴ出す駆動装置 側フィンを備える構成としてもよい。 この構成では、 駆動装置ケース側に面する 第 2の室側の冷却を効果を上げることで、 ヒートシンク側に面する第 1の室側に 離隔手段を介して伝わる熱を少なくすることができるため、 第 1の室側の冷却効 果を向上させることができる。
この場合、前記駆動装置側フィンは、離隔手段とは離れていることが望ましい。 この構成では、 駆動装置ケース側フィンの配設により駆動装置ケース側に面する 第 2の室側の冷却を効果を上げながら、 第 2の室內において、 駆動装置ケースか ら離隔手段に伝わる熱を低減することができる。
前記離隔手段は、 熱伝導性の低い材質からなる低熱伝導性部材とすることもで きる。 この場合、 前記駆動装置側フィンは、 離隔手段と接していてもよい。 この 構成では、第 1の室と第 2の室間を隔てる離隔手段が断熱層の役割を果たすため、 駆動装置ケースとヒートシンクの間に冷媒による 2層と、 低熱伝導性部材による 1層からなる合せて 3層の断熱層が介在することになり、 断熱効果が更に向上す る。
また、 前記離隔手段は、 離隔部材と該離隔部材に添設された熱伝導性の低い材 質からなる低熱伝導性部材で構成することもできる。 この構成では、 低熱伝導性 部材を離隔部材に添接支持させることができるため、 低熱伝導性部材に剛性を持 たない材質のものも使用することができ、 低熱伝導性部材として、 より幅広い材 質のものを選択 ·使用することができる。
あるいは、 前記離隔手段は、 中間に低熱伝導性部分を挟む離隔部材で構成する こともできる。 この構成では、 離隔部材に挟まれる中間部分を低熱伝導性部分と することで、 離隔部材自体に必ずしも断熱性を持たせる必要でないため、 離隔部 材として、 より幅広い材質のものを選択 ·使用することができる。 図面の簡単な説明
図 1は本発明の駆動装置の冷却系のシステム構成図、 図 2は第 1実施形態の駆 動装置の軸方向縦断面の模式図、 図 3はピン状フィン配列パターンを示す模式平 面図、 図 4はリブ状フィン配列パターンを示す模式平面図、 図 5は第 1実施形態 の駆動装置を具体化した実施例の一部断面側面図、 図 6は第 2実施形態の駆動装 置の軸方向縦断面の模式図、 図 7は第 2実施形態のフィン配列パターンをヒ一ト シンクと駆動装置ケースとの対向面を同一平面上に並べて示す模式平面図、 図 8 は第 2実施形態の他のフィン配列パターンをヒートシンクと駆動装置ケースとの 対向面を同一平面上に並べて示す模式平面図、 図 9は第 2実施形態の駆動装置を 具体化した実施例の軸方向部分断面図であり、 図 1 0は第 3実施形態の駆動装置 の軸方向縦断面の模式図である。 発明を実施するための最良の形態
以下、 図面に沿い、 本発明の実施形態を説明する。 まず図 1は、 本発明を適用 した駆動装置の冷却系を模式化して概念的に示す。 この装置は、 図示を省略する 電動機と、 該電動機を収容する駆動装置ケース 2と、 電動機を制御するインパー タ 3と、 インパータ 3を冷却する冷媒の流路 4とを備える。 本明細書いうイン ータとは、 パッテリ電源の直流をスイッチング作用で交流 (電動機が 3相交流電 動機の場合は 3相交流) に変換するスィツチングトランジスタや付随の回路素子 と、 それらを配した回路基板からなるパワーモジュールを意味する。 この形態に おける駆動装置は、 電気自動車又はハイプリッド車用の駆動装置を構成するもの で、 駆動装置ケース 2は、 図示しない電動機としてのモータ又はジェネレータ若 しくはそれら両方と、 ディファレンシャル装置、 カウンタギヤ機構等の付属機構 を収容している。 インバータ 3は、 その基板自体からなるか又は別部材を基板に 取付けることで基板と一体化されたヒートシンク 5が駆動装置ケース 2と対向す る部分に空間を画成して駆動装置ケース 2に取付けられ、 前記空間は、 冷媒の流 路 4に連通されている。 この形態における、 冷媒の流路 4は、 ヒートシンク 5の 空間を通して冷媒を循環させる冷媒循環路とされている。
ヒートシンク 5を通して冷媒としての冷却水を循環させる冷媒循環路は、 圧送 源としてのウォーターポンプ 4 1と、 熱交換器としてのラジェータ 4 2と、 それ らをつなぐ流路 4 3, 4 4 , 4 5とから構成されている。 なお、 ウォーターボン プ 4 1の駆動モータ等の付属設備については、 図示を省略されている。 冷媒循環 路の起点としてのウォーターポンプ 4 1の吐出側流路 4 3は、 ヒートシンク 5の 入口側のポート 5 1に接続され、 ヒートシンク 5の出口側のポート 5 2は、 戻り 流路 4 4を経てラジェータ 4 2の入口 4 2 1側に接続され、 ラジェータ 4 2の出 口 4 2 2側がウォーターポンプ 4 1の吸込側流路 4 5に接続されている。 したが つて、 この冷媒循環路において、 冷媒としての冷却水は、 ウォーターポンプ 4 1 から送り出された後、 ヒートシンク 5内の空間を流れる際にインパータ 3を構成 するモジュールからの熱と駆動装置ケース 2の熱を吸収して加熱され、 戻り流路 4 4を経由でラジェータ 4 2に送り込まれて空気への放熱により冷却され、 ゥォ 一ターポンプ 4 1に戻されて一巡のサイクルを終わる循環を繰り返すことになる。 なお、 この冷媒循環路は、 途中、 例えば戻り流路 4 4の部分で、 更なる冷却のた めに駆動装置ケース 2内を通る流路とすることもできる。
次に示す図 2は、 第 1実施形態の駆動装置の軸方向縦断面を模式化して示すも ので、 符号 1は電動機を示し、 1 1はそのロータ軸、 1 2はロータコア、 1 3は ステータコアを示す。 図示するように、 ヒートシンク 5が駆動装置ケース 2と対 向する部分に画成される空間 Rは、 離隔手段 8によりヒートシンク側に面する第 1の室 R 1と駆動装置ケース側に面する第 2の室 R 2とに分離させて、 先述の冷 媒の流路に連通され、 ヒートシンク 5は、 熱交換面積確保のために第 1の室 R 1 内に延ぴ出し、離隔手段 8とは離れた多数のヒートシンク側フィン 5 6を備える。 なお、 後に説明する他の実施形態を示す図面を含む全ての図において、 各フィン は、 空間 Rに対する大きさを拡大誇張して示されており、 それらの数も、 図面の 錯綜を避ける意味で、 実際の配置個数より減じて示されている。
次に示す図 3は、 ヒートシンク側フィン 5 6の配列パターンを模式化して平面 視で示す。 ヒートシンク側フィン 5 6は、 第 1の室 R 1内の流れをフィンにより 規制することなく自然の流れを生じさせるべく、 第 1の室 R 1に対して所定ピッ チで縦横に配列した多数の円柱形状のピン状フィンとされている。 こうしたピン 状フィンの採用による利点は、 第 1の室 R 1内での冷媒流れの圧損を極めて小さ くすることができる点にある。
なお、 このフィン 5 6の配列パターンは、 他の形態を採ることもできる。 次に 示す図 4は、 ヒートシンク側フィン 5 6の配列パターンの変形例を図 3と同様の 平面視で示す。 この場合、 ヒートシンク側フィン 5 6は、 入口側のポート 5 1と 出口側のポート 5 2との間で並行に延び、 互いに等間隔で配置された板形状のリ プ状フィンとされており、 それらの長手方向両端は、 各フィン 5 6間の空間を入 口側のポート 5 1と出口側のポート 5 2に通じさせるべく、 ヒートシンク 5の周 壁 5 5との間に所定の間隙を保って終端している。 こうしたフィン 5 6配列によ り、第 1の室 R 1には、両端が入口側のポート 5 1と出口側のポート 5 2に通じ、 途中がフィン 5 6により隔てられた並行流路が隔成されている。
次に示す図 5は、 前記第 1実施形態の構成を 2つの電動機を備えるハイプリッ ド車用駆動装置に適用した実施例を示す。 この例では、 軸線方向からみて、 第 1 の電動機としてのモータ 1 Aが上部に配置され、 軸位置のみを示すディファレン シャル装置が概ねその下方に配置され、 第 2の電動機としてのジェネレータ 1 B が中間位置で、 車両搭載状態でそれらの前方に配置されている。
駆動装置ケース 2には、 その上部にヒートシンク 5の取付部 2 0が一体形成さ れている。 ヒートシンク 5の取付部 2 0は、 2つの電動機収容部の外周に接する ようにケース上部に傾斜して突出する形態で設けられ、 ヒートシンク 5の平面外 形と実質上符合する平面外形の台状とされている。 取付部 2 0には、 ヒートシン ク 5に対峙する面側に凹部が形成され、 この M部が第 2の室 (図 2における第 2 の室 R 2に対応する) を構成する。
ヒートシンク 5は、 本形態ではインバータ 3の基板とは別部材とされ、 その底 壁 5 3から外形を枠状に囲うように上方に延びる平面視で矩形の周壁 5 4を備え るケース状とされ、 その内部がインパータ 3の収容空間とされている。 そして、 インパータ 3を構成するモータ用及ぴジェネレータ用の 2つのモジュールは、 そ れらを伝熱抵抗を生じさせないように密接取付けすベく平坦に仕上げ加工された ヒートシンク 5の底壁 5 3に適宜の手段で緊密に固定されている。 そして、 ヒー トシンク 5の上側開放部は、 内部のィンパータ 3を雨水や埃から保護すべくカパ 一 7で蓋されている。 ヒートシンク 5の底壁 5 3には、 その外形を枠状に囲うよ うに下方に延びる平面視で矩形の周壁 5 5が設けられ、 それにより囲われて空間 Rの第 1の室 (図 2における第 1の室 R 1に対応する) が画成されている。
このように構成されたヒートシンク 5は、 ヒートシンク 5が駆動装置ケース 2 と対向する部分、 すなわち駆動装置ケース 2の取付け部 2 0の外形でありヒート シンク 5の平面外形にも符号する外形寸法の板状の離隔手段 8を挟んで駆動装置 ケース 2の取付け面に周壁 5 5の端面を当接させ、 必要に応じて Oリング等のシ ール材 9 (図 2参照) により周囲を漏れ止めされ、 ボルト締め等の適宜の固定手 段で固定一体化されている。
こうした第 1実施形態の構成によると、 ヒートシンク 5と駆動装置ケース 2と の間に介在する空間 Rが、その中を流れる冷媒により断熱層の役割を果たすため、 ヒートシンク 5に伝わる駆動装置ケース 2からの熱が遮断されて、 駆動装置に一 体化されて耐熱温度的に不利なィンパータ 3を駆動装置の高温から保護すること ができる。 また、 空間 Rが離隔手段 8により第 1の室 R 1と第 2の室 R 2の 2層 に分けられているため (図 2参照)、両室間に温度勾配を持たせることができ、 こ れにより一層の空間全体を冷媒によりィンバータ 3の耐熱温度に合せて冷却する 場合に比べて、 より少ない冷媒流量で有効なヒートシンク 5と駆動装置ケース 2 の冷却が可能となる。 更に、 ヒートシンク側フィン 5 6を駆動装置ケース 2に接 しさせないことで、 離隔手段 8を介する第 2の室 R 2から第 1の室 R 1への熱伝 達も少なくなり、 2層の両室の介在による断熱効果を有効なものとすることがで きる。
次に示す図 6は、 前記第 1実施形態と基本構成を同じくする第 2実施形態を示 す。 この形態において、 ヒートシンク 5は、 第 1の室 R 1内に延び出すヒートシ ンク側フィン 5 6を備える点は、 第 1実施形態と同様であるが、 この形態では、 駆動装置ケース 2側にも、 第 2の室 R 2内に延び出す駆動装置側フィン 2 2が形 成されている。 この駆動装置側フィン 2 2も、 離隔手段 8とは離れている。 その 余の構成は、 前記第 1実施形態と同様であるので、 相当する部材に同様の符号を 付して説明に代える。 この点は、 後続の他の実施形態についても同様とする。 このように、 ヒートシンク 5側と駆動装置ケース 2側に共にフィン 5 6, 2 2 を形成する場合、 これら両フィンについて、 先の第 1実施形態とその変形形態と して図 3又は図 4に示したものと同様のピン状フィン又はリブ状フィン構成を採 ることができるが、 更に次の図 7に示すようなフィン構成を採ることもできる。 次に示す図 7は、 ヒートシンク側フィン 5 6と駆動装置側フィン 2 2の配列パタ ーンを、 実際には離隔手段 8を挟んで向い合う関係にあるヒートシンク 5の底面 と駆動装置ケース 2側の取付面を同一平面に並べて表記し、 この形態に採用可能 なフィン配列パターンを模式平面で示す。 この場合、 第 1の室 R 1に延び出すヒ ートシンク側フィン 5 6については、 流路の圧損が小さくなるようにピン状フィ ンとし、 駆動装置ケース側フィン 2 2については、 流れの均一化に優れるリブ状 フィンとされている。
ここで、 第 1実施形態の説明においてふれなかった冷媒循環路に対する空間 R の接続関係について説明する。本発明のように空間 Rを分離する構成を採る場合、 それぞれの室 R l, R 2の冷媒循環路に対する接続関係が問題となるが、 図 7に 示す例では、 単純にそれぞれの室 R l , R 2の入口ポート 5 1 a, 5 1 bを吐出 側流路 4 3 (この流路の冷媒循環路に対する関係は図 1参照) に接続し、 出口ポ ート 5 2 a , 5 2 bを戻り流路 4 4 (同じく図 1参照) に接続して、 両室が互い に冷媒循環路に対して並列の関係に接続されている。
こうしたフィン配列パターンと流路への接続構成を採った場合、 第 2の室 R 2 側より第 1の室 R 1側の流動抵抗が少なくなるため、 相対的に第 1の室 R 1側の 流量が多くなり、 ヒートシンク 5側の冷却能力を上げて、 ィンパータ 3の耐熱温 度が低いのに合せて両室 R 1, R 2間に温度勾配を持たせ、 より少ない流量でィ ンパータ 3と駆動装置ケース 2の冷却を能率よく行なうことができる。
次に示す図 8は、 フィン配列パターンと冷媒循環路に対する接続関係を更に変 更した変形例を先の図 7と同様の手法で示す。 この場合、 第 1の室 R 1に延び出 すヒートシンク側フィン 5 6と第 2の室 R 2に延ぴ出す駆動装置側フィン 2 2を 共にリブ状フィンとしているが、 ヒートシンク側フィン 5 6については、 駆動装 置側フィン 2 2より配列間隔を狭めた配置としている。 また、 この例では、 第 1 の室 R 1の入口ポート 5 1 aを吐出側流路 4 3に接続し、 出口ポート 5 2 aを接 続流路 4 6を介して第 2の室 R 2の入口ポート 5 1 bに接続し、 第 2の室 R 2の 出口ポートを 5 1 bを戻り流路 4 4に接続して、 両室が互いに冷媒循環路に対し て直列の関係に接続されている。
こうしたフィン配列パターンと流路への接続構成を採った場合、 両室 R l, R 2の厚さを同じとしても、 第 2の室 R 2側より第 1の室 R 1側の冷却面積 (冷媒 に接するフィン表面積) が大きくなるため、 相対的に第 1の室 R 1側の冷却効果 が大きくなる。 したがって、 これを利用して、 ヒートシンク 5側の冷却能力を上 げ、 インパータ 3の耐熱温度が低いのに合せて両室間に温度勾配を持たせ、 先の 場合と同様に少ない流量でィンバータ 3と駆動装置ケース 2の冷却を能率よく行 なうことができる。
このように、 フィン配列パターンについては、 同種同数のフィン配列も、 異種 フィンの組合せも、 同種で数だけが異なるフィン配列も、 狙いとする冷却効果に 合せて適宜選択可能である。 また、 両室 R l, R 2の冷媒循環路への接続も、 狙 いとする冷却効果と採用するフィン配列パターンとの関係に応じて適宜選択可能 である。
次に示す図 9は、前記第 2実施形態をより具体化した実施例を示す。 この例は、 ィンバータの基板とヒートシンクの一体化に関して、 先の第 1実施形態を具体化 した実施例とは異なり、 ヒートシンクがモジュール基板自体で構成される場合を 例示する。 この例では、 ヒートシンク 5がインバータ 3側に付随することから、 ヒートシンク 5は、 それとは別部材として構成されるインパ一タケース 5 0に固 定され、 インパータケース 5 0を介して駆動装置ケース 2に取付けられている。 したがって、 この例における駆動装置ケース 2は、 その上部の取付部 2 0がイン パータケース 5 0の取付け部となるが、 実質的構成は先の実施例と同様である。 すなわち、 インパータケース 5 0の取付部 2 0は、 インパータケース 5 0の平面 外形と実質上符合する平面外形の台状とされている。 取付部 2 0には、 ヒートシ ンク 5に対峙する面側に凹部が形成され、 この凹部が第 2の室 (図 6における第 2の室 R 2に対応する) を構成する。
インパータケース 5 0は、 先の例の底壁 5 3 (図 5参照) に当たる部分が周囲 の棚状部分 5 7を除いて開口部とされ、 棚状部分 5 7がヒートシンク 5の固定支 持部とされている。 このように、 インパータケース 5 0がヒートシンク 5とは別 部材とされていることから、ヒートシンク 5周囲の棚状部分 5 7への固定部には、 図示を省略する適宜のシール手段が介揷されて、 ィンパータケース 5 0とヒート シンク 5の間の漏れ止めがなされている。 これらの点を除いて、 実質的には先の 実施例と同様であるので、 相当する部位に同様の参照符号を付してその余の部分 の説明に代える。 この例では、 ヒートシンク 5の下面とインパータケース 5 0の 棚状部分 5 7より下側の矩形の周壁 5 5により囲われて空間 Rの第 1の室 (図 6 における第 1の室 R 1に対応する) が画成されている。
前記 2つの実施形態は、 いずれも離隔手段 8の熱伝導性を考慮せずに、 専ら冷 媒を断熱層として利用するものであるが、 離隔手段 8に熱伝導性の低い材質から なる低熱伝導性部材 6、 すなわち断熱材を用いる場合、 又は離隔手段 8を構成す る金属材等の部材を裏打ちとして、 熱伝導性の低い材質からなるフィルム状等の 低熱伝導性部材を添設配置する場合、 少なくとも駆動装置側フィン 2 2について は、 離隔手段 8を構成する低熱伝導性部材 6又はそれに添設する部材に直接接触 する構成とすることができる。 次に図 1 0を参照して示す第 3実施形態は、 こう した構成を採るものである。 なお、 ここにいう低熱伝導性部材 6は、 必ずしも単 一材質の部材を意味するものではなく、 塗布剤等を含む異種材を複数積層した部 材も含む。
この第 3実施形態では、 離隔手段 8は、 熱伝導性の低い材質からなる低熱伝導 性部材 6とされ、 駆動装置側フィン 2 2の先端が低熱伝導性部材 6に接する構成 が採られている。 この構成の場合、 離隔手段 8が低熱伝導性部材 6であることか ら、 離隔手段 8に対する駆動装置側フィン 2 2の先端の接触面積についての格別 の考慮は必ずしも必要ないが、 駆動装置側フィン 2 2の配列パターンをピン状フ インによるものとするのが、 低熱伝導性部材 6に対する接触面積を低減する上で は有効である。
こうした構成を採る場合、 第 1の室 R 1と第 2の室 R 2間を隔てる離隔手段 8 が断熱材 6として断熱層の役割を果たすため、 駆動装置ケース 2とヒートシンク 5の間に冷媒による 2層と、 低熱伝導性部材 6による 1層の合せて 3層の断熱層 が介在することになり、 断熱効果が更に向上する。 また、 フィルム状等の低熱伝 導性部材を駆動装置側フィン 2 2に接する側に配置した場合、 駆動装置側フィン 2 2の先端で低熱伝導性部材を支持する構成となるため、 接着等の格別の張り合 わせ手段を用いずに低熱伝導性部材の離隔手段 8からの浮き上がりを防ぐことが できる。
以上、 本発明を 3つの実施形態に基づき詳説したが、 本発明はこれらの実施形 態に限るものではなく、 特許請求の範囲に記載の事項の範囲内で種々に具体的構 成を変更して実施することができる。 例えば、 離隔手段に関して、 第 1及び第 2 実施形態では、 単層の部材を例示したが、 これを多層の部材又は構造で構成する こともできる。 この場合、 離隔手段は、 例えば中間に低熱伝導性部分を挟む複数 の離隔部材で構成し、 低熱伝導性部分を、 例えば中実の断熱材、 あるいは第 1の 室 R 1や第 2の室 R 2と同様の冷媒の流動空間とするのが有効である。
また、 第 3実施形態における低熱伝導性部材 6が自身で剛性を持たないフィル ム状の部材ゃ塗布剤である場合、 金属材、 セラミック材、 ゴム等の適宜の材質か らなる離隔手段 8に低熱伝導性部材 6が添設又は挟持された構成を採ることもで きる。 この場合の低熱伝導性部材 6は、 離隔手段 8の一方の面に添設されてもよ いし、 両面に添設されてもよい。
また、 冷媒を専ら冷却水として例示したが、 他の適宜の冷媒を用いることも当 然に可能であり、 更に第 1の室 R 1と第 2の室 R 2に流す冷媒に対して別系統の 冷媒循環路を構成することもできる。 産業上の利用可能性
本発明は、 電気自動車用駆動装置やハイブリッド駆動装置のほかに、 電動機と ィンパータを一体化させた装置に広く適用可能なものである。

Claims

請 求 の 範 囲
1. 電動機 ('1) と、
該電動機を収容する駆動装置ケース (2) と、
電動機を制御するインパータ (3) と、
該インパータを冷却する冷媒の流路 (4) とを備える駆動装置において、 前記インバータは、 その基板と一体化されたヒートシンク (5) が駆動装置ケ ースと対向する部分に空間 (R) を画成して駆動装置ケースに取付けられ、 前記空間は、 離隔手段 (8) によりヒートシンク側に面する第 1の室 (R1) と駆動装置ケース側に面する第 2の室 (R2) とに分離させて、 冷媒の流路に連 通され、
前記ヒートシンクは、 第 1の室内に延び出し、 離隔手段とは離れたヒートシン ク側フィン (56) を備えることを特徴とする駆動装置。
2. 前記駆動装置ケースは、 第 2の室内に延び出す駆動装置側フィン (22) を 備える、 請求項 1記載の駆動装置。
3. 前記駆動装置側フィンは、 離隔手段とは離れている、 請求項 2記載の駆動装
4. 前記離隔手段は、 熱伝導性の低い材質からなる低熱伝導性部材 (6) とされ た、 請求項 1、 2又は 3記載の駆動装置。
5. 前記離隔手段は、 離隔部材と該離隔部材に添設された熱伝導性の低い材質か らなる低熱伝導性部材で構成される、 請求項 1、 2又は 3記載の駆動装置。
6. 前記離隔手段は、 中間に低熱伝導性部分を挟む離隔部材で構成される、 請求 項 1、 2又は 3記載の駆動装置。
PCT/JP2003/005749 2002-09-13 2003-05-08 駆動装置 WO2004025809A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004535861A JP4096267B2 (ja) 2002-09-13 2003-05-08 駆動装置
US10/501,073 US7030520B2 (en) 2002-09-13 2003-05-08 Drive device
EP03721070A EP1538731B1 (en) 2002-09-13 2003-05-08 Drive device
DE60322232T DE60322232D1 (de) 2002-09-13 2003-05-08 Antriebsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002269232 2002-09-13
JP2002-269232 2002-09-13

Publications (1)

Publication Number Publication Date
WO2004025809A1 true WO2004025809A1 (ja) 2004-03-25

Family

ID=31986811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005749 WO2004025809A1 (ja) 2002-09-13 2003-05-08 駆動装置

Country Status (7)

Country Link
US (1) US7030520B2 (ja)
EP (1) EP1538731B1 (ja)
JP (1) JP4096267B2 (ja)
KR (1) KR100614011B1 (ja)
CN (1) CN100353648C (ja)
DE (1) DE60322232D1 (ja)
WO (1) WO2004025809A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101795A1 (ja) * 2011-01-27 2012-08-02 トヨタ自動車株式会社 冷却装置
JP2014113915A (ja) * 2012-12-10 2014-06-26 Aisin Aw Co Ltd 車両用駆動装置
JPWO2012153414A1 (ja) * 2011-05-12 2014-07-28 トヨタ自動車株式会社 冷却器および冷却器の製造方法
JP2019110645A (ja) * 2017-12-15 2019-07-04 株式会社Ihi 回転機械
WO2022059427A1 (ja) * 2020-09-17 2022-03-24 株式会社デンソー 回転電機ユニット

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154694A (ja) * 1995-12-08 1997-06-17 Tomokazu Uchiyama サラダ容器
JP4687106B2 (ja) * 2004-12-28 2011-05-25 マックス株式会社 空気圧縮機の冷却装置
JP4106061B2 (ja) * 2005-04-22 2008-06-25 三菱電機株式会社 パワーユニット装置及び電力変換装置
US7798892B2 (en) * 2005-08-31 2010-09-21 Siemens Industry, Inc. Packaging method for modular power cells
DE502005002315D1 (de) * 2005-10-12 2008-01-31 Bayerische Motoren Werke Ag Kühlvorrichtung für ein Kraftfahrzeug mit einem aus zwei Motoren bestehenden Antrieb
US7295440B2 (en) * 2006-03-07 2007-11-13 Honeywell International, Inc. Integral cold plate/chasses housing applicable to force-cooled power electronics
JP4850564B2 (ja) * 2006-04-06 2012-01-11 日立オートモティブシステムズ株式会社 電力変換装置
JP4857017B2 (ja) * 2006-04-27 2012-01-18 日立オートモティブシステムズ株式会社 電力変換装置
JP4675311B2 (ja) * 2006-11-16 2011-04-20 トヨタ自動車株式会社 モータのハウジングの内部にモータと一体的に収容されるインバータおよびコンデンサの冷却構造、その冷却構造を備えたモータユニットならびにハウジング
US8007255B2 (en) * 2006-11-22 2011-08-30 Mitsubishi Heavy Industries, Ltd. Inverter-integrated electric compressor with inverter storage box arrangement
JP5024600B2 (ja) * 2007-01-11 2012-09-12 アイシン・エィ・ダブリュ株式会社 発熱体冷却構造及びその構造を備えた駆動装置
JP5099417B2 (ja) * 2007-05-22 2012-12-19 アイシン・エィ・ダブリュ株式会社 半導体モジュール及びインバータ装置
JP4678385B2 (ja) * 2007-06-13 2011-04-27 トヨタ自動車株式会社 駆動装置および駆動装置を備えた車両
US7723874B2 (en) * 2008-02-15 2010-05-25 Gm Global Technology Operations, Inc. Cooling systems and methods for integration electric motor-inverters
JP5099431B2 (ja) * 2008-02-15 2012-12-19 アイシン・エィ・ダブリュ株式会社 インバータユニット
JP2009247119A (ja) * 2008-03-31 2009-10-22 Aisin Aw Co Ltd 駆動装置
JP4708487B2 (ja) * 2009-07-06 2011-06-22 トヨタ自動車株式会社 インバータ装置用中継接続部材
US8064198B2 (en) * 2009-06-29 2011-11-22 Honda Motor Co., Ltd. Cooling device for semiconductor element module and magnetic part
KR20110053084A (ko) * 2009-11-13 2011-05-19 엘지전자 주식회사 동력 모듈 및 이를 포함하는 자동차
JP2011130545A (ja) * 2009-12-16 2011-06-30 Toyota Industries Corp 熱回収装置
US20110200467A1 (en) * 2010-02-16 2011-08-18 Heng Sheng Precision Tech. Co., Ltd. Power driven compressor that prevents overheating of control circuit
EP2537235B1 (de) * 2010-02-19 2015-04-22 Magna Powertrain AG & Co. KG Elektrische antriebseinheit
KR20130070586A (ko) * 2010-05-04 2013-06-27 레미 테크놀러지스 엘엘씨 전기 기계 냉각 시스템 및 방법
US20140198453A1 (en) * 2011-08-15 2014-07-17 Fan Zhang Mixing manifold and method
CN103023279B (zh) * 2011-09-27 2015-05-13 株式会社京浜 半导体控制装置
US9048721B2 (en) * 2011-09-27 2015-06-02 Keihin Corporation Semiconductor device
ITTO20110924A1 (it) * 2011-10-14 2013-04-15 Merlo Project S R L Con Unico Socio Macchina da lavoro ibrido elettro-idraulico
JP2013216216A (ja) * 2012-04-10 2013-10-24 Ntn Corp インバータ装置の冷却構造
FR2991009B1 (fr) * 2012-05-22 2014-05-16 Valeo Sys Controle Moteur Sas Boitier de compresseur electrique comprenant un dispositif de dissipation, et compresseur comportant un tel boitier
JP6042746B2 (ja) * 2013-02-25 2016-12-14 愛三工業株式会社 電動ポンプ
ES2555121T3 (es) * 2013-07-08 2015-12-29 Fagor, S. Coop. Dispositivo de accionamiento eléctrico
DE112014005396A5 (de) 2013-11-26 2016-08-11 Schaeffler Technologies AG & Co. KG Hybridmodul und Leistungseletronikmodul mit einem gemeinsamen Kühlstrom
EP2879278B1 (en) * 2013-11-27 2017-06-28 Skf Magnetic Mechatronics Versatile cooling housing for an electrical motor
JP5907151B2 (ja) * 2013-11-29 2016-04-20 トヨタ自動車株式会社 車載電子機器のケース
DE102013225242B4 (de) * 2013-12-09 2019-05-16 Continental Automotive Gmbh Aufladevorrichtung für einen Verbrennungsmotor eines Kraftfahrzeugs und Verfahren zur Herstellung der Aufladevorrichtung
WO2016117094A1 (ja) * 2015-01-22 2016-07-28 三菱電機株式会社 半導体装置
DE112015006071T5 (de) * 2015-01-28 2017-10-12 Honda Motor Co., Ltd. Hybridfahrzeugantriebssystem
DE102015214770A1 (de) * 2015-08-03 2017-02-09 Zf Friedrichshafen Ag Gehäuse für eine Antriebseinheit für ein Fahrzeug, Antriebseinheit für ein Fahrzeug und Verfahren zum Herstellen einer Antriebseinheit für ein Fahrzeug
DE102015226023A1 (de) * 2015-12-18 2017-06-22 Siemens Aktiengesellschaft Flüssigkeitsgekühlte, elektrische Antriebskomponente, Antriebsstrang, Fahrzeug und Verfahren
DE102017103475A1 (de) * 2016-02-25 2017-08-31 Toyota Jidosha Kabushiki Kaisha Geräteeinheit
DE112018000504T5 (de) * 2017-01-25 2019-11-21 Ihi Corporation Elektrischer Verdichter
CN106972698A (zh) * 2017-04-07 2017-07-21 上海蔚来汽车有限公司 电机冷却系统
DE102017208632A1 (de) 2017-05-22 2018-11-22 Audi Ag Kraftfahrzeug und Stromrichtereinrichtung für ein Kraftfahrzeug
DE102018114825A1 (de) * 2018-06-20 2019-12-24 Valeo Siemens Eautomotive Germany Gmbh Kühlvorrichtung für eine rotierende elektrische Maschine und rotierende elektrische Maschine zum Antreiben eines Fahrzeugs
JP7084810B2 (ja) * 2018-07-13 2022-06-15 本田技研工業株式会社 駆動ユニット
US11746636B2 (en) 2019-10-30 2023-09-05 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing apparatus and control method thereof, fracturing system
US11680474B2 (en) 2019-06-13 2023-06-20 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing apparatus and control method thereof, fracturing system
US10965183B2 (en) 2019-06-14 2021-03-30 Honeywell International Inc. Integrated traction drive system
DE102019212118A1 (de) * 2019-08-13 2021-02-18 Mahle International Gmbh Elektrische Maschine mit ringförmigem Wärmeübertrager
FR3111027B1 (fr) * 2020-05-29 2022-05-27 Novares France Dispositif de motorisation électrique intégrant un dissipateur thermique isolant électrique
DE102020121432B4 (de) * 2020-08-14 2022-06-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebsstrang mit einer elektrischen Maschine und einem Wechselrichter, Kraftfahrzeug
CN112248781A (zh) * 2020-10-27 2021-01-22 株洲中车时代电气股份有限公司 一种一体化电驱系统及其集成冷却装置
US11757334B2 (en) * 2020-10-29 2023-09-12 Dana Belgium N.V. Systems and method for an electric motor with pin-fin cooling
US11894756B2 (en) 2021-01-25 2024-02-06 Honeywell International Inc. Systems and methods for electric propulsion systems for electric engines
JP2023015907A (ja) * 2021-07-20 2023-02-01 ヤマハ発動機株式会社 駆動ユニットおよび電動車両

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326226A (ja) * 1993-03-15 1994-11-25 Toshiba Corp 冷却装置
JPH07288949A (ja) * 1994-04-13 1995-10-31 Nippondenso Co Ltd 車両駆動用電動機
JPH07298552A (ja) * 1994-04-27 1995-11-10 Nippondenso Co Ltd 車両駆動用電動機
US5585681A (en) * 1993-05-28 1996-12-17 Steyr-Daimler Puch Ag Liquid-cooled drive unit for an electric motor vehicle
US6198183B1 (en) * 1998-04-18 2001-03-06 Daimlerchrysler Ag Integrated electric drive unit including an electric motor and an electronic control and monitoring module
JP2001119898A (ja) * 1999-10-18 2001-04-27 Aisin Aw Co Ltd 駆動装置
US6236566B1 (en) * 1998-02-23 2001-05-22 Alstom Transport Sa Cooling element for a power electronic device and power electronic device comprising same
US20010014029A1 (en) * 2000-02-16 2001-08-16 Osamu Suzuki Power inverter
JP2001238406A (ja) * 1999-04-27 2001-08-31 Aisin Aw Co Ltd 駆動装置
JP2001238405A (ja) * 1999-04-27 2001-08-31 Aisin Aw Co Ltd 駆動装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292703A (ja) 1992-04-09 1993-11-05 Toyota Motor Corp 電気自動車用モータ
US5491370A (en) 1994-01-28 1996-02-13 General Motors Corporation Integrated AC machine
US5821653A (en) * 1995-12-21 1998-10-13 Aisin Aw Co., Ltd. Drive apparatus for electric vehicle
JP3309684B2 (ja) * 1995-12-26 2002-07-29 アイシン・エィ・ダブリュ株式会社 モータ駆動装置
WO1997025741A1 (de) * 1996-01-04 1997-07-17 Daimler-Benz Aktiengesellschaft Kühlkörper mit zapfen
FR2805121B1 (fr) * 2000-02-11 2002-04-26 Leroy Somer Convertisseur modulaire
JP3891348B2 (ja) * 2002-12-27 2007-03-14 アイシン・エィ・ダブリュ株式会社 電動駆動装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326226A (ja) * 1993-03-15 1994-11-25 Toshiba Corp 冷却装置
US5585681A (en) * 1993-05-28 1996-12-17 Steyr-Daimler Puch Ag Liquid-cooled drive unit for an electric motor vehicle
JPH07288949A (ja) * 1994-04-13 1995-10-31 Nippondenso Co Ltd 車両駆動用電動機
JPH07298552A (ja) * 1994-04-27 1995-11-10 Nippondenso Co Ltd 車両駆動用電動機
US6236566B1 (en) * 1998-02-23 2001-05-22 Alstom Transport Sa Cooling element for a power electronic device and power electronic device comprising same
US6198183B1 (en) * 1998-04-18 2001-03-06 Daimlerchrysler Ag Integrated electric drive unit including an electric motor and an electronic control and monitoring module
JP2001238406A (ja) * 1999-04-27 2001-08-31 Aisin Aw Co Ltd 駆動装置
JP2001238405A (ja) * 1999-04-27 2001-08-31 Aisin Aw Co Ltd 駆動装置
JP2001119898A (ja) * 1999-10-18 2001-04-27 Aisin Aw Co Ltd 駆動装置
US20010014029A1 (en) * 2000-02-16 2001-08-16 Osamu Suzuki Power inverter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1538731A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101795A1 (ja) * 2011-01-27 2012-08-02 トヨタ自動車株式会社 冷却装置
JPWO2012101795A1 (ja) * 2011-01-27 2014-06-30 トヨタ自動車株式会社 冷却装置
JP5585667B2 (ja) * 2011-01-27 2014-09-10 トヨタ自動車株式会社 冷却装置
JPWO2012153414A1 (ja) * 2011-05-12 2014-07-28 トヨタ自動車株式会社 冷却器および冷却器の製造方法
JP5716825B2 (ja) * 2011-05-12 2015-05-13 トヨタ自動車株式会社 冷却器および冷却器の製造方法
JP2014113915A (ja) * 2012-12-10 2014-06-26 Aisin Aw Co Ltd 車両用駆動装置
JP2019110645A (ja) * 2017-12-15 2019-07-04 株式会社Ihi 回転機械
WO2022059427A1 (ja) * 2020-09-17 2022-03-24 株式会社デンソー 回転電機ユニット
JP7322841B2 (ja) 2020-09-17 2023-08-08 株式会社デンソー 回転電機ユニット

Also Published As

Publication number Publication date
JPWO2004025809A1 (ja) 2006-01-12
JP4096267B2 (ja) 2008-06-04
DE60322232D1 (de) 2008-08-28
US7030520B2 (en) 2006-04-18
US20050006963A1 (en) 2005-01-13
CN1615569A (zh) 2005-05-11
EP1538731B1 (en) 2008-07-16
CN100353648C (zh) 2007-12-05
KR100614011B1 (ko) 2006-08-21
EP1538731A1 (en) 2005-06-08
KR20050036906A (ko) 2005-04-20
EP1538731A4 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
WO2004025809A1 (ja) 駆動装置
JP4096265B2 (ja) 駆動装置
US7102260B2 (en) Drive device
JP5024600B2 (ja) 発熱体冷却構造及びその構造を備えた駆動装置
JP4186109B2 (ja) 駆動装置
JP5535740B2 (ja) 熱媒体加熱装置およびそれを用いた車両用空調装置
US9186956B2 (en) Heat medium heating unit and vehicle air conditioning apparatus provided with the same
WO2012011198A1 (ja) 液体流路内蔵式高効率温水発生車載用ヒータ
JP2008056044A (ja) 熱媒体加熱装置およびそれを用いた車両用空調装置
JP4683003B2 (ja) パワーモジュール及びこれを用いた電力変換装置
WO2004054007A2 (en) Thermoelectric heat pumps
JP2012196985A (ja) 熱媒体加熱装置およびそれを備えた車両用空調装置
JP2004282804A (ja) インバータ装置
JP5951205B2 (ja) 熱媒体加熱装置およびそれを備えた車両用空調装置
KR200235565Y1 (ko) 고효율의 열전도성을 갖는 액체냉각방식의선형전력증폭기 유니트용 알루미늄 방열판 구조

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003721070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10501073

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047010828

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038021889

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004535861

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003721070

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003721070

Country of ref document: EP